Tauberian theorems on a scale of Abel-type summability methods

By D. Borwein and B. Watson at London, Canada

1. Introduction

Suppose throughout that $\left\{s_{n}\right\}$ is a sequence of real numbers, λ is real, $\varepsilon_{0}^{\lambda}=1$, and $\varepsilon_{n}^{\lambda}=\binom{n+\lambda}{n}$ for $n=1,2,3, \ldots$.

We are concerned with the methods of summability A_{λ}, introduced and studied by Borwein [1], and defined as follows. If

$$
\begin{equation*}
\sigma_{\lambda}(y)=(1+y)^{-\lambda-1} \sum_{n=0}^{\infty} \varepsilon_{n}^{\lambda} s_{n}\left(\frac{y}{1+y}\right)^{n} \tag{1}
\end{equation*}
$$

converges for $y>0$, and tends to s as $y \rightarrow \infty$, then we say that the sequence $\left\{s_{n}\right\}$ is A_{λ}-convergent to s and write $s_{n} \rightarrow s\left(A_{\lambda}\right)$. The method A_{0} is the ordinary Abel method.

Borwein has proved (in [1]) the following basic results.
Lemma 1. For $\lambda>-1$, if $\sum_{n=0}^{\infty} \varepsilon_{n}^{\lambda} s_{n}\left(\frac{y}{1+y}\right)^{n}$ converges for $y>0$, then for $\varepsilon>0$,

$$
\begin{equation*}
\sigma_{\lambda}(y)=\frac{\Gamma(\lambda+\varepsilon+1)}{\Gamma(\lambda+1) \Gamma(\varepsilon)} \frac{1}{y} \int_{0}^{y}\left(1-\frac{t}{y}\right)^{\varepsilon-1}\left(\frac{t}{y}\right)^{\lambda} \sigma_{\lambda+\varepsilon}(t) d t \tag{2}
\end{equation*}
$$

Lemma 2. A_{λ} is regular for $\lambda>-1$. [That is, $s_{n} \rightarrow s$ implies $s_{n} \rightarrow s\left(A_{\lambda}\right)$.]
Lemma 3. $A_{\lambda+\varepsilon} \subset A_{\lambda}$ for $\lambda>-1, \varepsilon>0$. [That is, $s_{n} \rightarrow s\left(A_{\lambda+\varepsilon}\right)$ implies $s_{n} \rightarrow s\left(A_{\lambda}\right)$ and there exists a sequence $\left\{s_{n}\right\}$, depending on λ and ε, such that $\left\{s_{n}\right\}$ is A_{λ}-convergent but not $A_{\lambda+\varepsilon}$-convergent.]

The real-valued function f is said to be slowly decreasing if $\lim \inf \{f(y)-f(x)\} \geqq 0$ whenever $y \geqq x \rightarrow \infty$ and $\ln \frac{y}{x} \rightarrow 0$; i.e., if for each $\varepsilon>0$, there exist positive numbers δ and M such that $f(y)-f(x) \geqq-\varepsilon$ whenever $y \geqq x \geqq M$ and $0 \leqq \ln \frac{y}{x}<\delta$.

The object of this paper is to prove the following two Tauberian theorems.
Theorem 1. For $\lambda>-1$ and $\varepsilon>0$, if $s_{n} \rightarrow s\left(A_{\lambda}\right)$, and $\sigma_{\lambda+\varepsilon}(t)$ is slowly decreasing, then $s_{n} \rightarrow s\left(A_{\lambda+\varepsilon}\right)$.

Theorem 2. For $\lambda>-1$ and $\varepsilon>0$, if $s_{n} \rightarrow s\left(A_{\lambda}\right)$, and $\sigma_{\lambda+\varepsilon}(t)=O$ (1) for $t>0$, then $s_{n} \rightarrow s\left(A_{\lambda+\delta}\right)$ for $0<\delta<\varepsilon$.

2. A general Tauberian result

Throughout this section we assume the following four initial hypotheses.
(i) $K(u, v)$ is defined, real-valued, and nonnegative for $u>0, v \geqq 0$. Moreover $\int_{0}^{\infty} K(u, v) d v$ exists in the Lebesgue sense for each $u>0$.
(ii) $\int_{0}^{\infty} K(u, v) d v \rightarrow 1$ as $u \rightarrow \infty$.
(iii) $f(v)$ is real-valued and continuous for $v \geqq 0$.
(iv) $F(u)=\int_{0}^{\infty} K(u, v) f(v) d v$ exists in the Cauchy-Lebesgue sense for each $u>0$.

Theorem 3. Suppose the following conditions hold:
(3) Φ is a real-valued, nonnegative, increasing, continuous function defined on $[0, \infty)$ such that $\Phi(x) \rightarrow \infty$ as $x \rightarrow \infty$;
(4) $\lim \inf \{f(y)-f(x)\} \geqq 0$ whenever $y \geqq x \rightarrow \infty$ and $\Phi(y)-\Phi(x) \rightarrow 0$;
(5) $\Phi(x)-\Phi(x-1) \rightarrow 0$ as $x \rightarrow \infty$;
(6) $\int_{0}^{x} K(u, v) d v \rightarrow 0$ whenever $u>x \rightarrow \infty$ and $\Phi(u)-\Phi(x) \rightarrow \infty$;
(7) $\int_{x}^{\infty} K(u, v)\{\Phi(v)-\Phi(x)\} d v \rightarrow 0$ whenever $x>u \rightarrow \infty$ and $\Phi(x)-\Phi(u) \rightarrow \infty$;
and
(8) $F(u)=O(1)$ for $u>0$.

Then $f(v)=O(1)$ for $v>0$.
This result is the integral analogue, with slightly weakened hypotheses, of a theorem originally given by Vijayaraghavan [4]. A proof patterned on the one given by Hardy can easily be constructed using the following four lemmas. We omit the details.

Lemma 4. If $\int_{0}^{M} K(u, v) d v \rightarrow 0$ as $u \rightarrow \infty$ for each $M>0$, then

$$
\underset{v \rightarrow \infty}{\liminf } f(v) \leqq \liminf _{u \rightarrow \infty} F(u) \leqq \limsup _{u \rightarrow \infty} F(u) \leqq \underset{v \rightarrow \infty}{\limsup } f(v) .
$$

Lemma 4 is the integral analogue of Theorem 9 in [2], and is proved by an argument of standard type.

Lemma 5. If (3) and (6) hold, and if $f(v) \rightarrow s$ as $v \rightarrow \infty$, then $F(u) \rightarrow s$ as $u \rightarrow \infty$, where s may be finite or infinite.

Proof. By Lemma 4, it suffices to show that, for every fixed $M>0$,

$$
\int_{0}^{M} K(u, v) d v \rightarrow 0 \quad \text { as } u \rightarrow \infty
$$

Let ε, M be given positive numbers. By (6) there exist an $X \geqq M>0$ and an $R>0$ such that $\int_{0}^{X} K(u, v) d v<\varepsilon$ whenever $u>X$ and $\Phi(u)-\Phi(X) \geqq R$. Let U be the positive number such that $\Phi(U)=R+\Phi(X)$. Then for $u \geqq U, \int_{0}^{M} K(u, v) d v \leqq \int_{0}^{X} K(u, v) d v<\varepsilon$. This completes the proof.

Lemma 6. If (3) and (4) hold, then there exist positive constants M_{1}, M_{2} such that

$$
f(y)-f(x)>-M_{1}\{\Phi(y)-\Phi(x)\}-M_{2}
$$

for $y \geqq x \geqq 0$.
Proof. By (4) there exist positive numbers X and δ such that $f(y)-f(x)>-1$ whenever $y \geqq x \geqq X$ and $\Phi(y)-\Phi(x) \leqq \delta$.

If $X \geqq y \geqq x \geqq 0$, then by the continuity of f, there exists a positive constant N_{1} such that $f(y)-f(x)>-N_{1}$.

If $y \geqq X \geqq x \geqq 0$ and $\Phi(y)-\Phi(x) \leqq \delta$, then $\Phi(y)-\Phi(X) \leqq \Phi(y)-\Phi(x) \leqq \delta$ and since Φ is increasing to infinity, y must be bounded above, so that $f(y)-f(x)>-N_{2}$ for some positive constant N_{2}.

It follows that $f(y)-f(x)>-M_{2}$ whenever $y \geqq x \geqq 0$ and $\Phi(y)-\Phi(x) \leqq \delta$, where $M_{2}=\max \left(1, N_{1}, N_{2}\right)$.

Suppose now that $y>x \geqq 0$. Define an increasing sequence $\left\{x_{r}\right\}$ so that $x_{0}=x$ and $\Phi\left(x_{r}\right)=\Phi\left(x_{r-1}\right)+\delta$ for $r=1,2, \ldots$. Since $\Phi\left(x_{r}\right)=\Phi\left(x_{0}\right)+r \delta$ we have $x_{r} \rightarrow \infty$. Hence, there exists an integer m such that $x_{m} \leqq y<x_{m+1}$. Therefore

$$
\begin{equation*}
f(y)-f(x)=\sum_{r=0}^{m-1}\left[f\left(x_{r+1}\right)-f\left(x_{r}\right)\right]+f(y)-f\left(x_{m}\right)>-m M_{2}-M_{2} . \tag{9}
\end{equation*}
$$

Since $m \delta=\Phi\left(x_{m}\right)-\Phi\left(x_{0}\right) \leqq \Phi(y)-\Phi(x)$ it follows from (9) that

$$
f(y)-f(x)>-\frac{M_{2}}{\delta}\{\Phi(y)-\Phi(x)\}-M_{2} .
$$

The desired result follows.
Lemma 7. If (3) and (7) hold, then

$$
\int_{x}^{\infty} K(u, v) d v \rightarrow 0
$$

whenever $x>u \rightarrow \infty$ and $\Phi(x)-\Phi(u) \rightarrow \infty$.

Proof. Assign $\varepsilon>0$. By (7), there exist positive numbers X and R such that $R>1$ and

$$
\int_{x}^{\infty} K(u, v)\{\Phi(v)-\Phi(x)\} d v<\varepsilon
$$

whenever $x>u>X$ and $\Phi(x)-\Phi(u) \geqq R$.
Suppose now that $x>u>X$ and $\Phi(x)-\Phi(u) \geqq R+1$. Since Φ is continuous and increasing, there exists a w satisfying $u<w<x$ and $\Phi(x)-\Phi(w)=1$. Now

$$
\Phi(w)-\Phi(u)=\Phi(w)-\Phi(x)+\Phi(x)-\Phi(u) \geqq-1+R+1=R .
$$

Hence,

$$
\begin{aligned}
\int_{x}^{\infty} K(u, v) d v & =\int_{x}^{\infty} K(u, v)\{\Phi(x)-\Phi(w)\} d v \\
& \leqq \int_{x}^{\infty} K(u, v)\{\Phi(v)-\Phi(w)\} d v \\
& \leqq \int_{w}^{\infty} K(u, v)\{\Phi(v)-\Phi(w)\} d v<\varepsilon
\end{aligned}
$$

This completes the proof.

3. A Tauberian theorem of Wiener

In this section we state a version of a Tauberian theorem of Wiener (see [2], Theorem 233).

Theorem 4. If
(10) $g \in L(0, \infty)$;
(11) $\int_{0}^{\infty} g(t) t^{-i x} d t \neq 0$ for any real x;
(12) f is bounded and measurable over $(0, \infty)$;
(13) f is slowly decreasing;
(14) $\lim _{y \rightarrow \infty} \frac{1}{y} \int_{0}^{\infty} g\left(\frac{t}{y}\right) f(t) d t=s \int_{0}^{\infty} g(t) d t$;
then $f(t) \rightarrow s$ as $t \rightarrow \infty$.

4. Proof of Theorem 1

Let

$$
\begin{aligned}
& f(t)=\sigma_{\lambda+\varepsilon}(t) \\
& g(t)= \begin{cases}\frac{\Gamma(\lambda+\varepsilon+1)}{\Gamma(\lambda+1) \Gamma(\varepsilon)} t^{\lambda}(1-t)^{\varepsilon-1} & 0<t<1 \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Note that the function g satisfies conditions (10) and (11) and that

$$
\int_{0}^{\infty} g(t) d t=1 .
$$

Further, the hypotheses of Theorem 1 together with identity (2) ensure that

$$
\sigma_{\lambda}(y)=\frac{1}{y} \int_{0}^{\infty} g\left(\frac{t}{y}\right) f(t) d t
$$

and that f satisfies conditions (13) and (14). In view of Theorem 4, it therefore suffices to prove that f is bounded on $(0, \infty)$.

Let

$$
\begin{aligned}
K(u, v) & = \begin{cases}\frac{\Gamma(\lambda+\varepsilon+1)}{\Gamma(\lambda+1) \Gamma(\varepsilon)} \frac{1}{u}\left(\frac{v}{u}\right)^{\lambda}\left(1-\frac{v}{u}\right)^{\varepsilon-1} & 0<v<u \\
0 & \text { otherwise },\end{cases} \\
\Phi(x) & = \begin{cases}\frac{x}{e} & 0 \leqq x \leqq e \\
\ln x & e<x<\infty\end{cases}
\end{aligned}
$$

Now, $K(u, v) \geqq 0$ and $\int_{0}^{\infty} K(u, v) d v=1$ for $u>0$. Moreover, since f is continuous, $\int_{0}^{\infty} K(u, v) f(v) d v$ exists for each $u>0$.

It is clear that the function Φ satisfies conditions (3) and (5), and the hypotheses of Theorem 1 guarantee that (4) and (8) hold. Condition (7) is satisfied since $K(u, v)=0$ whenever $v \geqq u>0$. For (6), when $u>x$ we have

$$
\begin{aligned}
\int_{0}^{x} K(u, v) d v & =\frac{\Gamma(\lambda+\varepsilon+1)}{\Gamma(\lambda+1) \Gamma(\varepsilon)} \frac{1}{u} \int_{0}^{x}\left(\frac{v}{u}\right)^{\lambda}\left(1-\frac{v}{u}\right)^{\varepsilon-1} d v \\
& =\frac{\Gamma(\lambda+\varepsilon+1)}{\Gamma(\lambda+1) \Gamma(\varepsilon)} \int_{0}^{x / u} t^{\lambda}(1-t)^{\varepsilon-1} d t \rightarrow 0 \text { as } \frac{x}{u} \rightarrow 0
\end{aligned}
$$

and hence as $\ln \frac{u}{x} \rightarrow \infty$. As a result of Theorem 3, the proof of Theorem 1 is complete.

5. Additional lemmas

In order to establish Theorem 2 we require two additional lemmas.

Lemma 8. If $f \in L(-\infty, \infty)$ then

$$
\int_{-\infty}^{\infty}|f(r x)-f(x)| d x \rightarrow 0 \text { as } r \rightarrow 1
$$

The proof of Lemma 8 is straightforward and not unlike that of Theorem 248 in [3] (for example). We omit the details.

Lemma 9. If

(15) $h \in L(0,1)$, and
(16) $f(t)$ is measurable and bounded for $t \geqq 0$, then the function F, defined for $y>0$ by

$$
F(y)=\frac{1}{y} \int_{0}^{y} h\left(\frac{t}{y}\right) f(t) d t,
$$

is slowly decreasing.
Proof. It suffices to show that, for $y>x>0, F(y)-F(x) \rightarrow 0$ as $\frac{y}{x} \rightarrow 1$.
For some fixed positive constant M we have

$$
\begin{aligned}
|F(y)-F(x)|= & \left|\frac{1}{y} \int_{0}^{y} h\left(\frac{t}{y}\right) f(t) d t-\frac{1}{x} \int_{0}^{x} h\left(\frac{t}{x}\right) f(t) d t\right| \\
= & \left\lvert\, \frac{1}{y} \int_{0}^{x} h\left(\frac{t}{y}\right) f(t) d t-\frac{1}{x} \int_{0}^{x}\left\{h\left(\frac{t}{y}\right)+h\left(\frac{t}{x}\right)-h\left(\frac{t}{y}\right)\right\} f(t) d t\right. \\
& \left.+\frac{1}{y} \int_{x}^{y} h\left(\frac{t}{y}\right) f(t) d t \right\rvert\, \\
\leqq & \frac{M(y-x)}{x y} \int_{0}^{x}\left|h\left(\frac{t}{y}\right)\right| d t+\frac{M}{x} \int_{0}^{x}\left|h\left(\frac{t}{y}\right)-h\left(\frac{t}{x}\right)\right| d t+\frac{M}{y} \int_{x}^{y}\left|h\left(\frac{t}{y}\right)\right| d t \\
= & M\left(\frac{y}{x}-1\right) \int_{0}^{x / y}|h(t)| d t+M \int_{0}^{1}\left|h\left(\frac{x}{y} t\right)-h(t)\right| d t+M \int_{x / y}^{1}|h(t)| d t \rightarrow 0
\end{aligned}
$$

as $\frac{x}{y} \rightarrow 1$ by Lemma 8 and (15). This establishes the result.

6. Proof of Theorem 2

Let

$$
h(t)= \begin{cases}\frac{\Gamma(\lambda+\varepsilon+1)}{\Gamma(\lambda+\delta+1) \Gamma(\varepsilon-\delta)} t^{\lambda+\delta}(1-t)^{\varepsilon-\delta-1} & 0<t<1 \\ 0 & \text { otherwise }\end{cases}
$$

Then $h(t) \in L(0,1)$, and by identity (2) we have

$$
\sigma_{\lambda+\delta}(y)=\frac{1}{y} \int_{0}^{y} h\left(\frac{t}{y}\right) \sigma_{\lambda+\varepsilon}(t) d t .
$$

By hypothesis, $\sigma_{\lambda+\varepsilon}(t)$ is bounded for $t \geqq 0$. Hence, by Lemma $9, \sigma_{\lambda+\delta}(t)$ is slowly decreasing. The result follows by Theorem 1.

References

[1] D. Borwein, On a scale of Abel-type summability methods, Proc. Cambridge Phil. Soc. 53 (1957), 318-322. [2] G. H. Hardy, Divergent Series, Oxford 1949.
[3] H. Kestleman, Modern Theories of Integration, Dover 1960.
[4] T. Vijayaraghavan, A tauberian theorem, Journal London Math. Soc. 1 (1926), 113-120.

Mathematical Department, University of Western Ontario, London, N6A 5B9, Ontario, Canada
Eingegangen 18. Februar 1977

