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Abstract. The main results deal with conditions for the validity of the weighted
convolution inequality

∑
n∈Z

∣∣bn
∑

k∈Z an−kxk

∣∣p ≤ Cp
∑

k∈Z |xk|p when p ≥ 1.

1. Introduction and main result.

We suppose throughout that

1 ≤ p ≤ ∞,
1
p

+
1
q

= 1; 1 ≤ r ≤ ∞,
1
r

+
1
s

= 1,

and observe the convention that q = ∞ when p = 1.

Given a two-sided complex sequence x = (xn)n∈Z, we define

‖x‖p :=

(∑

k∈Z

|xk|p
)1/p

for 1 ≤ p < ∞, and ‖x‖∞ := sup
n∈Z

|xn|;

and we say that x ∈ `p if ‖x‖p < ∞. Given a two-sided complex sequence a = (xn)
and a two-sided complex sequence b = (bn) of weights, we define the weighted
convolution linear transformation y = (yn) = λx by

yn := (λx)n := bn

∑

k∈Z

an−kxk,

and aim to obtain sufficient conditions for λ to be a bounded operator on `p. In
other words, our objective is to establish conditions under which there is a positive
constant C such that, for all x ∈ `p,

‖y‖p ≤ C‖x‖p, (1)

in which case the operator norm of λ, defined as ‖λ‖p := sup
‖x‖p≤1

‖λx‖p ≤ C. When

1 ≤ p < ∞, (1) amounts to

∑

n∈Z

∣∣∣∣∣bn

∑

k∈Z

an−kxk

∣∣∣∣∣

p

≤ Cp
∑

k∈Z

|xk|p. (2)

Our main result is the following
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Theorem. If 1 ≤ p ≤ ∞, 1 ≤ r ≤ q, a ∈ `r , b ∈ `s, then (1) holds for all x ∈ `p

with C = ‖a‖r‖b‖s.

Note that all the above concerns two-sided sequences. The situation is very different
when one-sided sequences are considered. This amounts to having an = bn = xn = 0
for all n < 0. In this case (2) reduces to

∞∑

n=0

∣∣∣∣∣bn

n∑

k=0

an−kxk

∣∣∣∣∣

p

≤ Cp
∞∑

k=0

|xk|p,

and when an ≥ 0, An := a0+a1+ · · ·+an > 0 for n ≥ 0, and bn :=
1

An
for n ≥ 0 we

get the following known proposition about the Nörlund transform (see [1, Theorem
2] or [2, Theorem 1]).

Proposition. If 1 < p < ∞ and nan = O(An) as n → ∞, then there is a positive
constant C such that

∞∑

n=0

∣∣∣∣∣
1

An

n∑

k=0

an−kxk

∣∣∣∣∣

p

≤ Cp
∞∑

k=0

|xk|p.

2. Lemmas. We prove two lemmas.

Lemma 1. If 1 < p < ∞ and
∑

k∈Z

ckxk is convergent whenever
∑

k∈Z

|xk|p < ∞, then

∑

k∈Z

|ck|q < ∞.

Proof. A version of this result with the stronger hypothesis that
∑

k∈Z

ckxk is abso-

lutely convergent whenever x ∈ `p appears as a problem in [3, p. 198, Problem 7]
where `q is referred to as being the Köthe-Toeplitz dual of `p. It may well be that
the result as stated is also known. We offer the following elementary non-functional
analytic proof. The hypothesis is equivalent to the pair of statements:

∞∑

k=0

ckxk is convergent whenever
∞∑

k=0

|xk|p < ∞, and

∞∑

k=1

c−kx−k is convergent whenever
∞∑

k=1

|x−k|p < ∞.

Suppose
∞∑

k=0

|ck|q = ∞. Let Dn :=
n∑

k=0

|ck|q. Assume without loss in generality that

D0 > 0, and take

xk :=





|ck|q−1

Dk

|ck|
ck

when ck 6= 0

0 otherwise,
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Then, by the Abel-Dini theorem,

∞∑

k=0

ckxk =
∞∑

k=0

|ck|q

Dk
= ∞ while

∞∑

k=0

|xk|p =
∞∑

k=0

|ck|q

Dp
k

< ∞,

contrary to hypothesis. Thus we must have
∞∑

k=0

|ck|q < ∞, and likewise
∞∑

k=1

|c−k|q <

∞. �

Lemma 2. If 1 ≤ p < ∞ , 1 < r ≤ q, and some finite t ≥ 1 is such that

∑

n∈Z

∣∣∣∣∣bn

∑

k∈Z

an−kxk

∣∣∣∣∣

p

< ∞

whenever a ∈ `r, x ∈ `p, b ∈ `t, then t ≤ s.

Proof. Suppose, to the contrary, that t > s, and let 3ε :=
1
s
− 1

t
. Let

an :=

{
(n + 1)−

1
r−ε for n ≥ 0

0 otherwise,

xn :=

{
(n + 1)−

1
p−ε for n ≥ 0

0 otherwise,

bn :=

{
(n + 1)−

1
t −ε for n ≥ 0

0 otherwise.

Then a ∈ `r , x ∈ `p, b ∈ `t, but

∑

n∈Z

∣∣∣∣∣bn

∑

k∈Z

an−kxk

∣∣∣∣∣

p

=
∞∑

n=0

(
(n + 1)−

1
t −ε

n∑

k=0

(n + 1 − k)−
1
r −ε(k + 1)−

1
p−ε

)p

≥
∞∑

n=0

(
(n + 1)−

1
t −ε(n + 1)(n + 1)−

1
r−ε(n + 1)−

1
p−ε
)p

=
∞∑

n=0

(n + 1)−1 = ∞.

�

3 Proof of the Theorem.

Case 1. 1 < p < ∞. For inequality (2) to be meaningful and non-trivial, ob-
serve that, for any n for which bn 6= 0,

∑

k∈Z

an−kxk has to be convergent whenever

∑

k∈Z

|xk|p < ∞. It thus follows from Lemma 1 that we must have
∑

k∈Z

|an−k|q =
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∑

k∈Z

|ak|q < ∞. This explains why we make the restriction 1 ≤ r ≤ q in the hy-

pothesis, and Lemma 2 shows why it is not sufficient to require b ∈ `t for any
t > s.

An application of Hölder’s inequality yields
∣∣∣∣∣
∑

k∈Z

an−kxk

∣∣∣∣∣

p

≤ ‖a‖r(p−1)
r

∑

k∈Z

|an−k|(q−r)(p−1)|xk|p,

and hence that

∑

n∈Z

∣∣∣∣∣bn

∑

k∈Z

an−kxk

∣∣∣∣∣

p

≤ ‖a‖r(p−1)
r ‖x‖p

p

∑

n∈Z

|bn|p|an−k|(q−r)(p−1)

≤ ‖a‖r(p−1)
r ‖x‖p

p · ‖a‖(q−r)(p−1)
r ‖b‖p

s

= ‖a‖p
r‖b‖p

s‖x‖p
p,

since ‖x‖p
p =

∑

k∈Z

|xk|p < ∞ and ‖b‖s
s =

∑

n∈Z
|bn|s < ∞, and this establishes (1) with

C = ‖a‖r‖b‖s. Note that Hölder’s inequality with r̃ =
r

(q − r)(p − 1)
, s̃ =

s

p
is used

in the penultimate step above.

Case 2. p = 1, q = ∞ or p = ∞, q = 1. When p = 1 the result follows by changing
the order of summation in (2) and then applying Hölder’s inequality, and when
p = ∞ the desired conclusion is even more immediate. �

We have shown that if 1 ≤ p < ∞, 1 < r ≤ q, a ∈ `r, then (2) holds for all x ∈ `p

provided b ∈ `s, but may fail to hold if b ∈ `t with a finite t > s. In the following
section we show by means of an example that, if 1 < p < ∞, then (2) may hold for
all x ∈ `p when b 6∈ `t for any finite t > 1.

4. Example.

Suppose 1 < p < ∞. Let An := a0 + a1 + · · ·+ an for n ≥ 0, where

an :=





1
n + 1

for n ≥ 0

0 otherwise,

let

bn :=





1
An

for n ≥ 0

0 otherwise,

and let

yn :=

∣∣∣∣∣bn

∑

k∈Z

an−kxk

∣∣∣∣∣ =

∣∣∣∣∣bn

∞∑

k=0

akxn−k

∣∣∣∣∣ ≤ y1,n + y2,n,
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where

y1,n :=

∣∣∣∣∣
1

An

n∑

k=0

akxn−k

∣∣∣∣∣ and y2,n :=

∣∣∣∣∣
1

An

∞∑

k=n+1

akxn−k

∣∣∣∣∣ .

Note that
∑

k∈Z

|ak| = ∞ and ‖a‖r
r =

∑

k∈Z

|ak|r < ∞ for all r > 1. Suppose that the

sequence x = (xn) ∈ `p. Since

An ∼ log n and
nan

An
∼ 1

log n
= O(1) as n → ∞,

it follows from the Proposition that

∞∑

n=0

yp
1,n ≤ C1

∞∑

k=0

|xk|p ≤ C1‖x‖p
p.

Further, by Hölder’s inequality,

∞∑

n=0

yp
2,n ≤ ‖x‖p

p

∞∑

n=0

1
Ap

n

( ∞∑

k=n+1

aq
k

)p−1

≤ ‖x‖p
p

∞∑

n=0

1
Ap

n

(∫ ∞

n+1

dt

tq

)p−1

= (q − 1)1−p‖x‖p
p

∞∑

n=0

(n + 1)(q−1)(1−p)

Ap
n

= (q − 1)1−p‖x‖p
p

∞∑

n=0

an

Ap
n

= C2‖x‖p
p,

where C2 = (q − 1)1−p

∞∑

n=0

an

Ap
n

< ∞. Hence

∑

n∈Z

yp
n =

∞∑

n=0

yp
n ≤ 2p

∞∑

n=0

(yp
n,1 + yp

n,2) ≤ 2p(C1 + C2)‖x‖p
p.

Thus (2) is satisfied but b 6∈ `t for any finite t > 1, since ‖b‖t
t =

∞∑

n=0

1
At

n

= ∞.

A similar but slightly more complicated argument can be used to show that we
could get the same result by taking, for any real α,

an :=





logα(n + 1)
n + 1

for n ≥ 0

0 otherwise

in the example.
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