On absolute generalized Hausdorff summability

By
David Borwein, F. Peter Cass and John E. Sayre

Introduction. Hausdorff matrices have played an important role in summability theory and are intimately linked with the moment problem for a finite interval. The matrices of such standard methods of summability as the Cesàro, the Hölder, the Euler and the weighted mean methods are all Hausdorff or generalized Hausdorff matrices (see [3], [4], [5] and [6]). In this paper we define the notion of absolute summability appropriate to generalized Hausdorff matrices and extend known results for ordinary Hausdorff matrices. In particular we establish relationships between generalized Cesàro and generalized Hölder absolute summability methods.
Absolute summability. Let $Q=\left(q_{n, k}\right)(n, k=0,1, \ldots)$ be a matrix. Given a series $\sum_{n=0}^{\infty} a_{n}$,
let let

$$
s_{n}=\sum_{k=0}^{n} a_{k} \quad \text { and } \quad \sigma_{n}=Q\left(s_{n}\right)=\sum_{k=0}^{\infty} q_{n, k} s_{k} .
$$

Let

$$
U_{n}=1-u_{0}+\sum_{k=0}^{n} u_{k} \text { where } u_{k}>0 \text { for } k=0,1, \ldots,
$$

and suppose that γ is real and $\beta>0$. We define absolute summability $\left|Q, u_{n}, \gamma\right|_{\beta}$ as follows: $\sum_{n=0}^{\infty} a_{n}$ is summable $\left|Q, u_{n}, \gamma\right|_{\beta}$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty} U_{n}^{\gamma \beta+\beta-1} u_{n}^{1-\beta}\left|\sigma_{n}-\sigma_{n-1}\right|^{\beta}<\infty . \tag{1}
\end{equation*}
$$

If $u_{n}=1$ for $n=0,1, \ldots$, then (1) is equivalent to

$$
\sum_{n=1}^{\infty} n^{\nu \beta+\beta-1}\left|\sigma_{n}-\sigma_{n-1}\right|^{\beta}<\infty
$$

which is the defining inequality in the definition of absolute summability given by Borwein [1]. Given absolute summability methods V and W, the notation

$$
V \Rightarrow W
$$

is used to mean that every series summable V is also summable W.

[^0]Generalized Hausdorff matrices. Suppose in all that follows that $\lambda=\left\{\lambda_{n}\right\}$ is a sequence of real numbers with

$$
\begin{equation*}
\lambda_{0} \geqq 0 \quad \text { and } \quad \inf _{n \geqq 1} \lambda_{n}>0 \tag{2}
\end{equation*}
$$

Let Ω be a simply connected region that contains every positive λ_{n}, and suppose that, for $n=0,1, \ldots, \Gamma_{n}$ is a positively sensed Jordan contour lying in Ω and enclosing every $\lambda_{k} \in \Omega$ with $0 \leqq k \leqq n$. Suppose that f is holomorphic in Ω and that $f\left(\lambda_{0}\right)$ is defined even when $\lambda_{0} \notin \Omega$. Define

$$
\lambda_{n, k}= \begin{cases}-\lambda_{k+1} \cdots \lambda_{n} \frac{1}{2 \pi i} \int_{\Gamma_{n}} \frac{f(z) d z}{\left(\lambda_{k}-z\right) \cdots\left(\lambda_{n}-z\right)}+\delta_{k} & \text { for } 0 \leqq k \leqq n \tag{3}\\ 0 & \text { for } k>n\end{cases}
$$

where $\delta_{k}=f\left(\lambda_{0}\right)$ if $k=0$ and $\lambda_{0} \notin \Omega$, and $\delta_{k}=0$ otherwise. Here and elsewhere we observe the convention that products like $\lambda_{k+1} \cdots \lambda_{n}=1$ when $k=n$. Denote the triangular matrix ($\lambda_{n, k}$) by ($\lambda ; f$). This is called a generalized Hausdorff matrix. The set of all generalized Hausdorff matrices associated with λ is denoted by \mathscr{H}_{λ}.

For α real, the generalized Hölder matrix H_{α} is defined to be the matrix $(\lambda ; f)$ with

$$
f(z)=(z+1)^{-\alpha}
$$

For $\alpha>-1$, the generalized Cesàro matrix C_{α} is defined to be the matrix $(\lambda ; f)$ with

$$
f(z)=\frac{\Gamma(\alpha+1) \Gamma(z+1)}{\Gamma(z+\alpha+1)} .
$$

These reduce to the standard Hölder and Cesàro matrices when $\lambda_{n}=n$.
For $0<t \leqq 1$, let $\lambda_{n, k}(t)$ denote the value of $\lambda_{n, k}$ obtained from (3) with $f(z)=t^{z}$, and let $\lambda_{n, k}(0)=\lambda_{n, k}(0+)$.

Let

$$
\begin{equation*}
D_{0}=\left(1+\lambda_{0}\right) d_{0}=1 ; D_{n}=\left(1+\frac{1}{\lambda_{1}}\right) \cdots\left(1+\frac{1}{\lambda_{n}}\right)=\left(1+\lambda_{n}\right) d_{n} \text { for } n \geqq 1 \tag{4}
\end{equation*}
$$

Then, for $n \geqq 0$,

$$
\begin{equation*}
D_{n}=1-d_{0}+\sum_{k=0}^{n} d_{k} \tag{5}
\end{equation*}
$$

It is easily seen that if $\lambda_{j}+\alpha>0$ for $k \leqq j \leqq n$ and Γ is a positively sensed circle enclosing $\lambda_{k}, \ldots, \lambda_{n}$ and lying to the right of $-\alpha$, then

$$
\begin{aligned}
& \int_{0}^{1} t^{\alpha-1} d t \frac{1}{2 \pi i} \int_{\Gamma} \frac{t^{z} d z}{\left(\lambda_{k}-z\right) \cdots\left(\lambda_{n}-z\right)} \\
& \quad=\frac{1}{2 \pi i} \int_{\Gamma} \frac{d z}{(\alpha+z)\left(\lambda_{k}-z\right) \cdots\left(\lambda_{n}-z\right)}=-\frac{1}{\left(\lambda_{k}+\alpha\right) \cdots\left(\lambda_{n}+\alpha\right)} .
\end{aligned}
$$

It follows that if $\lambda_{j}+\alpha>0$ for $k \leqq j \leqq n$, then

$$
\begin{equation*}
\int_{0}^{1} t^{\alpha-1} \lambda_{n, k}(t) d t=\frac{\lambda_{k+1} \cdots \lambda_{n}}{\left(\lambda_{k}+\alpha\right) \cdots\left(\lambda_{n}+\alpha\right)} \quad \text { for } 0 \leqq k \leqq n, \tag{6}
\end{equation*}
$$

and hence that

$$
\begin{equation*}
\int_{0}^{1} \lambda_{n, k}(t) d t=\frac{d_{k}}{D_{n}} \quad \text { for } 0 \leqq k \leqq n \tag{7}
\end{equation*}
$$

Further, it is known (see [3]) that

$$
\begin{equation*}
0 \leqq \lambda_{n, j}(t) \leqq \sum_{k=0}^{n} \lambda_{n, k}(t) \leqq 1 \quad \text { for } 0 \leqq t \leqq 1,0 \leqq j \leqq n \tag{8}
\end{equation*}
$$

Also it is evident that if

$$
f(z)=\int_{0}^{1} t^{z} d \chi(t)
$$

where $\chi \in B V$, the space of functions of bounded variation on $[0,1]$, then

$$
\begin{equation*}
\lambda_{n, k}=\int_{0}^{1} \lambda_{n, k}(t) d \chi(t) . \tag{9}
\end{equation*}
$$

For $X \in \mathscr{H}_{\lambda}$, we write $|X, \gamma|_{\beta}$ for $\left|X, d_{n}, \gamma\right|_{\beta}$ where d_{n} is given by (4). Lemma 2 in [3] shows that if $X=(\lambda ; g)$ and $Y=(\lambda ; h)$ where g and h are holomorphic in Ω and defined at λ_{0}, then

$$
\begin{equation*}
X Y=(\lambda ; g h) . \tag{10}
\end{equation*}
$$

It follows from (10) that $C_{1}^{-1} \in \mathscr{H}_{\lambda}$ and hence that C_{1}^{-1} commutes with any matrix in \mathscr{H}_{λ}. Further, since

$$
\frac{1}{z+1}=\int_{0}^{1} t^{z} d t
$$

it follows from (7) and (9) that

$$
C_{1}\left(s_{n}\right)=\frac{1}{D_{n}} \sum_{k=0}^{n} d_{k} s_{k},
$$

and hence that

$$
C_{1}^{-1}\left(s_{n}\right)=s_{n}+\lambda_{n} a_{n}
$$

where $s_{n}=\sum_{k=0}^{n} a_{k}$. It is now easy to show (as in [1], p. 126) that if $X \in \mathscr{H}_{\lambda}$, then

$$
X\left(\lambda_{n} a_{n}\right)=\lambda_{n}\left(\sigma_{n}-\sigma_{n-1}\right)
$$

where $\sigma_{n}=X\left(s_{n}\right), \sigma_{-1}=0$.

Consequently, in view of [2] and [4], for $X \in \mathscr{H}_{\lambda}, \sum_{n=0}^{\infty} a_{n}$ is summable $|X, \gamma|_{\beta}$ if and only if $\sum_{n=1}^{\infty} D_{n}^{\gamma \beta} \lambda_{n}^{-1} \mid X\left(\lambda_{n} a_{n}\right)^{\beta}<\infty$.

Our primary object is to prove four theorems which generalize results involving ordinary Hausdorff matrices (i.e., $\lambda_{n}=n$) due to Borwein ([1], Theorems 6, 9, 11 and Proposition (VI) (i)).

Preliminary results.

Lemma 1. If (X, f) and (\tilde{X}, \tilde{f}) are members of \mathscr{H}_{λ} with

$$
f(z)=\int_{0}^{1} t^{z} d \chi(t) \quad \text { and } \quad \widetilde{f}(z)=\int_{0}^{1} t^{z}|d \chi(t)|
$$

where $\chi \in B V$, and if $\beta \geqq 1$, then, for any sequence $\left\{w_{n}\right\}$,

$$
\left|X\left(w_{n}\right)\right|^{\beta} \leqq M^{\beta-1} \tilde{X}\left(\left|w_{n}\right|^{\beta}\right)
$$

where $M=\int_{0}^{1}|d \chi(t)|$.
Proof. Let $X=\left(\lambda_{n, k}\right)$ and $\tilde{X}=\left(\tilde{\lambda}_{n, k}\right)$. Then, by Hölder's inequality,

$$
\left.\left|X\left(w_{n}\right)^{\beta}=\left|\sum_{k=0}^{n} \lambda_{n, k} w_{k}\right|^{\beta} \leqq\left(\sum_{k=0}^{n} \tilde{\lambda}_{n, k}\right)^{\beta-1} \sum_{k=0}^{n} \tilde{\lambda}_{n, k}\right| w_{k}\right|^{\beta} \leqq M^{\lambda-1} \tilde{X}\left(\left|w_{n}\right|^{\beta}\right)
$$

in view of (8) and (9).
Lemma 2. Let $\alpha \geqq 0$. If either $\alpha \leqq 1$ or $\sum_{n=1}^{\infty} \lambda_{n}^{-2}<\infty$, then there is a number $M>0$ such that, for $n \geqq k \geqq 0$,

$$
\begin{equation*}
\left(1+\frac{1}{\lambda_{k}+1}\right)^{\alpha} \cdots\left(1+\frac{1}{\lambda_{n}}\right)^{\alpha} \leqq M\left(1+\frac{\alpha}{\lambda_{k}+1}\right) \cdots\left(1+\frac{\alpha}{\lambda_{n}}\right) \tag{11}
\end{equation*}
$$

Proof. If $\alpha=0$ or $\alpha=1$, (11) is true as an equality with $M=1$. If $0<\alpha<1$, a simple calculus argument shows that

$$
\left(1+\frac{1}{\lambda_{n}}\right)^{\alpha} \leqq 1+\frac{\alpha}{\lambda_{n}}
$$

so that (11) holds with $M=1$. Finally, if $\sum_{n=1}^{\infty} \lambda_{n}^{-2}<\infty$, then (11) follows from the order relation

$$
\left(1+\frac{1}{\lambda_{n}}\right)^{\alpha}\left(1+\frac{\alpha}{\lambda_{n}}\right)^{-1}=1+O\left(\lambda_{n}^{-2}\right)
$$

and this completes the proof.

We now introduce the notation:

$$
\lambda_{n, k}^{*}(t)= \begin{cases}\lambda_{0,0}(t) & \text { for } n=k=0 \\ \frac{\lambda_{k}}{\lambda_{n}} \lambda_{n, k}(t) & \text { for } 0 \leqq k \leqq n, \quad n \geqq 1\end{cases}
$$

It is known ([2], Lemma 2) that,

$$
\begin{equation*}
\sum_{n=k}^{\infty} \lambda_{n, k}^{*}(t) \leqq 1 \quad \text { for } 0 \leqq t \leqq 1, \quad k \leqq 0 \tag{12}
\end{equation*}
$$

Lemma 3. Suppose that $\alpha \geqq 0$ and that either $\alpha \leqq 1$ or $\sum_{n=1}^{\infty} \lambda_{n}^{-2}<\infty$. Then there is a number M such that, for $0 \leqq t \leqq 1, k \geqq 0$,

$$
\sum_{n=k}^{\infty} \lambda_{n, k}^{*}(t) t^{\alpha}\left(\frac{D_{n}}{D_{k}}\right)^{\alpha} \leqq M
$$

Proof. It follows from (2), (11), and (12) that, for $0 \leqq t \leqq 1, k \geqq 0$,

$$
\begin{aligned}
\sum_{n=k}^{\infty} \lambda_{n, k}^{*}(t) t^{\alpha}\left(\frac{D_{n}}{D_{k}}\right)^{\alpha} & =\sum_{n=k}^{\infty} \lambda_{n, k}^{*}(t) t^{\alpha}\left(1+\frac{1}{\lambda_{k+1}}\right)^{\alpha} \cdots\left(1+\frac{1}{\lambda_{n}}\right)^{\alpha} \\
& \leqq M \sum_{n=k}^{\infty} \frac{\lambda_{k}+\alpha}{\lambda_{n}+\alpha} \lambda_{n, k}(t) t^{\alpha}\left(1+\frac{\alpha}{\lambda_{k+1}}\right) \cdots\left(1+\frac{\alpha}{\lambda_{n}}\right) \leqq M
\end{aligned}
$$

Main results.

Theorem 1. Let $\chi \in B V$, let $\beta \geqq 1$ and let $X=(\lambda ; f)$ where

$$
f(z)=\int_{0}^{1} t^{z} d \chi(t)
$$

Suppose that

$$
\begin{equation*}
\int_{0}^{1} t^{-\gamma}|d \chi(t)|<\infty \tag{13}
\end{equation*}
$$

If either $\gamma \beta \leqq 1$ or $\sum_{n=1}^{\infty} \lambda_{n}^{-2}<\infty$, then

$$
\begin{equation*}
\sum_{n=r}^{\infty} D_{n}^{\gamma \beta} \lambda_{n}^{-1}\left|X\left(\lambda_{n} a_{n}\right)\right|^{\beta} \leqq M \sum_{n=r}^{\infty} D_{n}^{\gamma \beta} \lambda_{n}^{-1}\left|\lambda_{n} a_{n}\right|^{\beta} \tag{i}
\end{equation*}
$$

where M is a constant independent of the sequence $\left\{a_{n}\right\}$ and

$$
r= \begin{cases}0 & \text { if } \lambda_{0}>0 \\ 1 & \text { if } \lambda_{0}=0\end{cases}
$$

and
(ii) $\quad\left|Q, d_{n}, \gamma\right|_{\beta} \Rightarrow\left|X Q, d_{n}, \gamma\right|_{\beta} \quad$ for any matrix Q.
(Note that condition (13) is redundant when $\gamma \leqq 0$).
Proof of (i). Let

$$
S=\sum_{n=r}^{\infty} D_{n}^{\gamma \beta} \lambda_{n}^{-1}\left|\lambda_{n} a_{n}\right|^{\beta} .
$$

Suppose first that $\gamma<0$. By Lemma 1 and (12)

$$
\begin{aligned}
\sum_{n=r}^{\infty} D_{n}^{\gamma \beta} \lambda_{n}^{-1}\left|X\left(\lambda_{n} a_{n}\right)\right|^{\beta} & =M_{1}^{\beta-1} \int_{0}^{1}|d \chi(t)| \sum_{k=r}^{\infty}\left|\lambda_{k} a_{k}\right|^{\beta} \sum_{n=k}^{\infty} D_{n}^{\gamma \beta} \lambda_{n}^{-1} \lambda_{n, k}(t) \\
& \leqq M_{1}^{\beta-1} \int_{0}^{1}|d \chi(t)| \sum_{k=r}^{\infty} D_{k}^{\gamma \beta} \lambda_{k}^{-1}\left|\lambda_{k} a_{k}\right|^{\beta} \sum_{n=k}^{\infty} \lambda_{k} \lambda_{n}^{-1} \lambda_{n, k}(t) \\
& \leqq M_{1}^{\beta} S
\end{aligned}
$$

where $M_{1}=\int_{0}^{1}|d \chi(t)|$.
Suppose now that $\gamma \geqq 0$ and $0 \leqq t \leqq 1$. Let

$$
f_{n}(t)=\sum_{k=0}^{n} \lambda_{n, k}(t) \lambda_{k} a_{k}
$$

By Hölder's inequality and (8)

$$
\begin{equation*}
\left|f_{n}(t)\right|^{\beta} \leqq \sum_{k=0}^{n} \lambda_{n, k}(t)\left|\lambda_{k} a_{k}\right|^{\beta}\left(\sum_{k=0}^{n} \lambda_{n, k}(t)\right)^{\beta-1} \leqq \sum_{k=0}^{n} \lambda_{n, k}(t)\left|\lambda_{k} a_{k}\right|^{\beta} . \tag{14}
\end{equation*}
$$

Hence

$$
\begin{align*}
t^{\gamma \beta} \sum_{n=r}^{\infty} D_{n}^{\gamma \beta} \lambda_{n}^{-1}\left|f_{n}(t)\right|^{\beta} & =t^{\gamma \beta} \sum_{n=r}^{\infty} D_{n}^{\gamma \beta} \lambda_{n}^{-1} \sum_{k=r}^{n} \lambda_{n, k}(t)\left|\lambda_{k} a_{k}\right|^{\beta} \tag{15}\\
& =\sum_{k=r}^{\infty} D_{k}^{\gamma \beta} \lambda_{k}^{-1}\left|\lambda_{k} a_{k}\right|^{\beta} \sum_{n=k}^{\infty}\left(\frac{D_{n}}{D_{k}}\right)^{\gamma \beta} \lambda_{k} \lambda_{n}^{-1} \lambda_{n, k}(t) t^{\gamma \beta} \\
& \leqq M_{2} S
\end{align*}
$$

by Lemma 3, M_{2} being a constant independent of $\left\{a_{n}\right\}$. It follows, by a form of Minkowski's inequality, that

$$
\begin{aligned}
\left(\sum_{n=r}^{\infty} D_{n}^{\gamma \beta} \lambda_{n}^{-1}\left|X\left(\lambda_{n} a_{n}\right)\right|\right)^{1 / \beta} & =\left(\sum_{n=r}^{\infty} D_{n}^{\gamma \beta} \lambda_{n}^{-1}\left|\int_{0}^{1} f_{n}(t) d \chi(t)\right|^{\beta}\right)^{1 / \beta} \\
& \leqq \int_{0}^{1}\left(\sum_{n=r}^{\infty} D_{n}^{\gamma \beta} \lambda_{n}^{-1}\left|f_{n}(t)\right|^{\beta}\right)^{1 / \beta}|d \chi(t)| \\
& \leqq\left(M_{2} S\right)^{1 / \beta} \int_{0}^{1} t^{-\gamma}|d \chi(t)|
\end{aligned}
$$

and this completes the proof of (i).

Proof of (ii). In view of (2) and (4), it follows from (i) that $\left|I, d_{n}, \gamma\right|_{\beta} \Rightarrow\left|X, d_{n}, \gamma\right|_{\beta}$ where I is the identity matrix. Result (ii) is an immediate consequence.

Theorem 2. Let $\alpha>\beta \geqq 1, \frac{1}{p}=1+\frac{1}{\alpha}-\frac{1}{\beta}, \gamma \geqq 0$, and let $X=(\lambda ; f)$ where

$$
f(z)=\int_{0}^{1} t^{z} \phi(t) d t
$$

with $\phi(t) \in L(0,1)$ and $t^{1-\gamma-1 / p} \phi(t) \in L^{p}(0,1)$. If either $0 \leqq \gamma \beta \leqq 1$ or $\sum_{n=1}^{\infty} \lambda_{n}^{-2}<\infty$, then

$$
\begin{equation*}
\left(\sum_{n=r}^{\infty} D_{n}^{\gamma \alpha} \lambda_{n}^{-1} \mid X\left(\left.\lambda_{n} a_{n}\right|^{\alpha}\right)^{1 / \alpha} \leqq M\left(\sum_{n=r}^{\infty} D_{n}^{\gamma \beta} \lambda_{n}^{-1}\left|\lambda_{n} a_{n}\right|^{\beta}\right)^{1 / \beta}\right. \tag{i}
\end{equation*}
$$

where M is a constant independent of the sequence $\left\{a_{n}\right\}$ and

$$
r= \begin{cases}0 & \text { if } \lambda_{0}>0, \\ 1 & \text { if } \lambda_{0}=0,\end{cases}
$$

and

$$
\begin{equation*}
\left|Q, d_{n}, \gamma\right|_{\beta} \Rightarrow\left|X Q, d_{n}, \gamma\right|_{\alpha} \quad \text { for many matrix } Q \tag{ii}
\end{equation*}
$$

Proof of (i). Let $0 \leqq t \leqq 1$ and let $S, f_{n}(t)$ be defined as in the proof of Theorem 1 (i). The symbols M, M_{1}, M_{2} will be used to denote positive numbers independent of n, t and the sequence $\left\{a_{n}\right\}$.

It follows from (14), (6) and Lemma 2 that

$$
\begin{align*}
D_{n}^{\gamma \beta} \int_{0}^{1} t^{\gamma \beta-1}\left|f_{n}(t)\right|^{\beta} d t & \leqq D_{n}^{\gamma \beta} \sum_{k=r}^{n}\left|\lambda_{k} a_{k}\right|^{\beta} \int_{0}^{1} t^{\gamma \beta-1} \lambda_{n, k}(t) d t \tag{16}\\
& \leqq D_{n}^{\gamma \beta} \sum_{k=r}^{n}\left|\lambda_{k} a_{k}\right|^{\beta} \frac{\lambda_{k+1} \cdots \lambda_{n}}{\left(\lambda_{k}+\gamma \beta\right) \cdots\left(\lambda_{n}+\gamma \beta\right)} \\
& \leqq M_{1} \sum_{k=r}^{n}\left|\lambda_{k} a_{k}\right|^{\beta} D_{k}^{\gamma \beta}\left(\lambda_{k}+\gamma \beta\right)^{-1} \leqq M_{1} S .
\end{align*}
$$

Now let $c=1-\gamma-\frac{1}{p}, \psi(t)=t^{c} \phi(t)$, and $K=\int_{0}^{1}|\psi(t)|^{p} d t$. By hypothesis K is finite, and an application of Hölder's inequality yields

$$
\begin{aligned}
\left|X\left(\lambda_{n} a_{n}\right)\right| & =\left|\int_{0}^{1} \psi(t) t^{-c} f_{n}(t) d t\right| \\
& \leqq K^{1-1 / \beta}\left(\int_{0}^{1} t^{\beta \beta-1}\left|f_{n}(t)\right|^{\beta} d t\right)^{1 / \beta-1 / \alpha}\left(\int_{0}^{1}|\psi(t)|^{p} t^{\gamma \beta}\left|f_{n}(t)\right|^{\beta} d t\right)^{1 / \alpha} .
\end{aligned}
$$

Hence, for $n \geqq r$,

$$
\begin{aligned}
D_{n}^{\gamma \alpha} \lambda_{n}^{-1}\left|X\left(\lambda_{n} a_{n}\right)\right|^{\alpha} \leqq & K^{\alpha-\alpha / \beta}\left(D_{n}^{\gamma \beta} \int_{0}^{1} t^{\gamma \beta-1}\left|f_{n}(t)\right|^{\beta} d t\right)^{\alpha / \beta-1} \\
& \cdot \int_{0}^{1}|\psi(t)|^{p} t^{\gamma \beta} D_{n}^{\gamma \beta} \lambda_{n}^{-1}\left|f_{n}(t)\right|^{\beta} d t
\end{aligned}
$$

In view of (15) and (16), it follows that

$$
\begin{aligned}
\sum_{n=r}^{\infty} D_{n}^{\gamma \alpha} \lambda_{n}^{-1}\left|X\left(\lambda_{n} a_{n}\right)\right|^{\alpha} & \leqq K^{\alpha-\alpha / \beta}\left(M_{1} S\right)^{\alpha / \beta-1} \int_{0}^{1}|\psi(t)|^{p} t^{\gamma \beta} d t \sum_{n=r}^{\infty} D_{n}^{\gamma \beta} \lambda_{n}^{-1}\left|f_{n}(t)\right|^{\beta} \\
& \leqq K^{\alpha-\alpha / \beta}\left(M_{1} S\right)^{\alpha / \beta-1} K M_{2} S=M S^{\alpha / \beta}
\end{aligned}
$$

and this establishes (i).
Pro of of (ii). It follows from (i) that $\left|I, d_{n}, \gamma\right|_{\beta} \Rightarrow\left|X, d_{n}, \gamma\right|_{\alpha}$, and (ii) is an immediate consequence.

Theorem 3. Let $\beta \geqq 1, \alpha>-1$ and suppose that either $\gamma \beta \leqq 1$ or $\sum_{n=1}^{\infty} \lambda_{n}^{-2}<\infty$.
(i) If $\gamma<\min (1,1+\alpha)$, then $\left|C_{\alpha}, \gamma\right|_{\beta} \Rightarrow\left|H_{\alpha}, \gamma\right|_{\beta}$.
(ii) If $\gamma<1$ or $\alpha=2,3, \ldots$ and $\gamma<2$, then $\left|H_{\alpha}, \gamma\right|_{\beta} \Rightarrow\left|C_{\alpha}, \gamma\right|_{\beta}$.

Proof. Let

$$
w(z)=\frac{(z+1)^{-\alpha} \Gamma(z+\alpha+1)}{\Gamma(\alpha+1) \Gamma(z+1)}
$$

It is known (see [1], p. 131) that

$$
w(z)=\int_{0}^{1} t^{z} d \chi_{1}(t) \quad \text { and } \quad 1 / w(z)=\int_{0}^{1} t^{z} d \chi_{2}(t)
$$

where $\chi_{1}, \chi_{2} \in B V$,

$$
\int_{0}^{1} t^{-c}\left|d \chi_{1}(t)\right|<\infty \quad \text { if } c<\min (1,1+\alpha)
$$

and

$$
\int_{0}^{1} t^{-c}\left|d \chi_{2}(t)\right|<\infty \text { if } c<1 \text { or } \alpha=2,3, \ldots \text { and } c<2
$$

Let $X=(\lambda ; w)$ and $Y=(\lambda ; 1 / w)$. Then $X C_{\alpha}=H_{\alpha}$ and $Y H_{\alpha}=C_{\alpha}$. Hence, by Theorem 1, if $\gamma<\min (1,1+\alpha)$, then $\left|C_{\alpha}, \gamma\right|_{\beta} \Rightarrow\left|X C_{\alpha}, \gamma\right|_{\beta}$, and if $\gamma<1$ or $\alpha=2,3, \ldots$ and $\gamma<2$, then $\left|H_{\alpha}, \gamma\right|_{\beta} \Rightarrow\left|Y H_{\alpha}, \gamma\right|_{\beta}$. This completes the proof.

Theorem 4. Let $\alpha \geqq \beta \geqq 1$, $\varrho>\frac{1}{\alpha}-\frac{1}{\beta}, \delta+1>\gamma \geqq 0$. If either $0 \leqq \gamma \beta \leqq 1$ or $\sum_{n=1}^{\infty} \lambda_{n}^{-2}<\infty$ then

$$
\left|C_{\delta} Q, \gamma\right|_{\beta} \Rightarrow\left|C_{\delta+e} Q, \gamma\right|_{\alpha} \quad \text { for any matrix } Q
$$

Proof. In view of (10) we have

$$
C_{\delta+e}=C_{\delta+e} C_{\delta}^{-1} C_{\delta}=X C_{\delta}
$$

where $X=(\lambda ; f)$ with

$$
f(z)=\frac{\Gamma(\delta+\varrho+1) \Gamma(z+1)}{\Gamma(z+\delta+\varrho+1)} \cdot \frac{\Gamma(z+\delta+1)}{\Gamma(\delta+1) \Gamma(z+1)}=\int_{0}^{1} t^{z} \phi(t) d t
$$

and

$$
\phi(t)=\frac{\Gamma(\delta+\varrho+1)}{\Gamma(\varrho) \Gamma(\delta+1)} t^{\delta}(1-t)^{\varrho-1}
$$

Suppose first that $\alpha=\beta$. Then, since $\delta-\gamma>-1$, we see that $t^{-\gamma} \phi(t) \in L(0,1)$, and so by Theorem 1 (ii), $\left|C_{\delta}, \gamma\right|_{\alpha} \Rightarrow\left|C_{\delta+\varrho}, \gamma\right|_{\alpha}$. The required result is an immediate consequence.

Suppose now that $\alpha>\beta$ and let $\frac{1}{p}=1+\frac{1}{\alpha}-\frac{1}{\beta}$. Then $p(\underline{o}-1)>-1$ and $p\left(\delta+1-\gamma-\frac{1}{p}\right)>-1$, so that $\phi(t) \in L(0,1)$ and $t^{1-\gamma-1 / p} \phi(t) \in L^{p}(0,1)$. Hence, by Theorem 2 (ii), $\left|C_{\delta}, \gamma\right|_{\beta} \Rightarrow\left|C_{\delta+e}, \gamma\right|_{\alpha}$ and again the required result follows.

References

[1] D. Borwein, On Strong and Absolute Summability. Proc. Glasgow Math. Assoc. 4, 122-139 (1960).
[2] D. Borwein, Generalized Hausdorff Matrices as Bounded Operators on l^{p}. Math. Z. 183, 483-487 (1983).
[3] D. Borwein, F. P. Cass and J. E. Sayre, On Generalized Hausdorff Matrices. To appear in J. Approx. Theory.
[4] F. Hausdorff, Summationsmethoden und Momentfolgen I. Math. Z. 9, 74-109 (1921).
[5] F. Hausdorff, Summationsmethoden und Momentfolgen II. Math. Z. 9, 280-299 (1921).
[6] G. H. Hardy, Divergent Series. Oxford 1949.
Eingegangen am 23.4. 1985
Anschrift der Autoren:

David Borwein and F. Peter Cass Department of Mathematics The University of Western Ontario London, Ontario N6A 5B7 Canada

John E. Sayre
Department of Mathematics
Mount Saint Vincent University
Halifax, Nova Scotia B3M $2 J 6$
Canada

[^0]: This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

