Asymptotic behaviour of the composition of two prox operators

Heinz H. Bauschke
Mathematics and Statistics, University of Guelph

```
hbauschk@uoguelph.ca
```

Classical Analysis in honour of David Borwein's 80th Birthday
CMS Meeting, June 14, 2004, 5:00PM - 5:30PM
Arts Centre 409, Dalhousie University

An Analysis Problem

Let r be a positive constant and $c_{0} \geq 0$. Consider the iteration

$$
c_{n+1}=c_{n}+r-\frac{c_{n}}{\sqrt{1+c_{n}^{2}}} .
$$

(a) For which values of r does the sequence $\left(c_{n}\right)$ converge?
(b) In case of convergence to c with $c \neq c_{0}$, prove that $\lim \left(c_{n+1}-c\right) /\left(c_{n}-c\right)$ exists and determine its value.
(c) In case of divergence, find an asymptotic expression for c_{n}.

An Analysis Problem

e This is D. Borwein and J. Borwein's Problem 10335 in American Mathematical Monthly, Vol. 100, 1993.
e Solution was used in a paper by HB and J. Borwein from 1994. In fact, the Acknowledgment of this paper reads:

The authors wish to thank David Borwein for discussion of Example 5.3, Judith Borwein for preparing the manuscript, and two anonymous referees for helpful suggestions.
And our affiliations were Dalhousie and Waterloo!

Overview

1. Motivation
2. Bregman objects
3. Bregman results
4. References

Collaborators

Based on joint works with:
e Patrick L. Combettes (Paris 6, France),
e Dominikus Noll (Toulouse, France).

1. Motivation

Set up

Throughout,

$$
X=\mathbb{R}^{J}
$$

with

$$
\text { inner product }\langle x, y\rangle \text { and norm }\|x\|=\sqrt{\langle x, x\rangle} \text {, }
$$

for x and y in X. Also, the proper lower semicontinuous convex functions on X are denoted by

$$
\Gamma_{0}(X)
$$

Alternating projections

Suppose
A and B are nonempty closed convex sets in X,
with corresponding projectors (nearest-point mappings)

$$
P_{A} \text { and } P_{B} .
$$

Given a starting point $x_{0} \in X$, the method of alternating projections generates sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ by

$$
(\forall n \in \mathbb{N}) \quad y_{n}=P_{B}\left(x_{n}\right) \quad x_{n+1}=P_{A}\left(y_{n}\right) .
$$

Asymptotic behaviour of the composition of two prox operators - p.8/40

Basic convergence result

Theorem. (Cheney-Goldstein 1959, ...)
Suppose the gap

$$
\gamma:=\inf \|A-B\|
$$

between A and B is attained. Then:
$\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to $\bar{x} \in A,\left(y_{n}\right)_{n \in \mathbb{N}}$ converges to $\bar{y} \in B$, and $\|\bar{x}-\bar{y}\|=\gamma$.

Remark. True in Hilbert space with weak convergence but not norm convergence, thanks to Hundal.

Observations on the limits

e Fixed point characterization: \bar{x} and \bar{y} satisfy

$$
\bar{x}=P_{A} P_{B} \bar{x} \text { and } \bar{y}=P_{B} \bar{x}=P_{B} P_{A} \bar{y}
$$

e The dual solution is

$$
v:=P_{\overline{B-A}}(0) \equiv \bar{y}-\bar{x},
$$

i.e., the nearest point to 0 in the closure of the Minkowski difference $B-A$. Note that $\|v\|$ is exactly the gap γ !

Observations on the limits

e (\bar{x}, \bar{y}) solves the optimization problem

$$
\text { minimize }(x, y) \mapsto \iota_{A}(x)+\iota_{B}(y)+\frac{1}{2}\|x-y\|^{2} .
$$

Here ι_{A} and ι_{B} are indicator functions, defined by

$$
\iota_{C}(x):= \begin{cases}0, & \text { if } x \in C \\ +\infty, & \text { otherwise }\end{cases}
$$

Moreau envelope

Let $\theta \in \Gamma_{0}(X)$. The Moreau envelope of θ at z is

$$
\operatorname{env}_{\theta}(z):=\left(\theta \square \frac{1}{2}\|\cdot\|^{2}\right)(z):=\inf _{w \in X} \theta(w)+\frac{1}{2}\|z-w\|^{2} .
$$

This operation regularizes θ. For instance, if $\theta=\iota_{C}$, then

$$
\operatorname{env}_{\iota_{C}}(z)=\inf _{w \in X} \iota_{C}(w)+\frac{1}{2}\|z-w\|^{2}=\inf _{c \in C} \frac{1}{2}\|z-c\|^{2}
$$

is $\frac{1}{2} \cdot$ the square of the distance of z to C.

Proximity operator

The infimum in the definition of $\operatorname{env}_{\theta}(z)$, i.e.,

$$
\operatorname{env}_{\theta}(z)=\inf _{w \in X} \theta(w)+\frac{1}{2}\|z-w\|^{2},
$$

is always uniquely attained! The induced map

$$
\operatorname{prox}_{\theta}: X \rightarrow X: z \mapsto w_{z}:=\underset{w \in X}{\operatorname{argmin}} \theta(w)+\frac{1}{2}\|z-w\|^{2}
$$

is called the proximity operator or proximal map of θ.

Note that $0 \in \partial \theta\left(w_{z}\right)-\left(z-w_{z}\right) \Leftrightarrow z \in(\operatorname{ld}+\partial \theta)\left(w_{z}\right) ;$ equivalently,

$$
w_{z}=\operatorname{prox}_{\theta}(z)=(\mathrm{Id}+\partial \theta)^{-1}(z)
$$

Since $\partial \theta$ is maximal monotone, the operator $\operatorname{prox}_{\theta}$ is firmly nonexpansive
and everywhere defined.
If $\theta=\iota_{C}$, then $\operatorname{prox}_{\iota_{C}}=P_{C}($ projector onto the set $C)$.

Alternating prox operators

Let φ, ψ be in $\Gamma_{0}(X)$ and $x_{0} \in X$. Consider the method of alternating prox operators:

$$
(\forall n \in \mathbb{N}) \quad y_{n}:=\operatorname{prox}_{\psi}\left(x_{n}\right) x_{n+1}:=\operatorname{prox}_{\varphi}\left(y_{n}\right) .
$$

Theorem. (Acker-Prestel 1980)
$x_{n} \xrightarrow[\text { weak }]{ } \bar{x} \in X$ and $y_{n} \xrightarrow[\text { weak }]{ } \bar{y} \in X$, where (\bar{x}, \bar{y}) is a solution of the optimization problem

$$
\text { minimize }(x, y) \mapsto \varphi(x)+\psi(y)+\frac{1}{2}\|x-y\|^{2} .
$$

Remark. $\varphi=\iota_{A}, \psi=\iota_{B}$ yields alternating projections.

Purpose of this talk

e Consider the objective function

$$
X \rightarrow]-\infty,+\infty]:(x, y) \mapsto \varphi(x)+\psi(y)+\frac{1}{2}\|x-y\|^{2} .
$$

What happens if we replace

$$
\frac{1}{2}\|x-y\|^{2}
$$

by some other "distance-like" term?

2. BREGMAN OBJECTS

Suppose that

$$
X=\mathbb{R}^{J}
$$

and

$$
f \in \Gamma_{0}(X) \text { is differentiable on } U:=\operatorname{int} \operatorname{dom} f \neq \varnothing .
$$

Then the Bregman distance $D=D_{f}: X \times X \rightarrow[0,+\infty]$ corresponding to f is defined by

$$
(x, y) \mapsto \begin{cases}f(x)-f(y)-\left\langle f^{\prime}(y), x-y\right\rangle, & \text { if } y \in U ; \\ +\infty, & \text { otherwise } .\end{cases}
$$

Remark. D is not a distance in the sense of topology.

Further assumptions on f

We assume that f satisfies the following:
A1 f is of Legendre type;
A2 $f^{\prime \prime}$ exists and is continuous on U;
A3 D is jointly convex, i.e., it is convex on $X \times X$;
A4 $(\forall x \in U) D(x, \cdot)$ is strictly convex on U;
A5 $(\forall x \in U) D(x, \cdot)$ is coercive, i.e., it has bounded lower level sets.

Examples

Write $x=\left(\xi_{j}\right)$ and $y=\left(\eta_{j}\right)$. Then the following functions satisfy all assumptions on f :
(i) If f is the energy $x \mapsto \frac{1}{2}\|x\|^{2}$, then $U=X$ and

$$
D(x, y)=\frac{1}{2}\|x-y\|^{2} .
$$

(ii) If f is the negative entropy $x \mapsto \sum_{j} \xi_{j} \ln \left(\xi_{j}\right)-\xi_{j}$, then $U=\{x \in X: x>0\}$ and

$$
D(x, y)= \begin{cases}\sum_{j} \xi_{j} \ln \left(\xi_{j} / \eta_{j}\right)-\xi_{j}+\eta_{j}, & \text { if } x \geq 0 \text { and } y>0 \\ +\infty, & \text { otherwise }\end{cases}
$$

Remarks

e Note that the setting considered earlier is covered, since $D(x, y)=\frac{1}{2}\|x-y\|^{2}$ when f is the energy.
e When f is the negative entropy, the term $D(x, y)$ is known as the Kullback-Leibler information divergence in statistics and information theory.
e Other examples are:
(iii) the Fermi-Dirac entropy and
(iv) the log-quad function.
e The function $f=-\ln$ has many good properties, but it does not satisfy all our assumptions.

Exploiting joint convexity

Since D is jointly convex (A3), its Bregman distance D_{D} is nonnegative.

Fact. (B-Noll 2002).
Take $\{x, y, u, v\} \subset U$. Then:

$$
\begin{aligned}
0 \leq D_{D}((x, y),(u, v))= & D(x, y)+D(x, u)-D(x, v) \\
& +\left\langle f^{\prime \prime}(v)(u-v), y-v\right\rangle .
\end{aligned}
$$

Moreover:

(i) If f is the energy, then

$$
D_{D}((x, y),(u, v))=D(x, y+(u-v)) .
$$

(ii) If f is the negative entropy, then

$$
D_{D}((x, y),(u, v))=D(x, y u / v),
$$

where the product and quotient is taken coordinate-wise.

In general, D is not symmetric; consequently, we expect two envelopes for a given function $\theta \in \Gamma_{0}(X)$.

The backward Bregman envelope of θ is

$$
\overleftarrow{\operatorname{env}}_{\theta}: X \rightarrow[-\infty,+\infty]: z \mapsto \inf _{w \in X} \theta(w)+D(w, z)
$$

and the forward Bregman envelope of θ is

$$
\overrightarrow{\operatorname{env}}_{\theta}: X \rightarrow[-\infty,+\infty]: z \mapsto \inf _{w \in X} \theta(w)+D(z, w) .
$$

Examples

e If f is the energy, then backward \& forward Bregman envelope coincide with the Moreau envelope.
e If $\theta=\iota_{C}$ for some closed convex set C, then we obtain the backward Bregman distance

$$
\overleftarrow{D}_{C}:=\overleftarrow{\operatorname{env}}_{{ }_{C}}: z \mapsto \inf _{c \in C} D(c, z)
$$

and the forward Bregman distance

$$
\vec{D}_{C}:=\overrightarrow{\operatorname{env}}_{{ }_{l C}}: z \mapsto \inf _{c \in C} D(z, c) .
$$

Definitions

Let $\theta \in \Gamma_{0}(X)$ such that $\operatorname{dom} \theta \cap U \neq \varnothing$. Under reasonable assumptions, we have:
(i) The backward proximity operator is well-defined by

$$
\overleftarrow{\operatorname{prox}}_{\theta}: U \rightarrow U: y \mapsto \underset{x \in X}{\operatorname{argmin}} \theta(x)+D(x, y) .
$$

(ii) The forward proximity operator is well-defined by

$$
\overrightarrow{\operatorname{prox}}_{\theta}: U \rightarrow U: x \mapsto \underset{y \in X}{\operatorname{argmin}} \theta(y)+D(x, y) .
$$

Proposition. ("the backward prox is very nice")
Suppose θ is nice and $(x, y) \in U \times U$. Then TFAE:
e $x=\overleftarrow{\operatorname{prox}}_{\theta}(y)$;
e $0 \in \partial \theta(x)+f^{\prime}(x)-f^{\prime}(y)$;
e $(\forall z \in X) \quad\left\langle f^{\prime}(y)-f^{\prime}(x), z-x\right\rangle+\theta(x) \leq \theta(z)$.
Moreover,

$$
\overleftarrow{\operatorname{prox}}_{\theta}=\left(f^{\prime}+\partial \theta\right)^{-1} \circ f^{\prime}
$$

is continuous on U, and

$$
\nabla \overleftarrow{\operatorname{env}}_{\theta}(y)=f^{\prime \prime}(y)\left(y-\overleftarrow{\operatorname{prox}}_{\theta}(y)\right)
$$

Proposition. ("the forward prox is just nice")
Suppose θ is nice and $(x, y) \in U \times U$. Then TFAE:
e $y=\overrightarrow{\operatorname{prox}}_{\theta}(x)$;
e $0 \in \partial \theta(y)+f^{\prime \prime}(y)(y-x)$;
e $(\forall z \in X) \quad\left\langle f^{\prime \prime}(y)(x-y), z-y\right\rangle+\theta(y) \leq \theta(z)$.
Moreover, $\overrightarrow{\operatorname{prox}}_{\theta}$ is continuous on U, and

$$
\nabla \overrightarrow{\operatorname{env}}_{\theta}(x)=f^{\prime}(x)-f^{\prime}\left(\overrightarrow{\operatorname{prox}}_{\theta}(x)\right) .
$$

Remark. Both propositions extend Moreau's results.

3. BREGMAN RESULTS

Optimization problem

Throughout, let φ, ψ in $\Gamma_{0}(X)$ be sufficiently "nice", and consider the optimization problem

$$
\text { minimize } \Lambda:(x, y) \mapsto \varphi(x)+\psi(y)+D(x, y) \text { over } U \times U .
$$

Denote the optimal value and the set of solutions by

$$
p:=\inf \Lambda(U \times U) \text { and } S:=\{(x, y) \in U \times U: \Lambda(x, y)=p\},
$$

respectively. We assume that

$$
p \in \mathbb{R} .
$$

Alternating prox operators

In view of the characterization

$$
(x, y) \in S \Leftrightarrow\left(x=\overleftarrow{\operatorname{prox}}_{\varphi}(y) \text { and } y=\overrightarrow{\operatorname{prox}}_{\psi}(x)\right),
$$

for any $(x, y) \in U \times U$, we propose to find a solution in S via the method of alternating prox operators with starting point $x_{0} \in X$:

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad y_{n}:=\overrightarrow{\operatorname{prox}}_{\psi}\left(x_{n}\right), \quad x_{n+1}:=\overleftarrow{\operatorname{prox}}_{\varphi}\left(y_{n}\right) . \tag{APO}
\end{equation*}
$$

Some inequalities

Suppose $\left(\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}}$ is generated by (APO), $n \in \mathbb{N}$, and $\{x, y\} \subset U$. Then

$$
\begin{equation*}
\Lambda\left(x_{n+1}, y_{n+1}\right) \leq \Lambda\left(x_{n+1}, y_{n}\right) \leq \Lambda\left(x_{n}, y_{n}\right) \rightarrow \lambda \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
D\left(x, x_{n+1}\right) \leq & D\left(x, x_{n}\right)-D_{D}\left((x, y),\left(x_{n}, y_{n}\right)\right) \\
& -\left(\Lambda\left(x_{n+1}, y_{n}\right)-\Lambda(x, y)\right) . \tag{2}
\end{align*}
$$

(Proof. Combine prox characterizations with Fact on D_{D}.)

Convergence in value

Corollary.

$$
\lambda=\lim \Lambda\left(x_{n}, y_{n}\right)=\lim \Lambda\left(x_{n+1}, y_{n}\right)=p
$$

Proof. Clearly,

$$
\lambda=\inf _{n \in \mathbb{N}} \Lambda\left(x_{n}, y_{n}\right)=\inf _{n \in \mathbb{N}} \Lambda\left(x_{n+1}, y_{n}\right) \geq \inf \Lambda(U \times U)=p .
$$

Assume $\lambda>p$. Then obtain $(x, y) \in U \times U$ such that $\lambda=\Lambda(x, y)+\epsilon$, where $\epsilon>0$. Now (2) implies

$$
(\forall n \in \mathbb{N}) \quad \epsilon=\lambda-\Lambda(x, y) \leq D\left(x, x_{n}\right)-D\left(x, x_{n+1}\right) .
$$

Telescoping this yields a contradiction. Hence $\lambda=p$.

Bregman convergence result

Theorem. (B-Combettes-Noll 2004).
Suppose $(x, y) \in S \neq \varnothing$. Then:

$$
\begin{aligned}
& \sum_{n \in \mathbb{N}}\left(\Lambda\left(x_{n+1}, y_{n}\right)-p\right)<+\infty, \\
& \sum_{n \in \mathbb{N}} D_{D}\left((x, y),\left(x_{n}, y_{n}\right)\right)<+\infty,
\end{aligned}
$$

and $\left(\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}}$ converges to some point in S.

Geometry of solutions

Let $(x, y),(\widetilde{x}, \widetilde{y})$ be in S, and $x_{0}=\widetilde{x}$. Then
$\left(x_{n}\right)_{n \in \mathbb{N}}=(\widetilde{x})_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}=(\widetilde{y})_{n \in \mathbb{N}}$. Thus the
Theorem yields the invariance

$$
D_{D}((x, y),(\widetilde{x}, \widetilde{y}))=0
$$

(This does not imply $(x, y)=(\widetilde{x}, \widetilde{y})$.) In particular:
(i) If f is the energy, then $D(x, y+(\widetilde{x}-\widetilde{y}))=0$, i.e.,

$$
x-y=\widetilde{x}-\widetilde{y} .
$$

(ii) If f is the negative entropy, then $D(x, y \widetilde{x} / \widetilde{y})=0$, i.e.,

$$
x / y=\widetilde{x} / \widetilde{y} .
$$

The invariance visualized

Applications

Corollary. (Acker-Prestel 1980) Alternating (regular) prox operators
(Proof. Let f be the energy. ■)
Corollary. (Csiszár-Tusnády 1984) Alternating "entropic projections": $x_{0}>0$ and

$$
(\forall n \in \mathbb{N}) \quad y_{n}:=\vec{P}_{B}\left(x_{n}\right), \quad x_{n+1}:=\overleftarrow{P}_{A}\left(y_{n}\right)
$$

Then $\left(x_{n}, y_{n}\right) \rightarrow(\widetilde{x}, \widetilde{y})$, a Kullback-Leibler gap pair. (Proof. Let f be the negative entropy, $\varphi=\iota_{A}, \psi=\iota_{B}$. $■$)
Remark. Related to Expectation-Maximization method.

Applications

Suppose $\theta \in \Gamma_{0}(X)$ "nice" and assume

$$
\varnothing \neq M:=\text { minimizers of } \theta \text { over } U .
$$

Corollary. (Censor-Zenios 1992)
The sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ generated by the backward proximal point iteration

$$
z_{0} \in U, \quad(\forall n \in \mathbb{N}) \quad z_{n+1}=\overleftarrow{\operatorname{prox}}_{\theta}\left(z_{n}\right)
$$

converges to a point in M.
(Proof. Set $\varphi=\theta$ and $\psi=0$, then $\overrightarrow{\operatorname{prox}}_{\psi}=\mathrm{Id}$. ■)

Applications

Corollary. (B-Combettes-Noll 2004)
The sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ generated by the forward proximal point iteration

$$
z_{0} \in U, \quad(\forall n \in \mathbb{N}) \quad z_{n+1}=\overrightarrow{\operatorname{prox}}_{\theta}\left(z_{n}\right)
$$

converges to a point in M.
(Proof. Set $\varphi=0$ and $\psi=\theta$, then $\overleftarrow{\operatorname{prox}}_{\varphi}=$ Id. ■)
Remark. New parallel applications arise via a product space technique!

4. REFERENCES

e F. Acker and M. A. Prestel: Convergence d'un schéma de minimisation alternée, Ann. Fac. Sci. Toulouse V. Sér. Math. 2 (1980), 1-9.
e H. H. Bauschke and J. M. Borwein: Dykstra's alternating projection algorithm for two sets, J . Approx. Theory 79 (1994), 418-443.
e H. H. Bauschke, P. L. Combettes, and D. Noll: Joint minimization with alternating Bregman proximity operators, submitted.

