CESÀRO AND BOREL-TYPE SUMMABILITY

DAVID BORWEIN AND TOM MARKOVICH

(Communicated by R. Daniel Mauldin)

ABSTRACT. Though summability of a series by the Cesàro method C_p does not in general imply its summability by the Borel-type method (B, α, β) , it is shown that the implication holds under an additional condition.

1. Introduction. Suppose throughout that $\sum_{n=0}^{\infty} a_n$ is a series with partial sums $s_n := \sum_{k=0}^n a_k$, and that $\alpha > 0$ and $\alpha N + \beta > 0$ where N is a nonnegative integer. The series $\sum_{n=0}^{\infty} a_n$ is said to be summable (B, α, β) to s if

$$\alpha e^{-x} \sum_{n=N}^{\infty} s_n \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)} \to s \text{ as } x \to \infty.$$

The Borel-type summability method (B, α, β) is regular, and (B, 1, 1) with N = 0 is the standard Borel summability method B.

We shall also be concerned with the Cesàro summability method C_p (p > -1)and the Valiron method V_{α} defined as follows:

$$\sum_{n=0}^{\infty} a_n = s(C_p) \quad \text{if } c_n^p := \frac{s_n^p}{\binom{n+p}{n}} \to s \quad \text{as } n \to \infty$$

where

$$s_n^p := \sum_{k=0}^n \left(\frac{n-k+p-1}{n-k} \right) s_k;$$
$$\sum_{n=0}^\infty a_n = s(V_\alpha) \quad \text{if } \left(\frac{\alpha}{2\pi n} \right)^{1/2} \sum_{k=0}^\infty \exp\left(-\frac{\alpha(n-k)^2}{2n} \right) s_k \to s \quad \text{as } n \to \infty.$$

Consider the series $\sum_{n=1}^{\infty} a_n := \sum_{n=1}^{\infty} n^{a-1} \exp(Ain^a)$ where A > 0 and 0 < a < 1/2. It is known [5, p. 213] that this series is summable C_p for every p > 0 but is not convergent. However, since $a_n = o(n^{-1/2})$, it follows by the Borwein Tauberian Theorem [1, Theorem 1] that the series is not summable (B, α, β) for any α and β . This example shows that, in general, summability C_p does not imply summability (B, α, β) . The following theorem indicates how to strengthen the C_p summability hypothesis in order to ensure summability (B, α, β) .

THEOREM 1. Suppose that p is a nonnegative integer and that $c_n^p = s + o(n^{-p/2})$ as $n \to \infty$. Then $\sum_{n=0}^{\infty} a_n = s(B, \alpha, \beta)$.

The special case $\alpha = \beta = 1$, p = 1 of Theorem 1 has been proved by Hardy [5, Theorem 149]. Hardy and Littlewood [4, §3] proved that the condition

©1988 American Mathematical Society 0002-9939/88 \$1.00 + \$.25 per page

1108

Received by the editors July 14, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 40G05, 40G10.

This research was supported in part by the Natural Sciences and Engineering Council of Canada.

 $c_n^p = s + o(n^{-1/2})$ is not sufficient for the summability of $\sum a_n$ by the Borel method. Hyslop [7, Theorem VIII] has obtained a more general result than Hardy, namely the case $\alpha = \beta = 1$ of Theorem 1. More recently, Swaminathan [10] has proved Theorem 1 with p = 1 and (B, α, β) summability replaced by the more general F(a, q) summability introduced by Meir [9].

2. Preliminary results.

LEMMA 1 [8, LEMMA 7]. Let $m < x_0 < n-1$ where m, n are integers and let the nonnegative function f(x) be increasing on $[m, x_0]$ and decreasing on $[x_0, n]$. Then

$$\sum_{k=m}^{n} f(k) \le \int_{m}^{n} f(x) dx + f(x_0).$$

LEMMA 2 [2, THEOREM 3]. Suppose that $s_n = O(n^r)$ where $r \ge 0$. Then $\sum_{n=0}^{\infty} a_n = s(B, \alpha, \beta)$ if and only if $\sum_{n=0}^{\infty} a_n = s(V_{\alpha})$.

THEOREM 2 (CF. [6, THEOREM 2]). Suppose that p is a nonnegative integer and that $c_n^p = s + o(n^{-p/2})$ as $n \to \infty$. Then $\sum_{n=0}^{\infty} a_n = s(V_{\alpha})$.

PROOF. Suppose, as we may without loss of generality, that s = 0.

Let $v_n(x) := \exp(-\alpha(n-x)^2/2n)$ and denote the *p*th difference of $v_n(k)$ by $\Delta^p v_n(k)$, so that

$$\Delta^p v_n(k) = \sum_{r=0}^p \binom{p}{r} (-1)^r v_n(k+r).$$

Applying Abel's partial summation formula $p \ (< m)$ times, we have that

$$\sum_{k=0}^{m} s_k v_n(k) = \sum_{k=0}^{m-p} s_k^p \Delta^p v_n(k) + \sum_{r=0}^{p-1} s_{m-r}^{r+1} \Delta^r v_n(m-r).$$

Letting $m \to \infty$ and applying the limitation theorem for Cesàro summability [5, Theorem 46], we see that

$$F(n) := \sum_{k=0}^{\infty} s_k v_n(k) = \sum_{k=0}^{\infty} s_k^p \Delta^p v_n(k).$$

In order to prove the theorem we must show that $F(n) = o(n^{1/2})$. Since, by the hypothesis, $s_k^p = o(k^{p/2})$ as $k \to \infty$ and $k^{p/2} \Delta^p v_n(k) = o(n^{1/2})$ as $n \to \infty$, it suffices to show that

(1)
$$G(n) := n^{-1/2} \sum_{k=0}^{\infty} k^{p/2} |\Delta^p v_n(k)|$$

is bounded.

It is familiar that $\Delta^p v_n(k) = (-1)^p v_n^{(p)}(k+c)$ for some $c \in [0, p]$. Hence there is a $\theta = \theta(n, k) \in [0, p]$ such that

(2)
$$|\Delta^p v_n(k)| \le |v_n^{(p)}(k+\theta)|.$$

Since $v_n^{(p)}(x) = v_n(x) \sum_{0 \le r \le p/2} b_r(n-x)^{p-2r} n^{r-p}$, where the b_r 's are constants, we get from (1) and (2) that

$$G(n) = O\left(\sum_{0 \le r \le p/2} |b_r| n^{r-p-1/2} \sum_{k=0}^{\infty} k^{p/2} |n-k-\theta|^{p-2r} v_n(k+\theta)\right).$$

Therefore to establish that G(n) is bounded it is enough to show that, for $0 \le r \le p/2$ and $0 \le \theta \le p$,

$$H(n) := \sum_{k=0}^{\infty} k^{p/2} |n-k-\theta|^{p-2r} v_n(k+\theta) = O(n^{p-r+1/2}).$$

Write

(3)
$$H(n) = \left\{ \sum_{k=0}^{n-p-1} + \sum_{k=n-p}^{n} + \sum_{k=n+1}^{\infty} \right\} k^{p/2} |n-k-\theta|^{p-2r} v_n(k+\theta)$$
$$:= \sum_{1}^{n} + \sum_{2}^{n} + \sum_{3}^{n} \cdot \frac{1}{2} + \sum_{3}$$

Since $|n - k - \theta| \le 2p$ for $0 \le \theta \le p$ and $n - p \le k \le n$, and $0 < v_n(k + \theta) \le 1$, it is immediate that

(4)
$$\sum_{2} = O(n^{p/2}).$$

Next, setting $f(x) := x^{p-2r} \exp(-\alpha x^2/2n)$ and applying Lemma 1, we have that

$$\sum_{1} \leq \sum_{k=0}^{n-p-1} k^{p/2} (n-k)^{p-2r} v_n(k+p) \leq \sum_{k=p}^{n-1} k^{p/2} (n-k+p)^{p-2r} v_n(k)$$
$$\leq M n^{p/2} \sum_{k=p}^{n-1} f(n-k) \leq M n^{p/2} \sum_{k=1}^{n} f(k)$$
$$\leq M n^{p/2} \int_{1}^{n} f(x) dx + M C n^{p/2} \left(\frac{(p-2r)n}{\alpha}\right)^{p/2-r}$$

where $M := (1+p)^{p-2r}$ and $C := \exp(r-p/2)$. Letting $u = \alpha x^2/2n$, we get that

(5)
$$\sum_{1} = O\left(n^{p-r+1/2} \int_{0}^{\infty} u^{(p-1)/2-r} e^{-u} du\right) + O(n^{p-r}) = O(n^{p-r+1/2}).$$

Further, with M and f(x) as above and $g(x):=x^{3p/2-2r}\exp(-\alpha x^2/2n),$ we see that

$$\sum_{3} \leq \sum_{k=n+1}^{\infty} k^{p/2} (k-n+p)^{p-2r} v_n(k)$$

$$\leq M \left(\sum_{k=n+1}^{2n} + \sum_{k=2n+1}^{\infty} \right) k^{p/2} (k-n)^{p-2r} v_n(k)$$

$$\leq M (2n)^{p/2} \sum_{k=1}^{n} f(k) + M 2^{p/2} \sum_{k=n+1}^{\infty} g(k) := \sum_{3,1} + \sum_{3,2} .$$

1110

As above $\sum_{3,1} = O(n^{p-r+1/2})$. And finally, as $n \to \infty$,

$$\sum_{3,2} = O\left(\int_{n}^{\infty} g(x)dx\right) + o(1)$$

= $O\left(n^{3p/4 - r + 1/2} \int_{\alpha n/2}^{\infty} u^{3p/4 - r - 1/2} e^{-u} du\right) + o(1)$
= $o(1)$.

Thus,

(6)
$$\sum_{3} = O(n^{p-r+1/2}) + o(1) \text{ as } n \to \infty.$$

It now follows from (3)–(6) that $H(n) = O(n^{p-r+1/2})$. This completes the proof. \Box

3. Proof of Theorem 1. The limitation theorem for Cesàro summability [5, Theorem 46] implies that $s_n = o(n^p)$. Therefore, by Theorem 2 and Lemma 2, we have that $\sum_{n=0}^{\infty} a_n = s(B, \alpha, \beta)$. \Box

4. Related results. The methods of Euler E_{δ} , Meyer-Konïg S_{δ} , and Taylor T_{δ} ($0 < \delta < 1$) are defined as follows:

$$\sum_{n=0}^{\infty} a_n = s(E_{\delta}) \quad \text{if } \sum_{k=0}^n \binom{n}{k} \delta^k (1-\delta)^{n-k} s_k \to s \quad \text{as } n \to \infty;$$
$$\sum_{n=0}^{\infty} a_n = s(S_{\delta}) \quad \text{if } (1-\delta)^{n+1} \sum_{k=0}^{\infty} \binom{n+k}{k} \delta^k s_k \to s \quad \text{as } n \to \infty;$$
$$\sum_{n=0}^{\infty} a_n = s(T_{\delta}) \quad \text{if } (1-\delta)^{n+1} \sum_{k=0}^{\infty} \binom{n+k}{k} \delta^k s_{n+k} \to s \quad \text{as } n \to \infty.$$

These methods, as well as the Borel-type and Valiron methods, are contained in the F(a,q) family of methods mentioned in the introduction. The following theorem generalizes Swaminathan's result [10], via Theorem 2 and [3, Satz III], for the Euler, Meyer-Konïg, and Taylor methods.

THEOREM 3. Suppose that p is a nonnegative integer and that $c_n^p = s + o(n^{-p/2})$ as $n \to \infty$. Then for $0 < \delta < 1$, the series $\sum_{n=0}^{\infty} a_n$ is summable to s by the E_{δ} , S_{δ} , and T_{δ} methods.

References

- D. Borwein, A Tauberian theorem for Borel-type methods of summability, Canad. J. Math. 21 (1969), 740-747.
- 2. D. Borwein and T. Markovich, A Tauberian theorem concerning Borel-type and Cesàro methods of summability, (submitted).
- G. Faulhaber, Äquivalenzsätze für die Kreisverfahren der Limitierungstheorie, Math. Z. 66 (1956), 34-52.
- 4. G. H. Hardy and J. E. Littlewood, Theorems concerning the summability of series by Borel's exponential method, Rend. Circ. Mat. Palermo 41 (1916), 36-53.
- 5. G. H. Hardy, Divergent series, Oxford, 1949.

- J. M. Hyslop, On the summability of series by a method of Valiron, Proc. Edinburgh Math. Soc. (2) 4 (1936), 218-223.
- 7. ____, The generalisation of a theorem on Borel summability, Proc. London Math. Soc. (2) 41 (1936), 243-256.
- 8. B. Kwee, An improvement on a theorem of Hardy and Littlewood, J. London Math. Soc. (2) 28 (1983), 93-102.
- 9. A. Meir, Tauberian constants for a family of transformations, Ann. of Math. (2) 78 (1963), 594-599.
- 10. V. Swaminathan, A note on the family F(a,q) of summability methods, Math. Z. 138 (1974), 119-122.

Department of Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7 $\,$