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ABSTRACT. We consider the sequence of transforms (gn) of a power series 
Z.O anzn given by gn(z) := EkObnkakZk . We establish necessary and 
sufficient conditions on the matrix (bnk) for the sequence (gn) to converge 
uniformly on compact subsets of the disk Dp := IzI: lz < P} to a function 
holomorphic on Dp. 

1. INTRODUCTION 

Suppose throughout that 0 < P < o0, 0 < R < oc, and that all sequences 
and matrices are complex with indices running through 0, 1, 2 . We make 
the following definitions: 

Dp is the disk {z : lzl <P}; 
' is the set of all sequences a (an) such that lim Ian In+ = 0; 
8fi is the set of all sequences a (an) such that lim sup Ian In < 00; 
'R is the set of all sequences a (an) such that EZ =O IanIRn < 00; 

AR is the set of all sequences a (an) such that lim sup Ian I "' = ; 
It will follow from the lemma (below) that gfl is the fl-dual of '. 
The following are the first three of eight theorems we shall prove concerning 

matrix transformations of power series. 
Theorem 1. A matrix B - (bnk) has the property that whenever the sequence 
a - (an) E 9R the sequence offunctions (gn) given by 

00 

gn (z) := bnkak zk, n = 0, 1 o.. 

k=O 

converges uniformly on every compact subset of Dp, each power series 
EZ'O bnkakzk being convergent on Dp, if and only if 

(i) limn-..oo bnk =: bk for k = 0, 1,...; 
(ii) SuPn>o,k>o Ibnkl (R)k < 0 for each positive p < P. 

And then limn - 00 gn (z) = EZ O bkakZk on Dp. 
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512 DAVID BORWEIN AND AMNON JAKIMOVSKI 

Theorem 2. A matrix B - (b,k) has the property that whenever the sequence 
a - (an) E AR the sequence offunctions (gn) given by 

00 

gn(z) :=E bnkakzk, n =O, 1, ... 
k=O 

converges uniformly on every compact subset of Dp, each power series 
EI-o bbnkakzk being convergent on Dp, if and only if 

(i) limn,O0 bfk =: bk for k = 0, 1,... 
(ii) SUPn>O k>O Ibnkl ()k < x for each positive p < P. 

And then limn__oo gn(z) = ZJ 0bkakzk on Dp. 
Theorem 3. A matrix B _ (bnk) has the property that whenever the sequence 
a -- (an) E F the sequence offunctions (gn) given by 

00 

gn (z) = bnkakZk, n =0, 1, ... 
k=O 

converges uniformly on every compact subset of DO0, each power series 
Z't0 bnkakzk being convergent on D0o, if and only if 

(i) lim,o00 bnk =: bk for k = 0, 1,... 
(ii) SuPn>O,k>O Ibnklk+ <I o. 

And then limnoo gn (z) =Ek =0 bkakzk on D00. 
These theorems show that if the series-to-sequence transform given by B 

is regular, then it is necessary in each case that limn .0o0 bnk = bk = 1 for 
k = 0, 1, ... ., and this in turn implies that P < R in Theorems 1 and 2 (i.e., 
the sequence (gn) cannot converge uniformly in any disk Dp with P > R). 
Regular sequence-to-sequence transforms of power series have been considered 
by Peyerimhoff [5] and Luh [4] among others. One of the novel features of 
our approach is that we deal with series-to-sequence transforms rather than 
sequence-to-sequence transforms. 

Let (Bn) be a sequence of nonzero complex numbers. The associated 
Norlund series-to-sequence matrix NB is the triangular matrix (bnk) with 

Bn-k if 0 < k < n 
bnk := sB 

0 otherwise. 
The following theorem is an immediate consequence of Theorem 2. The case 

R = 1 of Theorem KS is due to Karin Stadtmuller [6, Theorem 5]. Her method 
of proof is different from and more complicated than the one developed below. 
Theorem KS. The Norlund matrix NB has the property that whenever the se- 
quence a - (an) E AR the sequence offunctions (gn) given by 

n 
gn (z) :=BW- 1Bn-kakzk n=O, 1. .. . 

n k=O 
converges uniformly on every compact subset of Dp, if and only if 

lim Bn- = b with lbl R 

And then limn--_oo gn (z) = E' 0 ak (bZ)k on Dp. 
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MATRIX TRANSFORMATIONS OF SERIES 513 

Note. In view of Theorem 1, Theorem KS remains true if AR is replaced by 
?R - 

2. A PRELIMINARY RESULT 

Lemma. A sequence b has the property that E' 0 bnan is convergent for each 
a E ' if and only if b E S4. 
Proof. Sufficiency. If b E fi, then there exists a positive number M such 
that IbnI < Mn+' for n = 0, 1, . Hence, if a e ', then EZoI bkakl < 

MZEkoIakIMk < 00. 

Necessity. Assume b 0 &'l, i.e., limsuplbnl+ I = xc. Then there exists a 
strictly increasing sequence of positive integers (nj) such that 0 < Ibn1 Inj+ 
oo. Choose 

an VI { bniQ if n = nj, 

O otherwise. 
Then 

ja}jT = 
X f (Ibnj1T) if n = nj, 

O otherwise. 
Hence limIanIk =0, so a E . But 

n +1 

IbnjanJl =bn I= lbnj Inj+l ) as j oo, 

and therefore E'iO bnan is not convergent. O 

3. PROOFS OF THEOREMS 1, 2, AND 3 
Proof of Theorem 1. Sufficiency. We assume that 

{ limn-o. bnk =: bk fork= 0, 1,... 

M(p) := SUPn>O,k>O IbnkI R) < ? for 0 <p <P. 

Let a E R. We have, for n = O, 1, ... and lzl < P < P, 
00 00 00 

Z bnkakZk < I |bnkIIakIpk < M(p) ZI akIRk <00 
k=O k=O k=O 

Hence the functions gn(z) := E' bfkakzk are holomorphic and uniformly 
bounded on Dp. Also gnk)(0) = k!bnkak - k!bkak as n -x 00 for k = 
0, 1 .... Further, from Cauchy's inequalities for the coefficients of power se- 
rieswegetthat, for IzI? < pi < P, n=0, 1, ... , andk =0, 1, .... 

Ibnkakzkl < M(p, a)(pi/p)k, where M(p, a):= supmaxIgn(z)I < 0. 
n>O kzl=P 

Therefore, by the Weierstrass M-test, limn-..o. gn(z) = EZOO bkakzk on Dp, 
and the sequence (gn) is uniformly convergent on compact subsets of Dp. 
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514 DAVID BORWEIN AND AMNON JAKIMOVSKI 

Necessity. Let ak:= l/((k+1)2Rk) for k=0,1,2,. Since a TEg, 
our assumption is that the series gn(z) := EI bn kakz converges on Dp and 
that the sequence (gn) is uniformly convergent on Dp for 0 < p < P. By 
the Weierstrass double-series theorem, limnO.O bnkak exists for k = 0, 1 . 
Since ak # 0 for k = 0, 1, ... , it follows that the condition 

lim bnk =: bk fork= 0, 1,... 
n-oo 

must necessarily hold. Suppose now that p and p are fixed and 0 < p <jp < P. 
Since the sequence (gn) is uniformly convergent on Dpb, the closure of Dp,, 
we have, for IzI < p and n = O, 1, ... , that Ign(z)? < M(, a) < oo. From 
Cauchy's inequalities for the coefficients of power series we get that 

IbnkakkI < M(fi, a) for n = 0, 1,... and k = 0, 1,... 
and hence that 

pk I\k 
sup I bnkI(R ) < M(p, a) sup )(k + 1)2 < X. 

n>O, k>O Rk>O \P 

Therefore the condition 

sup Ibnk (IR < c for all positive p < P 
n>O, k>O R 

is also necessary. 0 

Proof of Theorem 2. Sufficiency. We assume that 
{ limn,_o b,k =: bk for k = O, 1,... 

M(p) := Supn>0 k>O IbnkI (-)k <o forO<p<P. 

Let a E AR. For 0 < p < P choose r so that 0 < r < R and E < P . Now r R 
choose pm such that O < p, < P and E = . We have, for IzI < p, that 

r R~ /f\ 

Zbnkakzk < E Ibnk|Iak|P' = Ibnk (-) laklrk 
k=O k=O k=O 

oo k 00 

= Ibnkl (P) aklr < M(pl) lak irk < )<. 
k=O k=O 

Hence the functions gn(z) E= o bnkakZk are uniformly bounded on Dp for 
0 < p < P. Also g(k)(o) - k!bnkak -- k!bkak as n -X oc for k = 0, 1. 
Further, from Cauchy's inequalities for the coefficients of power series we get 
that, for lzl <p1 <P < P, n =0, 1, ... and k = O, 1, ... , 

IbnkakZkl S M(p, a)(piIp)k, where M(p, a) :=supmaxIgn(z)I <cX. 
n>O IZl=P 

Therefore, by the Weierstrass M-test, 1imn-oo gn(Z) = E' 0 bkakZk on Dp, 
and the sequence (gn) is uniformly convergent on compact subsets of Dp. 

Necessity. Let ak := I /Rk for k = 0, 1, 2, .... Since a E AR, our assump- 
tion is that the series gn (z) :Z= E' % bnkak Zk converges on Dp and that the 
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MATRIX TRANSFORMATIONS OF SERIES 515 

sequence (gn) is uniformly convergent on Dp for 0 < p < P. By the Weier- 
strass double-series theorem, i bnkak exists for k = 0, 1. Since 
ak : 0 for k = 0 , ... , it follows that the condition 

lim b,k=: bk for k = O, 1,... 
n-oo 

must necessarily hold. Suppose now that p is fixed and 0 < p < P. Since 
the sequence (gn) is uniformly convergent on Dp, we have, for Izi < p and 
n = 0, 1, ..., that lgn(z)l < M(p, a) < oo. From Cauchy's inequalities for 
the coefficients of power series we get that 

IbnkI () =I bnkakPkI < M(p, a) for n = O, 1, ... and k =O, 1,. 

Therefore, the condition 

sup Ibnkl (p) < X) for all positive p < P 
n>O, k>O R 

is also necessary. 0 
Proof of Theorem 3. Sufficiency. We assume that 

{ limnf,0 bnk = bk for k = 0, 1, ... 
M:= SUPn>, k>O Ibnk MI < X. 

Let a E 9 . We have, for IzI < R <coc, that 
00 00 00 

E bnkak zk < IbnkIlak IMk 
< M E Z akI (MR)k < x. 

k=O k=O k=O 

Hence the functions gn(z) := E bfkakzk are entire and are uniformly 
bounded on each closed disk DR. Also g(k)(o) - k!bnkak -4 k!bkak as n -f 00 
for k = 0, 1, . Further, from Cauchy's inequalities for the coefficients of 
power senes we get that, for lzl < p < R, n = 0, 1, ... and k = O, 1, .... 

lbfkakzkl < M(R, a) (pR k where M(R, a) :=supmax Ign(z)I < o. nk R ~~~~~~~~~~n>O JzI=R 

Therefore, by the Weierstrass M-test, limn_oo gn (Z) = ??= bkak zk on D 
and the sequence (gn) is uniformly convergent on compact subsets of Doo. 

Necessity. We assume that for each a E ' the series gn (z) 
E??O bfkakzk is convergent on Do2 and that the sequence (gn) is uniformly 
convergent on compact subsets of D,o . By the Weierstrass double-series the- 
orem, limnO.O bnkak exists for k = 0, 1, .... Since there is an a E ' such 
that ak # 0 for k = 0, 1, ... , it follows that the condition 

lim bnk =: bk for k = O, 1,... 
n-oo 

must necessarily hold. 
Suppose that a E 9 . Since the sequence (gn) is uniformly convergent on 

DR, we have, for lIz < R and n = 0, 1, ... , that Ign(z)l < M(R, a) < x. 
From Cauchy's inequalities for the coefficients of power series we get that 

(1) IbnkakRkl <M(R, a) forn =0, 1, ...andk=0,1.... 
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516 DAVID BORWEIN AND AMNON JAKIMOVSKI 

Also, since E' 0 bnkak is convergent whenever a E , we have, by the lemma, 
that 

M, :=supIbfkI b <oX forn=O, 1,. 
k>O 

Assume now that 
sup sup IbnkIk+ = SupMn = 00. 
n>O k>O n>O 

This implies that there exists a strictly increasing sequence of positive integers 
(nj) such that Mnj -x 00. This in turn implies that there exists a sequence of 
nonnegative integers (kj) such that 

(*) Ibnj, kjIkj+ > Mnj , X as j - oo. 

We show now that the sequence (kj) is not bounded. Assume that it is bounded. 
Then there is a positive integer k* such that 0 < kj < k*. Since limn .0 bnk 
= bk for k = 0, 1, ... , k*, it follows that the set of numbers (bnk)n>o, O<k<k- 

is bounded and hence that the set of numbers (Ibnki 
I 

)n>O,O<k<k' iS bounded. 
But this contradicts (* ). Therefore, the sequence (kj) is not bounded. We can 
suppose (by considering a subsequence if necessary) that the sequence is strictly 
increasing. Choose 

ak=Tl1(lbnj ,kD k2 if k = kj, 
ak:=~ 0 otherwise. 

We then have 
k*+1 

Iakj Ikj+1 <- as -oo. I 
kjl~ bn kjiC 

(2 nj 

Therefore a E ', but 

ibnj,kjlakj bn kj -- Xo as j oo, 0 

which contradicts (1). Thus the condition 

sup Ibnlkl <00 
n>O,k>O 

is also necessary. 0 

4. ADDITIONAL THEOREMS 

In this section we prove some theorems showing that the disk of convergence 
Dp specified in Theorem 2 cannot be enlarged when the matrix B satisfies 
conditions (i) and (ii) of that theorem together with certain other conditions. 

Theorem 4. Suppose that P and R are positive numbers, and that B _ (bnk) 
is a normal infinite matrix (i.e., bnk = 0 for k > n and bnn # 0) satisfying 

M(p) := sup IbnkI () <00 for O<p<P. 
_n>O kO R 
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MATRIX TRANSFORMATIONS OF SERIES 517 

Then, for each a E AR and each RI ? P, 

limsup max Ebnkakzk <R 
n--+oo lzI=Rj 

bkakZ P 

Proof. Choose R1 > P, and suppose a E AR. Let 0 < A < 1, and take 
p =AP. Then 0 < p < P. Since lim sup lakl =R , there is a positive 
constant c(l) such that 

lakl < (AR)k for k > 0. 

Now for I zi R1 we have 

Ebnkakzk < ?Zlbnkl () laklRk (-) 
n k k n R k 

< M(p)c() (AR) (A k) =) (R 

Since R1/(A2P) > RI/P > 1, it follows that 

limsup maxE bnkakZk < 'lM ( 
n-~oo Rk=j = 

-o 
= 

Letting A / 1 we get 

n n_ R 
lim sup max E bnkakzn ? 0 

n I- o zi=Ri P- 

Remark. Assume that a normal matrix B satisfies 

M(p):= sup Ibnkl () < c for O < p < P. 
n>0, k>O R 

Then 
IbnnlnR <M(p)n 1lasn-xoo, 

and hence 
R 

limsupIbnnj I - - for each positive p <P. 
n-oo P 

Letting p 7 P we get 
lim sup Ibnn <R I 
n -,oo P' 

This suggests that it is not inappropriate to impose the condition 

lim iIbnnl = R nas* whtP 
as we do in the following theorem. 
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518 DAVID BORWEIN AND AMNON JAKIMOVSKI 

Theorem 5. Let B be a normal matrix. Suppose that 

rn mb,N =p 

where P and R are positive numbers. Then for each a E AR and each R1 > P 
we have 

i n l RI 
lim sup max E:bnkak Zk > 

n-.oo jzj=Ri k=O 
Proof. Assume that the conclusion of the theorem is not true. Then there is an 
a* E AR and an R1 > P such that 

lim sup max | bnka* Z| < 
n-t+oo Jzj=Rj k-O 

Therefore, there exists a positive R < RI such that, for all n sufficiently large, 

max ; bnka*zk ? p, and hence max 
ZbnkaZzk ?(Rp)n. Iz=ik=O Iz=ik=O 

Applying the Cauchy inequalities to the function gn(z) Z:n= bflka zk we 
get in particular that, for all large n, 

lbnnltatlRI < () , and therefore Ibnn In la*l nRI <p. 

From the last inequality we get that 

p>lim sup (Ibnn I 1la* I -RI ) = RI lim ibnn I l im sup la* I P n-oo n n-oo n-oo 
But this is a contradiction since 0 < R < R1. Hence the conclusion of the 
theorem must hold. 0 

The next two theorems generalize results about regular and nonregular Nor- 
lund matrices due respectively to Luh [31 and K. Stadtmuller (6, Theorems 6 
and 7]. The first of these theorems, which follows immediately from Theorems 
4 and 5, shows, inter alia, that the sequence (gn) specified in Theorem 2 cannot 
converge uniformly in any disk Dp, with PI > P when B is a normal matrix 
satisfying condition (ii) of Theorem 2 together with the diagonal condition of 
Theorem 5. 

Theorem 6. Suppose that P and R are positive numbers and that B is a normal 
matrix satisfying 

M(p) := sup Ibnkl (P) <ooforO <p <P and lim lbnnl* n-R 
n>O, k>O R n-oo p 

Then, for each a E AR and each R1 > P, 

lim sup max bnkakZk =p 
no zj=R1 k= bpa z 

The next theorem shows that the circle IzI = R1 in the conclusion of Theo- 
rem 6 can be replaced by any arc of that circle when condition (i) of Theorem 
2 is also satisfied. 
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MATRIX TRANSFORMATIONS OF SERIES 519 

Theorem 7. Suppose that P and R are positive numbers and that B is a normal 
matrix such that 

lim b k=:bk for k = 0, 1,... , where bk =$ O for k > k*; n-00 

M(p):= sup IbnkI(I ) <x for 0<p<P, and lim I bnn=p. 
n>O, k>O Rn-,o 

Then, for each a E AR and each R1 > P, 
n n R limsupmax Zbnkakzk = I 

n--+o zEr nkakO 

where r is any closed non-trivial arc of Izl = R1. 
Proof. By Theorem 6 we know that 

n n k I 
limsup max EZbnkakzk < 

nl-*+o zEr k=O 

Hence it is enough to prove that, for every a E AR, 
n ~~~~~~~1 

(2) lim supmax Z bnkakzkk > 
n-oo zEr k=O - 

which we now proceed to do. 
Case 1 . RI = P: Suppose (2) is not true. Then for some a* E AR we have 

n n RI 
limsupmax obnkakZk < - 1 

It follows that there exists a positive number q < 1 such that, for all n suffi- 
ciently large, 

n 
sup Z bnka Zkj < qn. 
ZEr k=O 

Given e > 0 we get from Theorem 6 that, for all n sufficiently large, 
n 

max ZbnkaZzk < 2en. 
k=O 

For 0 < r < P we have, by Nevanlinna's N-constants theorem (see [1, The- 
orem 18.3.3]), that there exists a positive number 0 < 1 (depending on r but 
not on e ) such that, for all large n, 

n 
max ZbnkaZzk < (q82(1-0)E)n. 
lzl=r k= k=O 

Since we can choose e > 0 so small that q62(-0)E < 1, it follows that 
n 

max Z:bnka* Zk --+0 as n -+oo. 
Izrk=O 
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520 DAVID BORWEIN AND AMNON JAKIMOVSKI 

By the Weierstrass double-series theorem we get that 

O = lim bnka = bkaZ for k = O,l 1 n-koo 

Since a* E AR, we have that a* =$ 0 for some k > k*. Hence bk = 0 for such 
a k. But this contradicts the assumption that bk $ 0 for k > k*. Therefore 
(2) must hold when R1 = P. 

Case 2. R1 > P: Assume that (2) is not true. Then there exists a sequence 
a* E AR and a number R such that P < R < R1 and 

lim sup max Z b,k a*Zk 
n-oo zEr k P 

Hence given e > 0 we have, for all sufficiently large n, 

max z nEbnka4Zk < (R * I) 2En ()R )(2E)n 
k=0 

Further, from Theorem 6 we get that, for all large n, 
n 2 

max z-n E bnkaZZk <(3p) 
Izj=P k=P 

and 

max |Z E bnkakZk <(p;) IzI=Ri k= 

Let gn(Z) := k0 blnka*kz, and let P < r < R1. Then, by Nevanlinna's N- 
constants theorem, there exist positive constants 01, 02, 03 (depending on r 
but not on e ) such that 01 + 02 + 03=1 and 

max gn(Z) ( R 26\n' (2E\n82 (2e An3 (R 'n' (2E\ 
lzl=r Zn 

- 
R1 P} P PJ - kR1J KP) 

for all sufficiently large n. Hence, choosing e > 0 so small that (A/R1)612E 
< 1, we get 

. fR\ r r limsup max Ign(z)j 21 -< 
n-too0 Izl=rRIP 

Since r > P, the last inequality contradicts the conclusion of Theorem 5. 
Hence (2) must hold when R1 > P. 0 

The next theorem deals with the possibility of pointwise convergence of the 
sequence (gn(z)) specified in Theorem 2 outside the convergence disk Dp. 
It generalizes results due to Leja' [2] and Stadtmuller [6, Theorem 8] about 
regular and nonregular Norlund matrices respectively. Both authors mistakenly 
assumed that their proofs were valid when, in the notation of the following 
theorem, R = 1 and sequence (an) is bounded. The example an := l/(n + 1) 
shows that their method of proof cannot be used in this case. The difficulty is 
avoided in our Theorem 8 by the imposition of the limsup condition. 
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MATRIX TRANSFORMATIONS OF SERIES 521 

Theorem 8. Suppose that P and R are positive numbers and that B is a normal 
matrix such that 

lim bnk=: bk for k = O,,., where bk# Ofor k > k*; 
n-oo 

M(p):= sup lb < forO<p<P; Rlim Ibnn p 
n>O, k>O nk I R lnmbnoIo~ 

and 
X n n-k 

Ibnkl < C(R)Ibnnl() for O < R < R and O < k < n. 

Suppose that a E AR and that liMSuPn--o lanlRn > 0. Let 
n 

gn(z) Z: bnkak Zk. 
k=O 

Then liM supn , gn (z)I I"< 1 for at most afinite number ofpoints z satisfying 
IzI > P1 > P, and hence, in particular, the sequence (g,) can converge at most 
at a finite number of points z satisfying I zI > P1 > P. 
Proof. Let cn := anRn where a E AR, and let limsupn. ljncI > c > 0. Define 

1 if supn,>0l nII = 00 
M - {: _ supn >0 I cn otherwise. 

By considering the unbounded monotonic sequence (dn) where dn 
maxO<k<n IckI when maxn>o Icn I = ox, we see that there is a strictly increas- 
ing sequence of positive integers (nk) integers such that 

Icnl < Mlcnck for 0 < n < nk, and Icnkl > c. 

Since lim supn jcn j = 1, we have 

1 > limnsuplcfktnk > lim inf Icnk > ur cak = 1, 
k-oo k-_oo k-oo 

SO limko0 I Clnk jnk = 1. Whenever cn # 0, let 

(3) 4n(z):=Z?n bnj(.j -n gn (z) (3) kn(z) E bnn Cn (R~) Znncn(z1R)n 

and let 

(4) hk(): n tu 

Assume that z* is a point such that Iz*I > P1 and limsupn_o jgn (z*)* < 1. 
Since 

lim bnk ,fnkcnk (li)m =lirnIbnk,,nkI *li MICnkflk 'IR 

> R P, P,1 
--T 

= ->1 
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522 DAVID BORWEIN AND AMNON JAKIMOVSKI 

it follows from (3) and (4) that limsupk, O gfk(Z*)l(nk < 1 and hence that 

(5) lim hk(w*) = 0 where w* := l/z*. 
k-oo 

Suppose WI wI < l/P* where P1 > P* > P. Then we have, for 0 < R < R, 

Ihk(w)I ? (P)A k M (R) Pc(R)MZ (P*R)fk-J 
1=0 j=O 

Choose R< R so close to R that 0 < p. r < 1. Then 
PR 

Ihk(W)l < C(R)M for Iwl < < p and k > 0. 
- P R 

This means that the sequence (hk(W)) is uniformly bounded for IwI < l/P* . 
Suppose now that there are infinitely many points Zr with I Zrj > P1 > P* such 
that limsupn_- I gn(z,) I ? 1. Then by (5) 

lim hk(W,) = 0 for Wr := l/zr. 
k-*oo 

By Vitali's theorem (see [7, Theorem 5.2.1]) the sequence (hk(W)) converges 
uniformly to 0 on compact subsets of D . In particular, 

0 = lim hnk(0) = 1, 
k-oo 

which is a contradiction. Hence there are at most finitely many points z such 
that IzI > P1 and limsupn jgn(z)jn < 1- 0 

5. CONSTRUCTION 

In this section we construct a Norlund matrix NB satisfying the hypotheses of 
Theorem 8 with P = 1 such that the corresponding sequence of transforms (gn) 
of the power series Zk=%(z/R)k converges at N points outside the convergence 
disk DI. 

Let p(z) be a polynomial of degree N defined by 
00 

P(Z) := ZPkZk := (Z + cl)(Z + a2) ... (Z + aN) 
k=0 

where 0 < a, < a2 < . < aN < 1. Define the Norlund matrix NB - (bnk) 
by setting 

Bk rk n 
bn -kB for 0< k <n, whiere Bn-= - Z Pk 

k=0 
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Then, for ak := /Rk, w = l/z, and n > N, 

gn(Z) =Z bnkakzk = Z Bn-k (Z) 
k=O 0B n =B R 

n n n n k 

BnRn 1ZBk (Rw = j R w Zpj k=0 nR k=0 j=0 

BnRn 1-w 1-w 

Hence, for every n > N, we have gn(z) = z/(l - z) whenever p(w) = 0, and 
this occurs when z = - l/ak, k = 1, 2, ... , N. 
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