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ABSTRACT. Though summability of a series by the Cesaro method Cp does 
not in general imply its summability by the Borel-type method (B, a, ,3), it is 
shown that the implication holds under an additional condition. 

1. Introduction. Suppose throughout that E' 0 an is a series with partial 
sums Sn :=_,kn ak, and that a > 0 and a'N +: > 0 where N is a nonnegative 
integer. The series E' 0 an is said to be summable (B, a', 13) to s if 

00 cen+3-1 

ae ZE sn F(an +3) s asx-oo. 
n=~N 

The Borel-type summability method (B, a', f3) is regular, and (B, 1, 1) with N = 0 
is the standard Borel summability method B. 

We shall also be concerned with the Cesaro summability method Cp (p > -1) 
and the Valiron method V. defined as follows: 

00 Sp 

Lan = s(Cp) ifc:= -n s as n oo 
n=O n 

where 
n n - 

n k + p -1 

Lan =~~~(1n )n kaSk 

n=0 if a2 1/2 e ( a(n )) asnkoo2 
Consider the series >?L1 an := 00=1 na-l exp(Ainra) where A > 0 and 0 < 

a < 1/2. It is known [5, p. 213] that this series is summable Cp for every p > 0 
but is not convergent. However, since an = o(n-1/2), it follows by the Borwein 
Tauberian Theorem [1, Theorem 1] that the series is not summable (B, a',/3) for 
any a' and 3. This example shows that, in general, summability Cp does not imply 
summability (B, a', f3). The following theorem indicates how to strengthen the Cp 
summability hypothesis in order to ensure summability (B, a(, 3). 

THEOREM 1. Suppose that p is a nonnegative integer and that cP = s+o(n p/2 
as n -> oo. Then Zn0an = s(B, a', i3). 

The special case a' = 3 = 1, p = 1 of Theorem 1 has been proved by Hardy 
[5, Theorem 149]. Hardy and Littlewood [4, ?3] proved that the condition 
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CESARO AND BOREL-TYPE SUMMABILITY 1109 

CP = s+o(n-1/2) is not sufficient for the summability of E an by the Borel method. 
Hyslop [7, Theorem VIII] has obtained a more general result than Hardy, namely 
the case ag = = 1 of Theorem 1. More recently, Swaminathan [10] has proved 
Theorem 1 with p = 1 and (B, a, f) summability replaced by the more general 
F(a, q) summability introduced by Meir [9]. 

2. Preliminary results. 

LEMMA 1 [8, LEMMA 7]. Let m < xo < n - 1 where m, n are integers and 
let the nonnegative function f (x) be increasing on [m, xo] and decreasing on [xo, n]. 
Then 

n rn 

Z f (k) < f f(x)dx + f(xo). 
k=mm 

LEMMA 2 [2, THEOREM 3]. Suppose that Sn = Q(nrr) where r > 0. Then 
?n= an= s(B, a,/3) if and only ifZn0an = S(Va)- 

THEOREM 2 (CF. [6, THEOREM 2]). Suppose that p is a nonnegative integer 
and that cP = s + o(n-P/2) as n -> oo. Then Z'nO an = s(V,). 

PROOF. Suppose, as we may without loss of generality, that s = 0. 
Let vn(x) := exp(-a(n - x)2/2n) and denote the pth difference of vn(k) by 

Apvn(k), so that 

Apvn (k) P (P) (-l)rvn (k + r). 

Applying Abel's partial summation formula p (< m) times, we have that 

m m-p p-1 

Z SkVn(k) = E sPvn(k) + Z Sm+r/ 1 n(A-rr). 
k=O k=O r=O 

Letting m -> oo and applying the limitation theorem for Cesaro summability [5, 
Theorem 46], we see that 

00 00 

F(n) S skVn(k) = p 
Apvn (k) 

k=O k=O 

In order to prove the theorem we must show that F(n) = o(nl/2). Since, by 
the hypothesis, sp = o(kP/2) as k -- oo and kP/2z\Pv1(k) = o(nl/2) as n oo , it 
suffices to show that 

00 

(1) ~~~~~~G(n) :=n- 1/2 E: kp/2 I /\Pvn (k) 
k=O 

is bounded. 
It is familiar that A Pvn(k) = (-1)Pv(p)(k+c) for some c E [O,p]. Hence there is 

a 0 = 0((n, k) E [O, p] such that 
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Since vn$')(x) = Vn(X) >O<r<p/2 br (nfX)Pn2rfrP where the br's are constants, 
we get from (1) and (2) that 

00 
G(n) = ? , lbrln r-p-l/2 Z kP/2 In - k - OIP-2r Vn(k + f) 

O<r<rp/2 k=OJ 

Therefore to establish that G(n) is bounded it is enough to show that, for 0 < r < 
p/2 and 0 < 0 < p, 

H(n) : kP/2 n-k - 0P-2rVn(k + 0) = 0(nP-r+l/2) 
k=O 

Write 
(n-p-1 n 00 

(3) H(n)= { n, + _ + kn1 kP/2 n-k _ 0Ip-2r V(k + 0) 
k=O k=n-p k=n+lJ 

1 2 3 

Since In-k-01 < 2p for O < 0 < p and n-p < k < n, and 0 < vn(k + 0) < 1, 
it is immediate that 

(4) Z = Q(nP/2) 
2 

Next, setting f(x) := Xp-2r exp(-_X2/2n) and applying Lemma 1, we have that 
n-p-i n-i 

< E kP/2(n - k)P-2rVn(k + p) < Z kP/2(n - k + p)p-2rV (k) 
1 k=O k=p 

n-i n 
< Mnp/2 f (n - k) < MnP/2 f (k) 

k=p k=1 

< Mnp/2 f (x)dx + MCnP/2 ((P 2r)n 

where M (1 + p)p-2r and C := exp(r - p/2). Letting u = CeX2/2n, we get that 

(5) 0 (nP-r+1/2 u(p-l)/2-re-udu) + 0(nP-r) 0(nP-r+1/2). 

Further, with M and f (x) as above and g(x) := x3P/2-2r exp(-cgx2/2n), we see 
that 

00 

Z 
< 

Z kP/2(k-n + p)P-2rVn(k) 
3 k=n+1 

2n \ 0 
<M ( + ) kp/2(k - n)P-2rVn(k) 

k=n+l k=2n+l 
n 0 

< M(2n)P/2 Z: f(k) + M2P/2 E g(k) + 
k=l k=n+l 3,1 3,2 
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As above >3,1 = Q(nP-r+l/2). And finally, as n -> oo, 

L = O(j g(x)dx) + o(1) 
3,2n 

= n n3P/4-r+1/2i u3P/4-r-1/2e-u du + o(1) 
< oe~~n/2J 

=o(1). 

Thus, 

(6) L O(nP-r+1/2) + o(l) as n -+ 00. 
3 

It now follows from (3)-(6) that H(n) = 0(nP-r+l/2). This completes the 
proof. El 

3. Proof of Theorem 1. The limitation theorem for Cesaro summability [5, 
Theorem 46] implies that Sn = O(WP). Therefore, by Theorem 2 and Lemma 2, we 
have that n=O na = s(B a, d3). [ 

4. Related results. The methods of Euler E8, Meyer-Konig S8, and Taylor 
T8 (O < 6 < 1) are defined as follows: 

oo n 

>Zan= S(E6) if n(k) k(16)n-ksk s as n - (oo; 
n=O k=0 

an = S(S8) if (1 
_ 6)n+l (n + k) 6kSk - s asn--oo; 

n=O k=0 
00 00 k\ 

Zan = s(T8) if (1- _ )n+l Z kj2 t)kSn+k --+ s as n --+ 00. 

n=O k=0 

These methods, as well as the Borel-type and Valiron methods, are contained in the 
F(a, q) family of methods mentioned in the introduction. The following theorem 
generalizes Swaminathan's result [10], via Theorem 2 and [3, Satz III], for the 
Euler, Meyer-Konfg, and Taylor methods. 

THEOREM 3. Suppose that p is a nonnegative integer and that cP = s+o p/2) 
as n -> oo. Then for 0 < 6 < 1, the series E>1?0 an is summable to s by the E1, 
S6, and T8 methods. 
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