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1 Bohr-Hardy Theorems

In his doctoral thesis, David investigated some extensions and refinements of
the “Bohr-Hardy” theorems. To set this in context we first recall a familiar
theorem of Abel and Dirichlet.

Theorem 1. If (i) a series
∑
an is convergent or has bounded partial sums,

and (ii) the sequence {fn} decreases monotonically to 0, or, more generally,
fn → 0 and

∑ |∆fn| <∞, then
∑
anfn is convergent.

For α real and n a nonnegative integer, let

εαn =

(
n+ α

n

)
=

(α+ 1)(α+ 2) · · · (α+ n)

n!
.

Let α > −1. Given an infinite series
∑
an, let sn = a0 + a1 + · · ·+ an and

define

sα
n =

1

εαn

n∑
ν=0

εα−1
n−νsν .

We say that
∑
an is summable (C, α) to s if limn→∞ s

α
n = s, and that

∑
an

is bounded (C, α) if sα
n = O(1).

Hardy in 1908, and Bohr in 1909, independently established the following
theorem, which became known subsequently as the “Bohr-Hardy Theorem.”
See, for example, G. H. Hardy Divergent Series Oxford 1949 (Theorem 71).

Theorem 2. If

∞∑
n=0

an is summable, or bounded, (C, α) (1)

where α is a nonnegative integer,

fn → 0; and
∞∑

n=0

(n+ 1)α|∆α+1fn| <∞; (2)

then
∑
anfn is summable (C, α). Moreover

∞∑
n=0

anfn =
∞∑

n=0

sα
n∆α+1fn,
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where the left hand sum is interpreted in the (C, α) sense and the right hand
series is absolutely convergent.

The Bohr-Hardy Theorem is an example of a “summability factor” the-
orem. There is a rich literature on summability factor theorems which, in-
cidentally, is of interest in connection with the computation of β-duals of
sequence spaces.

Fekete in 1917, showed that the Bohr-Hardy conditions above were also
necessary, and A. F. Andersen, in 1921, established a certain generalization
of the Bohr-Hardy Theorem. L. S. Bosanquet, in 1942, in an article in the
Journal of the London Mathematical Society Volume 17, proved a definitive
generalized Bohr-Hardy Theorem, which established both the necessity and
sufficiency of the Bohr-Hardy conditions.

Other authors had considered Bohr-Hardy type theorems for Cesàro summa-
bility of integrals.

Let a be Lebesgue measurable and integrable on every finite interval
(0, X). Let α > −1, and

A0(x) =
∫ x

0
a(t) dt and Aα(x) =

∫ x

0
Aα−1(t) dt.

If
lim

x→∞
Γ(α+ 1)x−αAα(x) = A,

we write ∫ ∞
0

a(x) dx = A (C, α),

and say that the integral is summable (C, α) to A. If Γ(α + 1)x−αAα(x) =
O(1) as x→∞, then we say that∫ ∞

0
a(x) dx is bounded (C, α).

David established in his doctoral thesis a ‘necessity’ Bohr-Hardy integral
type theorem and published it in A summability factor theorem, J. London
Math. Soc. 25 (1950), 302-315. His main theorem is the following. In this
theorem α need not be an integer, and φ(α)(t) is the α-th fractional derivative
of φ(t).

Theorem 3. For α ≥ 0, if φ(α)(t) is absolutely continuous and∫ ∞
1

f(t)φ(t) dt is bounded (C) [or summable (C)]
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whenever ∫ ∞
1

f(t) dt is summable (C, α) [or bounded (C, α)],

then there is an absolutely continuous function ψ(t) such that ψ(t) = φ(t)
a.e. in (1,∞) and ψ(t) → l [or is o(1)] as t→∞, and∫ ∞

1
tα|φ(α+1)(t)| dt <∞.

The proof of this theorem required imagination and considerable technical
skill and demonstrates at an early stage in his career, David’s mastery of
classical analysis, a mastery indeed that remains undiminished to this day.

Summability factor theorems have held an interest for David throughout
his career and he has made many significant contributions in this area.

2 Strong Summability

Let α > −1 and λ ≥ 1. A series
∑
an is said to be strongly summable

(C, α+ 1) with sum s if

1

n+ 1

n∑
k=0

|sα
k − s|λ = o(1).

We denote this by

∞∑
n=0

an = s[C, α+ 1]λ or sn → s[C, α+ 1]λ.

This definition can be made for λ > 0, but certain pathologies, that need not
detain us here, occur in the range 0 < λ < 1.

It is easy to prove that, for α > −1,

(C, α) ⇒ [C, α+ 1]λ ⇒ (C, α+ 1). (3)

Strong summability, particularly [C, 1]λ, played a significant role in the study
of Cesàro summability of Fourier series. T. M. Flett (Some remarks on strong
summability, Quarterly J. of Math. 10 (1959), 115-139) made a detailed
study of strong and absolute Cesàro summability, obtaining a number of
interesting and significant results. Much of the analysis in Flett’s paper was
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complicated by the fact that the (C, 1) mean of the sequence {|sα
n − s|λ} is

used independently of α.
David, in a seminal paper (On strong and absolute summability, Proceed-

ings of the Glasgow Mathematical Association Volume IV, Part III, (1960)),
introduced the following definition of strong summability which applies quite
generally, simplifies and clarifies many of Flett’s results as well as consider-
ably broadenung and enriching the study of strong summability.

Let Q = (qn,r) (n, r = 0, 1, . . .) be a (summability) matrix, and let

σn = Q(sn) =
∞∑

r=0

qn,rsr.

Let P = (pn,r) be a matrix with pn,r ≥ 0 (n, r = 0, 1 . . .). The series
∑
an

is said to be summable [P,Q]λ (λ > 0) to s, if

P (|σn − s|λ) =
∞∑

r=0

pn,r|σn − s|λ

is defined for all n and tends to 0 and n tends to ∞.
The series

∑
an is summable |Q, γ|λ (γ real and λ > 0) if

∞∑
n=1

nγλ+λ−1|σn − σn−1|λ <∞.

Let Q be any matrix and P satisfy

sup
n≥0

∞∑
r=0

pn,r <∞.

If λ > µ > 0, then, a standard application of Hölder’s inequality shows that
[P,Q]λ ⇒ [P,Q]µ.

The following result generalizes (3) and has a virtually trivial proof.

Theorem 4. If P and Q are matrices and P is regular, then

Q⇒ [P,Q]λ for λ > 0 and [P,Q]λ ⇒ PQ for λ ≥ 1.

David’s definition of strong summability has been applied successfully to
Nörlund summability and in the particular case of Cesàro summability the
(C, 1) matrix in the rôle of P is replaced by the weighted mean matrix (M, εαn).
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More precisely, the definition of strong Cesáro summability arising from the
specialization of the definition of strong Nörlund summability corresponding
to [C, α+ 1]λ is the method

[P,Q]λ = [(M, εαn), (C, α)]λ.

Considerable facility is gained from the fact that

PQ = (M, εαn)(C, α) = (C, α+ 1).

Indeed,

1

εα+1
n

n∑
ν=0

εαν s
α
ν =

1

εα+1
n

n∑
ν=0

ν∑
k=0

εα−1
ν−ksk

=
1

εα+1
n

n∑
k=0

n∑
ν=k

εα−1
ν−ksk

=
1

εα+1
n

n∑
k=0

sk

n∑
ν=k

εα−1
ν−k

=
1

εα+1
n

n∑
k=0

εαn−ksk

= sα+1
n

(4)

It is easy to show that (C, 1) ⇐⇒ (M, εαn) for α > −1, so the two defini-
tions of strong Cesáro summability are eqivalent. So David’s more compli-
cated looking definition yields considerable simplification and clarification in
the details of the proofs of a number of results.

The advantage of David’s definition of strong summability is thus seen to
lie in being able to choose the matrix P in a suitable relation to the matrix Q
that certain properties follow easily and naturally. Unfortunately, this paper
of David’s does not seem to have been read widely. A number of authors
have continued to define strong summability using the (C, 1) matrix in place
of the matrix P but with any matrix Q. They have obtained thereby only
limited and sometimes peculiar results.

3 Bounded Operators on lp

Establishing good representation theorems for bounded linear operators on
Banach spaces had always been important. Summability provides many ex-
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amples of such theorems, the celebrated Toeplitz Theorem concening oper-
ators on the spaces l∞, c0 and c being perhaps the most famous and the
important Schur Theorem characterizing the bounded linear operators in
B(l∞, c) has been noted for the fact that it does not appear to have a “func-
tional analytic” proof. The apparent dichotomy and attendant competition
between ‘classical’ and ‘functional analytic’ approaches to questions arising
from summability seems to be often overblown and sometimes silly. This is
not to try to gainsay the importance of the illumination often shed on results
by diverse approaches to particular results, but there is a danger of losing
contact with parts of mathematics through a too strict adherance to the dic-
tates of fashions of the moment. R. Hermann, in his introduction to Klein’s
Development of mathematics in the nineteenth century aptly observed that
‘we are so used to thinking in terms of “progress” of science that it is hard
to remember that certain matters were better understood a hundred years
ago.’ David’s work on bounded operators on lp for 1 < p <∞ illustrates well
the symbiosis that can exist between the ‘classical’ and ‘functional analytic’
approach to operator theory. Without his effort, the penetrating analysis
that he brought to the problem could well have lain long unrealized.

The spaces lp for 1 ≤ p <∞ have the sequences en = {δmn} as a Schauder
basis. Consequently all operators in B(lp) are represented by infinite matrices
in the obvious way. In the case of B(l1), the representation of these operators
by means of a condition involving only the entries of the matrix is easily
achieved. Indeed,

Theorem 5 (Knopp-Lorentz). Let A = {ank} n, k = 0, 1, 2, . . . be a
given matrix and let

yn =
∞∑

k=0

ankxk

be convergent for n = 0, 1, 2, ... and for every sequence {xk} ∈ l1. Then
A ∈ B(l1) if and only if

sup
n≥0

∞∑
k=0

|ank| = M <∞.

Moreover, ‖A‖ = M .

This simplicity in representing operators on l1 does not extend to lp for
1 < p < ∞. In fact, to date there are no known necessary and sufficient
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conditions expressed in terms on the entries of the matrix for membership in
B(lp) except for the case p = 2, and there the conditions are quite intractable.
Laurence Crone, A characterization of matrix operators on l2 Mathematische
Zeitschrift 123, 315-317 (1971), established the following theorem. (A∗ stands
for the conjugate transpose of A).

Theorem 6 (Crone 1971). The matrix A ∈ B(l2) if and only if

the rows of A are in l2; (5)

(A∗A)n is defined for n = 1, 2, . . . ; (6)

sup
n

sup
i
|[(A∗A)n]ii|1/n = K <∞. (7)

One might make good progress, however, by restricting attention to par-
ticular families of matrices to try to determine simple criteria for belonging
to B(lp). Hardy in An inequality for Hausdorff means J. London Math. Soc.
18, 46-50 (1943), establishes a result that can readily be interpreted to show
that, for p > 1 and α > 0, the Cesàro matrix (C, α) is a bounded operator on
lp with norm Γ(1+α)Γ(1−1/p)/Γ(1+α−1/p). Borwein and Jakimovski have
established results about generalized Hausdorff matrices as bounded opera-
tors on lp and Cass and Kratz, building on Borwein’s and Jakimovski’s work,
looked at the case of Nörlund and weighted mean operators on lp where the
entries of the matrices were associated with logarithmico-exponential func-
tions (a restriction that was integral to the analysis given by Cass and Kratz)
and, along with norm estimates, obtained reasonable conditions for matrices
to be in B(lp). But the final triumph belongs to David who was able to show,
surprisingly, that the dependence on logarithmico-exponential functions was
redundant and obtained a far less restrictive monotonicity condition.

A definition and some notation need to be introduced at this point. Let
1 < p <∞ and 1/p+ 1/q = 1.

Definition 1. Let a0 > 0 and an ≥ 0 for n = 1, 2, . . . and An =
∑n

k=0 ak.
Then the Na transform {tn} of a sequence {sn} is given by

tn =
1

An

n∑
ν=0

an−νsν .

Also

σ1(n) =
1

An

n∑
k=0

an−k

(
n+ 1

k + 1

)1/p

,
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σ2(k) =
∞∑

n=k

an−k

An

(
k + 1

n+ 1

)1/q

,

M1 = sup
n≥0

σ1(n), M2 = sup
k≥0

σ2(k).

David, in Nörlund operators on lp Canadian Mathematical Bulletin Vol.36(1)
(1993) 8-14, obtained the following theorem.

Theorem 7. Suppose that nan/An → α. Then the Nörlund matrix Na ∈
B(lp) iff α <∞. Moreover, if α <∞, then

‖Na‖p ≤M
1/q
1 M

1/p
2 <∞,

and if, in addition, {ncan} is eventually monotonic for every constant c 6=
1− α, then,

lim
n→∞

σ1(n) =
Γ(α+ 1)Γ(1/q)

Γ(α+ 1/q)
≤ ‖Na‖p.

Further, the monotonicity condition is redundant when α = 0.

David also shows that it is possible to have Na ∈ B(lp) for 1 < p < ∞
when supnan/An = ∞.

Notwithstanding a gracious acknowledgement to Dr. Xiaopeng Gao, a
former graduate student at The University of Western Ontario, for a certain
refinement that led to the final form of the above theorem, these results stand
as signal testament to David’s penetrating skills and the thoroughness that
is evident in all his mathematical research.
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