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An Analysis Problem

Let r be a positive constant and c0 ≥ 0. Consider the
iteration

cn+1 = cn + r −
cn√

1 + c2n
.

(a) For which values of r does the sequence (cn)
converge?

(b) In case of convergence to c with c 6= c0, prove that
lim(cn+1 − c)/(cn − c) exists and determine its value.

(c) In case of divergence, find an asymptotic expression
for cn.
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An Analysis Problem

This is D. Borwein and J. Borwein’s Problem 10335 in
American Mathematical Monthly, Vol. 100, 1993.

Solution was used in a paper by HB and J. Borwein
from 1994. In fact, the Acknowledgment of this paper
reads:

The authors wish to thank David Borwein for
discussion of Example 5.3, Judith Borwein for
preparing the manuscript, and two anonymous
referees for helpful suggestions.

And our affiliations were Dalhousie and Waterloo!
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Collaborators

Based on joint works with:

Patrick L. Combettes (Paris 6, France),

Dominikus Noll (Toulouse, France).
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1. MOTIVATION
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Set up

Throughout,
X = R

J

with

inner product 〈x, y〉 and norm ‖x‖ =
√
〈x, x〉,

for x and y in X. Also, the proper lower semicontinuous
convex functions on X are denoted by

Γ0(X).
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Alternating projections

Suppose

A and B are nonempty closed convex sets in X,

with corresponding projectors (nearest-point mappings)

PA and PB.

Given a starting point x0 ∈ X, the method of alternating
projections generates sequences (xn)n∈N and (yn)n∈N

by
(∀n ∈ N) yn = PB(xn) xn+1 = PA(yn).
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x0

A

B
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Basic convergence result

Theorem. (Cheney-Goldstein 1959, . . . )
Suppose the gap

γ := inf ‖A−B‖

between A and B is attained. Then:
(xn)n∈N converges to x̄ ∈ A, (yn)n∈N converges to ȳ ∈ B,
and ‖x̄− ȳ‖ = γ.

Remark. True in Hilbert space with weak convergence —
but not norm convergence, thanks to Hundal.
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Observations on the limits

Fixed point characterization: x̄ and ȳ satisfy
x̄ = PAPBx̄ and ȳ = PBx̄ = PBPAȳ

The dual solution is

v := PB−A(0) ≡ ȳ − x̄,

i.e., the nearest point to 0 in the closure of the
Minkowski difference B − A. Note that ‖v‖ is exactly
the gap γ!
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Observations on the limits

(x̄, ȳ) solves the optimization problem

minimize (x, y) 7→ ιA(x) + ιB(y) + 1

2
‖x− y‖2.

Here ιA and ιB are indicator functions, defined by

ιC(x) :=

{
0, if x ∈ C;
+∞, otherwise.
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Moreau envelope

Let θ ∈ Γ0(X). The Moreau envelope of θ at z is

envθ(z) :=
(
θ21

2
‖ · ‖2

)
(z) := inf

w∈X
θ(w) + 1

2
‖z − w‖2.

This operation regularizes θ. For instance, if θ = ιC , then

envιC (z) = inf
w∈X

ιC(w) + 1

2
‖z − w‖2 = inf

c∈C

1

2
‖z − c‖2

is 1

2
· the square of the distance of z to C.
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Proximity operator

The infimum in the definition of envθ(z), i.e.,

envθ(z) = inf
w∈X

θ(w) + 1

2
‖z − w‖2,

is always uniquely attained! The induced map

proxθ : X → X : z 7→ wz := argmin
w∈X

θ(w) + 1

2
‖z − w‖2

is called the proximity operator or proximal map of θ.

Asymptotic behaviour of the composition of two prox operators – p.13/40



Note that 0 ∈ ∂θ(wz)− (z − wz)⇔ z ∈ (Id + ∂θ)(wz);
equivalently,

wz = proxθ(z) = (Id + ∂θ)−1(z).

Since ∂θ is maximal monotone, the operator

proxθ is firmly nonexpansive

and everywhere defined.

If θ = ιC , then proxιC = PC (projector onto the set C).
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Alternating prox operators

Let ϕ, ψ be in Γ0(X) and x0 ∈ X. Consider the method of
alternating prox operators:

(∀n ∈ N) yn := proxψ(xn) xn+1 := proxϕ(yn).

Theorem. (Acker-Prestel 1980)
xn−−−−→

weak
x̄ ∈ X and yn−−−−→

weak
ȳ ∈ X, where (x̄, ȳ) is a

solution of the optimization problem

minimize (x, y) 7→ ϕ(x) + ψ(y) + 1

2
‖x− y‖2.

Remark. ϕ = ιA, ψ = ιB yields alternating projections.
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Purpose of this talk

Consider the objective function

X → ]−∞,+∞] : (x, y) 7→ ϕ(x) + ψ(y) + 1

2
‖x− y‖2.

What happens if we replace

1

2
‖x− y‖2

by some other “distance-like” term?
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2. BREGMAN OBJECTS
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Suppose that
X = R

J

and

f ∈ Γ0(X) is differentiable on U := int dom f 6= Ø.

Then the Bregman distance D = Df : X ×X → [0,+∞]

corresponding to f is defined by

(x, y) 7→

{
f(x)− f(y)− 〈f ′(y), x− y〉 , if y ∈ U ;
+∞, otherwise.

Remark. D is not a distance in the sense of topology.
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Further assumptions onf

We assume that f satisfies the following:

A1 f is of Legendre type;

A2 f ′′ exists and is continuous on U ;

A3 D is jointly convex, i.e., it is convex on X ×X;

A4 (∀x ∈ U) D(x, ·) is strictly convex on U ;

A5 (∀x ∈ U) D(x, ·) is coercive, i.e., it has bounded lower
level sets.
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Examples

Write x = (ξj) and y = (ηj). Then the following functions
satisfy all assumptions on f :

(i) If f is the energy x 7→ 1

2
‖x‖2, then U = X and

D(x, y) = 1

2
‖x− y‖2.

(ii) If f is the negative entropy x 7→
∑

j ξj ln(ξj)− ξj,
then U = {x ∈ X : x > 0} and

D(x, y) =

{∑
j ξj ln(ξj/ηj)− ξj + ηj , if x ≥ 0 and y > 0;

+∞, otherwise.
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Remarks

Note that the setting considered earlier is covered,
since D(x, y) = 1

2
‖x− y‖2 when f is the energy.

When f is the negative entropy, the term D(x, y) is
known as the Kullback-Leibler information
divergence in statistics and information theory.

Other examples are:
(iii) the Fermi-Dirac entropy and
(iv) the log-quad function.

The function f = − ln has many good properties, but
it does not satisfy all our assumptions.
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Exploiting joint convexity

Since D is jointly convex (A3), its Bregman distance DD

is nonnegative.

Fact. (B-Noll 2002).
Take {x, y, u, v} ⊂ U . Then:

0 ≤ DD

(
(x, y), (u, v)

)
= D(x, y) +D(x, u)−D(x, v)

+ 〈f ′′(v)(u− v), y − v〉.
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Moreover:

(i) If f is the energy, then

DD

(
(x, y), (u, v)

)
= D

(
x, y + (u− v)

)
.

(ii) If f is the negative entropy, then

DD

(
(x, y), (u, v)

)
= D

(
x, yu/v

)
,

where the product and quotient is taken
coordinate-wise.
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In general, D is not symmetric; consequently, we expect
two envelopes for a given function θ ∈ Γ0(X).

The backward Bregman envelope of θ is

←−envθ : X → [−∞,+∞] : z 7→ inf
w∈X

θ(w) +D(w, z),

and the forward Bregman envelope of θ is

−→envθ : X → [−∞,+∞] : z 7→ inf
w∈X

θ(w) +D(z, w).
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Examples

If f is the energy, then backward & forward Bregman
envelope coincide with the Moreau envelope.

If θ = ιC for some closed convex set C, then we
obtain the backward Bregman distance

←−
DC := ←−envιC : z 7→ inf

c∈C
D(c, z)

and the forward Bregman distance

−→
DC := −→envιC : z 7→ inf

c∈C
D(z, c).
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Definitions

Let θ ∈ Γ0(X) such that dom θ ∩ U 6= Ø. Under reasonable
assumptions, we have:

(i) The backward proximity operator is well-defined by

←−−prox θ : U → U : y 7→ argmin
x∈X

θ(x) +D(x, y).

(ii) The forward proximity operator is well-defined by

−−→prox θ : U → U : x 7→ argmin
y∈X

θ(y) +D(x, y).
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Proposition. (“the backward prox is very nice”)
Suppose θ is nice and (x, y) ∈ U × U . Then TFAE:

x =←−−prox θ(y);

0 ∈ ∂θ(x) + f ′(x)− f ′(y);

(∀z ∈ X) 〈f ′(y)− f ′(x), z − x〉+ θ(x) ≤ θ(z).

Moreover,
←−−prox θ = (f ′ + ∂θ)−1 ◦ f ′

is continuous on U , and

∇ ←−envθ(y) = f ′′(y)(y −←−−prox θ(y)).
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Proposition. (“the forward prox is just nice”)
Suppose θ is nice and (x, y) ∈ U × U . Then TFAE:

y = −−→prox θ(x);

0 ∈ ∂θ(y) + f ′′(y)(y − x);

(∀z ∈ X) 〈f ′′(y)(x− y), z − y〉+ θ(y) ≤ θ(z).

Moreover, −−→prox θ is continuous on U , and

∇ −→envθ(x) = f ′(x)− f ′(−−→prox θ(x)).

Remark. Both propositions extend Moreau’s results.
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3. BREGMAN RESULTS

Asymptotic behaviour of the composition of two prox operators – p.29/40



Optimization problem

Throughout, let ϕ, ψ in Γ0(X) be sufficiently “nice”, and
consider the optimization problem

minimize Λ : (x, y) 7→ ϕ(x) + ψ(y) +D(x, y) over U × U.

Denote the optimal value and the set of solutions by

p := inf Λ(U × U) and S := {(x, y) ∈ U × U : Λ(x, y) = p},

respectively. We assume that

p ∈ R.
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Alternating prox operators

In view of the characterization

(x, y) ∈ S ⇔
(
x =←−−proxϕ(y) and y = −−→proxψ(x)

)
,

for any (x, y) ∈ U × U , we propose to find a solution in S
via the method of alternating prox operators with
starting point x0 ∈ X:

(∀n ∈ N) yn := −−→proxψ(xn), xn+1 :=←−−proxϕ(yn). (APO)
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Some inequalities

Suppose
(
(xn, yn)

)
n∈N

is generated by (APO), n ∈ N, and
{x, y} ⊂ U . Then

Λ(xn+1, yn+1) ≤ Λ(xn+1, yn) ≤ Λ(xn, yn)→ λ, (1)

and

D(x, xn+1) ≤ D(x, xn)−DD

(
(x, y), (xn, yn)

)

−
(
Λ(xn+1, yn)− Λ(x, y)

)
.

(2)

(Proof. Combine prox characterizations with Fact on DD.)
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Convergence in value

Corollary.

λ = lim Λ(xn, yn) = lim Λ(xn+1, yn) = p.

Proof. Clearly,

λ = inf
n∈N

Λ(xn, yn) = inf
n∈N

Λ(xn+1, yn) ≥ inf Λ(U × U) = p.

Assume λ > p. Then obtain (x, y) ∈ U × U such that
λ = Λ(x, y) + ε, where ε > 0. Now (2) implies

(∀n ∈ N) ε = λ− Λ(x, y) ≤ D(x, xn)−D(x, xn+1).

Telescoping this yields a contradiction. Hence λ = p. �
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Bregman convergence result

Theorem. (B-Combettes-Noll 2004).
Suppose (x, y) ∈ S 6= Ø. Then:

∑

n∈N

(
Λ(xn+1, yn)− p

)
< +∞,

∑

n∈N

DD

(
(x, y), (xn, yn)

)
< +∞,

and
(
(xn, yn)

)
n∈N

converges to some point in S.
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Geometry of solutions

Let (x, y), (x̃, ỹ) be in S, and x0 = x̃. Then
(xn)n∈N = (x̃)n∈N and (yn)n∈N = (ỹ)n∈N. Thus the
Theorem yields the invariance

DD

(
(x, y), (x̃, ỹ)

)
= 0

(This does not imply (x, y) = (x̃, ỹ).) In particular:

(i) If f is the energy, then D(x, y + (x̃− ỹ)) = 0, i.e.,

x− y = x̃− ỹ.

(ii) If f is the negative entropy, then D(x, yx̃/ỹ) = 0, i.e.,

x/y = x̃/ỹ.
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The invariance visualized

A

B

(0,0)

energy vs negative entropy
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Applications

Corollary. (Acker-Prestel 1980)
Alternating (regular) prox operators . . . .
(Proof. Let f be the energy. �)

Corollary. (Csiszár-Tusnády 1984)
Alternating “entropic projections”: x0 > 0 and

(∀n ∈ N) yn :=
−→
PB(xn), xn+1 :=

←−
PA(yn).

Then (xn, yn)→ (x̃, ỹ), a Kullback-Leibler gap pair.
(Proof. Let f be the negative entropy, ϕ = ιA, ψ = ιB. �)

Remark. Related to Expectation-Maximization method.
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Applications

Suppose θ ∈ Γ0(X) “nice” and assume

Ø 6= M := minimizers of θ over U .

Corollary. (Censor-Zenios 1992)
The sequence (zn)n∈N generated by the backward
proximal point iteration

z0 ∈ U, (∀n ∈ N) zn+1 =←−−prox θ(zn)

converges to a point in M .

(Proof. Set ϕ = θ and ψ = 0, then −−→proxψ = Id. �)
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Applications

Corollary. (B-Combettes-Noll 2004)
The sequence (zn)n∈N generated by the forward
proximal point iteration

z0 ∈ U, (∀n ∈ N) zn+1 = −−→prox θ(zn)

converges to a point in M .

(Proof. Set ϕ = 0 and ψ = θ, then←−−proxϕ = Id. �)

Remark. New parallel applications arise via a product
space technique!
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