ON RIESZ AND GENERALISED CESÀRO SUMMABILITY

D. BORWEIN

1. Introduction

Let $\left\{\lambda_{n}\right\}$ be a strictly increasing unbounded sequence with $\lambda_{0} \geqslant 0$, let

$$
\mu=p+\delta \quad(p=0,1, \ldots ; 0 \leqslant \delta<1)
$$

and let $\sum_{n=0}^{\infty} a_{n}$ be an arbitrary series. Write

$$
\begin{gathered}
A^{\mu}(w)=\sum_{\lambda_{v}<w}\left(w-\lambda_{v}\right)^{\mu} a_{v} \\
\pi_{n}^{\mu}(t)= \begin{cases}\left(\lambda_{n+1}-t\right)^{\delta} \quad(p=0) \\
\left(\lambda_{n+1+p}-t\right)^{\delta} \prod_{i=1}^{p}\left(\lambda_{n+i}-t\right) \quad(p \geqslant 1)\end{cases} \\
C_{n}^{\mu}=\sum_{v=0}^{n} \pi_{n}^{\mu}\left(\lambda_{v}\right) a_{v}
\end{gathered}
$$

The series $\sum a_{n}$ is said to be summable to s by
(i) the Riesz method (R, λ, μ), if $w^{-\mu} A^{\mu}(w) \rightarrow s$ as $w \rightarrow \infty$,
(ii) the generalised Cesàro method (C, λ, μ), if $C_{n}{ }^{\mu} / \pi_{n}{ }^{\mu}(0) \rightarrow s$.

It is known that the inclusion $(R, \lambda, \mu) \subseteq(C, \lambda, \mu)$ holds for $\mu \geqslant 0$ [3, 6], i.e. every series summable (R, λ, μ) is summable (C, λ, μ) to the same sum; and that the reverse inclusion

$$
\begin{equation*}
(C, \lambda, \mu) \subseteq(R, \lambda, \mu) \tag{1}
\end{equation*}
$$

is valid in the cases (a)[5] $0 \leqslant \mu \leqslant 1$, (b)[7] $\mu=2,3, \ldots$, (c) $[1] \mu \geqslant 0, \lambda_{n}=n$. Apart from the special case (c), the only known result [2; Theorem 4] concerning inclusion (1) for non-integral $\mu>1$ is that it holds when $1<\mu<2$ provided the sequence $\left\{\lambda_{n}\right\}$ satisfies the conditions

$$
\frac{\lambda_{n+1}}{\lambda_{n}} \downarrow
$$

and

$$
\begin{equation*}
\frac{\lambda_{n+2}-\lambda_{n+1}}{\lambda_{n+1}-\lambda_{n}} \downarrow . \tag{2}
\end{equation*}
$$

In this paper it is proved, inter alia, that inclusion (1) holds in the range $1<\mu<2$ if $\lambda_{n}=\lambda(n)\left(n \geqslant n_{0}\right)$, where λ is a logarithmico-exponential function (see [4]) such that $\lambda(x) \rightarrow \infty$ as $x \rightarrow \infty$ and $\lambda(x-1) / \lambda(x)$ is ultimately increasing. Examples of sequences $\left\{\lambda_{n}\right\}$, satisfying these conditions but not condition (2), are given by $\lambda_{n}=\log (1+n)$ and $\lambda_{n}=n^{\alpha}(0<\alpha<1)$.

2. The main results

Suppose throughout this section that

$$
0<\delta<1
$$

In addition to the notations already introduced, we shall also use the following:

$$
\begin{gather*}
s_{n}=\sum_{v=0}^{n} a_{v}, \\
k_{n}=\lambda_{n+1}-\lambda_{n}, \\
c_{n}(t)=-\frac{d}{d t}\left\{\left(\lambda_{n+1}-t\right)\left(\lambda_{n+2}-t\right)^{\delta}-\left(\lambda_{n}-t\right)\left(\lambda_{n+1}-t\right)^{\delta}\right\} \quad\left(0 \leqslant t<\lambda_{n+1}\right), \tag{3}\\
c_{n, v}=\int_{\lambda_{v}}^{\lambda_{v+1}} c_{n}(t) d t \quad(0 \leqslant v \leqslant n) . \tag{4}
\end{gather*}
$$

Then, as in [2], we have

$$
C_{n}^{1+\delta}-C_{n-1}^{1+\delta}=\sum_{v=0}^{n} c_{n, v} s_{v} \quad(n \geqslant 1)
$$

Note that

$$
\begin{equation*}
-\frac{d}{d t}\left(\lambda_{n}-t\right)\left(\lambda_{n+1}-t\right)^{\delta}=(1+\delta)\left(\lambda_{n+1}-t\right)^{\delta}-\delta k_{n}\left(\lambda_{n+1}-t\right)^{\delta-1}\left(0 \leqslant t<\lambda_{n+1}\right) \tag{5}
\end{equation*}
$$

For $j=0,1,2, \ldots$, define Ω_{j} to be the set of continuous, non-negative unboundedly increasing functions λ on $[j, \infty)$ such that $0<\lambda^{\prime}(x)<\infty$ on the open set $U_{j}=\bigcup_{i=j}^{\infty}(i, i+1)$, and

$$
\begin{gather*}
\lambda(x-1) / \lambda(x) \text { is increasing in }[j+1, \infty), \tag{6}\\
\lambda(x) \lambda^{\prime}(x-1) / \lambda^{\prime}(x) \text { is increasing in } U_{j+1}, \tag{7}\\
\lambda^{\prime}(x-1)=O\left(\lambda^{\prime}(x)\right) \text { in } U_{j+1} . \tag{8}
\end{gather*}
$$

The first four of the following five theorems should be compared with likenumbered theorems in [2].

Theorem 1. If $\lambda \in \Omega_{0}, \lambda_{n}=\lambda(n)(n=0,1, \ldots)$ and if

$$
\begin{equation*}
\xi_{n}>0, \quad \frac{\lambda_{n+1}^{\delta}}{\xi_{n}} \downarrow 0 \tag{9}
\end{equation*}
$$

then

$$
\begin{gather*}
c_{n, v}>0 \quad(0 \leqslant v \leqslant n), \tag{10}\\
\frac{c_{n, v}}{c_{n-1, v}} \leqslant \frac{c_{n, v-1}}{c_{n-1, v-1}} \quad(1 \leqslant v \leqslant n-1), \tag{11}\\
c_{n, 0}=o\left(\xi_{n}\right), \tag{12}\\
\frac{c_{n, 0}}{\xi_{n}} \leqslant M \frac{c_{r, 0}}{\xi_{r}} \quad(0 \leqslant r \leqslant n, \quad M \text { a positive constant }) . \tag{13}
\end{gather*}
$$

Proof. Define $k(u)$ to be the function on $\left[\lambda_{1}, \infty\right)$ such that

$$
\begin{equation*}
k(\lambda(x))=\lambda(x)-\lambda(x-1) \quad(x \geqslant 1) ; \tag{14}
\end{equation*}
$$

and let

$$
\begin{aligned}
& \phi=\phi(u, t)=(1+\delta)(u-t)^{\delta}-\delta k(u)(u-t)^{\delta-1}, \\
& \psi=\psi(u, t)=\frac{\partial \phi}{\partial t} \quad\left(0 \leqslant t<u, u \geqslant \lambda_{1}\right) .
\end{aligned}
$$

Then $k\left(\lambda_{n+1}\right)=k_{n}(n=0,1, \ldots)$, and hence, in view of (3) and (5), we have

$$
\begin{equation*}
c_{n}(t)=\phi\left(\lambda_{n+2}, t\right)-\phi\left(\lambda_{n+1}, t\right) \quad\left(0 \leqslant t<\lambda_{n+1}, n \geqslant 0\right) \tag{15}
\end{equation*}
$$

Differentiating (14) we find that

$$
\begin{equation*}
1-k^{\prime}(\lambda(x))=\frac{\lambda^{\prime}(x-1)}{\lambda^{\prime}(x)}>0 \quad(n+1<x<n+2, n=0,1, \ldots) \tag{16}
\end{equation*}
$$

and hence that

$$
\begin{align*}
\frac{\partial \phi}{\partial u}=\delta\left(1-k^{\prime}(u)+\delta\right)(u-t)^{\delta-1}+\delta(1-\delta) k(u)(u-t)^{\delta-2} & >0 \\
& \left(0 \leqslant t<u, \lambda_{n+1}<u<\lambda_{n+2}\right) . \tag{17}
\end{align*}
$$

It follows from (15) and (17) that $c_{n}(t)>0\left(0 \leqslant t<\lambda_{n+1}\right)$, and consequently, by (4), that $c_{n, v}>0(0 \leqslant v \leqslant n)$, i.e. conclusion (10) holds.

Differentiating (17) with respect to t, we get

$$
\begin{equation*}
\frac{\partial \psi}{\partial u}=\frac{\partial}{\partial t}\left(\frac{\partial \phi}{\partial u}\right)=\frac{1-\delta}{u-t}\left\{\frac{\partial \phi}{\partial u}+\delta k(u)(u-t)^{\delta-2}\right\}\left(0 \leqslant t<u, \lambda_{n+1}<u<\lambda_{n+2}\right) . \tag{18}
\end{equation*}
$$

Since

$$
\frac{c_{n, v}}{c_{n-1, v}}=\frac{c_{n}\left(t_{v}\right)}{c_{n-1}\left(t_{v}\right)} \quad\left(\lambda_{v}<t_{v}<\lambda_{v+1}, 0 \leqslant v \leqslant n-1\right)
$$

inequality (11) will be established if we can show that $c_{n}(t) / c_{n-1}(t)$ decreases as t increases in $\left(0, \lambda_{n}\right)$, and to do this it suffices to prove

$$
\begin{equation*}
\frac{c_{n}^{\prime}(t)}{c_{n}(t)} \leqslant \frac{c_{n-1}^{\prime}(t)}{c_{n-1}(t)} \quad\left(0 \leqslant t<\lambda_{n}, n \geqslant 1\right) . \tag{19}
\end{equation*}
$$

In view of (15), (17) and (18), we have

$$
\begin{align*}
& \frac{c_{n}^{\prime}(t)}{c_{n}(t)}=\frac{\psi\left(\lambda_{n+2}, t\right)-\psi\left(\lambda_{n+1}, t\right)}{\phi\left(\lambda_{n+2}, t\right)-\phi\left(\lambda_{n+1}, t\right)}=\left[\frac{\partial \psi}{\partial u} / \frac{\partial \phi}{\partial u}\right]_{u=u_{n}} \\
&=\frac{1-\delta}{u_{n}-t}\left\{1+\frac{1}{1-\delta+\left(1-k^{\prime}\left(u_{n}\right)+\delta\right)\left(u_{n}-t\right) / k\left(u_{n}\right)}\right\} \\
& \quad\left(0 \leqslant t<\lambda_{n+1}<u_{n}<\lambda_{n+2}\right) . \tag{20}
\end{align*}
$$

Further, for $x \in U_{1}, \lambda(x)>t \geqslant 0$, we have, by (16), that

$$
\begin{aligned}
\left(1-k^{\prime}(\lambda(x))+\delta\right) \frac{(\lambda(x)-t)^{2}}{k(\lambda(x))} & =\left(\frac{\lambda^{\prime}(x-1)}{\lambda^{\prime}(x)}+\delta\right) \frac{(\lambda(x)-t)^{2}}{\lambda(x)-\lambda(x-1)} \\
& =\left(\frac{\lambda(x) \lambda^{\prime}(x-1)}{\lambda^{\prime}(x)}+\delta \lambda(x)\right) \frac{1}{1-\lambda(x-1) / \lambda(x)}\left(1-\frac{t}{\lambda(x)}\right)^{2}
\end{aligned}
$$

which increases as x increases in U_{1}, since $\lambda(x)$ increases and satisfies conditions (6) and (7) with $j=0$. It follows that

$$
\left(1-k^{\prime}(u)+\delta\right) \frac{(u-t)^{2}}{k(u)}
$$

increases as u increases in $(t, \infty) \cap \bigcup_{i=1}^{\infty}\left(\lambda_{i}, \lambda_{i+1}\right)$, and (19) is a consequence of this and (20).

It remains to establish conclusions (12) and (13).
In virtue of (4), (15), (16) and (17), we have

$$
\begin{aligned}
c_{n, 0}= & \left.k_{0} c_{n}\left(v_{n}\right)=k_{0} k_{n+1} \frac{\partial \phi}{\partial u}\right]_{u=w_{n}, t=v_{n}} \\
= & \delta k_{0} k_{n+1}\left(w_{n}-v_{n}\right)^{\delta-1}\left\{1-k^{\prime}\left(w_{n}\right)+\delta+(1-\delta) \frac{k\left(w_{n}\right)}{w_{n}-v_{n}}\right\} \\
= & \delta k_{0} k_{n+1}\left(\lambda\left(x_{n}\right)-v_{n}\right)^{\delta-1}\left\{\frac{\lambda^{\prime}\left(x_{n}-1\right)}{\lambda^{\prime}\left(x_{n}\right)}+\delta+(1-\delta) \frac{\lambda\left(x_{n}\right)-\lambda\left(x_{n}-1\right)}{\lambda\left(x_{n}\right)-v_{n}}\right\} \\
& \quad\left(\lambda_{0}<v_{n}<\lambda_{1}<\lambda_{n+1}<w_{n}=\lambda\left(x_{n}\right)<\lambda_{n+2}\right) .
\end{aligned}
$$

Hence, by (6) and (8), there are positive constants B, B_{1}, B_{2}, b such that

$$
\begin{align*}
c_{n, 0} & \leqslant B_{1} k_{n+1}\left(\lambda_{n+1}-\lambda_{1}\right)^{\delta-1} \\
& \leqslant B_{2} k_{n+1} \lambda_{n+1}^{\delta-1} \\
& \leqslant B \frac{k_{n+1}}{\lambda_{n+2}} \lambda_{n+1}^{\delta} \quad(n \geqslant 1) \tag{21}
\end{align*}
$$

and

$$
\begin{align*}
c_{n, 0} & \geqslant b k_{n+1} \lambda_{n+2}^{\delta-1} \\
& \geqslant b \frac{k_{n+1}}{\lambda_{n+2}} \lambda_{n+1}^{\delta} \quad(n \geqslant 0) . \tag{22}
\end{align*}
$$

It follows from (21) and (9) that

$$
c_{n, 0}=O\left(\xi_{n} \frac{k_{n+1}}{\lambda_{n+2}} \frac{\lambda_{n+1}^{\delta}}{\xi_{n}}\right)=o\left(\xi_{n}\right)
$$

which is conclusion (12).

Finally, by (6), (9), (21) and (22), we have, for $0 \leqslant r \leqslant n-1$,

$$
\frac{c_{n, 0}}{\xi_{n}} \leqslant B \frac{k_{n+1}}{\lambda_{n+2}} \frac{\lambda_{n+1}^{\delta}}{\xi_{n}} \leqslant B \frac{k_{r+1}}{\lambda_{r+2}} \frac{\lambda_{r+1}^{\delta}}{\xi_{r}} \leqslant \frac{B}{b} \frac{c_{r, 0}}{\xi_{r}},
$$

i.e. conclusion (13) holds. This completes the proof of Theorem 1.

Theorem 2. If $\lambda \in \Omega_{0}, \lambda_{n}=\lambda(n) \quad(n=0,1, \ldots)$,

$$
\begin{gathered}
\xi_{n}>0, \frac{\lambda_{n+1}^{\delta}}{\xi_{n}} \downarrow 0, \frac{k_{n}}{\xi_{n}} \downarrow \\
C_{n}^{1+\delta}=o\left(\xi_{n}\right)
\end{gathered}
$$

then

$$
s_{n}=o\left(\frac{\xi_{n}}{k_{n}^{1+\delta}}\right)
$$

$$
\begin{aligned}
& A^{\delta}(w)=o\left(\frac{\xi_{\chi}}{k_{\chi}}\right) \quad(w \rightarrow \infty) \\
& A^{1+\delta}(w)=o\left(\xi_{\chi}\right) \quad(w \rightarrow \infty)
\end{aligned}
$$

where $\chi=\chi(w)$ is the integer such that $\lambda_{\chi}<w \leqslant \lambda_{x+1}$.
Proof. Essentially the same as the proof of Theorem 2 in [2], with the present Theorem 1 and identity (20) respectively replacing Theorem 1 and identity (21) of [2].

The next theorem is a simple consequence of Theorem 2 (see the proof of Theorem 3 in [2]).

Theorem 3. If $\lambda \in \Omega_{0}, \lambda_{n}=\lambda(n)(n=0,1, \ldots)$ and $C_{n}{ }^{1+\delta}=o\left(\lambda_{n+1} \lambda_{n+2}^{\delta}\right)$, then $A^{1+\delta}(w)=o\left(w^{1+\delta}\right) \quad(w \rightarrow \infty)$.

Theorem 4. If $\lambda \in \Omega_{j}, \lambda_{n}=\lambda(n)(n=j, j+1, \ldots)$, and $1<\mu<2$, then

$$
(C, \lambda, \mu) \subseteq(R, \lambda, \mu)
$$

Proof. Case (i). $j=0$. Since both (C, λ, μ) and (R, λ, μ) are regular methods of summability (see [2; Lemma 4]), this case follows immediately from Theorem 3.

Case (ii). $j=1,2, \ldots$ Let

$$
\lambda^{*}(x)=\lambda(x+j) \quad(x \geqslant 0), \lambda_{n}^{*}=\lambda^{*}(n)=\lambda_{n+j} \quad(n=0,1, \ldots)
$$

Then $\lambda^{*} \in \Omega_{0}$. Further, if $\sum_{n=0}^{\infty} a_{n}$ is summable (C, λ, μ) to s, then $\sum_{n=0}^{\infty} a_{n+j}$ is summable (C, λ^{*}, μ) to $s-s_{j-1}$ and hence, by case (i), is summable $\left(R, \lambda^{*}, \mu\right)$ to $s-s_{j-1}$, so that $\sum_{n=0}^{\infty} a_{n}$ is summable (R, λ, μ) to s. Thus case (ii) is established.

Theorem 5. If $\lambda_{n}=\lambda(n)\left(n=n_{0}, n_{0}+1, \ldots\right)$, where λ is a logarithmico-exponential function such that $\lambda(x) \rightarrow \infty$ as $x \rightarrow \infty$ and $\lambda(x-1) / \lambda(x)$ is ultimately increasing, and $1<\mu<2$, then

$$
(C, \lambda, \mu) \subseteq(R, \lambda, \mu)
$$

Proof. By known properties of logarithmico-exponential functions (see [4]) $\lambda(x)$ is ultimately increasing. Also, since $\lambda(x-1) / \lambda(x)$ is ultimately increasing, we have that, for $x \geqslant x_{0}$ say,

$$
\lambda(x-1)>0, \lambda^{\prime}(x-1)>0, \frac{\lambda^{\prime}(x-1)}{\lambda(x-1)}-\frac{\lambda^{\prime}(x)}{\lambda(x)} \geqslant 0
$$

so that

$$
\lambda(x) \frac{\lambda^{\prime}(x-1)}{\lambda^{\prime}(x)} \geqslant \lambda(x-1) \rightarrow \infty \text { as } x \rightarrow \infty
$$

The logarithmico-exponential function $\lambda(x) \lambda^{\prime}(x-1) / \lambda^{\prime}(x)$ is thus ultimately increasing. Further, since

$$
0<\lim _{x \rightarrow \infty} \frac{\lambda(x-1)}{\lambda(x)} \leqslant 1
$$

we have that [4; p. 34]

$$
\frac{\lambda^{\prime}(x-1)}{\lambda^{\prime}(x)}=O(1) \quad\left(x \geqslant x_{0}\right)
$$

It follows that $\lambda \in \Omega_{j}$ for j sufficiently large, and Theorem 5 is thus a consequence of Theorem 4.

References

1. D. Borwein, " On a method of summability equivalent to the Cesàro method ", J. London Math. Soc., 42 (1967), 339-343.
2. -_, " On generalised Cesàro summability ", Indian J. Math., 9 (1967), 55-64.
3. -_ and D. C. Russell, "On Riesz and generalised Cesàro summability of arbitrary positive order '", Math. Z., 99 (1967), 171-177.
4. G. H. Hardy, Orders of infinity (Cambridge Math. Tract. No. 12, 2nd Edn., 1924).
5. W. B. Jurkat, " Uber Rieszsche Mittel mit unstetigem Parameter", Math. Z., 55 (1951), 8-12.
6. A. Meir, "An inclusion theorem for generalised Cesàro and Riesz means", Canad. J. Math., 20 (1968), 735-738.
7. D. C. Russell, "On generalised Cesàro means of integral order ", Tôhoku Math. J., 17 (1965), 410-442.

Department of Mathematics, University of Western Ontario, London, Canada.

