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1. INTRODUCTION 

The genesis of this paper lies in the physical model we now describe. We 
believe the theorems presented to be of independent mathematical interest. 
In 1934 Wigner [7] introduced the concept of an electron gas bathed in a 
compensating background of positive charge as a model for a metal. He 
stated that in the static case the electrons would form a b.c.c. lattice in the 
background of positive charge. In 1938 he presented a quantitative treat- 
ment of this problem, following a calculation by Fuchs [5], who showed 
that for a given number density, the b.c.c. lattice was the most stable of the 
three common cubic structures, namely xc., b.c.c., and fc.c. lattices-see 
Coldwell-Horsfall and Maradudin [3]. The evaluation of U (lattice)-the 
energy of an electron in a given lattice-involved finding by some means or 
other the difference of two divergent quantities. Of these, one term U, 
measures the interaction of an electron with all the other electrons on their 
lattice sites. The second term Uz measures the interaction of an electron 
with the compensating positive background charge. Thus 

U (lattice) = U, - U,, 
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where 

(1) 

and 

U, = ne2 
I 

(x2+y2+z2)y2dxdydz. (2) 
(Q) 

In (1 ), CI~ is some lattice parameter and the summation is over all integers 
(j, k, [) relevant to the given lattice structure. Here and throughout C’ 
indicates that undefined (i.e., infinite) terms in the summand are avoided. 
In (2) n is the number density and R is the normalization volume of the 
given lattice. 

In a previous paper (Borwein et al. [2]) a new approach to evaluating 
the static lattice energy of any given Wigner lattice was proposed. The new 
method is much simpler and faster than the traditional one and, after 
normalization, consists of computing the value, LX($), of the analytic 
continuation of the appropriate three-dimensional zeta function 
c((s) := Ckttice (j2 + k2 + 12))‘. Two-dimensional Wigner lattices can be 
dealt with in the same manner. The method yields the known value in each 
case in which traditional techniques have been used. 

This leaves open, however, the question of what, if any, underlying direct 
limiting process produces the same answer? In two dimensions we find our 
answers correspond to a simple and intuitively plausible way of evaluating 
the lattice energies (Theorem 1 below). In three dimensions, somewhat 
surprisingly, we show that this is not the case (Theorem 3 below). 

We consider the following model in d-dimensions (in reality d= 2, 3). In 
our model, point charges are located at lattice sites and are surrounded by 
an equal amount of opposite charge uniformly distributed over d-dimen- 
sional cubes centred at the lattice points and of side equal to one lattice 
spacing. This is illustrated below in two dimensions, where the shaded 
portion represents positive charge of value equal to the point negative 
charge but uniformly distributed over a square. 
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For the simple cubic lattice we shall analyse the behavior of the limit as 
N+co of 

cJN(S) := gN- gr (n:+n;+ ... +np -N 
N+ I/2 N+ l/2 

. . . (x:+x;+ ... +~;)~~dx~...dx, 
-(N+I/Z) -(N+ l/2) 

although a priori the limit need not exist. Electrical neutrality is maintained 
throughout the limiting process. (Using N + $ is also technically advan- 
tageous.) We denote the sum and integral above by CI~(S) and /IN(s), 
respectively. 

2. TWO-DIMENSIONAL LATTICES 

In two dimensions we analyse a more general situation by considering a 
two-dimensional positive definite quadratic form Q(x, y) := ax2 + 
2bxy + cy2, and examining the behaviour of o,,,(s) := c(~(s) - flN(s), where 

cIN(S) := ,,,,,,E:,,, Qcm, n)-J7 
BNb) := i,,,,,,, ,y,)<N+1,2 Qk Y)-‘dxdy. 

. -. 

When a = 1, b = 0, c = 1, this reduces to the two dimensional square case 
above. Similarly, when a = 1, b = 5, c = 1, this yields a triangular lattice sum 
(see [2]). We write a(s) := lim,, ~ CJ~(S), a(s) := lim,, m rxN(s) whenever 
these limits exist. Note that a(i) may be viewed as a generalization of 
Euler’s constant. 

THEOREM 1. For any positive definite form Q, a(s) :=lim,,, rrN(s) 
exists in the strip 0 < re s < 1 and coincides therein with the analytic 
continuation of IX(S). In particular, lim, - ~ oN( 1) = cI( 4). 

Proof: Let 52:= {s 1 res>s>O, 1.r CR}. All order terms will be 
uniform with respect to s in the bounded region Sz. For N > 1, we have 

6,(s) := a,(s) - bN- ,(s) 

= 
c 

s 
(Q(m, n)pS - Q(m +x, n + y)-“) dx dy. 

max(lm(,~nj)=N max(I.d,lYi)s1/2 
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Putting f(x, y) = Q(m + x, n + y))” with max(lmj, Inl)=N and 
max(I.4, 1.~4) d 1, we get .0x, Y) -fUJ 0) = xf,(O, 0) + yf,(O, 0) + 
O(N-2E-2), since 

fxr = s(s + 1) Q(m + x, n + y) -‘- 2(2a(m + x) + 2&n + y))’ 

-2asQ(m+x,n+y)~“~’ 

= O(N-2” -2) 

and likewise J;, and fVY are both O(N-2”-2). Note that the positive 
definiteness of Q implies that Q(m +x, n + y))’ = O(Ne2). It now follows 
that 

s max(,,r, ,~,)< 1,2 w4 0) -fk Y)) fix dY , - 
= -1 (4X 0) + ~f,(o, 0)) dx 4 + O(N-2”-2) max(lsl.lul) f l/2 

=O+O(N- 28-2) = o(N~zc+z), 

and hence that IS,(s)l d MNp2”- ‘, where M is independent of s and N for 
s E a. Since 6,(s) is an entire function it follows, by the Weierstrass M-test, 
that 6(s) := C,“= r 6,,,(s) is analytic in 52 and so in the half-plane re s > 0, 
and the series is convergent in this half-plane. 

Now let 

Then, for re s < 1, 

~~(s)=IQI-“2~~2+,~<1 b2+y2)-3dxd~ 

= 1Qlp”2/~ndO~~ rlp2’dr 

= IQ1 -“* rc/(l -s), where IQ1 = UC - h2; (3) 

and, for re s > 1, 

Z2(s)= IQ1 -v2 TC/(S- 1). (4) 
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Thus Z,(S) and Z*(s) extend analytically to the whole plane and 
Z,(S) = -Z2(s) therein. Now, for re s < 1, 

4s) + z,(s) = ,“t”J cN(s) + z,(s) = 6(s) - /MS) + z,(s), 

which is analytic for re s > 0. Further, for re s < 1, 

and the final integral is an entire function which tends to Z,(s) in the half- 
plane re s > 1, though bN(,r) itself is infinite therein. Hence, for re s > 1, 

o(s) + Z,(s) = J@% uN(s) - Z,(s) = u(s) + Z,(s). 

It follows that cr.(s) has an analytic continuation to the half-plane 
re s > &see also [4, Vol. 3, pp. 42 and 1291. Consequently D(S) =01(s) for 
O<res<l. 1 

Remarks. In effect the integral plays no role in the final answer. The 
theorem shows that for two dimensional Wigner lattices, the answer 
obtained by analytic continuation-or by classical methods--coincides 
with that given by a simple direct limiting process. In addition, the last two 
equations in the proof of the theorem actually provide a physically based 
analytic continuation of a(s) to the right half-plane. 

EXAMPLE. (a) For the square lattice a(s) = 4[(s) t(s) with 

c(s) := 1 +2-“+3-“+4-“+ . . . (res> 1) 

=+(‘-2-s+3--‘-4-‘+ . ..) (re s > 0) 

and 

5(s) := l-3-5.+5-“-7--“+ . . . (re s z 0). 

Thus we have that 

o(f) = 4[( 9 t(f) = -3.900264924 . . . . 

(b) For the triangular lattice u(s) =65(s) q(s), where 

r](s) := 1 -2-“+4p”-5-s+ . . . (re s > 0). 
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Thus we have that 

a( ;) := 6[(;) q( 1) = -4.2134227006 . . . . 1 

The factorization of c1 in these cases is discussed in detail in [2]. The 
cases have been dealt with by the traditional methods by Bonsall and 
Maradudin [ 11, who considered a more general Bravais-Wigner model 
also covered by Theorem 1. 

To illustrate the robustness of taking an analytic limit we provide 
another limiting procedure for the square lattice. We consider 

THEOREM 2. The limit $(s) := lim,, ccI I+!I~(s) exists in the strip 
4 < re s < 1 and coincides therein with the analytic continuation of a(s). In 
particular, lim, _ o. $N($) = $G, = a(l) = 41(i) ai,. 

Proof: Let Q := (s 1 re s > f, 1.~1 CR}. All .order terms will be uniform 
with respect to s in the bounded region 8. Let 

where r(n) is the number of ways of expressing n as a sum of two integer 
squares. Let 1, = r( 1) + r(2) + . . . + r(n). It is known that t, = 7tn + O(nY), 
where g < y < f [6, p. 272; 4, Vol. 2, pp. 253 and 2571. Hence, for s E Q and 
M>N+CO, 

tws) - $X-l(S) 

=~~~r(n)n~‘-x/“u~‘du 
N 

=nijt,(npS-(n+l)-’ )+t,(M+l)-“-t,~,N-“-nj”u-ddu 
N 
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=m ffJ KS+ F 0( 
lI=N ll=N 

nY~4/3)+n(M1-“-N1~‘)-nj~u-“du+o(l) 

= 71s I M~-sd~+ f O(n’.~4’3)+rr(M1-‘-N1~s)-R~~~-ldU+O(I) 
N n=N 

=77(ML-S-N1~‘)-7r(s-1) j”CsdUf f O(nYP4/3)+0(1) 
N n=N 

= c O(nY-4’3)+0(1)=0(1). 
n=N 

Thus $3~) tends uniformly in Sz to e*(s) say. Since $X(s) is entire, I/I*(S) 
is analytic in Q and therefore in the half-plane re s > f. Further, for re s > 1, 

$*(s)= lim 
N+m lcm;n~4N(m2+n2)-r 

- lim s (x’+y2)-dxdy 
N+m l<xz+y2<N 

I 
N 

=cI(s)- lim n u-“du (using (4)) 
N+CC I 

=cL(s)-7r/(s-1); 

and so U(S) = ICI*(s)- n/(1 -s) for re s> $. On the other hand, for 
+<res<l, 

$N(s)=I(/Xs)- jx2+,<, (x2+y2)-Jdxdy 

=$X(s)-7r/(l -s) (using (3)) 

so that t&s) = I/I*(S) - n/( 1 -s). Hence t&s) = U(S) for 4 < re s < 1. 1 

3. THREE-DIMENSIONAL LATTICES 

We turn now to three dimensions. We show that, even when we restrict 
attention to the simple cubic lattice, a curious anomaly occurs. We 
consider dN(s) = olN(s) - bN(,s), where 

aN(s) := C’ (m2 + n2 + p’) -‘, 
~~~(I~.I~I,IPI)~N 

BN(S) :=i,,,,,, ,y, ,=,)< N+ l,2 (x2 + Y2 +z2)- dx dY & 
, , . 
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As before we write g(s) := lim,,,, m a,(s), U(S) := lim,, co CL~(S) whenever 
these limits exist. Though in general we use the same symbol to denote a 
function and its analytic continuation, in any case where a defined function 
value differs from the value of its analytic continuation we give precedence 
to the defined function value (as with C(S) at s= $ in the following 
theorem). 

THEOREM 3. The limit a(s) := lim,, m Do exists exactly for 
4 < re s < f and for s = 5. For 4 < re s < z, O(S) coincides with the analytic 
continuation of U(S), but o(s) is discontinuous at 1. Indeed, 

a( 4) - n/6 = a(i) = -2.837297 . . . = lim G(S). 
s-l/2+ 

Proof: Let Q := {s I re s> E > 0, Is1 CR}. All order terms will be 
uniform with respect to s in the bounded region a. For Na 1, we have 
6,(s) := ON(S) - bN-l(s) =~max(,m,,,n,,,p,)=N m 4 PX where 

I(m, n, P) = j 
max(lxl,lvl, /z/)6 l/2 ‘(m2 + n2 + “)-” 

-((m +x)~ + (n+ Y)~+ (p+z)‘)-“) dx dy dz. 

Putting f(x, y, z) = ((m + x)’ + (n + y)* + (p + z)‘))~ with max( 11121, InI, 
(pJ)=N and max(lxl, ) y(, jzl)< $, we get, much as in the proof of 
Theorem 1, 

.0x, YY z) - f(O, 030) 

= ( x;+y2+zY$+; ay ( xg+yd+z; 2/+O(N-2E-3), ay > 
the partial derivatives being evaluated at x = y = z = 0. Integrating over the 
unit cube max( [xl, ( yl, 1~1) d i eliminates terms of odd order in x, y, or z 
to yield 

4m, n, P) = j (f(O, (40) -j-(x, Y, z)) dx dy dz 
~a~(lxl.lv1314~~ l/2 

1 = -- 
2 5 (ax2 + by2 + cz2) dx dy dz + O(N-“-‘) 

~Wl4l~l,IzO~ l/2 

= -&(a+b+c)+O(Np2’-‘), 
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where a = L(O, 0, 01, b = fJ0, 0, 01, c =f,,(O, 0,O). It is easily verified 
that a + b + c = 2s(2s - 1 )(m’ + n* + p2)-“- ’ and hence 

6N(S)=ifIS(1 -2s) c (m*+n2+p*)--s-‘+O(N-26-‘) 
max(lml.Inl.l~l)=N 

+1 -2s)N-2’YN(S)+O(N-*G-‘), 

where 

V,(s):=$ 1 (1+(m/N)*+(n/N)2)-“-1 
-NGm<N 
-N=Sn<N 

1 =- 
6N2 c ((rr~/N)~+(n/N)*+(p/N)~)-~-~+0(N-~). 

=wl~l,l~l.lPl)=N 

Now let 

V(s) := j (l+x*+y*)--s--1dxdy. 
max(lxl,lvl)~ 1 

Then, for re s 2 -2, 

I V,(s) - W)l 

-Nzn<N n dNy <” + 1 

-(l+~~+y~)-~-~} dxdy 

,< c 4)s+ 1)N-3= 16)s+ lJN-‘. 
-NCm<N 
-N,cn<N 

It follows that 

6,(S) = fS( 1 - 2s) N-*“V(s) + w,(s), (5) 

where V(s) and W,(s) are entire functions and W,(s) = O(N-‘&-‘) in 52. 
Thus, by the Weierstrass M-test, 

6(s) := f 6,(s) =; s( 1 - 2s) [(2s) V(s) + W(s) 
n=l 
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in the half-plane re s> 4; the series being convergent therein, and 
W(s) := C,“= i W,(s) is analytic in Q and hence for re s > 0. Since i(2s) has 
a simple pole with residue 1 at s = i, it follows that 

lim 
s- 1/2+ 

6(s) = W(i) - i V(a). 

On the other hand, by (5), 6,(i) = W,(f) and so 

p,(;)= w(+Jg+ w+$ v(k). (6) 

Observe now that, for re s < 2, 

BN(S) = (N+ 1/2)3--2S J (x2 + y2 + z’) -’ dx dy dz 
~a~~l-dl~I.I4~~~ 

= 6(N+ 1/2)3-2J j; dz Smax(lr,,lyl)al (x2+y2+z2)-‘dxdy 

= 6(N+ 1/2)3-2” j; z2-2s dz j (1 +x2+y2)-‘dxdy 
max(Ixl,lA)~l 

=6(N+ 1/2)3-2”V(s- 1)/(3-2s). 

It follows that, for 5 < re s < 1, 

a(s) := >Trn ~JJs) = 6(s) + so(s) =6(s) - j&(s) 

=a@)+3& V(s-1) 

= ; s( 1 - 2s) l(2.r) V(s) + W(s) + 3 & V(s - 1 ), (7) 

which is meromorphic in the half-plane re s > 0 with a simple pole at s = 5. 
Further, for re s < $, 

PN(S) - PO(S) = 3 
2(N+ 1/2)3-2”-4”-’ 

3 - 2s Us-l), 

which is entire. Thus /?&) - &,(s) = P,,,(S) + 3 .4”- ’ V(s - 1)/(2s - 3) which 
is defined for re s < ; and extends to an entire function which tends to 
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3 .4”-‘V(s- 1)/(2s- 3) in the half-plane re s > 5, though jIN(s) itself is 
infinite therein. Hence, for re s > 1, 

= lim aN(s)- 3& V(s- 1) 
N+m 

=a(s)-3&V(s-I) (8) 

and a(s) is known to have an analytic continuation to the half-plane 
re s>O. In (8) (T(S) is the analytic continuation afforded by (7) of a(s) 
from the strip i < re s < 5. It follows that G(S) = a(s) for 4 < re s < 5 and that 

a(W) = Jg+ 4s). 

On the other hand, by (6), 

lim fr,(f) - Jrn, a(s) 
N+m 

Further, CT(S) is defined as a direct limit only in the strip f < re s < + and at 
the point s = 4, because C,“= r np2’ is divergent when re s d 1 and 
s max~,x,.,,,,,2,~~ N+ &x2 + y2 + z’))’ dx dy dz is divergent when re s 2 $. 

It remain only to prove that V(i) = 2rc/3, and this can be done as 
follows. Changing to polar coordinates we have 

V(s) = 4 j;‘4 dfl jr’ 2r(l +r2))-’ dr=z 

where 

J(s) = j”” (1 + set’ tI)-S de = jni4 (2 -sin2 B))“(cos 0)*$ d0 
0 0 

I 
l/Jz = (2-t2)-s(1-t2)s--‘2dt 

0 

s 

6 
= 2-s+ l/2 (cos u) l- 2~( 1 - 2 sin2 u)s ~ 112 & (t = fi sin u). 

0 
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Hence J(i) = 7116 and so V(i) = 2x13. In addition, it is now easy to show 
that V(--f)=4log(2+$)-2x/3. 1 

Similar arguments establish the analyticity of g(s) in the strip 4 < re s < 5 
for more general three dimensional quadratic forms. 

The accepted value of the electron energy (normalized) for the simple 
cubic lattice is -2.837297..., while that obtained by taking the direct limit 
is - 2.313698... . If one computes the direct limit for real s infinitesimally 
larger than $ one will obtain the accepted value to any desired degree of 
accuracy. This begs the obvious question as to why -2.837297... is a 
“better” value than -2.313698.... The effect on the calculation of the 
relative stability on the three common cubic structures is as follows. 
Originally one had, after a more appropriate normalization than the one 
mentioned above, 

U(s.c.) = -1.76012.., U(f.c.c.) = -1.79175 . ..) U(b.c.c.) = -1.79186 . . . . 

while now, working exactly as indicated in [2], but taking the x/6 shift 
into account in appropriate parts of the calculations, one obtains 

U(s.c.)= -1.43530 . . . . U(f.c.c.)= -1.58713 . . . . U(b.c.c.)= -1.66296 . . . . 

Thus the relative stability of the three structures remains the same, but 
their separation becomes much more substantial. 
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