TRANSFORMATIONS OF CERTAIN SEQUENCES
 OF RANDOM VARIABLES BY GENERALIZED HAUSDORFF MATRICES

David Borwein and Amnon Jakimovski

Abstract

Sufficient conditions are established for a generalized Hausdorff matrix to transform certain sequences of random variables into almost surely convergent sequences.

1. Introduction. Suppose that $\left\{X_{n}\right\}(n=0,1, \ldots)$ is a sequence of random variables defined on a probability space (Ω, \mathscr{F}, P), and that $A=\left\{a_{n k}\right\}(n, k=0,1, \ldots)$ is an infinite matrix. Let

$$
T_{n}=\sum_{k=0}^{\infty} a_{n k} X_{k}
$$

The following theorem concerning the almost sure convergence to zero of the sequence $\left\{T_{n}\right\}$ is due to Borwein [1].

Theorem A. If $1<p \leq 2,0<M<\infty$ and
(1) $\left|X_{n}\right| \leq M$ a.s. for $n=0,1, \ldots$,
(2) $\sum_{0 \leq i_{1}<i_{2}<\cdots<i_{n}}\left|E\left(X_{i_{1}} X_{i_{2}} \cdots X_{t_{n}}\right)\right|^{p /(p-1)} \leq M^{n}$ for $n=1,2, \ldots$,
(3) $\sum_{k=0}^{\infty}\left|a_{n k}\right|<\infty$ for $n=0,1, \ldots$, and

$$
\lim _{n \rightarrow \infty} \log n\left(\sum_{k=0}^{\infty}\left|a_{n k}\right|^{p}\right)^{1 /(p-n)}=0
$$

then $T_{n} \rightarrow 0$ a.s.
The sequence $\left\{X_{n}\right\}$ is said to be multiplicative if the expectation $E\left(X_{i_{1}} X_{i_{2}} \cdots X_{i_{n}}\right)=0$ whenever $0 \leq i_{1}<i_{2}<\cdots<i_{n}$; in particular, it is multiplicative if it is independent with $E X_{n}=0$ for $n=0,1, \ldots$ Condition (2) is trivially satisfied when $\left\{X_{n}\right\}$ is multiplicative. The nature of Theorem A is clarified by comparison with Kolmogorov's classical strong law of large numbers which states that if $\left\{X_{n}\right\}$ is independent with $E X_{n}=0$ for $n=0,1, \ldots$, and if

$$
\sum_{k=0}^{\infty} \frac{E X_{k}^{2}}{(k+1)^{2}}<\infty, \text { then } \frac{1}{n+1} \sum_{k=0}^{n} X_{k} \rightarrow 0 \quad \text { a.s. }
$$

We shall denote by Γ_{p} the set of matrices A such that $T_{n} \rightarrow 0$ a.s. whenever the sequence $\left\{X_{n}\right\}$ satisfies conditions (1) and (2). Our primary
object in this paper is to establish conditions which are both sufficient and easy to verify for generalization Hausdorff matrices to be in Γ_{p}. Included in the class of generalized Hausdorff matrices are the matrices of such well-known methods of summability as the Cesàro, the Euler, and the weighted mean methods.

The matrix A is said to have the Borel property and we write $A \in(B P)$, if almost all sequences of zeros and ones are A-convergent to $1 / 2$. This amounts to (see [5])

$$
\frac{1}{2} \sum_{k=0}^{\infty} a_{n k}\left(1-X_{k}\right) \rightarrow \frac{1}{2} \quad \text { a.s. }
$$

when $\left\{X_{n}\right\}$ is the sequence of Rademacher functions on $\Omega=[0,1]$ and P is Lebesgue measure. Since, in this case, $\left\{X_{n}\right\}$ satisfies conditions (1) and (2), it follows that
if $\sum_{k=0}^{\infty} a_{n k}$ is convergent for $n=0,1, \ldots$ and $\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=1$, and if $A \in \Gamma_{p}$, then $A \in(B P)$.
Generalized Hausdorff matrices. Suppose in all that follows that $\lambda=\left\{\lambda_{n}\right\}$ is a sequence of real numbers satisfying

$$
\lambda_{0} \geq 0, \quad \lambda_{n}>0 \quad \text { for } n=1,2, \ldots, \lambda_{n} \rightarrow \infty, \quad \sum_{r=1}^{\infty} \frac{1}{\lambda_{n}}=\infty
$$

and that α is a function of bounded variation on $[0,1]$.
For $0 \leq k \leq n, 0<t \leq 1$, let

$$
\begin{align*}
& \lambda_{n k}(t)=-\lambda_{k+1} \cdots \lambda_{n} \frac{1}{2 \pi i} \int_{C} \frac{t^{z} d z}{\left(\lambda_{k}-z\right) \cdots\left(\lambda_{n}-z\right)} \tag{4}\\
& \lambda_{n k}(0)=\lambda_{n k}(0+)
\end{align*}
$$

C being a positively sensed closed Jordan contour enclosing λ_{k}, $\lambda_{k+1}, \ldots, \lambda_{n}$. We observe the convention that products such as $\lambda_{k+1} \cdots \lambda_{n}$ $=1$ when $k=n$. Let

$$
\begin{equation*}
\lambda_{n k}=\int_{0}^{1} \lambda_{n k}(t) d \alpha(t) \quad \text { for } 0 \leq k \leq n ; \quad \lambda_{n k}=0 \quad \text { for } k>n \tag{5}
\end{equation*}
$$

and denote the triangular matrix $\left\{\lambda_{n k}\right\}$ by $H(\lambda, \alpha)$. This is called a generalized Hausdorff matrix.

Let

$$
\begin{aligned}
& D_{0}=\left(1+\lambda_{0}\right) d_{0}=1 \\
& D_{n}=\left(1+\frac{1}{\lambda_{1}}\right) \cdots\left(1+\frac{1}{\lambda_{n}}\right)=\left(1+\lambda_{n}\right) d_{n} \quad \text { for } n \geq 1
\end{aligned}
$$

Then, for $n \geq 0$,

$$
D_{n}=\lambda_{n+1} d_{n+1}=\frac{\lambda_{0}}{1+\lambda_{0}}+\sum_{k=0}^{n} d_{k}
$$

It is known (see [3]) that

$$
\begin{equation*}
0 \leq \lambda_{n j}(t) \leq \sum_{k=0}^{n} \lambda_{n k}(t) \leq 1 \quad \text { for } 0 \leq t \leq 1,0 \leq j \leq n \tag{6}
\end{equation*}
$$

$$
\begin{gather*}
\int_{0}^{1} \lambda_{n k}(t) d t=\frac{d_{k}}{D_{n}} \quad \text { for } 0 \leq k \leq n \tag{7}\\
\sum_{k=0}^{n}\left|\lambda_{n k}\right| \leq \int_{0}^{1}|d \alpha(t)| \tag{8}
\end{gather*}
$$

Let

$$
\begin{equation*}
\rho_{n k}=\sum_{j=k}^{n} \frac{1}{\lambda_{j}}, \quad \sigma_{n k}=\left(\sum_{j=k}^{n} \frac{1}{\lambda_{j}^{2}}\right)^{1 / 2} \quad \text { for } 1 \leq k \leq n . \tag{9}
\end{equation*}
$$

We shall prove the following theorems.
Theorem 1. Let M, m be positive constants. If $\alpha(0+)=\alpha(0)$ and $\alpha(1-)=\alpha(1)$, and if λ satisfies either
(10) $\quad M \log \lambda_{k} \geq \lambda_{k+1}-\lambda_{k} \geq m \quad$ for all sufficiently large k
or
(11) $M \geq \lambda_{k+1}-\lambda_{k}>0 \quad$ for all sufficiently large k and $\log n / \sqrt{\lambda_{n}}=o(1)$, then $H(\lambda, \alpha) \in \Gamma_{2}$. If, in addition, $\alpha(1)-\alpha(0)=1$, then $H(\lambda, \alpha) \in(B P)$.

Theorem 2. Let $\alpha(t)=\int_{0}^{t} \beta(u) d u$ for $0 \leq t<1$, and let $1<p \leq 2$. If either

$$
\begin{equation*}
\beta \in L^{p}[0,1] \quad \text { and } \quad \max _{0 \leq k \leq n} d_{k} \cdot \frac{\log n}{D_{n}}=o(1) \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
\beta \in L^{\infty}[0,1] \quad \text { and } \log n\left(\sum_{k=0}^{n}\left(\frac{d_{k}}{D_{n}}\right)^{p}\right)^{1 /(p-1)}=o(1) \tag{13}
\end{equation*}
$$

then $H(\lambda, \alpha) \in \Gamma_{p}$. If, in addition, $\left\{\lambda_{n}\right\}$ is non-decreasing and $\alpha(1)=1$, then $H(\lambda, \alpha) \in(B P)$.

It is known that $H(\lambda, \alpha) \in(B P)$ when α satisfies the conditions of Theorem 1 and $\lambda_{n}=n+c$, the case $c=0$ of this result being due to Hill [6] and the case $c>0$ to Liu and Rhoades [9]. On the other hand, Borwein and Cass [2] have shown that $H(\lambda, \alpha) \notin(B P)$ when $\alpha(t)=t$ and $\lambda_{n}=$ $c \log (n+1), 0<c<1 / \log 4$. Borwein and Cass [2] have also shown Theorem 2 to hold in the case $p=2,0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots$.

2. Preliminary results.

Lemma 1. If $1 \leq k \leq n, 0<\lambda_{k} \leq \lambda_{k+1} \leq \cdots \leq \lambda_{n}$ and $0 \leq t \leq 1$, then

$$
\lambda_{n k}(t) \leq \frac{\sqrt{2}}{\lambda_{k} \sigma_{n k}}
$$

Proof. Since $0 \leq \lambda_{n k}(t) \leq 1$, we may suppose that

$$
\begin{equation*}
\lambda_{k}^{2} \sum_{j=k}^{n} \frac{1}{\lambda_{j}^{2}}>2 \tag{14}
\end{equation*}
$$

Jakimovski [6, Lemma 2.1] has shown that, for $u>0$,

$$
\lambda_{n k}\left(e^{-u}\right)=\frac{1}{2 \pi \lambda_{k}} \int_{-\infty}^{\infty} \frac{e^{i u v} d v}{\prod_{j=k}^{n}\left(1+i v / \lambda_{j}\right)}
$$

from which it follows that

$$
\lambda_{n k}\left(e^{-u}\right) \leq \frac{1}{2 \pi \lambda_{k}} \int_{-\infty}^{\infty} \frac{d v}{\prod_{j=k}^{n}\left(1+v^{2} / \lambda_{j}^{2}\right)^{1 / 2}}
$$

Next, we have, by (14), that

$$
\begin{aligned}
\prod_{j=k}^{n}\left(1+\frac{v^{2}}{\lambda_{j}^{2}}\right) & \geq 1+v^{2} \sum_{j=k}^{n} \frac{1}{\lambda_{j}^{2}}+\frac{v^{4}}{2} \sum_{r=k}^{n} \frac{1}{\lambda_{r}^{2}}\left(\sum_{j=k}^{n} \frac{1}{\lambda_{j}^{2}}-\frac{1}{\lambda_{r}^{2}}\right) \\
& \geq 1+v^{2} \sum_{j=k}^{n} \frac{1}{\lambda_{j}^{2}}+\frac{v^{4}}{4} \sum_{r=k}^{n} \frac{1}{\lambda_{r}^{2}} \sum_{j=k}^{n} \frac{1}{\lambda_{j}^{2}}=\left(1+\frac{v^{2}}{2} \sigma_{n k}^{2}\right)^{2}
\end{aligned}
$$

Hence, for $u>0$,

$$
\lambda_{n k}\left(e^{-u}\right) \leq \frac{1}{2 \pi \lambda_{k}} \int_{-\infty}^{\infty} \frac{d v}{1+v^{2} \sigma_{n k}^{2} / 2}<\frac{\sqrt{2}}{\lambda_{k} \sigma_{n k}}
$$

and this completes the proof of Lemma 1.
The case $s=0,0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots$ of the following lemma is due to Hausdorff [4].

Lemma 2. Let $\left\{\lambda_{n}\right\}$ be non-decreasing, and let s be a non-negative integer. Then

$$
\lim _{n \rightarrow \infty} \sum_{k=s}^{n} \lambda_{n k}= \begin{cases}\alpha(1)-\alpha(0+) & \text { if } \lambda_{s}>0 \tag{15}\\ \alpha(1)-\alpha(0) & \text { if } \lambda_{s}=0\end{cases}
$$

and

$$
\lim _{n \rightarrow \infty} \lambda_{n s}= \begin{cases}0 & \text { if } \lambda_{s}>0 \tag{16}\\ \alpha(0+)-\alpha(0) & \text { if } \lambda_{s}=0\end{cases}
$$

Proof. It is known [3, Theorem 1(iv) and Theorem 2] that (15) holds with $s=0$ when $\alpha(t)$ is non-decreasing, and the general case of (15) with $s=0$ follows by expressing $\alpha(t)$ as the difference of two non-decreasing functions.

Next, suppose $s \geq 1$ and let $\tilde{\lambda}_{k}=\lambda_{k+s}$ for $k=0,1, \cdots$. Then, for $s \leq k \leq n$,

$$
\lambda_{n k}=\tilde{\lambda}_{n-s, k-s}
$$

$\tilde{\lambda}_{n k}$ being defined by (4) and (5) with $\left\{\lambda_{k}\right\}$ replaced by $\left\{\tilde{\lambda}_{k}\right\}$. Hence, as $n \rightarrow \infty$,

$$
\sum_{k=s}^{n} \lambda_{n k}=\sum_{k=0}^{n-s} \tilde{\lambda}_{n-s, k} \rightarrow \alpha(1)-\alpha(0+)
$$

by (15) with $s=0$, since $\tilde{\lambda}_{0}=\lambda_{s}>0$. This establishes (15) with $s \geq 0$.
To complete the proof of Lemma 2 we can deduce (16) from (15) by observing that, for $n>s \geq 0$,

$$
\lambda_{n s}=\sum_{k=s}^{n} \lambda_{n k}-\sum_{k=s+1}^{n} \lambda_{n k}
$$

Lemma 3. Let $0 \leq \lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots, 0<\delta<1 / 2$, and let s be a positive integer. Then there is an integer N and a positive constant M such that, for $n \geq N$,

$$
\sum_{k=s}^{n}\left(\int_{\delta}^{1-\delta} \lambda_{n k}(t)|d \alpha(t)|\right)^{2} \leq M \max \left(M_{1}(n, s), M_{2}(n, s)\right)
$$

where

$$
\begin{equation*}
M_{1}(n, s)=\max _{s \leq k \leq n} \frac{e^{-\lambda_{s} \rho_{n k}}}{\lambda_{k}} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{2}(n, s)=\max _{\substack{s \leq k \leq \leq n \\ \delta / 2 \leq e^{-\rho_{n k} \leq 1-\delta / 2}}} \frac{1}{\lambda_{k} \sigma_{n k}} . \tag{18}
\end{equation*}
$$

Proof. Case 1. Suppose that $\lambda_{0}=0, s=1$. Let

$$
\omega_{n k}=\left(\left(1-\frac{\lambda_{1}}{\lambda_{k+1}}\right) \cdots\left(1-\frac{\lambda_{1}}{\lambda_{n}}\right)\right)^{1 / \lambda_{1}} \quad \text { for } 0 \leq k<n, \omega_{n n}=1
$$

Then, in view of (6), we have

$$
\begin{aligned}
\sum_{k=1}^{n}\left(\int_{\delta}^{1-\delta} \lambda_{n k}(t)|d \alpha(t)|\right)^{2} & \leq \int_{\delta}^{1-\delta}|d \alpha(t)| \cdot \max _{1 \leq k \leq n} \int_{\delta}^{1-\delta} \lambda_{n k}(t)|d \alpha(t)| \\
& \leq V_{\delta} \max \left(I_{1}, I_{2}\right)
\end{aligned}
$$

where $V_{\delta}=\int_{\delta}^{1-\delta}|d \alpha(t)|$,

$$
I_{1}=\max _{\substack{1 \leq k \leq n \\\left|\omega_{n k}-1 / 2\right| \geq 1 / 2-3 \delta / 4}} \int_{\delta}^{1-\delta} \lambda_{n k}(t)|d \alpha(t)|
$$

and

$$
I_{2}=\max _{\substack{1 \leq k \leq n \\\left|\omega_{n k}-1 / 2\right|<1 / 2-3 \delta / 4}} \int_{\delta}^{1-\delta} \lambda_{n k}(t)|d \alpha(t)|
$$

To deal with I_{1}, let $f(t)$ be a twice continuously differentiable function on [0, 1] satisfying $0 \leq f(t) \leq 1, f(t)=1$ for $\left|t-\frac{1}{2}\right| \geq \frac{1}{2}-\frac{3 \delta}{4}, f(t)$ $=0$ for $\delta \leq t \leq 1-\delta$, and let

$$
B_{n}(f, t)=\sum_{k=0}^{n} \lambda_{n k}(t) f\left(\omega_{n k}\right)
$$

Then, by a result proved by Leviatan [8, Theorem 7],

$$
I_{1} \leq V_{\delta} \max _{\delta \leq t \leq 1-\delta}\left|B_{n}(f, t)-f(t)\right| \leq V_{\delta} K M_{1}(n, 1)
$$

where K is a constant.
To deal with I_{2} we note that, by Lemma 1,

$$
I_{2} \leq \max _{\substack{1 \omega_{n k}-1 / 2 \mid<1 / 2 \leq n-3 \delta / 4}} \frac{V_{\delta} \sqrt{2}}{\lambda_{k} \sigma_{n k}}=\frac{V_{\delta} \sqrt{2}}{\lambda_{k(n)} \sigma_{n, k(n)}}
$$

where $k(n)$ is an integer satisfying $1 \leq k(n) \leq n, 3 \delta / 4<\omega_{n, k(n)}<1-$ $3 \delta / 4$. Since $\sum_{j=1}^{\infty} 1 / \lambda_{j}=\infty$, it follows that, for every fixed integer j, $\lim _{n \rightarrow \infty} \omega_{n j}=0$ and hence that $\lim _{n \rightarrow \infty} k(n)=\infty$. Further, since

$$
\log (1-x)=x+O\left(x^{2}\right) \quad \text { for }|x| \leq 1 / 2
$$

we have that, for $k=k(n)$,

$$
\begin{aligned}
\omega_{n k} \sim \omega_{n, k-1} & =e^{-\rho_{n k}+O\left(\rho_{n k}^{2}\right)} \\
& =e^{-\rho_{n k}+O\left(\rho_{n k} / \lambda_{k}\right)}=e^{-\rho_{n k}(1+o(1))} .
\end{aligned}
$$

Hence, for n sufficiently large,

$$
\delta / 2<e^{-\rho_{n, k(n)}}<1-\delta / 2,
$$

and thus

$$
I_{2} \leq V_{\delta} \sqrt{2} M_{2}(n, 1)
$$

This completes the proof of Case 1.
Case 2. Suppose that $\lambda_{0} \geq 0, s \geq 1$. Let

$$
\tilde{\lambda}_{0}=0, \quad \tilde{\lambda}_{k}=\lambda_{k+s-1} \quad \text { for } k=1,2, \ldots,
$$

and define $\tilde{\lambda}_{n, k}(t), \tilde{M}_{1}(n, s), \tilde{M}_{2}(n, s)$ by means of (4), (9), (17) and (18) with $\left\{\lambda_{k}\right\}$ replaced by $\left\{\tilde{\lambda}_{k}\right\}$. Then, for $n \geq k \geq s, 0 \leq t \leq 1$, we have

$$
\tilde{\lambda}_{n-s+1, k-s+1}(t)=\lambda_{n k}(t),
$$

and hence, by Case 1 ,

$$
\begin{gathered}
\sum_{k=s}^{n}\left(\int_{\delta}^{1-\delta} \lambda_{n k}(t)|d \alpha(t)|\right)^{2}=\sum_{r=1}^{n-s+1}\left(\int_{\delta}^{1-\delta} \tilde{\lambda}_{n-s+1, r}(t)|d \alpha(t)|\right)^{2} \\
\leq M \max \left(\tilde{M}_{1}(n-s+1,1), \tilde{M}_{2}(n-s+1,1)\right) \\
=M \max \left(M_{1}(n, s), M_{2}(n, s)\right) .
\end{gathered}
$$

This completes the proof of Lemma 3.
Lemma 4. Let $0 \leq \lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots, 0<\delta<1 / 2, s \geq 2, \lambda_{s}>M$ +1 , and let λ satisfy either (10) or (11) with the same M for $k \geq s-1$. Then

$$
\lim _{n \rightarrow \infty} \log n \sum_{k=s}^{n}\left(\int_{\delta}^{1-\delta} \lambda_{n k}(t)|d \alpha(t)|\right)^{2}=0
$$

Proof. Case 1. Suppose that λ satisfies (10) for $k \geq s-1$, and that $n \geq k \geq s$. Then $\lambda_{n} \geq \lambda_{s}+m(n-s)$, and

$$
\begin{equation*}
M \rho_{n k} \geq \sum_{j=k}^{n} \frac{\lambda_{j+1}-\lambda_{j}}{\lambda_{J} \log \lambda_{J}} \geq \sum_{j=k}^{n} \int_{\lambda_{j}}^{\lambda_{j+1}} \frac{d x}{x \log x}=\log \frac{\log \lambda_{n+1}}{\log \lambda_{k}} . \tag{19}
\end{equation*}
$$

Hence

$$
\frac{e^{-\lambda_{s} \rho_{n k}}}{\lambda_{k}} \leq \frac{1}{\lambda_{k}}\left(\frac{\log \lambda_{k}}{\log \lambda_{n+1}}\right)^{\lambda_{s} / M}
$$

and so

$$
\begin{equation*}
M_{1}(n, s)=O\left(\left(\log \lambda_{n+1}\right)^{-\lambda_{s} / M}\right)=o\left(\frac{1}{\log n}\right) \tag{20}
\end{equation*}
$$

Suppose now that

$$
\begin{equation*}
\frac{\delta}{2} \leq e^{-\rho_{n k}} \leq 1-\frac{\delta}{2} \tag{21}
\end{equation*}
$$

Then

$$
m \log \frac{2}{2-\delta} \leq m \rho_{n k} \leq \sum_{J=k}^{n} \frac{\lambda_{J}-\lambda_{j-1}}{\lambda_{j}} \leq \sum_{J=k}^{n} \int_{\lambda_{j-1}}^{\lambda_{J}} \frac{d x}{x}=\log \frac{\lambda_{n}}{\lambda_{k-1}}
$$

so that $\lambda_{k-1} \leq(1-\delta / 2)^{m} \lambda_{n}$ and hence, by (10), we have that

$$
\begin{equation*}
\lambda_{k} \leq \lambda_{k-1}+M \log \lambda_{k} \leq\left(1-\frac{\delta}{2}\right)^{m} \lambda_{n}+M \log \lambda_{n} \tag{22}
\end{equation*}
$$

Further, by (19) and (21),

$$
M \log \frac{2}{\delta} \geq \log \frac{\log \lambda_{n+1}}{\log \lambda_{k}}
$$

and so

$$
\begin{equation*}
\lambda_{k} \geq \lambda_{n+1}^{\varepsilon} \tag{23}
\end{equation*}
$$

where $\varepsilon=(\delta / 2)^{M}$.
Next, let $f(x)=1 / x \log x$ so that

$$
f^{\prime}(x)=\frac{1}{x^{2} \log x}\left(1+\frac{1}{\log x}\right) \leq \frac{c}{x^{2} \log x}
$$

for $x \geq \lambda_{s}$ where $c=1+1 / \log \lambda_{s}>0$. Hence, by (10), (22) and (23),

$$
\begin{aligned}
c M\left(\lambda_{k} \sigma_{n k}\right)^{2} & \geq c \lambda_{k}^{2} \sum_{j=k}^{n} \frac{\lambda_{j+1}-\lambda_{j}}{\lambda_{j}^{2} \log \lambda_{j}} \\
& \geq \lambda_{k}^{2} \sum_{j=k}^{n} \int_{\lambda_{j}}^{\lambda_{j+1}} \frac{c d x}{x^{2} \log x} \geq \lambda_{k}^{2} \int_{\lambda_{k}}^{\lambda_{n+1}} f^{\prime}(x) d x \\
& =\frac{\lambda_{k}}{\log \lambda_{k}}\left(1-\frac{\lambda_{k} \log \lambda_{k}}{\lambda_{n+1} \log \lambda_{n+1}}\right) \\
& \geq \frac{\lambda_{n}^{\varepsilon}}{\log \lambda_{n}}\left(1-(1-\delta / 2)^{m}-\frac{M \log \lambda_{n}}{\lambda_{n}}\right)
\end{aligned}
$$

Consequently

$$
\begin{align*}
M_{2}(n, s) & =O\left(\lambda_{n}^{-\varepsilon / 2} \log ^{1 / 2} \lambda_{n}\right)=O\left(\lambda_{n}^{-\varepsilon / 4}\right)=O\left(n^{-\varepsilon / 4}\right) \tag{24}\\
& =o\left(\frac{1}{\log n}\right)
\end{align*}
$$

The desired conclusion in Case 1 now follows from (20) and (24), by Lemma 3.

Case 2. Suppose that λ satisfies (11) for $k \geq s-1$ and that $n \geq k \geq s$. Then

$$
\begin{equation*}
M \rho_{n k} \geq \sum_{j=k}^{n} \frac{\lambda_{j+1}-\lambda_{j}}{\lambda_{j}} \geq \sum_{j=k}^{n} \int_{\lambda_{j}}^{\lambda_{j+1}} \frac{d x}{x}=\log \frac{\lambda_{n+1}}{\lambda_{k}} \tag{25}
\end{equation*}
$$

Hence, since $\lambda_{s}>M+1$,

$$
\frac{e^{-\lambda_{s} \rho_{n k}}}{\lambda_{k}} \leq \frac{1}{\lambda_{k}}\left(\frac{\lambda_{k}}{\lambda_{n+1}}\right)^{\lambda_{s} / M} \leq \frac{1}{\lambda_{n}}
$$

and so

$$
\begin{equation*}
M_{1}(n, s) \leq \frac{1}{\lambda_{n}}=o\left(\frac{1}{\log n}\right) \tag{26}
\end{equation*}
$$

Suppose now that (21) holds. Then, by (25),

$$
\lambda_{k} \geq \lambda_{n+1}(\delta / 2)^{M}
$$

and hence

$$
\begin{aligned}
\lambda_{k} \sigma_{n k} & \geq \lambda_{k}\left(\frac{\rho_{n k}}{\lambda_{n}}\right)^{1 / 2} \geq \lambda_{k}\left(\frac{1}{\lambda_{n}} \log \frac{2}{2-\delta}\right)^{1 / 2} \\
& \geq\left(\frac{\delta}{2}\right)^{M}\left(\log \frac{2}{2-\delta}\right)^{1 / 2} \lambda_{n}^{1 / 2}
\end{aligned}
$$

Consequently

$$
\begin{equation*}
M_{2}(n, s)=O\left(\lambda_{n}^{-1 / 2}\right)=o\left(\frac{1}{\log n}\right) \tag{27}
\end{equation*}
$$

The desired conclusion now follows from (26) and (27), by Lemma 3, and this completes the proof of Lemma 4.
3. Proof of Theorem 1. Suppose that $n \geq k \geq s$ and that $r=$ $3,4, \ldots$ Let

$$
\lambda_{n k}^{r}=\int_{1 / r}^{1-1 / r} \lambda_{n k}(t) d \alpha(t)
$$

Let $\left\{X_{n}\right\}$ be a sequence of random variables satisfying (1) and (2) with $p=2$, and let

$$
T_{n}=\sum_{k=s}^{n} \lambda_{n k} X_{k}, \quad T_{n}^{r}=\sum_{k=s}^{n} \lambda_{n k}^{r} X_{k}
$$

By Lemma 4, we have, subject to either (10) or (11), that

$$
\log n \sum_{k=s}^{n}\left(\lambda_{n k}^{r}\right)^{2} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Hence, by Theorem A,

$$
T_{n}^{r} \rightarrow 0 \text { a.s. } \quad \text { as } n \rightarrow \infty
$$

Let Ω_{r} be the subset of Ω on which $T_{n}^{r} \rightarrow 0$ and $\left|X_{r}\right| \leq M$, and let $\Omega_{0}=\bigcap_{r=3}^{\infty} \Omega_{r}$. Then

$$
\begin{aligned}
T_{n}-T_{n}^{r} & =\sum_{k=s}^{n} X_{k}\left\{\int_{0}^{1} \lambda_{n k}(t) d \alpha(t)-\int_{1 / r}^{1-1 / r} \lambda_{n k}(t) d \alpha(t)\right\} \\
& =\sum_{k=s}^{n} X_{k}\left(\int_{0}^{1 / r}+\int_{1-1 / r}^{1}\right) \lambda_{n k}(t) d \alpha(t)
\end{aligned}
$$

and hence, in view of (6), on Ω_{0}

$$
\left|T_{n}-T_{n}^{r}\right| \leq M\left(\int_{0}^{1 / r}+\int_{1-1 / r}^{1}\right)|d \alpha(t)| \rightarrow 0 \quad \text { as } r \rightarrow \infty
$$

since $\alpha(0+)=\alpha(0)$ and $\alpha(1-)=\alpha(1)$. Thus

$$
\lim _{r \rightarrow \infty} T_{n}^{r}=T_{n} \quad \text { on } \Omega_{0} \text { uniformly in } n \text { for } n \geq s
$$

On the other hand

$$
\lim _{n \rightarrow \infty} T_{n}^{r}=0 \quad \text { on } \Omega_{0} \text { for } r \geq 3
$$

It follows that

$$
\lim _{n \rightarrow \infty} T_{n}=\lim _{n \rightarrow \infty} \lim _{r \rightarrow \infty} T_{n}^{r}=\lim _{r \rightarrow \infty} \lim _{n \rightarrow \infty} T_{n}^{r}=0 \quad \text { on } \Omega_{0}
$$

i.e., $T_{n} \rightarrow 0$ a.s.

Since $\alpha(0)=\alpha\left(0+\right.$) we have, by Lemma 2, that $\lim _{n \rightarrow \infty} \lambda_{n k}=0$ for $k \geq 0$. Consequently

$$
\sum_{k=0}^{n} \lambda_{n k} X_{k} \rightarrow 0 \quad \text { a.s. }
$$

and so $H(\lambda, \alpha) \in \Gamma_{2}$.

Finally, the additional condition $\alpha(1)-\alpha(0)=1$ ensures, by Lemma 2, that

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \lambda_{n k}=1
$$

and hence that $H(\lambda, \alpha) \in(B P)$.
4. Proof of Theorem 2. Let $0 \leq k \leq n$. By (5), we have that

$$
\lambda_{n k}=\int_{0}^{1} \lambda_{n k}(t) \beta(t) d t
$$

First, suppose that (12) holds. Then, by Hölder's inequality and (7),

$$
\begin{aligned}
\left|\lambda_{n k}\right|^{p} & \leq\left(\int_{0}^{1} \lambda_{n k}(t)|\beta(t)|^{p} d t\right)\left(\int_{0}^{1} \lambda_{n k}(t) d t\right)^{p-1} \\
& =\left(\frac{d_{k}}{D_{n}}\right)^{p-1} \int_{0}^{1} \lambda_{n k}(t)|\beta(t)|^{p} d t
\end{aligned}
$$

Hence, by (6) and (12),

$$
\begin{aligned}
\left(\sum_{k=0}^{n}\left|\lambda_{n k}\right|^{p}\right)^{1 /(p-1)} & \leq \frac{1}{D_{n}}\left(\int_{0}^{1}|\beta(t)|^{p} d t \sum_{k=0}^{n} d_{k}^{p-1} \lambda_{n k}(t)\right)^{1 /(p-1)} \\
& \leq \max _{0 \leq k \leq n} d_{k} \cdot \frac{\|\beta\|_{p}^{p /(p-1)}}{D_{n}}=o\left(\frac{1}{\log n}\right)
\end{aligned}
$$

It follows, by Theorem A, that $H(\lambda, \alpha) \in \Gamma_{p}$.
Next, suppose that (13) holds. Then, by (7),

$$
\left|\lambda_{n k}\right| \leq\|\beta\|_{\infty} \int_{0}^{1} \lambda_{n k}(t) d t=\|\beta\|_{\infty} \frac{d_{k}}{D_{n}},
$$

and hence

$$
\left(\sum_{k=0}^{n}\left|\lambda_{n k}\right|^{p}\right)^{1 /(p-1)} \leq\|\beta\|_{\infty}^{p /(p-1)}\left(\sum_{k=0}^{n}\left(\frac{d_{k}}{D_{n}}\right)^{p}\right)^{1 /(p-1)}=o\left(\frac{1}{\log n}\right)
$$

Thus, by Theorem A, we have that $H(\lambda, \alpha) \in \Gamma_{p}$.
In view of Lemma 2, the additional conditions $\left\{\lambda_{n}\right\}$ monotonic and $\alpha(1)=1$, ensure that

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \lambda_{n k}=1
$$

and hence that $H(\lambda, \alpha) \in(B P)$.
This completes the proof of Theorem 2.

References

1. D. Borwein, Matrix transformations of weakly multiplicative sequences of random variables, J. London Math. Soc., (2) 23 (1981), 363-371.
2. D. Borwein and F. P. A. Cass, Weighted means, generalised Hausdorff matrices and the Borel property, Acta Sci. Math., 37 (1981), 29-34.
3. D. Borwein and A. Jakimovski, Generalization of the Hausdorff moment problem, Canad. J. Math., 33 (1981), 946-960.
4. F. Hausdorff, Summationsmethoden und Momentfolgen II, Math. Z., 9 (1921), 280-299.
5. J. D. Hill, The Borel property of summability methods, Pacific J. Math., 1 (1951), 399-409.
6. ___ Remarks on the Borel property, Pacific J. Math., 4 (1954), 227-242.
7. A. Jakimovski, Generalized Bernstein polynomials for discontinuous and convex functions, J. D'Analyse Mathématique, 23 (1970), 171-183.
8. D. Leviatan, On the remainder in the approximation of functions by Bernstein-type operators, J. Approximation Theory, 2 (1969), 400-409.
9. M. Liu and B. E. Rhoades, Some properties of generalised Hausdorff matrices, Houston J. Math., 2 (1976), 239-256.

Received September 8, 1981 and in revised form March 11, 1982. Supported in part by the Natural Sciences and Engineering Research Council of Canada, Grant A-2983.

The University of Western Ontario
London, Ontario N6A 5B7
AND
Tel-Aviv University
Ramat-Aviv, Tel-Aviv, Israel

