CONDITIONS FOR INCLUSION BETWEEN NÖRLUND SUMMABILITY METHODS

D. BORWEIN and B. THORPE (London, Canada) ${ }^{1}$

1. Introduction

Let $p=\left\{p_{n}\right\}_{n \geqq 0}$ denote a sequence of complex numbers, let $P_{n}=\sum_{k=0}^{n} p_{k}$ and let $p(z)=\sum_{n=0}^{\infty} p_{n} z^{n}$. A sequence $\left\{s_{n}\right\}_{n \geqq 0}$ is Nörlund summable (N, p) to l if $P_{n} \neq 0$ for $n \geqq 0$ and $\lim _{n \rightarrow \infty} \sum_{v=0}^{n} p_{n-v} s_{v} / P_{n}=l$. We use the same notation with other letters in place of p, P. It is well known that necessary and sufficient conditions for (N, p) to be regular (i.e., finite limit preserving) are

$$
\text { (a) } \sum_{v=0}^{n}\left|p_{v}\right|=O\left(\left|P_{n}\right|\right) \quad \text { and } \quad \text { (b) } \quad p_{n}=o\left(P_{n}\right),
$$

cf. Theorem 16 of [2] where Hardy considers the special case $p_{n} \geqq 0$ so that (a) is automatically satisfied. In this paper we make a contribution to the solution of an open problem raised by Theorem 19 of [2] and mentioned explicitly on page 91 of [2]. In particular, we consider the question whether the condition $\sum_{\nu=0}^{n}\left|k_{v}\right|=O\left(\left|Q_{n}\right|\right)$ alone is necessary and sufficient for (N, p) to imply (N, q) when $P_{n}=O(1),\left|Q_{n}\right| \rightarrow \infty$, both (N, p) and (N, q) are regular, the sequence $\left\{k_{n}\right\}_{n \geqq 0}$ being obtained from the generating function $k(z)=q(z) / p(z)$. We can solve the problem completely for $p(z)$ a polynomial, and for a wide class of functions $p(z)$ with algebraic and logarithmic singularities on $|z|=1$, but the general case leads to delicate questions that escape our analysis.

2. The main problem

In Theorem 19 of [2], under the hypotheses that (N, p) and (N, q) are both regular, Hardy shows that the two conditions

$$
\begin{gather*}
\sum_{v=0}^{n}\left|k_{n-v} P_{v}\right|=O\left(\left|Q_{n}\right|\right), \tag{A}\\
k_{n}=o\left(Q_{n}\right), \tag{B}
\end{gather*}
$$

[^0]are necessary and sufficient for (N, p) to imply $(N, q)^{2}$. Following his argument (for the case $p_{n} \geqq 0, q_{n} \geqq 0$) it is not difficult to verify that (B) may be omitted in the cases (i) $\left|P_{n}\right| \rightarrow \infty$, (ii) $P_{n}=O$ (1) and $Q_{n}=O$ (1). In the remaining case, $P_{n}=O$ (1) and $\left|Q_{n}\right| \rightarrow \infty$, it is natural to conjecture that (A) alone is necessary and sufficient for (N, p) to imply (N, q). To deal with this problem we consider regular Nörlund methods (N, p) with $P_{n}=O(1)$. It is easy to see from the regularity conditions that this is equivalant to considering sequences $\left\{p_{n}\right\}$ with $\sum_{n=0}^{\infty}\left|p_{n}\right|<\infty, p(1) \neq 0$ and $P_{n} \neq 0$ for $n \geqq 0$.

Given $\sum_{n=0}^{\infty}\left|p_{n}\right|<\infty, p_{0} \neq 0$ and $p(1) \neq 0$, the little Nörlund method (Z, p) is defined as follows:

$$
s_{n} \rightarrow l(Z, p) \quad \text { if } \quad \lim _{n \rightarrow \infty} \sum_{v=0}^{n} p_{n-v} s_{v}=l p(1)
$$

This method is regular, and equivalent to (N, p) when (N, p) is regular and $P_{n}=O(1)$. In this case (A) is equivalent to

$$
\begin{equation*}
\sum_{v=0}^{n}\left|k_{v}\right|=O\left(\left|Q_{n}\right|\right) \tag{C}
\end{equation*}
$$

provided (N, q) is regular. A simple direct argument shows that, provided (Z, p) is defined and (N, q) is regular, (B) and (C) are necessary and sufficient for (Z, p) to imply (N, q).

In Section 3 we prove that the conjecture is true when $p(z)$ has no zeros on $|z|=1$, and in Sections 4 and 5 we investigate what happens when $p(z)$ has zeros on $|z|=1$ and when (N, q) is the Cesàro method (C, α) respectively.

$$
\text { 3. The case } p(z) \neq 0 \text { for }|z|=1
$$

Before considering this case we show that (C) does imply that (B) holds in the (C, δ) sense for every $\delta>0$. In fact we prove slightly more.

Theorem 1. Suppose that (Z, p) is defined, (N, q) is regular and

$$
\begin{equation*}
k_{n}=O\left(\left|Q_{n}\right|\right) \tag{1}
\end{equation*}
$$

Then

$$
\frac{k_{n}}{Q_{n}} \rightarrow 0 \quad(Z, p)
$$

Proof. Consider the identity

$$
\sum_{v=0}^{n} p_{n-v} \frac{k_{v}}{Q_{v}}=\sum_{v=0}^{n} p_{v} \frac{k_{n-v}}{Q_{n-v}}=\frac{q_{n}}{Q_{n}}+\sum_{v=0}^{n} p_{v} \frac{k_{n-v}}{Q_{n-v}}\left(1-\frac{Q_{n-v}}{Q_{n}}\right)
$$

[^1]The first term on the right-hand side tends to 0 by the regularity of (N, q). By the Weierstrass M-test, the series on the right-hand side is absolutely and uniformly convergent with respect to n since

$$
\left|p_{v} \frac{k_{n-v}}{Q_{n-v}}\left(1-\frac{Q_{n-v}}{Q_{n}}\right)\right| \leqq M\left|p_{v}\right|^{3}
$$

by (1) and the regularity of (N, q), and so the second term on the right-hand side tends to 0 (by taking the limit as $n \rightarrow \infty$ inside the sum). This completes the proof.

Corollary. Under the hypotheses of Theorem 1,

$$
\frac{k_{n}}{Q_{n}} \rightarrow 0 \quad(C, \delta)
$$

for every $\delta>0$.
Proof. Let $t_{n}=\sum_{v=0}^{n} p_{n-v} s_{v}$ where $s_{v}=k_{v} / Q_{v}$. Then, by (1), $s(z)=\sum_{n=0}^{\infty} s_{n} z^{i t}$ is analytic in $|z|<1$, and $(1-z) s(z)=(1-z) t(z) / p(z) \rightarrow 0$ as $z \rightarrow 1$ through real values in $|z|<1$, since $t_{n} \rightarrow 0$ and $p(1) \neq 0$. It follows that $s_{n} \rightarrow 0$ (Abel) and the result is now a consequence of Théorème VI' (sequence version) of [5] or Theorems 70 and 92 of [2].

We give an example to show that we cannot replace $\delta>0$ by $\delta=0$ in the corollary. Let $\left\{p_{n}\right\},\left\{q_{n}\right\}$ be defined from the generating functions $p(z)=1+z$, $q(z)=\left(1-z^{2}\right)^{-1}$ so that $k(z)=\left[(1+z)\left(1-z^{2}\right)\right]^{-1}$. Then $Q(z)=(1-z)^{-1} q(z)$ and so $Q(-z)=k(z)$, i.e., $Q_{n}=(-1)^{n} k_{n}$. It is clear that the hypotheses of Theorem 1 hold, but that in this case $k_{n} / Q_{n}=(-1)^{n} \rightarrow 0(C, \delta)$ for all $\delta=0$ whereas $k_{n} / Q_{n}+0$ as $n \rightarrow \infty$. We remark that this example does not satisfy (C) and so is not a counterexample to the conjecture.

If $p(z)$ has no zeros on $|z|=1$, we can use Theorem 1 together with the following tauberian result to establish the conjecture in this case.

Theorem 2. Let (Z, p) be defined. Then ($Z, p)$ sums no bounded divergent sequence if and only if $p(z) \neq 0$ for $|z|=1$.

Proof. For the sufficiency of the condition we first observe that $p(z)$ has only a finite number of zeros in $|z|<1$ (otherwise they would accumulate on the boundary). Let these be at the points $z=z_{i}$ with multiplicity $\lambda_{i}(i=1,2, \ldots, l)$. Then, by Theorem 1 of [7], we have that $s_{n} \rightarrow 0(Z, p)$ if and only if $s_{n}=t_{n}+\sum_{i=1}^{l} f_{i}(n) z_{i}^{-s}$ where $\left\{t_{n}\right\}$ converges to 0 and $f_{i}(n)$ is a polynomial in n of degree $\left(\lambda_{i}-1\right)$. By Lemma 2 of [8], $\left\{\sum_{i=1}^{l} f_{i}(n) z_{i}^{-n}\right\}_{n \geqq 0}$ is unbounded unless $f_{i}(n) \equiv 0(i=1,2, \ldots, l)$. Hence the only sequences summable (Z, p) are convergent or unbounded.

To prove the necessity of the condition suppose $p(\beta)=0,|\beta|=1, \beta \neq 1$. Since we are assuming $\sum_{n=0}^{\infty}\left|p_{n}\right|<\infty, p(z)=\sum_{n=0}^{\infty} p_{n} z^{n}$ converges for $|z| \leqq 1$ and so $p(\beta)=$

[^2]$=\sum_{n=0}^{\infty} p_{n} \beta^{n}=0$. It is now easy to see that the bounded divergent sequence $\left\{\beta^{-n}\right\}$ is summable to $0(Z, p)$, and the result follows.

Corollary. Suppose that (Z, p) is defined, $p(z) \neq 0$ for $|z|=1,(N, q)$ is regular and (C) holds. Then (Z, p) implies (N, q).

Proof. By the remarks at the end of Section 2 it is sufficient to show that (B) holds. Since (C) implies that (1) holds, Theorem 1 gives that the bounded sequence $\left\{k_{n} / Q_{n}\right\}$ is summable (Z, p) to 0 , and Theorem 2 shows that it must converge to 0 , i.e. (B) must hold.

4. The case where $p(z)$ may have zeros on $|z|=1$

A summability method based on a regular, normal (i.e., lower triangular with non-zero diagonal) sequence to sequence matrix $A=\left(a_{n k}\right)$ is said to be perfect if $\sum_{n=v}^{\infty} \alpha_{n} a_{n v}=0 \quad(v=0,1, \ldots)$ together with $\sum_{n=0}^{\infty}\left|\alpha_{n}\right|<\infty$ implies $\alpha_{n}=0 \quad(n=0,1, \ldots)$. See [4] and [9] for some basic properties. For the methods (N, p) and (Z, p) we have $a_{n v}$ equal to p_{n-v} / P_{n} and p_{n-v} respectively. It is clear that neither (N, p) nor (Z, p) is perfect if $p(z)$ has a zero in $|z|<1$ (since, if $p(w)=0$ with $0<|w|<1$, then $\alpha_{n}=$ $=P_{n} w^{n}$ is a non-zero term of an absolutely convergent series that satisfies the conditions for perfectness of (N, p), and likewise with $\alpha_{n}=w^{n}$ for (Z, p)). This observation also settles an undecided question mentioned on page 707 of [4]. Hill asks whether the Nörlund method (N, p) with generating function $p(z)=(1+a z)(1-z)^{-2}$ is perfect for $a>1$. Since $p(z)$ has a zero at $z=-1 / a$ which is in $|z|<1,(N, p)$ cannot be perfect.

Theorem 3. Suppose that (Z, p) is perfect, (N, q) is regular and (C) holds. Then (Z, p) implies (N, q).

Proof. This follows directly from Theorem II. 8 of [9] with $(Z, p)=A,(N, q)=B$, and the observation that (C) is necessary and sufficient for every sequence summable to $0(Z, p)$ to be bounded (N, q).

The remainder of this section is devoted to finding examples of perfect (Z, p) methods. We introduce the notation $\left\{c_{n}\right\}$ for the coefficients of the generating function $c(z)=1 / p(z)$. It follows from Theorem 8 of [4] that when (Z, p) is defined then $c_{n}=O(1)$ is a sufficient condition for it to be perfect.

Lemma 1. If $p(z)=\left(1-\frac{z}{\beta}\right)^{\lambda}$ where $\beta \neq 1, \quad|\beta|=1, \lambda=0$, then (Z, p) is perfect. Proof. We have $p_{n}=A_{n}^{-\lambda-1} \beta^{-n}$ where $A_{n}^{-\lambda-1}=\binom{n-\lambda-1}{n}$ is defined from the relation

$$
\begin{equation*}
(1-z)^{\lambda}=\sum_{n=0}^{\infty} A_{n}^{-\lambda-1} z^{n} \tag{2}
\end{equation*}
$$

so that $\sum_{n=0}^{\infty}\left|p_{n}\right|<\infty, p_{0}=1$ and $p(1) \neq 0$. Suppose that $\sum_{n=0}^{\infty}\left|\alpha_{n}\right|<\infty$ and $\sum_{n=v}^{\infty} \alpha_{n} p_{n-v}=0$
($v=0,1, \ldots$). This can be written as

$$
\sum_{n=v}^{\infty} \alpha_{n} A_{n-v}^{-\lambda-1} \beta^{v-n}=\beta^{v} \sum_{n=v}^{\infty} A_{n-v}^{-\lambda-1}\left(\alpha_{n} \beta^{-n}\right)=0
$$

and using the notation for fractional differences (see [1]) this is equivalent to

$$
\Delta^{\lambda}\left(\alpha_{v} \beta^{-v}\right)=0 \quad(v=0,1, \ldots)
$$

If $\lambda \in \mathbf{N}$, then an inductive argument (as on page 706 of [4]) shows that $\alpha_{v}=0$ ($v=$ $=0,1, \ldots)$. If $\lambda \in(N, N+1)$ for $N \in \mathbf{N}$, then

$$
\Delta^{N+1-\lambda}\left(\Delta^{\lambda}\left(\alpha_{v} \beta^{-v}\right)\right)=\Delta^{N+1}\left(\alpha_{v} \beta^{-v}\right)=0
$$

by the absolute convergence of the double series involved, and so the result follows from the integer case. Thus (Z, p) is perfect.

The following lemma is a special case of Theorem 5 of [4].
Lemma 2. If $(Z, m),(Z, l)$ are perfect and $p(z)=m(z) l(z)$, then (Z, p) is perfect.
Lemma 3. If $\sum_{n=0}^{\infty}\left|r_{n}\right|<\infty$ and $r(z) \neq 0$ for $|z| \leqq 1$, then (Z, r) is perfect.
Proof. By the Wiener-Levy theorem (page 246 of [12]), $1 / r(z)=\sum_{n=0}^{\infty} t_{n} z^{n}$ where $\sum_{n=0}^{\infty}\left|t_{n}\right|<\infty$. Suppose $\sum_{n=0}^{\infty}\left|\alpha_{n}\right|<\infty$ and $\sum_{n=s}^{\infty} \alpha_{n} r_{n-s}=0 \quad(s=0,1, \ldots)$. Then, for $v \geqq 0$,

$$
0=\sum_{s=v}^{\infty} t_{s-v} \sum_{n=s}^{\infty} \alpha_{n} r_{n-s}=\sum_{n=v}^{\infty} \alpha_{n} \sum_{s=v}^{n} r_{n-s} t_{s-v}=\alpha_{v}
$$

the interchange of order of summation being legitimate because the double series involved is absolutely convergent. Hence (Z, r) is perfect.

As an immediate consequence of Lemmas 1 and 2 we see that, if (Z, r) is perfect and $p(z)=\prod_{i=1}^{n}\left(1-\frac{z}{\beta_{i}}\right)^{\lambda_{i}} r(z)$ where $\beta_{i} \neq 1, \quad\left|\beta_{i}\right|=1, \quad \lambda_{i}>0(i=0,1, \ldots, n)$, then (Z, p) is perfect. Thus Theorem 3 holds for such a (Z, p) method.

LEMMA 4. If $p(z)=\left(1-\frac{z}{\beta}\right)^{\lambda}\left(-\frac{\beta}{z} \log \left(1-\frac{z}{\beta}\right)\right)^{\mu}$ where $\beta \neq 1,|\beta|=1, \quad 0<\lambda<1$ and $\mu \in \mathbf{R}$, then (Z, p) is perfect.

Proof. If $\mu=0$, this is a case of Lemma 1. Suppose $\mu \neq 0$. Then we have

$$
p_{n} \sim M n^{-\lambda-1}(\log n)^{\mu} \beta^{-n}
$$

by page 93 of [6]. (Although Littlewood gives this formula only for $\lambda<0$ we can establish the result in our case by using backward induction and the differential equation on page 93 of [6].) Hence $\sum_{n=0}^{\infty}\left|p_{n}\right|<\infty, p_{0}=1$ and $p(1) \neq 0$. Moreover, $c(z)=$
$=1 / p(z)=\left(1-\frac{z}{\beta}\right)^{-1}\left(-\frac{\beta}{z} \log \left(1-\frac{z}{\beta}\right)\right)^{-\mu}$, so that again by Littlewood's result

$$
c_{n} \sim M n^{\lambda-1}(\log n)^{-\mu} \beta^{-\pi} .
$$

Hence $c_{n}=O(1)$, and so ($\left.Z, p\right)$ is perfect by Theorem 8 of [4].
By using Lemma 2, we see that if $p(z)$ is any finite product of functions of the form of those in Lemmas 1 and 4, then ($Z, p)$ is perfect and Theorem 3 holds for such a (Z, p) method. In view of the results above, it would be of interest to know whether every (Z, p) method with $p(z)$ having no zeros inside the unit circle is perfect. A likely candidate for a counterexample can be obtained by considering generalized Laguerre polynomials. Let

$$
p(z)=\left(1-\frac{z}{\lambda}\right)^{-\alpha-1} \exp \left(\frac{-z}{\lambda-z}\right) \text { for } \lambda \neq 1, \quad|\lambda|=1, \quad \alpha \in \mathbf{R},
$$

so that

$$
p_{n} \lambda^{n}=L_{n}^{\alpha}(1) \sim M n^{(\alpha / 2)-(1 / 4)} \cos (2 \sqrt{n}+\theta)
$$

by (8.22.1) of [10]; where θ is a constant depending only on α. Thus, if $\alpha<-3 / 2$, then $\sum_{n=0}^{\infty}\left|p_{n}\right|<\infty, p_{0}=1$ and $p(1) \neq 0$. However, in this case (8.22.3) of $[10]$ gives

$$
c_{n} \lambda^{n}=L_{n}^{-\alpha-2}(-1) \sim M n^{-(\alpha / 2)-(5 / 4)} \exp (2 \sqrt{n}),
$$

and this leads us to suspect that (Z, p) need not be perfect but we are unable to prove it.

Theorem 4. Suppose that (Z, r) is perfect and that
$p(z)=\prod_{j=1}^{m}\left(1-\frac{z}{\alpha_{j}}\right)^{v_{j}} \prod_{i=1}^{n}\left(1-\frac{z}{\beta_{i}}\right)^{\lambda_{i}}\left(-\frac{\beta_{i}}{z} \log \left(1-\frac{z}{\beta_{i}}\right)\right)^{\mu_{i}} r(z)$ where $\quad\left|\alpha_{j}\right|<1, \quad v_{j} \in \mathbf{N}$ $(j=1,2, \ldots, m), \quad \beta_{i} \neq 1, \quad\left|\beta_{i}\right|=1, \quad \lambda_{i}>0, \quad \mu_{i} \in \mathbf{R}(i=1,2, \ldots, n)$. Suppose that (N, q) is regular and that (C) holds. Then (Z, p) implies (N, q).

Note that, by Lemma 3, sufficient conditions for (Z, r) to be perfect are that $\sum_{n=0}^{\infty}\left|r_{n}\right|<\infty$ and that $r(z) \neq 0$ for $|z| \leqq 1$.

Proof of Theorem 4. Let $s(z)=\prod_{j=1}^{m}\left(1-\frac{z}{\alpha_{j}}\right)^{v_{j}}$ and $t(z)=p(z) / s(z)$. Then $k(z) s(z) t(z)=q(z)$. Define $l(z)=k(z) s(z)$ so that $l(z) t(z)=q(z)$. By Lemmas 1 , 2 and $4,(Z, t)$ is perfect and

$$
\sum_{v=0}^{n}\left|l_{v}\right|=\sum_{v=0}^{n}\left|\sum_{\mu=0}^{v} k_{v-\mu} s_{\mu}\right| \leqq \sum_{\mu=0}^{n}\left|s_{\mu}\right| \sum_{v=\mu}^{n}\left|k_{v-\mu}\right|=O\left(\left|Q_{n}\right|\right)
$$

by (C). Thus, by Theorem $3,(Z, t)$ implies (N, q). Similarly, using the corollary to Theorem 2 in place of Theorem 3, we get that (Z, s) implies (N, q). Since $p(z)=$ $=s(z) t(z)$, by Corollary 3 of [7], we see that $w_{n} \rightarrow 0(Z, p)$ if and only if $w_{n}=a_{n}+b_{n}$ where $a_{n} \rightarrow 0(Z, s)$ and $b_{n} \rightarrow 0(Z, t)$. Hence, by the above, it is easy to see that (Z, p) implies (N, q).

5. The case $(N, q)=(C, \alpha)$

Although we cannot settle the general case with an arbitrary regular (N, q) method, consideration of the special case when (N, q) is the Cesàro method (C, α) leads to some interesting questions on the summability of the power series $\sum_{n=0}^{\infty} c_{n} z^{n}$ on its circle of convergence. The Cesàro method (C, α) for $\alpha>-1$ is the Nörlund method (N, q) with $q_{n}=A_{n}^{\alpha-1}$ where this is defined by (2). For (N, q) to be regular and $Q_{n \rightarrow \infty}$ we have to consider $\alpha>0$. In this case $k(z)=(1-z)^{-\alpha} / p(z)=(1-z)^{-\alpha} c(z)$ so that $k_{n}=C_{n}^{\alpha-1}$ where we use the notation for Cesàro sums (see for example, page 96 of [2] with c_{n} replacing a_{n}). For the question under consideration, Hardy's Theorem 19 becomes: if (N, p) is regular, $P_{n}=O(1)$ and $\alpha>0$, then the conditions

$$
\begin{gather*}
\sum_{v=0}^{n}\left|C_{v}^{\alpha-1}\right|=O\left(n^{\alpha}\right) \tag{3}\\
C_{v}^{\alpha-1}=o\left(n^{\alpha}\right)
\end{gather*}
$$

are necessary and sufficient for (N, p) to imply (C, α) (where $p(z) c(z)=1$). The problem is to show that (4) follows from (3) and the other hypotheses.

Theorem 5. If (N, p) is regular, $P_{n}=O(1), \alpha>0$, then (3) is sufficient for (N, p) to imply $(C, \alpha+\delta)$ for every $\delta>0$.

Proof. By the corollary to Theorem $1, C_{n}^{\alpha-1} / A_{n}^{\alpha} \rightarrow 0(C, \delta)$, i.e., $c_{n} \rightarrow 0(C, \delta) \times$ $\times(C, \alpha)$, the iterated Cesàro method, and by page 23 of [5] or Ch .11 of [2] this is equivalent to $c_{n} \rightarrow 0(C, \alpha+\delta)$, i.e., (4) with α replaced by ($\alpha+\delta$). Also, (3) implies that (3) holds with α replaced by $(\alpha+\delta)$, since (3) is exactly the condition for the series $\sum_{n=0}^{\infty} c_{n}$ to be strongly bounded [C, $\left.\alpha\right]_{1}$ (see page 488 of [11]). Hence, by Hardy's result, (N, p) implies ($C, \alpha+\delta$).

We are unable to decide whether we can take $\delta=0$ in Theorem 5. It is clear that (3) alone does not imply (4) (consider $C_{n}^{\alpha-1}=n^{\alpha}$ if $n=2^{s}(s=0,1, \ldots)$ and 0 otherwise) but we have been unable to construct an example with the c_{n} 's satisfying the further hypotheses that $c(z) p(z)=1,(N, p)$ regular and $P_{n}=O(1)$. We can, however, make the following simplification.

Theorem 6. If (N, p) is regular, $P_{n}=O(1), \alpha>0$, then (3) and

$$
\begin{equation*}
c_{n}=o\left(n^{\alpha}\right) \tag{5}
\end{equation*}
$$

are necessary and sufficient for (N, p) to imply (C, α).
Proof. By the remarks before Theorem 5 it is enough to show that, under the other hypotheses of the theorem, (4) is equivalent so (5). Now (4) says that $c_{n} \rightarrow 0$ (C, α), and so by the limitation theorem for (C, α) (Theorem 46 of [2]) (5) must hold. Conversely, by the convergence of $\sum_{n=0}^{\infty}\left|p_{n}\right|$ and the regularity of (N, p), we see that $p(z)$ is continuous at $z=1$ and $p(z) \rightarrow p(1) \neq 0$ as $z \rightarrow 1$ in any manner from within
the unit circle. Also, (3) implies that $\sum_{n=0}^{\infty} c_{n} z^{n}$ is convergent for $|z|<1$ and, by the continuity of $\sum_{n=0}^{\infty} c_{n} z^{n}=1 / p(z)$ at $z=1$, we have that $\sum_{n=0}^{\infty} c_{n} z^{n} \rightarrow 1 / p(1)$ as $z \rightarrow 1$ in any manner from within the unit circle. Hence, by a result of Dienes (cf. Théorème XXVI of [5] or Theorem 9.23 of [12]), (5) implies that $\sum_{n=0}^{\infty} c_{n}$ is summable (C, α). By the remarks at the bottom of page 102 of [2], $c_{n} \rightarrow 0(C, \alpha)$, i.e., (4) holds, and this proves the result.

If we only require an implication from (N, p) to Cesàro summability of some positive order then we have a more complete result, cf. [3].

Theorem 7. Suppose that (N, p) is regular and $P_{n}=O(1)$. In order that (N, p) should imply Cesàro summability of some positive order it is necessary and sufficient that $c_{n}=O\left(n^{\gamma}\right)$ for some $\gamma>0$.

Proof. To show that the condition is necessary, suppose (N, p) implies (C, α) for $\alpha>0$. Then $\sum_{n=0}^{\infty} c_{n}=1 / p(1)(N, p)$ and so $\sum_{n=0}^{\infty} c_{n}=1 / p(1)(C, \alpha)$. Hence, by the limitation theorem for $(C, \alpha), c_{n}=o\left(n^{\alpha}\right)$ and so the condition holds.

For the sufficiency part, $c_{n}=O\left(n^{\gamma}\right)$ implies that $\sum_{n=0}^{\infty} c_{n} z^{n}$ is convergent for $|z|<1$ and that $c_{n}=o\left(n^{\delta}\right)$ for $\delta>\gamma$. Hence, by Dienes' theorem, as in the proof of Theorem $6, \sum_{n=0}^{\infty} c_{n}=1 / p(1)(C, \delta)$. Thus, $c_{n}=o\left(n^{\delta}\right)$ and, by II of [11], $\sum_{n=0}^{\infty} c_{n}=$ $=1 / p(1)[C, \delta+1]_{1}$, and so (3) and (5) hold with α replaced by $\delta+1$. Therefore, by Theorem $6,(N, p)$ implies $(C, \delta+1)$.

References

[1] A. F. Andersen, Comparison theorems in the theory of Cesàro summability, Proc, Lond. Math. Soc., 27 (1928), 39-71.
[2] G. H. Hardy, Divergent Series (Oxford, 1949).
[3] G. H. Hardy and J. E. Littlewood, Solution of the Cesàro summability problem for power series and Fourier series, Math. Zeit., 19 (1924), 67--96.
[4] J. D. Hill, On perfect methods of summability, Duke Math. J., 3 (1937), 702-714.
[5] E. Kogbetliantz, Sommation des séries et integrales divergentes par les moyennes arithmétiques et typiques, Mémorial des sciences mathématiques, No. 51 (Paris, 1931).
[6] J. E. Littlewood, Lectures on the Theory of Functions (Oxford, 1943).
[7] W. Miesner, The convergence fields of Nörlund means, Proc. Lond. Math. Soc., 15 (1965), 495-507.
[8] G. Petersen, A note on divergent series, Canad. J. Math., 4 (1952), 445-454.
[9] A. Peyerimhoff, Lectures on Summability, Springer Lecture Notes, No. 107 (Berlin).
[10] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publication, Vol. 23 (New York, 1939).
[11] C. E. Winn, On strong summability for any positive order, Math. Zeit., 37 (1933), 481-492.
[12] A. Zygmund, Trigonometric Series (Cambridge, 1959).
(Received January 3, 1983)

[^3]
[^0]: ${ }^{1}$ Supported in part by the Natural Sciences and Engineering Research Council of Canada, Grant A-2983.

[^1]: ${ }^{2}$ Since Hardy only considers Nörlund methods with $p_{n} \geqq 0, q_{n} \geqq 0$ his conditions have to be modified in the obvious way.

[^2]: ${ }^{3}$ We use M to denote a positive constant, independent of the variables, that may be different at each occurrence.

[^3]: THE UNIVERSITY OF WESTERN ONTARIO
 LONDON, ONTARIO
 CANADA N6A 587

