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O n  abso lute  general ized Hausdor f f  summabi l i ty  

By 

DAVID BORWEIN, F. PETER CASS a n d  JOHN E. SAYPJ~ 

Introduction. Hausdorff  matrices have played an important  role in summabili ty theory 
and are intimately linked with the moment  problem for a finite interval. The matrices of 
such standard methods of summabili ty as the Ces/tro, the H61der, the Euler and the 
weighted mean methods are all Hausdorff  or generalized Hausdorff  matrices (see [3], [4], 
[5] and [6]). In this paper  we define the notion of absolute summabili ty appropriate  to 
generalized Hausdorff  matrices and extend known results for ordinary Hausdorff  
matrices. In particular we establish relationships between generalized Ces~ro and gener- 
alized H61der absolute summabili ty methods. 

Abso lu t e  summabi l i t y .  Let Q = (qn, k) (n, k = 0, 1 . . . .  ) be a matrix. Given a series ~ an, 
let n: o n ao 

S n : ~.  a k and a n = Q ( s n ) =  ~ qn, kSk . 
k=O k=O 

Let 
n 

U, = I --  u o +  Y.  u k where u k > O for k = 0 , 1 , . . . ,  
k=O 

and suppose that  y is real and fl > 0. We define absolute summabili ty [Q, u,, via as 

follows: ~ a n is summable IQ, Un, Ylp if 
n=0 

(1) ~ u~.a+a-lu~.-a In. - a._lla < ~ .  
n = l  

If un = 1 for n = 0, 1 . . . . .  then (1) is equivalent to 

~ n ~ # + # - t l a n - a n _ l [ # <  oo 
n = l  

which is the defining inequality in the definition of absolute summabili ty given by 
Borwein [1]. Given absolute summabil i ty methods V and I4{, the notat ion 

V ~ W  

is used to mean that  every series summable  V is also summable I4{. 
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Generalized Hausdorffmatriees. Suppose in all that follows that 2 = {;~.} is a sequence 
of real numbers with 

(2) 2 o_>0 and i n f , ~ , > 0 .  
n->l 

Let ~2 be a simply connected region that contains every positive ;~., and suppose that, for 
n = 0, 1 . . . . .  F~ is a positively sensed Jordan contour lying in ~2 and enclosing every 2 k ~ s 
with 0 _ k -< n. Suppose that f is holomorphic in O and that f(2o) is defined even when 
;t o r ~2. Define 

[ ~  1 f (z )  dz 
2k+ l "  2. (3) 2.,k = ~ . (2 k -- Z) ' '"  (2. -- Z) + 6k for 0 < k < n, 

for k > n, 

where 6k = f(20) if k = 0 and 2 o ~ ~2, and 6k = 0 otherwise. Here and elsewhere we observe 
the convention that products like 2 k+ 1"'" 2. = 1 when k = n. Denote the triangular 
matrix (2.,k) by (2; f ) .  This is called a generalized Hausdorff matrix. The set of all 
generalized Hausdorff matrices associated with 2 is denoted by ~ .  

For  ~ real, the generalized HSlder matrix H~ is defined to be the matrix (2; f )  with 

f (z)  = (z + 1) -~. 

For  a > - 1, the generalized Ces/tro matrix C. is defined to be the matrix (2; f )  with 

r (~  + 1) r ( z  + 1) 
f ( z )  = 

r ( z  + ~ + 1) 

These reduce to the standard H61der and Ces/tro matrices when .~. = n. 
For  0 < t < 1, let 2.,k(t) denote the value of 2., k obtained from (3) with f (z)  = t ~, and 

let 2.,k(0 ) = ,~.,k(0 + ). 
Let 

for n ~ ] .  

Then, for n > 0, 

(5) D . =  l - d  o +  ~ d k. 
k=0 

It is easily seen that if 2j + ~ > 0 for k < j < n and F is a positively sensed circle 
enclosing 2 k . . . .  ,2 .  and lying to the right of - ~, then 

1 1 t ~ dz g dt r 

1 dz 1 i" 

2~i  Jr (~ + z) (2k -- Z)'-" (2. -- Z) ---- -- (2k + ~ ) ' ' "  (2. + ~)" 
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It follows that if 2j + a > 0 for k __< j __< n, then 

i )'k+ i " "" 2. 
(6) ~ t ' - a  2, k(t) d t =  

o ' ()., + ~ ) . . .  (2. + ~) 

and hence that 

(7) i 2.,k(t) d t =  __dk for 0 < k < n. 
o Dn 

Further, it is known (see [3]) that 

(8) 0 < 2.,j(t) < ~ 2.,k(t ) ~ 1 

~ r O ~ k ~ n ,  

k=O 
for 0_<t_< 1, O<=j<=n. 

Also it is evident that if 

1 

f ( z )  = I tz dz( t )  
0 

where Z e B V, the space of functions of bounded variation on [0, 1], then 

1 

(9) 2,,, = S 2,,k(t ) dz(t) .  
0 

For  X ~ o~ a, we write IX, 7la for rX, d., 7[p where d. is given by (4). Lemma 2 in [3] 
shows that if X = (2; 9) and Y= (2; h) where 9 and h are holomorphic in f2 and defined 
at 2 o, then 

(10) X Y =  (2; 9h). 

It follows from (10) that C~-t ~ ~ and hence that Ca-1 commutes with any matrix in 
~ .  Further, since 

1 1 
- StZdt ,  

z + l  o 

it follows from (7) and (9) that 

1 ~ dkSk, 
C l ( s n )  = O .  k=O 

and hence that 

Ca-l(s,) = s. + 2 .a ,  

where s. = ~ ak. It is now easy to show (as in [1], p. 126) that if X E ~ ,  then 
k=0  

X(2.a.)  = 2. (a .  - a . -1 )  

where a,  = X (s,), a_ 1 = 0. 



422 D. BORWEIN, F. P. CASS and J. E. SAYRE ARCH. MATH. 

Consequently, in view of [2] and [4], for X e ~ ,  ~ a. is summable ]X, Yla if and only 
n = 0  if ~ D,rP2. 1 ]X(2.a.)[P< ~ .  

n = l  

Our primary object is to prove four theorems which generalize results involving 
ordinary Hausdorff matrices (i.e., 2. = n) due to Borwein ([1], Theorems 6, 9, 11 and 
Proposit ion (VI) (i)). 

Preliminary results. 

Lemma 1. I f  (X, f )  and (2~, f )  are members of  ~ with 

1 1 

f ( z )  = St~dz(t) and f ( z )  = ~t ~ldX(t)] 
0 0 

where )C e B V, and if fl > 1, then, for any sequence {w.), 

lX(w.)l a < Ma-l , f ' ( Iw.la)  

1 

where M = S Idz(t) l. 
0 

P r o o f. Let X = (2., k) and )( = (~.,k). Then, by H61der's inequality, 

IX(w")la= k~o 'l"'kwk < k ' k=oEf"'~lw~la<Ma-XX(Iw"la) 

in view of (8) and (9). 

Lemma 2. Let ~ > O. I f  either ~ < 1 or ~ 2~ -2 < 0% then there is a number M > 0 such 
that, for  n > k >- O, .= 1 

(11) 1 +  -. .  1 +  < M  1 +  --- 1 +  . 

Proof. I f a  = 0 or a = 1, (11) is true as an equality with M = 1. I f 0  < ~ < 1, a simple 
calculus argument shows that 

so that (11) 
relation 

2 J -  2. 

holds with M = 1. Finally, if ~ 2~ -2 < 0% then (11) follows from the order 
/1=1 

(2:)( 1 + 1 + = 1  +O(2~-2), 

and this completes the proof. 
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We now introduce the notation: 

'to. o (t) 

2*~(t) = |Zk 2. k(t) 
/ 2 .  ' 

for n = k = 0 ,  

for O < k < _ n ,  n__>l. 

It is known ([2], Lemma 2) that, 

(12) ~ 2",(t)=<1 for O < t - < l ,  k_->O. 
n = k  

Lemma 3. Suppose that ~ > 0 and that either ct < 1 or ~, 2~ 2 < QO. Then there is a 

number M such that, for 0 < t < 1, k > O, .= t 

D ~ 

. = k  \ D k , /  - -  

P r o o f .  It follows from (2), (11), and (12) that, for 0 < t < 1, k > 0, 

2*k(t) t [ ~ - / = E 2 % ( O t "  1 +  .-. 1 + ~  
n = k  ' \ L I k / I  n = k  

<_<_ M 2.,k(t) t" . . .  n=k~---~-n~ 1 + 1 + < M .  

Main results. 

Theorem 1. Let  Z e BV, let fl > 1 and let X = (2; f )  where 

1 

f ( z )  = I tZdz(t) �9 
0 

Suppose that 

1 

(13) ~t -r  Idz(t)l < ~ .  
o 

I f  either 7 fl < 1 or ~ 2~ 2 < co, then 
n = l  

(i) ~ D~P2Z 1 IX(2na.) f < M ~ D~P2; 1 I,t.a.I p 
n = r  n = r  

where M is a constant independent o f  the sequence {a.} and 

{~ /f 20 > O, 
r =  /f 2 0 = 0 ,  
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and 

(ii) I Q, d,, ? [~ ~ IX Q, d,, y 1~ for any matrix Q. 

(Note that condition (13) is redundant when y < 0). 

P r o o f  o f  (i).  Let 

S = ~ O~t~2~ 1 [)~,a,f. 
n = r  

Suppose first that y < 0. By Lernma 1 and (12) 

1 oD 

~, D~A. -~ IX(&.a.)l ~=  M~ -1 ~ [dz(t)[ ~ I)~kakf Z D~P).2~)~.,k(t) 
n = r  0 k = r  n = k  

<-- M~ -1 i [dz(t)] ~ D~).; t IA, a J  ~ 3ok2;~ A.,k(t) 
0 k = r  n = k  

<= M~S 
1 

where M1 -- ~ Idz(t)]. 
0 

Suppose now that ? > 0 and 0 _< t _< 1. Let 

L(t) = E ;~.,~(t) ;~k ak. 
k = O  

By H61der's inequality and (8) 

(14) 

Hence 
,t I f,(t) f < )~,,k(t) I ~.kaJ 2,.k(t < ;~,,~(t) IAkakl p. 

k = 0  k k = 0  

n = r  n = r  k = r  

o~ /D \ ~  
n 

k = r  n = k  \ U k /  

<= M2S 

by Lemma 3, M 2 being a constant independent of {an}. It follows, by a form of Minkows- 
ki's inequality, that 

\~/~ (n~rD~,)~ dz(t) P) ~/p 

< D.~P 221 [ f,(t)l Idz(t)l 
= 

1 

< (M2S) ~/~ ~t-'  Idz(t)] 
0 

and this completes the proof of (i). 
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P r o o f o f (i i) .  In view of (2) and (4), it follows from (i) that l I, d., 718 ~ IX, d., ~ b 
where I is the identity matrix�9 Result (ii) is an immediate consequence. 

Theorem 2. Let ~ > fi >= 1, Pl 1 + ~1 ~, Y = > O, and let X = (2; f )  where 

1 

f(z) = J' t=q~(t) dt 
0 

with qJ(t) ~ L(O, 1) and tl-7-1tp~)(t) e LP(O, 1). I f  either 0 <= 7fl <= 1 or ~, 2~ 2 < 0% then 
n=]_ 

(i) D~.~22 ' IX(X.a.)l ~) < M D~.P22 ' 12.a.I 

where M is a constant independent of the sequence {G} and 

r =  /f  2 0 = 0 ,  

[Q, d,, 7[p=~ [X Q, d,, 7[~ for many matrix Q. 

P r o o f o f ( i ) .  Let 0 -< t _< 1 and let S, f ,  (t) be defined as in the proof of Theorem 1 (i). 
The symbols M, M~, M 2 will be used to denote positive numbers independent of n, t and 
the sequence {G}. 

It follows from (14), (6) and Lemma 2 that 

1 1 

(16) D~alt'P-~ [f.(t)[Sdt<=D~ 8 ~ ]2kakflt'8--12n, k(t) dt 
0 k = r  0 

<_ D~ 8 ~, ]2kakf 2 k + 1 " ' "  2 n 

,=~ (& + ~/~1 . . .  (2, + ~/~) 

<= M t ~, [2kak[#D~8(Rk -k 7fl)-i ~ M1S. 
k = r  

1 

Now let c = l -- 7 --p/-, 0(t) = f~(t), and K = ~ ]r By hypothesis K is finite, 
o 

and an application of H61der's inequality yields 

[X(2,a,)[ = i~b(t)o t-cf"(t) dt 

< K l _ l l p ( i t , ~ _  , i f . ( t ) fd t ) , /8-u~/ ,  \, i~ = t!lO(t r't'l/n(t l'dt) . 

Hence, for n > r, 

K~-~/st92~[t'8-1,f.(t)fdt)~/P-1 D~2~ -1 I X ( 2 . a . ) l  ~ _-< ,, 

1 

�9 ~ Ir lPt~Dff2; ~ If~(t) fd t .  
0 

and 

(ii) 
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In view of (15) and  (16), it follows that  

1 

D.W22 ~ IX(A.a.)l~ < K~-~/a(MaS) ~/a-i ~lq/(t)lvtradt ~ D~a2. - i  I f.(t)l a 
n = r  0 n = r  

< K ~- ~/~ (Ma S) ~/~ - 1 K M 2 S = M S ~/~ 

and  this establishes (i). 

P r o  o f  o f  ( i i ) .  It follows f rom (i) that  II, d,, 71p =:" IX, d,, 7t,, and  (ii) is an immediate  
consequence.  

Theorem 3. Let  fl >= 1, ~ > - 1 and suppose that either ? fl < 1 or ~, 2~ -2 < ~ .  
n = l  

(i) I f  7 < min(1, 1 + a), then IC~, T I ~  IH~, TI~. 
(ii) I f  7 < 1 or a = 2, 3, ... and T < 2, then tH~, ? Ip~  [C~, 71~. 

P r o o f .  Let  

(z + l ) -~r (z  + �9 + 1) 
w(z) = 

r (~  + 1) r ( z  + 1) 

It is k n o w n  (see [1], p. 131) that  

1 

w(z) = ~ t 'dx l ( t )  and 
0 

where )~l, Z2 e B V, 

1 

I t  -r [dxl(t)[ < oo 
0 

and  

1 

1/w(z) = I t~dz2(t) 
0 

if c < rain(l ,  1 + ~), 

1 

~t -~[d;~2(t)[ < oe if c < 1 or  �9 = 2 ,3  . . . .  and c < 2. 
0 

Let X = (2; w) and  Y =  (2; 1/w). Then  X C ,  = H,  and YH~ = C~. Hence, by  Theorem 1, 
if 7 < min (1, 1 + a), then I C,,  7 la ~ IX C~, 7 la, and if 7 < 1 or  a = 2, 3 . . . .  and 7 < 2, then 
IH=, Tip ~ [ Y H ~ ,  71~. This completes the proof. 

1 1 
Theorem 4. Let a > fl > l, q > a  fl, 6 + 1 > ? > 0 .  I f  either O < ? fl < l or 

~ ).~ z < oo then 
n = l  

[CoQ, 7[p ~ [C~+QQ, 7[~ for any matrix Q. 

P r o o f .  In view of (10) we have 

C~+ e = C~+QC;1C~ = XC~ 

where X = (2; f )  with 

f ( z )  = F(6 + 0 + 1) F(z + 1) F(z + (~ + 1) = ~tz~(t) 
r ( z + ~ + ~ + l )  r ( ~ + l )  r ( z + l )  o 
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and 

F(6 + Q + 1) t~(1 _ t)Q_l 
~(t) = r (~)  r 0  + l)  

Suppose first that 0~ = ft. Then, since 3 - ? > - 1, we see that t - r  ~(t) ~ L(0, 1), and so 
by Theorem 1 (ii), l Ca, yl~ ~ l C ~  +~, y ]~. The required result is an immediate consequence. 

Suppose now that ~ >/~ and let -=1 1 + . . . . .  1 1 Then p(Q 1 ) >  1 and p �9 /~" / 
p ( 3 +  1 - 7 - ~ ) > - 1 ,  so that ~(t)EL(0,  1 ) a n d  tl-r-1/P~(t)~LP(O, 1). Hence, by 

\ 

Theorem 2 (ii), l C6, 7 [a =~ ]C~+Q, Y l~ and again the required result follows. 
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