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Abstract of CF:CCC Talk

In honour of my friend Boris Mordhukovich

We met in 1990. He said
“How old are you?”
| said “39 and you?”
He replied “48.”

| left thinking he was 48 and
he thinking | was 51.

Some years later Terry
Rockafellar corrected our
cultural misconnect.

What was it?




Convex Functions

Convex Functions: Characterizations,

Constructions and Counter examples
(CUP In press)

Convex functions, along with smooth functions,
provide the wellspring for much of variational
analysis

In this talk | shall look at four open problems in
variational analysis, at the convex structure
underlying them, and at the convex tools
available to make progress with them

In each case, | think better understanding Is
fundamental to advancing nonsmooth analysis
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ConveXx Functions

* His (separable) Hilbert space in some renorm |}l
e Cis anorm-closed subset and

d.(X)=iInf . I x—cll
P.(x) :=argmind.(X)
* In the Hilbert case P.(x) Is at most singleton

 In a non-rotund renorm it may be multivalued

o If C Is convex it is non-empty

Most of the questions that follow are no easier in arbitrary
renorming of Hilbert space than in reflexive Banach space




Convex Functions

The Chebyshev problem (Klee 1961)

If every point in H has a unique nearest pointin Cis C
convex?

Existence of nearest points (proximal boundary?)

Do some (many) points in H have a nearest point in C In
every renorm of H ?

Second-order expansions in separable Hilbert space

If f is convex and continuous on H does f have a second
order Taylor expansion at some (many) points?

Universal barrier functions in infinite dimensions

Is there an analogue for H of the universal barrier function
that is so important in Euclidean space?




Convex Functions

The Chebyshev problem (Klee 1961) A set is Chebyshev if
every point in H has a unigue nearest point in C

Theorem If C is weakly closed and Chebyshev then C is
convex. So in Euclidean space Chebyshev iff convex.

Four Euclidean variational proofs (BL 2005, Opt Letters 07, BV 2008)
1. Brouwer’s theorem (Cheb. implies sun implies convex)

2. Ekeland’s theorem (Cheb. implies approx. convex implies convex)

3. Fenchel duality (Cheb. iff Y¢ is Frechet) use f*smooth implies f convex for

e+ MY WP+
2 2

4. Inverse geometry also shows if there is a counter-
example it can be a Klee cavern (Asplund) the
closure of the complement of a convex body. WEIRD

« Counterexamples exist in incomplete inner product
spaces. #2 seems most likely to work in Hilbert space.

\ 4

d EUCIidean case iS due to MOtZkin'Bunt FicUuRE 1. Suns and approximate convexity.
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Convex Functions

Existence of nearest points
Do some (many) points in H have a nearest point in C in every renorm of H ?

Theorem (Lau-Konjagin, 76-86) A norm on a reflexive space is
Kadec-Klee Iff for every norm-closed C in X best approximat-
lons exist generically (densely) in X\ C.

Nicest proof is via dense existence of Frechet subderivatives

@ € 0pd.(X)

The KK property forces approximate minimizers to line up. £ \/ \

— There are non KK norms with proximal points dense in bdry C

., o g P
S — S

— If Cis closed and bounded then there are some points with nearést points (RNP)

— S0 a counterexample has to be a weird unbounded set in a rotten renorm (BF89,
BZ 2005)

A norm is Kadec-Klee norm if weak and norm topologies agree on the unit sphere.

Hence all LUR norms are Kadec-Klee.




Convex Functions

Second-order derivatives in separable Hilbert space

If f IS continuous and convex on H does f have a

(weak) second-order Taylor expansion at some
(many) points?

Theorem (Alexandrov) In Euclidean space the points
at which a continuous convex function admits a
second-order Taylor expansion are full measure

 In Banach space, this is known to fail pretty completely unless one restricts
the class of functions, say to nice integral functionals

* IS it possible in separable Hilbert space (BV 2009) that every such f has at
least one point with a second-order Gateaux expansion?

* The goal is to build good jets and save as much as possible of extensions of
lovely Euclidean results like 8{ 1

AL (x)} = A [OF (%)



ConveXx Functions

Universal barrier functions in infinite dimensions

— Is there an analogue for H of the universal barrier function
that is so important in Euclidean space?

Theorem (Nesterov-Nemirovskii) For any open convex set
A In n-space, the function

F(X) = Ay ((A=x)")

IS an essentially smooth, log-convex barrier function for A.

— This relies heavily on the existence of Haar measure (Lebesgue).
— Amazingly for A the semidefinite matrix cone we recover — log det, etc

In Hilbert space the only really nice examples | know are similar to:
(T ) = trace(T)—log(det(l +T))

IS a strictly convex Frechet differentiable barrier function for the

Hilbert-Schmidt operators with 1+T > 0.

We (JB-JV) are able to build barriers in great generality but not “universally”.
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Convex Functions

The Chebyshev problem (Klee 1961)

If every point in H has a unique nearest pointin Cis C
convex?

| HAVE A SUGGESTION FOR THESE TWO: DISTORTION
Existence of nearest points (proximal boundary?)

Do some (many) points in H have a nearest point in C In
every renorm of H

Second-order expansions in separable Hilbert space

If f Is convex continuous on H does f have a second order
Taylor expansion at some (many) points?

| THINK PROGRESS FOR THESE TWO WILL BE INCREMENTAL
Universal barrier functions in infinite dimensions

Is there an analogue for H of the universal barrier function
that is so important in Euclidean space?




Convex Functions

A Banach space X is distortable if there is a renorm and A\>1
such that, for all infinite-dimensional subspaces YC X,

sup{l y |/ x|x,y €Y, xli=lly ll=1} > 4.

X Is arbitrarily distortable if this can be done for all A>1.

ﬁheorem (Odell and Schlumprecht 93,94) Separable
Infinite-dimensional Hilbert space is arbitrarily distortable

Distortability of |,(N) is equivalent to existence of two
separated sets in the sphere both intersecting every infinite-
dimensional closed subspace of |,(N). Indeed, there is a
sequence of (asymptotically ortﬁogonal) subsets (C,),-,*
of the unit sphere such that (a) each set C, intersects each
Infinite-dimensional closed subspace of and (b) as i,] > oo

sup{|<x,y)|xeC,,yeC,} >0

These are such surprising sequences of sets that they
should shed insight on the two proximality questions




"HeneS  wrens vov
vWDE MOUIL MISTAKE.”
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J.M. Borwein and Qiji Zhu, Techniques of Variational
Analysis, CMS- Springer, 2005.

J.M. Borwein and A.S. Lewis, Convex Analysis and
Nonlinear Optimization. Theory and Examples, CMS-
Springer, Second extended edition, 2005.

: J.M. Borwein and J.D. Vanderwerff, Convex functions,
Enigma constructions, characterizations and counterexamples,
Cambridge University Press, 2009.

“The object of mathematical rigor is to sanction and legitimize the
conquests of intuition, and there was never any other object for it.”

» J. Hadamard quoted at length in E. Borel, Lecons sur la theorie des fonctions, 1928.
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