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1 Introduction

The sinc function is a real valued function defined on the real line R by the following expression:

sinc(x) =





sinx

x
if x 6= 0

1 otherwise

This function is important in many areas of computing science, approximation theory, and numerical analysis.
For example, it is used in interpolation and approximation of functions, approximate evaluation of transforms
(e.g. Hilbert, Fourier, Laplace, Hankel, and Mellon transforms as well as the fast Fourier transform). It is
used in finding approximate solutions of differential and integral equations, in image processing (it is the
Fourier transform of the box filter and central to the understanding of the Gibbs phenomenon [12]), in signal
processing and information theory. Much of this is nicely described in [7].
The first explicit appearance of the sinc function in approximation theory was probably in the use of the
Whittaker cardinal functions C(f, h) to approximate functions analytic on an interval or on a contour. Given
a function f which is defined on the real line R, the function C(f, h) is defined by

C(f, h) =
∞∑

k=−∞
f(kh)S(k, h)

whenever the series converges, where the stepsize h > 0 and where

S(k, h)(x) =
sin[(

π

h
(x− kh)]

π

h
(x− kh)

,

that is, S(k, h)(x) = sinc
(π

h
(x− kh)

)
. See, for example, [11].

The object of this note is to study the behavior and properties of the following function

I(p) =
√

p

∫ ∞

0

∣∣∣∣
sin x

x

∣∣∣∣
p

dx

for 1 < p < ∞. Note that this function is only defined for p > 1, since
∫ ∞

0

sin x

x
dx is conditionally convergent.

Indeed ∫ ∞

0

sin x

x
dx =

π

2
while

∫ ∞

0

∣∣∣∣
sin x

x

∣∣∣∣ dx = +∞,

see [12].
This integral arises, for example, in the Lp approximation of real valued functions by Whittaker cardinal
functions, and is important in estimating the error made in the approximation. It also arises in many other
computational problems, and it is surprising that so little is known about it.
Various properties of the function I(p) are known. For example, the behavior of I(p) for large p is known:

lim
p→∞

I(p) = lim
p→∞

√
p

∫ ∞

0

∣∣∣∣
sin x

x

∣∣∣∣
p

dx =

√
3π

2

1



Figure 1: The function I on [2, 10]

This result, obtained independently by A. Meir and I. E. Leonard, is in principle not new (see equation 3).
We provide a self-contained proof below as part of our more general result in Theorem 1.

Also, for integer p, the integral ∫ ∞

0

(
sin x

x

)p

dx

can be calculated explicitly. In fact, for n ≥ 1 we have

∫ ∞

0

(
sin x

x

)n

dx =
1

(n− 1)!
· π

2n
·
bn

2 c∑

k=0

(−1)k

(
n

k

)(
n− 2k

)n−1

This result is most definitely not new, it can be found in Bromwich [4, Exercise 22, p. 518], where it is
attributed to Wolstenholme, and in many other places—including two relatively recent articles on integrals
of more general products of sinc functions [2, 3].
Thus, if p is an even integer, then we have a closed form expression for I(p), and in this case the values of
I(p) can be calculated exactly:

I(p) =
√

p

∫ ∞

0

(
sin x

x

)p

dx =
√

p · 1
(p− 1)!

· π

2p
·
b p

2 c∑

k=0

(−1)k

(
p

k

)(
p− 2k

)p−1
. (1)

In particular I(2) = π/
√

2, I(4) = 2π/3 and I(6) = 11
√

6π/40. That said, this sum is very difficult to use
numerically for large p. Not only are the rational factors growing rapidly but it contains extremely large
terms of alternating sign and consequently dramatic cancelations. For example

I(36) =
731509401860533204925821188658871713
1063081066500632194410149314560000000

π,

and I(10) = Q100 π where Q100 is a rational number whose numerator and denominator both have roughly
150 digits. Similarly I(12) = Q144 π where Q144 is comprised of 240 digit integers. We also note that
numerical integration of I(p) even to single precision is not easy and so (1) provides a very good confirmation
of numerical integration results. We challenge the reader to numerically confirm the limit at infinity to 8
places.
The behavior of I(p) for intermediate values of p is not fully established. It had been conjectured that I(p)
had a global minimum at p = 4, however, (very) recent computations using both Maple and Mathematica
suggest that the global minimum, and unique critical point, is at approximately p = 3.36... as illustrated in
Figure 1.

Although it is known that lim
p→1+

I(p) = +∞, and that lim
p→∞

I(p) =
√

3π
2 , it is not known precisely how the

asymptote y =
√

3π
2 is approached, although both numerical and graphical evidence strongly suggest the

following conjecture:

2



Figure 2: The function I and its limiting value on [2, 100]

Conjecture I is increasing for p above the conjectured global minimum near 3.36 and concave for p above
an inflection point near 4.469.

This is shown in Figure 2 in which the dashed line has height
√

3π
2 . Moreover, in Theorem 2 we shall prove

I(p) >

√
3π

2
2p

2p + 1
>

√
3π

2

(
1− 1

2p

)
, (2)

for all p > 1.
We conclude this introduction by observing that one can derive the existence of an asymptotic expansion for
I(p) from a general result of Olver [10] on asymptotics of integrals using critical point theory and contour
integration. Specialized to our case, [10, Theorem 7.1, p. 127] (with q = 1 and p = log(sin(x)/x) on [−π, π])
establishes the existence of real constants cs such that

I(p) ∼ 1
2
√

p

∫ π

−π

∣∣∣∣
sin(x)

x

∣∣∣∣
p

dx

∼
√

3π

2
− 3

20

√
3π

2
1
p

+
∞∑

s=2

cs
1
ps

+ · · · (3)

as p → ∞. From this one may deduce that I(p) is concave and increasing for sufficiently large values of
p—consistent with our stronger conjecture—as (3) may be differentiated termwise.

2 Our Main Results

In order to study the properties of the function I(p), we consider first the functions

ϕn(p) =
∫ ∞

0

(
log

∣∣∣∣
sin x

x

∣∣∣∣
)n

·
∣∣∣∣
sin x

x

∣∣∣∣
p

dx

for p > 1 and n a nonnegative integer. We write

ϕ(p) = ϕ0(p) =
∫ ∞

0

∣∣∣∣
sin x

x

∣∣∣∣
p

dx.

In Lemma 1 below we confirm that ϕ(p) is analytic in a region containing (1,∞) and that its n-th derivative
for p > 1 is given by ϕ(n)(p) = ϕn(p).

Then in Theorem 1 we shall use induction to prove the following result for n a nonnegative integer:

lim
p→∞

pn+
1
2 ϕ(n)(p) = (−1)n

√
3
2

Γ
(

n +
1
2

)
.
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The base case, n = 0, for our induction is established in Lemma 2 below. It uses Laplace’s method for
determining asymptotic behavior of an integral for large values of a parameter p, see, e.g., [6, p. 60].

Lemma 1 For p− 1 > z > 1− p,

ϕ(p− z) =
∞∑

n=0

(−1)nϕn(p)
zn

n!
.

In particular, ϕ(p) is analytic in a region containing (1,∞) and its n-th derivative for p > 1 is given by

ϕ(n)(p) = ϕn(p).

Proof. We have

ϕ(p− z) =
∫ ∞

0

∣∣∣∣
sin x

x

∣∣∣∣
p−z

dx =
∫ ∞

0

dx

∞∑
n=0

(
− log

∣∣∣∣
sin x

x

∣∣∣∣
)n

·
∣∣∣∣
sin x

x

∣∣∣∣
p

zn

n!
(4)

=
∞∑

n=0

∫ ∞

0

(
− log

∣∣∣∣
sin x

x

∣∣∣∣
)n

·
∣∣∣∣
sinx

x

∣∣∣∣
p

zn

n!
dx =

∞∑
n=0

(−1)nϕn(p)
zn

n!
, (5)

the inversion of sum and integral in (4) being justified as follows:
Case i. p− 1 > z ≥ 0. All the terms involved are nonnegative.
Case ii. 0 > z > 1− p. By Case i

ϕ(p− |z|) =
∫ ∞

0

dx

∞∑
n=0

(
− log

∣∣∣∣
sin x

x

∣∣∣∣
)n

·
∣∣∣∣
sin x

x

∣∣∣∣
p |z|n

n!
< ∞.

Thus (5) yields the Taylor series for ϕ(p− z) at z = 0, and the final conclusion follows.

Lemma 2

lim
p→∞

I(p) = lim
p→∞

√
pϕ(p) =

√
3π

2
. (6)

Proof. Let a > 0, then for p > 1 we have

I(p) =
√

p

∫ ∞

0

∣∣∣∣
sin x

x

∣∣∣∣
p

dx =
√

p

∫ a

0

∣∣∣∣
sin x

x

∣∣∣∣
p

dx +
√

p

∫ ∞

a

∣∣∣∣
sin x

x

∣∣∣∣
p

dx.

We show first that

lim
p→∞

√
p

∫ ∞

a

∣∣∣∣
sin x

x

∣∣∣∣
p

dx = 0. (7)

It suffices to consider the case 0 < a < 1; since for a ≥ 1, we have

√
p

∫ ∞

a

∣∣∣∣
sin x

x

∣∣∣∣
p

dx ≤ lim
b→∞

√
p

∫ b

a

1
xp

dx =
√

p

p− 1
· 1
ap−1

−→ 0

as p →∞.

Now, for a < x < 1, we have

0 <
sin x

x
<

sin a

a
< 1,

and it follows that

0 <
√

p

∫ ∞

a

∣∣∣∣
sin x

x

∣∣∣∣
p

dx ≤ √
p

∫ 1

a

∣∣∣∣
sin x

x

∣∣∣∣
p

dx +
√

p

∫ ∞

1

∣∣∣∣
sin x

x

∣∣∣∣
p

dx

≤ (1− a)
√

p

∣∣∣∣
sin a

a

∣∣∣∣
p

+
√

p

p− 1
−→ 0
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as p →∞. This establishes (7).

We next use the following easily proved results [9, 8]:

1− x2

6
≤ sin x

x
≤ 1− x2

6
+

x4

120
for all real x, (8)

and ∫ 1

0

(1− u2)p du =
√

π

2
Γ(p + 1)
Γ

(
p + 3

2

) . (9)

where the equality is a special case of a beta-function evaluation (see also [12, Theorem 7.69]). It follows
from (8) and (9) that

∫ √
6

0

∣∣∣∣
sinx

x

∣∣∣∣
p

dx ≥
√

6
∫ 1

0

(1− u2)p du =

√
3π

2
Γ(p + 1)
Γ

(
p + 3

2

) , (10)

and hence that

lim inf
p→∞

I(p) ≥ lim
p→∞

√
3π

2

√
p Γ(p + 1)
Γ

(
p + 3

2

) . (11)

Now, in order to get an appropriate inequality for the limsup, we note that for any w > 1 such that

W = 2
√

5

√(
1− 1

w

)
≤
√

6,

we have
sin x

x
≤ 1− x2

6w
for 0 < x < W, (12)

whence

∫ W

0

∣∣∣∣
sin x

x

∣∣∣∣
p

dx ≤
√

6w

∫ W√
6w

0

(1− u2)p du ≤
√

6w

∫ 1

0

(1− u2)p du =

√
3πw

2
Γ(p + 1)
Γ

(
p + 3

2

) . (13)

It follows from (7) and (13) that

lim sup
p→∞

I(p) ≤ lim
p→∞

√
3πw

2

√
p Γ(p + 1)
Γ

(
p + 3

2

) , (14)

and therefore from (11) and (14), for w > 1 we have

lim
p→∞

√
3π

2

√
p Γ(p + 1)
Γ

(
p + 3

2

) ≤ lim inf
p→∞

I(p) ≤ lim sup
p→∞

I(p) ≤ lim
p→∞

√
3πw

2

√
p Γ(p + 1)
Γ

(
p + 3

2

) . (15)

Letting p →∞ in (15), since for any a > 0, we have

lim
a→∞

√
a Γ

(
a + 1

2

)

Γ(a + 1)
= 1,

from [8, Problem 2, p. 45] or (23), we obtain
√

3π

2
≤ lim inf

p→∞
I(p) ≤ lim sup

p→∞
I(p) ≤

√
3πw

2
, (16)

for all w > 1. Finally, letting w → 1+, we get the desired equation (6).

We are now ready for our more general result.
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Theorem 1 For all natural numbers n we have

lim
p→∞

pn+
1
2 ϕ(n)(p) = lim

p→∞
pn+

1
2

∫ ∞

0

(
log

∣∣∣∣
sin x

x

∣∣∣∣
)n

·
∣∣∣∣
sin x

x

∣∣∣∣
p

dx

= (−1)n

√
3
2

Γ
(

n +
1
2

)
. (17)

Proof. The first equality was noted above. We proceed to establish equation (17) by induction. The proof
of the base case was given in Lemma 1.
For the inductive step of the proof, we assume that for a given nonnegative integer n, we have

lim
p→∞

pn+
1
2 ϕ(n)(p) = (−1)n

√
3
2

Γ
(

n +
1
2

)
.

It is easily verified that x < − log(1− x) <
x

1− x
for 0 < x < 1, and setting x = 1−

∣∣∣∣
sin t

t

∣∣∣∣
p

, that

1−
∣∣∣∣
sin t

t

∣∣∣∣
p

< − log
∣∣∣∣
sin t

t

∣∣∣∣
p

<

1−
∣∣∣∣
sin t

t

∣∣∣∣
p

∣∣∣∣
sin t

t

∣∣∣∣
p

for all but countably many values of t.

For q > p + 1, multiplying these inequalities by the nonnegative term

(−1)n

(
log

∣∣∣∣
sin t

t

∣∣∣∣
)n

·
∣∣∣∣
sin t

t

∣∣∣∣
q

,

we have

0 ≤ (−1)n

(
log

∣∣∣∣
sin t

t

∣∣∣∣
)n

(∣∣∣∣
sin t

t

∣∣∣∣
q

−
∣∣∣∣
sin t

t

∣∣∣∣
p+q

)
< −(−1)np

(
log

∣∣∣∣
sin t

t

∣∣∣∣
)n+1

·
∣∣∣∣
sin t

t

∣∣∣∣
q

< (−1)n

(
log

∣∣∣∣
sin t

t

∣∣∣∣
)n

(∣∣∣∣
sin t

t

∣∣∣∣
q−p

−
∣∣∣∣
sin t

t

∣∣∣∣
q
)

for the same values of t, and integrating over (0,∞) yields

(−1)n

(
ϕ(n)(q)− ϕ(n)(p + q)

)
≤ −(−1)npϕ(n+1)(q) ≤ (−1)n

(
ϕ(n)(q − p)− ϕ(n)(q)

)
,

and hence

(−1)n


qn+

1
2 ϕ(n)(q)

p qn+
1
2

− (p + q)n+
1
2 ϕ(n)(p + q)

p (p + q)n+
1
2


 ≤ −(−1)n qn+1+

1
2 ϕ(n+1)(q)

qn+1+
1
2

≤ (−1)n


 (q − p)n+

1
2 ϕ(n)(q − p)

p (q − p)n+
1
2

− qn+
1
2 ϕ(n)(q)

p qn+
1
2


 . (18)

Now let q = kp, where k > 2 is fixed, then (18) becomes

(−1)n


k qn+

1
2 ϕ(n)(q)− k (p + q)n+

1
2 ϕ(n)(p + q)

(1 + 1
k )n+

1
2


 ≤ −(−1)nqn+1+

1
2 ϕ(n+1)(q)

≤ (−1)n


k

(q − p)n+
1
2 ϕ(n)(q − p)

(1− 1
k )n+

1
2

− k qn+
1
2 ϕ(n)(q)


 .
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Next let q →∞, keeping k > 2 fixed, so that p →∞ and q−p = (k−1)p →∞. It follows from the inductive
hypothesis that

lim
q→∞

qn+
1
2 ϕ(n)(q) = lim

q→∞
(p + q)n+

1
2 ϕ(n)(p + q) = lim

q→∞
(q − p)n+

1
2 ϕ(n)(q − p) = (−1)n

√
3
2

Γ
(

n +
1
2

)
,

and therefore

k − k

(
1 + 1

k

)n+
1
2




√
3
2

Γ
(

n +
1
2

)
≤ lim inf

q→∞
(−1)n+1qn+1+

1
2 ϕ(n+1)(q) ≤ lim sup

q→∞
(−1)n+1qn+1+

1
2 ϕ(n+1)(q)

≤

 k

(
1− 1

k

)n+
1
2

− k




√
3
2

Γ
(

n +
1
2

)
. (19)

Since

lim
k→∞


k − k

(
1 + 1

k

)n+
1
2


 = lim

k→∞


 k

(
1− 1

k

)n+
1
2

− k


 = lim

t→0

1− (1 + t)−n− 1
2

t
= n +

1
2
,

it follows from (19) that

lim
q→∞

(−1)n+1qn+1+
1
2 ϕ(n+1)(q) =

√
3
2

(
n +

1
2

)
Γ
(

n +
1
2

)
=

√
3
2

Γ
(

n + 1 +
1
2

)
,

and this completes the proof of the inductive step.

3 Final Remarks

Our proof of Theorem 1 shows both that

lim
p→∞

pn+
1
2 ϕ(n)(p) = an (20)

exists and determines the value of an. If we know in advance that the limit exists for every nonnegative
integer n, then we can use Lemmas 1 and 2 to write

lim
p→∞

√
pϕ(p(1 + x)) = lim

p→∞

∞∑
n=0

pn+
1
2 ϕ(n)(p)

xn

n!
=

√
3π/2√
1 + x

for 1− 1
p > x > 1

p − 1, and then justify the exchange of limit and sum, and expand the final term to obtain

∞∑
n=0

an
xn

n!
=

∞∑
n=0

√
3
2
(−1)nΓ

(
n + 1

2

) xn

n!
.

Comparing coefficients of the above two exponential generating functions yields the desired valuation

an =

√
3
2
(−1)nΓ

(
n + 1

2

)
. (21)

In fact, to justify the exchange by means of the series version of Lebesgue’s theorem on dominated convergence
one needs to establish something like ∣∣∣∣∣∣

pn+
1
2 ϕ(n)(p)
n!

∣∣∣∣∣∣
≤ M

with M a positive constant independent of n and p, and this requires an inequality such as the right-hand
side of (19) (with q replaced by p and n by n− 1) used in the given proof of Theorem 1.
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Another way of determining the value of an in (20) if we know it exists for every n, is to proceed via
L’Hospital’s rule as follows:

an−1 = lim
p→∞

ϕ(n−1)(p)

p−n+
1
2

= lim
p→∞

ϕ(n)(p)

−(n− 1
2 )p−n− 1

2

= − an

n− 1
2

,

whence, by Lemma 2,

an = (−1)na0

n∏

k=1

(
k − 1

2

)
=

√
3
2
(−1)nΓ

(
n + 1

2

)

which is (20) again.
One advantage of our explicit proof of Lemma 2 over Olver’s asymptotic result in (3) is that it is easily
exploited to establish (2).

Theorem 2 For all p > 1 we have

I(p) >

√
3π

2
2p

2p + 1
>

√
3π

2

(
1− 1

2p

)
. (22)

Proof. For x > 0 and 0 < s < 1, Abromowitz and Stegun [1] records (as (5.6.4) in the new web version)
that

x1−s <
Γ(x + 1)
Γ(x + s)

< (x + 1)1−s. (23)

Hence, from (10) and (23) we obtain for p > 1 that

I(p) >
√

p

√
3π

2
Γ(p + 1)
Γ

(
p + 3

2

) =

√
3π

2

√
p

2p + 1
Γ(p + 1)
Γ

(
p + 1

2

)

>

√
3π

2
2p

2p + 1
>

√
3π

2

(
1− 1

2p

)
.

Here, for the penultimate inequality, we have used the left-hand inequality in (23) with x = p, s = 1/2.

Note that (22) implies that

‖sinc‖p >

(
2
√

6p π

2p + 1

)1/p

when sinc is viewed as a function in Lp([−∞,∞]). We finish by observing that the lower bound is asymp-
totically of the correct order, and leave as an open question whether similar explicit techniques to those in
Theorem 1 can be used to establish the second-order term in the asymptotic expansion (3) or the concavity
properties conjectured in the introduction.
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