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CONVERGENCE OF MADELUNG-LIKE LATTICE SUMS 

DAVID BORWEIN, JONATHAN M. BORWEIN, AND CHRISTOPHER PINNER 

ABSTRACT. We make a general study of the convergence properties of lattice 
sums, involving potentials, of the form occurring in mathematical chemistry 
and physics. Many specific examples are studied in detail. The prototype is 
Madelung's constant for NaCl: 

v 
( )+r+P = -1.74756459. 

1 2 + m2 + p2 

presuming that one appropriately interprets the summation proccess. 

1. INTRODUCTION 

Lattice sums of the form arising in crystalline structures - and defined precisely 
in the next section - have been subject to intensive study. A very good overview is 
available in [5] and related research may be followed up in [2, 1, 4]. These sums are 
highly conditional in their convergence, and the subject of how best to interpret 
their convergence is discussed in [2, 1, 3, 4] and the references therein. 

The prototype is Madelung's constant for NaCI: 

S -nj + m2 + p2 =-1.74756459 .. 
___ ? ~m2 ?+ p2 

presuming that one sums over expanding cubes but not spheres, [1]. 
Since the analytic or numerical evaluations of such sums usually proceed by 

transform (and "renormalization") methods, these issues are often obscured, espe- 
cially in the physical science literature. As we shall illustrate in this paper, while 
some general theorems are available, the precise study of convergence is a delicate 
and varied subject. Some of our results are unsurprising, but others are far from 
intuitive. 
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3132 DAVID BORWEIN, JONATHAN M. BORWEIN, AND CHRISTOPHER PINNER 

2. PRELIMINARIES AND NOTATION 

We shall suppose throughout that 
k k 

Q(Xi,... uiXk) : aOijXix.x C R[xi,.. ,Xkj 
i=i j=i 

is a posittve definite quadratic form with aij ji. For a bounded set C in Rk 
and a positive real number v we understand PC to be the set of (ulH,. . Uk) CR k 
such that (ui/v, U uk/V) E C, and we set 

Ci :- c n (Z;k \ (0, O. O 0)). 

We shall chiefly be interested in C C Pk where (0, .. X0) lies in the interior of C, 
so that 

lim vC - Rk 

We define the corresponding lattice sunm 

A (s) A,V(C, Q, s) 
-X1'+k 

Q(XI.... , Xk)s 
(X1,--- X)GC,S 

and write 

A (s) -A (C, Q, s)- lim Al,(C Q, s) 

whenever this limit exists. For the most part we shall suppress explicit reference 
to parameters such as C and Q and simply write A(s) (except in Sections 4.2 
and 7 where we use A(C, Q, s) to emphasize the dependence upon the region C). 
Throughout we avoid summing over the pole at zero. We also often write u- for Re 
s. [The literature is split as to whether to write A(s) or A(2s), the latter moving 
the physically meaningful value from 2 to 1.1 At s : I our sums are evaluating 22 
weighted/signed potentials at the origin over points in the underlying lattice. 

While we have stated our results with reference to integer lattice points, we can 
readily generate analogues for an arbitrary lattice AZk on replacing Q(x) by Q(Ax). 
Notice that a convex body will be mapped to a convex body by the matrix A-'. 

Our key result is to show that A(s) exists and is analytic at least down to 
Re s > (k - 1)/2 for all reasonably shaped regions C (and hence that the limit is 
independent of the shape of C chosen in that range). In fact, as the next section 
shows, the same is true if we replace the "(-1)X1+ +Xk" by a function q(xI, ... , Xk) 
exhibiting a similar degree of cancellation when summed over one of the xi. 

In Section 4 we examine in detail the question of convergence for Re s < (k- 1)/2 
when C is an (appropriate) ellipse in Rk or C is an arbitrary polygon in 2 or R3 
with rational vertices or C is a k-dimensional rectangle (showing that in the latter 
case convergence actually holds for all Re s > 0). In Section 5 we give very explicit 
formulae when Q(x, y) ?= x2 + Py2 for certain P (particularly for P -3 or 7), and 
C is the corresponding ellipse x2 + Py2 < 1. Several other examples are detailed in 
Section 6. Finally in Section 7, when Q(x, y) := 2 + y2, we demonstrate directly 
the existence and equivalence of the limits at s -1 (the most analytically pliable 
value) for C a circle, rectangle, or diamond. Since many of the proofs are lengthy 
and technical, we have chosen to postpone the majority of them until Section 8. 
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CONVERGENCE OF MADELUNG-LIKE LATTICE SUMS 3133 

3. A CONVERGENCE THEOREM FOR GENERAL REGIONS 

Let C be a bounded set in Rk containing (O,... ,0) in its interior and let 
Q(xi,... , Xk) be a positive definite quadratic form in R[xl,... , Xkl. Let q : Zk 
R, and let 

A>(s) = A,(C, Q, q, s) q(x . Xk) 

(X1 ,...,Xk)eC, (l) X ) 

We may now state our basic result. 

Theorem 1. Let Xv be the characteristic function of C>, and suppose that 
m 

70V (jl v .. * *v k-10v n) := , q(jli .. * * k-1 v I)Xvo (il v .. * * k-1 v 1) 
I=-oo 

is uniformly bounded for all integers ji,... jk-i ,m and all positive v. Then 

A(s) = A(C, Q, q, s) lim A>(s) 
V-e 00 

exists and is analytic in the region u :=Re s > 1 (k - 1). 

This is the most that we can in general say, as can be seen by taking C to be 
(for example) the 11 ball in Rk: 

Theorem 2. Suppose that q(Xl,... ,Xk) := (-1)Xl+ Jrxk, and that C is the k- 
dimensional diamond a,lxlI + ?** + aklXkl < c where the a,,... ,ak,c E N with 
d = gcd(al, . . . , ak) and all the a? /d, are odd. Then A (k -(k -1)) does not tend to 
a limit as v -- oo. 

Theorem 1 shows that in R2 the limit is well defined for c > 1 and in R3 
for c > 1, for any sensible region and any reasonable q. We make this precise in 
the next corollary. We say that a region C in Rk iS convex in the ith variable if 
whenever the points (Xj,... ,x',... ,Xk) and (x1,... ,x",... ,Xk) are in C then so 
also is the segment joining them. 

Corollary 1. Suppose that q(xl, . . ., xi,.. , Xk) is bounded over Zk and is periodic 
with period M in one variable, xi say, with 

M 

E: q(xi,***, Xk ) =-?- 
xi=1 

Suppose further that C is bounded, contains (O,... , 0) in its interior and is convex 
in the ith variable. Then the conclusions of Theorem 1 hold. 

Indeed, many highly non-convex regions still satisfy Theorem 1. We will refer to 
a vertically convex region in Rk as being one in which the final coordinate exhibits 
convexity. 

We now focus on sums over specific regions; showing that in some cases conver- 
gence can continue well below cr= (k - 1)/2 
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3134 DAVID BORWEIN, JONATHAN M. BORWEIN, AND CHRISTOPHER PINNER 

4. SPECIFIC REGIONS 

4.1. Lattice Sums over Sympathetic Ellipses. Given a positive definite qua- 
dratic form Q(xI,... xk) - >1k Ek> aijxixj E Z[Xli, ... Xk] with acj caj and 
a function q: Zk -- R, we define the arithmetic function 

r(n, Q, q) q (x) 

dZk 

In particular, when our quadratic form has integer coefficients and we sum over 
the lattice points in appropriate ellipses, Q(x1,.. , Xk) < v, we can replace the 
k-dimensional lattice sum by a Dirichlet series 

A, (s) = A, (Q, q, s):= q( E _____Q_ 

Q(d!)v 
Q 

i<n<v 
XCZk\O 

and decide when the limit 

A (s) =A (Q, q,s) :=lim E (QI 
1<n<v 

exists by examining the sums 

(1) So(x)=So(Q,q,x):= E r(n,Q,q). 
O<n<x 

We recall the formula (see Hardy [6, Theorem 7]) for the abscissa of convergence 
go > 0 of such a Dirichlet series; 

(2) c70 = lim sup log ISo (x) 
X_+0 log x 

That is (see Hardy [6, Theorem 1]), A(s) will exist for all Res > go and fail to 
exist for all Re s < go0. 

We show that (at least for periodic q with suitable cancellation when summed) 
convergence over these ellipses always extends below o= (k - 1)/2: 

Theorem 3. Suppose that q(Xl, ... , Xk) is periodic with period M in each of the 
xi. If 

M M 

E -. .E q(ri, ... rk) - 0 

rj=l rk=l 

then the abscissa of convergence g0 satisfies 
f 23/73, if k-2, 

O < cro < 25/34, if k-3, 
k/2-1, if k > 4. 

If 
M M 

..E ---Eq(ri,- ,rk) 7&? 0 
rl1 rk=l 

then the abscissa of convergence go - k/2. 
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CONVERGENCE OF MADELUNG-LIKE LATTICE SUMS 3135 

The theorem follows easily from old work of Landau and Walfisz (for k > 4), and 
more recent bounds of Kratzel & Nowak (for k = 3) and Huxley (for k = 2), on the 
error in approximating the number of lattice points in an ellipsoid by its volume. 
When k > 4 these bounds cannot in general be improved: 

Theorem 4. If q(xl,... ,Xk) := (-1)Xl+ +Xk and Q(xl,... ,Xk) := alX2 +*... + 
akx 2, where the ai are all odd positive integers, then for all k > 2 the limit A(s) 
does not exist for any Re s < (k/2) - 1. 

When k = 2 or 3 one expects the correct upper bounds to be 1/4 and 1/2 
respectively. From this last theorem, 1/2 would certainly be sharp when k - 3. In 
fact we show that for very general Q and q we have the lower bound c7o > (k - 1)/4, 
so that when k - 2 or 3 we usually do indeed have the lower bounds 1/4 and 1/2: 

Theorem 5. Suppose that q(XI, ... Xk) is periodic in all of the xi with period M 
and 

M M 

--..- Eq(rl,-- rk) =?0 
r=l rk=l 

If r(n, Q, q) (and hence A>(s)) is not identically 0, then 

o? > -(k-1). 

Notice that there certainly will be cases with A>(s) identically zero (with there- 
fore no lower bound on u7o); indeed for any M =h 2 we can always construct non- 
trivial periodic q(x) with q(-x) - -q(x) and hence, by symmetry, the r((n, Q, q) 
zero for all n and any Q. 

The proof of Theorem 5 will use a technique of Landau to show the existence of 
a constant co = co(q, Q) > 0 such that 

ISO (x) I > Cox(k-1)/4 

for infinitely many integers x. The method requires some additional notation: 

Given a positive definite quadratic form Q(xl,... , Xk) = Ek= _ aijxixj in 
Z[x] with aYj = axj, we let D denote the determinant 

all ... alk 

(3) D:= 
aEkl ... aykk 

and define the positive definite adjoint quadratic form Q* (x,... ,Xk) in Z[x] 
k k 

Q*(XI ,Xk) : XiXj. 
i=1 __1 OcjXX 

Notice that Q** (*) - Q(Q) and that when k = 2 we have Q* (x, y) = Q(-y, x). We 
suppose that q(xi, ... , Xk) is periodic in each of the xi with period M and define 
the periodic weight function 

)\q(X) = E*,, q(rrl, rk)COS -(rix, + +rkXk) 
rj=l rk-1 
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3136 DAVID BORWEIN, JONATHAN M. BORWEIN, AND CHRISTOPHER PINNER 

and set 
r* (n) = r* (n, Q, q) :q (x) 

_@Zk 
Q * (x) =n 

For the q(x) of interest the involved looking expression for r*(n) often simplifies. 
For example, when 

q(xl7. . ., Xk) = )Xl++XS 
for some 1 < s < k, we have 

r*(n) = 2k E 1 
Q* (X1lX . ,Xk )=n 

xi)... X. odd 
Xs+l-. Xxk even 

We remark that r(n, Q, q) is identically zero if and only if r* (n) is identically zero. 
As with the classical circle problem, our proof relies on the ability to write the 

sum So(x) in terms of Bessel functions J,(x); 
_ (DM) 1 k-2)k/ ___ 

r(nQq) - q) 
2 

X k/ 0E r* (n) J / 
27 ) 

O<n<x n=M 

where >* denotes that if x is an integer the last term receives only half weighting 
l r(x, Q, q). In fact we shall actually use more assuredly convergent integrated forms 
of this. 

As one consequence of the proof, defining 

S,(x):-! (x - n)vr(n, Q, q) 
O<n<x 

and setting 

()(s) =A, (s) 
' - F(S + i) ($Si(v) - q(O)+ F(s + p) q(G) 

13$~)(s Ar() _ r7(s) \,VS+i i!} ? 1() p! 

it will be apparent that for any positive integer p > (k - 1)/2 we can write 

BP) (s) -A(P(s) + 0 (u iP- > )+2J)) 

where A(P) (s) is analytic in the larger region 

ICTI--(-(k -1) + E, Isl <K} 

for any fixed K and ? > 0, and possesses the representation 
(4) 

A (P)(s) 2k/2+prk/2-1 I(S + p + 1) (__DMA \ r*(n) Fp 27r - A 

M 1(s) 27rJ nk/2-sP (M Df 

with 

Fp(z, s) z2s-k vk/2-1-p-2s Jk/2+p(v)dv. 

When k = 3 we note some similarity to the relation of Buhler & Crandall [4, (1.5)]. 
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CONVERGENCE OF MADELUNG-LIKE LATTICE SUMS 3137 

Finally, for k > 4 the work of Novak enables us to extend the optimal bound 
co = k/2 - 1 of Theorem 4 to a broader (if less easily described) class of q and Q. 

We shall say that we are in the non-singular case if, as before q(x1,... ,Xk) is 
periodic in all of the xi with period M and 

M M 

E ... Eq(rj.... . lrk) 
= 0 

rj=1 rk=l 

and moreover there exist integers h and I > 0 with (h, 1) 1 and 
IM liM (2irh 
E .. :q (rl,.. , rk)exp - g Q(rj, ...rk)) 74 0 

r1=1 rk=l 

Note that any such 1 necessarily has (1, M) " 1. 
Theorem 6. For non-singular pairs of q(xl,... ,Xk) and Q(x,.... ,Xk) we have 

k 
o > -1. 

We shall show in the following corollary that any q(xi,.. I, iXk) of the form 
q(x1,... ,Xk):=z( <) s 1<S < k, 

is non-singular for all Q(x1,... ,Xk), so that we certainly recover Theorem 4 by 
this approach (of course the proof of Theorem 6 will be much less elementary than 
that of Theorem 4): 

Corollary 2. If q(xi,... , Xk) is of the form 

q(X, 7Xk) :_ exp a M(x + +axk) 

for some integers ai, then the case is non-singular and 
k 

-o 2- 
for all positive definite quadratic forms Q(xl,... , Xk) in Z[x1,.Xk, x]. 

When q(xl,... , Xk) takes the special form exp ( 2(aixl + ?* + akxk )) if the 
xi _ bi (mod Mj) for some integers ai, bi and Mi (with MiIM) and zero otherwise, 
Walfisz [18] has shown (see Novak [15]) that in the singular case the upper bound 
can be lowered to co < k/4 - 1/10 for k > 4. Thus this division into singular and 
non-singular cases (although not immediately digestible) is probably the correct 
characterization as regards the abscissa, and Theorem 5 is conceivably the best 
general lower bound. 

4.2. Lattice Sums over Polygons in R2 and R3. In this section we restrict 
ourselves to the usual weight function q(xI,... ,Xk) := (-1)Xl++xk. We write 
A(C, Q, s) for the corresponding lattice sum, rather than merely A(s), to emphasize 
the dependence here upon the region C (the Q dependence is of use in the proof 
of Theorem 8). For polygons in R2 with rational vertices we show that either 
convergence occurs for all Re s > 0 or else convergence fails at s = 1/2. Moreover 
we give an explicit and somewhat surprising diophantine criterion for deciding this 
based on the parity of the numerators and denominators of the slopes of the lines 
making up the perimeter. 
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Theorem 7. Suppose P inr R2 is a closed polygon with rational vertices whose 
sides lie on the lines aix - biy = ci, where ai,bi, ci cE Z with gcd(ai, bi, ci) 1 and 
di = gcd (ai, bi). 

(i) If ai/di and bi/di are of opposite parity for all i, then A(P, Q, s) exists and 
is analytic for all Re s > 0. 

(ii) If ai/di and bi/di are both odd for at least one of the i, then A(P, Q, s) exists 
for Re s > 1/2 but does not exist for any real s < 1/2. 

If in addition P is star-shaped around (0, 0) then, even restricting to integer 
n, the limit lim An(P, Q, s) does not exist for any real s < 1/2. 

n-oo 

We extract two simple cases for further advertisement in the next corollary: 

Corollary 3. (i) If R is a rectangle with rational vertices and sides parallel to 
the axes, then A(R, Q, s) exists for Re s > 0. 

(ii) If D is the diamond alxl + blyl < c, where a, b, c C N with gcd(a, b, c) = 1 
and d gcd(a, b), then A(D, Q, s) exists for Re s > 0 if a/d and b/d are of 
opposite parity, but fails to exist for any real s < 1/2 if a/d and b/d are both 
odd. 

We note that the last corollary allows us to observe that in the Hausdorff metric, 
or any other reasonable metric, the convex bodies for which convergence works for 
all a' > 0 are dense in the convex bodies in the unit ball, as are those for which 
convergence is destroyed for s = 1 

2' 
Theorem 6 follows from a more precise version that (for Re s > 0) reduces the 

problem of convergence over the polygon to the question of convergence solely 
along the boundary. If we define a variant of the characteristic function x* where 
points on the boundary of C receive weight 1/2, and a corresponding analogue of 
Av (P,Q,s), 

Q*C(x,y)s A* (C, Q,s): E () 

then the following is true: 

Proposition 1. Let Q(x, y) -vx2? +13xy + yy2 be a positive definite quadratic 
form, and P a closed polygon in R2 with rational vertices whose sides lie on the 
lines aix - biy = ci, where ai, bi, ci C Z with gcd(ai, bi,ci) 1. If N is a multiple 
of all the gcd(ai, bi) then 

A*N(P, Q, s) F(P, Q, s) + OP,Q(N-2C), 
where F(P, Q, s) is analytic in the whole half-plane : .= Res > 0 

Similarly in three dimensions we show that convergence either fails at s = 1 or 
continues down to s 1/2. 

Theorem 8. Suppose that P is a three dimensional polygon containing 0 in its 
interior and star-shaped about 0, whose faces lie on the planes aix + biy + ciz = ej, 
where the ai, bi, ci and ei are integers with di gcd(ai, bi, ci). 

(i) If every face has at least one of ai/di, bi/di, cl/di even, then A(P, Q, s) exists 
for all Res > 1/2. 

(ii) If there is at least one face with ai/di, bi/di, ci/di all odd, then A(P, Q, s) 
exists for all Re s > 1 but fails to exist for any real s < 1o 
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CONVERGENCE OF MADELUNG-LIKE LATTICE SUMS 3139 

We presume that these two and three dimensional theorems can be generalized to 
more dimensions. We have already seen in Theorem 2 that the result on diamonds 
extends naturally to higher dimensions. In the next section we show that the 
behaviour over squares can be similarly recaptured in arbitrary dimensions. 

4.3. Sums over Rectangles. When we sum over k-dimensional rectangles we are 
able to show that in general convergence holds for all Re s > 0. More precisely, 
given an m-(m, .=. . , mk) in Nk we define the lattice sum over the corresponding 
rectangle: 

Ml Mk 
qn,. k 

A,;r, (s)-: E E Q(ni, ... ,nk)s 

(where as usual the pole (ni,... , nk) (0,... , 0) is omitted), and set 

A(s) lim Am(s) 
minmi -oo 

whenever that limit exists. 

Theorem 9. If the sums 
11 ik 

S ... q(nl,... ,nk) 
nl=-jl nk=-jk 

are uniformly bounded for all integers ji, . . ., ik , 11, ... , lk, then the limit A(s) exists 
and is analytic for all a > 0. 

4.4. lp-Balls: an Open Question. It is natural to make an examination of lp 
sums for p E N, p > 2. That is, for example when k = 2, C {(x, y) : IxjP + lyIP < 
1}. We are able to state (see [8]) asymptotically sharp expressions for the number 
of lattice points in these regions: 

E 1 (2F2(p l)) 2/p +0(Xl1/P)-(1/P2)), p> 3. 

(n,m) EZ2 \(O,O) 

Unfortunately the lp ball and the underlying ellipse seem highly "unsympathetic", 
and we leave as an open question what one can provide in the way of lower or upper 
bounds on co in this case (the most natural exarnple to consider being p = 4). 

5. SOME ANALYTIC CONTINUATIONS 

We shall write a(s) for the alternating zeta-function 

a(s) :- 5 

n=l 

and L?d(s) for the L-series 
00 

L?d(s) := 5(?d I n)n-' 
n=l 

where (d I n) is the Kronecker (generalized Legendre) symbol. 
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When Q(x, y) : x2 + py2 with p = 3 or 7, we can write down an analytic 
continuation of our lattice sum in terms ae(s) and L_p(s): 

E~ (x2?3y2-)s - -2(1 + 2l-s)a(s)L3(S), 
(x,y)GZ2\(0,0) 

(yEZ\() (x2 + 7y2 )S - -2a(s)L-7(s), 
(X1y)ECZ2 \ (00) 

( 

resembling the representation (see Glasser-Zuckerman [5]) 

E __ _ ( - -4a(s)L4(S)- 
(x,y) (2?y 2)s (Xy)EZ2 \(0,0) 

These will arise from our ability to write 

(5) Z 1 U(i(s)L_P(8) 
( CEZ2\(o 0) Qp (x, y))S 

for the quadratic form 

Qp (x, y) = p 4_) 2 + (P 
I 

) y + (P 
+ I 

y2 

when p = 3, 7, 11, 19, 43, 67 or 163 (the primes for which Q(vI-p) is a unique 
factorization domain), where u- 6 if p -3 and 2 otherwise (the number of units 
in Q(i-p)). Unfortunately it is not clear how to insert a (-1)x+y into (5) or how 
to replace the Qp(x, y) in those sums by X2 + py2 other than when p = 3 or 7. 

Many sums of this type have been obtained by Glasser, Zucker and Robertson 
[5, 21, 22] for forms whose discriminant is disjoint (i.e. have one form per genus): 

S (x2->)X+ -21- (1 -(2 1 M)2l-s)L?/,LF4p/, 
(x,y)EZ2\(0,0) Y IP 

E ( z2 + 21)= -22p2(1 - (2 1 p)2-8)L+tL+8P 
(x,y)EZ2\(0,0) pIjP 

where L+,1 is taken such that M ?1 (mod 4) and where P are certain square-free 
(1 (mod 4) in the second case) numbers with t prime factors. The appropriate 
P < 10,000 are P = 5, 13, 21, 33, 37, 57, 85, 93, 105, 133, 165, 177, 253, 273, 
345, 357, 385, 1365 and P= 1, 3, 5, 11, 15, 21, 29, 35, 39, 51, 65, 95, 105, 165, 
231 respectively (in the latter case similar representations can be shown to hold 
for x2 + 8py2). Zucker and Robertson also obtain results for the forms 92 + py2, 
92 + 4py2 and 92 + 16Py2 when P = 3, 7 or 15 (thus including the continuations 
of our sums above, although their approach is different from ours). 

6. SOME SPECIFIC SUMS 

We have now obtained very explicit if quite contrasting results regarding the 
range of convergence from the above theorems for shapes such as circles, diamonds 
and squares. We continue with some related examples. 

(a) It was shown in Borwein-Borwein-Taylor [1, WVI] that study of Madelung's 
constant for a two-dimensional hexagonal lattice sum with ions of alternating unit 
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charge placed at the points of a lattice with basis vectors (1, 0) and (1/2, V3_/2) 
leads naturally to sums of the form 

q(n, m) 
(n2 + nmm+ m2)' 

(n,m) ECN 

where 
4 2 2 4 2 2 

q(n, m) - sin(- (n + 1)7r) sin( -(m + 1)7r) - - sin(-n7r) sin(- (m - 1)7r). 3 3 3 3 3 3 
Applying the above theorems, it is clear, on splitting q up appropriately, that when 
Re s > 1/2 convergence occurs in such a sum when the lattice points are summed 
over any vertically convex set, that for expanding rectangles convergence holds f-or 
all Re s > 0, and that on summing over expanding ellipses m2 + mn + n2 < N 
convergence fails at some point between a = 1/4 and a = 23/73. Notice that (in 
the notation of section 4.1) 

r* (n)- = 1. 
22 2 x +xy+y =n 
x--y$0 (mod 3) 

The sum was also shown to possess a similar analytic continuation to those men- 
tioned in Section 5: 

h2(s) 3(1 - 31--S)(1 -2-s)-'a(s)L-3(S). 
(b) In [5] sums like 

C2 (S') :- E (2 + k2)s 
(j,k) EC, 

and 

C3(S):- E (j2 + kI +p2)s 
(j, k,P) EC, 

are discussed and are again covered by our previous analysis, with convergence 
over vertically convex sets holding for all a- > 1/2 (respectively 1) and over circles 
(respectively spheres) failing at some point between 1/4 and 23/73 (respectively 
1/2 and 3/4). After a change of variables j = j' + k (respectively j = j' + k + p) 
convergence over squares (respectively cubes) can be seen (from ?4.2) to fail at 1/2 
(respectively 1). However (from ?4.3) convergence does hold for all a > 0 over 
certain other parallelepipeds. 

(c) Let rN (n) denote the number of representations of n as a sum of N squares 
(counting permutation and sign). Then the Dirichlet sum 

bN (S) -- (_l0 n rN (n) 
n-1 

is a special case of the sums covered in Theorem 3 and Theorem 4. In particular, 
it follows from [2, p. 290] that 

b4(s) :== -8ca(s)ac(s - 1). 
Notice that from our prior analysis the abscissa of convergence is exactly equal to 
1. 
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Correspondingly, b3( ) is Madelung's constant for sodium chloride. Theorem 9 
recovers the fact that the limit is taken appropriately if we sum over hypercubes. 
Theorem 2 shows that diamonds fail below 1 and Theorem 3 and Theorem 4 show 
that the exact abscissa for convergence over spheres lies between 1 and . Theo- 2 4 
rem 4 recaptures the argument in [1] that shows that convergence fails at 1, and 2' 
we would conjecture that convergence obtains for a -> 

7. DIRECT ANALYSIS AT S -1 

In the most basic case Q(x, y) :_ x2 + y2 and s := 1 one can directly establish 
that the limit A(C, Q, 1) --r log 2 when C is either the square Ix< 1, IY < 1, or 
the diamond lxl + IyI < 1, or the circle x2 +y2 < 1 (i.e., summing over the standard 
Ip balls for p - 1, 2, oo), as we show below. 

Observe that, when C is the above unit circle, 

A(C, Q, 1) = lim ( )i+ E (-l)kr2(k) 
O<i2+j2 <n2 k=1 

where r2(k) is the number of ways of expressing k as the sum of two squares of 
integers in Z. Let 

n 
(1) kr nk n=Er k 

k 
k=l k=l 

Then 

S2r~2 r2Z(k) jr2 (k) r k 

k= 2k k=11 k--n+l 

since r2(2k) = r2(k), because k - i2 + j2 X 2k = (i + j)2 + (i j)2. It follows by 
partial summation that 

2n=- k Ak _A2n +An S2l 
~~k(kl+ ) 21 + In k=n~ 

Further, we are familiar with the fact that 

A- ir + 'n with en - 0(n- 1/2). 
n 

Hence 
2n 1 2n 

S2n =,k Z k ? + o(1)--r log 2 + o(1) as n oo. 
k=n k? _n k 

Finally, since r2(n) Q 0(nl/2), we see that S2n -2n- o(1), and therefore that 

lim Sn 1) kr2(k) = -r log 2. 
n--oo k k=l 

This shows that the method of expanding circles yields -ir log 2 as the value 
of the lattice sum 

i2 +j2 >0 
+ 2 
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We show next that the method of expanding diamonds yields the same 
value. This amounts to proving that 

Tn:= ( 
2 

+ 

j -i log 2 as n -- o0. 
O<IilI+lIIn 

Observe that, for 0 < t < 1, 

00 0/ 200 2 00 

(t) := E r2(k) tk- = 2 E ti_ -1 - ( ti E ti 
2 

k=1 jZ.O l tt 0jti=O 

and hence, by what has been proved above, that 
1 

f(-t)dt = 7rlog2. 

But we also have 
00 k 

-f- t) = t(k_j)2+j2_1 tk2_1 

k=O j=O 

00 k-1 

= 4 1) _k 1: t(k _j)2_kj2_ 

k=1 j=O 

so that 
1 oo k-i 1 

-A f (-t) dt = 4 (__l) k E (-j)2 2-+- j2 = lim T,) 
JO ~~~k=1 j=O (k-j2j 

provided we can justify the term-by-term integration. This can be done as follows: 
Note that, for 0 < t < 1, 

rt 00 
- f f(-u) du=4 4(l)k k (t), 

JO k=1 

where 
k-1 t(ki_j)2+j2-1 

8k(t) -E (k- j)2 + j2' 

and that, for 0 < j < k, 
k2 
2 < (k _ j)2 + j2 <k 2. 

Further, for 0 < t < 1, k > 2, 

k-I t 
t(k 

_ j2+j2_ t (k _ j2+j2_ 

6k - Il(t) - 6k (t) X(ktk)?2 _____ (t-E (k- j)2 + (j 1)2 (k -j)2 j) 

k-it(k j) [t(-1) tj 2] tk21 + E (k- j)2+(j -1)2 2 
j= 
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so that 

k-i 

1k -l1(t)-bk (t)l < E - j1 
1 

)j-12 j2+j 

k-1 t(_1)2 _ ti 1 

=1 (k (j)2 + (j 1)2 +k2 

k-1 j2 - (j - 1)2 _1__ < E (k _ j)2 + (j 
- 

) (k _ j)2 + j2 

22 + 2 E [0(j-1), -ti2l + 

4 k-1 ~~2 1 7 
< 2 4 j (j _ 1)2] + _ + _ - 

- k2(k -1)2 j 1i k2 k2k2' 

Also, for 0 < t < 1, 
k-i 2k 2 

0? ()?j (k-])2 + j2 
< k 0 ask oo 

It follows, by the Weierstrass M-test, that 
00 00 

4 E(1)k 6k(1) = lim 4 E[62k -I(t)-62k(t)j 
k=1 k=l1 

li- jf(-u) du - f(-u) du, 

and this completes the proof of the expanding diamonds case. 
Finally we shall show that the method of expanding squares also yields the 

value -irlog2 for the lattice sum. In fact we shall deal with the slightly more 
general method of expanding rectangles. Let 

(-li+ ti2+j 2- Rm,n 5 2 + j2 Rm,n t)- 
IiI+IjI>O IiI+IjI>O 

jij<n,jjj?jm il?<n,jj?<m 

We shall prove that Rm,n -+ -7r log 2 when M:_ min(m, n) -> oo. Observe that 

Rm,n Rm,n(t) dt 

and that, for 0 < t < 1, 

f(t)-R 
(t)~~ 

X-1 vi2+j2 + 
.2 ti+2 

t2+j2 fm(t) - Rm,n(t) +t 5 i t 

ji|j>n,|j|j>mn jij<n,|jjj>m ji|>n,|j|j<m 

oo oo n oo oo m \ _ 4 Eti E t2 + E?ti2 E tj2 + :ti2E tj2 

i=nf l j=m+l i=O j=m+l i-n+l j=O 
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Observe also that, for 0 < t < 1, 

(_t)i < t(n+ 12 and E(-t)| < 1. 
i=n+l i=O 

Hence, for 0 < t < 1, 

If (-t) - Rm, (-t)l < 4t(n+?1)2+(m+1)2-1 + 4t(mM1)2_-l + 4t(n+1)2_1< 12t(,+)2_1 

and so 

IRm,n+ 7rlog21 = f(-t) dt -J Rm,n(-t) dt < (? ) 0 as oo. 

This completes the proof. D 

8. THE PROOFS 

Proof of Theorem 1. We first note that for a positive definite quadratic form 

k k 

Q(X1, . Xk) = o eijxixj E R[X1, ............ Xk] 
i=1 j=1 

with ceij = ceji we have 

Q(XI,*.. ,Xk) > A(X + *+ Xk) 

for some A = AQ > 0. Suppose in what follows that c- > (k - 1)/2, v > 0, and the 
ji are integers. Let 

Q(0, ... , 0, S) := 0, Q(il, * ik, S) :Q(jil,* ,ik) when jk + ? * #0, 

and let 

/ sup Wv(jl-... ijk)<I <c' 
V>> 

(jl,---,jk)CZk 

Then we have 

A, (s) 
00 00 

E * * E q(ji,... * ,ik)Xv(il, ... ,ijk)Q(jl, ... ,ijk, S) 
J1=-0 Jk=-00 
00 00 

E7(l 
* - - 

I,( I..1k)jQ(j1.i ... ,ik-l,ikiS) -Q(lil .. - - ik-l, ik + 1l,s)} 
jl=-00 jk=-00 

00 00 

* - J -ajl. 
jl=-00 jk=00 

Suppose next that a > (kyl') + ? > (k-1). Observe that, for 0 < u < v, 

| 1 - | Is t-l-sdt < ? 
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and hence that, when (jl +... + ij)( ?j + (jk + 1)2) #0, 

| 
k (vI s)| < AQ(l,;(j +ik 

Q(l 
j2) I+or 

1tS 

12Eki= aikii + Cvkk(23k + 1)j fS|u 

Al+u (jl2 + . ,+ j2)1/2 (j2+ + j2)or+1/2 

< A-1-alsIM 
(il + * * + ik f+/' 

where 

M:z= sup (j2 + +j2)1/2 < 

Also, when (2 + **+ j)(j + *+ (jk + 1)2) - 0, 
31 k I1.k(,s 

laj,1....1 (,) ,A,/ 

Since (as in Borwein-Borwein-Taylor [1]) 
1 

i +. +i,2>o (j + * 2)(k/2)+E 

it follows, by the Weierstrass M-test, that when v -? oo, A,(s) > A(s) say, uni- 
formly in the region {s: a > (k - 1)/2 + 6, Isj < K} with K any fixed positive 
number, and, since A,(s) is analytic in this region, that A(s) is analytic therein. 
Consequently 

A(s)- lim An(s) 
n--*oo 

exists and is analytic in the region Re s > (k - 1)/2. E 

Proof of Theorem 2. We suppose that C is the diamond a1,x, I + + aklxkI <_c 
where d = gcd(ai,... , ak) and all the ai/d are odd positive integers. Observing 
that when a, 1x, I + * + aklXkI -cn and n is a multiple of d we have 

(-1)X1+ **+Xk - (1) cn/d 

and 

k kn |Q(X1, Xk) <|L ? i)C n 
i=l1 j-1 

it is not hard to see that when s = 2 (k - 1) and N is a multiple of B := a1 * ak 

IAN (S) - AN 1/ (S) I Q(Xi,... , Xk) 2() 

allxll+.-+aklXkl=cN 

C>IA I E I 
cjNk- 

1X'+- -+jxk j(cN1B) cNkl~~k 

> 1 + (cN/B) + k - I 
- cjNk- k k-1 J 

> C2 > 0 

as N - o (where in fact we have only bothered to count the points with x= 
(B/ai)x' > 0); and the limit cannot exist. O 
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Proof of Corollary 1. Under the hypothesis, it is simple to estimate that 
m 

W7v(jl i * ik-I i M) - q(ji ...** ijk--li l )X7v(1il ...** i k--1 i 1) 
I=-oo 

is uniformly bounded. LO 

Proof of Theorem 3. Suppose that q(xI,... , Xk) is periodic with period M. Then, 
(with So(x) as defined in (1)) dividing the sum into residue classes modulo M, we 
have 

M M 

(6) So (x) = . E q(r,... ,rk)Fo(rl,... ,rk, x), 
r1=i rk=iL 

where 
Fo(ri,... ,rk,x) >3 1. 

Q(xl,...,Xk)<X 
xi-ri mod M 

Writing xi = Myi + ri, it is easy to see that F(r,... ., rk, x) counts the number 
of lattice points (Yi,... , Yk) Z Zk in the expanded ellipse x1l2E, where E is the 
ellipse M2Q(yl, . . . , Yk) < 1 of area 

7rk/2 A= 
Mk /ID (k/2?+ 1) 

with centre shifted to (-r/M,M... , -rk/M). Approximating the number of points 
in the ellipse by its area, we can write 

Fo(rl,. .. , rk, x) - Axk/2 + O('i), 

where from the results of Huxley [7, Theorem 5] (for k -2), Kratzel & Nowak [9] 
(for k=3), and Walfisz [17] and Landau [10, 11] (for k > 8 and k > 4 respectively; 
see Landau [12, Satz II] for the most immediately applicable form) we can take 

( x23/73 (log x)315/146 when k = 2 
x25/34(logx)10/17 when k -3, 
xlog2x whenk -4, 

I x(k/2)1- when k > 5. 
Hence 

So(x) - Bxk/2 + 0 (B2/), 
where 

M M M M 
B1 = 5? E q(rl,... ,rk), B2 :- . q(rl,... rk)k 

rj=1 rk=l r==1 rk=l 

and the result is plain from (2). LI 

Proof of Theoremn 4. Notice that if Q(xl,... , Xk)= alx 2 + + akx2 with all the 
ai odd positive integers and q(xl,... ,Xk) (-1)X1+ +Xk, then 

r(n, Q, q)= (-1) E 1. 
Q(Xl,.. ,Xk)=n 

Now by elementary methods we have 

E lr(, Q, q)I- >= 1-A(1 + o(l))xk/2 
n<x Q(xl,.X,Xk)<X 
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as x -> oc, where A is the area of the ellipse Q(xl,... , Xk) < 1. In particular there 
must certainly be infinitely many integers n with Ir(n, Q, q)I > !An (k/2)-l . Hence 
if Re s < (k/2) -1 then 

|AN(S) - AN-i(S))- r(N,Q,q) I/+ 0 

as N -* oo, and the limit A(s) cannot exist. C1 

Proof of Theorem 5. We closely follow the proof of the corresponding omega result 
for the error in the classical circle problem (as given in Landau [13]) and for p > 1 
inductively define 

Sp+,(x) =/Sp(u)du, 

where So(x) is as defined in (1) (so that equivalently 

SP(x) -! - (x-n)Pr(n,Q,q) ( 1)! So((x- )-du 

for all p ?C 1). 

We invoke the following lemma of M. Riesz [16] (as in Wilton [20]; cf. Landau 
[13, Satz 533]): 

Lemma 1. If fo(x) is L-integrable and bounded over (0, x) and if, when y > 0 and 
x > 02 x>0,~~~~~~~~~~ 

f7(X) -Q)/) 1 fo(u)(x - u)"'du 

and if, further, V(x) and W(x) are increasing functions of x with 

Vfo(x) < V(X) 

and 
IM4x) < W(X, 

then 
I f,(x)l < b(/3,1I)V(x)(1--(0/1)) W(x)(,311) 

for all 0 < d < 1, where the b(/, 1) depend only on , and 1. 

We shall show that (as long as A, (s) is not identically zero) there are a positive 
integer v and non-zero constants B,+1 and C, such that 

IS,+l(x)I < B7,+, (I + o(l))x 
I 

for all x and 
lSv(X) I > I lC I (1 + 0(j))X 4 (k+2v- 1) 

for infinitely many x. 
Hence by the above lemma we must have 

ISO (x) I?:-::~: (1 + o(1)) 
1)B, 

b(v, v + l ?X14 

for infinitely many x. 
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Thus it remains to justify the claimed upper and lower bounds for the Sp(x). 
We define the constants 

(VDM7r+ 
1 

(k4(+2p+1) ( 4 
_ ( DM) ikP2 () ( r* (n) Jr 

0P :- K ni(k+2p?1)) cosQk?2p + 

Mw7P+l n1n 

Lemma 2. We suppose that q(Xl, ... , Xk) is periodic in all the xi with period M 
and 

M M 

1: . .. 1: q(rl, ... * rk) = ?- 
ri=1 rk=l 

For all p > (k - 1) we have 

ISP(x) I ' B, (i ? O(x1/2)) X4 (k+2p-1) 

for all x, and if Cp /4 0 

jS~(x) = cp ? ~ (logx h-/4) x(k?2p-1) ISP (X) I - Cp 1 + O ( )-/))X 4 +2) 

for infinitely many integers x. 

Proof. For p > 0 we inductively define 

Jx Fp+1 (r', x) := p rp(ru) )du, 

and observe (by repeated integration of (6)) that 

M M 

Sp (x) =E ... E q(rl,... , rk)Fp(ri,. ,rk, X). 
r1 =1 rk=l 

It has been shown by a number of authors (see for example Landau [10]) that the 
Fp(r--, x) can be expressed in terms of Bessel functions: 

FP( r , X) VP(x) + M,,P ~~E( r, x), 

where 

MkDT(k/2 + p + 
and 

E(r, x) = xk/4?p/2 S ;;2)Jn4+p/2?G2+p ?M\ 
n=1 \ j 

with 

r*(n;rl:= cos (2Mr ). 

Q* (X-)-n 
Notice that, from the straightforward bounds 

: 1 = O(Z k/2), J,:(z) = o(Z-1/2) 
YGZk 

Q* ()<z 
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such a sequence is absolutely convergent for p > (k - 1)/2. 
Hence if 

M M 
E . . E q(,rl, - c ?* rk) = 0 

ri="1 rk-1 

we obtain 

S,4x) - DM k2P2)k/4?p/2 r* (n) ~ 2w x 
MwP X n~~E k/4+P/2 k/2+p D 

Approximating the Bessel functions by cosines (for example see Watson [19, p. 
199]); 

2 / ij~~i) O(-3/2) Jv (z) = cos (z - (2v + 1) + (z 
we obtain 

s ( DM) 2k+2P ) x(k+2p-l)/4 (M1 + M2) 

with 

Mj .= ' b - r(-) (o D -(k + 2p + 1) ) 

and 

M2=0 (X 1/2j (?P?)4 - =0(x- 12) M2 .= O (X En(k+2p+3)/4)=O( ) 

(the latter bound since 

(7) ir*(n) 0-O(zk/2) 
n<z 

and by assumption 2p + 1 > k). 
The trivial bound 

JM1, I Z n(k+2p+i)/4 
n_1 

gives us the required upper bound. 
By the box principle (in k dimensions), given an N and k real numbers V1I... 

v-k, there is certainly an integer 1 < m < (Nk + 1) such that the distances from the 
mvi to their nearest integers simultaneously satisfy lmvIll < 1/N. In particular 
(taking k = N) there is an integer m - z < NN + 1 with m(Vn/M D) close 
enough to an integer for n = 1,.. ., N that 

cos (Myj Dj(k-v2P?1)4) cos((k+2p+1)4)J+OKK) 

- cos (k + 2p + 1) 4- + ? ( l6 ) 

for all n =1... , N (the latter equality following from the observation that, since 
log 16z > e, 

(log 16z) log(16(NN + 1)2) 0(N)) 
log(log 16z) log log(16(NN + 1)2) 
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Using the estimate (7), we can readily bound the remaining terms in the sum by 

00 r* n 
m n (nk2p?l)/4 O(N- (2p+l-k)/4) 

n-N 

O(N- 1/4) = ( log 16z)/) 

Hence for such a z, as long as C, / 0, we have 

=cos ((k ? 2P? +l)) (1 + 0 ((log log6z) /4)) n) 

and th-e remaining bound is plain. Varying N (and hence the closeness of the 
approximation), we can clearly generate infinitely many integers z in this way. E 

Final step of the proof. Hence it only remains to justify that (as long as r(n, Q, q) 
is not identically zero) Cp is non-zero for some p. 

First observe that r* (n) cannot be identically zero: If r* (n) is identically zero 
then Sp(x) = 0 for all x > 0 and any p > (k - 1)/2; in particular it follows from 
the relation 

N-1 

r(N, Q, q) = (N + 1)!Sp(N + 1) - Z (N + 1 - n)Pr(n, Q, q) 
n=O 

and an easy induction on N that r(n, Q, q) must be identically zero. 
We suppose that w is the smallest positive integer such that r*(w) / 0. From 

the lower bound Q*(xi,... ,Xk) > A*(x 2 + ?.* + x2) we certainly have the trivial 
lower bound 

M M/ 2 \k 
Ir*(n) I < _Bn k/2I B = . rl= rklq(r, rk t__ 

Hence if 

R>N:==max {+2, log ( ( ) (w+1)k/2+2) /log (1 + )} 

we have 

I r*((n) B(w + 1)k/2+2 1 < |r*(w) 

n=?1R,J (w +1) R kj nr2J WR nl + n=1. 
E _ 

and E' r*((n)/nR R 0. In particular at least one of p [(4N-1 - k)/2] + 1 or p 
[(4N-1-k)/2]+1 will have both n r*((n)/nr(k+2P+l)/4 and cos((k+2p+1)ir/4) 
non-zero, and hence Cp / 0. El 
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Proof of the representation (4). By partial summation and integration by parts we 
obtain 

A1,(s) S()-q() - J (So(u) - q() (u)du 

, 1 V(s) KSi _ + 1(s +(s) 1d S(u)usPldu 

P F(st i) _is 2) F + ( + 

+ I(s Vj)?1) j Si(z)u sPldu- FO(v-(P2(k)+2cY))d 

for bounded Is, since by Lemma 2 

Sp(u) -SO(U (k+2P1)) 

for p > (k-1). Sl 

Proof of Theorem 6. Writing 

r(nt, r')=r(n; ri,... , rk):-zz 1, 

xj _j (mod M) 

for Re s > 0 we define the 0-function 
00 

0(s) :- r(ni,Q,q)e7ns 
n=O 

M M 

S 5 Eq(ri, .... ,rk)O(s;r~) 

where 
00 

Now by Novak [14, Lemma 11 for integers h and 1 (with (h, 1) -1 and 1 > ) the 
modular functions O(s; )e can be expanded in a neighbourhood of tbhe cusp 2'rih/l 
so that for Re s > 0 

O}(s;i/) - DMk/21k i5Z Sh,l (rm,i) exp (DM212 (s 2lrih),) 

where 

(2irih 2i'Tr (mo M) 

Sh,l(~) Z) = , exp -(n,Q( MQ q) + M'M i)_ 
ai=1 ak=l / 

Thus 

0b N DM+ 2,r L/emm/a f2 ig h\and ? + (h, 1) ad> t 
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where for fixed h and 1 

Eh,l (r, 0) < E I'exp (-DM212 (m1 + ?m. + j)k 
rn Zk 
m \ 

= O E nk/2exp(-cn/cr)) O(e-c/a). 
n=1 

Now if we are in the non-singular case we can pick h and 1 such that 

k/2 M M 
A: k/2 1L q(rl,... ,rk)Sh,l(O,r) =AO 

,IDMk/2lk Lj1 r= 

(notice that, since the q(r1, ... , rk) sum to zero, h 1 0) and hence 

ak/20 a + 2i,ih) = A + O(e-c/a) 

uniformly in a. 
Now, with So(x) as in (1), writing 

0(s) = s j| 6xsSo (x)dx, 

it is clear that ISo(x)I < cxk/2-1 for all x would imply that 

ak/20 a+ + h) < c I + (27wih/l)| uk/2 j e axk/ ldx 

= c + (27rih/l)I F(k/2). 

Hence, on letting a -+ 0, we see that for any constant 

cl< A(27rh/l) 1(F(k/2))-1 

we must have ISo(x)l > clxk/2-1 for infinitely many integers x. E 

Proof of Corollary 2. We take h 1 and 1 to be a high power of M, 

I - M'Y, -y > 2a, 

where ae is the highest power of a prime factor of M dividing 2kD (recall that; D, 
defined in (3), is the determinant of the matrix of coefficients aij of Q(xi, , Xk)) 

Writing 
R:, = (Xl,. ,Xk) Z:1<Xi<} 

and 

F (x-) =exp (- IQ(x)) q(x') 

non-singularity will follow once we show the non-vanishing of 
IM IM 

S: M-k S . F(x) F(x) 
xj=1 Xk=l xEI 
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Now 

ISS2 S F 5F(QEZ?) 

= E IiER 

on noting that 
q(u-? kF( ) + q( 7)q(siF), 

and expanding 
k k 

F(il" 
v_ 

"xp -- QXQi)+Ez(2,E aijuj ) 
i=1 ~ t \x-lj= 

Observing that 
___ -t iXxA(Z1fcvr0(modZ), 

xL= 
I 

-/ 
t 

otherwise, 
and setting 

we obtain 
Q12 i k 5 F x()j 

efEL :Now itt is not hard to check that any il satisfying the linear system in L must 
necessarily satisfy 

2rL)ixi-Oi (mod 1 7 ), s 

and therefore certainly 

L:=~Wt OU, U)EI :2 iu (mod 1ftf), I < iz <k 

Since we have chosen in> 2 we thus have 

for any iZ e L, giving 

IS12 =SlO 

L iEeL 

(plainly (1,t . nt) is in L)c and we are in the non-singula r situation fr any 
Q(xi,*. e j).}?) a 
Proof of Proposition 1. Clearly it is enough to show the result for triangles Ts and 
in fact (by taking sums and differences) enough to consider triangls with one vertex 
at the origin. Using symmetry x - x, y y we shall further assume that 
the triangle T lies entirely in the quadrant ngy ? 0 and (replacing N by eN or 
Njgcd(ai b) as necessary) that T takes the form 

Tzz{(x,y):*r2x > s2yrix?<siy,ax-by?<1}, 
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where a, b, si, ri E Z with ri, si > 0 and gcd(a, b) =gcd(ri, si) = 1. We denote the 
sides of T by li: 

11: rix = sly, 12: r2x = s2Y, 13: ax-by=- 1, 
and by PI, P2 the points of intersection of 13 with 11 and 12 respecti-vely; 

p_ Si ri 
(asi-bri ' asi-briJ 

Choosing integers xo, yo satisfying 

axo - byo = 1 

and writing 

Ai = rixo-siyo, Bi = asi-bri, ai - 
Bi 

(notice that gcd(Ai, Bi) = 1 and Bi > 0), we can parametrise the integer points on 
n(l3 n T) (the intersection of the line ax - by = n with NT) by 

x = nxo + bt, y = nyo + at, nal < t < nc2 
for n = 1, .. ., N, with (- 1) x+y (l)n(xo+yo)+t(a+b). We distinguish two cases: 

(i) 21ab 
(ii) 2 f ab. 

(i)When a and b are not both odd. 
Since a and b are of opposite parity we can pick our xoI yo to both be odd (indeed 

either (xo, yo) or (xo + b, yo + a) will be of this form). Hence on the 'line segment 
n(13 n T) our parametrisation gives (-1)x+y = (-l)t, and, writing 

fn(t) = Q(nxo + bt, nyo + at)-s, 

we have 
AN(T,Q,S)Z= Z An(13n T,Q,s), 

1<n<N 

where 
An (13n T, Q,s) = (-1)tfn(t). 

We first observe some elementary bounds on fn: 
Ifn(t)l = IQ(x,y) sl = 0(n )I 
fn'(t)l = I-s((2ab+,3a)x+ (2yac+?3b)y)Q(x,y)-S-l Q(n -2c-1 

fn"(t) I= ((2ab + ?3a)x + (2-ya + ?b)y)2 -( ( 1) - 2s aQ( b) 
Q(x, y)s?2 Q(x, y)s+2 

(8) = 0(n-2a-2) 

Pairing odd and even t, we have 

An(13n T,Q,s) M1 + M2, 
where 

Ml - (fn(2t) - fn(2t + 1)) 

and 
M2 := U2(n)fn(2tn,2 + 1) - ul(n)fn(2tn,1 + 1), 
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where uz (n) := 1 if there is an integer tn,i in -2 ' nAl and 0 otherwise, and 

U2(n) := 1 if there is an integer t,,2 in (A2 1- nA21 and otherwise. 2B.2'B2ad0ohrie 
Using the bound for fn/(t), we have 

2t+1 2t+1 
fn(2t + 1) - fn(2t) =j fn(u)du (2t) + O(n-r22))2du. 

2t 2t 
This and the observation that for a differentiable function g(x) 

S g(rn) [X2]g([X2]) -[X19g([X1])- [[u]g'(u)du 
X l<n<X2 xi] 

(g(U) - {u}g'(u)) du 

enable us to evaluate M1: 

M1 - -2I (dtf() + O(,n-2,7-2)) = - 2 -fn(2t) ? 
2 +dt 

For M2 (approximnating the (2tn,i ? 1) by rnxi) we have 

ui(ri)f(2ti,I + 1) ui(n)Q(nPi<S ? Q(n02U n-l), 
giving 

0 l3T, Q,s)= 2QCP< 5(1 2ui(ri))-2Q(P )-S (1 2u2(m)) +OQ(n 2crl) 

2 2 2s 2 

Notice that 

(9) An(13 n T, Q, s) - (n-2cT), 

Hence 

AN (T, Q, s) = I Q(P1 ) - E (1 - 2u1 (n)) _ 
I 

Q(p2 (1 - 2u2(rn)) AN(T,Q,S) = 
n2s 2n2 

n<N n<N 

+Ci (s) + 0 ( 

where Ci (s) is analytic for all Re s > 0. Noting that the functions ui (n) are defined 
modulo (2Bj) and that for a function u(n) < 1 defined modulo q 

5 u(n)n- 2s (kq) -2s E u(n) + O(qk-2,-1) 
kq<n<(k+l)q kq<n<(k+l)q 

- (?i u (M)) n--2s + O(qk-2o-l), 

This content downloaded from 142.58.52.103 on Wed, 6 Nov 2013 18:48:28 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


CONVERGENCE OF MADELUNG-LIKE LATTICE SUMS 3157 

we can plainly write 

(I - 2ui (n)(Zn2sI -2c 
1 N (12()) =-(1B E ui(m) (1En-2N ) + C2,j(s) + 0(N)-2o) 

1<n<N 
n 

Bim-1 l<n<N 

with C2,i(s) analytic in Re s > 0. Now 
2B1 

Zul(n) #{1<n<2Bi:nA=-1,2.... , or B1 (mod 2Bi)} 
m=l 

{ B1 if 2 4Aj, 
B1 - 1 if 2|AI, 

and 
2B2 

Zu2(n) #{1 n < 2B2: nA2-, 1,.. ., or (B22-1) (mod 2B2)} 
m=1 

_ B2 if 2 J(A& 
{ B2-I if 2fA2, 

Noting that (since xo and yo are both odd) 2jAi exactly when 2 4 risi we obtain 

AN(T, Q, s) 
_ 1 A(11) p_s A1 -2s -2__ 

B Q(P1s , n- + 2-B-Q(P 2)' - n + C3(s) + 0(N 2 B, n<N 2 
2n<N 

where 

A(li 
{ if 2 |risi, O if 21risi, 

and C3(S) is analytic for Re s > 0. Since we have already shown that 

AN(13 n T, Q, s) = O(N-2a)l 
it will be enough to show that for i -1, 2 

AN(li n T, Q, s) = (i) Q(pi)-? , n-2 +C4,i(s) + O(N-2o), 
n<N 

for some suitable analytic C4,j(s). 
Since N(li n T) n Z2 = {nBiP: 1 < n < N/Bi}, we have 

AN(li n T, Q, s) = Q(BiPi)4s E (1)ri+sin-2s 
n<N/Bi 

Now if A(li) = 0 we have ri + Si odd and 

AN(li 0 T, Q, s) - Q(BiPi)-s E (_1)nn-2s 
n<N/Bi 

- Q(BiPi)5s , ((2t)--2s - (2t - 1)-2s) + 0(N-2oU) 
t<N/2Bj 

= S 0(t-2o1-1) + O(N-2o) 

tCjN/B N 

(10) - C4,i (s) + 0(N-2f), 
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while if A(li) =1 then ri + si is even and 

Q (Pi) SQ nP2s 
Bi n<N 

=Q( Pi) s (Bi + 1)-2s +(-2of) 
Bi S 5 L(nBi l2 + O(N-~ 

n<N/Bi 1=,1 

B~~~~B IdP)L(n 
+ )3 0(n +~ ? (N2U 

B 
n<N/Bi 1=1 n<N/B, 

Q(BiPi) S n-2s + C5,i(s) + O(N-2,), 

n<N/Bi 

where the C4,i(s) and C,i (s) are analytic for Re s > 0, as was required. 
(fi) When both a and b are odd. 
When a and b are both odd any xO, yo satisfying axo - byo = 1 are necessarily of 

opposite parity, so that on the line ax -by = n our parametrisation gives (- 1)x+Y 
(-1<n. We here choose our xo, yo to satisfy Ai- rixo - siyo > 0 for i = 1, 2 (this 
we can do by replacing xo, yo by xo + bj, yo + aj for a suitably small j), and set 

Ai' 

Hence, altering the order of the n and t summations, 

AN(T, Q, s) - 
' _ 

(-) n fn (t) 
n<N nail <t?na2 

al <t<Nce, Nce? <t?Na2 

where 

E1 := fn-1) f(t), 
t02 <n<t01 

1?2 5 (-1)n fn(t) 
t132?m? t32 <n<N 

Just as in case (i) (with the roles of n and t reversed), summing along the line 
joining t131PF and t/32P2, we have 

El = 1 
2Q(02P2) (1 - 2V2(t)) -_ Q (3,3PI) (1 - 2vi(t)) _(t-2of-1) 

1 (QB2\ 12(ti\t2s 1t 2s +0t2- E2 2= A2P2) (- 2V2 ) 2fN(t)(1 - 2w(N))t ?0(t ), 

where v1 (n) = 1 if there is an integer in ( tBi , IB and 0 otherwise, V2(n) 

if there is an integer in -B2 1 tB) and 0 otherwise, and w(N) is 1 if N is even 
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and 0 if N is odd. Hence 

AN(T,Q,s) = 2 E (-1)NfN(t) + -Q (32p2) 
2V2 (t)) 

Nc1?<t<Ncx2 cl?<t<Nalt 

1Q (O PI)V z (2vi(t) - 1) + 06(s) + O(N 2), 
2 

ci?t<Nci 
2 

with C6(s) analytic in Re s > 0. It is not hard to see that the first sum is simply 
'AN(13 n T, Q, s). Hence it remains to verify that the other sums differ from 
2AN(l2 f T,Q,s) and 1AN(11 n T, Q, s) by a function analytic for Re s > 0. One 
proceeds just as in case (i) (with the roles of Ai and Bi reversed and with 2IBi if 
and only if 2 ' risi), showing that for i = 1, 2 

(1 - 2vi(t)) 

ati<t< Nai 

A(li) )S E t-2s + C7,i(s) + O(N -2o) 
ai <t<Noai 

= A(li)Q (BiPi) s E t-2s + C8,i(s) + O(N-2o) 
l1/Bi <t<N1Bi 

= AN(li n T, Q, s) + C9,i(s) + O(N-2a), 

with C9,i(s) analytic in Re s > 0, and the result is plain. O 
Proof of Theorem 7. Part (i): Define d to be the least common multiple of the di 
and (for a given positive real v) set N = d[vld]. Then vP and NP differ by at most 
a finite collection of lines of the form i: aix - biy - cin, ci 0, with N < n < v. 
Hence A, (P, Q, s) differs from A* (P, Q, s) by a finite sum of 2An(li n P, Q, S) with 
ci :& 0 and N < n < v, exactly 2AN(li f P, Q, s) for any radial lines (i.e. lines 
with ci = 0), together with a finite set of points lying at the intersections of these 
various lines. 

However, we have already seen (recall (9)) that when ai/di and bi/di are of 
opposite parity the lines aix + biy = nci, ci 0, contribute O((cin/di)-2o) = 
O(V-2U), while for the radial lines we showed (see (10)) a contribution Ci(s) + 
O(N-2o) (with Ci(s) analytic for Re s > 0 and Ci(s) 0 O unless (0, 0) lies on 
1i n P). The left-over points, being of distance -v from the origin, similarly 
contribute only terms of size 0(v-r2a), and the limit exists for all Re s > 0. 

Part (ii): Given our polygon with sides i: aix - biy ci, we set 

6-min Icil-' 2 i 
and observe that for an integer N going from NP to (N + 6)P we may lose some 
lines of points but can gain no new lattice points, and similarly going from (N - 6)P 
to NP we may gain but cannot lose lattice points. Hence the two differences 

JAN?6(P,Q, 6) - AN(P, Q, 6)1 
consist solely of sums of AN(lin P, Q, a) with ci =A 0 (together with odd points of 
intersection that are of size O(N-2,)). Further if we take N = 2nd (where d is the 
least common multiple of all the ged(ai, bi)) then every li with ci -7 0 will appear 
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in one of these sums (which one will depend on whether (0, 0) lies on the same or 
opposite side of the line as the interior of the polygon). As in part (i), the lines 1i 
with ai/di and bi/di of opposite parity and ci 74 0 will only contribute O(N-2,). 
However, if ai/di and bl/d_ are both odd and cj 7 0, then 

AN(II n T, Q, a) - (_1)(Ci(2nd)/dI) E fn(t) 
n1 N<t< K;2N 

will contribute 

S fn(t) > e1 5 N-2a > e2N1-2, 
nl N<t<K2N sl N<t<K2N 

for some positive constants ei. Hence if 0 < oa < 1/2 and we have at least one II 
with ai/di and bI/d_ both odd and c_ + 0, then at least one of the two differences 
IAN?6(P, Q, 6) - AN(P, Q, 6)1 will always be bounded away from 0 by a constant 
(irrespective of N) and the limit A(P, Q, a) cannot exist. When P is a star body 
centred at (0,0) we set 6 8 1, and (since we only gain points in going from (N - 1)P 
to P) the same argument shows that AN(P, Q, ) - AN-1(P, Q, u) does not tend 
to zero with N; hence the limit does not exist even if we restrict ourselves (as is 
natural) just to integer scalings of P. When all the 1i with ci 74 0 have ai/di, bi/di 
of opposite parity but there are radial lines (11 through Ik say) with ci- 0 and 
ai/di, bi/di both odd we consider AN(P, Q, u) for N r nd. By the theorem it is 
clear that convergence for 0 < a < 1/2 will be determined solely by the sum over 
the perimeter. As in part (i) the lines li, i > k, cannot disturb the convergence. 
However the radial lines li, i -1,.. ., k, each contribute 

AN(li n P, Q, CT) f(t) (Pi) t-2 
n, N<t<K2 N too 

V,IN<t<V,2N 

> logN if a =1/2, > 3 N y-2a if u < 1/2 

(where e3 is some positive constant), and the resulting sum is plainly unbounded 
as N -? oc. FLI 

Corollary 3 is immediate from Theorem 7. 

Proof of Theorem 8. We split P into a series of cones Pi with base a face of P and 
vertex (0,0,0): 

Pi :-(x,y,z): aix+biy+ciz < ei, aijx+/3ijy+i z < O, 1 <i < Ji}, 

for some integers aij, /3ij, 'Yij, so that 

AN(P, Q, S) - A*(Pi, Q, S), 

where A*N(P, Q, S) indicates that points on the sides of NP (excepting the base) 
are to be counted with weight 1/2. Slicing up each three dimensional polygon NPi 
into two dimensional polygons Pi,m parallel to its base, 

Pi,mX:{-(x,y,z) EC Z2 a-x+b,y+cizz=m, ijx + /3ijY +ijZ < 0, 1 < ? < Ji}, 
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we have 
Nei 

A* (Pi, Q, s) S S E Q')-s 
m=1 :CPitm 
di jm 

where E* denotes that points on the boundary of the polygon are to be counted 
with weight 1/2. 

We suppose now that Pi,m comes from a face with at least one of ai/di, bi/di or 
cildi even. We assume (replacing m by dim as necessary) that ged(ai, bi, ci) - 1, 
and (reordering as necessary) that ci is odd and ai is even. Setting ai -- ged(ai, ci) 
and choosing an even integer & such that bibi- 1 (mod ai) and an odd integer 
(ai/axi) such that (ai/ai)(ai/ai =-1 (mod ci/ai), we make the change of variables 
demanded by the relation aix + biy = m (mod ci) on Pi,m: 

y birm + aiy 

and 
ai (K (1 bibi) a) biy + (c) x 

Observe that aix + biy + ciz = m becomes 

( 1 -bibi)0- ai ) (t)A_(ai )/ '-bi ( a _ai)A  ~~~~~~~~~~~~ 
ali V Ci/ali J ai V ci/ati J 

and that 
(-l)?+Y+Z _ (l)X 

Hence the sum of (x, y, z) over Pi,m is replaced by a sum of (x', y') over mRi n Z2, 
where Ri is the polygon 

Ri = {(x',y) C z2 (ajx?+1Y' ?y/j, 1 ?1? Ji}, 

and the 'j, ij, -yij are integers with, we shall assume, no common factor and 
dii :=gcd(o'j, 3j'j). Writing 

Q (x, y, z) =Qi(x', y' m) 

(where Qi(x, y, z) will be a positive definite quadratic form), we have 

E Q(x,y,z)S - ,: (-1)x+yQi(x, y, m)> = s (Ri, Q , s), 
(X,y,z)cPi,m (x,y)EmRinZ2 

with Z* denoting that points on the perimeter are counted with weight 1/2. To 
evaluate the A* (Ri, Qi, s) one proceeds almost exactly as in the proof of Proposi- 
tion 1 (replacing the bounds for the kth derivative, k = 0, 1, 2, in (8) by 

If(k)(t)|I 0 o ((H ? Im<-2a-k) 

and so on) to obtain 

E m (l)x+RQi(xZyT)-s 
= 

O(m22a 
(x ,y) EzmRi nZ2 
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where Lt denotes that for each side lij of the polygon Ri the last line of points 
parallel to that side, 

Lij(m) :[md 1j Rii Rii-1 (iij n Rj), 
dij "~~~~~~Yij 

is to be included in the sum with weight 1/2. The desired sum A*(Ri, Qi, s) thus 
differs from this latter sum only by the addition or exclusion of the (half-weighted) 
last lines of those sides lij for which m 0 0 (mod dij), and 

IJS 
A*(Ri, Qi,s) rO(n-2U)?+ 2 Aij( 

dijt Sm 

where 
Aij(m) ? St (-1)x+YQ(x,y,mT)s, 

(x,y)ELij (m) 

with the ? sign determined by whether (0,0) lies on the interior or exterior side of 
lij respectively. Thus 

Ji 
A* (Pi, Q, s) = Cj,0 (s) + E Ei + O(N1-2a), 

JN 

with 
Ei A.j(m) 

i<m<Nei/di 
dij tm 

and Cj,o(s) analytic for all Re s > 1/2. 
Now if a" : - 'j/d j and 3j := 3'j/d j are of opposite parity, one readily shows 

that alternation in sign along the line Iij(in) gives (in the manner of (9)) 

Aij (m) - O(T-2,), 

and hence 
Eij= Cij(s) + O(N\2 ) 

with the Ci (s) analytic for Re s > 1/2. 
Now if the a'", /3'7 are both odd, parametrising the line (as in the proof of 

Proposition 1), we have 

A,n(Rij Qi (m), s) := , (1)x+y Qi (x, y, Tm)s 
(X,y)EnRjjnZ2 

(_)n QE Q1(nxo - Ca/, J3i1t- nyo, m)8, 
nfj <t<n(2 

for some fixed integers xo - xo(i,j), yo yo(i,j) (with ca"xo - Q3Yo - 1) and 
rational numbers (k = k (i, j). So for bounded integers k1 and k2 we certainly have 

An+kl (Rij, Qi (m J k2),sS)= (_1)k1An(Rij, Qi(m), s) + 0 ((Iml + Dnl)-2a) 
where a trivial bound gives 

An (Ri; Ql (m),S) 0 (0(Inl + mD2U) 
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Hence, splitting the sum over m into multiples of 2dij, we have 

E1i S,i 3 E Aij(2dijl) + E o(m-2a) + O(N1-2a), 
l<Ne%/2didij 1<m<Nei/di 

where (as may be readily checked) 
2dij 

Sij : 3 (l)[m Yj/dij I_ o 
m=1 
dijtm 

giving 
Ei- Cij (s) + O(N1 -2a), 

with Cij(s) analytic for Re s > 1/2. 
Therefore 

A*(Pi, Q, s) = Ci(s) + O(N1-2a) 
(where Ci (s) is analytic for all Re s > 1/2), and the result (i) follows at once if all 
the faces have at least one ai/di, bi/di, ci/di even. 

For part (ii) one proceeds in the manner of the proof of Theorem 2 to show, 
by counting the number of points on the faces with ai/di, bi/di, ci/di all odd, that 
(for suitable multiples N and 6 :- - mini e-1) the contribution from those faces to 
IAN(P Q, S) - AN-6(P, Q, S)I does not tend to zero as N - oo. D1 

Proof of Theorem 9. The approach resembles the proof of Theorems 5 and 6 in 
Borwein-Borwein-Taylor [1, ?IV]. We set 

00 00 

T(z) : - S S q(nl,... iTnk)ZQ(n1.... 
nk) 

nl1-0o nk=-?? 

ml mk 

Tr(z) E q(nl,... , nk)ZQ(n.. nk) 

ni----ml nk=-mk 

and define the normalized Mellin transform Ms (f) for Re s > 0 by 
o00 

MS( f:) -1(s) j f(t)ts-ldt. 

We set 
F(s) :-M8 (T(e-t) - q(0,... , 0)) 

and observe that (since Ms(e-at) a-s for a > 0) 
Am (s) = Ms (Tm (e-t) -q(0,... , 0)). 

We shall need the following uniform boundedness lemma: 

Lemma 3. For any t > 0 and integers Ni > 0 (with at least one Ni > 0), 
00 00 

S := S 5? q(ri,. .. ,hk)e-tQ(ni....nk) < Ce 2(+ ?+N 2)t 

nl =N1 nk=Nk 

for some C = C(Q) > 0 and A - A(Q) > 0. 
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Proof. We set 
9(Ul, - IUk) )= e-Q(l,U) 

and write Xg for the characteristic function of the region {(U1,... ,Uk) e Rk 
ui > Ni}. Applying the partial summation technique employed in the proof of 
Theorem 1, 

00 00 n 

S a(n)b(n) = E ( a(l) (b(n) - b(n + 1)) 
n=-oo n7--o l=-oo / 

00o n pn?l 

(E a(l))] b'(u)ddu 
n=-oo I==-oo G 

to each of the variables ni in turn, we obtain 
00 00 

S= - 1 ... E W(n, ...nk)(n,... ,nk) 
nl=-o< nk=-00 

where 
ni nk 

W(ni,... - nk) 5 E ... E q(rl,... ,rk)Xg(rl, Irk) 
rl =-00 rk-=-00 

and 
nj+1 nk+1 0 # 

Jn JEk au,1 09Uk(2 ,- U) u''d 
By assumption IW(ni,... ,nk) < B (vanishing unless ni > Ni), and hence 

S < BJ ..J I Uk\/t-) dul ...duk 
00 N0 a1 089 

- B f.. . a g(Ul, ,Uk) dul..dUk 
JN I JNki au1 aUk 

Now since Q(xl,... , Xk) is positive definite, we have 

Q(X1 ** Xk) > 2A (X2 + * * + X2 ) 

for some A > 0, giving 

a aU g(ui,9(Ul. , Uk) < IP(Ul, Uk) I e. 
k 

- AO(eAU2+ .+U2)) 

where P(Ui.. , ,Uk) = PQ(Ult, . Uk) is some polynomial of total degree k. Thus 

s = J J o (e ~A(U2l+ +U2) dU .U e-A(N2+. -+N2)t) INix/ IN I k0du,... dUk = 0 

as claimed. L 

Observing that (replacing ui by -ui as necessary) T(e-t)- .- .... , 0) can be 
written as a sum of sums of the form S with at least one of the Ni > 1, and 
T(e-t) - T7(e-At) as a sum of sums with at least one Ni > m = minmi, we have 

T(et) - q(0,... , ) 0 (e-t), T(e-t) - T-(e-t) = O e- 
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Hence 

F(s) = F(s) j (T(e-t) - q(O ... , 0)) ts-dt 

= 0 (IF1(s)Ij0eAtta-dt) = oQ(j')1) 
exists, and similarly 

IF(s)-A-A(s)j =0 (1-7'(s)I j e-AmX2tt-ldt) = 0 (M-2a ;v}1)) 
as m -+ oc in any region {s: a > e, IsI < K} for a fixed positive e and K. Thus 
the limit exists and is analytic for all Re s > 0. O 

Proof of the ?5 formulae. We recall the 0-functions 
00 00o 

02(q) S q(n+1/2)2 03 (q) 5 qn2 
n=--oo n=-oo 

and observe (as may be deduced from Zucker-Robertson [21, 22]) that when Q(V/=fp) 
is a unique factorisation domain containing u units 

5 r(n, Qp)qn := 02(q)02(qP) + 03(q)03(qP) 1 + u (-p I n) qf 
n=1 n1q) 

Hence r((n, Qp), the number of integer representations of n by Qp(x, y), satisfies 

r(n, Qp) = u 5 (-p I d), 
dln 

and (2) is plain. 
When p = 3 or 7 we can relate r(n,p), the number of integer solutions of x2 + 

py2 = n, to r(n, Qp). Setting N(x + y/-p) = X2 + py2 and writing 

Qp(x,y) = !(x_y)2 +p(X + y)2, 

it is easily seen that r(n,p) represents the number of integer solutions (x, y) of 
N(x + y\-p) = n, while r(n, Qp) represents the number of integer solutions (X, Y) 
of N((X/2) + (Y/2)=-p_) = n with X and Y of the same parity. It is easily seen 
(matching (x, y) = (X, Y)) that r(4n, p) = r(n, Qp), and by congruences modulo 4 
that r(n, p) = 0 when n- 2 (mod 4). When n is odd and p = 7, congruences modulo 
8 show that if N((X/2) + (Y/2),\-j) = n then X and Y are necessarily even (giving 
a pairing (x, y) and (X/2, Y/2)), and r(n, 7) = r(n, Q7). When n is odd and p = 3, 
putting w = (1 + /-3) /2, it is readily checked that exactly one of the r(n, Q3) 
solutions ((X/2) + (Y/2) -3), ((X/2) + (Y/2)vX-3)w and ((X/2) + (Y/2) -)W2 
will be of the form (x + y/}-p), and hence that r(n, 3) = 'r(n, Q3). 

Thus, setting A = 1 or 1/3 as p = 7 or 3 respectively, we have 

o (?l)nr(n, p) - ? r(n, Qp) ?? r(n, Qp) 
Z_ns G (4n)58? ns n=1 n=1 n=1 

nv odd 

- (4-s ? A(1 - 2s)(1 - (-p 1 2)2-s)) ( r(n, Qp) 
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So finally, noting that (-3 1 2) = -1, (-7 1 2) -1 and (1 -21-s)((s) o(s), we 
have 

1 (x2 + 2- 2(1 +- 2I2s)((s)L-3(s), L (x2 + 3y2)S 

(X,Y)(EZ2\(0o,) 
( (-l)X+Y 2( '' s 2 + 3y2)8 2(1 21s)a(s)(s), 

(X,y)EZ2\(O,O) (x 

1 2(-2s+ -2,J)()~() 
(2 + 7y2)S 

1's+2 

(-1)X+Y -2a(s)L7(s). LI 
(x2 + \7y2), 
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