MATRIX TRANSFORMATIONS OF POWER SERIES

DAVID BORWEIN AND AMNON JAKIMOVSKI

(Communicated by Andrew M. Bruckner)

Abstract

We consider the sequence of transforms $\left(g_{n}\right)$ of a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ given by $g_{n}(z):=\sum_{k=0}^{\infty} b_{n k} a_{k} z^{k}$. We establish necessary and sufficient conditions on the matrix $\left(b_{n k}\right)$ for the sequence $\left(g_{n}\right)$ to converge uniformly on compact subsets of the disk $D_{P}:=\{z:|z|<P\}$ to a function holomorphic on D_{P}.

1. Introduction

Suppose throughout that $0<P \leq \infty, 0<R<\infty$, and that all sequences and matrices are complex with indices running through $0,1,2, \ldots$ We make the following definitions:
D_{P} is the disk $\{z:|z|<P\} ;$
\mathscr{E} is the set of all sequences $\mathbf{a} \equiv\left(a_{n}\right)$ such that $\lim \left|a_{n}\right|^{\frac{1}{n+1}}=0$;
\mathscr{E}^{β} is the set of all sequences $\mathbf{a} \equiv\left(a_{n}\right)$ such that $\limsup \left|a_{n}\right|^{\frac{1}{n+1}}<\infty$;
\mathscr{E}_{R} is the set of all sequences $\mathbf{a} \equiv\left(a_{n}\right)$ such that $\sum_{n=0}^{\infty}\left|a_{n}\right| R^{n}<\infty$;
\mathbf{A}_{R} is the set of all sequences $\mathbf{a} \equiv\left(a_{n}\right)$ such that $\limsup \left|a_{n}\right|^{\frac{1}{n+1}}=\frac{1}{R}$;
It will follow from the lemma (below) that \mathscr{E}^{β} is the β-dual of \mathscr{E}.
The following are the first three of eight theorems we shall prove concerning matrix transformations of power series.
Theorem 1. A matrix $\mathbf{B} \equiv\left(b_{n k}\right)$ has the property that whenever the sequence $\mathbf{a} \equiv\left(a_{n}\right) \in \mathscr{E}_{R}$ the sequence of functions $\left(g_{n}\right)$ given by

$$
g_{n}(z):=\sum_{k=0}^{\infty} b_{n k} a_{k} z^{k}, \quad n=0,1, \ldots
$$

converges uniformly on every compact subset of D_{P}, each power series $\sum_{k=0}^{\infty} b_{n k} a_{k} z^{k}$ being convergent on D_{P}, if and only if
(i) $\lim _{n \rightarrow \infty} b_{n k}=: b_{k}$ for $k=0,1, \ldots$;
(ii) $\sup _{n \geq 0, k \geq 0}\left|b_{n k}\right|\left(\frac{p}{R}\right)^{k}<\infty$ for each positive $p<P$.

And then $\lim _{n \rightarrow \infty} g_{n}(z)=\sum_{k=0}^{\infty} b_{k} a_{k} z^{k}$ on D_{P}.

[^0]Theorem 2. A matrix $\mathbf{B} \equiv\left(b_{n k}\right)$ has the property that whenever the sequence $\mathbf{a} \equiv\left(a_{n}\right) \in \mathbf{A}_{R}$ the sequence of functions $\left(g_{n}\right)$ given by

$$
g_{n}(z):=\sum_{k=0}^{\infty} b_{n k} a_{k} z^{k}, \quad n=0,1, \ldots,
$$

converges uniformly on every compact subset of D_{P}, each power series $\sum_{k=0}^{\infty} b_{n k} a_{k} z^{k}$ being convergent on D_{P}, if and only if
(i) $\lim _{n \rightarrow \infty} b_{n k}=: b_{k}$ for $k=0,1, \ldots$;
(ii) $\sup _{n \geq 0, k \geq 0}\left|b_{n k}\right|\left(\frac{p}{R}\right)^{k}<\infty$ for each positive $p<P$.

And then $\lim _{n \rightarrow \infty} g_{n}(z)=\sum_{k=0}^{\infty} b_{k} a_{k} z^{k}$ on D_{P}.
Theorem 3. A matrix $\mathbf{B} \equiv\left(b_{n k}\right)$ has the property that whenever the sequence $\mathbf{a} \equiv\left(a_{n}\right) \in \mathscr{E}$ the sequence of functions $\left(g_{n}\right)$ given by

$$
g_{n}(z):=\sum_{k=0}^{\infty} b_{n k} a_{k} z^{k}, \quad n=0,1, \ldots,
$$

converges uniformly on every compact subset of D_{∞}, each power series $\sum_{k=0}^{\infty} b_{n k} a_{k} z^{k}$ being convergent on D_{∞}, if and only if
(i) $\lim _{n \rightarrow \infty} b_{n k}=: b_{k}$ for $k=0,1, \ldots$;
(ii) $\left.\left.\sup _{n \geq 0, k \geq 0}\right|_{n k}\right|^{\frac{1}{k+1}}<\infty$.

And then $\lim _{n \rightarrow \infty} g_{n}(z)=\sum_{k=0}^{\infty} b_{k} a_{k} z^{k}$ on D_{∞}.
These theorems show that if the series-to-sequence transform given by \mathbf{B} is regular, then it is necessary in each case that $\lim _{n \rightarrow \infty} b_{n k}=b_{k}=1$ for $k=0,1, \ldots$, and this in turn implies that $P \leq R$ in Theorems 1 and 2 (i.e., the sequence (g_{n}) cannot converge uniformly in any disk D_{P} with $P>R$). Regular sequence-to-sequence transforms of power series have been considered by Peyerimhoff [5] and Luh [4] among others. One of the novel features of our approach is that we deal with series-to-sequence transforms rather than sequence-to-sequence transforms.

Let $\left(B_{n}\right)$ be a sequence of nonzero complex numbers. The associated Nörlund series-to-sequence matrix \mathbf{N}_{B} is the triangular matrix ($b_{n k}$) with

$$
b_{n k}:= \begin{cases}\frac{B_{n-k}}{B_{n}} & \text { if } 0 \leq k \leq n \\ 0 & \text { otherwise }\end{cases}
$$

The following theorem is an immediate consequence of Theorem 2. The case $R=1$ of Theorem KS is due to Karin Stadtmüller [6, Theorem 5]. Her method of proof is different from and more complicated than the one developed below.
Theorem KS. The Nörlund matrix \mathbf{N}_{B} has the property that whenever the sequence $\mathbf{a} \equiv\left(a_{n}\right) \in \mathbf{A}_{R}$ the sequence of functions $\left(g_{n}\right)$ given by

$$
g_{n}(z):=\frac{1}{B_{n}} \sum_{k=0}^{n} B_{n-k} a_{k} z^{k}, \quad n=0,1, \ldots
$$

converges uniformly on every compact subset of D_{P}, if and only if

$$
\lim _{n \rightarrow \infty} \frac{B_{n-1}}{B_{n}}=b \quad \text { with } \quad|b|=\frac{R}{P}
$$

And then $\lim _{n \rightarrow \infty} g_{n}(z)=\sum_{k=0}^{\infty} a_{k}(b z)^{k}$ on D_{P}.

Note. In view of Theorem 1, Theorem KS remains true if \mathbf{A}_{R} is replaced by \mathscr{E}_{R}.

2. A preliminary result

Lemma. A sequence \mathbf{b} has the property that $\sum_{n=0}^{\infty} b_{n} a_{n}$ is convergent for each $\mathbf{a} \in \mathscr{E}$ if and only if $\mathbf{b} \in \mathscr{E}^{\beta}$.
Proof. Sufficiency. If $\mathbf{b} \in \mathscr{E}^{\beta}$, then there exists a positive number M such that $\left|b_{n}\right| \leq M^{n+1}$ for $n=0,1, \ldots$. Hence, if $\mathbf{a} \in \mathscr{E}$, then $\sum_{k=0}^{\infty}\left|b_{k} a_{k}\right| \leq$ $M \sum_{k=0}^{\infty}\left|a_{k}\right| M^{k}<\infty$.

Necessity. Assume b $\notin \mathscr{E} \beta$, i.e., $\lim \sup \left|b_{n}\right|_{n+1}^{\frac{1}{n+1}}=\infty$. Then there exists a strictly increasing sequence of positive integers $\left(n_{j}\right)$ such that $0<\left|b_{n_{j}}\right|^{\frac{1}{n_{j+1}}} \rightarrow$ ∞. Choose

$$
a_{n}:= \begin{cases}\frac{1}{\sqrt{\left|b_{n}\right|}} & \text { if } n=n_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\left|a_{n}\right|^{\frac{1}{n+1}}= \begin{cases}\left(\frac{1}{\left|b_{n}\right|^{\frac{1}{n+1}}}\right)^{1 / 2} & \text { if } n=n_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Hence $\lim \left|a_{n}\right|^{\frac{1}{n+1}}=0$, so $\mathbf{a} \in \mathscr{E}$. But

$$
\left|b_{n_{j}} a_{n_{j}}\right|=\sqrt{\left|b_{n_{j}}\right|}=\left(\left|b_{n_{j}}\right|^{\frac{1}{n_{j}+1}}\right)^{\frac{n_{j}+1}{2}} \rightarrow \infty \quad \text { as } j \rightarrow \infty
$$

and therefore $\sum_{n=0}^{\infty} b_{n} a_{n}$ is not convergent.

3. Proofs of Theorems 1, 2, and 3

Proof of Theorem 1. Sufficiency. We assume that

$$
\begin{cases}\lim _{n \rightarrow \infty} b_{n k}=: b_{k} & \text { for } k=0,1, \ldots \\ M(p):=\sup _{n \geq 0, k \geq 0}\left|b_{n k}\right|\left(\frac{p}{R}\right)^{k}<\infty & \text { for } 0<p<P\end{cases}
$$

Let $\mathbf{a} \in \mathscr{E}_{R}$. We have, for $n=0,1, \ldots$ and $|z| \leq p<P$,

$$
\left|\sum_{k=0}^{\infty} b_{n k} a_{k} z^{k}\right| \leq \sum_{k=0}^{\infty}\left|b_{n k}\right|\left|a_{k}\right| p^{k} \leq M(p) \sum_{k=0}^{\infty}\left|a_{k}\right| R^{k}<\infty
$$

Hence the functions $g_{n}(z):=\sum_{k=0}^{\infty} b_{n k} a_{k} z^{k}$ are holomorphic and uniformly bounded on D_{p}. Also $g_{n}^{(k)}(0)=k!b_{n k} a_{k} \rightarrow k!b_{k} a_{k}$ as $n \rightarrow \infty$ for $k=$ $0,1, \ldots$. Further, from Cauchy's inequalities for the coefficients of power series we get that, for $|z| \leq p_{1}<p<P, n=0,1, \ldots$, and $k=0,1, \ldots$,

$$
\left|b_{n k} a_{k} z^{k}\right| \leq M(p, \mathbf{a})\left(p_{1} / p\right)^{k}, \quad \text { where } M(p, \mathbf{a}):=\sup _{n \geq 0} \max _{|z|=p}\left|g_{n}(z)\right|<\infty
$$

Therefore, by the Weierstrass M-test, $\lim _{n \rightarrow \infty} g_{n}(z)=\sum_{k=0}^{\infty} b_{k} a_{k} z^{k}$ on D_{P}, and the sequence $\left(g_{n}\right)$ is uniformly convergent on compact subsets of D_{P}.

Necessity. Let $a_{k}:=1 /\left((k+1)^{2} R^{k}\right)$ for $k=0,1,2, \ldots$. Since $\mathbf{a} \in \mathscr{E}_{R}$, our assumption is that the series $g_{n}(z):=\sum_{k=0}^{\infty} b_{n k} a_{k} z^{k}$ converges on D_{P} and that the sequence $\left(g_{n}\right)$ is uniformly convergent on D_{p} for $0<p<P$. By the Weierstrass double-series theorem, $\lim _{n \rightarrow \infty} b_{n k} a_{k}$ exists for $k=0,1, \ldots$. Since $a_{k} \neq 0$ for $k=0,1, \ldots$, it follows that the condition

$$
\lim _{n \rightarrow \infty} b_{n k}=: b_{k} \text { for } k=0,1, \ldots
$$

must necessarily hold. Suppose now that p and \tilde{p} are fixed and $0<p<\tilde{p}<P$. Since the sequence $\left(g_{n}\right)$ is uniformly convergent on $\bar{D}_{\tilde{p}}$, the closure of $D_{\tilde{p}}$, we have, for $|z| \leq \tilde{p}$ and $n=0,1, \ldots$, that $\left|g_{n}(z)\right| \leq M(\tilde{p}$, a) $<\infty$. From Cauchy's inequalities for the coefficients of power series we get that

$$
\left|b_{n k} a_{k} \tilde{p}^{k}\right| \leq M(\tilde{p}, \mathbf{a}) \text { for } n=0,1, \ldots \text { and } k=0,1, \ldots,
$$

and hence that

$$
\sup _{n \geq 0, k \geq 0}\left|b_{n k}\right|\left(\frac{p}{R}\right)^{k} \leq M\left(\tilde{p}, \text { a) } \sup _{k \geq 0}\left(\frac{p}{\tilde{p}}\right)^{k}(k+1)^{2}<\infty .\right.
$$

Therefore the condition

$$
\sup _{n \geq 0, k \geq 0}\left|b_{n k}\right|\left(\frac{p}{R}\right)^{k}<\infty \quad \text { for all positive } p<P
$$

is also necessary.
Proof of Theorem 2. Sufficiency. We assume that

$$
\begin{cases}\lim _{n \rightarrow \infty} b_{n k}=: b_{k} & \text { for } k=0,1, \ldots \\ M(p):=\sup _{n \geq 0, k \geq 0}\left|b_{n k}\right|\left(\frac{p}{R}\right)^{k}<\infty & \text { for } 0<p<P\end{cases}
$$

Let $\mathbf{a} \in \mathbf{A}_{R}$. For $0<p<P$ choose r so that $0<r<R$ and $\frac{p}{r}<\frac{P}{R}$. Now choose p_{1} such that $0<p_{1}<P$ and $\frac{p}{r}=\frac{p_{1}}{R}$. We have, for $|z| \leq p$, that

$$
\begin{aligned}
\left|\sum_{k=0}^{\infty} b_{n k} a_{k} z^{k}\right| & \leq \sum_{k=0}^{\infty}\left|b_{n k}\right|\left|a_{k}\right| p^{k}=\sum_{k=0}^{\infty}\left|b_{n k}\right|\left(\frac{p}{r}\right)^{k}\left|a_{k}\right| r^{k} \\
& =\sum_{k=0}^{\infty}\left|b_{n k}\right|\left(\frac{p_{1}}{R}\right)^{k}\left|a_{k}\right| r^{k} \leq M\left(p_{1}\right) \sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}<\infty .
\end{aligned}
$$

Hence the functions $g_{n}(z):=\sum_{k=0}^{\infty} b_{n k} a_{k} z^{k}$ are uniformly bounded on D_{p} for $0<p<P$. Also $g_{n}^{(k)}(0)=k!b_{n k} a_{k} \rightarrow k!b_{k} a_{k}$ as $n \rightarrow \infty$ for $k=0,1, \ldots$. Further, from Cauchy's inequalities for the coefficients of power series we get that, for $|z| \leq p_{1}<p<P, \quad n=0,1, \ldots$ and $k=0,1, \ldots$,

$$
\left|b_{n k} a_{k} z^{k}\right| \leq M(p, \mathbf{a})\left(p_{1} / p\right)^{k}, \quad \text { where } M(p, \mathbf{a}):=\sup _{n \geq 0} \max _{|z|=p}\left|g_{n}(z)\right|<\infty
$$

Therefore, by the Weierstrass M-test, $\lim _{n \rightarrow \infty} g_{n}(z)=\sum_{k=0}^{\infty} b_{k} a_{k} z^{k}$ on D_{P}, and the sequence $\left(g_{n}\right)$ is uniformly convergent on compact subsets of D_{P}.

Necessity. Let $a_{k}:=1 / R^{k}$ for $k=0,1,2, \ldots$. Since a $\in \mathbf{A}_{R}$, our assumption is that the series $g_{n}(z):=\sum_{k=0}^{\infty} b_{n k} a_{k} z^{k}$ converges on D_{P} and that the
sequence (g_{n}) is uniformly convergent on D_{p} for $0<p<P$. By the Weierstrass double-series theorem, $\lim _{n \rightarrow \infty} b_{n k} a_{k}$ exists for $k=0,1, \ldots$. Since $a_{k} \neq 0$ for $k=0,1, \ldots$, it follows that the condition

$$
\lim _{n \rightarrow \infty} b_{n k}=: b_{k} \text { for } k=0,1, \ldots
$$

must necessarily hold. Suppose now that p is fixed and $0<p<P$. Since the sequence $\left(g_{n}\right)$ is uniformly convergent on \bar{D}_{p}, we have, for $|z| \leq p$ and $n=0,1, \ldots$, that $\left|g_{n}(z)\right| \leq M(p, \mathbf{a})<\infty$. From Cauchy's inequalities for the coefficients of power series we get that

$$
\left|b_{n k}\right|\left(\frac{p}{R}\right)^{k}=\left|b_{n k} a_{k} p^{k}\right| \leq M(p, \mathbf{a}) \text { for } n=0,1, \ldots \text { and } k=0,1, \ldots
$$

Therefore, the condition

$$
\sup _{n \geq 0, k \geq 0}\left|b_{n k}\right|\left(\frac{p}{R}\right)^{k}<\infty \quad \text { for all positive } p<P
$$

is also necessary.
Proof of Theorem 3. Sufficiency. We assume that

$$
\left\{\begin{array}{l}
\lim _{n \rightarrow \infty} b_{n k}=b_{k} \quad \text { for } k=0,1, \ldots, \\
M:=\sup _{n \geq 0, k \geq 0}\left|b_{n k}\right|^{\frac{1}{k+1}}<\infty
\end{array}\right.
$$

Let $\mathbf{a} \in \mathscr{E}$. We have, for $|z| \leq R<\infty$, that

$$
\left|\sum_{k=0}^{\infty} b_{n k} a_{k} z^{k}\right| \leq \sum_{k=0}^{\infty}\left|b_{n k}\right|\left|a_{k}\right| M^{k} \leq M \sum_{k=0}^{\infty}\left|a_{k}\right|(M R)^{k}<\infty .
$$

Hence the functions $g_{n}(z):=\sum_{k=0}^{\infty} b_{n k} a_{k} z^{k}$ are entire and are uniformly bounded on each closed disk D_{R}. Also $g_{n}^{(k)}(0)=k!b_{n k} a_{k} \rightarrow k!b_{k} a_{k}$ as $n \rightarrow \infty$ for $k=0,1, \ldots$. Further, from Cauchy's inequalities for the coefficients of power series we get that, for $|z| \leq p<R, \quad n=0,1, \ldots$ and $k=0,1, \ldots$,

$$
\left|b_{n k} a_{k} z^{k}\right| \leq M(R, \mathbf{a})\left(\frac{p}{R}\right)^{k}, \quad \text { where } M(R, \mathbf{a}):=\sup _{n \geq 0} \max _{|z|=R}\left|g_{n}(z)\right|<\infty
$$

Therefore, by the Weierstrass M-test, $\lim _{n \rightarrow \infty} g_{n}(z)=\sum_{k=0}^{\infty} b_{k} a_{k} z^{k}$ on D_{∞}, and the sequence $\left(g_{n}\right)$ is uniformly convergent on compact subsets of D_{∞}.

Necessity. We assume that for each a $\in \mathscr{E}$ the series $g_{n}(z):=$ $\sum_{k=0}^{\infty} b_{n k} a_{k} z^{k}$ is convergent on D_{∞} and that the sequence (g_{n}) is uniformly convergent on compact subsets of D_{∞}. By the Weierstrass double-series theorem, $\lim _{n \rightarrow \infty} b_{n k} a_{k}$ exists for $k=0,1, \ldots$. Since there is an $a \in \mathscr{E}$ such that $a_{k} \neq 0$ for $k=0,1, \ldots$, it follows that the condition

$$
\lim _{n \rightarrow \infty} b_{n k}=: b_{k} \quad \text { for } k=0,1, \ldots
$$

must necessarily hold.
Suppose that $\mathbf{a} \in \mathscr{E}$. Since the sequence $\left(g_{n}\right)$ is uniformly convergent on D_{R}, we have, for $|z| \leq R$ and $n=0,1, \ldots$, that $\left|g_{n}(z)\right| \leq M(R$, a $)<\infty$. From Cauchy's inequalities for the coefficients of power series we get that

$$
\begin{equation*}
\left|b_{n k} a_{k} R^{k}\right| \leq M(R, \mathbf{a}) \quad \text { for } n=0,1, \ldots \text { and } k=0,1, \ldots \tag{1}
\end{equation*}
$$

Also, since $\sum_{k=0}^{\infty} b_{n k} a_{k}$ is convergent whenever $\mathbf{a} \in \mathscr{E}$, we have, by the lemma, that

$$
M_{n}:=\sup _{k \geq 0}\left|b_{n k}\right|^{\frac{1}{k+1}}<\infty \quad \text { for } n=0,1, \ldots
$$

Assume now that

$$
\sup _{n \geq 0} \sup _{k \geq 0}\left|b_{n k}\right|^{\frac{1}{k+1}}=\sup _{n \geq 0} M_{n}=\infty .
$$

This implies that there exists a strictly increasing sequence of positive integers $\left(n_{j}\right)$ such that $M_{n_{j}} \rightarrow \infty$. This in turn implies that there exists a sequence of nonnegative integers $\left(k_{j}\right)$ such that

$$
\begin{equation*}
\left|b_{n_{j}, k_{j}}\right|^{\frac{1}{k_{j}+1}}>\frac{1}{2} M_{n_{j}} \rightarrow \infty \quad \text { as } j \rightarrow \infty . \tag{*}
\end{equation*}
$$

We show now that the sequence $\left(k_{j}\right)$ is not bounded. Assume that it is bounded. Then there is a positive integer k^{*} such that $0 \leq k_{j} \leq k^{*}$. Since $\lim _{n \rightarrow \infty} b_{n k}$ $=b_{k}$ for $k=0,1, \ldots, k^{*}$, it follows that the set of numbers $\left(b_{n k}\right)_{n \geq 0,0 \leq k \leq k}$. is bounded and hence that the set of numbers $\left(\left|b_{n k}\right|^{\frac{1}{k+1}}\right)_{n \geq 0,0 \leq k \leq k^{*}}$ is bounded. But this contradicts (*). Therefore, the sequence (k_{j}) is not bounded. We can suppose (by considering a subsequence if necessary) that the sequence is strictly increasing. Choose

$$
a_{k}:= \begin{cases}1 /\left(\left|b_{n_{j}}, k\right|\right)^{\frac{k+1}{2}} & \text { if } k=k_{j} \\ 0 & \text { otherwise }\end{cases}
$$

We then have

$$
\left|a_{k_{j}}\right|^{\frac{1}{k_{j}+1}}=\frac{1}{\sqrt{\left|b_{n_{j}, k_{j}}\right|}}<\left(\frac{1}{\frac{1}{2} M_{n_{j}}}\right)^{\frac{k_{j}+1}{2}} \rightarrow 0 \quad \text { as } j \rightarrow \infty .
$$

Therefore $\mathbf{a} \in \mathscr{E}$, but

$$
\left|b_{n_{j}, k_{j}}\right| a_{k_{j}}=\sqrt{\mid b_{n_{j}, k_{j}}} \rightarrow \infty \quad \text { as } j \rightarrow \infty
$$

which contradicts (1). Thus the condition

$$
\sup _{n \geq 0, k \geq 0}\left|b_{n k}\right|^{\frac{1}{k+1}}<\infty
$$

is also necessary.

4. Additional theorems

In this section we prove some theorems showing that the disk of convergence D_{P} specified in Theorem 2 cannot be enlarged when the matrix \mathbf{B} satisfies conditions (i) and (ii) of that theorem together with certain other conditions.

Theorem 4. Suppose that P and R are positive numbers, and that $\mathbf{B} \equiv\left(b_{n k}\right)$ is a normal infinite matrix (i.e., $b_{n k}=0$ for $k>n$ and $b_{n n} \neq 0$) satisfying

$$
M(p):=\sup _{n \geq 0, k \geq 0}\left|b_{n k}\right|\left(\frac{p}{R}\right)^{k}<\infty \quad \text { for } 0<p<P
$$

Then, for each $\mathbf{a} \in \mathbf{A}_{R}$ and each $R_{1} \geq P$,

$$
\limsup _{n \rightarrow \infty} \max _{|z|=R_{1}}\left|\sum_{k=0}^{n} b_{n k} a_{k} z^{k}\right|^{\frac{1}{n}} \leq \frac{R_{1}}{P} .
$$

Proof. Choose $R_{1} \geq P$, and suppose $\mathbf{a} \in \mathbf{A}_{R}$. Let $0<\lambda<1$, and take $p:=\lambda P$. Then $0<p<P$. Since $\lim \sup \left|a_{k}\right|^{\frac{1}{k+1}}=\frac{1}{R}$, there is a positive constant $c(\lambda)$ such that

$$
\left|a_{k}\right| \leq \frac{c(\lambda)}{(\lambda R)^{k}} \quad \text { for } k \geq 0
$$

Now for $|z|=R_{1}$ we have

$$
\begin{aligned}
\left|\sum_{k=0}^{n} b_{n k} a_{k} z^{k}\right| & \leq \sum_{k=0}^{n}\left|b_{n k}\right|\left(\frac{p}{R}\right)^{k}\left|a_{k}\right| R^{k}\left(\frac{R_{1}}{p}\right)^{k} \\
& \leq M(p) c(\lambda) \sum_{k=0}^{n}\left(\frac{R}{\lambda R}\right)^{k}\left(\frac{R_{1}}{\lambda P}\right)^{k}=M(p) c(\lambda) \sum_{k=0}^{n}\left(\frac{R_{1}}{\lambda^{2} P}\right)^{k} .
\end{aligned}
$$

Since $R_{1} /\left(\lambda^{2} P\right)>R_{1} / P \geq 1$, it follows that

$$
\left.\left.\limsup _{n \rightarrow \infty} \max _{|z|=R_{1}}\right|_{k=0} ^{n} b_{n k} a_{k} z^{k}\right|^{\frac{1}{n}} \leq \lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n}\left(\frac{R_{1}}{\lambda^{2} P}\right)^{k}\right)^{\frac{1}{n}}=\frac{R_{1}}{\lambda^{2} P} .
$$

Letting $\lambda \nearrow 1$ we get

$$
\limsup _{n \rightarrow \infty} \max _{|z|=R_{1}}\left|\sum_{k=0}^{n} b_{n k} a_{k} z^{n}\right|^{\frac{1}{n}} \leq \frac{R_{1}}{P} .
$$

Remark. Assume that a normal matrix B satisfies

$$
M(p):=\sup _{n \geq 0, k \geq 0}\left|b_{n k}\right|\left(\frac{p}{R}\right)^{k}<\infty \quad \text { for } 0<p<P
$$

Then

$$
\left|b_{n n}\right|^{\frac{1}{n}} \frac{p}{R} \leq M(p)^{\frac{1}{n}} \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

and hence

$$
\underset{n \rightarrow \infty}{\limsup }\left|b_{n n}\right|^{\frac{1}{n}} \leq \frac{R}{p} \quad \text { for each positive } p<P
$$

Letting $p \nearrow P$ we get

$$
\limsup _{n \rightarrow \infty}\left|b_{n n}\right|^{\frac{1}{n}} \leq \frac{R}{P}
$$

This suggests that it is not inappropriate to impose the condition

$$
\lim _{n \rightarrow \infty}\left|b_{n n}\right|^{\frac{1}{n}}=\frac{R}{P}
$$

as we do in the following theorem.

Theorem 5. Let \mathbf{B} be a normal matrix. Suppose that

$$
\lim _{n \rightarrow \infty}\left|b_{n n}\right|^{\frac{1}{n}}=\frac{R}{P}
$$

where P and R are positive numbers. Then for each $\mathbf{a} \in \mathbf{A}_{R}$ and each $R_{1} \geq P$ we have

$$
\limsup _{n \rightarrow \infty} \max _{|z|=R_{1}}\left|\sum_{k=0}^{n} b_{n k} a_{k} z^{k}\right|^{\frac{1}{n}} \geq \frac{R_{1}}{P}
$$

Proof. Assume that the conclusion of the theorem is not true. Then there is an $\mathbf{a}^{*} \in \mathbf{A}_{R}$ and an $R_{1} \geq P$ such that

$$
\underset{n \rightarrow \infty}{\lim \sup } \max _{|z|=R_{1}}\left|\sum_{k=0}^{n} b_{n k} a_{k}^{*} z^{k}\right|^{\frac{1}{n}}<\frac{R_{1}}{P} .
$$

Therefore, there exists a positive $\tilde{R}<R_{1}$ such that, for all n sufficiently large,

$$
\max _{|z|=R_{1}}\left|\sum_{k=0}^{n} b_{n k} a_{k}^{*} z^{k}\right|^{\frac{1}{n}} \leq \frac{\tilde{R}}{P}, \quad \text { and hence } \max _{|z|=R_{1}}\left|\sum_{k=0}^{n} b_{n k} a_{k}^{*} z^{k}\right| \leq\left(\frac{\tilde{R}}{P}\right)^{n} .
$$

Applying the Cauchy inequalities to the function $g_{n}(z):=\sum_{k=0}^{n} b_{n k} a_{k}^{*} z^{k}$ we get in particular that, for all large n,

$$
\left|b_{n n}\right|\left|a_{n}^{*}\right| R_{1}^{n} \leq\left(\frac{\tilde{R}}{P}\right)^{n}, \text { and therefore }\left|b_{n n}\right|^{\frac{1}{n}}\left|a_{n}^{*}\right|^{\frac{1}{n}} R_{1} \leq \frac{\tilde{R}}{P}
$$

From the last inequality we get that

$$
\frac{\tilde{R}}{P} \geq \limsup _{n \rightarrow \infty}\left(\left|b_{n n}\right|^{\frac{1}{n}}\left|a_{n}^{*}\right|^{\frac{1}{n}} R_{1}\right)=R_{1} \lim _{n \rightarrow \infty}\left|b_{n n}\right|^{\frac{1}{n}} \cdot \limsup \left|a_{n \rightarrow \infty}^{*}\right|^{\frac{1}{n}}=\frac{R_{1}}{P} .
$$

But this is a contradiction since $0<\tilde{R}<R_{1}$. Hence the conclusion of the theorem must hold.

The next two theorems generalize results about regular and nonregular Nörlund matrices due respectively to Luh [3] and K. Stadtmüller [6, Theorems 6 and 7]. The first of these theorems, which follows immediately from Theorems 4 and 5, shows, inter alia, that the sequence $\left(g_{n}\right)$ specified in Theorem 2 cannot converge uniformly in any disk $D_{P_{1}}$ with $P_{1}>P$ when \mathbf{B} is a normal matrix satisfying condition (ii) of Theorem 2 together with the diagonal condition of Theorem 5.
Theorem 6. Suppose that P and R are positive numbers and that \mathbf{B} is a normal matrix satisfying

$$
M(p):=\sup _{n \geq 0, k \geq 0}\left|b_{n k}\right|\left(\frac{p}{R}\right)^{k}<\infty \text { for } 0<p<P \quad \text { and } \quad \lim _{n \rightarrow \infty}\left|b_{n n}\right|^{\frac{1}{n}}=\frac{R}{P}
$$

Then, for each $\mathbf{a} \in \mathbf{A}_{R}$ and each $R_{1} \geq P$,

$$
\limsup _{n \rightarrow \infty} \max _{|z|=R_{1}}\left|\sum_{k=0}^{n} b_{n k} a_{k} z^{k}\right|^{\frac{1}{n}}=\frac{R_{1}}{P} .
$$

The next theorem shows that the circle $|z|=R_{1}$ in the conclusion of Theorem 6 can be replaced by any arc of that circle when condition (i) of Theorem 2 is also satisfied.

Theorem 7. Suppose that P and R are positive numbers and that \mathbf{B} is a normal matrix such that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} b_{n k}=: b_{k} \quad \text { for } k=0,1, \ldots, \text { where } b_{k} \neq 0 \text { for } k>k^{*} \\
M(p):=\sup _{n \geq 0, k \geq 0}\left|b_{n k}\right|\left(\frac{p}{R}\right)^{k}<\infty \quad \text { for } 0<p<P, \quad \text { and } \lim _{n \rightarrow \infty}\left|b_{n n}\right|^{\frac{1}{n}}=\frac{R}{P} .
\end{gathered}
$$

Then, for each $\mathbf{a} \in \mathbf{A}_{R}$ and each $R_{1} \geq P$,

$$
\limsup _{n \rightarrow \infty} \max _{z \in \Gamma}\left|\sum_{k=0}^{n} b_{n k} a_{k} z^{k}\right|^{\frac{1}{n}}=\frac{R_{1}}{P},
$$

where Γ is any closed non-trivial arc of $|z|=R_{1}$.
Proof. By Theorem 6 we know that

$$
\limsup _{n \rightarrow \infty} \max _{z \in \Gamma}\left|\sum_{k=0}^{n} b_{n k} a_{k} z^{k}\right|^{\frac{1}{n}} \leq \frac{R_{1}}{P}
$$

Hence it is enough to prove that, for every $\mathbf{a} \in \mathbf{A}_{R}$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \max _{z \in \Gamma}\left|\sum_{k=0}^{n} b_{n k} a_{k} z^{k}\right|^{\frac{1}{n}} \geq \frac{R_{1}}{P} \tag{2}
\end{equation*}
$$

which we now proceed to do.
Case 1. $R_{1}=P$: Suppose (2) is not true. Then for some $\mathbf{a}^{*} \in \mathbf{A}_{R}$ we have

$$
\limsup _{n \rightarrow \infty} \max _{z \in \Gamma}\left|\sum_{k=0}^{n} b_{n k} a_{k}^{*} z^{k}\right|^{\frac{1}{n}}<\frac{R_{1}}{P}=1
$$

It follows that there exists a positive number $q<1$ such that, for all n sufficiently large,

$$
\sup _{z \in \Gamma}\left|\sum_{k=0}^{n} b_{n k} a_{k}^{*} z^{k}\right|<q^{n}
$$

Given $\epsilon>0$ we get from Theorem 6 that, for all n sufficiently large,

$$
\max _{|z|=P}\left|\sum_{k=0}^{n} b_{n k} a_{k}^{*} z^{k}\right| \leq 2^{\epsilon n}
$$

For $0<r<P$ we have, by Nevanlinna's N-constants theorem (see [1, Theorem 18.3.3]), that there exists a positive number $\theta<1$ (depending on r but not on ϵ) such that, for all large n,

$$
\max _{|z|=r}\left|\sum_{k=0}^{n} b_{n k} a_{k}^{*} z^{k}\right| \leq\left(q^{\theta} 2^{(1-\theta) \epsilon}\right)^{n} .
$$

Since we can choose $\epsilon>0$ so small that $q^{\theta} 2^{(1-\theta) \epsilon}<1$, it follows that

$$
\max _{|z|=r}\left|\sum_{k=0}^{n} b_{n k} a_{k}^{*} z^{k}\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

By the Weierstrass double-series theorem we get that

$$
0=\lim _{n \rightarrow \infty} b_{n k} a_{k}^{*}=b_{k} a_{k}^{*} \quad \text { for } k=0,1, \ldots
$$

Since $\mathbf{a}^{*} \in \mathbf{A}_{\boldsymbol{R}}$, we have that $a_{k}^{*} \neq 0$ for some $k>k^{*}$. Hence $b_{k}=0$ for such a k. But this contradicts the assumption that $b_{k} \neq 0$ for $k>k^{*}$. Therefore (2) must hold when $R_{1}=P$.

Case 2. $R_{1}>P$: Assume that (2) is not true. Then there exists a sequence $\mathbf{a}^{*} \in \mathbf{A}_{R}$ and a number \tilde{R} such that $P<\tilde{R}<R_{1}$ and

$$
\limsup _{n \rightarrow \infty} \max _{z \in \Gamma}\left|\sum_{k=0}^{n} b_{n k} a_{k}^{*} z^{k}\right|^{\frac{1}{n}} \leq \frac{\tilde{R}}{P}
$$

Hence given $\epsilon>0$ we have, for all sufficiently large n,

$$
\max _{z \in \Gamma}\left|z^{-n} \sum_{k=0}^{n} b_{n k} a_{k}^{*} z^{k}\right| \leq\left(\frac{\tilde{R}}{P} \cdot \frac{1}{R_{1}}\right)^{n} 2^{\epsilon n}=\left(\frac{\tilde{R}}{R_{1}}\right)^{n}\left(\frac{2^{\epsilon}}{P}\right)^{n} .
$$

Further, from Theorem 6 we get that, for all large n,

$$
\max _{|z|=P}\left|z^{-n} \sum_{k=0}^{n} b_{n k} a_{k}^{*} z^{k}\right| \leq\left(\frac{2^{\epsilon}}{P}\right)^{n}
$$

and

$$
\max _{|z|=R_{1}}\left|z^{-n} \sum_{k=0}^{n} b_{n k} a_{k}^{*} z^{k}\right| \leq\left(\frac{2^{\epsilon}}{P}\right)^{n} .
$$

Let $g_{n}(z):=\sum_{k=0}^{n} b_{n k} a_{k}^{*} z^{k}$, and let $P<r<R_{1}$. Then, by Nevanlinna's N constants theorem, there exist positive constants $\theta_{1}, \theta_{2}, \theta_{3}$ (depending on r but not on ϵ) such that $\theta_{1}+\theta_{2}+\theta_{3}=1$ and

$$
\max _{|z|=r}\left|\frac{g_{n}(z)}{z^{n}}\right| \leq\left(\frac{\tilde{R}}{R_{1}} \frac{2^{\epsilon}}{P}\right)^{n \theta_{1}}\left(\frac{2^{\epsilon}}{P}\right)^{n \theta_{2}}\left(\frac{2^{\epsilon}}{P}\right)^{n \theta_{3}}=\left(\frac{\tilde{R}}{R_{1}}\right)^{n \theta_{1}}\left(\frac{2^{\epsilon}}{P}\right)^{n}
$$

for all sufficiently large n. Hence, choosing $\epsilon>0$ so small that $\left(\tilde{R} / R_{1}\right)^{\theta_{1}} 2^{\epsilon}$ <1, we get

$$
\limsup _{n \rightarrow \infty} \max _{|z|=r}\left|g_{n}(z)\right|^{\frac{1}{n}} \leq\left(\frac{\tilde{R}}{R_{1}}\right)^{\theta_{1}} 2^{\epsilon} \frac{r}{P}<\frac{r}{P}
$$

Since $r>P$, the last inequality contradicts the conclusion of Theorem 5. Hence (2) must hold when $R_{1}>P$.

The next theorem deals with the possibility of pointwise convergence of the sequence $\left(g_{n}(z)\right)$ specified in Theorem 2 outside the convergence disk D_{P}. It generalizes results due to Lejá [2] and Stadtmüller [6, Theorem 8] about regular and nonregular Nörlund matrices respectively. Both authors mistakenly assumed that their proofs were valid when, in the notation of the following theorem, $R=1$ and sequence $\left(a_{n}\right)$ is bounded. The example $a_{n}:=1 /(n+1)$ shows that their method of proof cannot be used in this case. The difficulty is avoided in our Theorem 8 by the imposition of the limsup condition.

Theorem 8. Suppose that P and R are positive numbers and that \mathbf{B} is a normal matrix such that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} b_{n k}=: b_{k} \text { for } k=0,1, \ldots, \text { where } b_{k} \neq 0 \text { for } k>k^{*} ; \\
M(p):=\sup _{n \geq 0, k \geq 0}\left|b_{n k}\right|\left(\frac{p}{R}\right)^{k}<\infty \quad \text { for } 0<p<P ; \quad \lim _{n \rightarrow \infty}\left|b_{n \dot{n}}\right|^{\frac{1}{n}}=\frac{R}{P},
\end{gathered}
$$

and

$$
\left|b_{n k}\right| \leq c(\tilde{R})\left|b_{n n}\right|\left(\frac{P}{\tilde{R}}\right)^{n-k} \quad \text { for } 0<\tilde{R}<R \text { and } 0 \leq k \leq n
$$

Suppose that $\mathbf{a} \in \mathbf{A}_{R}$ and that $\lim \sup _{n \rightarrow \infty}\left|a_{n}\right| R^{n}>0$. Let

$$
g_{n}(z):=\sum_{k=0}^{n} b_{n k} a_{k} z^{k}
$$

Then lim $\sup _{n \rightarrow \infty}\left|g_{n}(z)\right|^{\frac{1}{n}} \leq 1$ for at most a finite number of points z satisfying $|z|>P_{1}>P$, and hence, in particular, the sequence (g_{n}) can converge at most at a finite number of points z satisfying $|z|>P_{1}>P$.
Proof. Let $c_{n}:=a_{n} R^{n}$ where $\mathbf{a} \in \mathbf{A}_{R}$, and let limsup $\operatorname{sim}_{n \rightarrow \infty}\left|c_{n}\right|>c>0$. Define

$$
M:= \begin{cases}1 & \text { if } \sup _{n \geq 0}\left|c_{n}\right|=\infty \\ c^{-1} \sup _{n \geq 0}\left|c_{n}\right| & \text { otherwise }\end{cases}
$$

By considering the unbounded monotonic sequence $\left(d_{n}\right)$ where $d_{n}:=$ $\max _{0 \leq k \leq n}\left|c_{k}\right|$ when $\max _{n \geq 0}\left|c_{n}\right|=\infty$, we see that there is a strictly increasing sequence of positive integers $\left(n_{k}\right)$ integers such that

$$
\left|c_{n}\right| \leq M\left|c_{n_{k}}\right| \quad \text { for } 0 \leq n<n_{k}, \quad \text { and } \quad\left|c_{n_{k}}\right|>c .
$$

Since $\lim \sup _{n \rightarrow \infty}\left|c_{n}\right|^{\frac{1}{n}}=1$, we have

$$
1 \geq \limsup _{k \rightarrow \infty}\left|c_{n_{k}}\right|^{\frac{1}{n_{k}}} \geq \liminf _{k \rightarrow \infty}\left|c_{n_{k}}\right|^{\frac{1}{n_{k}}} \geq \lim _{k \rightarrow \infty} c^{\frac{1}{n_{k}}}=1
$$

so $\lim _{k \rightarrow \infty}\left|c_{n_{k}}\right|^{\frac{1}{n_{k}}}=1$. Whenever $c_{n} \neq 0$, let

$$
\begin{equation*}
\tilde{g}_{n}(z):=\sum_{j=0}^{n} \frac{b_{n j}}{b_{n n}} \frac{c_{j}}{c_{n}}\left(\frac{z}{R}\right)^{j-n}=\frac{g_{n}(z)}{b_{n n} c_{n}(z / R)^{n}} ; \tag{3}
\end{equation*}
$$

and let

$$
\begin{equation*}
h_{k}(w):=\tilde{g}_{n_{k}}\left(\frac{1}{w}\right) . \tag{4}
\end{equation*}
$$

Assume that z^{*} is a point such that $\left|z^{*}\right|>P_{1}$ and $\lim \sup _{n \rightarrow \infty}\left|g_{n}\left(z^{*}\right)\right|^{\frac{1}{n}} \leq 1$. Since

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left|b_{n_{k}, n_{k}} c_{n_{k}}\left(\frac{z^{*}}{R}\right)^{n}\right|^{\frac{1}{n}} & =\lim _{k \rightarrow \infty}\left|b_{n_{k}, n_{k}}\right|^{\frac{1}{n_{k}}} \cdot \lim _{k \rightarrow \infty}\left|c_{n_{k}}\right|^{\frac{1}{n_{k}}} \cdot \frac{\left|z^{*}\right|}{R} \\
& \geq \frac{R}{P} \frac{P_{1}}{R}=\frac{P_{1}}{P}>1,
\end{aligned}
$$

it follows from (3) and (4) that $\lim \sup _{k \rightarrow \infty}\left|\tilde{g}_{n_{k}}\left(z^{*}\right)\right|^{\frac{1}{n_{k}}}<1$ and hence that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} h_{k}\left(w^{*}\right)=0 \quad \text { where } w^{*}:=1 / z^{*} \tag{5}
\end{equation*}
$$

Suppose $|w| \leq 1 / P^{*}$ where $P_{1}>P^{*}>P$. Then we have, for $0<\tilde{R}<R$,

$$
\left|h_{k}(w)\right| \leq \sum_{j=0}^{n_{k}} c(\tilde{R})\left(\frac{P}{\tilde{R}}\right)^{n_{k}-j} M\left(\frac{R}{P^{*}}\right)^{n_{k}-j}=c(\tilde{R}) M \sum_{j=0}^{n_{k}}\left(\frac{P}{P^{*}} \frac{R}{\tilde{R}}\right)^{n_{k}-j} .
$$

Choose $\tilde{R}<R$ so close to R that $0<\frac{P}{P^{*}} \frac{R}{\bar{R}}<1$. Then

$$
\left|h_{k}(w)\right| \leq \frac{c(\tilde{R}) M}{1-\frac{P}{P^{*}} \frac{R}{\tilde{R}}}<\infty \quad \text { for }|w| \leq \frac{1}{P^{*}}<\frac{1}{P} \text { and } k \geq 0 .
$$

This means that the sequence $\left(h_{k}(w)\right)$ is uniformly bounded for $|w| \leq 1 / P^{*}$. Suppose now that there are infinitely many points z_{r} with $\left|z_{r}\right|>P_{1}>P^{*}$ such that limsup $\operatorname{sim}_{n \rightarrow \infty}\left|g_{n}\left(z_{r}\right)\right|^{\frac{1}{n}} \leq 1$. Then by (5)

$$
\lim _{k \rightarrow \infty} h_{k}\left(w_{r}\right)=0 \quad \text { for } w_{r}:=1 / z_{r}
$$

By Vitali's theorem (see [7, Theorem 5.2.1]) the sequence $\left(h_{k}(w)\right.$) converges uniformly to 0 on compact subsets of $D_{\frac{1}{P^{*}}}$. In particular,

$$
0=\lim _{k \rightarrow \infty} h_{n_{k}}(0)=1,
$$

which is a contradiction. Hence there are at most finitely many points z such that $|z|>P_{1}$ and $\lim \sup _{n \rightarrow \infty}\left|g_{n}(z)\right|^{\frac{1}{n}} \leq 1$.

5. Construction

In this section we construct a Nörlund matrix \mathbf{N}_{B} satisfying the hypotheses of Theorem 8 with $P=1$ such that the corresponding sequence of transforms $\left(g_{n}\right)$ of the power series $\sum_{k=0}^{\infty}(z / R)^{k}$ converges at N points outside the convergence disk D_{1}.

Let $p(z)$ be a polynomial of degree N defined by

$$
p(z):=\sum_{k=0}^{\infty} p_{k} z^{k}:=\left(z+\alpha_{1}\right)\left(z+\alpha_{2}\right) \cdots\left(z+\alpha_{N}\right)
$$

where $0<\alpha_{1}<\alpha_{2}<\cdots<\alpha_{N}<1$. Define the Nörlund matrix $\mathbf{N}_{B} \equiv\left(b_{n k}\right)$ by setting

$$
b_{n k}:=\frac{B_{n-k}}{B_{n}} \quad \text { for } 0 \leq k \leq n, \text { where } B_{n}:=\frac{1}{R^{n}} \sum_{k=0}^{n} p_{k} .
$$

Then, for $a_{k}:=1 / R^{k}, w=1 / z$, and $n \geq N$,

$$
\begin{aligned}
g_{n}(z): & =\sum_{k=0}^{n} b_{n k} a_{k} z^{k}=\frac{1}{B_{n}} \sum_{k=0}^{n} B_{n-k}\left(\frac{z}{R}\right)^{k} \\
& =\frac{z^{n}}{B_{n} R^{n}} \sum_{k=0}^{n} B_{k}(R w)^{k}=\frac{z^{n}}{B_{n} R^{n}} \sum_{k=0}^{n} w^{k} \sum_{j=0}^{k} p_{j} \\
& =\frac{z^{n}}{B_{n} R^{n}} \sum_{j=0}^{n} p_{j} \sum_{k=j}^{n} w^{k}=\frac{z^{n}}{B_{n} R^{n}} \sum_{j=0}^{n} p_{j} \frac{w^{j}-w^{n+1}}{1-w} \\
& =\frac{z^{n}}{B_{n} R^{n}} \frac{p(w)}{1-w}-\frac{w}{1-w .}
\end{aligned}
$$

Hence, for every $n \geq N$, we have $g_{n}(z)=z /(1-z)$ whenever $p(w)=0$, and this occurs when $z=-1 / a_{k}, \quad k=1,2, \ldots, N$.

Acknowledgment

We are grateful to the referee for suggesting the versions of the proofs in $\S 3$ of the necessity parts of Theorems 1 and 2 . Our original proofs were longer and more complicated.

References

1. E. Hille, Analytic function theory, Blaisdell, New York, 1963.
2. M. F. Lejá, Sur la sommation des séries entières par la méthode des moyennes, Bull. Sci. Math. (2) 54 (1930), 239-245.
3. W. Luh, Über die Nörlund-Summierbarkeit von Potenzreihen, Period. Math. Hungar. 5 (1974), 47-60.
4. __, Summierbarkeit von Potenzreihen-notwendige Bedingungen, Mitt. Math. Sem. Giessen 113 (1974), 48-67.
5. A. Peyerimhoff, Lectures on summability, Lecture Notes in Math., vol. 107, Springer-Verlag, New York, 1969.
6. K. Stadtmüller, Summability of power series by non-regular Nörlund methods, J. Approx. Theory 68 (1991), 33-44.
7. E. C. Titchmarsh, The theory of functions, Oxford Univ. Press, London, 1947.

Department of Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7

E-mail address: dborwein@uшo.ca
School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel E-mail address: jakimov@math.tau.ac.il

[^0]: Received by the editors October 7, 1992 and, in revised form, January 13, 1993.
 1991 Mathematics Subject Classification. Primary 47B37, 47A30; Secondary 40G05.
 Key words and phrases. Nörlund, matrix transforms, power series.
 This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

