
June 22, 2005

VAN DER POL EXPANSIONS OF L-SERIES

David Borwein* and Jonathan Borwein†

Abstract. We provide concise series representations for various L-series integrals.
Different techniques are needed below and above the abscissa of absolute convergence

of the underlying L-series.

1. Preliminaries. In [8] the following odd looking integral evaluation is obtained.

∫ ∞

0

(
3 − 2

√
2 cos (t log 2)

)
|ζ (1/2 + it)|2

t2 + 1/4
dt = π log 2. (1)

This identity turns out—formally—to be a case of a rather pretty, and perhaps
useful, class of L-series evaluations given in Theorem 1 and Corollary 1 (cf. [2]). In
Theorem 3 we recover (1) entirely rigorously.

Given a Dirichlet series

λ(s) :=
∞∑

n=1

λn

ns
, s = σ + iτ, σ = <s > 0,

we consider the integral

ιλ(σ) :=
1
2

∫ ∞

−∞

∣∣∣∣
λ(s)

s

∣∣∣∣
2

dτ

as a function of λ. Observe that when the coefficients λn are real

ιλ(σ) =
∫ ∞

0

∣∣∣∣
λ(s)

s

∣∣∣∣
2

dτ,

but that this is not necessarily so when the coefficients are complex. We refer to
[3, 5, 7] for other, largely standard details.

2. Integrals Involving s with Large RealPart. It is convenient to recall [2]
that, for u, a > 0, ∫ ∞

0

cos (at)
t2 + u2

dt =
π

2u
e−au. (2)
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Theorem 1. For a(s) :=
∑∞

n=1 ann−s, b(s) :=
∑∞

n=1 bnn−s, and s = σ + i τ with
fixed σ = <(s) > 0 such that both Dirichlet series are absolutely convergent, we
have

ιa,b(σ) :=
1
2

∫ ∞

−∞

a(s) b(s)
σ2 + τ2

dτ =
π

2σ

∞∑

n=1

An Bn − An−1 Bn−1

n2σ
, (3)

where An :=
∑n

k=1 ak, Bn :=
∑n

k=1 bk, A0 := B0 := 0.

Proof. Let aN (s) :=
∑N

n=1 ann−s, bN (s) :=
∑N

n=1
bn

n

−s
. Then, in view of (2),

we have

∫ ∞

−∞

aN (s)bN (s)
σ2 + τ2

dτ =
∫ ∞

−∞

∑
N≥n,m>0 an bmn−σ+iτ m−σ−iτ

σ2 + τ2
dτ

=
∑

N≥n>m>0

anbm

(nm)σ

∫ ∞

−∞

cos
(
τ log(n/m)

)

σ2 + τ2
dτ

+
∑

N≥n>m>0

ambn

(nm)σ

∫ ∞

−∞

cos
(
τ log(m/n)

)

σ2 + τ2
dτ +

N∑

n=1

anbn

n2σ

∫ ∞

−∞

1
σ2 + τ2

dτ

+ i
∑

N≥m,n>0

anbm

(nm)σ

∫ ∞

−∞

sin
(
τ log(n/m)

)

σ2 + τ2
dτ

=
∑

N≥n>m>0

anbm + ambn

(nm)σ

∫ ∞

−∞

cos
(
τ log(n/m)

)

σ2 + τ2
dτ +

π

σ

N∑

n=1

anbn

n2σ

=
π

σ

∑

N≥n>m>0

anbm + ambn

(nm)σ(n/m)σ
+

π

σ

N∑

n=1

anbn

n2σ

=
π

σ

N∑

n=1

anBn−1 + An−1bn + anbn

nσ
=

π

σ

N∑

n=1

An Bn − An−1 Bn−1

n2σ
.

Note that the imaginary part in the above evaluation vanished because we inte-
grated an odd function over the range −∞ < τ < ∞.

Next, we observe that

|aN (s)bN (s)| ≤
∞∑

n=1

|anbn|
n2σ

= M < ∞,

where M is independent of τ. Hence

∣∣∣∣
aN (s)bN (s
σ2 + τ2

∣∣∣∣ ≤
M

σ2 + τ2
,

and (3) follows by Lebesgue’s theorem on dominated convergence on letting N →
∞. �

As an immediate consequence we have:
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Corollary 1. If λ(s) :=
∑∞

n=1 λnn−s with s = σ + i τ and fixed σ = <(s) > 0 such
that the Dirichlet series is absolutely convergent, then

ιλ(σ) :=
1
2

∫ ∞

−∞

∣∣∣∣
λ(s)

s

∣∣∣∣
2

dτ =
π

2σ

∞∑

n=1

|Λn|2 − |Λn−1|2

n2σ
, (4)

where Λn :=
∑n

k=1 λk, Λ0 := 0.
If, in addition, all the coefficients λn are real, then

ιλ(σ) =
∫ ∞

0

∣∣∣∣
λ(s)

s

∣∣∣∣
2

dτ =
π

2σ

∞∑

n=1

Λ2
n − Λ2

n−1

n2σ
. (5)

Note that, by Dirichlet’s test [9], the final series in (5) is convergent for all σ > 0
when Λn is bounded, but we cannot automatically guarantee that it is equal to
the integral in in this case, or even that the integral is finite. Simple continuation
arguments will not work. Of course, similar difficulties arise with regard to (3) and
(4). This in part motivates the first example and the following section.

It is, however, easy now to check that

〈a, b〉σ :=
1
2

∫ ∞

−∞

a(s) b(s)
σ2 + τ2

dτ

defines an extended-value inner product on the space of Dirichlet series with
〈α, α〉σ = ια(σ), which is typically finite for σ large enough.

In the sequel, we let Lµ(s) :=
∑∞

n=1(
µ
n)n−s denote the primitive L-function

corresponding to the Kronecker symbol (µ
n ), [3]. Below, bxc is the integer part and

dxc is the truncation of x, so that

dxc =

{
bxc when x ≥ 0,

− bxc when x < 0.

As usual, {x} := x − bxc denotes the fractional part of x.

Example 1. For the Riemann zeta function (ζ=L1), and for σ > 1, Corollary 1
applies and yields

σ

π
ιζ(σ) = ζ(2σ − 1) − 1

2
ζ(2σ),

as λn = 1 and Λn = n. By contrast it is known—see equation (69) of [6]—that on
the critical line s = 1

2
+ iτ

1
2 π

ιζ

(
1
2

)
= log(

√
2 π) − 1

2
γ.

More broadly, for 0 < σ < 1, Crandall (recorded in [6]) has found that

ιζ(σ) = π

∫ 1

0

∞∑

n=0

θ2

(n + θ)1+2σ
dθ = π

∫ 1

0

θ2ζ(1 + 2σ, θ) dθ, (6)
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where

ζ(s, a) :=
∞∑

n=0

(n + a)−s

is the Hurwitz zeta function—which is easy to compute. This devolves from van
der Pol’s representation

ζ(s)
s

= −
∫ ∞

−∞
e−σω (eω − beωc) e−iτω dω, s = σ + iτ with 0 < σ < 1. (7)

One way to obtain identity (7) is to note that

∫ ∞

−∞
e−sω(eω − beωc) dω =

∫ ∞

0

t−s−1(t − btc) dt =
∞∑

n=0

∫ n+1

n

t−s−1(t − btc) dt

=
∫ 1

0

θ ζ(1 + s, θ) dθ =
∞∑

n=0

∫ 1

0

θ (θ + n)−s−1 dθ

= −1
s

lim
N→∞

(
N∑

n=1

1
ns

− N1−s

1 − s

)

on integrating once by parts. Now set

σN :=
N∑

n=1

1
ns

− N1−s

1− s

and observe that we have shown that σN converges to some number σ∞. Further

σ2N − 21−s σN =
2N∑

n=1

1
ns

− 2
N∑

n=1

1
(2n)s

=
2N∑

n=1

(−1)n+1

ns
→ −(1 − 21−s) ζ(s),

which implies that σ∞ = ζ(s), as required.
Another way to establish (7) (kindly suggested by the referee) is to start with

the standard identity

ζ(s)
s

=
1

s − 1
−
∫ ∞

1

xs−1(x − bxc) dx

which can easily be derived under the restriction <s > 1 and then extended by
analytic continuation to the punctured half-plane {s ,<s > 0, s 6= 1}. This together
with the identitity

1
s − 1

= −
∫ 1

0

xs−1(x − bxc) dx

which is valid for <s < 1 yields (7) via the change of variable x = eω .
We now write (7) as a Fourier transform:

ζ(s)
s

= −Fτ

(
e−σω{eω}

)
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and so obtain, for 0 < σ < 1,

2 ιζ(σ) =
∫ ∞

−∞

∣∣∣∣
ζ(s)
s

∣∣∣∣
2

dτ = 2 π

∫ ∞

−∞
e−2σω|eω − beωc|2 dω

from the L2 Plancherel theorem [9].
It follows that
∫ ∞

−∞
e−2σω|eω − beωc|2 dω =

∫ ∞

0

t−2σ−1|t − btc|2 dt

=
∞∑

n=0

∫ n+1

n

t−2σ−1|t − btc|2 dt =
∞∑

n=0

∫ 1

0

θ2 (θ + n)−2σ−1 dθ

=
∫ 1

0

θ2
∞∑

n=0

(θ + n)−2σ−1 dθ,

as required to yield (6). Note that all terms are absolutely convergent which legit-
imates the operations. We have also established, inter alia, that, for 0 < σ < 1,

1
2π

∫ ∞

−∞

∣∣∣∣
∫ 1

0

θ ζ(1 + s, θ) dθ

∣∣∣∣
2

dτ =
∫ 1

0

θ2 ζ(1 + 2σ, θ) dθ.

Moreover, reversing the order of integration and summation above leads to

ιζ(σ) = π

∞∑

n=0

∫ 1

0

θ2

(n + θ)1+2σ
dθ = − π

2σ

(
2 ζ(2σ − 1)

2σ − 1
+ ζ(2σ)

)

which in the limit as σ → 1
2

recaptures the evaluation quoted above. Recapitulating,
we have

σ

π
ιζ(σ) =





− 1
2

ζ(2σ) − ζ(2σ − 1)
2σ − 1

, 0 < σ < 1;

− 1
2

ζ(2σ) + ζ(2σ − 1), 1 < σ < ∞.

(8)

There are similar formulae for s 7→ ζ(s − k) with k integral. For instance,
applying the result in (5) with ζ1 := t 7→ ζ(t + 1) yields

1
π

∫ ∞

0

|ζ(3/2 + iτ )|2

1/4 + τ2
dτ =

1
π

ιζ1

(
1
2

)
= 2 ζ(2, 1) + ζ(3) = 3 ζ(3),

on using Euler’s result (see [4]) that ζ(2, 1) :=
∞∑

n=2

1
n2

n−1∑

k=1

1
k

= ζ(3). �

Example 2. For the alternating zeta function, α := s 7→ (1 − 21−s)ζ(s), we re-
cover, as in [7], that

σ

π
ια(σ) =

1
2

α(2σ),

as λn = (−1)n+1, Λn = (1 − (−1)n)/2 and Λ2
n − Λ2

n−1 = (−1)n+1/2.
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Set σ := 1/2. Then

|α(1/2 + it)|2

1/4 + t2
=

|1 − 21/2−i t|2 |ζ(1/2 + i t)|2

1/4 + t2

=
(
3 − 2

√
2 cos (t ln (2))

) |ζ(1/2 + i t)|2

1/4 + t2

is precisely the integrand in (1). Thus, since α(2σ) = log2 we see that ια(1/2) =
π log 2, is the evaluation in [7]. Note that to justify the exchange of sum and integral
implicit in (5) we should have to more carefully analyse the integrand, since 1/2 is
below the abscissa of absolute convergence of the series, and note that this would
not have been legitimate in Example 1 because of (8). This motivates the approach
in the section below on the Hurwitz zeta function. �

Example 3. (a) For the Catalan zeta function (β=L−4), and for σ > 1 :

σ

π
ιβ(σ) =

1
2

β(2σ),

as λ2n = 0, λ2n+1 = (−1)n and again Λ2
n − Λ2

n−1 = λn.

(b) For L−3, the same pattern holds, in that σ
π

ιL−3 (σ) = 1
2

L−3(2σ), but not for
L5, L−7, and so on.

(c) In general the series L±d does not lead to output which is again a primitive
L-series modulo d.

For example,

σ

π
ιL5(σ) = −

∑

5-n

(−1)n mod 5

n2σ
, and

σ

π
ιL−8 (σ) = L−8(2σ) − 1

2
L−4(2σ).

These are not character sums, though always the coefficients repeat modulo d.
(d) Finally, let ϑ := s 7→ (1 + 2−s)−1. Then again σ

π
ιϑ(σ) = 1

2
ϑ(2σ). �

For each of these examples, which are discussed further in [2], the defect of
Theorem 1 and Corollary 1 is that, as we have seen, they only directly apply when
σ is large enough. The van der Pol approach offers a nice alternative, especially in
the critical strip.

3. Van der Pol’s Approach to Hurwitz Zeta. Recall that

ζ(s, a) :=
∞∑

n=0

1
(n + a)s

, a > 0,

is initially defined for <s > 1 and appropriately analytically continued for <s < 1.
Thus, ζ(s) = ζ(s, 1). We first work out a Fourier transform representation for
ζ(a, s).

Proposition 1. For 1 ≥ a > 0 and 1 > <s > 0, we have

∫ ∞

−∞
e−sω(eω − deω − ac) dω = −1

s
ζ(s, a + 1). (9)
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Proof. (i) Observe that the formula uses the truncation of ew −a and not the floor,
and that the two only differ in the interval −∞ < w < log a. We have

∫ ∞

log a

e−sω{eω − a} dω =
∫ ∞

a

t−s−1(t − a − bt − ac) dt

=
∞∑

n=0

∫ n+1+a

n+a

t−s−1(t − a − bt − ac) dt

=
∫ 1

0

θ ζ(1 + s, θ + a) dθ =
∞∑

n=0

∫ 1

0

θ (θ + n + a)−s−1 dθ

= −1
s

lim
N→∞

(
N∑

n=1

1
(n + a)s

− (N + a)1−s − a1−s

1 − s

)

= −1
s

ζ(s, a + 1) − a1−s

s(1 − s)
,

(10)

this evidently being true for <s > 1 and so for 0 < <s < 1 by analytic continuation–
both sides of (10) clearly being analytic for <s > 0. Incidentally, we have shown
that (10) is valid for <s > 0, a > 0. The additional restriction <s < 1, a ≤ 1 is
needed for the next part of the proof.

It follows from (10) that

∫ ∞

−∞
e−sω(eω − deω − ac) dω =

∫ ∞

loga

e−sω ({eω − a} + a) dω +
∫ loga

−∞
e(1−s)ω dω

= −1
s

ζ(s, a + 1) − a1−s

s(1 − s)
+

a1−s

s
+

a1−s

1 − s
= −1

s
ζ(s, a + 1),

and this establishes (9). �
(ii) Another proof of equation (10) (suggested by the referee) is to proceed from

Theorem 12.2 in Apostol [1, p. 269] which states that for 0 < a ≤ 1, <s > 0, N =
0, 1, 2 . . . ,

ζ(s, a) :=
N∑

n=0

1
(n + a)s

− (N + a)1−s

s − 1
− s

∫ ∞

N

{x}
(x + a)s+1

dx. (11)

Putting N = 0 in (11) and making the change of variable x = eω −a gives equation
(10). �

Proposition 2. For <s > 0 and a ≥ 0 , we have

σ(s, a) := lim
N→∞

(
N∑

n=1

1
(n + a)s

− (N + a)1−s

1 − s

)
= ζ(s, a + 1).

Another form of the limit is

σ(s, a) = −s

∫ 1

0

tζ(1 + s, a + t) dt,
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and indeed σ(s, 0) = ζ(s).

Proof. The case a > 0 follows immediately from the proof of (10) in part (i) above,
and the case a = 0 was treated in the earlier proof of (7). We can also derive the
case 1 ≥ a > 0 by letting N → ∞ in (11) and observing that ζ(s, a) − a−s =
ζ(s, a + 1). �

Most of what follows concerns Dirichlet series having coefficients which repeat
modulo N.

Theorem 2. Let λ(s) :=
∑∞

n=0 λnn−s, s = σ + iτ, with coefficients, λn, repeating
modulo N (i.e., λN+n = λn). Then, for 0 < σ < 1,

−
∫ ∞

−∞
e−σω

N∑

k=1

λk

(
eω

N
−
⌈

eω + N − k

N

⌋)
e−iτω dω =

λ(s)
s

. (12)

Proof. Observe first that

λ(s) =
∞∑

m=0

N∑

k=1

λk

(mN + k)s
=

1
N s

N∑

k=1

λk ζ

(
s,

k

N

)
; (13)

strictly this is true for σ > 1 in the first place and the equating of the extreme
terms for σ > 0 follows by analytic continuation.

It follows from (9) that, for k = 1, 2, . . . , N,

−
1

N s

∫ ∞

−∞
e−σω

(
eω −

⌈
eω −

k

N

⌋)
e−iτω dω =

1
s N s

ζ

(
s,

k

N

)
−

1
s ks

.

We now change variables—w 7→ ω − log N—to obtain

−
∫ ∞

−∞
e−σω

(
eω

N
−
⌈

eω − k

N

⌋)
e−iτω dω =

1
s N s

ζ

(
s,

k

N

)
− 1

s ks
,

so that

−
∫ ∞

−∞
e−σω

(
eω

N
−
⌈

eω + N − k

N

⌋)
e−iτω dω =

1
s N s

ζ

(
s,

k

N

)
(14)

since
⌈

eω + N − k

N

⌋
−
⌈

eω − k

N

⌋
=
{ 1 when w ≥ log k,

0 when w < log k.

Summing (14) for k = 1, 2, . . . , N, and applying (13) yields (12), as desired. �

We are now in position to prove the following companion to Theorem 1 in which
we use the notation: given a Dirichlet series λ(s) :=

∑∞
n=1 λnn−s with coefficients

repeating modulo N, we define an associated kernel

WN (λ, t) :=
N∑

k=1

λk

⌈
t +

N − k

N

⌋
.
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Theorem 3. Suppose that the coefficients of the two Dirichlet series a(s) :=∑∞
n=1 ann−s, b(s) :=

∑∞
n=1 bnn−s repeat modulo N, that An :=

∑n
k=1 ak, Bn :=∑n

k=1 bk, A0 := B0 := 0, and that

ιa,b(σ) :=
1
2

∫ ∞

−∞

a(s) b(s)
σ2 + τ2

dτ with s = σ + iτ.

Suppose further that AN = BN = 0. Then, for 0 < σ < 1,

ιa,b(σ) =
π

N2σ

∫ 1

0

ζ(2σ + 1, t) WN (a, t) WN (b, t) dt. (15)

Moreover, for all σ > 0,

ιa,b(σ) =
π

2σ

∞∑

n=1

An Bn − An−1 Bn−1

n2σ
. (16)

Proof. Suppose first that 1 > σ > 0. Since AN = BN = 0, it follows from Theorem
2 that

a(s)
s

=
∫ ∞

−∞
e−σω

N∑

k=1

ak

⌈
eω + N − k

N

⌋
e−iτω dω,

with a corresponding formula for b(s)/s. Hence, by the L2 Plancherel theorem [9],
∫ ∞

−∞

a(s) b(s)
σ2 + τ2

dτ

= 2π

∫ ∞

−∞
e−2σω

(
N∑

k=1

ak

⌈
eω + N − k

N

⌋)( N∑

k=1

bk

⌈
eω + N − k

N

⌋)
dω

= 2π

N∑

n=0

∫ N

0

1
(Nn + u)2σ+1

(
N∑

k=1

ak

⌈
u

N
+

N − k

N

⌋)

×

(
N∑

k=1

bk

⌈
u

N
+

N − k

N

⌋)
du

=
2π

N2σ

∫ 1

0

ζ(2σ + 1, t)

(
N∑

k=1

ak

⌈
t +

N − k

N

⌋)

×

(
N∑

k=1

bk

⌈
t +

N − k

N

⌋)
dt

=
2π

N2σ

∫ 1

0

ζ(2σ + 1, t) WN (a, t) WN (b, t) dt.

(17)

This establishes (15). We now denote the characteristic function of the interval
(k/N, (k + 1)/N ) by χk and observe that, since AN = BN = 0, we can use summa-
tion by parts to re-express the kernels as follows:

WN (a, t) =
N−1∑

k=1

Ak χk(t), WN (b, t) =
N−1∑

k=1

Bk χk(t).
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Thus,

WN (a, t)WN (b, t) =
N−1∑

k=1

AkBk χk(t).

Consequently, by (15),

∫ ∞

−∞

a(s) b(s)
σ2 + τ2

dτ =
2π

N2σ

N−1∑

k=1

AkBk

∫ k+1
N

k
N

ζ(2σ + 1, t)dt

=
π

σ

∞∑

n=0

N−1∑

k=1

AkBk

(
1

(Nn + k)2σ
− 1

(Nn + k + 1)2σ

)

=
π

σ

∞∑

n=0

N∑

k=1

AkBk − Ak−1Bk−1

(Nn + k)2σ
=

π

σ

∞∑

m=1

AmBm − Am−1Bm−1

m2σ
,

and this shows that (16) holds when 0 < σ < 1.
By Theorem 1, (16) also holds when σ > 1, since the Dirichlet series defining a(s)

and b(s) are absolutely convergent in this range. Further, since An Bn−An−1 Bn−1

is bounded, by Dirichlet’s test, the series in (16) is absolutely convergent and thus
continuous as a function of σ for σ > 0. Finally, it is easy to show, by means of
partial summation, that a(s) and b(s) are analytic in the disk {s , |s− 1| < 1

4}, and
hence bounded therein by a constant M, say. It follows, by Lebesgue’s theorem on
dominated convergence, that ιa,b(σ) is continuous for 3

4 < σ < 5
4 , and hence that

(16) holds for all σ > 0. �

As an immediate consequence we have the following companion to Corollary 1.

Corollary 2. Suppose that the coefficients of the Dirichlet series λ(s) :=∑∞
n=1 λnn−s repeat modulo N, and that Λn :=

∑n
k=1 λk, Λ0 := 0. Suppose further

that ΛN = 0. Then, for s = σ + iτ with σ > 0, we have

ιλ(σ) :=
1
2

∫ ∞

−∞

∣∣∣∣
λ(s)

s

∣∣∣∣
2

dτ =
π

2σ

∞∑

n=1

|Λn|2 − |Λn−1|2

n2σ
,

where Λn :=
∑n

k=1 λk, Λ0 := 0.
If, in addition, all the coefficients λn are real, then

ιλ(σ) =
∫ ∞

0

∣∣∣∣
λ(s)

s

∣∣∣∣
2

dτ =
π

2σ

∞∑

n=1

Λ2
n − Λ2

n−1

n2σ
.

Note that for N = 2, λ1 = 1 = −λ2 we reobtain from Corollary 2, a rigorous
form of the original evaluation in the MAA Monthly [8].

Example 4. Recall that

ζ(u, v) :=
∞∑

n=2

(−1)n

nu

n−1∑

k=1

1
kv

, while ζ(u, v) :=
∞∑

n=2

1
nu

n−1∑

k=1

(−1)k

kv
, and

ζ(u, v) :=
∞∑

n=2

(−1)n

nu

n−1∑

k=1

(−1)k

kv
.
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The same approach as in Example 1 applied to (5) and (16) produces

1
π

∫ ∞

0

α(3/2 + iτ ) α(3/2 + iτ )
1/4 + τ2

dτ = 2 ζ(2, 1) + ζ(3) = 3 ζ(2) log2 − 9
4
ζ(3),

and

1
2π

∫ ∞

∞

α(3/2 + iτ ) ζ(3/2 + iτ )
1/4 + τ2

dτ = ζ(2, 1)+ζ(2, 1)+α(3) =
9
8

ζ(2) log 2− 3
4

ζ(3),

as companions to

1
π

∫ ∞

0

ζ(3/2 + iτ ) ζ(3/2 + iτ )
1/4 + τ2

dτ = 3 ζ(3),

since, by techniques discussed in [4,5],

ζ(2, 1) =
1
8

ζ(3), ζ(2, 1) = ζ(3) − 3
2

ζ(2) log 2, ζ(2, 1) =
3
2

ζ(2) log 2 − 13
8

ζ(3).

4. Final Remarks. Many other similar results obtain. For example:

∫ ∞

−∞
e−2σω{max(eω − a, 0)}2 dω =

∞∑

n=0

∫ n+1+a

n+a

t−2σ−1|{t − a}|2 dt

=
∞∑

n=0

∫ 1

0

θ2 (θ + n + a)−2σ−1 dθ

=
∫ 1

0

θ2 ζ(1 + 2σ, θ + a) dθ.

While (4) and (16) give an effective way of evaluating the integral, directly
evaluating the integral numerically to high precision presents a greater challenge.
This is largely because of the severe oscillations of the integrand. The issue appears
to lie in estimating the integrand well and so is intrinsically non-trivial.
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