ON STRONG GENERALIZED HAUSDORFF SUMMABILITY

D. BORWEIN (London, Ont.), F. P. CASS (London, Ont.) and J. E. SAYRE (Halifax)

Introduction

For a series $\sum_{0}^{\infty} a_{k}$, let $s_{n}=\sum_{k=0}^{n} a_{k}$. Let $Q=\left\{q_{n, k}\right\}(n, k=0,1, \ldots)$ be a matrix and let

$$
\sigma_{n}=Q\left(s_{n}\right)=\sum_{k=0}^{\infty} q_{n, k} s_{k} .
$$

The series $\sum_{0}^{\infty} a_{k}$ is said to be summable Q to s if σ_{n} exists for $n=0,1, \ldots$ and tends to s as n tends to infinity. In this case we write $s_{n} \rightarrow s(Q)$. The symbol P is reserved for matrices $\left\{p_{n, k}\right\}$ with $p_{n, k} \geqq 0$, and I denotes the identity matrix. We now recall the definition of strong summability introduced by Borwein [1].

Strong summability. A series $\sum_{0}^{\infty} a_{k}$ is said to be summable $[P, Q]_{\beta}(\beta>0)$ to s if $\sum_{k=0}^{\infty} p_{n, k}\left|\sigma_{k}-s\right|^{\beta}$ exists for $n=0,1, \ldots$ and tends to zero as n tends to infinity. In this case we write $s_{n} \rightarrow s[P, Q]_{\beta}$.

For summability methods V and W, the notation $V \subseteq W$ means that any series summable V to s is also summable W to s. The notation $V \simeq W$ means that both $V \subseteq W$ and $W \subseteq V$.

Generalized Hausdorff matrices. Suppose throughout that $\lambda=\left\{\lambda_{n}\right\}$ is a sequence of real numbers with

$$
\lambda_{0} \geqq 0, \quad \inf _{n \geqq 1} \lambda_{n}>0 \quad \text { and } \quad \sum_{n=0}^{\infty} 1 / \lambda_{n}=\infty
$$

Let Ω be a simply connected region that contains every positive λ_{n}, and suppose, for $n=0,1, \ldots$, that Γ_{n} is a positively sensed Jordan contour lying in Ω and enclosing every $\lambda_{k} \in Q$ with $0 \leqq k \leqq n$. Suppose that f is holomorphic in Ω and that $f\left(\lambda_{0}\right)$ is defined even when $\lambda_{0} \notin \Omega$. Define

$$
\lambda_{n, k}=\left\{\begin{array}{l}
-\lambda_{k+1} \ldots \lambda_{n} \frac{1}{2 \pi i} \int_{\Gamma_{n}} \frac{f(z) d z}{\left(\lambda_{k}-z\right) \ldots\left(\lambda_{n}-z\right)}+\delta_{k} \text { for } 0 \leqq k \leqq n \tag{1}\\
0 \text { for } k>n
\end{array}\right.
$$

[^0]where $\delta_{k}=f\left(\lambda_{0}\right)$ if $k=0$ and $\lambda_{0} \ddagger \Omega$, and $\delta_{k}=0$ otherwise. Here and elsewhere we observe the convention that products like $\lambda_{k+1} \ldots \lambda_{n}=1$ when $k=n$. Denote the triangular matrix $\left\{\lambda_{n, k}\right\}$ by $(\lambda ; f)$. This is called a generalized Hausdorff matrix. The set of all such matrices is denoted by \mathscr{H}_{λ}.

For α any real number, the generalized Hausdorff matrix H_{α} is defined to be the matrix $(\lambda ; f)$ with $f(z)=(z+1)^{-\alpha}$. For $\alpha>-1$, the generalized Cesàro matrix C_{α} is defined to be the matrix $(\lambda ; f)$ with

$$
f(z)=\frac{\Gamma(\alpha+1) \Gamma(z+1)}{\Gamma(\alpha+z+1)}
$$

These reduce to the standard Hölder and Cesàro matrices when $\lambda_{n}=n$. (See [1].)

Preliminary results

For $0<t \leqq 1$, let $\lambda_{n, k}(t)$ denote the value of $\lambda_{n, k}$ obtained from (1) with $f(z)=t^{z}$, and let $\lambda_{n, k}(0)=\lambda_{n, k}(0+)$. Let

$$
\begin{aligned}
& D_{0}=\left(1+\lambda_{0}\right) d_{0}=1 \\
& D_{n}=\left(1+\frac{1}{\lambda_{1}}\right) \ldots\left(1+\frac{1}{\lambda_{n}}\right)=\left(1+\lambda_{n}\right) d_{n} \text { for } n \geqq 1 .
\end{aligned}
$$

Then, (see [3]),

$$
\int_{0}^{1} \lambda_{n, k}(t) d t=\frac{d_{k}}{D_{n}} \quad \text { for } \quad 0 \leqq k \leqq n
$$

If

$$
\begin{equation*}
f(z)=\int_{0}^{1} t^{z} d \chi(t) \quad \text { with } \quad \chi \in \mathrm{BV} \tag{2}
\end{equation*}
$$

where BV is the space of functions of bounded variation on the closed interval $[0,1]$, then

$$
\lambda_{n, k}=\int_{0}^{1} \lambda_{n, k}(t) d \chi(t)
$$

It follows that

$$
C_{1}\left(s_{n}\right)=\frac{1}{D_{n}} \sum_{k=0}^{n} d_{k} s_{k}
$$

so that

$$
\begin{equation*}
s_{n}-C_{1}\left(s_{n}\right)=C_{1}\left(\lambda_{n} a_{n}\right) \tag{3}
\end{equation*}
$$

If f satisfies (2), $\chi(1)-\chi(0)=1$ and $\chi(0+)=\chi(0)$, then $X=(\lambda ; f)$ is regular, i.e. $s_{n} \rightarrow s(X)$ whenever $s_{n} \rightarrow s$. (See [2; Theorem 1].)

Lemma 2 of [2] shows that if g and h are holomorphic in Ω and defined at λ_{0}, $X=(\lambda ; g)$ and $Y=(\lambda ; h)$, then

$$
\begin{equation*}
X Y=Y X=(\lambda ; g h) \tag{4}
\end{equation*}
$$

Lemma 1 of [3] shows that if $X=(\lambda ; f)$ with f satisfying (2), $\tilde{X}=(\lambda ; \tilde{f})$ with $\tilde{f}(z)=$ $=\int_{0}^{1} t^{z}|d \chi(t)|$, and $\beta \geqq 1$, then, for any sequence $\left\{w_{n}\right\}$,

$$
\begin{equation*}
\left|X\left(w_{n}\right)\right|^{\beta} \leqq M^{\beta-1} \tilde{X}\left(\left|w_{n}\right|^{\beta}\right) \tag{5}
\end{equation*}
$$

where $M=\int_{0}^{1}|d \chi(t)|$.
From (4) it can be seen that $H_{\alpha} H_{\delta}=H_{\alpha+\delta}$ for all real α, δ. Theorem 2 of [2] shows that

$$
\begin{equation*}
C_{\alpha} \simeq H_{\alpha} \text { for } \alpha>-1 \tag{6}
\end{equation*}
$$

(See also [5] and [6].) Thus

$$
\begin{equation*}
C_{\alpha} C_{\delta} \simeq C_{\alpha+\delta} \text { for } \alpha>-1, \quad \delta>-1, \quad \alpha+\delta>-1 \tag{7}
\end{equation*}
$$

Some theorems on strong summability

The first theorem generalizes Theorem 5 in [1].
Theorem 1. Suppose Q is a matrix, P is a regular matrix in \mathscr{H}_{λ}, and $X=(\lambda ; f)$ where $f(z)=\int_{0}^{1} t^{z} d \chi(t)$ with $\chi \in \mathrm{BV}, \chi(1)-\chi(0)=1$ and $\chi(0+)=\chi(0)$. Then, for $\beta \geqq 1,[P, Q]_{\beta}^{0} \cong[P, X Q]_{\beta}$.

Proof. Let $\tilde{X}=\left\{\tilde{x}_{n, k}\right\}=(\lambda ; \tilde{f})$ where $\tilde{f}(z)=\int_{0}^{1} t^{z}|d \chi(t)|$. Since $\chi \in \mathrm{BV}$ and $\chi(0+)=\chi(0)$, it follows that $\lim _{n \rightarrow \infty} \tilde{x}_{n, k}=0$ for $k=0,1, \ldots$ and $\sup _{n \geqq 0} \sum_{k=0}^{n}\left|\tilde{x}_{n, k}\right|<\infty$. (See [2, Theorem 1].) Hence $\tilde{X}\left(u_{n}\right) \rightarrow 0$ whenever $u_{n} \rightarrow 0$. (See [4, Theorem 4].)

Let $\left\{s_{n}\right\}$ be a sequence, $\sigma_{n}=X\left(s_{n}\right)$ and $w_{n}=s_{n}-s$. In view of the regularity of X we have $\sigma_{n}-s=X\left(w_{n}\right)+\varepsilon_{n}$ where $\varepsilon_{n} \rightarrow 0$. From (4) and (5) it follows that

$$
\begin{equation*}
P\left(\left|X\left(w_{n}\right)\right|^{\beta}\right) \leqq M^{\beta-1} P \tilde{X}\left(\left|w_{n}\right|^{\beta}\right)=M^{\beta-1} \tilde{X} P\left(\left|s_{n}-s\right|^{\beta}\right) \tag{8}
\end{equation*}
$$

where $M=\int_{0}^{1}|d \chi(t)|$. Next, by Minkowski's inequality,

$$
\begin{equation*}
\left(P\left(\left|X\left(w_{n}\right)+\varepsilon_{n}\right|^{\beta}\right)\right)^{1 / \beta} \leqq\left(P\left(\left|X\left(w_{n}\right)\right|^{\beta}\right)\right)^{1 / \beta}+\left(P\left(\left|\varepsilon_{n}\right|^{\beta}\right)\right)^{1 / \beta} \tag{9}
\end{equation*}
$$

Suppose now that $P\left(\left|s_{n}-s\right|^{\beta}\right) \rightarrow 0$. Then, by (8), $P\left(\left|X\left(w_{n}\right)\right|^{\beta}\right) \rightarrow 0$ so that, by (9), $P\left(\left|\sigma_{n}-s\right|^{\beta}\right) \rightarrow 0$. Hence $[P, I]_{\beta} \subseteq[P, X]_{\beta}$, from which it follows that $[P, Q]_{\beta} \subseteq$ $\subseteq[P, X Q]_{\beta}$.

The next two theorems generalize corollaries to Theorem 7 in [1].

Theorem 2. If $X \in \mathscr{H}_{\lambda}$ and $\beta \geqq 1$, then necessary and sufficient conditions for a series $\sum_{0}^{\infty} a_{n}$ to be summable $\left[C_{1}, X\right]_{\beta}$ to s are that it be summable $C_{1} X$ to s and that $\lambda_{n} a_{n} \rightarrow 0\left[C_{1}, C_{1} X\right]_{\beta}$.

Proof. It follows from Theorem 1 in [1] that $\sum_{0}^{\infty} a_{n}$ is summable $\left[C_{1}, X\right]_{\beta}$ to s if and only if it is summable $C_{1} X$ to s and summable $\left[C_{1},\left(I-C_{1}\right) X\right]_{\beta}$ to 0 . Further, by (3) and (4),

$$
\left(I-C_{1}\right) X\left(s_{n}\right)=X\left(s_{n}-C_{1}\left(s_{n}\right)\right)=C_{1} X\left(\lambda_{n} a_{n}\right)
$$

The result follows.
In conformity with notation introduced earlier (see [1; p. 123]), the generalized strong Cesàro method $\left[C_{1}, C_{\alpha-1}\right]_{\beta}$ will be denoted by $[C, \alpha]_{\beta}$ and the generalized strong Hölder method $\left[H_{1}, H_{\alpha-1}\right]_{\beta}$ by $[H, \alpha]_{\beta}$. We require the following known result (see [8]).

Lemma 1. Let

$$
g(z)=\frac{\Gamma(\delta+1) \Gamma(z+1)(z+1)^{\delta}}{\Gamma(\delta+z+1)}, \quad \delta>-1 .
$$

Then both $g(z)$ and $1 / g(z)$ can be expressed as Mellin transforms of the form $\int_{0}^{1} t^{z} d \chi(t)$ with $\chi \in \mathrm{BV}, \chi(1)-\chi(0)=1$ and $\chi(0+)=\chi(0)$.

Theorem 3. If $\alpha \geqq 0$ and $\beta \geqq 1$, then necessary and sufficient conditions for a series $\sum_{0}^{\infty} a_{n}$ to be summable $[C, \alpha]_{\beta}$ to s are that it be summable C_{α} to s and that $\lambda_{n} a_{n} \rightarrow 0[C, \alpha+1]_{\beta}$.

Proof. It follows from Theorem 2 that $\sum_{0}^{\infty} a_{n}$ is summable $[C, \alpha]_{\beta}$ to s if and only if it is summable $C_{1} C_{\alpha-1}$ to s and $\lambda_{n} a_{n} \rightarrow 0\left[C_{1}, C_{1} C_{\alpha-1}\right]_{\beta}$. Next, it follows from Lemma 1 with $\delta=\alpha-1$ and Theorem 1 that $\lambda_{n} a_{n} \rightarrow 0\left[C_{1}, C_{1} C_{\alpha-1}\right]_{\beta}$ if and only if $\lambda_{n} a_{n} \rightarrow 0\left[C_{1}, H_{\alpha}\right]_{\beta}$. Applying Lemma 1 and Theorem 1 again, we see that $\lambda_{n} a_{n} \rightarrow 0\left[C_{1}, C_{1} C_{\alpha-1}\right]_{\rho}$ if and only if $\lambda_{n} a_{n} \rightarrow 0\left[C_{1}, C_{\alpha}\right]_{\beta}$. This together with (7) yields the result.

The above theorem suggests the following extension of the definition of $[C, \alpha]_{\beta}$ to the case $\alpha=0: \sum_{0}^{\infty} a_{n}$ is summable $[C, 0]_{\beta}$ to s if the series is convergent with sum s and $\sum_{k=0}^{n} d_{k}\left|\lambda_{k} a_{k}\right|^{\beta}=o\left(D_{n}\right)$. When $\lambda_{n}=n$, this definition reduces to the one given by Hyslop [7].

The next theorem is an analogue of the equivalence relation (6) for strong summability.

Theorem 4. For $\alpha \geqq 0, \beta \geqq 1,[C, \alpha]_{\beta} \simeq[H, \alpha]_{\beta}$.

Proof. The case $\alpha=0$ follows from Theorem 2 and the definition of $[C, 0]_{\beta}$. Suppose therefore that $\alpha>0$. By Theorem 3, $\sum_{0}^{\infty} a_{n}=s[C, \alpha]$ if and only if $\sum_{0}^{\infty} a_{n}=$ $=s\left(C_{\alpha}\right)$ and $\lambda_{n} a_{n} \rightarrow 0\left[C_{1}, C_{\alpha}\right]_{\beta}$. Further, by Theorem 2, $\sum_{0}^{\infty} a_{n}=s[H, \alpha]_{\beta}$ if and only if $\sum_{0}^{\infty} a_{n}=s\left(H_{\alpha}\right)$ and $\lambda_{n} a_{n} \rightarrow 0\left[C_{1}, H_{\alpha}\right]_{\beta}$. The result now follows from (6), Lemma 1 and Theorem 1.

Generalized Hausdorff matrices associated with L^{p} functions

Let L^{p} denote the function space $L^{p}(0,1)$. In this section we deal with Hausdorff matrices $(\lambda ; f)$ with $f(z)=\int_{0}^{1} t^{z} \varphi(t) d t$ where $\varphi \in L^{p}$ for some $p>1$. An ordinary Hausdorff matrix $\left\{x_{n, k}\right\}$ satisfies these conditions if and only if $\sum_{k=0}^{n}\left|x_{n, k}\right|^{p}<$ $<M(n+1)^{1-p}$ for $n=0,1, \ldots$ where M is independent of n. (See [4, Theorem 215].)

The following lemma is needed for the proof of Theorem 5.
Lemma 2. Let $\varphi \in L^{p}$ with $p>1$. Let $X=(\lambda ; f)$ and $X^{(p)}=\left(\lambda ; f^{(p)}\right)$ where $f(z)=\int_{0}^{1} i^{z} \varphi(t) d t$ and $f^{(p)}(z)=\int_{0}^{1} t^{z}|\varphi(t)|^{p} d t$. If $\mu>\beta \geqq 1$ and $1 / p=1 / \mu-1 / \beta$, then for any sequence $\left\{w_{n}\right\}$,

$$
\left|X\left(w_{n}\right)\right|^{\mu} \leqq M^{\mu(1-1 / \beta)}\left(C_{1}\left(\left|w_{n}\right|{ }^{\beta}\right)\right)^{\mu / \beta-1} X^{(p)}\left(\left|w_{n}\right|^{\beta}\right)
$$

where $\quad M=\int_{0}^{1}|\varphi(t)|^{p} d t$.
Proof. Let $f_{n}(t)=\sum_{k=0}^{n} \lambda_{n, k}(t) w_{k}$ where $0 \leqq t \leqq 1$. Then, by Hölder's inequality,

$$
\left|f_{n}(t)\right|^{\beta} \leqq \sum_{k=0}^{n} \lambda_{n, k}(t)\left|w_{k}\right|^{\beta} .
$$

(See [3, (8)].) Hence

$$
\begin{equation*}
\int_{0}^{1}\left|f_{n}(t)\right|^{\beta} d t \leqq \sum_{k=0}^{n}\left|w_{k}\right|^{\beta} \int_{0}^{1} \lambda_{n, k}(t) d t=\frac{1}{D_{n}} \sum_{k=0}^{n} d_{k}\left|w_{k}\right|^{\beta}=C_{1}\left(\left|w_{n}\right|^{\beta}\right) \tag{10}
\end{equation*}
$$

and

$$
\int_{0}^{1}|\varphi(t)|^{p}\left|f_{n}(t)\right|^{\beta} d t \leqq \sum_{k=0}^{n}\left|w_{k}\right|^{\beta} \int_{0}^{1} \lambda_{n, k}(t)|\varphi(t)|^{p} d t=X^{(p)}\left(\left|w_{n}\right|^{\beta}\right)
$$

It follows, by Hölder's inequality, that

$$
\begin{gathered}
\left|X\left(w_{n}\right)\right|=\left|\int_{0}^{1} \varphi(t) f_{n}(t) d t\right| \leqq \\
\leqq\left(\int_{0}^{1}|\varphi(t)|^{p} d t\right)^{1-1 / \beta}\left(\int_{0}^{1}\left|f_{n}(t)\right|^{\beta} d t\right)^{1 / \beta-1 / \mu}\left(\int_{0}^{1}|\varphi(t)|^{p}\left|f_{n}(t)\right| d t\right)^{1 / \mu} \leqq \\
\leqq M^{1-1 / \beta}\left(C_{1}\left(\left|w_{n}\right|^{\mid \beta}\right)^{1 / \beta-1 / \mu} X^{(p)}\left(\left|w_{n}\right|^{\beta}\right)\right)^{1 / \mu} .
\end{gathered}
$$

The following theorem generalizes Theorem 10 in [1].
Theorem 5. Let $\mu>\beta \cong 1,1 / p=1+1 / \mu-1 / \beta$. Let $X=(\lambda ; f)$ where $f(z)=$ $=\int_{0}^{1} t^{z} \varphi(t) d t$ with $\varphi \in L^{p}$ and $\int_{0}^{1} \varphi(t) d t=1$. Then, for any matrix $Q,\left[C_{1}, Q\right]_{\beta} \subseteq$ $\subseteq\left[C_{1}, X Q\right]_{\mu}$.

The theorem remains valid when $\mu=\infty$ (with $1 / p=1-1 / \beta$ if $\lambda>1$ and $p=\infty$ if $\beta=1$) provided $\left[C_{1}, X Q\right]_{\infty}$ is interpreted to mean $X Q$.

Proof. We use the notation introduced in Lemma 2, and note that X is regular and $X^{(p)}\left(v_{n}\right) \rightarrow 0$ whenever $v_{n} \rightarrow 0$. Suppose that $s_{n} \rightarrow s\left[C_{1}, Q\right]_{\beta}$, and let $\sigma_{n}=Q\left(s_{n}\right)$, $w_{n}=\sigma_{n}-s$, and $v_{n}=C_{1}\left(\left|w_{n}\right|^{p}\right)$.
(i) Suppose μ is finite. By hypothesis, $v_{n} \rightarrow 0$ and hence, by Lemma 2,

$$
C_{1}\left(\left|X\left(w_{n}\right)\right|^{\mu}\right) \leqq K C_{1} X^{(p)}\left(\left|w_{n}\right|^{\beta}\right)=K X^{(p)}\left(v_{n}\right) \rightarrow 0
$$

where $K=M_{n}^{\mu(1-1 / \beta)} \sup v_{n}^{\mu / \beta-1}$. Also, by the regularity of X, we have $X\left(\sigma_{n}\right)-s=$ $=X\left(w_{n}\right)+\varepsilon_{n}$ where $\varepsilon_{n} \rightarrow 0$. Thus, by Minkowski's inequality,

$$
\left(C_{1}\left(\left|X\left(\sigma_{n}\right)-s\right|^{\mu}\right)\right)^{1 / \mu} \leqq\left(C_{1}\left(\left|X\left(w_{n}\right)\right|^{\mu}\right)\right)^{1 / \mu}+\left(C_{1}\left(\left|\varepsilon_{n}\right|^{\mu}\right)\right)^{1 / \mu} \rightarrow 0
$$

i.e. $s_{n} \rightarrow s\left[C_{1}, X Q\right]_{\mu}$.
(ii) Suppose now that $\mu=\infty$. By Hölder's inequality,

$$
\left|X\left(w_{n}\right)\right|^{\beta}=\left|\int_{0}^{1} f_{n}(t) \varphi(t) d t\right|^{\beta} \leqq m \int_{0}^{1}\left|f_{n}(t)\right|^{\beta} d t
$$

where $m=M^{\beta-1}$ if $\beta>1$ and $m=\underset{0<t<1}{\operatorname{ess} \sup }|\varphi(t)|$ if $\beta=1$. Since (10) holds under the operative hypotheses, it follows that

$$
\left|X\left(w_{n}\right)\right|^{\beta} \leqq m C_{1}\left(\left|w_{n}\right|^{\beta}\right)=m v_{n} \rightarrow 0,
$$

and hence that $s_{n} \rightarrow s(X Q)$.
Theorem 6. Let $\varrho>1 / \beta-1 / \mu$ where $\mu \geqq \beta \geqq 1$. Then, for any matrix Q, $\left[C_{1}, Q\right]_{\beta} \subseteq\left[C_{1}, C_{\varrho} Q\right]_{\mu}$.

Proof. When $\mu=\beta$, the result follows from Theorem 1. Suppose that $\mu>\beta$ and let $1 / p=1+1 / \mu-1 / \beta$. Then $C_{e}=(\lambda ; f)$, where $f(z)=\int_{0}^{1} t^{z} \varphi(t) d t$ with $\varphi(t)=$ $=\varrho(1-t)^{o-1}$. Since $\varphi \in L^{p}$, Theorem 5 now yields the result.

Theorem 7. Let $\gamma>\alpha+1 / \beta-1 / \mu$ where $\mu \geqq \beta \geqq 1$ and α is any real number. Then $[H, \alpha]_{\beta} \subseteq[H, \gamma]_{\mu}$.

Proof. Applying first Theorem 6 and then Theorem 1 together with Lemma 1, we get

$$
\begin{aligned}
{[H, \alpha]_{\beta} } & =\left[H_{1}, H_{\alpha-1}\right]_{\beta} \subseteq\left[H_{1}, C_{\gamma-\alpha} H_{\alpha-1}\right]_{\mu} \simeq\left[H_{1}, H_{\gamma-\alpha} H_{\alpha-1}\right]_{\mu}= \\
& =\left[H_{1}, H_{\gamma-1}\right]_{\mu}=[H, \gamma]_{\mu} .
\end{aligned}
$$

Remark. It is known that, in the special case $\lambda_{n}=n$, Theorem 6 also holds when $\varrho=1 / \beta-1 / \mu$ and Theorem 7 when $\gamma=\alpha+1 / \beta-1 / \mu$. (See [1] and the references there given.) Whether the same is true for more general λ_{n} is an open question.

References

[1] D. Borwein, On strong and absolute summability, Proc. Glasgow Math. Assoc., 4 (1960), 122139.
[2] D. Borwein, F. P. A. Cass and J. E. Sayre, On generalized Hausdorff matrices, Journal of Approx. Theory, 48 (1986), 345-360.
[3] D. Borwein, F. P. A. Cass and J. E. Sayre, On absolute generalized Hausdorff summability, Arch. Math., 46 (1986), 419-427.
[4] G. H. Hardy, Divergent Series, Oxford University Press (1949).
[5] F. Hausdorff, Summationsmethoden und Momentfolgen I, Math. Z., 9 (1921), 74-109.
[6] F. Hausdorff, Summationsmethoden und Momentfolgen II, Math. Z., 9 (1921), 280-299.
[7] J. M. Hyslop, Note on the strong summability of series, Proc. Glasgow Math. Assoc., 1 (1951-3), 16-20.
[8] W. W. Rogosinski, On Hausdorff methods of summability, Proc. Cambridge Phil. Soc., 38 (1942), 166-192.
(Received November 14, 1985)
DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF WESTERN ONTARIO
LONDON, ONTARIO N6A 5B7
CANADA
DEPARTMENT OF MATHEMATICS
MOUNT SAINT VINCENT UNIVERSITY
HALIFAX, NOVA SCOTIA B3M $2 J 6$
CANADA

[^0]: This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

