ON STRONG RIESZ SUMMABILITY FACTORS
D. BorwriN and B. L. R. SHAWYER

1. Suppose that a, k are positive numbers, and that p is the integer
such that t—1 <p <k. Suppose that ¢(w) is a positive unboundedly
increasing function, as many times differentiable as may be required.
Let A= {},} be an unboundedly increasing sequence with A, > 0.

.
Given a series, Y @,, and a number m > —1, we write

n=1

Z (w—/\n)m , if w> /\1’
Am(w) = <

0 otherwise,

and 4 (w)= Ay(w).

If wm A, (w) tends to a finite limit as w tends to infinity, the series,
§ @, is said to be summable (R, A, m); it is said to be strongly
;:llhma,ble (R, A, m) with index ¢ > 0, or summable (R, A; m, q], if there is
a number s such that

[ 17 s 0—slode = o)
1]

and it is said to be absolutely summable (&, A, m), or summable | R, A, m|,
if w™A4, (w)is of bounded variation in the range w > 0.

We write summability [R, A, m] for summability [R, A; m, 1].

In this note, we shall be dealing with logarithmico-exponential func-
tions (abbreviated to L-functions) for whose definition see [4].

We shall prove the following theorems :
TraeorEM 1. For all k>0, if
(1) b(w) 78 an L-function,

o s
é(w) 'k
we' (w)) ’

i) )= |

then E} a, ¥(A,) s summable [ R, ¢ (}), k] whenever §] ., is summable [ R, A, k].
n=1 n=1
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THEOREM 2. For all k> 0, of y(w) is an L-function tending to & non-

zero finite limit as w tends to infinity, then 2 a, $(A,) is summable [R, A, k]

n=1

whenever 2, a, ts summable [R, A, k).
n=1

THEOREM 3. For all k>1, of
i} ¢(w) is an L-function,

¢’ (w)

$(w) ’

$(w) }"

wé’'(w)f

(i) - <
i) o) = |

then 2 an(/; )is summable [ R, $(A), k] whenever 2 a, 18 summable (R, A, k).

Theorems analogous to Theorem 1 and to Theorem 3 for all values of
k> 0, for ordinary Riesz summability, and for integer values of & for
absolute Riesz summability are due to Guha [3]. In a recent paper, [1],
we have deduced the proof for non-integral values of % for absolute Riesz
summability. The theorems analogous to Theorem 2 are both due to
Guha [3].

We wish to thank Dr. Kuttner for valuable suggestions including a
draft of the proof of Theorem 2.

2. The following theorems are known:

<] -]
THEOREM A. Y a, ts summable (B, A, k) to sum s whenever 3 a,
n=1 n=1

is summable [R, A, k] to sum s.

THEOREM B. X @,(A,) %) is summable [R,e; k, q] whenever

n=1

Z a, is summable [R, A; k, q] where —+_=

n=1

TreorEM C. (i) Suppose that k is a positive integer. If

J‘w tk‘ ¢(k+1)(g) | dt = 0{([)(%0)} fOT w>a,

then 2 a,, ts summable [R ¢ (A), k] whenever E a,, 18 summable [R, A, k].
n=1 n=1

(ii) Suppose that ks any positive non-integral number greater than 1.  If

J‘wtp+1| ¢(”+2)(t) |dt = 0{¢(w)} for w=a
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and either

(a) ¢'(w) is a monotonic non-decreasing function for w=>a
or :
(b) ¢'(w) is a monotownic mon-increasing function for w>=a and

w" (w) = 0{¢'(w)} for w=>a,

then 2, a, 1s summable [R, $(A), k] whenever Z a, 18 summable [R, A, k).

n=1

These theorems are all due to Srivastava [6, 7].  She gives a counter-
example to show that, for 0 <k <1, there is a series which is
summable [ R, A, k], but not summable [R, logA, k].

From Theorem C we can immediately deduce

Cororrary C. For all k221, if
(i) ¢(w) is an L-function,
(i) ¢(w)=O(w?®) where 8§ >0 and for w>a,
then Z a,, s summable [R, $(A), k] whenever 2 a, is summable [R, A, k].

n=1

3. The following lemmas are required.

Lemma 1. (i) Any L-function s continuous, of constant sign and
monotonic from a certain value of the variable onwards. (We suppose a
chosen so that all those L-functions which occur in the argument satisfy
these conditions from ¢ onwards.)

(ii) The derivative of an L-function is an L-function, and the ratio of
two L-functions is an L-function.

(iii) If ¢,(w), ¢o(w) are L-functions mot tending to finite limits, and
by (w) < po(w), then ¢, (w) < by’ (w).

(iv) If ¢(w) is an L-function such that ¢(w) > e¥, then there exists a
positive integer, N, such that

ey (w) < d(w) < enq(w)

where ey (w) = exp {ey_,(w)} and ey(w) =w.

(v) If $(w) is a non-decreasing L-function such that — < qS__(w) then
d(w) >wA for every A, and $w)’
¢’ (w)\ "
(n) r 7
s < (52 00

For proofs, see [4].
JOUR. 1567 I
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Lemma 2. The n-th derivative of {f(t)}™ ts a sum of constant multiples
of terms like

n
{F@eym— IL{fO @)}
v=1
where oy, sy, ..., a, are non-negative integers such that
n n
1<y, =p Y ve,=mn.
v=1 v=1

Further, of m ts a positive integer, then p < m.

This simple result is a particular case of a theorem due to Faa di
Bruno. See [9; pp. 88-89.]

Lemma 3. If 0(t) 20, m >0 and m—n > 0, then the two assertions
w
f 0(t)dt = o(w™)
0

and w
f t—n0 (t) di=o0 (w‘m-n)
0

are equivalent, it being assumed that both integrals converge at the origin.

Compare Lemma 2 in [2].

* Lovma 4. 3 a,=s[R,\ k] if and only if 3 a,=s(B, A k) and

n=1 n=1

Lwdx'x—k f: (x—ty-1tdA (t)l = o(w).

Proof. Define .
B, (z) = f (x—t)etdA(t)
0

and C,(z)=2"%4,(x). Now

fo’ i Bk_l(x)ldx = f:dx'x—" fo * (@—t)t-1tdA (t)l

— fo v dx‘x—" f: (@—t){o— (w—t)}dA (t)’

= [lera@—0u)|aa.
0
Also,
[“ecs@—s|ta < "1 60— Cu@ldo+ [ICum—slas (3.0
0 0 0
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and

[[16@—cuolas< [ 1Crar—sldet [ Cyta—slds. 3.2)

Now, if § a, =s(R, A, k), C,(x) tends to s as 2 tends to infinity, and
n=1
hence

fowl O,(z)—s| du = o(w).

If also w
[+ Bes@ldo = otw),
0

we can deduce from (3.1) that

[[16ea@—slaz=o)

(=]

that is, that Z an =s[R, A, k].

Conversely, if Z a,=Ss[R, A, k], by Theorem A, we have that
n=1

Z a, = s(R, A, k), and hence, in view of (3.2), that
n=1

[M10Bes@lds=ow).

0

For a similar result on strong Cesaro summability, see [5].

Lemma 5. Assume that the expressions below have a meaning.

@) If G4(w)= f:’fl(w, t)g, () dt, then
[F1aaw1 < B (1m0 01+ e ol [“1o01a
1
(i) If Gylw) = fo Fow, 1)ga(t) dt, then

[M1ae,1 < B ["laupw 0l [ Ino]a.

i<l Ja

This is similar to Lemma 1 in [8], and is proved similarly. See also
Lemma 5 in [6].

t$" (t)
¢'(t)

8 @ non-negative monotonic non-increasing function

Lemma 6. (i) If
y(1—v)¢'(ut-vy)
$(u+y)—p(utvy)
of y in the range [0, ) for 0 <v <1 and u > a.

18 non-negative non-decreasing for t > a, then
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' (t
dutoy) Y
PETY) is a non-negative monotonic non-increasing function of y in the

$(uty)
range [0, ) for 0 <v <1 and u > a.

s nom-negative monotonic non-decreasing for t < a, then

See Lemma 6 in [1].

Lemma 7. Under the hypotheses of Theorem 1,

wh Y ) < ‘%} -

for n=0,1,...,p+1 and w>a.
Proof. The result is trivially true for n =0. Using Lemma 2, for

n=1,2,..,p+1and w > a, y™(w) can be expressed as a sum of constant
multiples of terms like

el MG (o))

where «;, ay, ..., @, are non-negative integers such that

n n
1< Yo, =0 Y va,=m.
v=1 v=1

Also, by Leibnitz’s theorem on the differentiation of a product,

(50) (o)
ow ] \we'(w)
can be expressed as a sum of constant multiples of terms like
2 \i/1 o\ 1 )
- | — _ w—i—3)(;
(Bw)(w)(aw)(¢%w»'¢ )
where ¢ and j are integers such that 0 <¢<v and 0 <j <v—i. This

expression, in turn, can be expressed as a sum of constant multiples of
terms like

B(w) = w14 g0=52(a0) (' ()} 11 {9 o)},

where B,, B,, ..., B; are non-negative integers such that

i J
0 X Bm=f"’< > mﬁm=j'
m=1 m=1

Hence, in view of Lemma 1 (v) and condition (ii) of Theorem 1,
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SN0 Sl 10
P < gy O gy

e

-t (5]

<G

T )

-l 5@

— ek {I((Z)) }k—n’

and hence the required result is immediately obtained.

4. Proof of Theorem 1.

We assume, without loss of generality, that the sum of the series is

zero, and that
Aw)=0 for 0 <w<a.

Since OZO) a, is summable [R, A, k], in view of Theorem A, we have that

n=1
©

3, @, is summable (R, A, k), and so, since the conditions of the theorem
n=1

are sufficient to prove that f} a,¥(A,) is summable (R, d(A), k) [3
n=1

Theorem 2], in view of Lemmas 3 and 4, it is sufficient for the proof of
Theorem 1, to show that, for w >a,

[ # @1 P @lds=o () (t.1)

where

Fyle) = f B@)— O SO (1) dA ).

In view of Lemma 3, since the sum of the series is zero, we have that

[M14i01d =00, (.2)
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(i) Suppose that % is a positive integer. Integrating by parts & times,
we find that F,_,(x) can be expressed as a sum of constant multiples of

A, (x) (@) {¢' (@)}
[F4a0(5) ({¢(x)—¢(t)}k-l¢(t>¢(t>) @)

Now, in view of (4.2) and Lemma 1 (v), we have that

[[s@la@seepie= [" 1400 gy

and

<wte)n [ 4,0

=o({p)+). (4.4)

Also, in view of Lemma 2 and Leibnitz’s theorem on the differentiation
of a product,

" 4,,0(2) (@ —s 010160 o
a ot

can be expressed as a sum of constant multiples of integrals of the types

2) = f A0 @—gor g pme). Tgonpd,

where oy, ay, ..., o, are non-negative integers such that

r r
Do, =y > v, =T1,
y=1 v=1

and 0<p<<k—1; ou<<r<k; 0<m<k—r

Now, in view of (4.2) and Lemmas 1(v) and 7,

f;”w(x)lh(xndx

=of["¢ @ [ 40at0)] B0 —gl0--n

« B c oy gy
“BOF RO Boy

of [V @i [7 4,01 gupna)

" § @) pe)ds]
= o[ {plw)}+). (4.5)

4]
a

!

0{ f $ (@) (b @) atda f:| Ay (t) ldt}
|
(
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Hence, in view of (4.4) and (4.5), we can deduce that (4.1) is true.
This completes the proof of Theorem 1 for integer values of k.

(ii) Suppose that k is any positive non-integral number. The
relation, (4.1), that we must prove, can be written as

[(18. Bl =o( ). (4.6

Integrating by parts p+1 times, we obtain that

(—1)r 2 \p1
) =) LAP“)(E) (B@)—s0F$e1p)) dr.

Using Lemma 2 and Leibnitz’s theorem on the differentiation of a
product, it follows that F,(x) can be expressed as a sum of constant
multiples of integrals of the forms

I,(@) = f:Ap(t) Q(w, t) dt

where
Q(x’ )= Q;a,r,m(xr £)
= {$()—p(O)}F+ $PTIT=m(8) (1) 1:11 {g9 @O}
where oy, oy, ..., &, are non-negative integers such that

r r
SYo=p< 211’%=7'<P+1
y=

v=1
and 0 <m<p+1—r.

Now, we have that

(@)= f:A,,(t) Q= t)dt

I'(p+1) o
T(k) C(p+1— ka( dtf“ WPk Ay (w) du
_ T+ i
- T(k)T(p+1—k) f Ay (w duf Qz, t)(t—u)r~*dt
I'(p+1)
Tk (p+1— f Ay (u) I3z, w)du

say, where
I(x, u) = f *Q=, t)t—u)r*dt,

For p=0,1,...,p, Iy(u,u)=0, and for u=p-+1, define
Iy(u, )= lim I,(x, u).

T-ut
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Now, for x>t
Q(x, t) = (x—t)P1[{¢ ()} () () + (=, 8)],

where §(z,t)—>0 as z—¢4, uniformly in ¢ for ¢ in some right-hand
neighbourhood of u.

Hence,
Iy(u, w) = T'(k—p) I'(p+1—Fk) $(w) () {$' (w)}*

= D(k—p) T{p+1—F) "°{¢ W),

and so, in view of Lemma 1 (v),

bd | Iy(u, u)| = O(wE{p(w))+) .

alu<lw

Hence, in view of Lemma 5 (i) and (4.2), in order to prove that

[(1a1,@)1=o( ),

it remains to prove that

I,(w)= bd f Q(x, t)(t— u”"‘dt‘
alu<lw
=0 (w* {¢(w)}'=+l) : (4.7)

To the “inner” integral in the expression defining I,(w), apply the

transformation : {x =uty

t=u-tvy.

1
Hence, in view of Lemma 5 (ii), and since f v?~%(1—p)*-r-1dy is finite,
0
1Q(u+y, utvy)

Id(w) = O{a}l)‘iw J; v 0 {y(l—?])}k_p_l

Pk (1 —p)k-p-1 dv’}

1
. f P~k (1 —p)k—p-1 d’ol
0

a<u<w 0<v<l J o Y {y(1—v)}e-r-1

— = [, Quty, utoy) :
=0{ bd bd d,—— .7~
{a<u<w0<v<1 0 Y {?/(1—”)}"_’""1

=o= pd bd ||a, Py, u,0) Sy, u,

a<u<w 0<v<1 JO

say, where

So(y, u, v) = (utvy)*{p(wtvy)}? {p(uty)r*,
and

P(y’ u, v) = P,u,r,m(?/’ u, V)
is the product of
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_ {y(1=0) ¢ (ut-oy) |1k
S1(g>w, v) = {¢<u+y)~¢(u+vy)}
[y plutuy)\orisfdlutoy) |
Saly o) = {1 b(u+y) } { $(u+y) }
_ ¢(p+1—r—m)(u+zuy) ¢(u+vy) p—r—m
Sty = S )
o ($9(utvy) ($lu-toy) |1\ s,
S , U, =
0.0 = (e ) )
and
_ g ¢ (utoy)|im
o, 9) = )| = +vy)} (utoy)t
where
0< Sa,=p< 5 vo,=r <p+],
y=1 y=1
and om<Lpt+l—r.

Now, in view of Lemma 1 (v), it is clear that Sy(y, , v) is a monotonic
non-decreasing function of y in the range [0, w—u] for 0 <v <1 and
% > a, and its total variation with respect to y in that range is, at most,
{$(w)yr 1w, From condition (ii) of Theorem 1, we can deduce that both

() g W)

) 0 are non-negative monotonic non-decreasing functions

of t for t > a, and hence, that the results of Lemma 6 hold under the hypo-
theses of Theorem 1. Thus P,, ,(y,%,v) is of uniformly bounded
variation with respect to y in the range [0, w—u] for 0 <v <1 and u >a,
since each function S;(y, %, v) (: =1, 2, 3, 4, 5) is uniformly bounded and
of uniformly bounded variation with respect to y in the range [0, w—u]
for 0<v <1 and u>a; S;(y, %, v), because of Lemma 6 (i) since
p+1—k>0; 8,(y,u,v), because of Lemma 6 (ii) since p+1—pn >0
and u>0; S5(y,u,v) and S,(y, ,v), because of Lemma 1(v); and
S5(y, u, v), because of Lemma 7. Hence, we can deduce that

14(w)=0{m bd w_u]dyP(y,u,v)So(y,u,v)]}

a<u<w 0<v<1 JO

=0{ bd b_d[ bd iP(y,u,v)]fow—u]deo(y,u,v)]

a<u<<w 0<v<l Lo<y<w—u

+, 54180 {712, Pl w0l

O<y<w—u

— 0t
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That is, we have deduced that (4.7) is true, and so, that (4.6) is true.
This completes the proof of Theorem 1.

5. Proof of Theorem 2.

Again, we assume without loss of generality, that the sum of the series
is zero, and that 4(w)=0 for 0 <w < a.

Since ;} a, is summable [R, A, k], in view of Theorem A, we have
n=1

that X @, is summable (R, A, k), and so, since the conditions of the
n=1

theorem are sufficient to prove that 3 a,(A,) is summable (R, A, k)
n=1

[3; remark following Theorem 2], in view of Lemma 4, it is sufficient
for the proof of Theorem 2, to show that, for w >a,

f:l Groo1 (%) | d = o (whH), (5.1)
where

6)= [ —t¥n(ad(
where we define 7 (t) = t(¢), and hence

7™(t) = 0(*™) for n=0,1,...,p+1. (5.2)

Also, in view of Lemma 3, since the sum of the series is zero, we again
have that

[(14s0la=owh (5.3)

(i) First, suppose that & is a positive integer. Now G,_,(x) can be
expressed as a sum of constant multiples of

Ay (x) ()
and

[[4a0(5)" (@—rrnipan
Now, in view of (5.3) and (5.2),
[N s@n@de= 0| [*21 44 1011

= o(wk+),
Also, in view of Leibnitz’s theorem on the differentiation of a product,

[[4a00(3)" te—0-ra0nae
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can be expressed as a sum of constant multiples of integrals of the types
Tn@)= [ Aatyrom e—tymas
where m =0, 1, ..., k—1.
Hence, in view of (5.2) and (5.8), for m =0, 1, ..., k-2,

J, (@) = 0{ f:|Ak_l(t) |k gy1m dt}

0‘ f K [ J:\Ak_l(u)ldu] % ikt (p—gye-1-m) dt}

O{Ftk sle—tyrm? dt}

@ tk—m

z
_o{xf tm(x—t)"‘m‘zdt}
a
=o(x¥), the result being trivially true for m =k—1.

Hence J‘w| I ()| dz = o(wk+1), and so we can deduce that (5.1) is true.

This completes the proof for integer values of k.

(ii) Suppose, now, that k is any positive non-integral number. The
relation, (5.1), that we must prove, can be written

fwmx G ()| = o(wh+). (5.4)

Integrating by parts p+1 times, and in view of Leibnitz’s theorem on
the differentiation of a product, @,,(x) can be expressed as a sum of constant
multiples of integrals of the types

K, (@)= fz A (t) (@—tyk-p-Tmm(t) dt

where m=0,1, ..., p+1.
Hence

L(k) I (p+1—k)
F(p+1)

x t
Kno)= [ @tperrmamdt [ —apr d s du
= [ s du [ @tprrm—aprqmia

= f ‘ Ak-—l (u) an (x: ’LL) du:
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say, where

(@, u) = f * (—t)e-P=14m (f—qy)p—k () (1) it
Now )

aKa'Z:(x) = I‘(k)I;(g,:__ll)_ %) {4)-1 (%) g (@, 2)+H ()},
where

z J ,
0= [ A 222

Now, for m=1, 2, ..., p+1, g¢,(z, z) =0, but
%(@, 2) =T'(p+1—k) ' (k—p) (z) = O(x),

in view of (5.2). Hence, in view of (5.3),
[0 10000 01ds = O] [ 21 44 1011 a5)
= o(wktl), (5.5)
To establish the truth of (5.4), it now remains to show that
f | H,,(z)|dz = o(wk+1). (5.6)
Consider, first, Hy(z). Set ¢t =u+(x—u)v. Hence
0o, u) = lep'k(l—v)k‘p"ln(u+mv) dv
and so, in view of (5.2), that

o R 1 —_—
%ﬂ:f VPR (1 )21y’ (ytx—uv)do
0

=0(1),
since k—p—1> —1 and p—k+1>0. Hence
Hy(z) = 0{ f ”|Ak_1(u)|du} — o(h),
a

and so

fw|H0(x)]dx=o(w"+1). (5.7)
a
Consider next H,(x). We have that

0@, w) = f (w— )P (t—u)p—*n (0 dt,
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and so, in view of (5.2),

aqléxx, Y _ (—p) f ¥ (=)o oy (1)

=0(1),
since k—p—1> —1 and p—k> —1. Hence

1,0 = O [ 4ssw]du) = 0@t

and so w
["18,@) 2 = o (5.8)

Consider, finally, H, (x) for m=2,3, ...,p+1. Now
(e, 0) = [ (e—tprim— -ty d,

and so, in view of (5.2),

0q,, (x, u)

28— (pmp—tbm) [ sy d

= 0: f: (@ —t)E-P—2+m(g g yp—k f1-m dt}

0{(%)7"_1 f: (w—t)kp-1 (t—u)p“"dt}
=o{(3)")

since k—p—1> —1 and p—k > —1. Consequently, in view of Lemma 3
and (5.3), since k+1—m >0,

H

wr=of 1 (2) o

= o{xm—l . xk+1—-m} — o(x"),

and hence
f | H,, ()| dz = o(w+). (5.9)

Thus, in view of (5.7), (5.8) and (5.9), we can deduce that (5.6) is
true, and so, in conjunction with (5.5), that (5.4) is true. This completes
the proof of Theorem 2.
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6. Proof of Theorem 3.

In view of Theorem 2 and Corollary C, the proof of Theorem 3 is
immediate. '
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