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Abstract

It is known that the generalized Laguerre polynomials can enjoy sub-exponential
growth for large primary index. Specifically, for certain fixed parameter pairs (a, z) one
has the large-n asymptotic

L(−a)
n (−z) ∼ C(a, z)n−a/2−1/4e2

√
nz.

We introduce a computationally motivated contour integral that allows highly efficient nu-
merical evaluation of Ln, yet also leads to general asymptotic series over the full domain
for sub-exponential behavior. We eventually lay out a fast algorithm for generation of the
rather formidable expansion coefficients. Along the way we address the difficult problem
of establishing effective (i.e. rigorous and explicit) error bounds on the general expan-
sion. To this end, we avoid classical stationary-phase and steepest-descent techniques
in favor of an “exp-arc” method that amounts to a natural bridge between converging
series and effective asymptotics. Finally, we exhibit an absolutely convergent exp-arc se-
ries for Bessel-function evaluation as an alternative to conventional ascending-asymptotic
switching.
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1 The challenge of “effectiveness”

The object of our interest will be the Laguerre polynomial we parameterize thus:

L(−a)
n (−z) :=

n∑
k=0

(
n− a

n− k

)
zk

k!
. (1)

Our use of negated parameters −a,−z is intentional, for convenience in our analysis and
in connection with related research, as we later explain.

We shall work on the difficult problem of establishing asymptotics with effective error
bounds for the two-parameter domain

D := {(a, z) ∈ C × C : z 6∈ (−∞, 0]}.

That is, parameter a is any complex number, while z is any complex number not on
the negative-closed cut (−∞, 0]. This D will turn out to be the precise domain of sub-
exponential growth of L(−a)

n (−z). Herein, we say a function f(n) enjoys sub-exponential
growth if log log |f(n)| ∼ δ log n, for some 0 < δ < 1, so for example f(n) = anb exp(cnδ)
for real constants a, b, c with c > 0 has this growth property.1

The reason for the negative-cut exclusion on z is simple: For z negative real, the
Laguerre polynomial exhibits oscillatory behavior in large n, and is not of sub-exponential
growth. Note also, from the definition (1), that

L(−a)
n (0) =

(
n− a

n

)
, (2)

which covers the case z = 0; again, not sub-exponential growth.
Now, for all (a, z) ∈ D we shall have (here and beyond we define m := n + 1, which

tends to simplify notation throughout):

L(−a)
n (−z) ∼ Sn(a, z)

(
1 +O(m−1/2)

)
, (3)

where the sub-exponential term S is

Sn(a, z) :=
e−z/2

2
√
π

e2
√
mz

z1/4−a/2 m1/4+a/2
. (4)

In such expressions, < (
√
mz) is taken to be

√
m|z| cos(θ/2) where θ := arg(z) ∈ (−π, π]

(we hereby adopt the convention arg(−1) := π), and so for (a, z) ∈ D the expression (4)
involves genuinely diverging growth in n, due to the sub-exponential exp(2

√
mz) factor.

What we seek are effective bounds, for example to replace a logical error-bounding
statement for an expression E in the following way:{

E = O

(
1√
m

)}
is replaced by

{
E <

C√
m

for m > m′
}
,

1We use “sub-exponential” in a sense distinct from that in number theory, in which field one typically refers
to growth of order exp(d logδ n)), δ < 1.
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with both the constant C and the threshold m′ being explicit. To do this, we even-
tually introduce a “Θ”-notation to simplify the nomenclature by replacing big-O when
effectiveness is achieved.

Thus, our chief goal in the present paper is to establish effective bounds—starting with
a suitable explicit big-O constant in (3)—for the entire domain D of (a, z) pairs, even to
reach further, into arbitrary asymptotic orders. Moreover, we want to effect all of this
is a systematic way, so that other researchers will have a symbolic scheme for generating
effective terms. To these ends, we turn next to motivational matters, and the history of
Laguerre asymptotics.

1.1 Research motives

A primary research motive for providing effective asymptotics lies in a beautiful Laguerre
series for the incomplete gamma function (see [1]), namely [14]

Γ(a, z) = zae−z
1

z +
1− a

1 +
1

z +
2− a

1 + · · ·

=
∞∑
n=0

(1− a)n
(n+ 1)!

1

L
(−a)
n (−z)L(−a)

n+1 (−z)
, (5)

where (c)n := c(c + 1) · · · (c + n − 1) is the Pochhammer symbol. This series is valid
whenever none of the Laguerre denominators has a zero. Thus an interesting sidelight is
the research problem of establishing zero-free regions for Laguerre polynomials (see our
Open Problems section).

Indeed, one may see in this formula one good reason to adopt, as we have, Laguerre
superscript (−a) and argument (−z). The asymptotic in (3) is indeed an ingredient to a
separate theory of R. Crandall [9] on the large-height behavior of the incomplete gamma
function, which theory in turn applies to high-precision Riemann-zeta computations. This
Riemann-zeta/incomplete-gamma connection relies in turn on both imaginary heights
|=(a)|, |=(z)| being very large. For example, to deal analytically-computationally with
primes in the region of 1020, one might need a rigorous evaluation of something quite
stultifying, say

Γ
(
1 + 1010i, 1 + 2 · 1010i

)
.

In a word: To responsibly calculate results on prime numbers, using the analysis
chain of Laguerre-polynomial → incomplete-gamma → Riemann-zeta, one must certainly
know rigorous errors. It is this kind of generality of parameters that is incomplete in
the literature. In this sense, a term O(1/

√
n+ 1) as in (3) will not suffice in matters of

numerical rigor unless an implied big-O constant is known.
The Laguerre series for (5) suggests that the convergents of the continued fraction

for the incomplete gamma function are closely related to Laguerre evaluations, and this
is indeed so. In fact, another research motive we realize is that the continued-fraction
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theory for the Γ(a, z) fractions is incomplete in the sense that the theory of S-fractions,
which have been well-studied, does involve parameter restrictions. In fact, the present
research began when we encountered great difficulty in estimating the convergence rate
of the Γ(a, z) fraction for arbitrary a, z; this is what led to our focus on the Laguerre
asymptotics. So one new research avenue is opened by this Laguerre study; namely, new
results on certain continued fractions lying outside the reach of S-fractions will surely
accrue. Incidentally, we are aware that sub-exponential convergence results for the general
incomplete-gamma-fraction might be attainable via the very complicated, seminal work of
Jacobsen and Thron [15] on oval convergence regions, but at least our effective-Laguerre
approach eventually yields the desired growth properties.

We should state an important caveat at this juncture: We are not intending to develop
Laguerre asymptotics in order to calculate Γ(a, z) via series (5); rather, as of this writing
the present effective-asymptotic analysis is the only way we know to show subexponential
convergence of the Γ continued fraction for the whole domain D. If we may speak in the
metamathematical vein, the intricacies of Laguerre asymptotics are not unexpected, given
the corresponding intracies of complex continued fractions.

There are yet other research areas that can benefit from precise Laguerre asymptotics.
The celebrated hydrogen wave-functions in quantum theory involve Laguerre polynomials
Lmn with n,m both positive integers [39, Ch. 4]. Beyond this, it turns out that Laguerre
polynomials appear in some exactly solvable 3-body problems in quantum chemistry. In
fact for the “helium-like” Hamiltonian operator for two mass-m electrons at r1, r2 and
one mass-M nucleus at r3:

H = − 1
2m

(
∇2

1 +∇2
2

)
− 1

2M
∇2

3 +
1
2
mω2(r213 + r223) +

λ

r212
,

where rjk := rj − rk and the 2-electron repulsion is modeled here as an inverse-cube force
with coupling λ, the exact wave-functions—indexed by integers n, l—are proportional to:

L(a)
n

(
2mωr212

)
,

with
a :=

√
l(l + 1) + 1/4 + λm.

Note that for vanishing λ = 0 the Laguerre super-index a is a half-odd integer l + 1/2,
but that introducing a nonzero λ breaks this symmetry so that non half-integer a become
involved. In either the standard hydrogen case or the 3-body models, the asymptotic form
is that of the Fejér oscillatory variety (6); yet, analyticity studies in quantum theory can
involve either space, time, or both continuations into the complex plane, in which cases
rigorous asymptotics may be required. Thus there is a place for Laguerre asymptotics
in quantum theory. As one last example: The so-called WKB theory for approximating
the remote phase of a hydrogenic wave-function is problematic, yet the oscillatory Fejér–
Perron theory we next outline yields precise phases easily. One can imagine, then, a
modern computationalist’s need for effective bounds in both the oscillatory and sub-
exponential Laguerre cases.
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Yet another application for growth theorems involves the Hermite polynomials, in turn
expressible as

H2n(x) = (−4)nn! L(−1/2)
n

(
x2
)
,

H2n+1(x) = 2(−4)nn! x L(+1/2)
n

(
x2
)
,

and appearing at many important theoretical junctures in quantum theory. As with the
aforementioned atomic wavefunctions, it is important to know the asymptotic behavior
of the Hermite class. For one thing, space-time and space-energy propagators for the
Schrödinger theory sometimes demand asymptotic analysis in regard to eigenvalue esti-
mates. In any case, our present results do apply to the Hermite class, via the above
even-odd identities (one simply asigns x :=

√
−z with our branch rule

√
−ρ := i

√
ρ for

positive real ρ). One interesting work—whose methods are distinct from our present
ones—involves explicit bounds on Hermite oscillations [12]. And, for asymptotic analysis,
there may be some hope in the interesting López–Temme expansion:

L(−a)
n (−z) = (−x)n

n∑
k=0

ckHn−k
(
a−z−1

2x

)
xk(n− k)!

,

where x :=
√
−z − (1− a)/2 and the ck are generated by a certain 4-th order recurrence

relation [18]. Strikingly nonstandard as this representation may be, it is neverthless valid
for all parameter pairs (a, z) ∈ C × C.

1.2 Historical results

Laguerre asymptotics have long been established for certain restricted domains, and usu-
ally with noneffective asymptotics.2 For example, in 1909 Fejér established that for z on
the open cut (−∞, 0) and any real a, one has [30, Theorem 8.22.1]:

L(−a)
n (−z) =

e−z/2
√
π(−z)1/4−a/2 m1/4+a/2

cos
(
2
√
−mz + aπ/2− π/4

)
+O

(
m−a/2−3/4

)
, (6)

where we again use index m := n+1, which slightly alters the coefficients in such classical
expansions, said coefficients being for powers n−k/2 but we are now using powers m−k/2.
By 1921 Perron [28] had generalized the Fejér series to arbitrary orders, then for z 6∈
(−∞, 0] established a series consistent with (3) and (4), in essentially the form: [30,
Theorem 8.22.3]

L(−a)
n (−z) = Sn(a, z)

(
N−1∑
k=0

Ck
mk/2

+O
(
m−N/2

))
, (7)

although this was for real a and so not for our general parameter domain D. Note that
C0 = 1, consistent with our (3) and (4); however, one should take care that because we

2Some researchers use the term “realistic error bound” for big-O terms that have explicit structure. We prefer
“effective bound,” and when an expansion is bestowed with such a bound, we may say “effective expansion.”
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are using index m := n + 1, the coefficients Ck in the above formula differ slightly from
the historical ones. Various of the Perron generalizations can be derived, for example,
from the Le Roy formula, valid for <(a) > 1 and z negative real,

L(−a)
n (−z) = (−z)a/2e−z 1

n!

∫ ∞

0
tn−a/2e−tJ−a(2

√
−zt) dt,

which formula is more than a century old (see [30, ch. 5.4, p. 99], where extension to
more general parameters is discussed). That is, one may use the classical Bessel-expansion
theory to obtain a Laguerre expansion. The complications attendant on this approach
are a good reason to adopt, as we shall, a more universal contour integral representation.

It is not hard to see how the interplay between domain of z and the asymptotic
character of (6) or (7) works. If we naively take 0 6= z 6∈ (−∞, 0) in the Fejér form (6),
the cosine term has a sub-exponentially growing part (1/2) exp(2

√
m|z| cos(θ/2))—so even

the extra factor of 1/2 contained in the Sn definition is explained in this way. Conversely,
one can imagine moving from the sub-exponential form (7) to the oscillatory form (6) as z
moves onto the cut (−∞, 0) from outside it, provided one remembers the mnemonic that
there is in (3) or (7) a “buried” term like Sn but having exp(−2

√
mz) in the numerator,

such a term being sub-exponentially small. All of these heuristics and mnemonics can be
remembered perhaps best by imagining a cosh(2

√
mz) term in the definition of Sn, with

the denominator’s ‘2’ removed. It will turn out that our rather involved effective-error
analysis moves most cleanly, though, with (a, z) ∈ D and the exp(2

√
mz) term intact.

Certain asymptotic properties may be gleaned from the formal generating function

u(t) :=
∞∑
n=0

L(−a)
n (−z)tn = (1− t)a−1e

zt
1−t , (8)

as can be derived from standard ordinary differential equation theory by applying the
recurrence (10) in the next section to the generating function

∑
n rnt

n. A more modern
literature treatment that is again consistent with the heuristic (3)–(4), is given by Wipitski
in [37], where (8) is invoked to yield a contour integral for L(−a)

n (−z). Then a stationary-
phase approach yields precisely the correct asymptotic, at least for certain subregions of
D. It should be noted however that Wipitski’s treatment is both elegant and non-rigorous,
intended mostly as a computational guide. And once again, there is no estimate given on
the O(1/

√
m) correction in (3). In fact, our present approach involves the avoidance of

stationary-phase approach per se, in favor of an exponential-arcsin series development, as
described in Section 5.

There is an interesting anecdote that reveals the difficulty inherent in Laguerre asymp-
totics. Namely, W. Van Assche in an interesting 1985 paper [34] used the expansion (7)
for work on zero-distributions, only to find by 2001 that the C1 term in that 1985 paper
had been calculated incorrectly. The amended series is given in his correction note [35] as

L(−a)
n (−z) ∼ e−z/2

2
√
π

e2
√
nz

z1/4−a/2 n1/4+a/2
.

(
1 +

(
3− 12a2 + 24(1− a)z + 4z2

48
√
z

)
1√
n

+O

(
1
n

))
,
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or in our own notation with m := n+ 1,

∼ Sn(a, z)
(

1 +
(

3− 12a2 − 24(1 + a)z + 4z2

48
√
z

)
1√
m

+O

(
1
m

))
. (9)

Note the slight alteration used to obtain our C1/
√
m term. Van Assche credits T. Müller

and F. Olver for aid in working out the correct O(1/
√
n) component.3 This story suggests

that even a low-order asymptotic development is nontrivial. Hence, we should anticipate
the effective error-bounding project on which we embark to be at least as nontrivial. At
any rate, along the way we shall streamline a symbolic-generation process for obtaining
the Ck, and in this way shall give an algorithm for extending (9) to higher orders and
provide effective bounds for the corresponding error terms Ek.

Absent the problem of incomplete domains (incomplete for our modern purposes), the
classical authors certainly knew in principle how to establish effective error bounds. The
excellent treatment of effectiveness for Laplace’s method of steepest descent in [22] is a
shining example. Even more illuminating is Olver’s paper [21], which explains effective
bounding and shows how unwieldy rigorous bounds can be. However, efficient algorithms
for generating explicit effective big-O constants have only become practicable in recent
times. We freely admit that here-and-now in the era of modern symbolic processing—and
in spite of the complications into which we soon shall delve—the generation of explicit
asymptotic terms and their associated errors is easier today than at any time in the history
of the subject.

We note that many alternative Laguerre studies abound. One modern thrust—which
we do not address in the present paper—involves asymptotic behavior when the subindex n
is linked either to a or z, or both. For example, the paper [17] provides a large-n asymptotic
expansion for L(a)

n (nx). Another treatment is [29], in which the author handles L(nx)
n (ny).

In [8] the authors analyze cases of L(an)
n for which an >> n. One hopes that our present

methods for effective bounding can be applied to such variants. Other important “linked”
cases include the exponential monomial and the partial-exponential sum, respectively:

L(−n)
n (z) =

(−1)n

n!
zn; L(−n−1)

n (z) = (−1)n
n∑
k=0

zk

k!
.

The paper [16] discusses such generalizations. An important point here is that any asymp-
totic theory with n ≈ a would have to take into account these useful special cases. On
the subject of rigorous bounds, there is the interesting treatment [19] in which L(µ)

ν (x) is
given upper (and lower!) bounds, for real x and <(µ) > −1. One might call such results
effective error bounds of zero-th order; in any case, they do not help the present treatment
directly because of their parameter-domain restrictions.

3Accordingly, we hereby name the polynomial C1(a, z) the Perron–van Assche–Müller–Olver, or “PAMO”
coefficient.
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1.3 Further relations for Laguerre polynomials

Here we give further relations for Laguerre polynomials, including some relations we do
not use in the present treatment, but which may nevertheless be helpful in future research
on the problem of effective bounds.

We record what might be called initial values: L(−a)
0 (−z) = 1, and L

(−a)
−1 (−z) := 0.

We then note that the iteration (n ≥ 1)

rn =
(

2− A

n

)
rn−1 −

(
1− B

n

)
rn−2, (10)

with initial values r−1 = 0, r0 := 1, thus has an exact solution in the form

rn = L(−a)
n (−z), (11)

where
z := B −A, a := B − 1,

is the parameter transformation that moves us between equivalent pairs (a, z) and (A,B).
Thus, the complex domain in question for (A,B) pairs can be inferred from our caveat
(a, z) ∈ D.

The reason we have emphasized here the rn-iteration (10) itself is that direct analysis
of second-order recurrences have, on other problems, yielded strong results [5, 6, 7]. A
“discrete” approach that attempts alternative asymptotic expressions for the rn is there-
fore promising.

Perhaps just as promising for growth analysis is the Laguerre differential equation,
which in our present parameterization reads

−z ∂
2L

∂z2
+ (a− 1− z)

∂L

∂z
+ nL = 0, (12)

where L := L
(−a)
n (−z). In fact, various sharp results on Laguerre asymptotics have

emerged from differential theory—there is the classical work of Erdélyi and Olver, plus
modern work on combinations of differential, discrete, and saddle-point theory [11][13].

Next, for some hypergeometric connections, there is a hypergeometric form

L(−a)
n (−z) =

(
n− a

n

)
1F1 (−n, 1− a;−z) , (13)

where 1F1 is also known as the Kummer (confluent) hypergeometric function. In references
such as [1, §13.5.14] the Kummer function 1F1 asymptotics are consistent with aforemen-
tioned Laguerre forms, but again such formulae are established for restricted subregions
of D and without effective bounds.

When n is small (in some sense not made rigorous here), and say |z| � |a|, an approx-
imation follows from the representation (8), as

L(−a)
n (−z) =

(
n− a

n

) n∑
j=0

(−n)j
(1− a)j

(−z)j

j!
.
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Because

(−z)n

(1− a)n
= (−z)n Γ(1− a)

Γ(1− a+ n)
∼ (−z)n

(1− a)n

[
1 +

c1(n)
1− a

+
c2(n)

(1− a)2
+ . . .

]
,

where the cj(n) are polynomials in n with c1(n) = −1
2n(n − 1), this gives a first order

approximation

L(−a)
n (−z) ∼

(
n− a

n

)(
1 +

z

1− a

)n
.

More terms in such an expansion can be obtained via simple operations.4

We have not been rigorous about these small-n approximations, though we believe
further research should certainly yield effective bounds. It is a fascinating phenomenon
that the character of the above small-n expansion changes dramatically for large n—the
behavior switches from a kind of modified power law to sub-exponential growth.

1.4 An outline of what follows

In Section 2 we obtain a tripartite contour representation for the generalized Laguerre
polynomials and explore to which parts contribute predominantly. In Section 3 we provide
effect bounds for each of three contour integrals we call c1, d1, e1. We summarize the status
of contour integration in Section 3.5. In Section 4 we attack a dominant term c0 (of c1),
and reduce the effective-bounds problem to the study of a Bessel-class integral

I(p, q) :=
∫ π/2

−π/2
e−iqωep cosω dω.

In Section 5 we conquer the asymptotics of I by exploiting the power series in x of
exp(τ arcsin(x)), calling this an “exp-arc” series. Section 6 then harvests our crop: The-
orem 8 gives an effective expansion for the generalized Laguerre polynomials in the sub-
exponential region. Section 6.2 then provides an algorithm for the purpose while Section
6.3 shows the method in numerical mode. In Section 7 we briefly consider the oscillatory
domain before applying our results to the Bessel functions In and Jn of integral order.
Finally, in Section 8 we visit or revisit some of the open problems thrown up by our study.

2 Contour representation

In this section we develop a highly efficient—both numerically and analytically—contour-
integral representation for L(−a)

n (−z). First we indicate how experimental mathemat-
ics was employed to work out a good contour itself, then we proceed to provide ef-
fective bounds on segments of the contour, whence extracting a primary term that is
sub-exponentially larger than the other terms.

4The authors are indebted to N. Temme for these small-n approximations.

9



2.1 Development of a “keyhole” contour

A well known contour integral has contour, Γ, encircling s = 1 + 0i but avoiding the
branch cut (−∞, 0]:

L(−a)
n (−z) =

e−z

2πi

∫
Γ
s−1−a

(
1− 1

s

)−n−1

ezs ds. (14)

This representation holds for all pairs (a, z) ∈ C × C, n a non-negative integer, and may
be proven to agree with the polynomial definition (1) via simple residue arithmetic, or via
a Fourier transform of the generating function (8).5

However—and this is important—we found via experimental mathematical techniques
that a certain kind of contour allows very accurate, efficient, and well behaved numerical
Laguerre evaluations. Take z 6= 0, m := n+1 and assume r :=

√
m/z has |r| > 1/2. Then,

use a circular contour centered at s = 1/2 with radius |r|. This contour will encompass
s = 1, so the remaining requirement is to avoid the cut s ∈ (−∞, 0]. But this can be
done by cutting out a “wedge” from the negative-real arc of the circle, with the wedge’s
apex at 1/2 = 0i. We actually tried such schemes with high-precision integration, to
settle finally on the contour of Figure 1, where the aforementioned wedge has become a
“keyhole” pattern consisting of cut-run D1 and small, origin-centered circle E1 of radius
1/2.

So, adopting constraints and nomenclature:

z 6= 0, θ := arg(z), ω± := ±π + θ/2,

m := n+ 1, r :=
√
m/z :=

√
m/|z|e−iθ/2, R := |r| > 1/2,

but no other constraints, we have the following representation for L:

L(−a)
n (−z) = c1 + d1 + e1, (15)

where c1, d1, e1 are the respective contributions from contour C1, cut-discontinuity D1,
and contour E1 from Figure 1. Exact formulae for said contributions are

c1 =
1
2π
r−ae−z/2

∫ ω+

ω−

Hm(a, z, e−iω)e2
√
mz cosω dω, (16)

d1 =
e−z

π
sin(πa)

∫ R−1/2

1/2
T−1−a

(
1 +

1
T

)−m
e−zT dT, (17)

e1 = −e
−z

4π

∫ π

−π

(
2e−iω

)1+a (1− 2e−iω
)−m

eiω+ z
2
eiω

dω, (18)

5The contour representation (14) can easily be continued to non-integer n, with care taken on the (−n−1)-th
power, but our present treatment will only use nonnegative integer n.
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Figure 1: A numerically efficient “keyhole contour” for Laguerre evaluations L
(−a)
n (−z), valid for

all complex a, z with z 6= 0 and n + 1 > |z|/4. Wedges with center-1/2—as pictured at right—
are experimentally accurate, leading to a “keyhole” deformation avoiding the cut s ∈ (−∞, 0].
It turns that for any pair (a, z) ∈ D, the main arc C1 gives the predominant contribution for
large n, the D1, E1 components being sub-exponentially minuscule.

and when m > <(a) we may write this last contribution by shrinking down the radius-1/2
contour segment to embrace the cut (−1/2, 0], as

e1 =
e−z

π
sin(πa)

∫ 1/2

0
T−1−a

(
1 +

1
T

)−m
e−zT dT. (19)

For the c1 contribution above, we have used the function H defined by

Hm(a, z, v) := va
(
1 +

v

2r

)−1−a [
F
(v
r

)]m
, (20)

with

F (t) :=
(

1 + t/2
1− t/2

)
e−t, (21)

which for t small is: 1 + t3/12 + t5/80 + · · · = 1 +O(t3).

Note. The form e1 given by (18) is more general than (19) as is exemplified by the case
a := 7/2, z := −1,m := 3 for which L

(−7/2)
2 (1) = 31/8 with the (18) form contributing

correctly, while the integral (19) does not even exist. Another example is a := 5, z :=
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−1,m := 3 for which (19) has a vanishing prefactor sin(πa), yet e1 ≈ 9.513 . . . as provided
by (18) is correct.

In any event, e1, like d1, is sub-exponentially small relative to c1, for large n and
(a, z) ∈ D. It is to be stressed that decomposition (15) holds for all (a, z) ∈ C × C, z 6= 0,
as long as m := n+1 > |z|/4. We remind ourselves of (2) for z = 0. This means that such
contour calculus applies to both oscillatory (Fejér) cases, where z is negative real, and
sub-exponential (Perron) cases for the stated parameters. We shall soon be restricting
(a, z) to the domain D, which restriction will induce sub-exponential growth always, as
in (3), with effective bounds attainable for various contour segments.

2.2 Numerical assessment of the contour

The triumvirate c1, d1, e1 of integrals is suitable for accurate Laguerre computations, which
computations do show that integrals d1, e1 tend to be sub-exponentially small relative to
c1. And this, of course, is our motive for identifying the contour terms in such a way. An
example computation would be, from the defining series (1) with (a, z) := (−i,−1− i) :

L
(i)
8 (1 + i) = −137

288
+

53
45
i

which to 20-place accuracy is

≈ −0.47569444444444444444 + 1.17777777777777777777i,

whereas the respective contributions from the C1, D1, E1 segments of the keyhole contour
of Figure 1 turn out to be

c1 ≈ −0.44406762576110996056 + 0.81722282272705891241i,

d1 ≈ −0.03169598827425878852 + 0.36065591639721657587i,

e1 ≈ 0.00006916959092430464− 0.00010096134649771051i,

with the sum c1 + d1 + e1 giving L(i)
8 (1 + i) to the implied precision.

Remarkably, this “keyhole-contour” approach has the additional, unexpected feature
that for some parameter regions the contour evaluation of L(a)

n (−z) is actually faster
then direct summation of the defining series (1). A typical example is: For the 13-digit
evaluation

L
(25i/2)
50000 (−30 + 3i) ≈ (0.9275136583293 + 1.7406691595239i)× 101056

the defining series (1) was, in our trials, three-times slower than the integral c1 (the other
two contour segments are well below the 13-digit significance).6

6Of course, series acceleration as in [3] would give the direct series a “leg up.” Still, it is remarkable that con-
tour integration would even be competitive. For the record, we compared Mathematica’s numerical integration
to its own LaguerreL[ ] function.
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3 Effective bounds on the contour components

3.1 Theta-calculus

We now introduce a notation useful in effective-error analysis. When two functions enjoy

|f(z)| ≤ |g(z)|

over some domain z ∈ X , we shall say that

f(z) = Θ(g(z))

on said domain. Thus, the Θ-notation is an effective replacement for big-O notation. For
example, for z on the complex unit circle, we have

z

z + 1/2
= Θ(2),

even though this fails for some z off the circle. This “theta-algebra” obeys certain relations,
such as this for any finite function evaluations fk:

|f1 + f2 + . . . | ≤ Θ(f1) + Θ(f2) + . . . ,

from the classical triangle inequality. (Note however that one may not always write the
right-hand side as Θ(f1 + f2 + . . . ) because of possible cancelation.) Also easy is the
multiplicative relation for arbitrary complex multipliers α:

αΘ(f(z)) = Θ(αf(z)).

When an expression g is unwieldy, we allow ourselves the luxury of denoting Θ(g) by
Θ : g, so that a long formula g can run arbitrarily to the right of the colon.

3.2 Effective bound for e1

First we address the integral e1 as given in relation (18). We need some preliminary
lemmas, starting with a collection of polynomial estimates to transcendental functions.

Lemma 1 The following inequalities hold:

1. On ω ∈ [−π, π] we have

log(5− 4 cosω) ≥ log 9
π2

ω2.

2. On ω ∈ [0, 1/2] we have

log(1 + ω) ≥ 4
5
ω.

3. On ω ∈ [0, 1/
√

2] we have
arcsinω ≤ π√

8
ω.

13



4. On ω ∈ [−π/2, π/2] we have

cosω ≤ 1− 4
π2
ω2.

Proof. All four are straight-forward calculus exercises. We illustrate with a proof the
first which is slightly more subtle. Observe that 1. is equivalent to

log(1 + 8 sin2(x/2)) ≥ log 9
π2

x2.

Since sin(t) ≥ 2t/π when 0 ≤ t ≤ π/2, we have

log(1 + 8 sin2(x/2)) ≥ log(1 + 8x2/π2).

Putting u := 2x2/π2, we see that it suffices to prove

log(1 + 4u) ≥ u log 3 for 0 ≤ u ≤ 2,

which follows by simple calculus. QED

Lemma 2 Consider integrals of error-function class, specifically, for nonnegative real
parameter µ,

Vµ(α, β, γ) :=
∫ ∞

γ
x2µe2αx−βx

2
dx,

where each of α, β, γ is real, with α, β > 0. Then we always have the bound

V0(α, β, γ) = Θ :
√
π

β
e

α2

β .

If in addition γ > 2α/β, we also have

Vµ(α, β, γ) = Θ :
1
2

Γ(µ+ 1/2)
(β − 2α/γ)µ+1/2

;

finally, if γ > 4α/β we have

Vµ(α, β, γ) = Θ : 2µ−1/2 Γ(µ+ 1/2)
βµ+1/2

,

Remark: The last two bounds we shall not use until a later section, but it is convenient
to dispense with all these error-function results now.

Proof. Completing the exponent’s square gives the first bound easily, since

V0 = eα
2/β

∫ ∞

γ
e−β(x−α/β)2 dx

14



with the integral here being Θ
(√

π/β
)
. For the second bound, it is elementary that for

x ≥ γ one has 2αx− βx2 ≤ x2(2α/γ − β), so that

Vµ ≤
∫ ∞

0
x2µe−(β−2α/γ)x2

dx

and the resulting bound follows. The final bound follows immediately from the previous
bound, because γ > 4α/β implies β − 2α/γ > β/2. QED

Theorem 1 The contour contribution e1 defined by (18), under conditions (a, z) ∈ D
and m sufficiently large in the explicit sense

m := n+ 1 > m0 := |z|/4,

m > m1 := 5
(
|<(z)|+ (|=(a)|+ |=(z)|/2)2

)
,

is bounded as
e1 = Θ : e−z/22<(a)+3 1√

m
.

Moreover, under alternative conditions (a, z) ∈ D and

m > m0, m > m2 := <(a),

m > m3 := −5
4
|z| cos θ,

we have a bound

e1 = Θ :
e−z

π
sin(πa)

2<(a)−m

m−<(a)

Proof. First, in (18) the term (1− 2e−iω)−m has absolute value (5− 4 cosω)−m/2. So we
can write, recalling θ := arg(z) ∈ (−π, π],

e1 = Θ :
e−z/2

2π
2<(a)

∫ π

−π
eω=(a)e−(m/2) log(5−4 cosω)e|z|(cos(ω+θ)−cos θ)/2 dω.

Now the overall exponent here can be written

ω=(a)− m

2
log(5− 4 cosω)−<(z) sin2(ω/2)− 1

2
=(z) sinω.

Then, via Lemma 1 we can give an upper bound for this real expression when ω ≥ 0,
namely

(|=(a)|+ |=(z)|/2)ω − log 9
2π2

mω2 −<(z) sin2(ω/2).

Now define parameter
α := |=(a)|/2 + |=(z)|/4,
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and if <(z) < 0 define

β :=
m log 9

2π2
+ <(z)/4,

but if <(z) ≥ 0 we drop the term <(z)/4 in the definition. With this nomenclature, we
can write

e1 := Θ :
e−z/2

2π
2<(a)2

∫ π

0
e2αω−βω

2
dω

= Θ :
e−z/2

π
2<(a)V0(α, β, 0).

Under the stated condition m > m1, we have |<(z)| < m/5 and so

β >

(
log 9
2π2

− 1
20

)
m >

m

20
.

Also from the same fact m > m1 we have

α2 <
m

20
< β.

whence Lemma 2 gives

e1 = Θ :
e−z/2√
π

2<(a) e√
m/20

,

and the desired result follows.
For the second set of conditions on m, the fact of m > m2 means that (18) and (19)

are equivalent, and Lemma 1 allows:

e1 = Θ :
e−z

π
sin(πa)

∫ 1/2

0
Tm−1−<(a)e−zT−4mT/5 dT.

Since the integral is bounded for m > m3 by 2<(a)−m/(m − <(a)), the desired bound
follows. QED

3.3 Effective bound for d1

Again we need an opening lemma:

Lemma 3 Consider integrals of the incomplete–Bessel class, specifically

W (α, β) :=
∫ 1

0
e−αx−

β
x
dx

x
,

where each of α, β is real, with β > 0. If β > α we have a bound

W = Θ :
1
2
e−β−α

√
π

β
.

16



Proof. We write

W (α, β) =
∫ 1

0
eβx−αx e−βx−

β
x
dx

x
≤ eβ−α

∫ 1

0
e−βx−

β
x
dx

x

= eβ−α
∫ ∞

0
e−2β cosh t dt ≤ e−β−α

∫ ∞

0
e−βt

2
dt,

which proves the theorem. (Incidentally, the integral with cosh in the exponent is the
modified-bessel evaluation K0(2β) which is known to have the necessary bound [2, Lemma
1].) QED

Theorem 2 The contour contribution d1 defined by (17) can be bounded under conditions
(a, z) ∈ D and

m > m4 := 4|z|,

as

d1 = Θ :
e−z/2√
π
m|<(a)|/2−1/4|z|−|<(a)|/2−1/4 sin(πa)e−2

√
m|z| cos2 θ

2 .

Proof. From (17) we have (noting that m > m4 means R :=
√
m/|z| > 2,

d1 =
e−z/2

π
sin(πa)

∫ R

1
(t− 1/2)−1−ae−zt+m(log(1−1/(2t))−log(1+1/(2t))) dt.

On the interval t ∈ (1, R) we have

(t− 1/2)−1−a = Θ : (t− 1/2)−1(t− 1/2)−<(a)

which, since R > 2, is Θ : 2
tR

|<(a)|. Thus

d1 = Θ :
e−z/2

π
sin(πa)2R|<(a)|

∫ 1

1/R

dτ

τ
e−τ

√
m|z| cos θ−

√
m|z|/τ .

The desired bound then follows immediately from Lemma 3.
QED

3.4 Rigorous estimates on c1

Having dispensed with d1, e1, we next show that the integration limits ω−, ω+ on the
c1 contribution can be changed—with only a sub-exponentially small error penalty—to
−π/2, π/2 respectively, as we now establish. We start with

Lemma 4 For any v on the unit circle {eiφ : φ ∈ (−π, π]}, any complex a, and any real
R > (1 + |a|)/2 we have ∣∣∣∣(1 +

v

2R

)−1−a
∣∣∣∣ ≤ 1

1− 1+|a|
2R

.

17



Proof. From the binomial theorem,(
1 +

v

2R

)−1−a
= 1 +

−1− a

1!
v

2R
+

(−1− a)(−2− a)
2!

( v

2R

)2
+ . . . .

The right-hand side is bounded in absolute value by

1 + (1 + |a|) 1
2R

+ (1 + |a|)2
(

1
2R

)2

+ ...

=
1

1− 1+|a|
2R

.

QED

Lemma 5 Let v be on the unit circle as in Lemma 4, let R > 1 be real, and let m be a
positive integer. For the function F appearing in (21), we have the bound∣∣∣F ( v

R

)m∣∣∣ ≤ e
1
6

m
R3 .

Proof. From the definition (21) we have

F (v/R)m = e
1
12

m
R3 (1+(3/5)/(2R)2+(3/7)/(2R)4+... ).

For R := 1 the parenthetical infinite sum is no larger than 1.18... and is monotonic
decreasing in R. QED

Lemma 6 Let v be on the unit circle as in Lemma 4 and define for nonnegative integer
m

K :=
(
1 +

v

2R

)−1−a
F
( v
R

)m
.

For the assignments (a, z) ∈ C×C, z 6= 0, R :=
√
m/|z| > 1,m > m5 := |z|(1+|a|+|z|/2)2.

Then
|K| ≤ 2.

Proof. From Lemmas 4, 5 we have

|K| ≤ 1

1− 1+|a|
2(1+|a|+|z|/2)

e
1
6

|z|
1+|a|+|z|/2 .

The fact that the right-hand side is Θ(2) follows from the observation that the function

1
1− Q

2Q+x

e
1
3

x
2Q+x

for Q ≥ 1, x ∈ [0,∞) is itself Θ(2), and this in turn follows easily from the substitution
y := x/(2Q + x), for which the function to be bounded is g(y) := (2/(1 + y))ey/3 on
y ∈ [0, 1/2]— use of the derivative dg/dy settles this. QED

These lemmas in turn allow us to contract the range on the c1 contour integral:
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Theorem 3 Decompose c1 as defined by (16) into two terms,

c1 := c0 + c2,

with c0 involving the integral’s range contracted to [−π/2, π/2], namely

c0 :=
1
2π
r−ae−z/2

∫ π/2

−π/2
Hm(a, z, e−iω)e2

√
mz cosω dω,

Then under conditions (a, z) ∈ D and

m > m5 := |z|(1 + |a|+ |z|/2)2

we have a bound on the remaining integral

c2 = Θ : r−ae−z/2e
3
2
π|=(a)|.

Proof. It is evident that c2 is obtained from the definition (16) but with the integral
replaced according to ∫ ω+

ω−

→

{∫ −π/2

ω−

+
∫ ω+

π/2

}
.

Over these domains of integration, however, we have e2
√
mz cosω = Θ(1), and from Lemmas

4, 5, 6 we have

c2 = Θ :
1
2π
r−ae−z/2

{∫ −π/2

ω−

+
∫ ω+

π/2

}
2
∣∣e−iωa∣∣ dω,

and as the total support of the integrals cannot exceed π, the desired c2 bound follows
easily. QED

3.5 Summary of the contour decomposition for L
(−a)
n (−z)

The above machinations lead to the main result of the present section, namely a formula
that decomposes the Laguerre evaluation, as in

Theorem 4 (Contour decomposition) Let (a, z) ∈ C × C be an arbitrary parameter
pair with z 6= 0 (with z = 0 cases resolved exactly by (2)). If

m := n+ 1 = m0 > |z|/4,

then the contour decomposition

L(−a)
n (−z) = c0 + E
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holds, with c0, c2 as defined in Theorem 3 and E := c2 + d1 + e1. If an appropriate union
of conditions on m,a, z across Theorems 1, 2, 3 holds, then we can write

L(−a)
n (−z) = c0 + Sn(a, z)E1,

where E1 is sub-exponentially small, in the sense that for any positive ε the large-n behavior
is

E1 = O
(
e−(2−ε)

√
m|z| cos θ

2

)
.

Moreover, an effective big-O constant is available (the proof exhibits explicit forms).

Proof. The contour calculus is valid for all complex pairs (a, z) when z 6= 0, R :=√
m/|z| > 1/2, which conditions assure that the point 1 + 0i is contained in the contour.

It remains to analyze L(−a)
n (−z) = c0 +Sn(a, z) E1. Consider, then, an appropriate union

of conditions from the cited theorems, say

(a, z) ∈ D,

m > max(m0,m1,m2,m3,m4,m5)

in which case we have, from Theorems 1, 2, 3 (in that respective order of Θ terms):

E1 = Θ :
e−z/2√
π

sin(πa)
21+<(a)−m

m−<(a)
z1/4−a/2m1/4+a/2e−2

√
m|z| cos θ

2

+Θ : 2
(
m

|z|

)(<(a)+|<(a)|)/2
e

3
2
π|=(a)|e−2

√
m|z|(cos2 θ

2
+cos θ

2)

+Θ : 2
√
π |mz|1/4e

3
2
π|=(a)|e−2

√
m|z| cos θ

2 .

This explicit bounding of the error term E1 proves the O
(
e−(2−ε)

√
m|z| cos(θ/2)

)
statement

of the theorem, while for any choice of ε an effective big-O constant can be read off at
will. QED

Theorem 4 suggests—and we shall prove—that the c0 term defined in Theorem 3
can be given a Perron-like series, essentially as in (7). This will establish that the precise
(a, z)-parameter domain of large-n sub-exponential growth will be D. Thus our remaining
tasks are to provide:

1. A symbolic algorithm for the asymptotic coefficients Ck in (7), and

2. An effective bound for the EN term.

Moreover, we wish to achieve these things over the whole domain of sub-exponential
Laguerre growth, namely for all (a, z) ∈ D.
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4 Effective expansion for the H-kernel

In the sense of Theorem 4, the dominant contribution to L
(a)
n (−z) for (a, z) ∈ D, with

r :=
√
m/z, |r| > 1/2, is

c0 :=
1
2π
r−ae−z/2

∫ π/2

−π/2
Hm

(
a, z, e−iω

)
e2
√
mz cosω dω, (22)

with the integration kernel H defined, see (20) and (21), as

Hm(a, z, v) := va
(
1 +

v

2r

)−1−a
(

1 + v
2r

1− v
2r

)m
e−mv/r, (23)

where in the integral we assign v := e−iω. We need to obtain the growth properties
of H. This we do in the next three subsections. We suspect there is a more standard
combinatorial route to Theorem 5 of Section 4.3, but it has so far eluded us.

4.1 Exponential form for H
Lemma 7 For |v| = 1 and m > |z|/4, the H-kernel can be cast in the exponential form

Hm := va exp

∑
k≥1

ak
k

1
mk/2

 , (24)

where

ak := (1 + a)(−1)k
(
v
√
z

2

)k
+
(
1− (−1)k

) k

k + 2

(
v
√
z

2

)k+2

. (25)

Moreover, we have the general coefficient bound

|ak| ≤
(√

z

2

)k
(1 + |a|+ |z|/2). (26)

Proof. (23) can be recast, with ρ := v/(2r), as

Hm := va exp {−(1 + a) log(1 + ρ)− 2mρ+m (log(1 + ρ)− log(1− ρ))} . (27)

Being as |r| > 1/2 and |v| = 1, the logarithmic series converge absolutely and we have

Hm := va exp

∑
k≥1

[
(1 + a) (−1)k

k

(
v
√
z

2

)k
gk +

2
2k + 1

(
v
√
z

2

)2k+1

g2k−2

] , (28)

where g := 1/
√
m, and the precise form (25) for the ak follows immediately. The given

bound on |ak| is also immediate from (25). QED
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4.2 Exponentiation of series

Though Lemma 7 is progress, we still need to exponentiate a series, in the sense that we
want to know, for the following expansion, given the sequence (ak),

exp

∑
k≥1

ak
k
xk

 =:
∑
h≥0

Ahx
h,

how the Ah depend on the ak. The combinatorial answer is

Ah =
h∑
j=0

1
j!
Gh(j;~a),

where
Gh(j;~a) :=

∑
h1+...+hj=h

ah1 · · · ahj

h1 · · ·hj
,

with the understanding Gh(0,~a) := δ0h and that such combinatorial sums involve positive
integer indices hi. One result that can prove useful for such combinatorics is a bound on
a simple instance of the G sum:

Lemma 8 If all coefficients ak are equal 1 then, for j > 0,

Gh(j;~1) =
∑

h1+...+hj=h

1
h1 · · ·hj

= Θ :
1
h

(2Hh−j+1)
j−1 ,

= Θ :
1
h

(2γ + 2 log h)j−1 .

Here, Hq := 1+1/2+ · · ·+1/q is the q-th Harmonic number, H0 := 0, and γ is the Euler
constant.

Remark. It turns out that G here enjoys a closed form of sorts, namely

Gh(j;~1) =
j!
h!

(−1)h−jS(j)
h ,

where S denotes the Stirling number of the first kind, normalized via x(x− 1) · · · (x−h+
1) =:

∑h
j=0 S

(j)
h xj . So the effective of our lemma is a rigorous bound on the growth of

Stirling numbers; see [1, 24.1.3,III] and [31] for research on Stirling asymptotics.

Proof. The first Θ-estimate arises by induction. For notational convenience we omit the
vector ~1 and just use the symbol Gh(j). Note GN (1) = 1/N and

GN (2) =
N−1∑
j=1

1
j(N − j)

=
2
N
HN−1.
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Generally we have

GN (J) =
N−J+1∑
j=1

1
j
GN−j(J − 1).

Now, assume by induction that Gh(j) = Θ : 1
h (2Hh−j+1)

j−1, holds for all j < J . Then

G(N, J) ≤
N−j+1∑
j=1

2J−2HJ−2
N−J−j+2

j(N − J)

≤ 2J−2

N
HJ−2
N−J+1

N−J+1∑
j=1

(
1
j

+
1

N − j

)
.

Now the parenthetical term is HN−J+1 +HN−1−HJ which, because Ha−Hb ≤ Ha−b for
any positive integer indices a > b, is bounded above by 2HN−J+1, which proves the first
Θ-bound of the theorem.

For the second θ-bound it suffices to show that Hn−1 > γ+log(n), since Hj is increas-
ing. We set sn := Hn−1 − log(n). Then, s1 = 0 and for n > 0

sn+1 − sn =
1
n
− log

(
1 +

1
n

)
> 0,

and so sn increases and, by definition, tends to γ as n→∞. QED

Though we do not use Lemma 8 directly in what follows, it is useful in proving con-
vergence for various sums

∑
Ahx

h, and may matter in future research along our lines.

Lemma 9 Let y ≥ 1 and x ∈ (−1, 1) be real. Then in the expansion

exp

y∑
k≥1

xk

k

 =:
∑
h≥0

Yhx
h

the coefficients Yh enjoy the bound

Yh = Θ
(
yh
)
.

Proof. The left-hand side is exp(−y log(1 − x)) = (1 − x)−y whose binomial expansion
has h-th coefficient (h ≥ 1) equal to

y(y + 1) · · · (y + h− 1)
h!

≤ yh
1
1

(1 + 1/y)
2

· · · 1 + (h− 1)/y
h

≤ yh.

Finally, Y0 = 1 ≤ 1. QED
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4.3 Effective expansions of exponentiated series

We are now in a position to contemplate an effective expansion for an exponentiated
series, starting with

Lemma 10 Assume complex vector ~b of defining coefficients bk bounded as

|bk| ≤ cdk

for positive real c, d with c ≥ 1. Let real x satisfy |x| < 1/(2cd). Then for any order
N ≥ 0 we have an effective expansion

exp

∑
k≥1

bk
k
xk

 =
N−1∑
h=0

Bhx
h + Θ

(
2cNdNxN

)
,

where

Bh =
h∑
j=0

Gh(j;~b)
j!

are the usual coefficients of the full formal exponentiation.

Proof. Denoting f(x) := exp
{∑

k≥1
bk
k x

k
}

we have

f(x) =
N−1∑
h=0

Bhx
h + TN .

where the remainder TN =
∑

h≥N Bhx
h, with all Bh coefficients given by a G-sum as in

Lemma 10. Now,

|Bh| ≤
h∑
j=0

|Gh(j;~b)|
j!

,

but
|Gh(j,~b| ≤ |Gh(j, ~f)|

where ~f = (cdk : k ≥ 0). But by Lemma 9 we know that

|Bh| ≤ (cd)h.

Therefore

|TN | ≤
∑
h≥N

(cd)hxh =
cNdNxN

1− cdx
= Θ

(
2(cdx)N

)
.

QED

Finally we arrive at a general expansion—with effective remainder—for the H-kernel:
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Theorem 5 (Effective expansion for H.) For general complex (a, z) ∈ C ×C, assume
m > m5 := |z|(1+ |a|+ |z|/2)2 and |v| = 1. Then for any expansion order N ≥ 0 we have

Hm (a, z, v) = va

(
N−1∑
h=0

Ah
mh/2

+ Θ : 2
(m5

4m

)N/2)
,

where

Ah :=
h∑
j=0

Gh(j;~a)
j!

,

Gh(j;~a) :=
∑

h1+...+hj=h

ah1 · · · ahj

h1 · · ·hj
,

with the defining coefficients ak given in (25).

Proof. The result follows immediately from Lemma 10, on assigning ~b = ~a, with x :=
1/
√
m, c := 1 + |a|+ |z|/2, d := (1/2)

√
|z|. QED

Note that Theorem 5 in the instance N = 0 implies our previous Lemma 6. It is
interesting and suggestive that the threshold m5 := |z|(1 + |a| + |z|/2)2 appears in both
theorem and lemma rather naturally.

4.4 Effective integral form for c0

To obtain a useful form for c0, the dominant component of L(−a)
n (−z), we use Theorem 5:

Theorem 6 For (a, z) ∈ D and m > m5, the dominant component of Theorems 3 and 4,
namely

c0 :=
1
2π
r−ae−z/2

∫ π/2

−π/2
Hm(a, z, e−iω)e2

√
mz cosω dω,

can be given an effective form for any order N ≥ 0, as

c0 =
1
2π
r−ae−z/2

N−1∑
h=0

1
mh/2

∫ π/2

−π/2
e−iωaAhe

2
√
mz cosω dω

+ Sn(a, z) E2,N ,

where the error term is bounded as

E2,N = Θ :
π√
2

(m5

4m

)N/2
exp

(
π2=(a)2 sec θ

2

32
√
m|z|

)
sec1/2 θ

2

and the Ah are to be calculated as the first N coefficients of

∞∑
h=0

Ahx
h := exp

∑
k≥1

ak
k
xk

 ,

via (25) with v := e−iω.
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Proof. Inserting the effective H-kernel expansion from Theorem 5 directly into the c0
integral gives the indicated sum over h ∈ [0, N − 1] plus an error term

Θ :
1
2π
r−ae−z/22

(m5

4m

)N/2 ∫ π/2

−π/2
eω=(a)e−2

√
m|z| cos(θ/2) cosω dω.

Now using Lemma 1 on cosω and the V0-part of Lemma 2 we obtain the E2,N bound of
the theorem. QED

With Theorem 6 we have come far enough to see that a Laguerre evaluation can
be obtained—up to a sub-exponentially small relative error—via the Ah terms in said
theorem. To this end, inspection of the defining relations reveals that in general we can
decompose an Ah coefficient in terms of powers of v := e−iω, namely we define αh,µ terms
via

Ah =:
h∑
u=0

αh,u(a, z)vh+2u. (29)

For example,
α00 = 1,

α10 = −1 + a

2
z1/2,

α11 =
z3/2

12
,

α31 =
1

480
(
5a2 + 15a+ 16

)
z5/2.

The point being, we now have special formulae for the dominant contribution c0, namely

c0 =
1
2π
r−ae−z/2

N−1∑
h=0

1
mh/2

h∑
u=0

αh,u(a, z) I(2
√
mz, a+ h+ 2u) (30)

+ Sn(a, z) E2,N , (31)

where the integral

I(p, q) :=
∫ π/2

−π/2
e−iqωep cosω dω (32)

thus emerges as a fundamental entity for the research at hand.
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5 I-integrals and an “exp-arc” method

Having reduced the problem of sub-exponential Laguerre growth to a study of the I-
integrals (32), we next develop a method that is effective for both their numerical and
theoretical estimation. This method amounts to the avoidance of stationary-phase tech-
niques, employing instead various forms of exponential-arcsin series, as we see shortly.

Let us first define with a more general integral. For any complex pair (p, q), assume
α, β ∈ (−π, π) and define

I(p, q, α, β) :=
∫ β

α
e−iqωep cosω dω, (33)

so that our special case (32) is simply

I(p, q) := I(p, q,−π/2, π/2).

An aside is relevant here. The I integral can be written in terms of an Anger function
J and Weber function E—see [1]—as

I(p, q) = πeiqπ/2(J−q(−ip) + iE−q(−ip)),

with an important special case

I(p, 0) = π(J0(−ip) + L0(p)),

where J here is the standard Bessel function and L denotes the modified Struve function
[1]. Moreover, one may write the Bessel functions Jn of integer order n in terms of
I-integrals:

Jn(z) =
1
2π

(
e−iπn/2I(iz, n) + eiπn/2I(−iz, n)

)
, (34)

and the modified Bessel function, again of integer order n:

In(z) =
1
2π

(I(z, n) + (−1)nI(−z, n)) , (35)

about which representations we shall have more to say in a later section. These forms
(34), (35) are easily derived directly from standard integral representations; see [1, 9.1.21],
but note as with [1, 9.1.22], that non-integer n is more complicated because of a cut-term
not unlike such terms we have encountered in the Laguerre problem for non-integer a
parameter. (See relations (68, 69) for general indices ν on Jν , Iν .)

5.1 The exp-arc method explained

Now we investigate what we call exponential-arcsine (“exp-arc”) series. First, for any
complex τ and x ∈ [−1, 1], one has a remarkable expansion (see [4]):

eτ arcsinx = 1 +
∞∑
k=1

rk(τ)
xk

k!
, (36)
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where the coefficients depend on the parity of the index, as

r2m+1(τ) := τ

m∏
j=1

(
τ2 + (2j − 1)2

)
, r2m(τ) :=

m∏
j=1

(
τ2 + (2j − 2)2

)
.

By differentiating with respect to x we obtain

eτ arcsinx

√
1− x2

=
1
τ

∞∑
k=0

rk+1(τ)
xk

k!
,

valid for x ∈ (−1, 1). In particular, we have the important expansion (here we define a
function G, in passing)

G(τ, x) :=
cosh(τ arcsinx)√

1− x2
=

∞∑
k=0

gk(τ)
x2k

(2k)!
, (37)

where

gk(τ) :=
k∏
j=1

(
(2j − 1)2 + τ2

)
.

The g coefficients are especially easy to remember, as the sequence (g0, g1, . . . ) is simply
(1, (12 + τ2), (12 + τ2)(32 + τ2), (12 + τ2)(32 + τ2)(52 + τ2), . . . ).

These exp-arc expansions may be applied to the I(p, q, α, β) integrals as follows. From
(33) and its subsequent manipulations we have

I(p, q, α, β) = ep
∫ β

α
e−iqωe−2p sin2(ω/2) dω

= 2ep
∫ sin β

2

− sin α
2

e−2iq arcsinx

√
1− x2

e−2px2
dx

I(p, q, α, β) = iep
∞∑
k=0

rk+1(−2iq)
k! q

∫ sin β
2

− sin α
2

x2ke−2px2
dx. (38)

It is sometimes quite useful to define also U(p, q, ψ) := I(p, q, 0, 2ψ), with the interesting
partitioning U = U1 + U2 and respective series developments as follows:

U1(p, q, ψ) =
1
2q
ep cos(2ψ) sin(2qψ) + 4p ep

∞∑
n=0

(
2n
n

)
(2n+ 1)4n

n∏
k=1

(
1− 4q2

(2k − 1)2

)
β2n+1(p, ψ),

U2(p, q, ψ) :=
1
q
ep cos(2ψ) sin2(qψ) + 2pq ep

∞∑
n=1

4n

n2
(
2n
n

) n−1∏
k=1

(
1− q2

k2

)
β2n(p, ψ),
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where β is an error-function-class integral

βn(p, ψ) :=
∫ sinψ

0
xn+1e−2p x2

dx (39)

=
1
2

(2p)−1−n/2 {Γ(n/2 + 1)− Γ(n/2 + 1, 2p sin2 ψ)
}
.

With these prescriptions we can always write

I(p, q, α, β) = U(p, q, β/2)− U(p, q, α/2). (40)

Even though we shall eventually be contemplating asymptotic expansions, convergence
of such I-series is the rule:

Lemma 11 For α, β ∈ (−π, π) and any complex pair (p, q), the series (38) converges
absolutely.

Proof. By relation (40) is enough to show that for |ψ| < π/2 each of U1, U2 converges
absolutely. Since

(
2n
n

)
4−n = O(1/

√
n), while |βn(p, ψ| ≤ | sinψ|n+2e2|<(p)|, and the two

product terms are bounded, the absolute convergence of both U1, U2 is assured. QED

Likewise, from (37), (38) we now have an absolutely convergent expansion for the
special-case I integral:

I(p, q) = 4ep
∫ 1/

√
2

0
G(−2iq, x)e−2px2

(41)

= 4ep
∞∑
k=0

gk(−2iq)
(2k)!

Bk(p), (42)

where Bk is an error-function-class integral

Bk(p) := β2k−1(p, π/4) =
∫ 1/

√
2

0
x2ke−2px2

dx. (43)

It is both computationally and theoretically important that Bk can be given a closed
form (in terms of Γ- and incomplete Γ-functions) as well as a recursion relation. Namely,
we have

Bk(p) =
1
2

1
(2p)k+1/2

{Γ(k + 1/2)− Γ(k + 1/2, p)} , (44)

so that

B0(p) =
1√
8p
(√
π − Γ(1/2, p)

)
=
√

π

8p
erf (

√
p) .

A recursion follows for k > 0:

Bk(p) :=
2k − 1

4p
Bk−1 −

2−k−3/2

p
e−p, (45)

We shall have more to say later about the computational efficacy of these relations. For
the moment, we next focus upon theoretical applications relevant to the asymptotic nature
of I-integrals.
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5.2 Effective expansion for the cosh-arc G-series

Our asymptotic analysis of representation (41) begins with a lemma that reveals how the
G function (37) has an attractive self-similarity property. Namely, the function appears
naturally in modified form within its own error terms.

Lemma 12 For any complex τ the G function (37) can be given an effective expansion
to any integer order N ≥ 0, as

G(τ, x) :=
cosh(τ arcsinx)√

1− x2
(46)

=
N−1∑
k=0

gk(τ)
x2k

(2k)!
+ gN (τ)

x2N

(2N)!
(1 + TN (τ, x)) , (47)

with the error term TN conditionally bounded over real x ∈ [0, 1/
√

2] in the form

TN = Θ : 1 , if N ≥ 2x2|τ |2 − 1;
= Θ : (

√
2 x2 + x|τ |)e|τ | arcsinx , otherwise.

Proof. The error term is, by the definition of the gk(τ), given by the absolutely convergent
sum

TN = hN + hNhN+1 + hNhN+1hN+2 + . . . ,

where

hk :=
(2k + 1)2 + τ2

(2k + 1)(2k + 2)
x2.

When |τ |2x2 ≤ (N + 1)/2, and since x2 ≤ 1/2, it is immediate that for k ≥ N we have a
bound:

|hk| ≤
(4k2 + 4k + 1)/2 + (N + 1)/2

4k2 + 5k + 2
≤ 1/2,

whence TN = Θ : 1/2+1/4+1/8+ . . . , settling the first conditional bound of the theorem.
In any case—i.e. any complex τ and any x ∈ [0, 1/

√
2], we have for j ≥ 0:

hNhN+1 · · ·hN+j = x2j
j∏

k=0

(2N + 2k + 1)2
(
(2k + 1)2 + τ2 (2k+1)2

(2N+2k+1)2

)
(2N + 2k + 1)(2N + 2k + 2)(2k + 1)2

= Θ :
gj+1(|τ |)

(2j + 1)!!2
.

However, it is elementary that (2j + 1)!!2 ≥ (2j + 1)! by simple factor-tallying, so

|TN | ≤
(
12 + |τ |2

)
· 2

2!
x2 +

(
12 + |τ |2

) (
32 + |τ |2

)
· 4

4!
x4 + . . .

= x
∂

∂x
G(|τ |, x),
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where we have noticed that the right-hand series here is itself a differentiated “cosh-arc”
series. Thus

TN = Θ : x
∂

∂x

cosh(|τ | arcsinx)√
1− x2

= Θ :
x2

2 (1− x2)3/2
(
eu + e−u

)
+

x|τ |
2 (1− x2)

(
eu − e−u

)
where u := |τ | arcsinx. Now by excluding 2x2|τ |2 ≤ N+1 for the second conditional bound
of the lemma, we have |τ | ≥ 1, whence the e−u terms can be ignored over x ∈ [0, 1/

√
2],

and the second conditional bound follows. QED

5.3 Effective expansion of the I-integral

We need one more set of brief lemmas, all elementary but useful in regard to asymptotic
analysis, including analysis that reaches beyond the present treatment. Consider the
standard gamma function’s common representation

Γ(a, z) :=
∫ ∞

z
ta−1e−t dt,

for z > 0 and an alternative form, obtained by change of variables

Γ(a, z) = zae−z
∫ ∞

0
e−zs(1 + s)a−1 ds,

the later integral representation being valid at least for conditions ((<(z) > 0) and a ∈ C)
or ((<(z) = 0) and (<(a) < 0)).

Lemma 13 If real ρ ≥ 0 and <(z) > 0,∫ ∞

0

e−zs

(1 + s)ρ
ds = Θ

(
2
|z|

)
.

Accordingly, for real a < 1,
Γ(a, z) = Θ

(
2|z|a−1e−z

)
.

Proof. For ρ = 0 the result is trivial. For ρ > 0, integration by parts gives the inte-
gral as 1/z + (ρ/z)Θ(1/ρ). The second result follows immediately from the alternative
representation above. QED

The next lemma uses a standard gamma-recursion to bring gamma arguments of in-
terest into the zone of applicability of Lemma 13:
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Lemma 14 For real a, integer m ≥ max(0, a− 1), <(z) ≥ 0, z 6= 0, we have an effective
expansion

Γ(a, z) = za−1e−z
(

1 +
(a− 1)
z

+ · · ·+ (a− 1) · · · (a−m+ 1)
zm−1

+ Θ : 2 · (a− 1) · · · (a−m)
|z|m

)
.

In particular, for integer M ≥ 0, <(z) ≥ 0, z 6= 0 and |z| ≥ 2M − 1, we have

Γ(M + 1/2, z) = Θ
(
2|z|M−1/2e−z

)
.

Remark: Results such as these on incomplete-gamma errors appear in various texts on
special functions, e.g., [22, §. 2.2, p. 110]. In the present treatment we have stated the
bounds in a manner and style consistent with the rest of the present analysis.

Proof. The well known incomplete-gamma recursion, [1], for integer-depth m ≥ 0 yields

Γ(a, z) = za−1e−z
(

1 +
(a− 1)
z

+ · · ·+ (a− 1) · · · (a−m+ 1)
zm−1

)
+(a− 1) · · · (a−m)Γ(a−m, z).

For real a < 1, take m ≥ 0, whence Lemma 13 gives the error term as Θ : 2(a− 1) · · · (a−
m)za−m−1e−z. Otherwise, take m = ba+ 1c and |z| > 2(a− 1) in which case

Γ(a, z) = za−1e−z ·Θ : 1 + 1/2 + 1/22 + · · ·+ 1/2m−1 + 2/2m

and the sum here is Θ(2). Finally, the assignment a := M + 1/2 yields the final theta
bound as corollary. QED

The results of the present section may now be applied to a general, effective expansion
of the I-integral whenever <(p) is sufficiently positive.

Theorem 7 (Effective I expansion) For the integral

I(p, q) := I(p, q,−π/2, π/2) =
∫ π/2

−π/2
e−iqωep cosω dω,

assume an integer expansion order N ≥ 1. Assume φ := arg(p) ∈ (−π/2, π/2) and
conditions

<(p) ≥ 2N + 1, <(p) ≥ 2π|q|2.

Then we have an effective expansion

I(p, q) =
√

2π
p
ep

{
N−1∑
k=0

gk(−2iq)
k! 8k

1
pk

+ Θ :
√

8
πp

e−p cosh
(π

2
|q|
)

(48)

+
gN (−2iq)
N ! 8N

1
pN

(
1 + Θ : uN secN+1/2 φ

)}
, (49)
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where the gk are as in the cosh-arc expansion (37), and we may take

uN := 1 + 2N +
2N+1Γ(N + 1)√
πΓ(N + 1/2)

; (50)

however, with the extra condition N ≥ 4|q|2 − 1, taking uN := 1 suffices.

Proof. Insertion of the series of Lemma 12 into representation (41) results in

I(p, q) = 4ep
{

N∑
k=0

gk(−2iq)
(2k)!

Bk(p) +
gN (−2iq)

(2N)!

∫ 1/
√

2

0
x2NTN (−2iq, x)e−2px2

dx

}
,

where the Bk(p) are given by (43). The sum over k ∈ [0, N ] here is thus

1
2

N∑
k=0

gk(−2iq)
(2k)!

Γ(k + 1/2)
(2p)k+1/2

+ Θ : e−p
N∑
k=0

|gk(−2iq)|
(2k)!

1
2k+1/2p

,

where the Θ-term here follows from Lemma 14 on our condition <(p) ≥ 2N + 1. But this
very Θ-term is bounded above by

e−p

p
√

2

N∑
k=0

gk(2|q|)
(2k)!

1
2k

=
e−p

p
cosh

(
2|q| arcsin

(
1√
2

))
,

so we have settled the summation and the cosh(π|q|/2) term in (48). Now consider the
integral term

I0 :=
∫ 1/

√
2

0
x2NTN (−2iq, x)e−2px2

dx.

Define γ := |q|−1
√

(N + 1)/8. If γ ≥ 1/
√

2 then by Lemma 12 we know TN = Θ(1) and
our theorem follows in the uN := 1 case. Otherwise, γ < 1/

√
2 and we bound I0 using

two integrals

|I0| ≤
∫ 1/

√
2

0
x2Ne−2<(p)x2

dx+
∫ 1/

√
2

γ

(√
2 x2N+2 + 2|q| x2N+1

)
e2|q| arcsinx−2<(p)x2

dx.

From Lemma 1 we know that the exponent here can be taken to be π|q|x/
√

2− 2<(p)x2.
For the assignments α := π|q|/

√
8, β := 2<(p) we have β > 4α/γ so that by Lemma 2

we have a bound

I0 ≤ 1
2

Γ(N + 1/2)
(2<(p))N+1/2

+
√

2 VN+1(α, β, γ) + 2|q| VN+1/2(α, β, γ)
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≤ 1
2

Γ(N + 1/2)
(2<(p))N+1/2

+ 2N
Γ(N + 3/2)

(2<(p))N+3/2
+ 2N+1|q| Γ(N + 1)

(2<(p))N+1
.

Using |q|2 ≤ <(p)/(2π), <(p) ≥ 2N + 1, and writing <(p) = p cosφ yields the theorem
with the N -dependent uN form.

QED

Note that the second (cosh) term of the expansion in Theorem 7 is relatively expo-
nentially small, in that it decays like e−<(p), while the last term is a typical, effective
“correction” to the asymptotic sum over k ∈ [0, N ].

6 Effective asymptotics for L
(−a)
n (−z)

At last we are in a position to provide explicit terms for Laguerre expansions in the sub-
exponential-growth regime, which regime turns out to be precisely characterized by the
parameter-pair requirement: (a, z) ∈ D.

First, for convenience we recapitulate the thresholds for sufficiently large m := n + 1
from our previous theorems, and add some more:

m0 := |z|/4, m1 := 5
(
|<(z)|+ (|=(a)|+ |=(z)|/2)2

)
,

m2 := <(a), m3 := −(5/4)|z| cos θ, m4 = 4|z|, m5 := |z|(1 + |a|+ |z|/2)2,

m6 := (2N + 1) sec2(θ/2)/|z|, m7 := 4π2 sec2(θ/2)(|q|+ 3N − 3)4.

Here, θ := arg(z) as before, while m6,m7 assume an asymptotic expansion order N ≥ 1
in what follows. (We are aware that some of the mi are masked by others; however it is
best to assume all of the mi are in force, because previous, partial results do depend on
particular thresholds.)

Before delving into our main result, let us remind ourselves of previous nomenclature:

gk(τ) :=
k∏
j=1

(
(2j − 1)2 + τ2

)
, (51)

ak := (1 + a)(−1)k
(
v
√
z

2

)k
+
(
1− (−1)k

) k

k + 2

(
v
√
z

2

)k+2

, (52)

∞∑
h=0

Ahx
h := exp

∑
k≥1

ak
k
xk

 , (53)

Ah =:
h∑
u=0

αh,u(a, z)vh+2u. (54)

Note that the αh,u coefficients are thus implicitly defined, in terms of the original ak
functions. Notationally, we may write αh,u = [vh+2u]Ah(v), to indicate that we select the
coefficient of vh+2u.
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6.1 The general sub-exponential expansion

Using Theorem 7 with p := 2
√
mz, and inserting this into formula (30), we arrive at our

desired effective Laguerre expansion.

Theorem 8 (Effective Laguerre expansion) Assume (a, z) ∈ D. For asymptotic ex-
pansion order N ≥ 1, and m := n + 1 sufficiently large in the sense m > maxi∈[0,7]mi,
we have the expansion

L(−a)
n (−z) =

1
2
√
π

e−z/2e2
√
mz

z1/4−a/2 m1/4+a/2


N−1∑
j=0

Cj

mj/2
+

CN
mN/2

+ E1 + E3,N

 , (55)

where the expansion coefficients Cj are given finitely by

Cj :=
j∑

k=0

1
16k k!

1
zk/2

j−k∑
u=0

αj−k,u(a, z) gk(−2i(a+ j − k + 2u)), (56)

in terms of (51) and (53), while the error term CN is bounded as

CN = Θ :
N∑
v=1

1
|z|v/216vv!

(
1 + uv secv+1/2 θ

2

)N−v∑
u=0

|αN−v,u(a, z) gv(−2i(a+N − v + 2u))|

+ Θ : 4(m5/4)N/2 sec1/2 θ

2
,

with uv taking the v-dependent form of (50) in Theorem 7.
The term E1 is sub-exponentially small (from Theorem 4), as is

E3,N = Θ :

√
4

π
√
mz

e−2
√
mz

N−1∑
h=0

1
mh/2

h∑
u=0

|αh,u(a, z)| cosh
(π

2
|a+ h+ 2u|

)
.

Proof. For brevity we leave out the details—all of which are straightforward, if tedious
applications of the previous theorems and formulae. QED

We now have a resolution of the domain of sub-exponential growth, as:

Corollary 1 For (a, z) ∈ D, the Laguerre polynomial grows sub-exponentially, in the
sense that for order N ≥ 1, and any ε > 0,

L(−a)
n (−z) = Sn(a, z)


N−1∑
j=0

Cj

mj/2
+O

(
1

mN/2

)
+O

(
e−(2−ε)

√
m|z| cos(θ/2)

) ,

with all coefficients and the implied big-O constant effectively bounded via our previous
theorems. Moreover, for (a, z) 6∈ D, the large-n growth is not sub-exponential. Thus, the
precise domain of sub-exponential growth is characterized by (a, z) ∈ D.
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Proof. The given sub-exponential formula is a paraphrase of Theorem 8. Now assume
z ∈ (−∞, 0]. We already know z = 0 does not yield such growth (see (2). Now for z
negative real, note that the integrals in (17, 19) are both decaying in large m. Finally,
the integral in (16) has phase factor | exp(2

√
mz cosω)| ≤ 1, and Lemma 6 show that c1

also cannot grow sub-exponentially in m.
QED

This corollary echoes, of course, the classical Perron result (7), and we again admit
that historical efforts derived the Cj coefficients in principle. What we have done up to
this point is

a) established such Laguerre asymptotics over the full sub-exponential-growth domain
of (a, z) ∈ D;

b) established rigorous, explicit (i.e. effective) errors over said domain;

c) provided in passing an algorithm for generating the Cj and, perforce, effective bound-
ing constants.

We now turn to the algorithmic and computational aspects of the general asymptotics.

6.2 Algorithm for explicit asymptotic coefficients

Theorem 8 indicates that, to obtain actual Cj coefficients, we need the cosh-arc numbers
gk(τ) and the αh,u(a, z) coefficients. Observe that the chain of implications (51) amounts
to an algorithm for generation of the Ck. All of this can proceed via symbolic processing,
noting that v is simply a place-holder throughout.

Remarkably, there is another approach—a fast algorithm that bypasses much of the
symbolic tedium. First, we have an explicit recursion for Ah, with A0 := 1, as

Ak =
1
k

k−1∑
j=0

Aj ak−j (57)

as follows from differentiating (53) logarithmically, and then comparing terms. Second,
when we use (54) together with (57), we obtain a recursion devoid of the symbolic place-
holder v, as

αk,u =
1
k

k−1∑
j=0

(αj,ubk−j + αj,u−1dk−j) , (58)

where these new recursion coefficients are

bh := (−1)h(1 + a)
(√

z

2

)h
,

dh :=
(
1− (−1)h

) h

h+ 2

(√
z

2

)h+2

.
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It is important that in practice we define α0,0 := 1 and force any αj,u with u > j or u < 0
to vanish. In this sense, the collection of αk,u make up a lower-triangular matrix, e.g. the
entries for k ≤ 3 appear thus:

1 0 0 0
− (a+1)

2 z1/2 1
12z

3/2 0 0
a2+3a+2

8 z − (a+1)
24 z2 1

288z
3 0

−a3+6a2+11a+6
48 z3/2 5a2+15a+16

480 z5/2 −a+1
576 z

7/2 1
10368z

9/2

 ,

where α3,3 is the lower-right element here.
These observations lead to a fast algorithm for computation of the asymptotic coeffi-

cients:

−−−−−

Algorithm (Fast computation of Laguerre coefficients.) For given (a, z) ∈ D and
desired expansion order N , this algorithm returns the asymptotic coefficients (Ck : k ∈
[0, N ]) of relation (56), Theorem 8.

1) Set α0,0 := 1 and for desired order N , calculate the lower-trianglar matrix elements
(αk,u : 0 ≤ u ≤ k ≤ N) via a recursion such as

α(k, u){
if(k == 0) return δ0,u;
return 1

k

∑k−1
j=0 (αj,ubk−j + αj,u−1dk−j) ;

}
or use an unrolled, equivalent loop (i.e., one may generate the left-hand column of the
α-matrix, then fill in one row at a time, lexicographically).

2) Use the recursion gk(τ) =
(
(2k + 1)2 + τ2

)
gk−1(τ) and the lower-triangular matrix of

α values to generate the C coefficients via (56).

−−−−−

We observe that the expensive sums in this algorithm are all acyclic convolutions. Thus,
for numerical input (a, z) the algorithm complexity turns out to be O

(
N2+ε

)
arithmetic

operations, with the “2” part of the complexity power arising from the area of the lower-
triangular sector.7

We employed the algorithm to generate exact asymptotic coefficients as follows:

C0 = 1,

C1 =
−12a2 − 24za+ 4z2 − 24z + 3

48
√
z

,

7For example, floating-point FFT-based convolutions of length L require O(L logL) operations, and we are
calling that O

(
L1+ε

)
.
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C2 =
1

4608z
(
144a4 + 576za3 + 480z2a2 + 1728za2 − 360a2 − 192z3a

+ 1152z2a+ 1584za+ 16z4 − 192z3 + 312z2 + 432z + 81
)
,

C3 =
1

3317760z3/2

(
−8640a6 − 51840za5 − 95040z2a4 − 259200za4 + 75600a4

−34560z3a3 − 622080z2a3 − 388800za3 + 31680z4a2 − 103680z3a2 − 1395360z2a2

−129600za2 − 139860a2 − 5760z5a+ 69120z4a+ 60480z3a− 1192320z2a+ 100440za

+320z6 − 5760z5 + 7632z4 + 129600z3 − 267300z2 + 48600z + 30375
)
,

and so on.
Note that the C1 form here agrees with the PAMO coefficient in (9). We were able

to generate the full, symbolic C64(a, z) in about one minute of CPU on a typical desktop
computer. To aid future researchers, we report that numerator of C64 has degree 128 in
both a, z, while the denominator is

519667715662517012461660216412794662396986519336129512687040904512259

134698859029589268254378668537757499729050302014891552685362781283752

17277745741145251371621775626061919271284199391232000000000000000000

0000000

It is not unexpected that every prime number not exceeding 64 divides this denominator.
Attempts to simplify the formidable, bivariate Ck(a, z) coefficients led us also to the

following:

Conjecture 1 Given index k ≥ 1, consider the specific parameter assignments a in
{−1/2,−3/2, . . . ,−1/2− (k − 1)}. Then for any such value of a, the coefficient Ck(a, z)
factors into a positive power of z times a rational polynomial in z, such that the total
degree in z is 3k/2.

For instance with k = 4 we obtain, with total degree 6 in each case:

C4(−7/2, z) =
z2
(
5z4 + 300z3 + 4842z2 + 14580z − 63747

)
2488320

.

C4(−5/2, z) =
z2
(
5z4 + 180z3 + 882z2 − 10692z − 39771

)
2488320

,

C4(−3/2, z) =
z
(
5z5 + 60z4 − 1038z3 − 6804z2 + 17253z + 29160

)
2488320

,

C4(−1/2, z) =
z
(
5z5 − 60z4 − 918z3 + 6804z2 + 16605z − 48600

)
2488320

.

It seems very likely that Conjecture 1 is a harbinger of much more subtle structure
that we have not yet been able to abstract.
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6.3 Generating and verifying effective bounds

For the first nontrivial effective bound, we can employ the rigorous bound C1 in Theorem
8, with N = 1, to get an effective version of the original asymptotic (3), as

L(−a)
n (−z) = Sn(a, z)

(
1 +

C1√
m

+ E1 + E3,1

)
,

with

C1 = Θ :

∣∣1− 4a2
∣∣

16|z|1/2

(
1 + 6 sec3/2 θ

2

)
+ 2|z|1/2(1 + |a|+ |z|/2) sec1/2 θ

2
,

and we remind ourselves that E1, E3,1 are both sub-exponentially small.
At last we have an effective numerator, then, for the 1/

√
m asymptotic term. Though

this effective numerator is almost surely nonoptimal, we are evidently on the right track,
because the exact C1 asymptotic coefficient above has very much the same form as does
our C1 here (i.e., same degrees of appearance for a, z, and similar coefficients). And, it is
easy to see that C1 is an upper bound on |C1| itself, as must of course be true.

In spite of the unwieldy character of the exact Ck coefficients, it is possible to verify
numerically the asymptotic expansion, at least to a few orders. One good worked example
is to take order N = 4, giving the partial series

L
(−a)
n (−z)
Sn(a, z)

∼ 1 +
C1

m1/2
+
C2

m
+

C3

m3/2

and compare direct summation of (1) with the right-hand asymptotic piece. The results
are (note that the Sn denominator here is of order 1064):

L
(−1−i)
5000 (−1 + i)

S5000
≈ 0.98514574− 0.0080754i,

from the direct sum, while the righthand-side sum over the m−k/2 gives

≈ 0.98514577− 0.0080755i.

This amounts to an absolute error of ≈ 9.80 ·10−8, or more usefully stated, ≈ 2.45187/m2.
The experimental situation is good, since the first missing asymptotic coefficient is
C4(1 + i, 1− i) ≈ 2.48.

However, regarding rigor, more important than these good approximations is the ef-
fective coefficient C4, which for the current parameters we get from Theorem 8 as

C4(1 + i, 1− i) = Θ : 202.63.

This amounts to a little over 2 decimals of penalty, in trade for rigor. If we ignore the
sub-exponentially small error terms E1, E3,4 (which are well below the 7-digit accuracy
threshold) then we find that our 7-decimal-accurate asymptotic piece is rigorously correct
to 4 places. In a word: One can prove in this way that

L
(−1−i)
5000 (−1 + i) = ((0.8053± 0.0001) + (1.1483± 0.0001) i) · 1064,
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and it should be no surprise that this partial-but-rigorous asymptotic approach is radically
faster—for such large n—than naive direct summation.8

So this is our technique for obtaining provable results about the large-n behavior of
Ln. We have mentioned research motives in Section 1.1. One additional application might
be to use such effective bounds to rule out zeros of Ln in the crossed (a, z)-plane, that is,
to locate sufficiently large m such that the first terms 1+C1/

√
m cannot be overwhelmed

by the rest of the terms.

7 The exp-arc method and oscillatory behavior

Though the exp-arc method has succeeded in establishing rigorous asymptotics for sub-
exponential growth, there remains the issue of the Fejér form (6) for z 6= 0 on the cut
(−∞, 0]. Such oscillatory behavior can indeed be dealt with, but separate techniques
come into play. For one thing, contour integrals must be handled differently.

7.1 Remarks on the oscillatory Laguerre regime

For this next analysis we shall proceed non-rigorously, in that effective bounds are prob-
lematic for z negative real. Yet, we shall still gain insight, and find some ways to provide
at least some low-order bounds.

We remind ourselves that even on z ∈ (−∞, 0) the contour prescription of Figure 1 is
valid, and the Laguerre polynomial is exactly the sum c1+d1+e1, with R :=

√
m/|z| > 1/2

being the only requirement for contour validity. However—and this is important—the
dominant contribution (22) has to change, to involve an expanded integration interval; in
fact, now we must use the contour integral c1 itself as the main contribution:

c1 :=
1
2π
r−ae−z/2

∫ 3π/2

−π/2
Hm

(
a, z, e−iω

)
e2
√
mz cosω dω, (59)

where we have used our convention θ := arg(z) = π for negative real z. This wider
integration range is necessary because the procedure of Theorem 3, which peeled off the
sub-exponentially small c2 integral, fails when exp(2

√
mz cosω) has constant magnitude,

as it does for negative real z. Another way to view this is that we need to include two
stationary points for cosω in the integration interval, namely ω = 0, π.

These observations lead to an analysis of the wider integral∫ 3π/2

−π/2
e−iqωep cosω dω = I(p, q) + e−iπq I(−p, q),

easily established by bisecting the range [−π/2, 3π/2]. In turn, the main contributor to

8We recall that the direct series (1) admits of various accelerations.
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Laguerre evaluations should be, rather than (30), the form

c1 = Sn(a, z) E4,N +
1
2π
r−ae−z/2

N−1∑
h=0

1
mh/2

h∑
u=0

αh,u(a, z) (60)

×
{
I(2

√
mz, a+ h+ 2u) + e−iπ(a+h+2u)I(−2

√
mz, a+ h+ 2u)

}
where E4,N is an N -th order error term which we shall not calculate here. These machina-
tions do correctly give the leading (cosine) term of the classical Fejér expansion (6), and
presumably, in analogy with Theorem 8, yield closed forms for the general coefficients in
the Perron form for negative real z [30, Theorem 8.22.2]. Because we are not claiming
rigor in this subsection—and especially as we do not yet have a comprehensive exp-arc
approach to effective bounds in this case—we simply claim without proof, on the basis of
(60), that the correct generalization of the Fejér series (6) for z on the open negative cut
(−∞, 0), and any complex a, is

L(−a)
n (−z) ∼ e−z/2

√
π(−z)1/4−a/2 m1/4+a/2

(61)

×

{( ∞∑
k=0

Ak
mk

)
cos
(
2
√
−mz + aπ/2− π/4

)
+

( ∞∑
k=0

Bk
mk+1/2

)
sin
(
2
√
−mz + aπ/2− π/4

)}
,

where these oscillatory-series coefficients are directly related to the coefficients in Theorem
8 by

Ak := C2k(a, z),

Bk := iC2k+1(a, z).

It turns out that for a real, every Ak, Bk is then real, whence the asymptotic has all real
terms. An important observation is relevant here: The aforementioned Szegö Theorem
8.22.2 for the oscillatory Laguerre mode is stated in a fashion structurally different from
our asymptotic (61); for one thing we are conjecturing that Sezgö’s own Aodd, Beven—
which are not defined quite like ours here—vanish.9

We did perform numerical experiments on the expansion (61). A worked example is
for n = 2880, a = −1 + i, z = −16, for which we calculated the prefactor P , the obvious
angle χ, and the coefficients A0, A1, A2, B0, B1 to obtain

L
(1−i)
2880 (16) ≈ P ·

{(
1 +

C2

m
+
C4

m2

)
cosχ+

(
iC1

m1/2
+

iC3

m3/2

)
sinχ

}
= (2.30 . . . ) + (0.67839 . . . ) i,

correct to the implied precision. Note that the imaginary part is considerably more
accurate—one of the ttypical complicating effects of allowing complex a parameter—
and signaling the considerable difficulty of effective oscillatory expansions for general
parameters.

9Our oscillatory asymptotic (61) has been verified to several terms by N. Temme; also he verifies our claim
that the classical Szegö coefficients do vanish for the parities indicated.
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7.2 Application of the exp-arc method to Bessel functions

The history of Bessel-function asymptotics is one of the great success stories in the annals
of analysis. As early as 1823, Poisson developed the beginnings of Bessel asymptotics [36]
[32], and eventually Hankel developed the classic, complete asymptotic series [1, §9.2.5],
and effective bounds on error terms (for certain parameter domains) are well known, and
in many cases optimal [36].

It is instructive to explore, at least partially, the application of our exp-arc method to
Bessel expansions. We recall (34), (35) which we repeat here:

Jn(z) =
1
2π

(
e−iπn/2I(iz, n) + eiπn/2I(−iz, n)

)
, (62)

In(z) =
1
2π

(I(z, n) + (−1)nI(−z, n)) , (63)

both valid for integer n.

7.3 Asymptotics for Bessel functions In, Jn

Because our present methods are geared toward large-n growth, the modified Bessel func-
tion In, which for real argument is non-oscillatory, is easier to analyze with the exp-arc
method. Theorem 7 implies an asymptotic expansion, based on our absolutely convergent
series for Re(z) > 0, according to

In(z) =
2
π

∑
k≥0

gk(−2in)
(2k)!

{
ezBk(z) + (−1)ne−zBk(−z)

}
(64)

∼ ez√
2πz

∞∑
k=0

gk(−2in)
k! 8k

1
zk
,

where the first sum is convergent, exact, and the second sum agrees with the classical
Hankel asymptotic [36] [1]. Moreover, under the conditions θ := arg(z) ∈ (−π/2, π/2),
<(z) ≥ max

(
2N + 1, 2πn2

)
, and N > 4n2 − 1, the error on truncating the asymptotic

series at N − 1 summands inclusive is, again by Theorem 7,

Θ :
gN (−2in)
N ! 8N

1
zN

(
1 + secN+1/2 θ

)
,

plus, of course, some sub-exponential terms. Thus, typical rigorous error bounds in the
literature are recovered, or at least suggested (e.g., real positive z yields a classic result
that the first missing term with z−N carries only a factor-of-2 magnitude penalty).

Now to a brief analysis of frank oscillatory behavior. Asymptotics for Jn(z),<(z) > 0
are possible via the exp-arc approach, but the details are rather intricate. Let us give at
least an example of how an exp-arc series might be used to establish bounds. First, there
is a useful lemma that often applies in oscillatory cases:
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Lemma 15 Let F (x) be real, twice differentiable, with |F ′′(x)| ≥ ρ > 0 for x on real
interval (a, b). If a real function G(x) on said interval has G/F ′ is monotonic, |G| ≤M ,
then ∫ b

a
G(x)eiF (x) dx = Θ :

8M
√
ρ
.

Proof. This is proved in [33]. QED

Then, we follow with an implication specific to the present work:

Lemma 16 For any complex p with <(p) ≥ 0, and positive real ν, we have

Bν(p) :=
∫ 1/

√
2

0
x2νe−2px2

dx = Θ :
9
2ν

1√
|p|
.

Proof. We establish two different upper bounds. First, if <(p) > 0 the integral is bounded
as

Bν(p) = Θ :
1
2ν

∫ ∞

0
e−2<(p)x2

dx =
1

2ν+1

√
π

2<(p)
.

Second, if =(p) > 0 we may use Lemma 15, with G := x2νe−2<(p)x2
and F := −2=(p)x2.

Now this G has at most two branches of monotonicity, so we conclude

Bν(p) = Θ :
1
2ν

8√
|=(p)|

.

Then we simply observe that 9 · 2−ν |p|−1/2 is always an upper bound for one of these two
bounds.

QED

With these lemmas in hand, we can peel off some desired number of summands from
(41) and perform integration by parts on the tail of the sum, as in the following example
where just one term is peeled off:

I(p, q) = 4ep
(
B0(p) +

∫ 1/
√

2

0
f(x)e−2px2

dx

)
, (65)

f(x) :=
cos(2q arcsinx)√

1− x2
− 1.

Then integration by parts yields

I(p, q) = 4ep
(
B0(p)−

1
4p

f(x)
x

∣∣∣∣1/
√

2

x=0

+
1
4p

∫ 1/
√

2

0

d

dx

f(x)
x

dx

)
.

These machinations lead to
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Lemma 17 For <(p) > 0 and any complex q we have a first-order expansion with effective
error bound:

I(p, q) =
√

2π
p
ep − 2

p
cos
(π

2
q
)

+ Θ :
√

2
p2

+ Θ : C(q)
ep

p3/2
,

where
C(q) := 9

∑
k≥1

|gk(−2iq)| (2k − 1)
(2k)! 2k

.

Proof. The proof is a straightforward application of relation (44), Lemma 14, and Lemma
(16).

QED
With the above ideas we have, at least, a first-order effective bound for Bessel functions
in the oscillatory regime:

Theorem 9 For integer n and <(z) > 0, we have an effective Bessel asymptotic, in the
form

Jn(z) =

√
2
πz

cos
(
z − π

2
n− π

4

)
+Θ :

√
2
π

1
|z|2

+Θ :
D(n)
|z|3/2

,

where
D(n) :=

9
π

∑
k≥1

|gk(−2in)| (2k − 1)
(2k)! 2k

.

Moreover, D(n) can be given a closed form. In particular, for J0(z) the k-sum evaluates
to 2, while for J1(z) the sum is 4

√
2− 2.

Proof. The proof follows from the sum (62) and Lemma 17. The specific evaluations
of the k-sum arise from analyzing (d/dx)f/x in relation (65), noting that because of the
structure of the gk, one only need find the k where gk changes sign, thereby evaluating at
most two sums without absolute-valuing every summand.

QED
Is this Theorem 9 as strong as historical knoeledge, such as the known effective bounds
on the celebrated Hankel expansion—as expounded by Watson [36, Ch. VII]? No, but we
have shown that effective bounds in the presence of oscillation can indeed arise from the
exp-arc approach. Theorem 9 is thus displayed to convey the basic ideas; extension of our
1st-order effective term to higher orders, via the exp-arc method per se, remains an open
research problem.
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7.4 Universally convergent algorithm for Jn(z)

Computationalists have know for decades that one way to evaluate Bessel functions uni-
formly in the argument z is to use the standard ascending series for small |z|, but an
asymptotic series for large |z|. However, via the exp-arc method one can establish a con-
verging series whose evaluation only involves a single error-function evaluation, followed
by recursion and elementary algebra. In fact, the relations (44), (45) can be used to
calculate Jn(z) from relation (62) via the sum

Jn(z) =
2
π

∞∑
k=0

gk(−2in) (bk cosχ− ck sinχ) , (66)

with angle
χ := z − πn/2− π/4,

and the coefficients bk, ck determined by

bk := Bk(iz)eiπ/4 +Bk(−iz)e−iπ/4,

ick := Bk(iz)eiπ/4 −Bk(−iz)e−iπ/4.
Note that if z is real then each bk, ck is real, whence our series here has all real terms.
Note that our recursion (45) likewise ignites a recursion amongst the bk, ck.

Note that (66) is actually the classical Hankel asymptotic if we replace Bk by its first
term in (44), namely (1/2)(2iz)−k−1/2Γ(k + 1/2); however, we already know that the
sum (66) is always convergent. It is remakakble that we are using the same structure as
the classical asymptotic, yet convergence for all complex z is guaranteed. Moreover, the
Bk(iz) are independent of the order n and so can be re-used if multiple Jn(z) are desired
for fixed z.

As just one experiment, we found that J12(8008 + 45i) is evaluated to 25 good deci-
mals. using 60 terms (i.e. k ∈ [0, 60]) of the convergent sum. The primary points are a)
the scheme is unconditionally convergent, and b) the bk, ck can be rapidly evaluated via
recursion, after a single evaluation of erf

(√
iz
)
. Incidentally, erf can be calculated via

continued fraction, if one wants to avoid recourse to the standard ascending-asymptotic
change of gears.10 In this way, one has a universal Bessel-computation scheme happily
devoid of asymptotic accuracy and stability issues.

7.5 Hadamard expansions and the work of R. Paris

Those acquainted with the intricacies of Bessel theory may observe that convergent ex-
pansion (64) is at least reminiscent of the convergent Hadamard expansion found in [36,
p.204] for the modified Bessel function Iν , as

Iν(z) =
ez√

2πz Γ
(
ν + 1

2

) ∞∑
k=0

(
1
2 − ν

)
k

(2z)kk!
{Γ (k + ν + 1/2)− Γ (k + ν + 1/2, 2z)} (67)

10One might argue that due to possible asymptotic schemes for incomplete-gamma (i.e. erf()), one is not
truly avoiding the pitfalls of asymptotics. But this is wrong: It is known that incomplete-gamma (erf()) can be
evaluated with always converging continued fractions, for example.
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No. of summands K |In − (Hadamard)| |In − (exparc)|
32 10−7 10−13

64 10−9 10−23

128 10−10 10−42

256 10−11 10−81

Table 1: Comparison of Hadamard series (67) and exp-arc series (64) errors for Bessel evalu-
ation I4(10). The Hadamard series error behaves as K−3/2 while the exp-arc error behaves as
K−3/22−K (which is geometrical (linear) convergence) [23].

There are a few differences between this Hadamard expansion and our exp-arc form (64)—
for example we have given our convergent sum only for integer ν. Moreover, we have
“tuned” our nomenclature and recursion descriptions to computational advantage—we
have not worked out the entire computational scenario with the Hadamard form, but as
observed the exp-arc expansion is geometrically convergent, while the Hadamard expan-
sion starts to slow down. Also note the convergent analogue (66) for Jν , integer ν. To
be more concrete for the Bessel evaluation of I4(10), we have displayed various respective
errors in Table 1. Incidentally, R. Paris informs us that the exp-arc expansion (64) can be
transformed into a slowly converging Hadamard expansion—one very similar to (67)—via
the classical gamma-duplication formula.

The whole research area of convergent expansions related to classical, asymptotic ones
has been pioneered in large part by R. Paris, whose works cover real and complex domains,
saddle points, and the like [24] [25] [26] [27]. It may well be possible to develop effective
expansions—of the type in the present treatment—along the lines of the Paris theory.

For general indices ν, it may also be possible to provide an exp-arc series using a
representation valid for all cases (<(z) > 0) or (<(z) = 0 and <(ν) > 0), namely [36, p.
176]

Jν(z) =
1
π

∫ π

0
cos(νt− z sin t) dt− sin(νπ)

π

∫ ∞

0
e−νt−z sinh t dt, (68)

with a corresponding representation

Iν(z) =
1
π

∫ π

0
ez cos t cos(νt) dt− sin(νπ)

π

∫ ∞

0
e−νt−z cosh t dt, (69)

itself valid for the same cases of z, ν. One wonders whether an exp-arc approach can be
used to resolve the integrals here—which contribute when ν is not an integer—as exp-arc
series.

8 Open problems

• How might one proceed with the exp-arc theory to obtain effective error bounds for
oscillatory Laguerre modes, and-or oscillatory Bessel modes? We know that previous
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researchers have described how to give effective bounds in these cases (e.g., to our
asymptotic (61), as in [30, §8.72]) but once again we stress: How can this be done
explicitly, and for full parameter ranges?

• Though we did provide an analytic/symbolic algorithm for such, is there any hope
for a fully closed form for the asymptotic-series coefficients Ck(a, z) in Ln/Sn ∼
1 + C1/m

1/2 + C2/m+ C3/m
3/2 + . . . ? And what about our Conjecture 1?

• Where are the zeros in the complex z-plane—for fixed a—of L(−a)
n (−z)? Are “most

of” the zeros along some a-dependent ray, in some sense? Note that effective er-
ror bounds conceivably could help in addressing this problem—by ruling out vast
zero-free regions. There is a considerable literature on this zero-free-region topic,
especially for polynomials in real variables. For example, with a := 0 the Laguerre
zeros are all real and negative; see [20, Ch. X] and references therein. There is also
an interesting connection between Laguerre zeros and eigenvalues of certain (large)
matrices [10].

• How can the discrete iteration (10) be used directly to glean information about
sub-exponential growth? One would think that insertion of a formal asymptotic
form into the recursion would force certain relations between coefficients—but this
is easier said than done, at least for the current authors. One may ask the same
question for the Laguerre differential equation (12) as starting point. A promising
research avenue for a discrete-iterative approach to asymptotics is [38].

• It would be useful to establish the very most efficient way to calculate Jn(z) with
our converging series (66) and to know, for given arguments n, z how many terms of
the exp-arc sum yield b good bits in the answer for Jn(z). It should also be possible
to extract the classical ascending series for Jn directly from our converging series.

• Can the integral pieces of (68, 69) be resolved as exp-arc series, to provide even more
general, universally convergent I, J series (i.e. for noninteger ν)?

• Our highly efficient “keyhole” contour of Figure 1 was discovered experimentally.
What other analytical problems might be approached in this (rather unexpected)
fashion? For that matter, how might one properly use the celebrated Watson loop-
integral lemma with error term [22, Theorem 5.1] on our keyhole contour to obtain
similar effecive asymptotics?

• How can one go to arbitrary asymptotic-expansion orders with the exp-arc method
in the presence of oscillatory behavior; beyond, say, Theorem 9? If this is possible for
Bessel functions, it may well apply also to the more formidable Laguerre polynomials.

• What is the fastest was to evaluate the converging Bessel sum (66) to, say, extreme
precision? If the argument z is real, what is a good way to avoid complex arithmetic
per se for the evaluation of Γ(1/2, iz)—being as we know that all coefficients bk, ck
will end up real-valued?
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