On Relations between Weighted Mean and Power Series Methods of Summability

David Borwein

Department of Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7

AND
Werner Kratz
Abteilung Mathematik, Universität Ulm, Oberer Eselsherg, D-7900 Ulm/Donau, West Germany

Submitted by Bruce C. Berndt
Received July 28, 1987

1. Introduction

Suppose throughout that $\left\{p_{n}\right\}$ is a sequence of non-negative numbers with $p_{0}>0$, that

$$
P_{n}:=\sum_{k=0}^{n} p_{k} \rightarrow \infty,
$$

and that

$$
p(x):=\sum_{n=0}^{\infty} p_{n} x^{n}<\infty \quad \text { for } \quad 0<x<1 .
$$

Let $\left\{s_{n}\right\}$ be a sequence of real numbers.
The weighted mean summability method M_{p} and the power series method J_{p} are defined as follows:
$s_{n} \rightarrow s\left(M_{p}\right)$ (and $\left\{s_{n}\right\}$ is said to be M_{p}-convergent) if

$$
\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} s_{k} \rightarrow s
$$

$s_{n} \rightarrow s\left(J_{p}\right)$ (and $\left\{s_{n}\right\}$ is said to be J_{p}-convergent) if $\sum_{n=0}^{\infty} p_{n} s_{n} x^{n}$ is convergent for $0<x<1$ and

$$
\frac{1}{p(x)} \sum_{n=0}^{\infty} p_{n} s_{n} x^{n} \rightarrow s \quad \text { as } \quad x \rightarrow 1-
$$

It is known that both methods are regular (see [5, pp. 57, 80]), and (see [6]) that $s_{n} \rightarrow s\left(M_{p}\right)$ implies $s_{n} \rightarrow s\left(J_{p}\right)$. The following Tauberian theorem concerning the reverse implication is also known [3].

Theorem T. If $s_{n} \rightarrow s\left(J_{p}\right)$ and $s_{n}>-H$ for $n=0,1, \ldots$, where H is a constant, and if

$$
\begin{equation*}
\lim _{x \rightarrow 1-} \frac{p\left(x^{m}\right)}{p(x)}=\lambda_{m}>0 \quad \text { for } \quad m=2 \quad \text { and } \quad m=3 \tag{1}
\end{equation*}
$$

then $s_{n} \rightarrow s\left(M_{p}\right)$.
It follows from Theorem 1.8 in [9] that the integers 2,3 in (1) can be replaced by any pair of positive numbers $a, b \neq 1$ such that $\log _{a} b$ is irrational. It was proved in [3] that

$$
\begin{equation*}
\lim _{x \rightarrow 1-1} \frac{p\left(x^{2}\right)}{p(x)}=\lambda \tag{2}
\end{equation*}
$$

alone does not imply (1) when $0<\lambda<1$, though (1) and (2) are equivalent when $\lambda=1$. In answer to a question raised in [3] we shall show that Theorem T does not remain valid when (1) is replaced by (2) with $0 \leqslant \lambda<1$.
In Section 3 we construct, for each $\lambda \in(0,1)$, a function $p(x)$ which satisfies (2) and a sequence of positive numbers $\left\{s_{n}\right\}$ which is J_{p}-convergent but not M_{p}-convergent.
In Section 5 we show that if $p_{n}:=e^{g(n)}$, where $g(x)$ is a logarithmicoexponential function (see [4]) such that $g^{\prime}(x) \rightarrow 0$ and $x g^{\prime}(x) \rightarrow \infty$ as $x \rightarrow \infty$, then $p(x)$ satisfies (2) with $\lambda=0$ (and consequently $\lim _{x \rightarrow 1^{-}}\left(p\left(x^{t}\right) / p(x)\right)=0$ for all $\left.t \geqslant 2\right), p_{n}$ increases faster than any power of n, and (cf. Lemma 2 in Section 2) $P_{n+1} \sim P_{n} \rightarrow \infty$, but the conditions $s_{n} \geqslant 0$ and $s_{n} \rightarrow s\left(J_{p}\right)$ do not imply that $s_{n} \rightarrow s\left(M_{p}\right)$. This result is a consequence of the fact that different limitation theorems hold for the two summability methods. The limitation theorem for the weighted mean method is well known. A limitation theorem for the power series method is derived in Section 4, while in Section 5 the asymptotic behaviour of the limitation order is determined for non-negative J_{p}-convergent sequences for the function p in question. The key to this analysis is Theorem A1, which deals with the asymptotic behaviour of certain Laplace transforms. Proofs of the asymptotic results are relatively straightforward and have been omitted.

2. Preliminary Results

Lemma 1. Suppose $\lim _{n \rightarrow \infty}\left(P_{n} / P_{m n}\right)=\lambda$, where m is a positive integer. Then

$$
\lim _{x \rightarrow 1-} \frac{p\left(x^{m}\right)}{p(x)}=\lambda
$$

provided either (i) $\lambda=0$ or (ii) $P_{n+1} \sim P_{n}$.
Proof. Case (i). Let $P(x):=\sum_{n=0}^{\infty} P_{n} x^{n}$. Define a sequence $\left\{s_{n}\right\}$ by setting $s_{n}:=P_{k} / P_{n}$ when $n=m k, k=0,1, \ldots ; s_{n}:=0$ otherwise. Then $s_{n} \rightarrow 0$ and so

$$
\frac{1}{P(x)} \sum_{n=0}^{\infty} P_{n} s_{n} x^{n}=\frac{P\left(x^{m}\right)}{P(x)} \rightarrow 0 \quad \text { as } \quad x \rightarrow 1-
$$

Since $p(x)=(1-x) P(x)$ for $0<x<1$, it follows that

$$
\frac{p\left(x^{m}\right)}{p(x)}=\frac{\left(1-x^{m}\right) P\left(x^{m}\right)}{(1-x) P(x)} \rightarrow 0 \quad \text { as } \quad x \rightarrow 1-
$$

This completes the proof of Case (i). Case (ii) has been proved in essence in [2].

Lemma 2. If $p_{n}>0$ for $n=0,1, \ldots$ and the sequence $\left\{P_{n+1} / P_{n}\right\}$ is not convergent to 1 , then the sequence $\left\{p_{n+1} / p_{n}\right\}$ is J_{p}-convergent to 1 but not M_{p}-convergent.

Proof. Let $s_{n}:=p_{n+1} / p_{n}$. Then

$$
\frac{1}{p(x)} \sum_{n=0}^{\infty} p_{n} s_{n} x^{n}=\frac{p(x)-p_{0}}{x p(x)} \rightarrow 1 \quad \text { as } \quad x \rightarrow 1-
$$

i.e., $s_{n} \rightarrow 1\left(J_{p}\right)$. On the other hand,

$$
\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} s_{k}=\frac{P_{n+1}-P_{0}}{P_{n}}
$$

does not converge to 1 . Hence $\left\{s_{n}\right\}$ is not M_{p}-convergent, since $s_{n} \rightarrow s\left(M_{p}\right)$ implies $s_{n} \rightarrow s\left(J_{p}\right)$.

3. Construction

For each $\lambda \in(0,1)$ we shall construct a function $p(x)$ satisfying (2) such that the sequence $\left\{p_{n+1} / p_{n}\right\}$ is J_{p}-convergent but not M_{p}-convergent.

Let $\mu:=1 / \lambda>1$. Define a sequence $\left\{Q_{n}\right\}$ recursively by setting $Q_{0}:=0$, $Q_{1}:=1$ and

$$
\frac{Q_{n+1}}{Q_{n}}:= \begin{cases}\mu & \text { when } n+1=2^{k}, k=1,2, \ldots, \\ 1 & \text { otherwise } .\end{cases}
$$

Let $Q(x):=\sum_{n=0}^{\infty} Q_{n} x^{n}$ and $q(x):=(1-x) Q(x)$. Suppose that

$$
2^{k} \leqslant n<2^{k+1} .
$$

Then it is easily verified that $Q_{n}=\mu^{k}$ so that

$$
\begin{aligned}
R_{n} & :=\sum_{r=0}^{n} Q_{r}=\sum_{r=0}^{k-1}(2 \mu)^{r}+\left(n+1-2^{k}\right) \mu^{k} \\
& =(2 \mu)^{k}\left(2^{-k} n-1+\frac{1}{2 \mu-1}+o(1)\right),
\end{aligned}
$$

and, since $2^{k+1} \leqslant 2 n<2^{k+2}$,

$$
R_{2 n}=(2 \mu)^{k+1}\left(2^{-\kappa} n-1+\frac{1}{2 \mu-1}+o(1)\right) .
$$

Since

$$
0<\frac{1}{2 \mu-1} \leqslant 2^{-k} n-1+\frac{1}{2 \mu-1}<\frac{2 \mu}{2 \mu-1},
$$

it follows that

$$
\frac{R_{n}}{R_{2 n}} \rightarrow \frac{1}{2 \mu}=\frac{\lambda}{2} \quad \text { and } \quad \frac{R_{n-1}}{R_{n}}=1-\frac{Q_{n}}{R_{n}} \rightarrow 1 .
$$

Also $R_{n} \rightarrow \infty$ and $0<Q(x)<\infty$ for $0<x<1$. Hence, by Lemma 1(ii),

$$
\frac{Q\left(x^{2}\right)}{Q(x)} \rightarrow \frac{\lambda}{2} \quad \text { as } \quad x \rightarrow 1-
$$

and consequently

$$
\frac{q\left(x^{2}\right)}{q(x)}=(1+x) \frac{Q\left(x^{2}\right)}{Q(x)} \rightarrow \lambda \quad \text { as } \quad x \rightarrow 1-.
$$

Now define $p(x):=q(x)+e^{x}$, and note that $P_{n} \geqslant Q_{n} \rightarrow \infty$. Then $p(x)$ satisfies (2). Further $p_{n}>0$ for $n=0,1, \ldots$, and $\left\{P_{n+1} / P_{n}\right\}$ is not convergent since $\left\{Q_{n+1} / Q_{n}\right\}$ is not convergent. Hence, by Lemma 2, the sequence $\left\{p_{n+1} / p_{n}\right\}$ is J_{p}-convergent but not M_{p}-convergent.

Remark 1. It is easy to show (with the aid of Lemma 1(i)) that, if in the above construction we replace μ by μ^{k} in the definition of Q_{n+1} / Q_{n}, we obtain a function $p(x)$ satisfying (2) with $\lambda=0$ for which $p_{n}>0$ and $\left\{P_{n+1} / P_{n}\right\}$ is unbounded, so that $\left\{p_{n+1} / p_{n}\right\}$ is J_{p}-convergent but not M_{p}-convergent. However, the case for which (2) is satisfied with $\lambda=0$ while $P_{n+1} \sim P_{n}$ is dealt with in Section 5.

4. Limitation Theorems

The following result is well known (see [5, p. 57] or [8, Theorem II.3]).
Theorem L1. If $s_{n} \rightarrow 0\left(M_{p}\right)$, then $p_{n} s_{n}=o\left(P_{n}\right)$.
Next, we derive a limitation theorem for the J_{p}-method. We shall use the notation

$$
\Delta_{n}:=\inf _{0<t<1} p(t) t^{-n} \quad \text { for } \quad n=1,2, \ldots
$$

Lemma 3. The sequence $\left\{\Delta_{n}\right\}$ has the following properties:
(i) $\Delta_{n} \geqslant P_{n} \rightarrow \infty$;
(ii) $\sum_{n=1}^{\infty} A_{n} x^{n}$ has radius of convergence 1 ;
(iii) $\Delta_{n}=p\left(t_{n}\right) t_{n}^{-n}$ for some $t_{n} \in(0,1)$ such that

$$
t_{m}^{n-m} \leqslant \Delta_{m} / \Delta_{n} \leqslant t_{n}^{n-m} \quad \text { for } \quad m, n=1,2, \ldots
$$

(iv) the sequences $\left\{\Delta_{n}\right\},\left\{\Delta_{n} / \Delta_{n+1}\right\}$, and $\left\{t_{n}\right\}$ are non-decreasing with

$$
\lim _{n \rightarrow \infty} \Delta_{n} / \Delta_{n+1}=\lim _{n \rightarrow \infty} t_{n}=1
$$

The proof of this lemma is straightforward.
TheOrem L2. (i) If $s_{n} \geqslant 0$ for $n=0,1, \ldots$ and $s_{n} \rightarrow 0\left(J_{p}\right)$, then

$$
p_{n} s_{n}=o\left(\Delta_{n}\right)
$$

(ii) If $\left\{\lambda_{n}\right\}$ is any sequence of positive numbers converging to 0 , then there is a sequence $\left\{s_{n}\right\}$ of non-negative numbers such that $s_{n} \rightarrow 0\left(J_{p}\right)$ and $\left\{p_{n} s_{n} / \lambda_{n} \Delta_{n}\right\}$ is unbounded.

Proof. (i) The hypotheses imply that

$$
0 \leqslant \frac{p_{n} s_{n}}{\Delta_{n}}=\frac{p_{n} s_{n} t_{n}^{n}}{p\left(t_{n}\right)} \leqslant \frac{1}{p\left(t_{n}\right)} \sum_{k=0}^{\infty} p_{k} s_{k} t_{n}^{k} \rightarrow 0
$$

since $t_{n} \rightarrow 1$ - by Lemma 3(iv).
(ii) Let $\left\{n_{k}\right\}$ be an increasing sequence of positive integers such that $p_{n_{k}}>0$ and $\sum_{k=0}^{\infty} \sqrt{\lambda_{n_{k}}}<\infty$, and define

$$
s_{n}:= \begin{cases}\sqrt{\lambda_{n}} \Delta_{n} / p_{n} & \text { if } n=n_{k}, k=0,1, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

Then $\left\{p_{n} s_{n} / \lambda_{n} \Delta_{n}\right\}$ is unbounded. Further

$$
\begin{aligned}
0 & \leqslant \limsup _{t \rightarrow 1-} \frac{1}{p(t)} \sum_{n=0}^{\infty} p_{n} s_{n} t^{n} \\
& \leqslant \lim _{t \rightarrow 1-1} \frac{1}{p(t)} \sum_{k=0}^{N-1} p_{n_{k}} s_{n_{k}}+\sum_{k=N}^{\infty} \sqrt{\lambda_{n_{k}}} \\
& =\sum_{k=N}^{\infty} \sqrt{\lambda_{n_{k}}} \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
\end{aligned}
$$

and hence $s_{n} \rightarrow 0\left(J_{p}\right)$.
Remark 2. It is readily shown that Theorem L2(ii) remains valid if J_{p} is replaced by M_{n} and Δ_{n} by P_{n}. The limitation conditions in both Theorems L1 and L2 are thus sharp.

5. Asymptotics

We suppose throughout this section that the function $g(x)$ is defined and continuous on $[0, \infty)$, and that it is a logarithmico-exponential function for sufficiently large x satisfying

$$
\begin{equation*}
g^{\prime}(x) \rightarrow 0 \quad \text { and } \quad x g^{\prime}(x) \rightarrow \infty \quad \text { as } \quad x \rightarrow \infty \tag{3}
\end{equation*}
$$

We shall consider the J_{p}-method given by

$$
p(x):=\sum_{n=0}^{\infty} p_{n} x^{n} \quad \text { with } \quad p_{n}=e^{g(n)}
$$

Observe that $p_{n} \rightarrow \infty$ and $e^{g(x)}=o\left(e^{\varepsilon x}\right)$ as $x \rightarrow \infty$ for all $\varepsilon>0$, so that the power series for $p(x)$ has radius of convergence 1 . Moreover, it follows from the properties of logarithmico-exponential functions (see [4]) that, for a sufficiently large positive $x_{0}, g^{\prime \prime \prime}(x)$ is continuous on $\left[x_{0}, \infty\right)$,

$$
\left.\begin{array}{l}
g^{\prime}(x)>0, g^{\prime \prime}(x)<0, g^{\prime \prime \prime}(x)>0, \frac{d}{d x}\left(x^{2} g^{\prime \prime}(x)\right)<0 \quad \text { for } \quad x \geqslant x_{0} \tag{4}\\
g(x) \rightarrow \infty, g^{\prime \prime}(x) \rightarrow 0, x^{2} g^{\prime \prime}(x) \rightarrow-\infty \quad \text { as } \quad x \rightarrow \infty,
\end{array}\right\}
$$

and

$$
\begin{equation*}
g^{\prime \prime}(x) / g^{\prime 2}(x) \rightarrow 0, x g^{\prime \prime \prime}(x) / g^{\prime \prime}(x)=O(1) \quad \text { as } \quad x \rightarrow \infty \tag{5}
\end{equation*}
$$

Theorem A1. As $x \rightarrow \infty$,

$$
G(x):=\int_{0}^{\infty} e^{g(t)-\operatorname{tg}^{\prime}(x)} d t \sim \tilde{G}(x):=\sqrt{2 \pi} e^{g(x)-x g^{\prime}(x)} / \sqrt{-g^{\prime \prime}(x)}
$$

The theorem can be proved by considering

$$
G_{1}(x):=\sqrt{-g^{\prime \prime}(x)} \int_{0}^{\infty} e^{g_{1}(t)} d t
$$

where

$$
g_{1}(t)=g_{1}(t, x):=g(t)-g(x)-(t-x) g^{\prime}(x)
$$

and showing that $G_{1}(x) \rightarrow \int_{-\infty}^{\infty} e^{-\tau^{2} / 2} d \tau=\sqrt{2 \pi}$ as $x \rightarrow \infty$. This can done by means of what is often called Laplace's method (see [7, p. 80]).

Remark 3. Equivalent to Theorem A 1 is the result that the Laplace transform $\int_{0}^{\infty} e^{g(t)} e^{-x t} d t \sim \tilde{G}(h(x))$ as $x \rightarrow 0+$, where h is the inverse function of g^{\prime} on the interval $\left(0, g^{\prime}\left(x_{0}\right)\right]$. Note that the function $g(h(x))-x h(x)$, the exponent in the expression for $\tilde{G}(h(x))$, is the maximum of $g(t)-x t$ with respect to t and is frequently called the "complementary convex function" of g (see [1]).

The following two theorems can now be established without difficulty.
THEOREM A2. $\quad \tilde{\Delta}_{n}:=\inf _{x \geqslant x_{0}} \tilde{G}(x) e^{n g^{\prime}(x)} \sqrt{2 \pi} e^{g(n)} / \sqrt{-g^{\prime \prime}(n)}$. Moreover,

$$
\tilde{\Delta}_{n}=\tilde{G}\left(x_{n}\right) e^{n g^{\prime}\left(x_{n}\right)}, \quad \text { where } \quad x_{0} \leqslant x_{n} \leqslant n \quad \text { and } \quad x_{n} \sim n .
$$

Theorem A3. The following asymptotic relations hold:
(i) $\quad P_{n} \sim \frac{p_{n}}{g^{\prime}(n)}, \quad P_{n+1} \sim P_{n}, \quad \frac{P_{2 n}}{P_{n}} \rightarrow \infty ;$
(ii) $\lim _{x \rightarrow 1-} \frac{p\left(x^{2}\right)}{p(x)}=0$;
(iii) $\frac{\Delta_{n}}{P_{n}} \sim \sqrt{2 \pi} \frac{g^{\prime}(n)}{\sqrt{-g^{\prime \prime}(n)}} \rightarrow \infty$.

An immediate consequence of Theorem L2(ii) with $\lambda_{n}=P_{n} / \Delta_{n}$ and Theorems L1 and A3 is the following result concerning the function p considered in this section:

Corollary. There is a sequence of non-negative numbers $\left\{s_{n}\right\}$ which is J_{p}-convergent to 0 but not M_{p}-convergent.

We conclude by giving some examples of functions g satisfying the conditions of this section, together with the corresponding asymptotics of P_{n}, Δ_{n}, and Δ_{n} / P_{n} calculated by means of Theorem A3.

Examples.

$$
\begin{aligned}
& \text { (i) } g(x):=\log ^{2}(x+1) ; \quad P_{n} \sim \frac{n}{2 \log n} e^{g(n)}, \\
& \Delta_{n} \sim \frac{\sqrt{\pi} n}{\sqrt{\log n}} e^{g(n)}, \quad \frac{\Delta_{n}}{P_{n}} \sim 2 \sqrt{\pi \log n} . \\
& \text { (ii) } g(x):=\sqrt{x} ; \quad P_{n} \sim 2 \sqrt{n} e^{\sqrt{n}}, \quad \Delta_{n} \sim 2 \sqrt{2 \pi} n^{3 / 4} e^{\sqrt{n}} \text {, } \\
& \frac{A_{n}}{P_{n}} \sim \sqrt{2 \pi} n^{1 / 4} . \\
& \text { (iii) } g(x):=\frac{x}{\log x} ; \quad P_{n} \sim(\log n) e^{g(n)} \text {, } \\
& \Delta_{n} \sim \sqrt{2 \pi n}(\log n) e^{g(n)}, \quad \frac{\Delta_{n}}{P_{n}} \sim \sqrt{2 \pi n} .
\end{aligned}
$$

Acknowledgment

This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

References

1. A. A. Balkema, J. L. Geluk, and L. de Hann, An extension of Karamata's Tauberian theorem and its connection with complementary convex functions, Quart. J. Math. Oxford Ser. (2) 30 (1979), 385-416.
2. D. Borwein, Tauberian conditions for the equivalence of weighted mean and power series methods of summability, Canad. Math. Bull. (3) 24 (1981), 309-316.
3. D. Borwein and A. Meir, A Tauberian theorem concerning weighted means and power series, Math. Proc. Cambridge Philos. Soc. 101 (1987), 283-286.
4. G. H. Hardy, Properties of logarithmico-exponential functions, Proc. London Math. Soc. (2) 10 (1911), 54-90.
5. G. H. Hardy, "Divergent Series," Oxford Univ. Press, London/New York, 1949.
6. K. Ishiguro, A Tauberian theorem for $\left(J, p_{n}\right)$ summability, Proc. Japan Acad. 40 (1964), 807-812.
7. F. W. J. Olver, "Introduction to Asymptotics and Special Functions," Academic Press, San Diego, CA, 1974.
8. A. Peyerimhoff, "Lectures on Summability," Lecture Notes in Mathematics, Vol. 107, Springer-Verlag, New York/Berlin, 1969.
9. E. Senata, "Regularly Varying Functions," Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, New York/Berlin, 1976.
