AN INCULSION THEOREM FOR DIRICHLET SERIES

DAVID BORWEIN

ABSTRACT. It is shown that under certain conditions the asymptotic relationship

$$\sum_{n=1}^{\infty} a_n s_n e^{-\lambda_n x} \sim l \sum_{n=1}^{\infty} a_n e^{-\lambda_n x} \text{ as } x \to 0+$$

between two Dirichlet series implies the same relationship with λ_n replaced by log λ_n .

1. **Introduction.** Suppose throughout that $\lambda := \{\lambda_n\}$ is a strictly increasing unbounded sequence of real numbers with $\lambda_1 \ge 0$, and that $a := \{a_n\}$ is a sequence of non-negative numbers such that

$$\sum_{n=1}^{\infty} a_n = \infty, \text{ and } \phi(x) := \sum_{n=1}^{\infty} a_n e^{-\lambda_n x} < \infty \text{ for all } x > 0.$$

Let $\{s_n\}$ be a sequence of complex numbers with $s_0 = 0$. The Abelian summability method A_{λ} (see [3, p. 71]) and the Dirichlet series method $D_{\lambda,a}$ (see [12]) are defined as follows:

$$s_n \to l(A_\lambda)$$
 if $\sum_{n=1}^{\infty} (s_n - s_{n-1})e^{-\lambda_n x}$

is convergent for all x > 0 and tends to l as $x \to 0+$;

$$s_n \to l(D_{\lambda,a}) \text{ if } \sum_{n=1}^{\infty} a_n s_n e^{-\lambda_n x}$$

is convergent for all
$$x > 0$$
 and $\frac{1}{\phi(x)} \sum_{n=1}^{\infty} a_n s_n e^{-\lambda_n x} \longrightarrow l$ as $x \longrightarrow 0+$.

When $\lambda_n := n$, the method A_{λ} reduces to the Abel method A, and the method $D_{\lambda,a}$ reduces to the power series method J_a (as defined in [1], for example). Denote by

Received by the editors March 15, 1988.

¹⁹⁸⁰ AMS Subject Classification 40D25, 40G10.

This research was supported in part by the natural Sciences and Engineering Research Council of Canada.

[©] Canadian Mathematical Society 1988.

 A_{λ}^* the method $D_{\lambda,a}$ with $a_1 := \lambda_1, a_n := \lambda_n - \lambda_{n-1}$ for $n \ge 2$. The method A_{λ}^* also reduces to A when $\lambda_n := n$. Further, it is known (see [2, Lemma 2]) that, under the additional hypothesis $\lambda_{n+1} \sim \lambda_n$,

$$x \sum_{n=2}^{\infty} (\lambda_n - \lambda_{n-1}) e^{-\lambda_n x} \to 1 \text{ as } x \to 0+.$$

Thus, when $\lambda_{n+1} \sim \lambda_n$,

$$s_n \to l(A_{\lambda}^*)$$
 if and only if $x \sum_{n=2}^{\infty} (\lambda_n - \lambda_{n-1}) s_n e^{-\lambda_n x}$

is convergent for all x > 0 and tends to l as $x \to 0+$.

The exact relationship between A_{λ} and A_{λ}^* for general λ remains to be investigated.

From now on we assume that $\lambda_1 \ge 1$ and that $\mu := \{\mu_n\}$ where $\mu_n := \log \lambda_n$. The following inclusion theorem for Abelian methods is known [3, Theorem 28]:

THEOREM A. If $s_n \to l(A_\lambda)$, and $\sum_{n=1}^{\infty} (s_n - s_{n-1}) \lambda_n^{-x}$ is convergent for all x > 0, then $s_n \to l(A_\mu)$.

The purpose of this note is to prove the following analogous theorem for Dirichlet series methods:

THEOREM D. Suppose that $s_n \to l(D_{\lambda,a})$, and that $\sum_{n=1}^{\infty} a_n \lambda_n^{-x}$ and $\sum_{n=1}^{\infty} a_n s_n \lambda_n^{-x}$ are convergent for all x > 0. Then $s_n \to l(D_{\mu,a})$.

2. **Proof of Theorem D.** Suppose that x > 0, and let

$$\phi_s(x) := \sum_{n=1}^{\infty} a_n s_n e^{-\lambda_n x}, \psi(x) := \sum_{n=1}^{\infty} a_n \lambda_n^{-x}, \text{ and } \psi_s(x) := \sum_{n=1}^{\infty} a_n s_n \lambda_n^{-x}.$$

Then the hypotheses of Theorem D imply [3, Theorem 30] that

$$\psi(x) = \frac{1}{\Gamma(x)} \int_0^\infty t^{x-1} \phi(t) dt \text{ and } \psi_s(x) = \frac{1}{\Gamma(x)} \int_0^\infty t^{x-1} \phi_s(t) dt.$$

Hence

$$\frac{\psi_s(x)}{\psi(x)} = \frac{1}{F(x)} \int_0^\infty t^{x-1} \phi(t) \sigma(t) dt,$$

where

$$F(x) := \int_0^\infty t^{x-1} \phi(t) dt \text{ and } \sigma(t) := \frac{\phi_s(t)}{\phi(t)}.$$

Suppose without loss of generality that l=0, i.e., that $\sigma(t)\to 0$ as $t\to 0+$. Since $\sum_{n=1}^{\infty}a_n=\infty$, we have that $\phi(t)\to\infty$ as $t\to 0+$ and hence that $F(x)\to\infty$ as $x\to 0+$. Further, $\sum_{n=1}^{\infty}a_ns_ne^{-(\lambda_n-\lambda_1)t}$ is uniformly convergent for $t\ge \delta>0$ (see

[3, p. 76]); so that $|\phi_s(t)| \le H_\delta e^{-\lambda_1 t}$ for $t \ge \delta > 0$, where H_δ is a positive number independent of t. It follows that

$$\lim_{x \to 0+} \sup \left| \frac{\psi_s(x)}{\psi(x)} \right| = \lim_{x \to 0+} \sup_{F(x)} \frac{1}{F(x)} \left(\int_0^\delta t^{x-1} \phi(t) \sigma(t) dt + \int_\delta^\infty t^{x-1} \phi_s(t) dt \right)$$

$$\leq \sup_{0 < t < \delta} |\sigma(t)| + \lim_{x \to 0+} \sup_{\delta^{1-x} F(x)} \int_\delta^\infty e^{-\lambda_1 t} dt$$

$$= \sup_{0 < t < \delta} |\sigma(t)| \to 0 \text{ as } \delta \to 0+,$$

and hence that $\psi_s(x)/\psi(x) \to 0$ as $x \to 0+$.

19891

Example. With $\lambda_n := n, a_n := 1/n$, Theorem D yields the following interesting result concerning the Riemann zeta function:

if
$$\frac{1}{-\log(1-y)} \sum_{n=1}^{\infty} \frac{s_n}{n} y^n \to l$$
 as $y \to 1-$
and $\sum_{n=1}^{\infty} \frac{s_n}{n^w}$ is convergent for all $w > 1$, then $\frac{1}{\zeta(w)} \sum_{n=1}^{\infty} \frac{s_n}{n^w} \to l$ as $w \to 1+$.

The first of the above hypotheses can be stated as $s_n \to l(L)$, where L is the logarithmic power series method of summability; and, because of the familiar result that $(w-1)\zeta(w) \to 1$ as $w \to 1+$, the conclusion can be simplified to

$$(w-1)\sum_{n=1}^{\infty} \frac{s_n}{n^w} \to l \text{ as } w \to 1+.$$

REFERENCES

- 1. D. Borwein, Tauberian conditions for the equivalence of weighted mean and power series methods of summability, Canad. Math. Bull., 24 (1981), 309-316.
- 2. ——, Tauberian and other theorems concerning Dirichlet's series with non-negative coefficients, Math. Proc. Camb. Phil. Soc., 102 (1987), 517–532.
 - 3. G. H. Hardy, Divergent Series (Oxford University Press, 1949).

Department of Mathematics
The University of Western Ontario
London, Ontario, Canada N6A 587