A Plethora of Remarkable Concurrences

Bruce Shawyer

In an article in this journal last year [1], I showed that the lines through the mid-points of the sides of a triangle with slopes, a constant multiple of the slopes of the corresponding sides of the triangle, were concurrent. Here, I show that there are many more points with a similar property.

Take the triangle with coordinates $(0,0),(a, b)$ and (c, d). The lines through the points with coordinates $(a t, b t),(c u, d u)$ and $(a w+c(1-w), b w+d(1-w))$ with slopes $\frac{\lambda a}{b}, \frac{\lambda c}{d}$ and $\frac{\lambda(a-c)}{b-d}$, respectively, are:

$$
\begin{align*}
y= & \frac{\lambda a x}{b}+\left(b t-\frac{a^{2} \lambda t}{b}\right) \tag{1}\\
y= & \frac{\lambda c x}{d}+\left(d u-\frac{c^{2} \lambda u}{d}\right) \tag{2}\\
y= & \frac{\lambda x(a-c)}{(b-d)} \\
& +\frac{a^{2} \lambda w+a c \lambda(1-2 w)-b^{2} w+b d(2 w-1)+(w-1)\left(c^{2} \lambda-d^{2}\right)}{d-b} \tag{3}
\end{align*}
$$

Solving (1) and (2), we get

$$
\begin{aligned}
& x=\frac{a^{2} d \lambda t-b\left(b d t+u\left(c^{2} \lambda-d^{2}\right)\right)}{\lambda(a d-b c)} \\
& y=\frac{b c(b t-d u)\left(c^{2} \lambda-d^{2}\right)}{\left(d^{2}(a d-b c)\right)}+\frac{a c \lambda t}{d}+\frac{b c^{2} \lambda t-d u\left(c^{2} \lambda-d^{2}\right)}{d^{2}}
\end{aligned}
$$

Substituting into (3) gives:

$$
\begin{aligned}
& \frac{b c(b t-d u)\left(c^{2} \lambda-d^{2}\right)}{d^{2}(a d-b c)}+\frac{a c \lambda t}{d}+\frac{\left(b c^{2} \lambda t-d u\left(c^{2} \lambda-d^{2}\right)\right)}{d^{2}} \\
& =\lambda\left(\frac{a^{2} d \lambda t-b\left(b d t+u\left(c^{2} \lambda-d^{2}\right)\right)}{\lambda(a d-b c)}\right) \frac{a-c}{b-d} \\
& \quad+\frac{a^{2} \lambda w+a c \lambda(1-2 w)-b^{2} w+b d(2 w-1)+(w-1)\left(c^{2} \lambda-d^{2}\right)}{d-b}
\end{aligned}
$$

This simplifies to:

$$
\begin{align*}
& \lambda \frac{a^{2}(t-w)+a c(2 w-1)-c^{2}(u+w-1)}{d-b} \\
& \quad+\frac{b^{2}(t-w)+b d(2 w-1)-d^{2}(u+w-1)}{b-d}=0, \tag{4}
\end{align*}
$$

or

$$
\begin{equation*}
\lambda=\frac{b^{2}(t-w)+b d(2 w-1)-d^{2}(u+w-1)}{a^{2}(t-w)+a c(2 w-1)-c^{2}(u+w-1)} . \tag{5}
\end{equation*}
$$

If $t=u=w=\frac{1}{2}$, then left side of (4) is zero. This means that the lines always concur.

If we make the same subsitution into (4), we get:

$$
\lambda=\frac{b^{2}\left(\frac{1}{2}-\frac{1}{2}\right)+b d\left(2\left(\frac{1}{2}\right)-1\right)-d^{2}\left(\frac{1}{2}+\frac{1}{2}-1\right)}{a^{2}\left(\frac{1}{2}-\frac{1}{2}\right)+a c\left(2\left(\frac{1}{2}\right)-1\right)-c^{2}\left(\frac{1}{2}+\frac{1}{2}-1\right)}=\frac{0}{0}
$$

There are other values of u, v and w that result in the same result. Note that we will have two linear equations in the three unknowns t, u and w. Thus, unless a, b, c and d are "peculiar", we have infinitely many such triples.

We call the set of all values of u, v and w that make the left side of (5) zero, the Concurrence Set of the triangle. This is given by

$$
\begin{aligned}
\frac{T}{W} & =1-\frac{2 c d}{a d+b c} \\
\frac{U}{W} & =\frac{2 a b}{a d+b c}-1
\end{aligned}
$$

where $t=\frac{1}{2}-T, u=\frac{1}{2}-U$ and $w=\frac{1}{2}-W$. Thus, there are infinitely many points in this set.

For points not in the concurrence set, we have that there is one unique value of λ such that the three lines concur

The value is

$$
\frac{b^{2}(t-w)+b d(2 w-1)-d^{2}(u+w-1)}{a^{2}(t-w)+a c(2 w-1)-c^{2}(u+w-1)}
$$

Replace t by $\frac{1}{2}-T$, etc.; the value is

$$
\frac{b^{2}(T-W)+2 b d W-d^{2}(U+W)}{a^{2}(T-W)+2 a c W-c^{2}(U+W)}
$$

The point of concurrence is

$$
\begin{aligned}
x= & \frac{N_{x}}{D_{x}}, \text { where } \\
N_{x}= & (T U(2 a d(b-d)+2 b c(b-d))+T W(2 a d(2 b-d)-2 b c d)-b T(a d+b c) \\
& \left.-2 b U W(a d+c(b-2 d))+U\left(a d^{2}+b c d\right)+W(d-b)(a d-b c)\right),
\end{aligned}
$$

and

$$
D_{x}=\left(2 b^{2} T-2 d^{2} U-2 W\left(b^{2}-2 b d+d^{2}\right)\right) ;
$$

and $y=\frac{N_{y}}{D_{y}}$, where

$$
\begin{aligned}
N_{y}= & \left(2 T U\left(a^{2} d+a c(b-d)-b^{2} c^{2}\right)+2 c T W\left(a(2 b-d)-b^{2} c\right)-a T(a d+b c)\right. \\
& \left.-2 a U W(a d+c(b-2 d))+c U\left(a d+b^{2} c\right)+W\left(a^{2} d-a c(b+d)+b^{2} c^{2}\right)\right)
\end{aligned}
$$

and

$$
D_{y}=\left(2 a^{2} T-2 c^{2} U-2 W\left(a^{2}-2 a c+c^{2}\right)\right) .
$$

For fixed T and U, or any other pair, the locus of this may reduce to a single point or to a rectangular hyperbola, or even a straight line.

References

[1] Shawyer, Bruce, Some Remarkable Concurrences, Forum Geometricorum (2001), pp. 69-74.

Bruce Shawyer
Department of Mathematics and Statistics
Memorial University of Newfoundland
St. John's, Newfoundland, Canada A1C 5S7
bshawyer@math.mun.ca

