Discrete Power Series Methods

Bruce Watson Memorial University St. John's, NL

email: bruce2math.mun.ca

Introduction.

The starting point is two papers by D. H. Armitage and I. J. Maddox.

(1) A new type of Cesàro mean, Analysis 9(1989), 195-204.

(2) Discrete Abel means, Analysis **10**(1990), 177-186.

They studied discrete versions of the classical Cesàro and Abel summability methods.

To see what they did set

$$s_n = a_0 + a_1 + \dots + a_n, \quad n \ge 0.$$

$$f(x) = (1-x)\sum_{0}^{\infty} s_k x^k, \quad \rho = 1$$

$$1 \le \lambda_0 < \lambda_1 < \dots \to \infty$$

$$x_n = 1 - \frac{1}{\lambda_n}, \quad n \ge 0$$

Recall that
$$\sum_{0}^{\infty} = s(A)$$
 if $\rho = 1$ and $f(x) \to s$ as $x \to 1^{-}$.

Definition 0.1. Discrete Abel (Armitage and Maddox $\sum_{0}^{\infty} = s(A_{\lambda}) \text{ if } f(x_{n}) \text{ exists for all } n \text{ and } f(x_{n}) \to s \text{ as } n \to \infty.$

Known Results for (A_{λ}) , (DHA and IJM)

Define $E_{\lambda} = \{\lambda_n \colon n \ge 0\}.$

- (1) Since $(A) \subseteq (A_{\lambda})$, regularity is inherited from (A).
- (2) $(A_{\lambda}) \subseteq (A_{\mu})$ if and only of $E_{\mu} E_{\lambda}$ is finite.
- (3) (A_{λ}) is equivalent to (A_{μ}) if and only if $E_{\mu}\Delta E_{\lambda}$ is finite.
- (4) If $\frac{\lambda_{n+1}}{\lambda_n} \to 1$ (and $\{s_n\}$ is real) then the slow decrease of $\{s_n\}$ is a tauberian condition for (A_{λ}) (to ordinary convergence).

Extension to Power Series Methods.

(i)
$$\{p_k\}_0^\infty$$
 is a nonnegative sequence with $p_0 > 0$.
(ii) $p(x) := \sum_{k=0}^\infty p_k x^k$ has radius of convergence $\rho > 0$
(iii) $p_s(x) := \frac{1}{p(x)} \sum_{k=0}^\infty p_k s_k x^k$

Definition 0.2. Suppose that $p_s(x)$ exists for each $x \in (0, \rho)$. $\sum_{0}^{\infty} = s(P)$ if $p_s(x) \to sas \ x \to \rho^-$.

This is also called J - p or (J, p_n) summability in the literature. Examples.

(1) Abel. Take $p_k = 1$ for all k. Then $\rho = 1$, $p(x) = \frac{1}{1-x}$ and $p_s(x) = (1-x)\sum_{0}^{\infty} s_k x^k$. (2) Borel. Take $p_k = \frac{1}{k!}$ for all k. Then $\rho = \infty$, $p(x) = e^x$ and $p_s(x) = e^{-x} \sum_{0}^{\infty} \frac{s_k}{k!} x^k$. **Discrete Power Series Methods.** Assume as before $1 \le \lambda_0 < \lambda_1 < \cdots \rightarrow \infty$ and set

$$x_n = \begin{cases} \rho - \frac{1}{\lambda_n} & \text{if } 0 < \rho < \infty, \\ \lambda_n & \text{if } \rho = \infty. \end{cases}$$

Definition 0.3. Suppose $p_s(x_n)$ exists for all $n \ge 0$. $\sum_{0}^{\infty} = s(P_{\lambda})$ if $p_s(x_n) \to s \text{ as } n \to \infty$.

Examples.

(1) **Discrete Abel.**
$$p_s(x_n) = (1-x_n) \sum_{0}^{\infty} s_k x_n^k = \frac{1}{\lambda_n} \sum_{0}^{\infty} s_k (1-\frac{1}{\lambda_n})^k.$$

(2) **Borel.** $p_s(x_n) = e^{-x_n} \sum_{0}^{\infty} \frac{s_k}{k!} x_n^k = e^{-\lambda_n} \sum_{0}^{\infty} \frac{s_k}{k!} \lambda_n^k.$

Results for Discrete Power Series Methods.

Since $(P) \subseteq (P_{\lambda})$, the regularity of (P_{λ}) is inherited from (P). The latter is well-known but was summarized concisely by Borwein in

On Methods of Summability Based on Power Series, Proc. Royal Soc. Edinburgh, **64**(1957).

Theorem 0.1.

(1) If $0 < \rho < \infty$ then (P_{λ}) is regular if and only if $\sum_{k=0}^{\infty} p_k \rho^k = \infty$. (2) If $\rho = \infty$ then (P_{λ}) is regular.

Abelian Results.

As in Armitage and Maddox, $E_{\lambda} = \{\lambda_n : n \ge 0\}.$

Theorem 0.2. Suppose that (P_{λ}) is regular and that $p_k > 0$ for all $k \ge 0$.

P_λ ⊆ P_μ if and only if E_μ − E_λ is finite.
 P_μ = P_λ if and only if E_μΔE_λ is finite.

Corollary 0.3. If (P_{λ}) is regular and $p_k > 0$ for all $k \ge 0$, then $(P) \subset (P_{\lambda})$ strictly.

Proof.

Set $\mu_n = \frac{\lambda_n + \lambda_{n+1}}{2}$ for $n \ge 0$. Then $E_{\lambda} \cap E_{\mu} = \emptyset$. Hence we cannot have $(P_{\lambda}) \subseteq (P_{\mu})$. Therefore there exists a sequence $\{s_k\}$ such that $s_k \to s(P_{\lambda})$ but $\{s_k\}$ is not limitable (P_{μ}) . But we always have $(P) \subseteq (P_{\mu})$. Therefore $s_k \to s(P_{\lambda})$ but $s_k \not\to s(P)$.

Tauberian Results

Assume that $\rho = 1$ so that $x_n = 1 - \frac{1}{\lambda_n}$.

Motivation for the result here is Theorem 3 in the paper of K. Ishiguro,

A tauberian theorem for (J, p_n) summability, Proc. Japan Acad., **40**(1964).

Theorem 0.4. Suppose that

(i)
$$\frac{P_n}{p(x_n)} = O(1) \text{ as } n \to \infty,$$

(ii) $0 < p_k \le M \text{ for all } k \ge 0,$
(iii) $\frac{\lambda_n}{P_n} = O(1),$
(iv) $\sum_{k=0}^{\infty} a_k = s(P_\lambda) \text{ and}$
(v) $a_k = o(\frac{p_k}{P_k}) \text{ as } k \to \infty.$
Then $\sum_{k=0}^{\infty} a_k = s.$

Corollary 0.5. For (A_{λ}) If $na_n \to 0$ and there exist positive constants, γ_1 and γ_2 , such that $\gamma_1 \leq \frac{\lambda_n}{n} \leq \gamma_2$ then $\sum_{k=0}^{\infty} a_k = s(A_{\lambda})$ implies $\sum_{k=0}^{\infty} a_k = s$.

Open Questions.

- (1) O(), one-sided or $\sum_{1}^{n} ka_{k} = o(n)$ type tauberian theorems.
- (2) Tauberian results for $\rho = \infty$.
- (3) Tauberian results between discrete weighted mean and discrete power series methods.
- (4) A "slow-decrease"-type result.

References

- D. H. Armitage and I. J. Maddox, A new type of Cesàro mean, Analysis 9(1989), 195-204.
- [2] D. H. Armitage and I. J. Maddox, *Discrete Abel means*, Analysis 10(1990), 177-186.
- [3] R. P. Boas, *Entire Functions*, Academic Press, 1954.
- [4] D. Borwein, On Methods of Summability Based on Power Series, Proc. Royal Soc. Edinburgh, 64(1957), 342-349.
- [5] T. Carleman, Sur un théorème de Weierstrass, Ark. Math. Astr. Fys. 20B(1927), 1-5.
- [6] D. Gaier, *Lectures on Complex Approximation*, Birkhauser Boston, Inc., 1987.
- [7] G. H. Hardy, Divergent Series, Oxford, 1949.
- [8] K. Ishiguro, A tauberian theorem for (J, p_n) summability, Proc. Japan Acad., **40**(1964), 807-812.
- [9] B. Watson, Discrete Power Series Methods, Analysis, 18(1998), 97-102.
- [10] B. Watson, Discrete Weighted Mean Methods, Indian J. pure appl. Math., 30(12) (1999), 1223-1227.
- B. Watson, A Tauberian Theorem for Discrete Power Series Methods, Analysis, 22(2002), 361-365.