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Abstract. We show that in two dimensions or higher, the Mordukhovich-loffe approximate sub- 
differential and Clarke subdifferential may differ almost everywhere for real-valued Lipschitz 
functions. Uncountably many Frechet differentiable vector-valued Lipschitz functions differing by 
more than constants can share the same Mordukhovich-Ioffe coderivatives. Moreover, the approx- 
imate Jacobian associated with the Mordukhovich-Ioffe coderivative can be nonconvex almost 
everywhere for FrCchet differentiable vector-valued Lipschitz functions. Finally we show that for 
vector-valued Lipschitz functions the approximate Jacobian associated with the Mordukhovich- 
Ioffe coderivative can be almost everywhere disconnected. 
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1. Introduction 

In finite-dimensional spaces, for real-valued functions Mordukhovich and Ioffe 
[lo, 151 have introduced the notion of approximate subdifSerential. Rockafel- 
lar [20] has introduced the notion of basic subdifSerential in terms of proximal 
subdifferential. The approximate and basic subdifferentials are in fact the same. 
The approximate subdifferential is an important notion because it is always non- 
convex and contained in the Clarke subdifSerentiuZ. For vector-valued functions, 
Mordukhovich and Ioffe [lo, 161 have introduced the approximate coderivutive. 
Being nonconvex-valued, the approximate coderivative is not dual to any tangen- 
tially generated derivative construction. Following a process identical to that car- 
ried out in the real-valued case, Clarke has introduced the generulized Jacobian 
which is always convex compact valued. Because the approximate coderivative 
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and generalized Jacobian enjoy a rich calculus [7, 10, 181 they are widely used 
in set-valued analysis. 

The aim of the present paper is to show how bump functions with prescribed 
gradient images can be used to build concrete examples so as to show starkly the 
difference between the approximate subdifferential and Clarke subdifferential, 
and the difference between the coderivatives and generalized Jacobians. 

2. Basic Definitions and Preliminaries 

Let h: R” t [-03, +oo] be proper and lower semicontinuous. 

DEFINITION 1. A vector .z E R” is called a proximal subgradient of h at 55 if 
h(Z) is finite and for some r 3 0 and S > 0 one has 

h(s) >, h(z) + ( z,z - 2) - $-11x - %:(I’ when (1~ - %(I 6 6. 

We denote &h(z) the set of proximal subgradients of h at 2. 

DEFINITION 2. The Rockafellar basic subdifferential of h at n: is defined to be 
the set 

&h(Z) := { u’-t, im 2,: zV E aph(zCy), q, -+ 2, h(zV) --+ h(% 

and the Rockafellar singular basic subdifferential is 

ab”oh(z) := { J;l&,q,: z, E L$h(z,), zV + 3, h(z,) + 

If Ih( < 00 then 

h-(x; VJ) := liminf h(z + tu) - h(z) 
t&O t ’ u+lJ 

a-h(z) := {CC*: (z*,v) 6 h-(z;w),V’v E R”}, 

h(Z), A, 4 O}. 

are called the lower Dini derivative in direction v and the Dini subdiflerential of 
h at 2 respectively. Set U(h,z,S) = {z: (Ix - 211 < 6, Ih(r) - h(Z)1 < 6). 

DEFINITION 3. The Mordukhovich-Ioffe approximate subdifferential of h at 5 
is defined as follows: 

C&h(?) := n U a-h(z) = limsup a-h(z). 
6>0 ZfU(h,Z,d) 2-z 

h(z)+h(C) 

The Mordukhovich-Ioffe singular approximate subdiflerential of h at Z is 

arh(Z) := limsup X-h(x). 
z-e h(z)+h(*) 

x +o+ 
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Note that for h being locally Lipschitz around Z it is necessary and sufficient 
that arh(Z) = (0) [ 181. Throughout the paper we use 12 to denote the Lebesgue 
measure. For any set A, conv(A), clconv( A), and cl(A) are used to denote the 
convex hull, closed convex hull and closure of A respectively. 

DEFINITION 4. Suppose h is Lipschitz near 5, and suppose S is any set of 
Lebesgue measure 0 in R”. The Clarke subdifferential of h at a: is defined as 

&h(z) := conv{lim Vh(zi): pi + Z, zi 6 S, pi $ Rh}, 

where the set of points at which h fails to be differentiable is denoted by 0th. 

Note that in Rn for every lower semicontinuous function h, a-h(z) # 0 on a 
dense subset of its domain [ 111, this fails if we do not assume h to be lower 
semicontinuous. In fact, the Serpinski Theorem [5] shows that given any t, J, 0, 
there exists a finite-valued function h: R + R such that 

lirn h(x + tn> - h(x) = --oo 
t7L , n+cc 

so a-h(z) = &h(z) = 8 f or every Z. The Clarke subdifferential definition giv- 
en here is for Lipschitz functions, and it does not apply to continuous functions 
since even continuous functions in R can be nowhere differentiable. As imme- 
diately follows from the definitions, these subdifferentials have the following 
upper semicontinuity property: &h(z) = lim SUP~+~,~(~)+~(,) 6’gh(y), where fl 
stands for b, a, and c. It turns out that the first two are sensitive to Lebesgue 
null sets while the third is not. On the real line two Lipschitz functions have 
the same Clarke subdifferential if and only if they have the same approximate 
subdifferential [3], but this is no longer so in higher dimensions. We summarize 
the relationship among these subdifferentials in the following proposition. Proofs 
may be found in [ 10, 201. A more elementary proof of (i), based on a penalization 
scheme rather than using normal cones, is given in [4]. 

PROPOSITION 1. Let h: Rn -+ [- CO, +oo] be lower semicontinuous and 1 h(z) 1 
< +co. Then (i) &h(x) = &h(x), and (ii) &h(s) = clconv[&h(z) + @“h(s)]. 

Let F: R” + R” be a vector-valued Lipschitz function, written in terms of 
component functions as F(z) := [fi (z), f2(2), . . , fm(x)]. 

DEFINITION 5. The Clarke generalized Jacobian of F at z is the convex hull 
of all m x n matrices 2 obtained as the limit of a sequence of the form JF(zi), 
where zi + z and Q $! a~, the set of points at which F fails to be differentiable. 
That is, 

&.JF(s) := conv{limJF(si): 5; --+ z,xi +! 0~). 



378 D. BORWEIN ET AL. 

It follows that &F is a cusco [7] and 

&JF(“c) C &fl(z) x &f2(x) x . . . x &f,(x) for every z E dam(F). 

It was shown by Warga [23] that &JF( ) x is indifferent to the exclusion of Q 
in the definition from an arbitrary set of measure 0. 

Set gph F := {(x, F(z)): 2 E dam(F)} and let h@,F denote the indicator 
function of gph F, that is, the one equal to 0 on gph F and +KI outside of gph F. 

DEFINITION 6. The Mordukhovich-Ioffe approximate coderivative of F at z 
in the direction y* is defined by 

D*F(x)(y*) := {x* E R”: (x*, -y*) E &&h&‘(~, F(Z))}. 

We put D*F(z)(y*) = 8 if 5 $! dom F. 

DEFINITION 7. The Aubin contingent coderivative of F at z in the direction 
y* is defined as 

6*F(s)(y*) := {x* E R”: ( x*,4 G (Y*,~),~(~,~) E gph~F(Z)), 

where 

6F(z)(?,) := {u E Rm: 3tk J, 0, F(x + “2) - F(z) + u} . 

The Mordukhovich-Ioffe coderivative is robust in the sense that 

D*F(z)(y*) = limsupD*F(Z)(y), 
zz-tx 

S’Y’ 

and 

D*F(x)(y*) = limsupE*F(5)(y) for every y* E Rm. 
z+x 

WY* 

In particular, when F is Frechet differentiable at x we have 

6*F(x)(y*) = {JF(x)~~*} for every y* E Rm. (1) 

When F is Frechet differentiable in a neighborhood of z we have 

D*F(s)(y*) = { lim JF(Z)t(y): $3 + s,fj + y”}. (2) 

In [ 10, 171 it was shown that the approximate coderivative can be expressed 
in terms of the approximate subdifferential of the scalarization (y*, F)(z) := 
(y*, F(Z)). That is, D*F(z)(y*) = &(y*,F)(z). Since 8,(y*, F(z)) = 
&~F(x)“y* [7], Proposition 1 shows that the relationship between the Clarke 
generalized Jacobian and the Mordukhovich-Ioffe coderivative is 

d,~F(z)~y* = conv(&(y*, F)(z)) = conv(D*F(z)(y*)) for all y* E Rm. 

Similarly following Ioffe’s definition for real-valued case: 
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DEFINITION 8. We call 

d-F(x) := [cfI(X), cf2(4,. . . ) a-f,(x)]) 

the Dini Jacobian of F at 2. 

?&F(X) := n U a-F(y) = li;is;pd-F(y), 
b0 y~U(F,x,6) 

(3) 

the approximate Jacobian of F at x. 

Rademacher’s Theorem asserts that F is differentiable a.e. on any neighborhood 
of x in which F is Lipschitz. Therefore &~F(xc> is always a closed set and 
aa~F(z) # 0 if F is Lipschitz near z. Like the approximate subdifferential, 
&JF is not stable under ‘excluding sets of measure zero’. To be more precise, 
even when S is countable, adding a condition 2 4 S to the definition leads to a 
set that depends in general on S (see Section 4.4.1). Equations (1) and (2) show 
that when F is Frechet differentiable, for fixed y*, the approximate coderivative 
and contingent coderivative are completely characterized by 

&JF(x) = {lim JF(%): 2 + X} and &F(z) = {JF(z)}. 

We conclude this section with Zahorski’s Theorem [5] which is frequently used 
below. 

PROPOSITION 2. Let E be a set of type F, such that d(E, x) = 1 (the metric 
density of E at x) for all x E E. Then there exists an approximately continuous 
function f such that 0 < f(x) < 1 for all x E E and f(z) = 0 for all x $! E. 
The function f is also upper semi-continuous. 

3. Real-Valued Lipschitz Functions 

3.1. THE GRADIENT RANGES OF BUMP FUNCTIONS 

In this section, we shall construct continuously Gateaux differentiable bump 
functions with prescribed gradient images. We use R(Vf) to denote the gradient 
image of f on R”, bd(C’) the boundary of Co, and supp(f) the supporting set 
of f. First, we make three definitions. 

DEFINITION 9. Let f: Rn -+ R be convex and x and d be fixed in Rn. We 
call 

f'(~,d) := lim f(x + td) - f(x) = inf 
W t i 

f(x + td) - f(x) : t > 0 
t I , 

the directional derivative of f at 2 in the direction d. 
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DEFINITION 10. A colzvex body in R” is a bounded convex subset C such that 
int(C) # 0. 

DEFINITION 11. Let C be a closed convex set containing the origin. The func- 
tion UC defined by VC(Z) := inf { X > 0: x E XC} is called the gauge of C. As 
usual, we set VC(Z) := +cc if 2 e XC for no X > 0. 

It is well known that if 0 E int(C) then VC is a finite-valued nonnegative closed 
sublinear function. Our constructions used later are based on the bump functions 
built from gauges. The following classical results can be found in [8] and [13]. 

LEMMA 1. Let S be a strictly convex nonempty closed set. Then for each d # 0 
the face F,(d) := {s E S: (s,d) = as(d)} is at most a singleton where 
as(d) := sup{(y,d): y E S} is the supportfunction of S. 

LEMMA 2. Let C be a closed convex set containing the origin. Its gauge VC is 
the supportfinction of a closed convex set containing the origin, namely 

Co := {s E Rn: (s,d) < 1 for all d E C}, 

which is the polar of C. 

LEMMA 3. Let f: Rn + R be convex. For all x and d in Rn, we have 

%.f(z)(d) = a,V’h N0 
LEMMA 4. Let C be a closed convex body with 0 E int(C). Then Co is a closed 
convex body and 0 E int(C’). 

L,ratCsbe a convex body and 0 E int(C). Define f(x) := q[(l - Y$(x))+]~. 
9 

THEOREM 1. Let f be defined as above. Zf Co is strictly convex then f is 
continuously Gateaux differentiable and R(Vf) = Co. 

Proof. We consider two cases: 
Case 1. Let z # 0. By Lemma 1, Lemma 2 and Lemma 3 we have: 

&UC(X) = &o,,,(x) = &y(x). 

By Theorem 2.3.9 [7, p. 421 

W(xc> = $1 - u~(x))+uc(x)&uc(x) 

= y(l - z&x))+u~(x)vv~(x). 
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Case 2. Let z = 0. Since 0 E int(C), by Lemma 4 there exists Af > 0 such 
that for every y E Co we have llyll 6 M. Then 

which implies Of(O) = (0). Hence 

wv) = u 
xcRn 

y (1 - u~(x))+~c(x)vz4+) 
3fi 

= u -y(l - ~~(~))+&)vw(x) 
XEC 

U 3& = 
l>U>O 

+l - cr2)bd(Co) = Co, 

where (36/2)0(1 - g2) . IS maximized at l/d with value 1. It follows that 

R(Vf) = u Vf(x) =c”. 0 
SEC 

~CW~ 

THEOREM 2. Every strictly convex closed body containing 0 in its interior is 
the gradient range of a continuous Gateaux differentiable bump function. 

Proof. Let C be any strictly convex closed body with 0 E int(C). Define vco 
and f respectively by 

vcO(x) := inf{t > 0: x E tC”}, 

f(x) := Y[(l - z.&x))+]2. 

Then by Theorem 1, f is strictly Gateaux differentiable and R(Vf) = C. By 
Lemma 4, f is a bump function. q 

THEOREM 3. Let Ci be strictly convex closed bodies with 0 E int(Ci) for i E I 
(a jinite set). Then there is a continuous Gateaux differentiable bump function f 
such that R(VP) = l-lit1 Ci. 
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Proof. Let fi be a bump function with R(Vfi) = Ci and with supp(fi) c Cf. 
Define gi by 

gi(x) := &Ji rf2-5 
( > &i . 

Since CF is bounded and 0 E int(Cf), we can choose zi and &i appropriately 
such that supp(gi) II supp(gj) = 8 if i # j. Set Ai := supp(gi) and define 

Sk4 := 
i 

gi(z), if z E Ai, 
o 9 otherwise. 

Then g is a continuously Gateaux differentiable bump function and R(Vg) = 
U&I G* q 

EXAMPLE 1. As is well known, gauges and support functions of elliptic sets 
merit more detailed study. Given a symmetric positive definite operator Q, define 

Rn 3 x ++ f(x) := ~(Qx, x). 

Then f is the gauge function of the sublevel-set EQ := {IC: f(z) < 1). To see 
this, we write 

f(z) = inf{X > 0: (&x,x) 6 X2} 

= inf {X > 0: (QF, F) < l} 

= inf {A > 0: F E EQ}. 

Consider the polar of EQ: 

,?$ := {y: (y, z) 6 1 for all z satisfying (Qz, z) < 1). 

Letting Q II2 be the square root of Q, the change of variable p = Q1/*s gives 

E; = {Y: (P,Q-“~Y) < l,ll~ll~ 6 11 

= {Y: llQ-“2~ll G 11, 
which is the dual ball of EQ. By Lemma 2 the support function aEo is exactly 

Q 
f. Let g(z) := 36/8[(1 - f(~)~)+]~. Then 

W’d = {Y: (Y,Q-~Y) G l), 

which is an elliptic set. By choosing different symmetric positive definite opera- 
tors Q we can get different elliptic sets as the gradient ranges of bump functions. 
In particular, when Q = In we get EQ = I$$ and this is the only norm on fin 
having this property. 
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Remark 1. It is the shape of the range of the gradient of a C’ bump function 
that determines the images of the subdifferentials which are constructed later. 
Theorem 3 shows we can intersperse different bumps to get interesting images. 

3.2. THE CONSTRUCTION OF ALMOST EVERYWHERE NONCONVEX APPROXIMATE 
SUBDIFFERENTIALS 

In this section, following [12] we shall use bump functions given in Section 3.1 to 
construct Lipschitz functions defined on R2 whose approximate subdifferentials 
are not convex on sets with large measure. Note that for a Lipschitz function f 
we have {XC: &J(X) = &f(x)} = {x: &J(Z) is convex}. We use h’ to denote 
the gradient map of h, h’(B) the gradient image of h on B, dist(p, h’(B)) the 
distance of p to h’ (B) . 

THEOREM 4. Let E > 0. Then there exists a Lipschitz function dejined on R2 
such that 0 < ~({Lc: &f(z) is convex}) < E. 

We omit the proof of this theorem since it is exactly the same as the one given 
in [ 121. The only difference is that we can use any bump function with nonconvex 
gradient image given in Section 3.1. We now sharpen Theorem 4 by showing: 

THEOREM 5. There is a Llpschitz function f : R2 + R such that 

p({x &J(z) is convex}) = 0. 

Proof. Step 1. Construct sequences of closed balls {Bin} such that 
(i) For fixed i, the &,‘s are pairwise disjoint; 
(ii) UrE1 Bc~+~), is dense and contained in 5’i := UrZl Bf!; 

(iii) ~(lJ~=, Bin) + 0 as i + co; 
(iv> U,“=l Bon is dense in R2, 

where B,P, denotes the interior of Bi, for every i and n. For fixed i on each 
Bin := B(&,r~) we define 

where h is any bump function with supp(h) c B (the closed unit ball in R2) 
and h’(B) nonconvex. 

Since h’ (B) is nonconvex we take p E conv( h’( B)) such that dist(p, h’(B)) = 
d > 0. Let 111 := sup{ [IX* 11: X* E h’(B)} and 0 < k- < min(d/4M, l/2). Set 

n=O n=m 
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We prove that {x: &J(X) is convex} c no=)=,&. 
Step 2. If z $ S, then a-F,(z) = {(O,O)}. In fact, F,(z) = 0 and, 

therefore, CC is a local minimum of F, and F;(x; V) 2 0 for all w. Fixing 
a direction w, there are two possibilities: Either there exists t, 4 0 such that 
z + t,v $ Sm or there exists an E > 0 such that x + tv E S, for all t E (0, E). 
In the first case F;(x; r~) = 0. In the second case, there exists an n such that 
x+tw E Bmn for all t E (0, E) because the sets B,, are pairwise disjoint and 
closed. As Bmn is closed we obtain 2 E 8B,,. Then by (ii) 2 $4 lJF!l Bi, for 
any i 2 m + 1. Therefore, there must be t, J, 0 such that x + t,v +! Sm+t . Thus 

F;(z;v) = liminf Fm(x + t4 - F,(x) 
t-+0+ t 

lim inf Knb + Lw> - Fin (4 
u-+02 L 

km lim inf fm(x + tuw> - fm(x> 
Y-bco tu 

Ph’((x - z,“)/T-,“)w = 0. 

Therefore F; (2; w) = 0 for all w, which is to say &Fm(z) = { (0, 0)). For any 
x E R2 and any positive integer n we have 

&Fm(x> c a-8n(B,,) U {(W)} = ~-&n&d 

If x $ sm and N(z,6) is any neighborhood of x then N(z,6) contains a 
ball B,,. Therefore a-F, (B,,) c 3, F,(x). So for every tc $ S, we have 
Win(x) = a-K@mn). 

Step 3. If x $ S, then &F,( z is nonconvex. Since all F, have the same ) 
structure we prove this only form = 0. Let x E R2\So. By Step 2, we deduce that 
+J(x) = a-f( Bon). We only need to show a-f( Bon) is not convex. Indeed, 
for any neighborhood U of J: there is Bo, such that Bon c U. For any such Bon, 
by the definition of fa, there exists r-y, r-y E Bon such that p E [f;(~r), f;($)] 
and dist(p, &(Bo~)) = d. For any such Bon and y E Bo,, x* E &Fl(y), we 
have 11~*11 < 2kM < 4’2. Since fe is continuously differentiable on Bo, we 
have 

a-f(y) = j;(y) + XFl(y) for all y E Bo,. 

Thus dist(p, a-f(13an)) > d/2. On the other hand, 

a-f(r,T-) = &((‘) + TFl(ry) for i = 1,2. 

This implies that there exists a q such that 

II4 - Pll < d/2 and q E conv(d-f(Bc,)). 
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Therefore q $ a-j( Ben). This shows a-f( Bon) is not convex. 
To conclude the proof, it suffices to consider any x E SN \ SN+~ for some N. 

We have 

Since &FN+t (z) is not convex neither is a,f(~). Hence a,f(s) is not convex 
for any x # nrEo Sn. q 

We note that even though {z: &f( z is convex} is a Lebesgue-null set, it is ) . 
still big in category, that is a residual set. 

4. Vector-Valued Lipschitz Functions 

In this section we use vector-valued bump functions with prescribed gradient 
images to construct differentiable vector-valued Lipschitz functions with non- 
convex approximate Jacobians and vector-valued Lipschitz functions with dis- 
connected approximate Jacobians. 

4.1. A SMOOTH BUMP FUNCTION 

In this section we generalize Volterra’s real-valued example [5, p. 451 to obtain 
a vector-valued differentiable bump function with prescribed gradient image. To 
do this, we take any open interval (a, b) c (0,l) and define f := (fi, fz) as 
follows: 

0, if J: = a, 
(x - a)’ sin A, if a < z < c, 

(c-a)2sin&, ifc<z<b+a-c, 

(x - bJ2 sin p&j, ifb+a-c<x<b, 

0, if x = b, 

’ 0, if z = a, 
(x - a>2 cos &, if a < II: < d, 

f*(x):= < (d-f~)~cos&, ifd<a:<b+a--d, 

(x - bj2 cos &> ifb+a-d<x<b, 

\ 0, if x = b, 

where c < d < (u + b)/2 with 

2(c-a)sin ’ 
1 - - cos ~ =o 

c-u c-a 
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Figure 1. 

and 

2(d - u) cos -g& + sin & = 0. 
a 

Then fl and f2 are differentiable on [a, b]. When a < z < c we have 

f;(z) := 2(x - u) sin & - cos A, 

f;(x) := 2(x - a) cos & + sin A, 

with (f;(z))* + (f;(z))” = 1 +4(x - a)*. When b + a - c < IC < b we have 

f;(x) := -2(b - x) sin & + cos j-&, 

f;(x) := -2(b - 2~) cos & - sin A, 

with (f; (x))~ + (f;(z))* = 4(b - X)~ + 1. More descriptively, f’ ([a, b]) looks 
like Figure 1. In Figure 1 we have set a = 0, b = 1, c = 0.2339300429, and 
d = 0.4067166529. It is the gradient image of this bump function that leads 
us, in the sequel, to construct vector-valued Frechet differentiable functions with 
prescribed Mordukhovich-Ioffe coderivatives and Clarke generalized Jacobians. 

4.2. THE CONSTRUCTION OF NONCONVEX APPROXIMATE JACOBIANS 

4.2.1. Nonconvexity Except on a Set of Small Measure 

Let f: R -+ R be an everywhere differentiable function. The Darboux property 
shows that the approximate subdifferential and the Clarke subdifferential are the 
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same. However this is no longer true for a differentiable function F: R + R2. 
We can use the singularity of f given in Section 4.1 to construct a Frechet differ- 
entiable vector-valued function whose approximate Jacobian, Dini Jacobian, and 
Clarke Jacobian are different on a set with large measure, which in turn implies 
that the approximate coderivative and contingent coderivative are different on a 
set with large measure. 

To make these comments precise, we take a Cantor set C c [0, l] with 
p(C) > 0. Then [0, l] \ C is the union of a sequence of disjoint open intervals 
(an,,b,), n = 1,2,. . . . For each n define a bump function .&: [a,, b,] --+ R* 
(like f in Section 4.1) by setting 

(.A &‘>, f2 &:>>, 
Fn(4 := (o,o), 

i 

if an < x < b,, 
otherwise, 

where, for i = 1,2, fi n := fi with a and b replaced by a, and b, respectively. 
Define F: [0, I] + R2 by 

F(x) := Rdx:), if x E (a,,&), 
(O,O), otherwise. 

We shall first show that F is Frechet differentiable at every z E [0, l] and 
F’(z) = (0,O) f or every x E C. Set F := (Fl, Fz). It suffices to consider Ft. 
Given E > 0 there is 6 > 0 such that for all n, if b, - a, < 6, we have 

fl n(x) I I <E and fln(4 
I I 
~ <&, 

x - a, z - b, (4) 

for all x E (a,, b,). For fixed c E C and x # c, consider 

H(x) := Fl(x> - FI (4 
x-c . 

Suppose first that 0 .$ c < 1 and let X := lim SUP~+~+ H(x). If c = a, for some 
n, then clearly X = 0. Otherwise there is a decreasing sequence of points zV 
in (c, 1) converging to c such that H(x,) + A. If infinitely many of the points 
x, are in C, then X = 0. If not, then for all sufficiently large V, z, 6 C and, 
consequently, x, E (a,,, b,,), where a,, + c and b,, + c as v + 00. In this 
case, for all sufficiently large v we have bnv - an,, < S and thus, by (4) 

It follows that 0 6 X 6 E and, hence, that X = 0. This shows that, for 0 < c < 1, 
H(z) + 0 as x -+ c+, and likewise we get, for 0 < c 6 1, that H(x) -+ 0 as 
x -+ c-. Therefore Fl is differentiable at all points of C and similarly so also is 
Fz. Thus F is differentiable on [O, I] with F’(c) = (0,O) for all c E C. 



388 D. BORWEIN ET AL. 

It may now be demonstrated what the approximate Jacobian of F looks like 
at each c E C. Observe that if c E C, then from the manner in which C is 
constructed, in each neighborhood of c there exists an interval (a,, bn) of the 
complement of C. Thus 

l~~S~PFl([% bn]> = &JF(C>. 

Set U := {(lc,y): x2 + y2 = 1) U { (0, y): -1 < y 6 1). Note that all cluster 
points of F’ ([an, bn]) as n + 00 must either lie outside of the unit circle or in 
U. Since U c F’( [a,, bn]) for all n, we have 

U C l&F(c) for all c E C, (3 
which implies that &JP(C) is not convex for each c E C. Furthermore, ~-F(X) = 
{JJW) = {(WY~ # 3dQ:> f or every 2 E C, and thus the Dini Jacobian 
and the approximate Jacobian of F are different on C. Hence, the contingent 
coderivative and approximate coderivative of F are different on C for every 
nonzero direction y* E R2. Now for every z E C the generalized Clarke Jaco- 
bian set of F is 

conv ( lim sup F’ ([ an, n--SC0 a) 7 
which implies conv(U) c &F(z) if z E C. We formulate this discussion as a 
theorem. 

THEOREM 6. For any positive E < 1 there exists a Fre’chet differentiable and 
Lipschitz. vector-valued function on [0, I] such that 

0 < P({X E [O, 11: &dyz> = &JJ-y~)}) < E, 

0 < p({x E [o, 11: a-F(z) = a&#(z)}) < E. 

Take an F, set A c C with p(A) = cl(C) > 0 and d(A,z) = 1 for all 
z E A. By Proposition 2, we can find an approximately continuous b: [0, l] + R 
with 0 < b(z) < 1 if II: E A and b(z) = 0 if z $ A. Moreover, b is also 
upper semi-continuous. Define h(z) := st b(s) ds. Then h’(z) = b(x) for every 
z E [0, 11. Now let H: R -+ R2 be defined by H(z) := (0, h(z)). It follows that 
%J(H + q4 = adw f or every x E [0, 11. Furthermore, let p: R -+ R* 
be defined by H(z) := (h(x), 0). It follows that &(H + F)(z) # IZ&JF(X) for 
each z E A, but &JF(x) = a,,(17 + F)(z) for each z E [0, 11. We summarize 
these results as two corollaries. 

COROLLARY 1. Uncountably many Fre’chet differentiable vector-valued Lips- 
chitz functions, differing by more than constants, can share the same approximate 
Jacobians and thus the same approximate coderivatives. The same is true for the 
Clarke generalized Jacobians. 
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COROLLARY 2. For any given positive E < 1 there exist two vector-valued 
Fre’chet differentiable functions F, F, defined on [0, l] such that 

&JF(cc) = &F,(X) for all z E [O, I], 

and 

0 < p({x E [O,l]: &F(~) = &d(z)}) < E. 

Note that our construction works, of course, for each nowhere dense closed set, 
whether or not it is perfect and whether or not it has positive measure. 

4.2.2. Almost Everywhere Nonconvexity 

In this section we sharpen Theorem 6 by showing that &F can be nonconvex 
almost everywhere for vector-valued differentiable Lipschitz functions. To show 
this, let A := fl,“=e U, be a dense G6 set in [O, l] with Un+i c U,. Then 
u; := [O, I] \ u, is nowhere dense and closed. By Proposition 8 [19, p. 421 we 
can write U 7L := lJ& (ar, bp) where (a?, by) n (ujn, bjn) = 0 if i # j. Moreover, 
we require that the Un’s satisfy: iJg, [al, bp] c Un-l for every n 3 1. With 
each U,, we associate a vector-valued Frechet differentiable F,: R + R2 in 
exactly the same way as in Section 4.2.1. For each n, we know llF~(z)II < fi 
for every x E [0, l] and by (5) we see that U c &JF,(x) if z E Ui. Let 
p := (l/2,0). Then dist(p, U) = l/2 and p E conv(FA( [ar, by])) for every n 
and 1. Set 0 < Ic < l/8& and define 

H(z) := E PF,(s), 
n=O 

and 

H,(x) := g PF,(z). 
n=m 

Then H and H, are Frechet differentiable on [0, I]. In particular, for each m 
we have H;(z) = (0,O) for every z E U& and 

&JH,(x) = limsupHk([up,b;n]) U {(O,O)} for every J: E U&. 
l-too 

We claim that a,~H,(z) is nonconvex if z E U&. It suffices to show this only 
for m = 0 since the other cases are similar. We have 

H’(z) = F;(z) + g PFA(z) for each 2 E [up,@ 
n=l 
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Based on the construction of Fo, we have dist(p, Fi( [a:, $1)) = l/2 which 
implies 

dist(p, H’( [a:, be])) > dist(p, &([c$‘, $1)) - 2k& > $ for each 1. 

Then 

dist(p, &H(z)) > i for x f U$. 

On the other hand, since p = X’FA(ri) + (1 - X’)Fi(ri) for some r-11, ri E [a:, $1 
with X1 E (0,l) and H’ (rf) = Fi(ri) + Hi (rf) for i = 1,2, we derive that there 
is ~1 such that 

IIP - !nll < zid and ql E conv(H’((c$, @I)). 

Since {QI} is bounded, by taking a cluster point q of this sequence, we get 

(lq - p]] < 2k& < i and q E conv(&JH(z)). 

Therefore q $ &JH(x). This shows that d,~H(z) is not convex if 2 E I$. 
To conclude the proof, we need to consider any x E UN \ UN+1 for some N. 

In this case we have 

Since ~!$~H,v+t(z) is not convex neither is &H(X). To summarize 

{x E [0, I]: &JH(z) = conv(&H(x))} c A. 

Letting p(A) = 0, we get 

THEOREM 7. There exists a Frkchet differentiable vector-valued Lipschitz func- 
tion H: R + R2 such that ,u( { z E [0, 11: &J H(z) is convex}) = 0. 

Note that Baire’s Theorem shows H’ is generically continuous. Thus &JH is 
single-valued generically and 8,~ H and 3,~ H agree generically. Our construction 
also shows that the Dini Jacobian and the approximate Jacobian can be different 
almost everywhere which in turn implies that the contingent coderivative and the 
approximate coderivative can be different almost everywhere for every nonzero 
direction y* E R2. 

4.3. A SMOOTH BUMP WITH DISCONNECTED GRADIENT IMAGE 

In Section 4.1 we constructed a differentiable vector-valued bump whose gradient 
image is connected. In this section we shall present a nonnegative vector-valued 
(i.e. each coordinate function is nonnegative valued) differentiable bump whose 
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gradient image is disconnected. Note that for any topological spaces X and Y if 
f: X -+ Y is continuous then A is connected implies f(A) is connected. This 
necessitates the gradient map to be discontinuous. Define F: R + R* by 

i 

(.h (x), f*(z)), 
e4 := (o,o), 

if 0 < 2 < 1, 

else, 

where 

and 

f*(z) := x2(1 - +os $-T;, . 

Then F is differentiable for all 2, has support [0, 11, and F’(0) = F’( 1) = 
F(0) = F( 1) = (0,O). Next we have, for 0 < z < 1, 

f;(x) :== 22(1 - z)( 1 - 25) sin .‘,1”“,, - 

- (x2 + (1 - x)2) cos $2;) ) 

j;(z) := 22(1 - 2)(1 - 2z)cos z$-~:, + 

+ (x2 + (1 - ~7)~) sin x~lA~~l, 

and hence 

f;(x)’ + f;(z)’ = 4271 - L&l - 2q + ((1 - x)2 + x2)’ 2 $. 

Since F’(Z) = (0,O) when IC E R \ (0, l), it follows that the range of F’ is not 
connected (see Figure 2). 

We proceed to make the bump nonnegative. Define F(z) := (f; (z), f2 (z)) 
by setting fr(z) :=-f,(z) f 1 and f*(x) := f*(z) + 1 in the interval [0, I] and 
then constructing fr and f2 outside this interval in such a way that they are 
nonnegative, differentiable, zero outside (-a, u) for some sufficiently large a, 
and have 

dm52102 i forzER\(O,l). 

For example, to define fi on the interval (1, +oo) we take 

a>1+8&, b:= (u !1,* 
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Figure 2. 

and set 

1 - b(x - 1)2, ifl<x<‘+a 2 ’ 

fl(X) := b(u - x)2, ifI+a<x<a 211, 

0, if x > a, 
(6) 

whence, for x > 1, 

fi’(x)2 < b2(a - 1)2 = 
(A)2 < k* 

One can do the same process to get f~‘(x)~ 6 l/32 as x > 1. Similarly for the 
end point 0. This yields a differentiable, nonnegative F with support in [-a, u]. 
Moreover, F ([-a, a]) = At U AZ, where 

which are disconnected. Hence 

THEOREM 8. There is a nonnegative, differentiable function F: R + R2 with 
compact support whose derivative has disconnected range. 

Remark 2. Let G(t) := (Gt(t),Gz(t)) = &F((2t - 1)a). Then G is a non- 
negative bump with support in [0, l] and G’([O, 11) = ?([-a, a]). 



APPROXIMATE SUBGRADIENTS AND CODERIVATIVES IN R” 393 

Remark 3. Our example implies the following general fact: Let at < a2. 
Define F: R -+ R2 by setting F(z) := (ft (x), &(z)) with 

fl(X> := 
(X - u~)~(x - ~22)~ sin (A + &-), if at < z < ~2, 

0, otherwise, 

f2(4 := 
(x - a~)~(x - u2)2 cos (& + A), if al < IC < ~2, 
o 

7 otherwise. 

Then F is differentiable for all 5, has support [ui, a~], and for al < 2 < a2 we 
have 

f;(x)’ + f;(x)2 2 (al -y2j4, 
which implies that the range of F’ is disconnected. 

Remark 4. Recently Ma19 [14] showed that the gradient map of every Frechet 
differentiable real-valued function on a Banach space maps every closed convex 
set with nonempty interior into a connected set in the dual space. Our example 
shows that this is not true for vector-valued Frechet differentiable bump functions. 

4.4. THE CONSTRUCTION OF DISCONNECTED APPROXIMATE JACOBIANS 

4.4.1, Disconnectedness Except on a Set of Small Measure 

In this section we construct a vector-valued Lipschitz function whose approximate 
Jacobian has disconnected image on a set with positive measure. Let 15’ c [0, l] 
be a Cantor set with p(C) > 0. Then U := [0, l] \ C = lJ,“=,(u,, b,) where 
[ai, bi] n [uj, bj] = 0 if i # j. On each (a,, b,), we construct a function F, like 
G given in Section 4.3. More precisely, we define F,: R + R2 as follows: 

F,(x) := 
(b,-an).G(G~zn), ifa,<x<b,, 

(0, 0) 7 otherwise. 

Define F := (ft , f2) by setting: 

If 2 E U then II: E (a,, b,) for some n, so F is differentiable around 2, with 



394 D. BORWEIN ET AL. 

If z @ U, then fl (x) = 0 so z is a local minimum. By the construction ft- (z; V) > 
0 for any 21. Fixing a direction V, there are two possibilities: Either there is a 
decreasing sequence of positive numbers t, -+ 0 such that z + t,v $ U or there 
is an E > 0 such that z + tv E U for all t E (0, E). In the first case we have 

fr-(xc, w) < liminf fl k + tnv> - fl (x> 
= 0. 

n+cc tn 

Since we already know that &-(xc; V) > 0, we have fi-(z; V) = 0. In the second 
case, noting that it is impossible to express [0, E] as a union of disjoint closed 
intervals of positive length less than E (see [22, p. 112]), there must be some 
n such that J: + tw E [a,, b,] for all t E (0, e). Since x $ U, we know either 
x = a, or x = b,. Suppose x = a,. Using the fact that x + tv E [a,, b,] for 
small positive t we get fr(x; V) = G; (0) . 21 = 0. Therefore in each case when 
z $ U we get fl(x;v) = 0 for any zI, so a-f*(x) = 0. Similarly a-fz(x) = 0 
if x 4 U. For every IC E [0, I] we have 

&d’(x) c G’(P, 11) u {(O, O>>. 

If x $ U, and N(x,6) . is any neighborhood of x then there is some n such that 
[an,&] c N(x,6). Therefore G’([O, 11) c &F(x). So for any x $ U we have 
&JF(x) = G’([O, l]), h h d w  ic is isconnected. From the construction, we know 
that arfi(x) = @‘fz(x) = 0 f or all x E [0, 11, so fi and f2 are Lipschitz. Now 
consider the approximate coderivative of F. Since fl and f;! are nonnegative and 
fl and f2 have the same structure for fixed y* := (y;, y2+) E (R2)+, the positive 
orthant, we have 

((y*,F))-(2;~) = y;f;(x;v) +y2*f;(x;u) for every 21 E R. 

Therefore 

~a((Y*,w-d = (Y*>kT~(x))~ 

That is, for fixed x the approximate coderivative of F in the direction y* E ( R2)+ 
is determined by &JF. Moreover, since the generalized Clarke Jacobian is not 
sensitive to null sets we have a,~F(z) = clconv(G’([O, 11)) if x $ U. Letting 
1 > p(C) > 1 - E, we get 

THEOREM 9. Let 0 < E < 1. Then there exists a vector-valued Lipschitz func- 
tion F: [0, l] -+ R2 such that 

0 < p({z E [0, I]: &JF(x) is connected}) < E. 

By (6) we have 

4(x - a) 4(x - a) 
(a- 1)2’ (a- 1)2 > 

. !-k-? < x < a 
’ 2 

c G’([O, 11). 
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Take an F, set A c C with p(A) = p(C) > 0 and d(A,z) = 1 for all 2 E A. 
By Proposition 2, we can find an approximately continuous b: [0, I] + R with 
0 < b(z) < 1 if z E A and b(z) = 0 if 2 $! A. Define h(z) := Jo” b(s)ds. 
Then h’(z) = b(z) f or every z E [0, 11. Now define H: R -+ R2 by H(z) := 
(-h(z), -h(z)). It follows that for sufficiently small E > 0 we have 

&J(F + &H)(X) = &JF(z) for all 2 E [O,l]. 

Observe that a,~( F + cH) ( 2 is still disconnected if z E C. It is therefore all ) 
the more surprising, that the following corollary holds. 

COROLLARY 3. Uncountably many vector-valued Lipschitz functions, diflering 
by more than constants, can share the same approximate Jacobian map whose 
values are disconnected except on a set of small measure. 

4.4.2. Almost Everywhere Disconnectedness 

In this section we sharpen Theorem 9 by showing that for any y* E (R2)’ 
the map &J associated with the approximate coderivative can be disconnected 
almost everywhere. 

THEOREM 10. There is a vector-valued Lipschitz function H: [0, I] + R2 such 
that 

p({~ E [0, 11: &JH(x) is connected}) = 0. 

Proof. Construct sequences of closed subintervals {[a, i, b, i]} in [0, 1 
that 

] such 

(i) For fixed n, [a, i, b, i] n [a, j, b, j] = 0 if i # j; 
(ii> UF-l[ani,bn il . d is ense and contained in U,-i := Ugt(a,-i i, b,-1 

everyn> 1; 
i) for 

(iii) p(Un) + 0 as n + co; 
(iv) lJg, (a0 i, bo i) is dense in [0, 11. 
Now for fixed n on each [a, i, b, i] we define 

fni(xc> := 
(b, i - a, i> * G (b~~?~~ J , if an i < x < bn i, 

0, otherwise, 

and 

Fn(x) := h(x), ifx E (w,b,i), o 
> otherwise. 
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Let 

M := sup{]]z*]]: x* E G’([O, 11)) and 0 < k < min{i, &}. 

Set 

H(x) := F knFn(x) and H,(z) := 5 PF,(z). 
n=O n=m 

Step I. If x $ U, we have &H,(x) = &H,([a,i, b, i]). To show this, 
let J&(z) := (Hk(z),H&(z)). If z $ U, then a-H,(z) = {(O,O)}. In fact, 
H&(x) = 0 and, therefore, x is a local minimum of HA and (Hi)- (x; v) 3 0 
for all 21. Fixing a direction V, there are two possibilities: Either there exists a 
sequence of t, .J. 0 such that z + t,w $ U, or there exists an E > 0 such that 
J: + tv E U, for all t E (0, E). In the first case (HA)-(2; w) = 0. In the second 
case, there exists an i such that 2 + tw E [a, i, b, i] for all t E (0, E) and we 
obtain 2 = a, i or x = b,i. Suppose x = a,i. Then x $ U, for n 2 m + 1. 
Therefore, there must be t, j, 0 such that x + t,w $ Um+l. Thus 

(HA)-(z;v) = liminf H~(x + tw> - Hi t-to+ t 
liminf H~(x + t’w> - Hi 

km lim inf ‘~(a: + t,w> - ‘~ (x> 

kmG; (0) . w  = 0. 

The same is true when x = b, i. Therefore, (Hi)- (x; u) = 0 for all 21, which 
is to say a-HA(x) = (0). Similarly, a-H&(x) = (0) if x 4 Urn. For every 
x E [0, l] and every positive integer i we have 

aaJHrn(x) C a-Hm([ami,bmi]) U {(O,O)} =a-Hm([arni,brni]). 

Ifx $ U,andN(x,&) is any neighborhood of x, then N(x, 6) contains [a, i, b, i] 
for some i. Therefore @H,([a, i, b, i]) c 3aJHm(x). 

Step 2. If x $! Urn, then &~H,(xc> is disconnected. Since all H, have 
the same structure we prove this only for m = 0. By Step 1, we deduce that 
@df(x) = @H([aoi, boil). F or every y E (uo i, bo i) and x* E %Hl(y), we 
have ]]x*]] < 2lcM. Since FO is differentiable on [au i, bo i] we have 

a-H(y) = Pi(y) + ~-HI(Y) for all y E [a~$, boil. 

Since Fi([aoi,boi]) =G’([O,l]) = AI UA2, where 

AI := {(f;‘(t), J2)(t)): &?i%$ < :}, 

A2 := {@,‘(t)h): Jm > ;}, 



APPROXIMATE SUBGRADIENTS AND CODERIVATIVES IN R” 397 

we obtain a- H( [ aoi,boi]) c Bl U B2 with SH([aoi,boi]) f~ BI, # 0 for 
k = 1,2, where 

& := (4 + a-fb([~oi,~oi])), 

& := (A2 + ~-~~([~oi,~oil))~ 

It suffices to show that B1 and B2 are disconnected. Indeed, for every (IC*, y*) E 
B1 we have (x*, y*) = (X i,, ~2,) + k&yk,) with Wil, Y>,) E AI ad 
c-4spYTJ,) E 8-H 1 ([ aei,bui]).Thisimplies ]](z*,y*)]] < :+2kM. Ontheother 
hand, for every (CC*, y*) E B2 we have (IC*, y*) = (zi,,yi2) + (x;,, y&,) with 
(~~~,y~~) E A2 and (xcf-i,,~k,) E a-Hl([a~i,b~J). This implies ll(~*,y*)Il 2 

i - 2kM. Therefore cl(&) tl cl(&) = 8 because k < 1/16M. 
To conclude the proof, it suffices to consider any z E UN \ UN+, for some N. 

Note that for 0 < n < N each F, is continuously differentiable on UN \ UN+, 
except for a countable set. It follows that 

holds on UN \UN+ t except for a countable set. Since &JHN+ i (z) is not connect- 
ed neither is &JH(x). Hence, &JH(x) is not connected for any 2 $! nFEo U, 
except for a countable set. 0 
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