
ON STRONG RIESZ SUMMABILITY FACTORS

D. BORWEIN and B. L. R. SHAWYER

1. Suppose that a, k are positive numbers, and that p is the integer
such that k— 1 ̂ .p<k. Suppose that <j>{iv) is a positive unboundedly
increasing function, as many times differentiable as may be required.
Let A = {A,J be an unboundedly increasing sequence with Ax > 0.

00

Given a series, 2 an> a n ( i a number m> — 1, we write
7 1 = 1

2 (w-AJ-X if w>Xv

0 otherwise,
and A(w) = A0(w).

If w~mAm(w) tends to a finite limit as w tends to infinity, the series,
00

2 an is said to be summable (B, X, m); it is said to be strongly

summable (B, X, m) with index q > 0, or summable [B, A; m, q], if there is
a number s such that

and it is said to be absolutely summable (B, A, m), or summable | B, A, m|,
if w^14m(w) is of bounded variation in the range w^O.

We write summability [B, A, m] for summability [jR, A; m, 1].
In this note, we shall be dealing with logarithmico-exponential func-

tions (abbreviated to ^-functions) for whose definition see [4].

We shall prove the following theorems :

THEOREM 1. For all k>0, if

(i) <f>(w) is an L-function,

(iii)

then 2 an ip(Xn) is summable [B,(f)(X),k] whenever 2 anis summable [B,X,k].
n=l n= l
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THEOREM 2. For all k > 0, if IJJ(W) is an L-f unction tending to a non-
00

zero finite limit as w tends to infinity, then 2 ^^(K) *5 summable [R, A, k]
00 » = 1

whenever 2 &« *5 summable [R, X, k].

THEOREM 3. > ,

(i) </>(w) is an L-function,

2 antp(Xn)issummable [R, cf)(X),k]whenever 2 a
?J>

Theorems analogous to Theorem 1 and to Theorem 3 for all values of
k > 0, for ordinary Riesz summability, and for integer values of k for
absolute Riesz summability are due to Guha [3]. In a recent paper, [1],
we have deduced the proof for non-integral values of k for absolute Riesz
summability. The theorems analogous to Theorem 2 are both due to
Guha [3].

We wish to thank Dr. Kuttner for valuable suggestions including a
draft of the proof of Theorem 2.

2. The following theorems are known:
00 00

THEOREM A. 2 an *s summable (R, X, k) to sum s whenever 2 an
n=l n = l

is summable [R, A, k] to sum s.
oo

THEOREM B. 2 an(K)~k+aiq) is summable [R, eA; k, q] whenever
1 12 cun is summable [R, A; k, q] where 1—r = 1.

THEOREM C. (i) Suppose that k is a positive integer. If

tk I (̂fc+« (j) ut==oU (w)} for w^a,
Ja

00 00

then 2 an *s summable [R, <j>{X), k] whenever 2 a
n *5 summable [R, A, k].

n=l . n=l

(ii) Suppose that k is any positive non-integral number greater than 1. If

))} for w^af
Jo



ON STRONG RIESZ SUMMABILITY FACTORS 113

and either
(a) <f>' (w) is a monotonic non-decreasing function for w^a

or
(b) (f>'(w) is a monotonic non-increasing function for w^a and

W(f>"{w) = 0{<j>'{w)} for w^a,
00 00

then S a
n *5 summable [R, </>(A), k] whenever £ a

n *s summable [R, A, k].
n=l «=1

These theorems are all due to Srivastava [6, 7]. She gives a counter-
example to show that, for 0 < & < l , there is a series which is
summable [R, A, k], but not summable [R, log A, k].

From Theorem C we can immediately deduce

COROLLARY C. For all k ^ l , if

(i) (f>(w) is an L-f unction,
(ii) <f>(w) = O(ws) where S > 0 and for w^a,

then 2 an is summable [R, <£(A), k] whenever 2 an *s summable [R, A, &].
? l = l 71=1

3. The following lemmas are required.

LEMMA 1. (i) Any L-f unction is continuous, of constant sign and
monotonic from a certain value of the variable onwards. (We suppose a
chosen so that all those L-functions which occur in the argument satisfy
these conditions from a onwards.)

(ii) The derivative of an L-f unction is an L-f unction, and the ratio of
two L-functions is an L-function.

(iii) / / ^>x{w), <f>z(w) are L-functions not tending to finite limits, and
^{w) =^ </>2(w), then <f>i{w) ^ <£2'(w)-

(iv) / / <j>{w) is an L-function such that (f>(w) >-ew, then there exists a
positive integer, N, such that

where eN(w) = exp {e^v-iC^)

(v) / / <f>{w) is a non-decreasing L-function such that — -< , then
<f>(w) >-wA for every A, and ^ '

<f>(w)\
For proofs, see [4].

JOUR. 157
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LEMMA 2. The n-th derivative of {f{t)}m is a sum of constant multiples
of terms like

n

v=X

where a1? a2, ..., ccn are non-negative integers such that

v=X

Further, if m is a positive integer, then JJ,

This simple result is a particular case of a theorem due to Faa di
Bruno. See [9; pp. 88-89.]

LEMMA 3. / / 6(t) > 0 , ra> 0 and m—n> 0, then the two assertions
rw

6{t)dt = o{wm)
Jo

and

Jo
are equivalent, it being assumed that both integrals converge at the origin.

Compare Lemma 2 in [2].
00 00

LEMMA 4. 2, an = s[R, X, k] if and only if 2 an = 5(-̂ > ̂ > ^
n = l 7 1 = 1

dxx~k (x—t)k~HdA{t)
Jo Jo

= o(w).

Proof. Define
Bk{x)= (x-t)ktdA(t)

Jo

and Gk(x) = x~kAk(x). Now
Cw Cw Cx

x~kBk_x{x) dx=\ dx x~k\ (x—t)k~xtdA{t)
Jo Jo Jo

Cw Cx

Jo Jo

- J o Ck-X{x)-Gk{x) dx.

Also,

f Cw
Ck-1(x)-Ck(x)\dx+ \ \Ck(x)-s\dx (3.1)

Jo
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and
Cw Cw Cw

\Gk_1(x)-Ck(x)\dx^\ \Ck_1(x)-s\dx+ \ \Gk(x)-s\dx. (3.2)
Jo Jo Jo

00

Now, if £ an = s(R, A, k), Gk(x) tends to s as x tends to infinity, and
n=l

hence r>w
\Gk(x)—s\dx = o(w).

Jo

Cw
\x-kBlc_1(x)\dx = o(w),

Jo
we can deduce from (3.1) that

Cw
\Ck_1{x)-s\dx = o{w),

Jo
00

that is, that 2 an = s [R, A, ¥\.
00

Conversely, if 2 an= 5t-^> ^> ]̂» by Theorem A, we have that
7 1 = 1

CO

2 an = s(jR, A, &), and hence, in view of (3.2), that
/ 1W

\x-kBk_1(x)\dx = o(w).
Jo

For a similar result on strong Cesaro summability, see [5].

LEMMA 5. Assume that the expressions below have a meaning.
Cw

(i) If G1(w)= Mw,t)gi(t)dt, then
Ja

Cw I Cw \ fw

IdG^MK bd |A(M)|+ KA(*M)| • \9i(t)\dt.
Ja a<t<w\ Jt ) Jaf1

Jo

(W\dG2(w)\^ bd (W\dwf2(w,t)\. p|ya(t)|*.
Ja 0«<l Ja Jo

This is similar to Lemma 1 in [8], and is proved similarly. See also
Lemma 5 in [6].

t6"{t)
LEMMA 6. (i) / / is non-negative non-decreasing for t > a, then

Y {*)y(l—v)(f>'(u-\-vy)
is a non-negative monotonic non-mcreasmg function<j>{u-\-y)—r{u+vy)

of y in the range [0, 00) for 0 < v < 1 and
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(ii) / / is non-negative monotonic non-decreasing for t ^.a, then
<f>\t)

— — is a non-negative monotonic non-increasing function of y in the
<p{u+y)

range [0, oo) for 0 < v < 1 and u^a.

See Lemma 6 in [1].

LEMMA 7. Under the hypotheses of Theorem 1,

w<p {w)

for n = 0, 1, ...,p-\-\ and

Proof. The result is trivially true for n = 0. Using Lemma 2, for
? i = l , 2 , ...,p-{-l and w^a, «/r(n)(w) can be expressed as a sum of constant
multiples of terms like

'""* nil—Yl ^^ W"
v=i\\dw) \w<f>'(w))}\wcf>r(w)\

where <xv <x2, . . . , a n are non-negative integers such that

n nS *v ~ a ^ S
v=l V=l

Also, by Leibnitz's theorem on the diflPerentiation of a product,

/ a W <f>(w) \
\dw) \w<f>'(w))

can be expressed as a sum of constant multiples of terms like

where i and j are integers such that 0 ^ i ^ v and 0 ^ j ^ v—i. This
expression, in turn, can be expressed as a sum of constant multiples of
terms like

A
W l = l

where j81? j82, ..., fa are non-negative integers such that
i i

Hence, in view of Lemma 1 (v) and condition (ii) of Theorem 1,
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\ v-i-1

<f>(w)\

<f>(w) I
W(f>'(w)

\v-l

•< W - 1

Hence
,

W(f>'
k—<r

w~

k—n

and hence the required result is immediately obtained.

4. Proof of Theorem 1.

We assume, without loss of generality, that the sum of the series is
zero, and that

A (w) = 0 for 0 ^ w ^ a.
00

Since 2 an ^s summable [R, A, k], in view of Theorem A, we have that
n=l

00

2 an is summable (R, A, &), and so, since the conditions of the theorem

are sufficient to prove that 2 an^(An) is summable (R, cf>(\), k) [3;
Theorem 2], in view of Lemmas 3 and 4, it is sufficient for the proof of
Theorem 1, to show that, for

Ja
(4.1)

where

In view of Lemma 3, since the sum of the series is zero, we have that

--o{wk). (4.2)f
Ja
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(i) Suppose that k is a positive integer. Integrating by parts k times,
we find that Fk_x[x) can be expressed as a sum of constant multiples of

Ak_1(x)iff(x)cf>(x){<f>'(x)}^

1 Ak-l{t)\Tt) V*(*)-W^W))dt- <4-3)
Now, in view of (4.2) and Lemma 1 (v), we have that

f(.)|iw(.#(.)^(x){f(.r)f-i|&= ^(x^x-Xtf
J a J a

Ja

(4.4)
Also, in view of Lemma 2 and Leibnitz's theorem on the differentiation

of a product,

can be expressed as a sum of constant multiples of integrals of the types

where a1} a2, ..., ar are non-negative integers such that

av = /x; 2 VOLV = r,
V = l

and

Now, in view of (4.2) and Lemmas 1 (v) and 7,

f(z)|/i(z)|<fcu
Ja

= 0[ (Wi'(x)dx fVft-i
\ Jo Ja

(4.5)
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Hence, in view of (4.4) and (4.5), we can deduce that (4.1) is true.
This completes the proof of Theorem 1 for integer values of k.

(ii) Suppose that k is any positive non-integral number. The
relation, (4.1), that we must prove, can be written as

. (4.6)

Integrating by parts p-\-l times, we obtain that

Using Lemma 2 and Leibnitz's theorem on the differentiation of a
product, it follows that Fk(x) can be expressed as a sum of constant
multiples of integrals of the forms

= (XAp(t)Q(x,t)dt,
Ja

where
Q(x,t) = Qfhr>m(x,t)

(t) n #«
where a1} a2, . . . ,ar are non-negative integers such that

r r
(\ ^ * * * ^ ^ — • ^ * ' ^ " * —

v=l v=l

and 0
Now, we have that

I2{x)= (XATJ(t)Q(x,t)dt
J a

°r(t)rS+i-t)J. «(«.

say, where

J l~ n.\— I QIT f\lf i,\P—kfJf

For fj. = O, 1, ...,p, I3{u, w) = 0, and for /u.=^p+l, define

73(w, w) = lim I3(x, u).
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Now, for x > t

Q(x, t) = (s-O^-WWftWiW+Six, t)],
where 8(x,t)->0 as x->t-\-, uniformly in t for t in some right-hand
neighbourhood of u.

Hence,

and so, in view of Lemma 1 (v),

Ed |Is(u, u)\ =
a<u<t«

Hence, in view of Lemma 5 (i) and (4.2), in order to prove that

it remains to prove that
Cw Cx

IA{w)= bd dx\ Q{x,t){t-u)v-kdt
a<u<w Ju J u

(4.7)

To the "inner" integral in the expression defining /4(w), apply the
transformation: (x = u-\-v

\t = u-\-vy.

n
Hence, in view of Lemma 5 (ii), and since vp~k(l—v)k~p-1dv is finite,

Jo

\a<u<w Jo Jo \2/(l — V)} ~P~X j

Jo y {«(l-f,)}*-P-i J o V '= 0 bd bd
l
[ Cw-u

= 0 bd bd
U<M<M;0<D<1 Jo

Q{u+y,u+vy)

say, where

and

is the product of
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y{l—v)<j)'(u-\-vy) \P+1-k

${u+y)—4>(u+vy)j

u> v) =

I <}>(u+y) J

<f>(u-\-vy)\p-r-m

and

where

and 0^m^^?+ l—r .

Now, in view of Lemma 1 (v), it is clear that S0{y, u, v) is a monotonic
non-decreasing function of y in the range [0, w—u] for 0 < v < 1 and
u^a, and its total variation with respect to y in that range is, at most,
{<f>(w)}k+1 w~k. From condition (ii) of Theorem 1, we can deduce that both
t<f>"{t) , Uf>'(t) ,. , . , . , ..

j , , \ and \,' are non-negative monotonic non-decreasing functions
9 (*) <p(f)

of t for t^a, and hence, that the results of Lemma 6 hold under the hypo-
theses of Theorem 1. Thus P r m(y,u,v) is of uniformly bounded
variation with respect to y in the range [0, w—u] for 0 < v < 1 and u^a,
since each function S^y, u,v) (i=l, 2, 3, 4, 5) is uniformly bounded and
of uniformly bounded variation with respect to y in the range [0, w—u]
for 0<v<\ and w > a ; S^y, u, v), because of Lemma 6 (i) since
^+1—/b>0; S2{y,u,v), because of Lemma 6 (ii) since p-\-l—/x>0
and /x^O; S3(y,u,v) and S^(y,u,v), because of Lemma 1 (v); and
S5(y, u, v), because of Lemma 7. Hence, we can deduce that

/ rw-u \
IA(w) = O\ bd bd \dyP(y,u,v)80{yiu,v)\)

{a<u<wO<v<lJo )
i r /*t«-u

= 0 bd bd bd |P(y,«,t;)| \dvS0(y}u,v)\
[a<u<w0<v<l \_0<v<w-u JO

+ bd \S0(y,u,v)\j^ \dyP(y,u,v)\^
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That is, we have deduced that (4.7) is true, and so, that (4.6) is true.
This completes the proof of Theorem 1.

5. Proof of Theorem 2.
Again, we assume without loss of generality, that the sum of the series

is zero, and that A (w) = 0 for 0 ̂  w
00

Since £ an *s summable [R, A, k], in view of Theorem A, we have
7 1 = 1

00

that 2 ®n ^s summable (R, A, k), and so, since the conditions of the
7 1 = 1

00

theorem are sufficient to prove that £ an"A(̂ n) *s summable (R, A, k)
w = l

[3; remark following Theorem 2], in view of Lemma 4, it is sufficient
for the proof of Theorem 2, to show that, for

where

Cw
\G (x)\dx== o(wk+1) (5-1)

Ja

= (* (x-t)*ri(t)dA{t)
Ja

where we define 77 (t) = ty(t), and hence

r)M(t) = O(t1-n) for 7i = 0, 1, ...,3>+l. (5.2)

Also, in view of Lemma 3, since the sum of the series is zero, we again
have that

\Ak_x{t)\dt = o{wk). (5.3)
Ja

(i) First, suppose that k is a positive integer. Now Cfc_1(jc) can be
expressed as a sum of constant multiples of

and

Now, in view of (5.3) and (5.2),

Also, in view of Leibnitz's theorem on the differentiation of a product,
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can be expressed as a sum of constant multiples of integrals of the types

Jm(x) = \X A^t^-^mx-tf-^dt
Ja

where m = 0, 1, ..., k—1.

Hence, in view of (5.2) and (5.3), for m = 0, 1, ..., k—2,

[ r* , x(x—t) 7
= 0 tk——^ dt

[Ja tk~m

= olx I*tm(x-t)k-m-*dt\

= o(xk), the result being trivially true for m = k— 1.

Hence | Jm(x)\dx = o(wk+1), and so we can deduce that (5.1) is true.
Ja

This completes the proof for integer values of k.
(ii) Suppose, now, that k is any positive non-integral number. The

relation, (5.1), that we must prove, can be written

rw
\dxGk(x)\ = o(wk+i). (5.4)

J a

Integrating by parts # + 1 times, and in view of Leibnitz's theorem on
the differentiation of a product, Gk(x) can be expressed as a sum of constant
multiples of integrals of the types

K (x) = (XAp{i){x-
Ja

where m = 0, 1, ...,p-\-l.
Hence

= \X (x-t)k-P-^^(t)dt \\t-u)v-kAk_x{u)dn
Ja Ja

= | Ak_x{u)du | (x-t)k-P-1+m{t-u)v
J a J u

= Ak_1{u)qm(x,u)du,
Ja
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say, where

Ju
Now

where

Now, for wi= 1, 2, ...,2»+l, gm(#, a;) = 0, but

go(z, x) = T(p+l-k) T(k-p)r)(x) = O(x),
in view of (5.2). Hence, in view of (5.3),

j a \^k-i(x)qm(xfx)\dx = Ou x\Ak^(x)\dxj

= o{wk+1). (5.5)

To establish the truth of (5.4), it now remains to show that
Cva

\Hm(x)\dx = o{wk+1). (5.6)
Ja

Consider, first, HQ{x). Set t = u-\-(x—u)v. Hence

qo(x, u)= vp~k(l—v)k~p-17](u-\-x—uv)dv
Jo

and so, in view of (5.2), that

dq^w) = (1
vp-k+i(l-v)k-P-1r)'(ti-{-x~^lv)dv

OX Jo

= 0(1),

since h—p— 1 > — 1 and p—k-\-l > 0. Hence

H0(x) = oJJV^Nl**} = o(xk),
and so

\H(i{x)\dx = o{wk+1). (5.7)
Ja

Consider next H^x). We have that
rx

q1(x,u)= {x—t)k-p{t-uf~kf]'{t)dt,
Ju
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and so, in view of (5.2),

gi^'u)=(k-p) (X(x-t)k-9-1{t-u)*-kri'(t)dt
OX Ju

= 0(1),

since k—p—l > — 1 and p—k> — 1 . Hence

Hx{x) = o{ J V ^ i * ) I **} = o (xk),
and so [w

\H1(x)\dx = o{wk+1). (5.8)
Ja

Consider, finally, Hm(x) for m = 2, 3, ...,p-\-\. Now

qm(x, u) =

and so, in view of (5.2),
3Q (x u)

=(k-p-l+m) (x-t)k~P-2

Ju

— OJ r {x—t)k-P-2+m(t—u)P-kt1

\Ju

( / X \m-l Cx
= 0 (—) (*-ofc

since k—p— 1 > — 1 and p—k > — 1. Consequently, in view of Lemma 3
and (5.3), since k-\-l—ra>0,

Hm(x) = Of \X (-Y 11 Ak_x{u) | du)
\Ja \ U I )

= OJa;m-1 \Xu1-m\Ak_1{u)\du\

[ Ja J

nCwM-1 /v.fc+1—m\ n(f^\

|fTm(a;)|da: = o{wk+1). (5.9)
Ja

and hence

Thus, in view of (5.7), (5.8) and (5.9), we can deduce that (5.6) is
true, and so, in conjunction with (5.5), that (5.4) is true. This completes
the proof of Theorem 2.
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6. Proof of Theorem 3.

In view of Theorem 2 and Corollary C, the proof of Theorem 3 is
immediate.
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