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1. SEGMENTING MANN ITERATIONS 

Let [a, 61 be a closed bounded interval on the real line and consider a 
continuous mapping f: [a, b] -+ [a, b]. Let {t,,} be an arbitrary sequence 
of real numbers in [0, l] and consider the sequence of iterates {xn} in 
[a, b] generated by 

x ,lfl :=(I -t,,)Xn+t,f(xn). (1) 

This iteration is often said to be a segmenting Mann iteration [ 12, 2, 51 
or to be of Krasnoselski-type [ 11,4, 7, 83. More general Mann iterations 
are discussed in Section 3. 

PROPOSITION 1. Suppose (i) that {xn} converges to z and (ii) that 

f t,, = Co. (2) 
n=l 

Then f (z) = z so that z is a fixed point of J 
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Proof: Suppose f(z) #z. Let E, :=f(x,) -x,. Then {Ed} tends to a 
non-zero limit. Since C t, diverges so also does C t,,E,. As 

n- I 
x,-x1= c t,l& 

k=l 

this contradicts the convergence of {xn}. 

It is obvious that Proposition 1 can fail for a convergent series Ct, with 
sum s, since 0 < Ix, - zI <s max Ij(x,,) -x,1 < dist(x,, F) may well occur. 
(Here F denotes the fixed points off.) Less trivially, the following converse 
of Proposition 1 holds. 

PROPOSITION 2. Suppose that for each continuous function f: [a, b] -+ 
[a, b] convergence of the iteration {x,} given by (1), say to z, implies that 
z is a fixed point ?f$ Suppose also that sup I,* < 1. Then (2) must hold. 

Proof: Suppose without loss of generality that a = 0 and b = 1. Consider 
f(x) := 1 - cx with c chosen so that 0 < c < inf( 1 - t,,). Then iteration (1) 
becomes 

l-(c+1)-%+, =(l-(CSl)X,,)(l-(c+l)t,) 

and so 

l-Cc+ 1)x,1+1 =(I-(c+i)x,) f, (f-(C+f)tk), 
k=l 

which tends to (1-(c+l)xI)p where 

p:= f, (f-(C+f)tk). 
k=l 

Note that p always exists as the limit of a decreasing positive sequence. 
Hence, {x,> converges to w :=z + (x, -z)p, where z := l/(c + 1) is the 
unique fixed point of J Suppose that x, #z and that the series Et,, 
converges. Since no term in the infinite product is zero, p is non-zero and 
(x,,) converges to u’ # z. 

PROPOSITION 3. Suppose that {t,,} tends to zero. Then the sequence {x,} 
given by (1) converges. 

Proef: The proof is essentially that given in [3] for the case 
t,, := l/(n + 1). Let s := limsup x, and i := liminf x,. Suppose that s > i and 
that c is any point with s > c > i. Then c is a fixed point off: Suppose not. 
We may assume that ,f(c) > c and so find 6 such that s - i > 6 > 0 and 

f(x) > x whenever Ix - CJ < 6. (3) 
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Select m large enough so that 

IX n+l -x,rI -cd for n>m. (4) 

Now select N > m with xN > c as is possible since s is the limit superior of 
{x~}. It follows that x, > c for 12 > N. Indeed if x, > c + 6 then, using (4), 
x, + 1 > c; while if c + 6 2 x, > c then (1) and (3) combine to show that 

X n+l =x,+t,[f(x,)-XX,]>X,>C. 

Hence, by induction x, > c for n > N and so i > c. This contradiction shows 
f(c) = c. Now i < x,, < s forces X, + , = x,, + t, [f(x,) - x,] = X, which 
implies that s = i. So for n > N we must have x,, > s or x, < i. Since s - i > 6 
we must have x, > s for all n > N or x,, < i for all n > N. Both possibilities 
imply that i 3 s. Thus i > s is impossible and {xn} converges as claimed. 

There is another natural condition ensuring that (i) of Proposition 1 
holds. Recall that f is L-Lipschitz if If(x) -f(y)1 < L/x-y1 for all x and y 
in [a, b]. The key lies in the next lemma. 

LEMMA 4. Suppose that f is L-Lipschitz and that f(x,) -x, and 
f(xn+,)-x,+1 have opposite signs. Then there is at least one fixed point in 
the interval between x, and x,,+ , and for each such fixed point z we have 

IX .+~-~16C~~,*~~+~~-~1l~,-~l. (5) 

Proof: We may assume f(x,)-x, 80 >f(x,+ 1) -x,+ ,. Then x, d 
X ?I + 1 and the Intermediate Value theorem guarantees the existence of a 
fixed point z in [x,, x,+ ,I. Thus we have 

X ,+l-~=~~-~,~C~,,-~l+~nCf~~,~-f~~~l 

=(~,-1)C~-&rl +t,CfW-f(z)1 
~(t,-,)Cz-x,l+t,lLCz-x,l 

= [(t,(l + L)- l)] lz--,,I. 

Let us say that {x,,} switches directions at x,,+ , if either 

-~n<Xn+l’Xn+2 or Xn’.~,+l<Xn+2. 

Observe that a switch occurs exactly when f (x,) - x,~ and f(x,+ 1) - x, + , 
have opposite signs. 

LEMMA 5. Suppose that .f is L-Lipschitz and {x, > has successive switches 
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of direction at x,,(~,+, and x,(~,+, and that for k := 1 or 2, tnCk, = 
(2 - E~)/(L + 1) for some zzk in (0, 1). Then 

(a) for n(2)+ 1 >n>n(l) x,, lies between x,,(~) andx,(,,+,, and 

(b) I-w)-x,,m+,l ~(1 -@I -x,(t)-x,,(I)+,I. 

Proof We may suppose that x,(~) < x,(,)+, > x,,(~)+~ and x,,(~) > 
x~(z)+I<x,w+~. Since f(-~(~J>x,(~~ and ~(x,,(,)+~)<x,(~)+, there are 
fixed points in [x,(,), x,(, )+ 1]. Let 

m:=inf{x:f(x)=x, x,~,~~x~x,~,,+,}. 

Then m > x,(, ) and Lemma 4 implies that 

Hence 

I~-x~(~,+, I <Cl -8,) Im-xnc,,l. 

ma [Cl -&l)X,,(,,+X,(,,+,1/(2-&1) 
and so 

X,(l), I - m G C-~,W+ I -xncl) 112. 

Since x, decreases for n( 1) + 1 < n < n(2), either 

(i) X”>X 11(2)+l~m~x,~,~; or 

(ii) x, a ~4~) 3 m 3 q2) + , 

and (6) and Lemma 4 together imply that 

(6) 

x,(2)+l 2 (1 -c2) x,(~)+E~~. 

In either case for n( 1) + 1 < n <n(2) + 1 

X,,(l)+~~x,~~(l--~)x,(~)+E~m~x,(,, 

which establishes (a). Since x,,(~)+, > x,,(~), (6) and (7) show that 

0 d --f,,(Z) - X,(2) + 1 

(7) 

~(1-E2)[X,(~)+l-~,(~)1+E2(X,(~)+~-m) 

6(1 -&2/2)CX,(I)+I-X,(,)1, 

which establishes (b). 

(8) 

PROPOSITION 6. Suppose that f is L-Lipschitz and that, for some E > 0 
and all n, 

2-E 
t, 6--- 

L+l’ (9) 
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Then {x,} converges to some point z. Moreover, tf there are infinitely 
many switches, z lies between x, and x, + , whenever there is a switch at 
X mt 1. 

In addition, if for all n 

1 
t, 6--- L+l’ 

then convergence is monotone. 

Proof If {x,} switches directions only finitely often then convergence 
follows since the sequence is eventually monotone. Suppose therefore that 
the sequence switches directions infinitely often at x,(i)+ ,, x,(,)+ i, . . . . 
X,(k) + 1) ... . Lemma 5 shows that, for n(k + 1) + 1 3 n 2 n(k), X, lies between 
x,(,) and x,(~) + , and that 

IX n(k + I) -.%(k+l)+li 6t1 -d2) ix,(k)-x,(k)+II. 

Inductively, we see that the intervals of switching are nested and that for 
n,m>n(k+ 1) 

1x,-xX,( <(1-~/2)~ (b-a) 

so that (xn} is a Cauchy sequence and hence has limit z. 
Finally, if sup t, d l/(L + 1) then Lemma 4 shows that no change of 

direction is possible. 

Note that to establish convergence it is only necessary to assume that 
limsup t, < 2/(L + 1). Note also that we have only used the fact that f is 
quasi L-Lipschitz: If(x) -f(z)1 < LJx-zj whenever z is a fixed point off: 
We have now proved: 

THEOREM 7. Suppose that t, lies in [0, 11, that Ct, is divergent, and that 
either 

(a) it,,} converges to zero; or 
(b) f is L-Lipschitz and limsup t, < 2/(L + 1). 

Then the iteration (1) converges to a fixed point of J: 

In [7] Hillam states Theorem 6 (b), without proof, for constant t, and 
proves the monotone result for constant t, < l/(L + 1). He also gives a 
simple example to show that the result may fail for t, = 2/(L + 1). The 
whole of Theorem 7(a) can be found in Rhoades [13] from a different 
vantage point. In [14] Rhoades shows that (a) is not needed when f is 
increasing. It is reasonably easy to give an example to show that in (a) it 
does not suffice that liminf t, = 0. 
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2. NEGATIVE RESULTS 

There is a rich literature on the behavior of iteration (1) for non- 
expansive functions in normed space [ 1,2,4-6, 9-11-J. We next show 
Theorem 7(a) and Theorem 7(b) have no obvious generalizations to 
functions of more than one variable. 

PROPOSITION 8. Let D be the closed unit disk in the complex plane. Fix 
strictly positive constants a and a with SI < n/2. Consider the mapping 
f:D-+Dgivenby 

ftreiQ) .= ca + ‘1 r ei(Q+ z) 

r+a 

for 12 r 30 and 0 6 8 ~27~. Then f is Lipschitz with Euclidean constant 
(1 + l/a)* and has a unique fixed point at the origin. Suppose that Z t, = co. 

(a) For x1 # 0 the iteration fails to converge zf (a + 1) cos (a) > a. 

(b) Suppose that {t”} tends to zero. For x, # 0 the cluster points of 
iteration (1) form a circle around the origin of radius 

r* :=max{(l +a)cos(cc)-a, O}. 

In particular, the iteration (1) converges if” and only if (a + 1) cos (CI) < a. 

(c) Suppose that {t,} has constant value t in (0, 1). For x1 #O the 
cfuster points of iteration (1) all he on the circle around the origin of radius 

r**:=max{(l+a)c(t,a)-a,O}, 

where c(t, a) := [(l -t) cos(cr) + { 1 - [(I -t) sin(u)]2)1iZ]/(2- t)>cos(cr). 

Proof: It is clear that f has a unique fixed point at the origin and one 
easily checks the Lipschitz estimate. We consider the increasing function 
g(r):=(r+a)/(a+ 1) and note that the angle between z and f(z)-z is 
obtuse if and only if g(r) < COS(M). This holds if and only if 
rd (1 + a) cos(cc)-a. Hence, if Ix,,1 <r* it follows that Ix,,1 < Ix,,+ ,I for 
any t,, in [0, 11. 

(a) Suppose that (xn} converges to x. Since Ct, diverges, x = 0 is the 
unique fixed point. (This can be seen from [12], or from the argument in 
Proposition 1, or from the discussion in Section 3.) Hence for large n, x,, 
lies within radius r* of the origin and so the sequence is ultimately 
increasing in norm. This is a contradiction except if eventually x, = 0. Since 
x, = 0 implies x,~ , = 0 this can only happen when X, = 0. 
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A careful but tedious argument is needed to make all the details of (b) 
and (c) explicit. We thus only indicate the method. 

(b) A refinement of the argument in (a) shows that given F > 0, for n 
sufficiently large if Ix,] > r* + E then Ix,1 > Ix,,+ 1 1 because {t,,> tends to 0. 
Also divergence of Zt, means that { /x,1 } cannot converge monotonically 
to r # r*. Thus either { Ix,,1 } converges monotonically to r*, or oscillates to 
r*. In any event all cluster points of the iterates lie on the circle of radius 
r*. A result in [12] is that the cluster point set, A, of a Mann iterative 
sequence is closed and connected (as a compact s-chainable subset of a 
compact metric space). Also A is not singleton since 0 is the unique fixed 
point. Thus A is a non-trivial arc on Iz/ = r*. Finally, since f(z) is always 
anticlockwise of z, A cannot miss any segment of arc. 

(c) The value of r** ( > r*) is computed by solving for r such that 
Ix,(=r implies Ix,+,/=r. Again for Ix,,/ <r** we have Ix,1 <(.x,,+,(. 
Moreover if lx,] > r** then lx,1 > Ix,, ,I > r**. Thus {1x,1} is eventually 
monotonic and, much as in (b), must converge to r**. 

An explicit example is afforded by taking a := i and a := 743. In this case 
the Cesaro iterates (t, := l/(n + l)), cluster on IzI = f, while the 
Krasnoselski iterates (t, := $), cluster on IzI = (2J13 - 1)/9. 

PROPOSITION 9. Let C he a closed comex subset of a Hilbert space. 
Suppose that { tn} is such that Zt, = co. If iteration (1) converges for aN 
continuous f: C -+ C then C is a compact line segment. 

ProoJ: Suppose not. 

Case (i). C has afline dimension of one. In this case C is a set of points 
of the form a + tb where t > 0, or t E R, for points a and b, b # 0. Consider 
the mapping f (a + tb) := a + (t + 1) b which maps C to itself. Iteration (1) 
becomes x, + , = x, + t, b and fails to converge. 

Case (ii). C has afline dimension greater than one. In this case C 
contains a simplex [a, b, c] and hence a closed disk D. Let f: C---f C be 
defined by 

f(x) := g(P,(x))3 

where g : D + D is constructed by the recipe of Proposition 8 (or as in [6]) 
so that iteration (1) fails to converge, and P,(x) is the unique nearest 
point to x in D in the Hilbert norm. Since D is compact, P, is continuous 
and hence so is f: Then iteration (1) fails to converge. 

This construction works in any normed space with an equivalent rotund 
norm. 
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3. GENERAL MANN ITERATIONS 

Consider now a summability transformation given by 

n 

wx,, I= 1 un,k uk, 
k=l 

where un,k > 0, for all k and n, and where 

These conditions make the triangular matrix [a,,k] regular (i.e. U, -+s 
implies x,, -+s [13, IS].) Following Dotson [2] we somewhat non- 
standardly call a summability matrix (non-trivially) normal if 

a n+l,k=(l-an+,,,+,)a,,,k for ldkdn, (10) 

and a n+l,n+, -=c 1 for n= 1,2, . . . . 
Consider a nonnegative sequence {d,} with d, # 0 and set 

D, := d, + d, + ... + d,. Then the triangular matrix with entries 

a n,k :=dk/Dn (11) 

corresponds to a weighed mean and satisfies (10). In addition it is regular 
exactly when Zd,, = co. Conversely, if we define 

D,:= fi 1 
k=2 lpak,k 

for n> 1 and D, := 1, 

and set d,, := u,,~ D, then (11) follows from (10). 
We observe that (10) is equivalent, for matrices with a, + ,,,, + , < 1, to the 

method being stationary: 

u,+1 =X12=s-Xn+, = x,; (12) 

or to the method being interpolatory: 

min{x,, u,+~) Gx,,+~ Gmax{x,, u,+,). (13) 

Indeed (13) implies (12) implies (10) implies (11) implies (13). We have 
established: 

PROPOSITION 10. A triangular row stochastic summability matrix [u,,~] 
with a n+1,n+l -C 1 is normal if and only if it is a weighted mean matrix given 
by (11). 
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A Mann iterative process for a continuous function f: C -+ C mapping a 
closed convex set to itself is given by 

24 n+ I :=.f(x,,), 

where 

x .- n .- i an,k uk 
k=l 

with u , :=x1 in C. Given that the matrix is regular, if either {xX} or {u,} 
converges, then both converge to a common limit which is a fixed point 
off: For weighted mean iterations we have: 

THEOREM 11. Let f: [a, b] -+ [a, b] and let Zd,, be a divergent series of 
non-negative terms with partial sums D, := d, + d, + . . . + d,, and d, > 0. 
Suppose that f is continuous and d,,/D, tends to zero, or that f is L-Lipschitz 
and limsup d,,/D, < 2/( L + 1). 

Then both the weighted mean iterations 

(a) x,1+1 :=& i dkfh), xl E [a, bl 
N k=, 

and 

(b) X,+1 :=f(+ i dkxkj, x,ECa,bl 
,, k=, 

converge to fixed points off: 

ProojI We apply Theorem 7. An easy calculation shows that (a) is 
precisely iteration (1) for t,, := d,,/D,. Abel’s Theorem (2.41 in [ 151) shows 
that Et,, is divergent. To establish (b) we let 

c,, :=- 
d, ,g, dkXk 

and t, := d,,, JD,, I and we observe that the iteration becomes 
c,, , = (1 - t,) c, + t,f(c,). It follows that {cn} converges to a fixed point 
z. Since x, + i =f(c,), x, also converges to Z. 

The requirement that Cd,, be divergent is precisely the condition for the 
weighted average summability method to be regular [15], whether or not 
d,,/D, tends to zero. The Franks and Marzec result in [3] is (b) for the 
C,-method: the simplest Cesaro means with d, := 1. The non-Lipschitz 
version of Theorem 11 (b) is also to be found in Rhoades [ 131. 
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In the proof of Theorem 11 a sequence { tn} corresponding to any 
weighted mean matrix is constructed. (See also [2].) Conversely, given 
{ t,$} with 0 6 t, < 1 a corresponding weighted mean matrix is given by 
D, :=d, := 1 and for n32 

,1- 1 

D,, := n 1 
kc, l-t, 

and d,, := t,-, D,, 

Thus, as known, segmenting Mann iterations correspond to weighted 
mean matrices. However, the weighted mean iterations are not the most 
general of the classical summability transformations for which the Mann 
iteration process works. We illustrate this now. We consider product means 
given by 

Y,, :=$ i PkXk, 
1 n 

11 k=, 

where Cp, and Cq,, are series of non-negative terms with partial sums 
P,,:=p,+p,+ ... +p,, and Qn:=q,+q2+ ... +qn, and with p,,ql>O. 
The corresponding matrix, which transforms {x,,} into {z,,}, has entries 

a 

and is regular when both series diverge. We may rewrite the Mann itera- 
tion for this matrix as 

x ,,+ I :=f(=nL 

(i) Y,,+~ := (l-%)Y,,+%xTl+l~ (14) 

(ii) z,~+ 1 := (1 -Pn)=n+BnY,,+l> 

with y, = z, E [a, b] and where, working as above, LX,, :=p,,+ ,/P,2+, and 
B, :=qn+,/Qn+,. 

If ct, or /3, are constantly 1 then (14) reduces to (1 ), while if neither a, 
nor /?, is ever 1 we may reconstruct the product mean from (14). The itera- 
tion (14) is often susceptible to the next result whose proof is entirely 
analogous to that of Theorem 7(a). 

PROPOSITION 12. Let f: [a, b] -+ [a,h] he continuous. Suppose that t, 
lies in [0, 11, that Ct, is divergent, and that {t,} converges to zero. Suppose 
also that x1 E [a, h] and 

X n+* :=(l-~,,)x,+t,,~,~ (15) 
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where w, - f(x,) + 0. Then either (i) {xH} converges to a fixed point off, or 
(ii) every point of (i, s) is a fixed point off, where i := liminf x, and s := 
limsup x,. 

THEOREM 13. Let f: [a, h] -+ [a, b] be continuous. Let Zp, and Cq, 
diverge. 

(a) Iteration (14) converges to a fixed point off is either 

(A) (i) F-+0 and (ii) k g pp,+O, 
n nkl k 

or if 

(B) (i) F-+0 and (ii) $ i P, If(zk)-f(zk&I)I +O. 
n VI k=2 

(b) In particular, (A) (ii) holds if {qk/Qk} is bounded away,from zero 
and (B) (ii) holds if {pk/Pk) is bounded away from zero. Moreover, if f is 
Lipschitz then (B) (ii) may be replaced by 

Proof. We suppose the interval [a, b] is [0, l] without loss of 
generality. 

Case (A). (a) Let 6, := (z,,-y,\. We show 6, -+O. It follows by 
uniform continuity that f(zil) -f( y,) -+ 0 and that Proposition 12 applies 
to (14) (i). Now 

6 n+l~(l-p,)(~,+IYn+l-Y,,l) 

G (1 - Pn)(h + 4 = (QJQn + INS, + an) 

and inductively, 

which converges to zero whenever (A) holds. 
Assume that ( y, > does not converge, and let i and s be its inferior and 

superior limits respectively. Since y, + I -y, -+ 0 and z, - y, --, 0, we must 
have both yn and z,, arbitrarily close to (i+ s)/2 for infinitely many n. 
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Hence there is an n for which both y, and z, lie in (i, s). But then, by 
Proposition 12 (ii), f(z,,) = z, and it follows from (14) (i) and (14) (ii) that 
Y,+~ and z,+~ lie between y, and z,. Induction now yields that both {y,} 
and {z,,} converge, contrary to the assumption. 

(b) We observe that since U, -+ 0 (ii) will hold if 

kc, Qk = O(Q,+ 11. 

This is true in particular if qk > &Qk for some E > 0. 

Case (B). (a) Let dn:=I,vntl -f(zn)i. We show 6, +O. It follows 
that Proposition 12 applies to (14) (ii). Let d, := If(z,) -f(z,- ,)I. Then, 
arguing as in Case (A), 

which converges to zero whenever (B) holds. The proof of Case (B) can 
now be completed in much the same way as in Case (A). 

(b) We observe that A, -+ 0 since 8, + 0, and so (ii) holds if 

i pk=o(p,+l). 
k=l 

This is true in particular if pk > EP~ for some E > 0. 

Last, if f is L-Lipschitz A n+, < L/3,, and we obtain the final sufficient 
condition as in Case (A). 

EXAMPLE 14. (a) Let P,~ := l/n and q, := 1. Then 

where P,- log(r) 

and so p,/P, + 0 and Theorem 13 (A) (ii) holds since l/log(n) + 0. 

(b) Let p1 :=l and ~~:=2”~~ for n>2, and q,:= 1. Then 
8, = l/(n + 1) and a, = l/2. Thus Theorem 13 (B) holds while 

and 

an.1 .- .-2 1-h 
n ( ) 
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Exchanging the roles of pn and qn leads to an application of 
Theorem 13 (A) with 

a n,k 
2’ 
-2 n>k>2 
r 

and 

1 
a .-- n,I .-- 2nd ( 

l+i 2’-2 
r=2 r ) 

(c) Theorem 13 fails to apply to two very natural iterations. Let 
p, := 1 and q n := 1. The underlying mean is the Holder mean of order 2, H, 
[ 131, for which CI, = /I, = l/(n + 1). This mean takes the Cesaro average of 
Cesaro averages. 

Correspondingly let p n := 1 and qn := P,, = it. The underlying mean is the 
Cesaro mean of order 2, C, [13], for which CX, = l/(n + 1) and 
/3, = 2/(n + 2). On beginning indexing at k = 0 as is conventional the mean 
has an,k := 2(n+ 1 - k)/[(n+ l)(n+2)]. This mean is equivalent in the 
summability sense to H, and is also a simple Norlund mean [ 131. 

We leave open the question of whether (14) converges in these cases. 
Observe, however, that if pn := l/n and qn := P, then Theorem 13 (A) does 
apply and 4.k := (n + 1 - k)/(kQ,) with Qn N n log(n). 

The following gives an example of a simple regular triangular row 
stochastic matrix and a continuous function f : [0, 1] + [0, l] for which 
the Mann iteration, u,+ 1 :=f(x,), fails to converge while the difference 
between successive terms goes to zero, so that the cluster set of (xn} is 
connected for all continuous f: [0, l] + [0, 11. 

EXAMPLE 15. For 16 k <n let 

i 

1 - when 3 m-1<rl<3”, m = 1, 2, . . . . 
an,k = m 

0 otherwise. 

This is the Cr matrix with its m th row repeated 2 .3’+’ times. The corre- 
sponding Mann iterative process is given by 

Un+ 1 :=f(xn) 

with ur =x1 E [0, l] and 

x .=- n ’ 
A kg,uk for 3”-‘~n<3”’ 
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Clearly x,, + , - X, -+ 0. Let 

u,, := - 
: kg, uk, 

Then xk = v,, for 3”- ’ 6 k < 3” and so 

1 
Vj” = - 

3” 

Now take 

Since 0 < v, < 1, we see that v,, 3 5 = ujfl < f and v, d f + v3” 3 :. Thus if we 
take vi = u1 =x, in either [0, i] or [f, l] then the sequence {u,?} has 
infinitely many terms in each interval and so cannot converge. Thus the 
sequence { un} does not converge. 

We note finally that the function f(x) := 1 - x”(p 3 1) is Lipschitz and 
decreasing on [0, 11. Thus, both parts of Theorems 7 and 11 apply. By 
contrast, the mean ergodic estimate 

x,, := [f(x) +f”‘(X) + ‘. . +.f’“‘(x)]/n 

need not converge to a fixed point unless p = 1 in which case f is non- 
expansive [S]. Clearly, for x := 0 or x := 1, {x,,} converges to i not to the 
fixed point. In fact, for any x other than the fixed point and for any p > 1, 
{xn} converges to i not to the fixed point. 
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