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ON AN INTRIGUING INTEGRAL

AND SOME SERIES RELATED TO f(4)

DAVID BORWEIN AND JONATHAN M. BORWEIN

(Communicated by Andrew Bruckner)

Abstract. An intriguing log-cosine integral is fully analyzed and shown to have

value a rational multiple of 7r£(4), C being the Riemann zeta function. From

this we deduce by means of generating functions and Parseval's identity the

sums of certain series previously established by a completely different method.

1. Introduction

The intention of this note is to provide a complete proof of the following

formula:

Vlog2(2cos±0)¿0
n Jo

Un4

180

From this we will derive, inter alia, the identity

lln4

360     T«4>-
n=\  \ /

This identity was surprising and new to us when Enrico Au-Yeung (an under-
graduate student in the Faculty of Mathematics in Waterloo) conjectured it on
the basis of a computation of 500,000 terms (five digit accuracy!); our first im-

pulse was to perform a higher-order computation to show it to be false. It is not
easy to naively compute the value of the sum to more than about eight places.

It occurred to us that we might be able to (i) obtain a function whose Fourier
sine series was

Ä 1 .,      1 K   .
\   -(I + - + ■■■ + -)smnt;
*-^ nv      2 n'
n=\

and (ii) numerically determine the value of the desired sum via Parseval's equa-

tion. This led to equation (12) below and an evaluation of the sum to 25 digits
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1192 DAVID BORWEIN AND J. M. BORWEIN

in a couple of minutes in Maple on a work station. Now armed with the as-

surance that the result was true, we were prepared to look for the closed form

evaluation presented below. We did not know at the time that P. J. De Doelder

[4,(9)] had established (2) below from which the above sum is an immediate

consequence. In §5 below we present complete, self-contained and shorter ver-

sions of De Doelder's proofs of this and related sums.

We believe our derivations make a very pleasant tour through diverse topics
in Classical Analysis, almost all of which are well described in [1] or [6]. We
will use the following standard definitions and identities involving the Riemann
zeta function Ç, the beta function ß, the gamma function T, and the digamma

function y/ :

IT2 TT4 °°       1
C(2) = ^_,    C(4) = ^,    where   f(z) := £ - for Rez > 1 ;

n=\

ß(x,y):= I (1 - u)x-xuy-1 du = E,^^ for x > 0, y > 0
Jo F(x + y)

(see [6, Theorem 7.69]);

T(z)T( 1 - z) sin nz = n

(see [6, Theorem 7.64]);

d °°
y/(l +z) := ¿logr(l + z),     y/'(l + z) = £(-l)> - 1)C(«)^~2 for \z\ < 1

n=2

(see [6, Theorem 7.71]).

2. The main results

Theorem.

(1) ^Vlog2(2cosi0)¿0 = i^ = ^(4).

Corollary. Let H„ := £Li j ■ Then
OO

n=\ K

(2) y _üL- = üí! = ü<(4)
1 ' ^(n + l)2      360      ^K>'

{) L> n2       360      T'{h
n=\

and

n=l

3 Proofs of the main results

Proof of the Theorem. Suppose initially that x > 0, n > 0. Integrating
(1 + w)xwi in the w = u + iv plane around the contour bounded by the

«-axis from -1 to 1 and the upper semicircle of unit radius yields

/ (1 +w)xw"dw = -i [n(l+eie)xe^+^ede,
V-i Jo
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AN INTRIGUING INTEGRAL 1193

since (1 + w)xwr> is holomorphic within and continuous on and within the

contour (see [3]). The imaginary part of the right-hand term is

- /   (2cos±0)*cosy0¿0
Jo

with y := n + \x + 1, and the left-hand term equals

/ (l + u)xuidu + ein" [ (l-u)xuidu
Jo Jo

of which the imaginary part is

r(i + x)r(i7 + i) . r(i + x)r(y-ix) .
—-=-.—     '        smnn =-—-^-«—sin7t(y- 4x)

r(x + t] + 2) r(l + ^x + y) v'    2

_7iT(l+x)_

r(l + ix + y)r(l + ix-y)'

Consequently (as in [4, (7.149)]), we have for x > 0,   y > \x +1,

(5) - Í  (2cos\6)xcosyOd8 =
T(l+x)

T(l + \x + y)T(l + \x-yy

By analytic continuation we can conclude that (5) in fact holds for x > -1 and

all real y. Differentiating (5) twice with respect to y and then putting y = 0

yields

(6) - /   02(2cos±0)*ú?0 = 2c(x),
n Jo

where -c(x) is the coefficient of y2 in the power series expansion of the right-

hand expression in (5). Let

fiy) := r(l + ix + y)r(l + ix-y)"

Then

f'(y) = f(y){v(i + \x-y)- ,/(l + ±x + y)),

so that f'(0) - 0, and hence

/"(0) = -2/W(l + lx) = - p^1^-

Thus

2'

T(l+x)

P(l+ijc) -*^v-

. .   r(i + x)v'(i + ix) .
c(x) = -    ^/t _ \ -jX 2     = #(x)i/(l + £x),

where

^(x):=r2(i + ix)-

Differentiating (6) twice with respect to x and then putting x = 0 yields

(7) -/   02log2(2cos±0)c/0 = 4c,
& Jo
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1194 DAVID BORWEIN AND J. M. BORWEIN

where c is the coefficient of x2 in the power series expansion of c(x). Now

g(0) = 1 and
g'(x) = g(x)(y/(l +x)-y/(l + ¿x)),

so that g'(0) = 0, and hence

g"(0) = g(0)(W'(l) - i^'(l)) = \ip'(l) = ^.

It follows that

c(x) = g(x)^(l + Ix) = (l + ^x2 + ...)(y-C(3)x + T^x2-••■),

and consequently that

(8) 4C = 4( 144 + 12ü) = W

Identity (1) follows from (7) and (8).      D

Proof of the Corollary. First we observe that the ordinary generating function

of H„ is given by

Jog^-z) = £
1 - z ¿-^

n=\

from which it follows that

(9) ^-t)-Y.^1 .      7,. ,        *-^     Hn

n=\

with both series converging for \z\ < 1. For z = re"   , 0 < r < 1,   0 < r < tt ,

the imaginary part of the right-hand expression in (9) becomes

£ ^r-1 sin ((«+l)i)

n=l

which, by Abel's theorem, tends to

oo      „

£-^- sin ((«+1)0
« + 1

n=\

as r —> 1- , the convergence of the latter series being assured because //„/(«+1)

tends monotonically to 0 (see [6, Corollary 7.38]). On the other hand, the

imaginary part of .jlog^l - re") tends to \(t - 7t)log(2sin ^t) as r —► 1-,
and hence, for 0 < t <n,

1 °°    H
(10) 5(í - 7T)log(2sin \t) = J] ^ sin ((« +1)0-

n=\

Applying Parseval's theorem to the Fourier series (10), we derive

]       ft °° jj2
(11) -^(,-02log2(2siniO^ = E(^V-

On replacing t by n- 9 in (11) and using (1) we obtain (2).
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AN INTRIGUING INTEGRAL 1195

To derive (3) we observe that it follows from (9) that, for |z| < 1,

oo      n        i °°    u

n=\ n=\

Equating imaginary parts with z — e", we obtain as in the derivation of (10)
that, for 0 < t < n,

00    o' f 1 °°     If

(12) 5]-^ + 2('-701og(2sini0 = £vSÍn"í-
n=\ n=\

Now, for 0 < r < 1,   0<t <n,

rn(eint - 1)rt °°   rn<pin

/ log( 1 - reiu) rf« = -i J] -¥—
2

n=\

which yields, on letting r->l- and equating real parts,

rt °°

a(t) := -      log(2sin\u)du-^ —=—.
J° ti    n

This identity, which appears as (4.4) in [3], was numerically investigated by

Clausen in 1832, and the function a(t) is Clausen's function Cl 2(0 • It follows,
by Parseval's theorem, that

I ina(t)2dt = C(4),
n Jo

and hence, by partial integration,

\ f 2a(t)a'(t)(n -t)dt=\ f a(t)2 dt = Ç(4).
K Jo n Jo

Applying Parseval's theorem to ( 12) and using the above identities together with
(1), we get

00    r/2        9    fn

539- = ̂ /   (a(t) + \a'(t)(n-t))2dt
„Tx n       n Jo

= f(4) + if(4) + ±-J\n- t)2 log2(2 sin J/) ¿/

= |c(4) + ̂ -C(4) = ^i(4),

which establishes (3).
Finally, we can deduce (4) from (2) and (3) by observing that

//2_, = (//„-i)2 = //2 + l-^L,
v n' n2       n

so that
00    if °°    if2 oo „2 c

n=l n=l n=\ v '

Identity (4) was discovered by Euler in 1775, as also was the identity

oo     „

Ef = 2C(3).
n=l
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In fact, Euler obtained the more general formula

oo    Tj m—2

2 E -^ = (™ + 2^m + V - E ^m - n)^n + 1) for m = 2, 3,....
n=\ n=\

See [2, p. 252, and the references given there] and also, for related material,
[7]. Identities such as these involving H„ can be derived more easily than those
involving H2. They can be dealt with by integrating appropriate generating
functions without recourse to Parseval's theorem.

4.  TWO RELATED EXAMPLES

One may attempt to sum (ax+a2-\-ha„)2/n2 for more general sequences.
Success depends on being able to get tractable forms of both the generating func-
tion (corresponding to (9)) and the Fourier-Parseval integral (corresponding to

(11)). If one commences with arctanh instead of log, one is led to

log2(tan \t)dt = ^-,

and hence to De Dodder's [4,(22)] formula

We also attempted the same process for the sum involving alternating har-

monic terms

In this case, however, we initially were only able to evaluate the corresponding
integral numerically. Moreover, numerical experimentation by David Bailey at
NASA Ames Research Center showed that the sum did not have as simple a

closed form as in the previous examples, but involved more exotic polyloga-
rithmic constants. In fact his heuristic evaluation of the sum (with vanishingly
small probability of error) was

~ C(4) + |C(2) log2 2 + ¿ log4 2 + 2Li4(i),

where Li4(x) = Y^=l j¡z- Using arguments involving polylogarithmic and in-

tegral identities appearing in [5], we eventually were able to establish Bailey's
evaluation rigorously.

5. Modified versions of De Doelder's derivations of (2) and (13)

In comparing De Doelder's formulae with ours it should be observed that,
for « = 1,2,...,

H„ = y/(n + l)-^(l),

and

k=\
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Because De Doelder did not choose to highlight these relations, it was not im-

mediately evident from the title of his paper or his abstract that he was dealing

with the same series as we were.

Proof of (2). Observe first that

(14)       J  xnlogmxdx = (-l)m{n^l)m+l for«>-l, m = 0, 1,...,

and hence that

-1 uJ/i       „i /•! i„_3

(15)

Clo¿(l-x)dx=Clolxdx
Jo x J0   1 — X

= f/Vlog^ = -6£      '      =-£
n=0J{J n=0

Next, for « = 0, 1, ... ,

- /  x"log(l-x)rfx= /  x"dx i --dt
Jo Jo Jo   '"'

= /   -j-dt j   xn dx
(16) Jo     ~l     Jt

= -L-r      -rL—dt = —— / (i + t + --- + tn)dt
n+lL     l-t « +1 J0 '
H.n+l

« + r
It follows from (9), (15), and (16) that

-\ f^-x) dx = -±J^ ¡\»loi(l-x)dx = ±^2 = t
2 Jo x ¿" + Wo nTx(n + V2     30'

and hence, in view of the Euler identity (4), that

f,    H2     =^H„H„+X     ^     H„ n4     n4     n4 =lln4

^W« + l)2     ¿W«+l)2    ¿W« + l)3     30     72     90      360'
G

n=\ n=\ n=\

Proof of (13). For 0 < x < 1, we have

l+x oo

4 v".'     -   '•

so that

Uog2\±JÍ = Y^X2n.
4        1 -x     *-* «

w=l

Consequently

(17) Y%2" = 1- T-log2^-du fov0<x< I.
v    ' ^ «2 2 Jo   u   &  l-u

n-\
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Next, it follows from (17) that, for 0 < x < 1,

fl\o¿\±±du = f,%\-x>»),
Jx u        1 - u ¿-^ n2

x n=\

and hence that

fO2      ~On[ll-x2n,       1  fl    dx     [ll.2l + u,
Ef = £W0 T^rdx=2Jo T^?JX ûlog —udu

^fW\^duf^-2=\fW\^du.2 J0  u        1 - u      Jo   I -x2     4 Jo  u        l-u

Substituting (1 - u)/(l + u) — t in the final integral and then applying (14), we

obtain

f O2        1  /-1 log3?  .        If y1 2B1   j  J
^t2=--2loThdt = ~2^Jot2n^tdt

°° 3 3 7T4

n=0

This establishes (13), which is the corrected version of identity (22) in [4]. As a

bonus we also obtain from (17), on substituting x = 1 and (1 -m)/(1 +Ü) = t,

and then applying (14), that

00    r\ r\   i      2 .. oo      .1

oo 2 7

= E(2„ + l)3 = 4^3)'
n=0 v '

which is identity (15) in [4].    D

It should be noted that De Doelder's derivation of (2) in conjunction with

(11) provides an alternative proof of (1).
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