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ON STRONG GENERALIZED HAUSDORFF 
S U M M A B I L I T Y  

D. BORWEIN (London, Ont.), F. P. CASS (London, Ont.) and J. E. SAYRE (Halifax) 

Introduction 

For a series Z ak, let sn= .~  ak. Let Q =  {qn,k} (n, k = 0 ,  1 . . . .  ) be a matrix 
0 k = O  

and let 

a n : Q(s,) = ~ q,,kSk. 
k=0 

The series Z ak is said to be summable Q to s i f  a, exists for n=0 ,  1 . . . .  and 
o 

tends to s as n tends to infinity. In this case we write sn--,s(Q). The symbol P is 
reserved for matrices {P,,,k} with > 0  Pn,k= , and I denotes the identity matrix. We 
now recall the definition o f  strong summability introduced by Borwein [1]. 

Strong summability. A series .~ak  is said to be summable [P, Q]p (fl>0) 
0 

co 

to s i f  ZP, , k  [ak--sl a exists for n=0 ,  1, ... and tends to zero as n tends to infinity. 
k=0 

In this case we write sn-~s[P, Q]a. 
For summability methods V and W, the notation Vc=W means that any 

series summable V to s is also summable W to s. The notation V-~ W means that 
both Vc=W and W ~ V .  

Generalized Hausdorffmatrices. Suppose throughout that 2 = {2n} is a sequence 
of real numbers with 

~0=~0, i n f 2  n > O  and , ~ l / ~ n = ~ ~  
n--~l n=0 

Let I2 be a simply connected region that contains every positive 2,, and suppose, 
for n =0,  I . . . . .  that Fn is a positively sensed Jordan contour lying in f2 and en- 
closing every 2kqQ with O<=k~_n. Suppose t h a t f i s  holomorphic in O and that 
f(20) is defined even when 20~ f2. Define 

(1) -2k+1 ... ;~, (; tk-z). . .  (,~,- z) ~n,k ~ F 
[0 for k > n  

+t5 k for O<-k<-n  
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where 6k=f(20) if k = 0  and 2o~f2, and 5k=0 otherwise. Here and elsewhere 
we observe the convention that products like 2k+1...2,=1 when k=n .  Denote 
the triangular matrix {2,,~} by (2;f). This is called a generalized Hausdorff matrix. 
The set of all such matrices is denoted by 2/g~. 

For ~ any real number, the generalized Hausdorff matrix H, is defined to be 
the matrix (2;f)  with f ( z ) = ( z +  1)-L For ~> -1 ,  the generalized Ces~ro matrix 
C~ is defined to be the matrix (L;f) with 

f ( z ) - -  r ( ~ + ~ ) r ( z + ~ )  
r ( a + z + l )  

These reduce to the standard H61der and Ces~tro matrices when 2.=n. (See [1].) 

Pre l iminary  results  

For 0<t=<l, let }%k(t) denote the value of 2,, k obtained from (1) with 
f ( z ) = t  z, and let 2,,r,(O)=2n,k(O+ ). Let 

Do = (l+20)d0 = 1; 

Then, (see [31), 

0+�88 
1 4 

f ~,,~(0 dt = -~, 
0 

If 
1 

(2) f ( z )  = f t ~ 
0 

where BV is the space of functions 
[0, 1], then 

It follows that 

so that 

= ( l + A , ) d ,  for n ~ 1. 

for O<-k~=n.  

dz(t ) with 2CBV 

of bounded variation on the dosed interval 

1 

z.,~ = f &~(0 az(0. 
0 

1 " 

(3) s . - C l ( s . )  = C~(2. a.). 

If f satisfies (2), 2(1)-2(0)=1 and Z(0+)=Z(0), then X=(X;f )  is regular, i.e. 
s,-~s(X) whenever s,,~s. (See [2; Theorem 1].) 

Lemma 2 of [2] shows that if g and h are holomorphic in f2 and defined at 20, 
X= (A; g) and Y= (,~; h), then 

(4) x r  = Y X  = (2; gh). 
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Lemma 1 of[3] shows that if X = 0 . ; f )  with f satisfying (2), a~=(2;f) with f ( z )=  
1 

= f t" Idz(t)l, and fl=> 1, then, for any sequence {w.}, 
0 

(5) IX(w.)l a ~_ MP-~JT(Iw.I a) 
1 

where M-- f Idz(01. 
o 

From (4) it can be seen that H~H~=H~+~ for all real e, & Theorem 2 of [2] 
shows that 

(6) C ~ H ~  for ~ > - 1 .  

(See also [5] and [6].) Thus 

(7) C~Co~-C~+~ for ~ > - 1 ,  6 > - 1 ,  ~ + 3 > - 1 .  

Some theorems on strong summability 

The first theorem generalizes Theorem 5 in [1]. 

TnEOm~M 1. Suppose Q is a matrix, P is a regular matrix in 2/fa, and X=(2 ; f )  
1 

where f (z )=  f f dz(t) with zEBV, Z(1)-Z(0)=I  and Z(0+)=Z(0 ). Then, for 
0 

fl=>l, [P, Q]p~[P, XQ]p. 
1 

PROOF. Let )?={~7.,k}=(A;f) where f ( z ) = f  t~ldx(t)l. Since zEBV and 
0 

Z(0+)=Z(0), it follows that lira 2. k=0 for k=0,  1 . . . .  and sup ~ I~,~1< ~. (See 

[2, Theorem 1].) Hence ~(u , )~0  whenever u,~0.  (See [4, Theorem 4].) 
Let {s.} be a sequence, ~r.=X(s.) and w.=s . - s .  In view of the regularity 

of X we have cr.-s=X(w.)+~, where e.-~0. From (4) and (5) it follows that 

(8) P(IX(w.)I a) <= Ma-IP~(lw.I a) = Ma-~.gP(ls.-sl a) 

1 

where M =  f Idz(t)l. Next, by Minkowski's inequality, 
0 

<9) <- 

Suppose now that P(Is.-slP)~O. Then, by (8), P(IX(w.)Ia)~O so that, by 
(9), P(l~.-sl0-~0. Hence [P, I]p=c[p, X]p, from which it follows that [P, Q]p~ 
c=[p, XQ]a" [] 

The next two theorems generalize corollaries to Theorem 7 in [1]. 
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THEOREM 2. I f  XC 3cFz and fl=>l, then necessary and sufficient conditions for 

a series ~ a. to be summable [C~, X]~ to s are that it be summabte C~X to s and 
o 

that )..a.-*0[C~, CIX]~. 

PROOF. It follows from Theorem 1 in [1] that ~ a. is summable [C~, X]a to 
0 

s if and only if it is summable CaXto s and summable [C~, (I-COX]p to 0. Further, 
by (3) and (4), 

( x - c 0 x ( s . )  = = a.). 

The result follows. [] 

In conformity with notation introduced earlier (see [1 ; p. 123]), the generalized 
strong Ces~tro method [C,, C._~]p will be denoted by [C, ~]p and the generalized 

�9 H ~]~. strong H61der method [ ~, H,_~] a by [H, We require the following known 
result (see [8]). 

L ~ t ~  1. Let 
F(6 + 1)F(z+ 1)(z+ 1) 6 

g ( z ) =  F ( 6 + z + l )  , 6 > - 1 .  

Then both g(z) and 1/g(z) can be expressed as MeIlin transforms of  the form 
1 

f t=dx(t) with •EBV, X(1)--Z(0)=I and X(0+)=Z(0 ). 
0 

TrmOl~M 3. I f  o~>=0 and fi>=l, then necessary and sufficient conditions for a 

series .~ a. to be summable [C, alp to s are that it be summable C~ to s and that 
0 

2.a .~0[C,  a+  1]p. 

PROOi~. It follows from Theorem 2 that ~ a. is summable [C, ~]p to s if 
o 

and only if it is summable C1C~_~ to s and 2.a.~0[C1, C1C~_~] p. Next, it follows 
from Lemma 1 with 6 = ~ - 1  and Theorem 1 that 2.a.~0[C~, C~C._~]a if and 
only if 2.a.~0[C1, It.]a. Applying Lemma 1 and Theorem I again, we see that 
)..a.~O[C~, C~C._I]p if and only if 2.a,,-~O[C~, Cja. This together with (7) yields 
the result. [] 

The above theorem suggests the following extension of the definition of [C, ~]p 

to the case ~= 0: ~ a. is summable [C, 0]a to s if the series is convergent with 
0 

sum s and ~ dk'l•kaklP=o(Dn). When 2.=n,  this definition reduces to the one 
k = 0  

given by Hyslop [7]. 
The next theorem is an analogue of the equivalence relation (6) for strong 

summability. 

TnEol~EM 4. For ~>=0, fl>= l, [C, ~]p~-[H, a]a. 
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PROOF. The case e = 0 follows from Theorem 2 and the definition of [C, 0]p. 
co 

Suppose therefore that e>0.  By Theorem 3, ~ '  a.=s[C, el if and only if z~ a , =  
0 0 

=s(C.) and 2.a.~O[C1,C.] a. Further, by Theorem2, ~a.=s[H,e]p  if and 
0 

only if ~a .=s(H~)  and 2.a.-~O[C~, H~]p. The result now follows from (6), 

Lemma 1 and Theorem 1. ~ 

Generalized Hausdorff matrices associated with L p functions 

Let L '  denote the function space L"(0, 1). In this section we deal with Haus- 
1 

dorff matrices ( 2 ; f ) w i t h  f(z)=f t~o(t)dt where ~0EL ~' for some p > l .  An 

ordinary Hausdorff matrix {X.,k} satisfies these conditions if and only if ~ Ix,,,~lP< 
k = 0  

< M ( n +  1) I-p for n=0,  1 . . . .  where M is independent of n. (See [4, Theorem 215].) 
The following lemma is needed for the proof of Theorem 5. 

L~MMA2. Let q~CL p with p > l .  Let X = ( 2 ; f )  and X(P)=(2;f("O where 
1 1 

f(z)=f ~z~o(t)dt and t~lq)(t)lPdt. I f  # f l= l  and 1/p=l/#- l / f l ,  
0 0 

then for any sequence {w.}, 

JX(w,)l' <= M ~<I-1/B) (c1 (Iw, lP))'/a-:X <p) (lw, t p) 

1 

where M =  f l~o(t)l p dt. 
0 

PROOF. Let f . ( t ) =  ~2 . .k ( t )w  k where 0=<tN1. Then, by H61der's inequality, 
k=O 

If.C01 a --< Z 2,,k(t)Iwkl a. 
k = 0  

(See [3, (8)].) Hence 

(10) 

and 

1 1 1 n 
f lf,(t)[ tJdt<= ~[wk[ p f 2",k(t) dt'='"~nk~=o dk[wklO=Cl(lwnl #) 

0 k=O 0 

1 

f [q~(t)] p [L(t)] ~ tit ~= 
0 

1 

[wJ  f 2.,k(t)Igo(t)lPdt = X(P)(]w.[a). 
k=O 0 
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It follows, by H61der's inequality, that 

1 

IX(w.)l = if ~( , ) I . (o  dt 
0 

I 1 1 

<= ( f  l ~ ( t ) l " d t l l - " ( f  I f . ( t) l '  d t l l / ' - l / " ( f  I<:(t)l ' l f.(t)l dr) ~/" -~ 
0 0 0 

Mt-Vp(C~(IwJ)Va-ll"X@)(Iw.lO))v ~. [] 

The following theorem generalizes Theorem 10 in [1]. 

T~EOREM5. Let i z f l= l ,  1 / p = l + l / # - l / f l .  Let X=(Z; f )  where f (z )=  
1 1 

= f t 'q)(t)dt with 9EL p and f q)( t )dt=l .  Then, for any matrix Q, [C1, O]aC= 
0 0 

c=[Ca, XQ]~. 
The theorem remains valid when # =  co (with lip = 1 - 1/fl if 2>  1 and p-- oo 

if fl-- 1) provided [C~, XQ]= is interpreted to mean XQ. 

PROOF. We use the notation introduced in Lemma 2, and note that X is regular 
and X~ whenever v,~0. Suppose that s,~s[C~, Q]p, and let a ,=Q(s , ) ,  
w , = a , - s ,  and v.=Ca(lw,[P). 

(i) Suppose tt is finite. By hypothesis, v,-~0 and hence, by Lemma 2, 

Cl(IX(w.)l ~) <- KCaX@)(IwJP) = KX(P)(v,) -~ 0 

where K = M #  (1-~Ip) sup v~/p-1. Also, by the regularity of X, we have X ( a . ) - s =  
=X(w,)+ e, where e,-~0. Thus, by Minkowski's inequality, 

(Ca (IX(aD-sl")) v" ~- (ca (IX(w.)l")) 1/" + (c1 (1~.1")) v" -- 0, 

i.e. s , ~  s[C1, XQ],. 
(ii) Suppose now that # =  co. By H61der's inequality, 

1 1 

= I f  dtl" m f IJ.(t)l" at 
0 0 

where m = M  p-1 if f l> l  and m=ess sup [q~(t)[ if f l= l .  Since (10) holds under 
0 < t < l  

the operative hypotheses, it follows that 

IX(w,)[# ~ mCl(Iw, I #) = my, ~ O, 

and hence that s.-,-s(XQ). [] 

Tra~Ol~Za6, Let Q>l / f l - 1 /#  where #>-_fl>=l. Then, for any matrix Q, 
[cl, Q]~ c=[cl, c~ QL. 
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PROOF. When  /z=/~, the  result follows f rom T h e o r e m  1. Suppose tha t  / t>/~ and  
1 

let 1 /p=l+l / I t -1 /~ .  Then CQ=(2;f), where f ( z ) = f  t zp ( t )d t  with p ( t ) =  
0 

= ~o (1 - 0 ~ Since pELe, T h e o r e m  5 n o w  yields the result. [] 

THEOREM7. Let ?>c~+ llfl--1/# where #>=B>-_I and ~ is any real number. 
Then [H, ~]a~[H,  7]u. 

PROOF. Apply ing  first Theorem 6 and  then Theorem 1 together  with L e m m a  1, 
we get 

[H, ~]a = [//1, H~-lJp ~ [H1, C~-~H~-I]~ ~ [/-/1, Hr-,H~-a]v = 

= [u~, u ~ - d ~  = [u ,  ~],,. [] 

R~MARI(. I t  is known  that ,  in the special case 2 , = n ,  Theo rem 6 also holds 
when o = l / f l - 1 / #  and  T h e o r e m 7  when ?=~+l / f l -1 /p .  (See [1] and the  ref- 
erences there given.) Whether  the same is t rue  for  more  general 2~ is an open question. 
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