Tauberian theorems on a scale of Abel-type summability methods

By D. Borwein and B. Watson at London, Canada

1. Introduction

Suppose throughout that $\{s_n\}$ is a sequence of real numbers, λ is real, $\varepsilon_0^{\lambda} = 1$, and $\varepsilon_n^{\lambda} = \binom{n+\lambda}{n}$ for $n = 1, 2, 3, \ldots$

We are concerned with the methods of summability A_{λ} , introduced and studied by Borwein [1], and defined as follows. If

(1)
$$\sigma_{\lambda}(y) = (1+y)^{-\lambda-1} \sum_{n=0}^{\infty} \varepsilon_n^{\lambda} s_n \left(\frac{y}{1+y}\right)^n$$

converges for y>0, and tends to s as $y\to\infty$, then we say that the sequence $\{s_n\}$ is A_{λ} -convergent to s and write $s_n\to s(A_{\lambda})$. The method A_0 is the ordinary Abel method.

Borwein has proved (in [1]) the following basic results.

Lemma 1. For $\lambda > -1$, if $\sum_{n=0}^{\infty} \varepsilon_n^{\lambda} s_n \left(\frac{y}{1+y} \right)^n$ converges for y > 0, then for $\varepsilon > 0$,

(2)
$$\sigma_{\lambda}(y) = \frac{\Gamma(\lambda + \varepsilon + 1)}{\Gamma(\lambda + 1) \Gamma(\varepsilon)} \frac{1}{y} \int_{0}^{y} \left(1 - \frac{t}{y}\right)^{\varepsilon - 1} \left(\frac{t}{y}\right)^{\lambda} \sigma_{\lambda + \varepsilon}(t) dt.$$

Lemma 2. A_{λ} is regular for $\lambda > -1$. [That is, $s_n \to s$ implies $s_n \to s(A_{\lambda})$.]

Lemma 3. $A_{\lambda+\varepsilon} \subset A_{\lambda}$ for $\lambda > -1$, $\varepsilon > 0$. [That is, $s_n \to s(A_{\lambda+\varepsilon})$ implies $s_n \to s(A_{\lambda})$ and there exists a sequence $\{s_n\}$, depending on λ and ε , such that $\{s_n\}$ is A_{λ} -convergent but not $A_{\lambda+\varepsilon}$ -convergent.]

The real-valued function f is said to be slowly decreasing if $\liminf \{f(y) - f(x)\} \ge 0$ whenever $y \ge x \to \infty$ and $\ln \frac{y}{x} \to 0$; i.e., if for each $\varepsilon > 0$, there exist positive numbers δ and M such that $f(y) - f(x) \ge -\varepsilon$ whenever $y \ge x \ge M$ and $0 \le \ln \frac{y}{x} < \delta$.

The object of this paper is to prove the following two Tauberian theorems.

Theorem 1. For $\lambda > -1$ and $\varepsilon > 0$, if $s_n \to s(A_{\lambda})$, and $\sigma_{\lambda+\varepsilon}(t)$ is slowly decreasing, then $s_n \to s(A_{\lambda+\varepsilon})$.

Theorem 2. For $\lambda > -1$ and $\varepsilon > 0$, if $s_n \to s(A_{\lambda})$, and $\sigma_{\lambda+\varepsilon}(t) = O(1)$ for t > 0, then $s_n \to s(A_{\lambda+\delta})$ for $0 < \delta < \varepsilon$.

2. A general Tauberian result

Throughout this section we assume the following four initial hypotheses.

- (i) K(u, v) is defined, real-valued, and nonnegative for u > 0, $v \ge 0$. Moreover $\int_0^\infty K(u, v) dv$ exists in the Lebesgue sense for each u > 0.
 - (ii) $\int_{0}^{\infty} K(u, v) dv \rightarrow 1 \text{ as } u \rightarrow \infty.$
 - (iii) f(v) is real-valued and continuous for $v \ge 0$.
 - (iv) $F(u) = \int_{0}^{\infty} K(u, v) f(v) dv$ exists in the Cauchy-Lebesgue sense for each u > 0.

Theorem 3. Suppose the following conditions hold:

- (3) Φ is a real-valued, nonnegative, increasing, continuous function defined on $[0, \infty)$ such that $\Phi(x) \to \infty$ as $x \to \infty$;
- (4) $\lim \inf \{ f(y) f(x) \} \ge 0$ whenever $y \ge x \to \infty$ and $\Phi(y) \Phi(x) \to 0$;
- (5) $\Phi(x) \Phi(x-1) \rightarrow 0 \text{ as } x \rightarrow \infty$;
- (6) $\int_{0}^{\infty} K(u, v) dv \rightarrow 0$ whenever $u > x \rightarrow \infty$ and $\Phi(u) \Phi(x) \rightarrow \infty$;
- (7) $\int_{x}^{\infty} K(u, v) \{\Phi(v) \Phi(x)\} dv \to 0 \text{ whenever } x > u \to \infty \text{ and } \Phi(x) \Phi(u) \to \infty;$

and

(8) F(u) = O(1) for u > 0. Then f(v) = O(1) for v > 0.

This result is the integral analogue, with slightly weakened hypotheses, of a theorem originally given by Vijayaraghavan [4]. A proof patterned on the one given by Hardy can easily be constructed using the following four lemmas. We omit the details.

Lemma 4. If
$$\int_{0}^{M} K(u, v) dv \to 0$$
 as $u \to \infty$ for each $M > 0$, then
$$\liminf_{v \to \infty} f(v) \le \liminf_{u \to \infty} F(u) \le \limsup_{u \to \infty} F(u) \le \limsup_{v \to \infty} f(v) .$$

Lemma 4 is the integral analogue of Theorem 9 in [2], and is proved by an argument of standard type.

Lemma 5. If (3) and (6) hold, and if $f(v) \to s$ as $v \to \infty$, then $F(u) \to s$ as $u \to \infty$, where s may be finite or infinite.

Proof. By Lemma 4, it suffices to show that, for every fixed M > 0,

$$\int_{0}^{M} K(u, v) dv \to 0 \quad \text{as } u \to \infty .$$

Let ε , M be given positive numbers. By (6) there exist an $X \ge M > 0$ and an R > 0 such that $\int_0^X K(u, v) \, dv < \varepsilon$ whenever u > X and $\Phi(u) - \Phi(X) \ge R$. Let U be the positive number such that $\Phi(U) = R + \Phi(X)$. Then for $u \ge U$, $\int_0^M K(u, v) \, dv \le \int_0^X K(u, v) \, dv < \varepsilon$. This completes the proof.

Lemma 6. If (3) and (4) hold, then there exist positive constants M_1 , M_2 such that

$$f(y) - f(x) > -M_1 \{\Phi(y) - \Phi(x)\} - M_2$$

for $y \ge x \ge 0$.

Proof. By (4) there exist positive numbers X and δ such that f(y) - f(x) > -1 whenever $y \ge x \ge X$ and $\Phi(y) - \Phi(x) \le \delta$.

If $X \ge y \ge x \ge 0$, then by the continuity of f, there exists a positive constant N_1 such that $f(y) - f(x) > -N_1$.

If $y \ge X \ge x \ge 0$ and $\Phi(y) - \Phi(x) \le \delta$, then $\Phi(y) - \Phi(X) \le \Phi(y) - \Phi(x) \le \delta$ and since Φ is increasing to infinity, y must be bounded above, so that $f(y) - f(x) > -N_2$ for some positive constant N_2 .

It follows that $f(y) - f(x) > -M_2$ whenever $y \ge x \ge 0$ and $\Phi(y) - \Phi(x) \le \delta$, where $M_2 = \max(1, N_1, N_2)$.

Suppose now that $y > x \ge 0$. Define an increasing sequence $\{x_r\}$ so that $x_0 = x$ and $\Phi(x_r) = \Phi(x_{r-1}) + \delta$ for $r = 1, 2, \ldots$. Since $\Phi(x_r) = \Phi(x_0) + r\delta$ we have $x_r \to \infty$. Hence, there exists an integer m such that $x_m \le y < x_{m+1}$. Therefore

(9)
$$f(y) - f(x) = \sum_{r=0}^{m-1} [f(x_{r+1}) - f(x_r)] + f(y) - f(x_m) > -mM_2 - M_2$$
.

Since $m\delta = \Phi(x_m) - \Phi(x_0) \le \Phi(y) - \Phi(x)$ it follows from (9) that

$$f(y)-f(x) > -\frac{M_2}{\delta} \{\Phi(y)-\Phi(x)\} - M_2$$
.

The desired result follows.

Lemma 7. If (3) and (7) hold, then

$$\int_{x}^{\infty} K(u, v) dv \to 0$$

whenever $x > u \to \infty$ and $\Phi(x) - \Phi(u) \to \infty$.

Proof. Assign $\varepsilon > 0$. By (7), there exist positive numbers X and R such that R > 1 and

$$\int_{x}^{\infty} K(u, v) \left\{ \Phi(v) - \Phi(x) \right\} dv < \varepsilon$$

whenever x > u > X and $\Phi(x) - \Phi(u) \ge R$.

Suppose now that x > u > X and $\Phi(x) - \Phi(u) \ge R + 1$. Since Φ is continuous and increasing, there exists a w satisfying u < w < x and $\Phi(x) - \Phi(w) = 1$. Now

$$\Phi(w) - \Phi(u) = \Phi(w) - \Phi(x) + \Phi(x) - \Phi(u) \ge -1 + R + 1 = R$$
.

Hence,

$$\int_{x}^{\infty} K(u, v) dv = \int_{x}^{\infty} K(u, v) \left\{ \Phi(x) - \Phi(w) \right\} dv$$

$$\leq \int_{x}^{\infty} K(u, v) \left\{ \Phi(v) - \Phi(w) \right\} dv$$

$$\leq \int_{w}^{\infty} K(u, v) \left\{ \Phi(v) - \Phi(w) \right\} dv < \varepsilon.$$

This completes the proof.

3. A Tauberian theorem of Wiener

In this section we state a version of a Tauberian theorem of Wiener (see [2], Theorem 233).

Theorem 4. If

- (10) $g \in L(0,\infty)$;
- (11) $\int_{0}^{\infty} g(t)t^{-ix}dt = 0 \text{ for any real } x;$
- (12) f is bounded and measurable over $(0, \infty)$;
- (13) f is slowly decreasing;

(14)
$$\lim_{y\to\infty}\frac{1}{y}\int_{0}^{\infty}g\left(\frac{t}{y}\right)f(t)dt=s\int_{0}^{\infty}g(t)dt;$$

then $f(t) \rightarrow s$ as $t \rightarrow \infty$.

4. Proof of Theorem 1

Let

$$f(t) = \sigma_{\lambda + \varepsilon}(t),$$

$$g(t) = \begin{cases} \frac{\Gamma(\lambda + \varepsilon + 1)}{\Gamma(\lambda + 1) \Gamma(\varepsilon)} t^{\lambda} (1 - t)^{\varepsilon - 1} & 0 < t < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Note that the function g satisfies conditions (10) and (11) and that

$$\int_{0}^{\infty} g(t) dt = 1.$$

Further, the hypotheses of Theorem 1 together with identity (2) ensure that

$$\sigma_{\lambda}(y) = \frac{1}{y} \int_{0}^{\infty} g\left(\frac{t}{y}\right) f(t) dt$$

and that f satisfies conditions (13) and (14). In view of Theorem 4, it therefore suffices to prove that f is bounded on $(0, \infty)$.

Let

$$K(u, v) = \begin{cases} \frac{\Gamma(\lambda + \varepsilon + 1)}{\Gamma(\lambda + 1) \Gamma(\varepsilon)} \frac{1}{u} \left(\frac{v}{u}\right)^{\lambda} \left(1 - \frac{v}{u}\right)^{\varepsilon - 1} & 0 < v < u \\ 0 & \text{otherwise,} \end{cases}$$

$$\Phi(x) = \begin{cases} \frac{x}{e} & 0 \le x \le e \\ \ln x & e < x < \infty \end{cases}$$

Now, $K(u, v) \ge 0$ and $\int_{0}^{\infty} K(u, v) dv = 1$ for u > 0. Moreover, since f is continuous, $\int_{0}^{\infty} K(u, v) f(v) dv$ exists for each u > 0.

It is clear that the function Φ satisfies conditions (3) and (5), and the hypotheses of Theorem 1 guarantee that (4) and (8) hold. Condition (7) is satisfied since K(u, v) = 0 whenever $v \ge u > 0$. For (6), when u > x we have

$$\int_{0}^{x} K(u, v) dv = \frac{\Gamma(\lambda + \varepsilon + 1)}{\Gamma(\lambda + 1) \Gamma(\varepsilon)} \frac{1}{u} \int_{0}^{x} \left(\frac{v}{u}\right)^{\lambda} \left(1 - \frac{v}{u}\right)^{\varepsilon - 1} dv$$

$$= \frac{\Gamma(\lambda + \varepsilon + 1)}{\Gamma(\lambda + 1) \Gamma(\varepsilon)} \int_{0}^{x/u} t^{\lambda} (1 - t)^{\varepsilon - 1} dt \to 0 \text{ as } \frac{x}{u} \to 0,$$

and hence as $\ln \frac{u}{x} \to \infty$. As a result of Theorem 3, the proof of Theorem 1 is complete.

5. Additional lemmas

In order to establish Theorem 2 we require two additional lemmas.

Lemma 8. If $f \in L(-\infty, \infty)$ then

$$\int_{-\infty}^{\infty} |f(rx) - f(x)| dx \to 0 \text{ as } r \to 1.$$

The proof of Lemma 8 is straightforward and not unlike that of Theorem 248 in [3] (for example). We omit the details.

Lemma 9. If

(15) $h \in L(0, 1)$, and

(16) f(t) is measurable and bounded for $t \ge 0$, then the function F, defined for y > 0 by

$$F(y) = \frac{1}{y} \int_{0}^{y} h\left(\frac{t}{y}\right) f(t) dt,$$

is slowly decreasing.

Proof. It suffices to show that, for y > x > 0, $F(y) - F(x) \to 0$ as $\frac{y}{x} \to 1$.

For some fixed positive constant M we have

$$|F(y) - F(x)| = \left| \frac{1}{y} \int_{0}^{y} h\left(\frac{t}{y}\right) f(t) dt - \frac{1}{x} \int_{0}^{x} h\left(\frac{t}{x}\right) f(t) dt \right|$$

$$= \left| \frac{1}{y} \int_{0}^{x} h\left(\frac{t}{y}\right) f(t) dt - \frac{1}{x} \int_{0}^{x} \left\{ h\left(\frac{t}{y}\right) + h\left(\frac{t}{x}\right) - h\left(\frac{t}{y}\right) \right\} f(t) dt \right|$$

$$+ \frac{1}{y} \int_{x}^{y} h\left(\frac{t}{y}\right) f(t) dt \Big|$$

$$\leq \frac{M(y - x)}{xy} \int_{0}^{x} \left| h\left(\frac{t}{y}\right) \right| dt + \frac{M}{x} \int_{0}^{x} \left| h\left(\frac{t}{y}\right) - h\left(\frac{t}{x}\right) \right| dt + \frac{M}{y} \int_{x}^{y} \left| h\left(\frac{t}{y}\right) \right| dt$$

$$= M\left(\frac{y}{x} - 1\right) \int_{0}^{x/y} |h(t)| dt + M \int_{0}^{1} \left| h\left(\frac{x}{y} t\right) - h(t) \right| dt + M \int_{x/y}^{1} |h(t)| dt \to 0$$

as $\frac{x}{v} \rightarrow 1$ by Lemma 8 and (15). This establishes the result.

6. Proof of Theorem 2

Let

$$h(t) = \begin{cases} \frac{\Gamma(\lambda + \varepsilon + 1)}{\Gamma(\lambda + \delta + 1) \Gamma(\varepsilon - \delta)} t^{\lambda + \delta} (1 - t)^{\varepsilon - \delta - 1} & 0 < t < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Then $h(t) \in L(0, 1)$, and by identity (2) we have

$$\sigma_{\lambda+\delta}(y) = \frac{1}{y} \int_{0}^{y} h\left(\frac{t}{y}\right) \sigma_{\lambda+\varepsilon}(t) dt$$
.

By hypothesis, $\sigma_{\lambda+\epsilon}(t)$ is bounded for $t \ge 0$. Hence, by Lemma 9, $\sigma_{\lambda+\delta}(t)$ is slowly decreasing. The result follows by Theorem 1.

References

- [1] D. Borwein, On a scale of Abel-type summability methods, Proc. Cambridge Phil. Soc. 53 (1957), 318—322.
- [2] G. H. Hardy, Divergent Series, Oxford 1949.
- [3] H. Kestleman, Modern Theories of Integration, Dover 1960.
 [4] T. Vijayaraghavan, A tauberian theorem, Journal London Math. Soc. 1 (1926), 113—120.

Mathematical Department, University of Western Ontario, London, N6A 5B9, Ontario, Canada

Eingegangen 18. Februar 1977