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EXPLICIT EVALUATION OF EULER SUMS

by DAVID BORWEIN, JONATHAN M. BORWEIN and ROLAND GIRGENSOHN

(Received 30th August 1993)

In response to a letter from Goldbach, Euler considered sums of the form

where s and t are positive integers.
As Euler discovered by a process of extrapolation (from s + fg l3 ) , <rh(s,f) can be evaluated in terms of

Riemann (-functions when s + t is odd. We provide a rigorous proof of Euler's discovery and then give
analogous evaluations with proofs for corresponding alternating sums. Relatedly we give a formula for the
series

This evaluation involves {-functions and <rh(2,m).

1991 Mathematics subject clasification: Primary 40A25, 4OBO5. Secondary 11M99, 33E99.

1. Introduction

We will use the usual definitions and identities involving the Riemann zeta function £,
the beta function /?, the gamma function T, and the digamma or psi function T;
especially

/?(x,3>):=f(l-u)'-V~1<fM = r ^ r ^ for x>0,.y>0
o F(x + y)

(see [11, Theorem 7.69)] and

¥(z):=-flnr(z)=-)>- £(_i)-C(n +i)(z_i)- for | z - l |< l (1)
a z n=l

(see [11, Theorem 7.71]).

277



278 D. BORWEIN, J. M. BORWEIN AND R. GIRGENSOHN

Define

sh(n, m): = £ -̂  ————*— for n = 1,2,...; m = 2,3,...

and
oo | n-~ 1 *

ffh(s.£):= Z — Z 71 for s=l ,2 , . . . ; t = 2,3,...

In this paper, we will consider sh(2, m), leaving discussion of the more general sb(n, m) for
[1]. The purpose of this paper is to give a complete proof of the formulas

5h(2,m) = m ( m + 1} C(m + 2) + «2)f(f«) - ^

+ \ " l C(« - *) E CO' + 1) C(k + 1 - ;) + ffh(2, m) (2)

and, for s + r = 2n+l, n ^ l ,

[(/JT,) ( /JTi)]^^ ; if s is odd,

if s is even.

This last evaluation is due to Euler (cf. [5]); the terms involving £(1) which he used here
can be cancelled formally if t> 1. (Note that in the last two occurrences of this formula
in Euler's paper almost all the signs are wrong.) Euler obtained his evaluation by
computing many examples (s + t ^ l3 ) and then extrapolating the general formula,
without actual proof. He proved, however, that

m-2

2ffb( 1, m) = m((m + 1) - £ t(m-k)t{k+l) for all m = 2,3,... (3)
t=i
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In N. Nielsen's book [8, pp. 47-49], a clean version of Euler's proof for (3) can be
found. In the present paper, we will give a complete proof of Euler's evaluation of
ob(s, t), using a method which is closely related to Euler's.

It follows that

From this and formula (2) we get

5h(2,2n-l) = 2 w 2~7 n~3C(2/i+l) + C(2)C(2/i-l)-^"i:

+ \ "X Z(2k+ 1)" £ C(2j+ l)C(2n- 1 -2k-2j).
J * = l j=l

To see this, we need the identity

which is well-known (see, e.g., formula (4), p. 49, in [8]) and can be proved with the use
of the generating function of ((2n)/n2n, namely

on observing that h satisfies

Note that the last sum in this evaluation may be written as

Y C(a)C(b)C(c).
a+b+c=2n+l
a,b,c> l.odd

We also have
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<xh(2,4) = - 6C(6) + 1 «2)C(4) + C2(3) = C2(3) -

whereas the values wh(2,2n) for higher values of n are not as easy to obtain. In fact, we
have reason to believe (with very high probability) that these series are not expressible
in terms of zeta functions alone; cf. [1]. From the previous two evaluations together
with (1), however, we get that

Series of the type ah and their alternating analogues have been studied previously;
often the authors were not aware of what Euler had done. For further references see [2,
p. 252]. In [4] and in [3], sh(2,2) is evaluated by various methods (in other words,
identity (2) is proved for m = 2).

In the last section of this paper, we will give analogous formulas for the alternating
series

oo

n = i n k=l

1

I fors=l,2,...;t=l,2,...,
K

o o . n - l , _ i \ k - l

' . ( M ) : = I -, Z —TT- fors=l,2,. . . ; t = 2,3,...,
n = i n k=i K

«.(s,O:=Z ^—r- I —rr- fors=i,2,...;t=i,2,....
n=l « *=1 *

2. Proof of identity (1)

We make use of the following identity. Since

we have for / (0: = In°°= (><*„'" (|t|< 1) that
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< - = - ^ J in -* (» ) /«* - I 7^rrm (4)

provided that the final series is absolutely convergent.
With the use of (4), identity (2) and Euler's identity (3) can be proved in a unified

way. We will therefore prove both of them here, but remind the reader that Euler and
Nielsen gave an algebraic (integral-free) proof of (3). We need the following easily
verified generating functions:

and

n = l \-t

where the dilogarithm Li2(t): = E"=i *7n2- A good reference for polylogarithms is [7].
We therefore have, on using (4) and integrating by parts,

Unm-\t)\n(l-t)dt

( -1)" | ( m - l ) l n "

2(m-2)! ! l '

where

we have

( ( y ( > ) ) ( C ( ) C v ) ) ) (5)
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From the following two identities

= I (-I)"1"!
m = l

ra=l

which follow from (1), we get

£ (-
m=2

m = l \ fc=1

by (5). From this we get identity (3).
Similarly, we have, again on using (4) and integrating by parts,

(m—1)!

5(m — Z)\

where

Since
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we have

( y ( j ) ) ( ( ) y ) ) . ( 6 )
y

From the identity

-2C(3)-«F"O>+1)= f ( -
m = l

which again follows from (1), we get

= £

m=l k=l

(m-k+l)C(k+ l)a

m=l

by (6). From this we get identity (2); note that

Y (m-*)C(*+l)C(m-fc+l)=?"Z
k=l * k=l

3. Proof of Euler's formula

Euler computed his examples of ab(s, t) by finding and solving linear equations
between these quantities if s+t = N, a constant. We will follow the same method here,
although we will use slightly different equations.

We need the following lemma which was known already to Euler (it can be proved by
induction on s +1).

Lemma 1. Define



284 D. BORWEIN, J. M. BORWEIN AND R. GIRGENSOHN

Then we have the partial fraction decomposition

1 * /I'1'" ' fJ(.Sit)

for s,t^O,

We will now derive systems of linear equations for the values ab(s, t) where s +1 = N, a
constant.

First, there is a simple relation between oh(s, t) and ah(t, s). This is due to Euler.

n = l * = 1 " " k=l /i=k + l w ^

O O O O | 00 fc — 1 < 00 I

= y y —— y y — - y —

or

ah(s, t) + ah{t, s) =

for s,t^2. We will refer to these equations as "reflection formulas". It follows that
2ah(s, s) = £2(s) — C(2s). In [9], corresponding reflection formulas have been found for
triple series; recently, M. Hoffman gave a quite surprising generalization to multiple
series ([6]).

Second, we have

- L AJ
 c
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for s,t^2, with Af1 and Bift) defined as in Lemma 1. We will refer to these equations
as "decomposition formulas."

Euler used slightly different equations in place of the decomposition formulas, namely

<7h(s,o=(-i)s t (- t

These involve the infinite terms ((1) and ab(s+t— 1,1). However, in his book [8], pp.
48-49], Nielsen used the following version of Euler's equations, together with the
reflection formulas, to prove Euler's formula (3) algebraically:

j=2 j=2

We will now distinguish the two cases s + t odd and s + t even. First, we treat the case
where s + t = 2n+l. We have In — 2 equations in the 2n—2 unknowns ab(2,2n—\),
<xh(3,2n — 2),..., <xh(2w — 1,2). We can reduce the ab(k, 2n + 1 — k) with k>n to
ah(2n +1 — k, k) by the reflection formulas. This leaves us with the n — 1 unknowns
ffh(2,2n— 1),...,<xh(n,n+ 1). The matrix which corresponds to these equations has the
entries

( A(k,2n+l-k) , B(k,2n+ 1 -k)_ B(k,2n + 1 -k)\

However, it will simplify matters considerably if we augment this matrix by allowing
j,k to run from 1 to n, and then multiply alternate rows by — 1.

Define, therefore, the n x n matrices A, B, C, M by

r . _ / Uk+

(k,j= l,...,n) and M: = A + B—C. Define the n vector r by r,: = 0 and

for k = 2,...,n. We then have to solve the system Mx = r where the vector x has x1: = 0,
and xk: = ob(k,2n+l-k) for k>l.

We need the following lemma which is known and can be proved by induction on m.
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Lemma 2. (i) For 0 ̂  \i ̂  m,

A /m-/x-l-i\_fm+[\

(ii) For 0 ^ v , / i ^ m - l ,

Setting n = 0 in (ii) and changing the order of summation yields

Lemma 2(ii) will now be used to prove the following matrix identities.

A2=C2 = I, (7a, b)

A = BC, B = AC, C = AB, (8a,b,c)

B2 = CA, CB=BA. (9a, b)

(It follows from these identities that B3 = BCA = AA = I, and that the matrix group
generated by A, B and C is the permutation group on 3 symbols, but we will not use
this.)

Proof of (7a).

Proof of (7b).

Proof of (8a).
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Equation (8b) follows from (8a) and (7): AC = BC2 = B, and similarly AB = AAC = C
which is (8c).

Proof of (9a):

(B )kj-(CA)kJ-(-l) 2.(-l)

2n-k/

Equation (9b) follows from the other identities: CB = AB2 = ACA = BA.
These matrix identities now allow us to show that M is invertible; in fact, we have

M2=AA+AB-AC+BA+BB-BC-CA-CB+CC

= I + C-B-A + I = 2I-M,

so that

Thus, to prove Euler's formula, it remains to determine M~lr. For this purpose, define
Pi-=P2n- = 0, pk:=Z(kK(2n+l-k) for k = 2,...,2n-l, p: = (pk)k = l,. „, p: =
((-1)* + V*)*=i „ and e:=(l I). Then rt = p4-(Cp)t + C(2« + l)(Ce)k. Now let k^2.
Then it follows that
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+ B - C + I)p)k - ((A + B - C + I)Cp)k

I)e)k]. (10)

Now, we have

and therefore

Z

(12)

We also have, by Lemma 2(i),
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i = n-Ic+l

Now, combining equation (10) with the evaluations (11)—{14), we get

from which Euler's formula follows (with the use of the reflection formulas for
ah(n+1,«), . . . , ah(2n-1,2)).

In the even case, s + t = 2n, the equations will in general not be uniquely solvable,
except for n = 2 and « = 3. In these cases, our reflection and decomposition formulas,
together with (3), immediately yield the asserted values for <xh(2,2) and <7h(2,4). For
n > 3, however, the corresponding (n — 1) x (n — 1) matrix M = A + B — t, with

2n-k-\
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\ for j,k=l,...,n-l,

has minimal polynomial M3 + 2M2 — 3M = 0. [Note that ab(n, n) evaluates directly.] This
may be proved in much the same way as in the odd case. It follows from analysis of the
trace of M and of M2 that the number of null eigenvalues is [_(n — 1)/3J and, since the
minimal polynomial has no repeated roots, that the dimension of the null space is

4. Alternating sums

The same technique that allows us to evaluate the constants oh(s, t) can be used for
the alternating analogues ah(s, t), aa(s, t), aa(s, t). Define

„=!
Then we have the following equations:

ah(s, t) - aa(t, s) = t](s + t)- £(s)ri(t), s S 2, t ̂  1,

r,(s)r,(t)= t A^<xb(j,s + t-j)+ £ Bf>OLb(j,s + t-j), s,t21,
7 = 1 7=1

t,(s)C(t)= t Aft)ca t
7 = 1 7=1

The use of r\ instead of £ alone greatly simplifies the form of these equations. The two
reflection formulas can be found in Nielsen's book [8] on page 47, while Nielsen uses
slightly different decomposition formulas. He uses these to prove, e.g.,

2<r.(l,m) = 2ij(lK(m)-mC(m+l)+ £ r,(k)n(m+l-k)
k=l

(follows from formula (6), p. 50 in [8], by use of the first reflection formula), and

ri(k + l)C(m-k) (15)
* = o

(follows from formula (9), p. 50 in [8], by use of the second reflection formula).
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We will need

<xa(l,m) = mr,(m+l)-Y q(k)C(m+l-j)- £ ah(m+ 1 -j,j), (16)
*=i j=i

which follows from equations (10), p. 48 and (9), p. 50 in [8].
Again, if s + t is even, only a few of the series can be evaluated by solving these

equations. For example

• 2 '

C(2)-ln2(2)

Moreover, the following evaluations can be proved using formulas in [7] (a mis-
transcribed version of these is given in [10, p. 3]):

In4(2) _ 15C(4) ( 7C(3)ln(2) _ C(2)ln2(2)

i 4 (2) | 3g(4) C2(2) C(2)ln2(2)

These formulas are equivalent in light of equation (15). We believe that for larger odd m
the sums <xh(l,m) do not evaluate in terms of zeta functions or special values of
polylogarithms (see [1]).

We now turn to the case where s + t is odd. If s + t = 2n + l, then we have the
unknowns

<xh(l,2n),... ,ah(n,n+ l),ah(n+ l,n),...,ah(2n- l,2),ah(2n, 1),

ota(l, 2ri),..., oca(n, n + 1), aa(n + 1 , n), . . . , aa(2n - 1,2), <xa(2n, 1),

and the equations

-k) for k= l , . . . ,n,

-fe) for k = 2,...,n,

-k) for k = l,...,n,
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* 2n+l-k

£ Bf 2n+1-k)aa(j,2n+ l-j)

for k = 2,...,n,

r,(k)r,(2n+l-k) = £ <-2 n + 1 -%U2n + l-j) + £ Bf-2»+l-k>*h(j,2n + l-j)

for k= l,...,n,

n(fc)C(2n+l-fc) = £ A<f-2" + 1-k>oJLj,2n+l-j)+ " £ Bf- 2n+l-k\(j,2n+ 1 - j)

for k=l,...,n,

Obviously, we have one equation less than the number of unknowns, so we need an
additional equation. As it turns out, the equation which will naturally occur here is

£ ah(j,2n+l-j)+ £ oJLJ,2n+l-j) + aJLl,2n) = nri[2n+l)- £
j=l j=l j=2

which by the refection formulas is equvalent to equation (16).
By substituting the reflection formulas into the decomposition equations we can

reduce the number of unknowns to the 3M unknowns

uh(k,2n+l-k),oa(k,2n + \-k),at{k,2n+l-k) for k = l,...,n.

The matrix which corresponds to the resulting equations (after multiplying alternative
equations by — 1) is the matrix NeU3""3" which is given by

The vector on the right-hand side is the vector relR3" with the entries

^_" (j-\\

for k = 2,...,n;
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i-y))

for k=l,...,n.

The very first equation is exactly the additional equation we introduced earlier.
This system has a unique solution, because the matrix N is invertible; indeed the

inverse is

C-I A -B
N'1=\\ 0 C-B A + I | ,

A + B -I -C

as can be shown using the matrix identities (7)-{9) for the matrices A,B,C. Now, one
could give explicit formulas for ah(s,t), oa(s,t), aa(s,t) by applying N'1 to r. However,
things do not simplify quite as nicely as in the non-alternating case. We therefore
choose to leave matters in this somewhat more implicit state. Let us just remark that
the following formulas can be proved in that way:

x r,(2k)C(2n+l -2k),

£(2k)ri(2n + l -

These were proved by R. Sitaramachandra Rao in [10]; he gives them in a more
complicated fashion than we do here, though.

Finally, we note that D. Zagier (private communication) has informed us that he is
studying the modular-function properties of <rh(s,t). His work provides, inter alia, an
alternative and elegant abstract method of showing that the <rb(s,t) must evaluate in
terms of zeta functions when s + t is odd.
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Note added in proof. It came to our attention recently that in "Triple sums and the
Riemann zeta function," J. Number Theory 48 (1994), 113-132, C. Markett proved that

2

Y C(m-k-2) £
= 0 j=0

In the light of the formula

sh(2,m) = :
0<ni <H2<13 " l * "2 ' "3

this is equivalent to our formula (2).
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