ON STRONG GENERALIZED HAUSDORFF SUMMABILITY

D. BORWEIN (London, Ont.), F. P. CASS (London, Ont.) and J. E. SAYRE (Halifax)

Introduction

For a series $\sum_{k=0}^{\infty} a_k$, let $s_n = \sum_{k=0}^{n} a_k$. Let $Q = \{q_{n,k}\}$ (n, k=0, 1, ...) be a matrix

and let

$$\sigma_n = Q(s_n) = \sum_{k=0}^{\infty} q_{n,k} s_k.$$

The series $\sum_{k=1}^{\infty} a_k$ is said to be summable Q to s if σ_n exists for n=0, 1, ... and tends to s as n tends to infinity. In this case we write $s_n \rightarrow s(Q)$. The symbol P is reserved for matrices $\{p_{n,k}\}$ with $p_{n,k} \ge 0$, and *I* denotes the identity matrix. We now recall the definition of strong summability introduced by Borwein [1].

Strong summability. A series $\sum_{k=0}^{\infty} a_k$ is said to be summable $[P, Q]_{\beta}$ ($\beta > 0$)

to s if $\sum_{k=0}^{\infty} p_{n,k} |\sigma_k - s|^{\beta}$ exists for n=0, 1, ... and tends to zero as n tends to infinity.

In this case we write $s_n \rightarrow s[P, Q]_{\beta}$. For summability methods V and W, the notation $V \subseteq W$ means that any series summable V to s is also summable W to s. The notation $V \simeq W$ means that both $V \subseteq W$ and $W \subseteq V$.

Generalized Hausdorff matrices. Suppose throughout that $\lambda = \{\lambda_n\}$ is a sequence of real numbers with

$$\lambda_0 \ge 0$$
, $\inf_{n\ge 1} \lambda_n > 0$ and $\sum_{n=0}^{\infty} 1/\lambda_n = \infty$.

Let Ω be a simply connected region that contains every positive λ_n , and suppose, for n=0, 1, ..., that Γ_n is a positively sensed Jordan contour lying in Ω and enclosing every $\lambda_k \in Q$ with $0 \leq k \leq n$. Suppose that f is holomorphic in Ω and that $f(\lambda_0)$ is defined even when $\lambda_0 \notin \Omega$. Define

(1)
$$\lambda_{n,k} = \begin{cases} -\lambda_{k+1} \dots \lambda_n \frac{1}{2\pi i} \int\limits_{\Gamma_n} \frac{f(z) dz}{(\lambda_k - z) \dots (\lambda_n - z)} + \delta_k & \text{for } 0 \le k \le n \\ 0 & \text{for } k > n \end{cases}$$

This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

where $\delta_k = f(\lambda_0)$ if k=0 and $\lambda_0 \notin \Omega$, and $\delta_k = 0$ otherwise. Here and elsewhere we observe the convention that products like $\lambda_{k+1} \dots \lambda_n = 1$ when k=n. Denote the triangular matrix $\{\lambda_{n,k}\}$ by $(\lambda; f)$. This is called a generalized Hausdorff matrix. The set of all such matrices is denoted by \mathscr{H}_{λ} .

For α any real number, the generalized Hausdorff matrix H_{α} is defined to be the matrix $(\lambda; f)$ with $f(z) = (z+1)^{-\alpha}$. For $\alpha > -1$, the generalized Cesàro matrix C_{α} is defined to be the matrix $(\lambda; f)$ with

$$f(z) = \frac{\Gamma(\alpha+1)\Gamma(z+1)}{\Gamma(\alpha+z+1)}$$

These reduce to the standard Hölder and Cesàro matrices when $\lambda_n = n$. (See [1].)

Preliminary results

For $0 < t \le 1$, let $\lambda_{n,k}(t)$ denote the value of $\lambda_{n,k}$ obtained from (1) with $f(z)=t^z$, and let $\lambda_{n,k}(0)=\lambda_{n,k}(0+)$. Let

$$D_0 = (1+\lambda_0) d_0 = 1;$$

$$D_n = \left(1 + \frac{1}{\lambda_1}\right) \dots \left(1 + \frac{1}{\lambda_n}\right) = (1+\lambda_n) d_n \text{ for } n \ge 1.$$

Then, (see [3]),

$$\int_{0}^{1} \lambda_{n,k}(t) dt = \frac{d_k}{D_n} \quad \text{for} \quad 0 \leq k \leq n.$$

If

(2)
$$f(z) = \int_{0}^{1} t^{z} d\chi(t) \text{ with } \chi \in BV$$

where BV is the space of functions of bounded variation on the closed interval [0, 1], then

$$\lambda_{n,k} = \int_0^1 \lambda_{n,k}(t) \, d\chi(t).$$

It follows that

$$C_1(s_n) = \frac{1}{D_n} \sum_{k=0}^n d_k s_k$$

so that

$$(3) s_n - C_1(s_n) = C_1(\lambda_n a_n).$$

If f satisfies (2), $\chi(1) - \chi(0) = 1$ and $\chi(0+) = \chi(0)$, then $X = (\lambda; f)$ is regular, i.e. $s_n \rightarrow s(X)$ whenever $s_n \rightarrow s$. (See [2; Theorem 1].)

Lemma 2 of [2] shows that if g and h are holomorphic in Ω and defined at λ_0 , $X=(\lambda;g)$ and $Y=(\lambda;h)$, then

(4)
$$XY = YX = (\lambda; gh).$$

Acta Mathematica Hungarica 53, 1989

Lemma 1 of [3] shows that if $X = (\lambda; f)$ with f satisfying (2), $\tilde{X} = (\lambda; \tilde{f})$ with $\tilde{f}(z) = \int_{0}^{1} t^{z} |d\chi(t)|$, and $\beta \ge 1$, then, for any sequence $\{w_{n}\}$, (5) $|X(w_{n})|^{\beta} \le M^{\beta-1}\tilde{X}(|w_{n}|^{\beta})$ where $M = \int_{0}^{1} |du(t)|$

where $M = \int_{0}^{1} |d\chi(t)|$.

From (4) it can be seen that $H_{\alpha}H_{\delta} = H_{\alpha+\delta}$ for all real α , δ . Theorem 2 of [2] shows that

(6)
$$C_{\alpha} \simeq H_{\alpha}$$
 for $\alpha > -1$

(See also [5] and [6].) Thus

(7)
$$C_{\alpha}C_{\delta}\simeq C_{\alpha+\delta}$$
 for $\alpha>-1$, $\delta>-1$, $\alpha+\delta>-1$.

Some theorems on strong summability

The first theorem generalizes Theorem 5 in [1].

THEOREM 1. Suppose Q is a matrix, P is a regular matrix in \mathscr{H}_{λ} , and $X = (\lambda; f)$ where $f(z) = \int_{0}^{1} t^{z} d\chi(t)$ with $\chi \in BV$, $\chi(1) - \chi(0) = 1$ and $\chi(0+) = \chi(0)$. Then, for $\beta \ge 1$, $[P, Q]_{\beta} \subseteq [P, XQ]_{\beta}$.

PROOF. Let $\tilde{X} = {\tilde{x}_{n,k}} = (\lambda; \tilde{f})$ where $\tilde{f}(z) = \int_{0}^{1} t^{z} |d\chi(t)|$. Since $\chi \in BV$ and $\chi(0+) = \chi(0)$, it follows that $\lim_{n \to \infty} \tilde{x}_{n,k} = 0$ for k = 0, 1, ... and $\sup_{n \ge 0} \sum_{k=0}^{n} |\tilde{x}_{n,k}| < \infty$. (See [2, Theorem 1].) Hence $\tilde{X}(u_{n}) \to 0$ whenever $u_{n} \to 0$. (See [4, Theorem 4].)

Let $\{s_n\}$ be a sequence, $\sigma_n = X(s_n)$ and $w_n = s_n - s$. In view of the regularity of X we have $\sigma_n - s = X(w_n) + \varepsilon_n$ where $\varepsilon_n \to 0$. From (4) and (5) it follows that

(8)
$$P(|X(w_n)|^{\beta}) \leq M^{\beta-1} P \widetilde{X}(|w_n|^{\beta}) = M^{\beta-1} \widetilde{X} P(|s_n-s|^{\beta})$$

where $M = \int_{0}^{1} |d\chi(t)|$. Next, by Minkowski's inequality,

(9)
$$(P(|X(w_n)+\varepsilon_n|^{\beta}))^{1/\beta} \leq (P(|X(w_n)|^{\beta}))^{1/\beta} + (P(|\varepsilon_n|^{\beta}))^{1/\beta}.$$

Suppose now that $P(|s_n-s|^{\beta}) \to 0$. Then, by (8), $P(|X(w_n)|^{\beta}) \to 0$ so that, by (9), $P(|\sigma_n-s|^{\beta}) \to 0$. Hence $[P, I]_{\beta} \subseteq [P, X]_{\beta}$, from which it follows that $[P, Q]_{\beta} \subseteq \subseteq [P, XQ]_{\beta}$. \Box

The next two theorems generalize corollaries to Theorem 7 in [1].

THEOREM 2. If $X \in \mathscr{H}_{\lambda}$ and $\beta \geq 1$, then necessary and sufficient conditions for a series $\sum_{0}^{\infty} a_n$ to be summable $[C_1, X]_{\beta}$ to s are that it be summable $C_1 X$ to s and that $\lambda_n a_n \rightarrow 0[C_1, C_1 X]_{\beta}$.

PROOF. It follows from Theorem 1 in [1] that $\sum_{0}^{\infty} a_n$ is summable $[C_1, X]_{\beta}$ to s if and only if it is summable $C_1 X$ to s and summable $[C_1, (I-C_1)X]_{\beta}$ to 0. Further, by (3) and (4),

$$(I-C_1)X(s_n) = X(s_n-C_1(s_n)) = C_1X(\lambda_n a_n).$$

The result follows. \Box

In conformity with notation introduced earlier (see [1; p. 123]), the generalized strong Cesàro method $[C_1, C_{\alpha-1}]_{\beta}$ will be denoted by $[C, \alpha]_{\beta}$ and the generalized strong Hölder method $[H_1, H_{\alpha-1}]_{\beta}$ by $[H, \alpha]_{\beta}$. We require the following known result (see [8]).

LEMMA 1. Let

$$g(z) = \frac{\Gamma(\delta+1)\Gamma(z+1)(z+1)^{\delta}}{\Gamma(\delta+z+1)}, \quad \delta > -1.$$

Then both g(z) and 1/g(z) can be expressed as Mellin transforms of the form $\int_{0}^{1} t^{z} d\chi(t)$ with $\chi \in BV$, $\chi(1) - \chi(0) = 1$ and $\chi(0+) = \chi(0)$.

THEOREM 3. If $\alpha \ge 0$ and $\beta \ge 1$, then necessary and sufficient conditions for a series $\sum_{0}^{\infty} a_n$ to be summable $[C, \alpha]_{\beta}$ to s are that it be summable C_{α} to s and that $\lambda_n a_n \rightarrow 0[C, \alpha+1]_{\beta}$.

PROOF. It follows from Theorem 2 that $\sum_{0}^{\infty} a_n$ is summable $[C, \alpha]_{\beta}$ to s if and only if it is summable $C_1C_{\alpha-1}$ to s and $\lambda_n a_n \rightarrow 0[C_1, C_1C_{\alpha-1}]_{\beta}$. Next, it follows from Lemma 1 with $\delta = \alpha - 1$ and Theorem 1 that $\lambda_n a_n \rightarrow 0[C_1, C_1C_{\alpha-1}]_{\beta}$ if and only if $\lambda_n a_n \rightarrow 0[C_1, H_{\alpha}]_{\beta}$. Applying Lemma 1 and Theorem 1 again, we see that $\lambda_n a_n \rightarrow 0[C_1, C_1C_{\alpha-1}]_{\beta}$ if and only if $\lambda_n a_n \rightarrow 0[C_1, C_{\alpha}]_{\beta}$. This together with (7) yields the result. \Box

The above theorem suggests the following extension of the definition of $[C, \alpha]_{\beta}$ to the case $\alpha = 0$: $\sum_{0}^{\infty} a_n$ is summable $[C, 0]_{\beta}$ to s if the series is convergent with sum s and $\sum_{k=0}^{n} d_k |\lambda_k a_k|^{\beta} = o(D_n)$. When $\lambda_n = n$, this definition reduces to the one given by Hyslop [7].

The next theorem is an analogue of the equivalence relation (6) for strong summability.

Theorem 4. For $\alpha \ge 0$, $\beta \ge 1$, $[C, \alpha]_{\beta} \simeq [H, \alpha]_{\beta}$.

Acta Mathematica Hungarica 53, 1989

PROOF. The case $\alpha = 0$ follows from Theorem 2 and the definition of $[C, 0]_{\beta}$. Suppose therefore that $\alpha > 0$. By Theorem 3, $\sum_{0}^{\infty} a_n = s[C, \alpha]$ if and only if $\sum_{0}^{\infty} a_n = s(C_{\alpha})$ and $\lambda_n a_n \to 0[C_1, C_{\alpha}]_{\beta}$. Further, by Theorem 2, $\sum_{0}^{\infty} a_n = s[H, \alpha]_{\beta}$ if and only if $\sum_{0}^{\infty} a_n = s(H_{\alpha})$ and $\lambda_n a_n \to 0[C_1, H_{\alpha}]_{\beta}$. The result now follows from (6), Lemma 1 and Theorem 1. \Box

Generalized Hausdorff matrices associated with L^p functions

Let L^p denote the function space $L^p(0, 1)$. In this section we deal with Hausdorff matrices $(\lambda; f)$ with $f(z) = \int_0^1 t^z \varphi(t) dt$ where $\varphi \in L^p$ for some p > 1. An ordinary Hausdorff matrix $\{x_{n,k}\}$ satisfies these conditions if and only if $\sum_{k=0}^n |x_{n,k}|^p < M(n+1)^{1-p}$ for n=0, 1, ... where M is independent of n. (See [4, Theorem 215].) The following lemma is needed for the proof of Theorem 5.

LEMMA 2. Let $\varphi \in L^p$ with p > 1. Let $X = (\lambda; f)$ and $X^{(p)} = (\lambda; f^{(p)})$ where $f(z) = \int_{0}^{1} t^z \varphi(t) dt$ and $f^{(p)}(z) = \int_{0}^{1} t^z |\varphi(t)|^p dt$. If $\mu > \beta \ge 1$ and $1/p = 1/\mu - 1/\beta$, then for any sequence $\{w_n\}$,

$$|X(w_n)|^{\mu} \leq M^{\mu(1-1/\beta)} (C_1(|w_n|^{\beta}))^{\mu/\beta-1} X^{(p)}(|w_n|^{\beta})$$

where $M = \int_{0}^{1} |\varphi(t)|^{p} dt$.

PROOF. Let $f_n(t) = \sum_{k=0}^n \lambda_{n,k}(t) w_k$ where $0 \le t \le 1$. Then, by Hölder's inequality,

$$|f_n(t)|^{\beta} \leq \sum_{k=0}^n \lambda_{n,k}(t) |w_k|^{\beta}.$$

(See [3, (8)].) Hence

(10)
$$\int_{0}^{1} |f_{n}(t)|^{\beta} dt \leq \sum_{k=0}^{n} |w_{k}|^{\beta} \int_{0}^{1} \lambda_{n,k}(t) dt = \frac{1}{D_{n}} \sum_{k=0}^{n} d_{k} |w_{k}|^{\beta} = C_{1}(|w_{n}|^{\beta})$$

and

$$\int_{0}^{1} |\varphi(t)|^{p} |f_{n}(t)|^{\beta} dt \leq \sum_{k=0}^{n} |w_{k}|^{\beta} \int_{0}^{1} \lambda_{n,k}(t) |\varphi(t)|^{p} dt = X^{(p)}(|w_{n}|^{\beta}).$$

Acta Mathematica Hungarica 53, 1989

7*

It follows, by Hölder's inequality, that

$$\begin{split} |X(w_n)| &= \left| \int_0^1 \varphi(t) f_n(t) \, dt \right| \leq \\ &\leq \left(\int_0^1 |\varphi(t)|^p \, dt \right)^{1-1/\beta} \left(\int_0^1 |f_n(t)|^\beta \, dt \right)^{1/\beta - 1/\mu} \left(\int_0^1 |\varphi(t)|^p |f_n(t)| \, dt \right)^{1/\mu} \leq \\ &\leq M^{1-1/\beta} \left(C_1(|w_n|^\beta)^{1/\beta - 1/\mu} X^{(p)}(|w_n|^\beta) \right)^{1/\mu}. \quad \Box \end{split}$$

The following theorem generalizes Theorem 10 in [1].

THEOREM 5. Let $\mu > \beta \ge 1$, $1/p = 1 + 1/\mu - 1/\beta$. Let $X = (\lambda; f)$ where $f(z) = \int_{0}^{1} t^{z} \varphi(t) dt$ with $\varphi \in L^{p}$ and $\int_{0}^{1} \varphi(t) dt = 1$. Then, for any matrix Q, $[C_{1}, Q]_{\beta} \subseteq \subseteq [C_{1}, XQ]_{\mu}$.

The theorem remains valid when $\mu = \infty$ (with $1/p = 1 - 1/\beta$ if $\lambda > 1$ and $p = \infty$ if $\beta = 1$) provided $[C_1, XQ]_{\infty}$ is interpreted to mean XQ.

PROOF. We use the notation introduced in Lemma 2, and note that X is regular and $X^{(p)}(v_n) \to 0$ whenever $v_n \to 0$. Suppose that $s_n \to s[C_1, Q]_{\beta}$, and let $\sigma_n = Q(s_n)$, $w_n = \sigma_n - s$, and $v_n = C_1(|w_n|^p)$.

(i) Suppose μ is finite. By hypothesis, $v_n \rightarrow 0$ and hence, by Lemma 2,

$$C_1(|X(w_n)|^{\mu}) \le KC_1 X^{(p)}(|w_n|^{\beta}) = KX^{(p)}(v_n) \to 0$$

where $K = M_n^{\mu(1-1/\beta)} \sup v_n^{\mu/\beta-1}$. Also, by the regularity of X, we have $X(\sigma_n) - s = X(w_n) + \varepsilon_n$ where $\varepsilon_n \to 0$. Thus, by Minkowski's inequality,

$$(C_1(|X(\sigma_n) - s|^{\mu}))^{1/\mu} \leq (C_1(|X(w_n)|^{\mu}))^{1/\mu} + (C_1(|\varepsilon_n|^{\mu}))^{1/\mu} \to 0,$$

i.e. $s_n \rightarrow s[C_1, XQ]_{\mu}$.

(ii) Suppose now that $\mu = \infty$. By Hölder's inequality,

$$|X(w_n)|^{\beta} = \left| \int_0^1 f_n(t) \varphi(t) dt \right|^{\beta} \leq m \int_0^1 |f_n(t)|^{\beta} dt$$

where $m = M^{\beta-1}$ if $\beta > 1$ and $m = \operatorname{ess sup}_{0 < t < 1} |\varphi(t)|$ if $\beta = 1$. Since (10) holds under

the operative hypotheses, it follows that

$$|X(w_n)|^{\beta} \leq mC_1(|w_n|^{\beta}) = mv_n \to 0,$$

and hence that $s_n \rightarrow s(XQ)$. \Box

THEOREM 6. Let $\varrho > 1/\beta - 1/\mu$ where $\mu \ge \beta \ge 1$. Then, for any matrix Q, $[C_1, Q]_{\beta} \subseteq [C_1, C_{\varrho}Q]_{\mu}$.

Acta Mathematica Hungarica 53, 1989

PROOF. When $\mu = \beta$, the result follows from Theorem 1. Suppose that $\mu > \beta$ and let $1/p = 1 + 1/\mu - 1/\beta$. Then $C_{\varrho} = (\lambda; f)$, where $f(z) = \int_{0}^{1} t^{z} \varphi(t) dt$ with $\varphi(t) = \int_{0}^{1} t^{z} \varphi(t) dt$ $= \rho(1-t)^{\rho-1}$. Since $\varphi \in L^p$, Theorem 5 now yields the result.

THEOREM 7. Let $\gamma > \alpha + 1/\beta - 1/\mu$ where $\mu \ge \beta \ge 1$ and α is any real number. Then $[H, \alpha]_{\theta} \subseteq [H, \gamma]_{\mu}$.

PROOF. Applying first Theorem 6 and then Theorem 1 together with Lemma 1, we get

$$[H, \alpha]_{\beta} = [H_1, H_{\alpha-1}]_{\beta} \subseteq [H_1, C_{\gamma-\alpha}H_{\alpha-1}]_{\mu} \simeq [H_1, H_{\gamma-\alpha}H_{\alpha-1}]_{\mu} = [H_1, H_{\gamma-1}]_{\mu} = [H, \gamma]_{\mu}. \quad \Box$$

REMARK. It is known that, in the special case $\lambda_n = n$, Theorem 6 also holds when $\rho = 1/\beta - 1/\mu$ and Theorem 7 when $\gamma = \alpha + 1/\beta - 1/\mu$. (See [1] and the references there given.) Whether the same is true for more general λ_n is an open question.

References

- [1] D. Borwein, On strong and absolute summability, Proc. Glasgow Math. Assoc., 4 (1960), 122-139.
- [2] D. Borwein, F. P. A. Cass and J. E. Sayre, On generalized Hausdorff matrices, Journal of Approx. Theory, 48 (1986), 345-360.
- [3] D. Borwein, F. P. A. Cass and J. E. Sayre, On absolute generalized Hausdorff summability, Arch. Math., 46 (1986), 419-427.
- [4] G. H. Hardy, Divergent Series, Oxford University Press (1949).
- [5] F. Hausdorff, Summationsmethoden und Momentfolgen I, Math. Z., 9 (1921), 74–109.
 [6] F. Hausdorff, Summationsmethoden und Momentfolgen II, Math. Z., 9 (1921), 280–299.
- [7] J. M. Hyslop, Note on the strong summability of series, Proc. Glasgow Math. Assoc., 1 (1951-3), 16-20.
- [8] W. W. Rogosinski, On Hausdorff methods of summability, Proc. Cambridge Phil. Soc., 38 (1942), 166-192.

(Received November 14, 1985)

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF WESTERN ONTARIO LONDON, ONTARIO N6A 5B7 CANADA

DEPARTMENT OF MATHEMATICS MOUNT SAINT VINCENT UNIVERSITY HALIFAX, NOVA SCOTIA B3M 2J6 CANADA