A variational proof of Birkhoff's theorem

Q. J. Zhu

Department of Mathematics
Western Michigan University
Kalamazoo, MI 49008 USA

Supported by National Science Foundation under grant DMS 0102496.

Doubly stochastic matrices

An $N \times N$ matrix $A=\left(a_{n m}\right)$ is doubly stochastic if

$$
\begin{aligned}
& a_{m n} \geq 0, m, n=1, \ldots, N \\
& \sum_{n=1}^{N} a_{n m}=1, m=1, \ldots, N
\end{aligned}
$$

and

$$
\sum_{m=1}^{N} a_{n m}=1, n=1, \ldots, N
$$

Denote the set of $(N \times N)$ doubly
stochastic matices by \mathcal{A} and the set of permutation matrices by \mathcal{P}. Then

$$
\mathcal{P} \subset \mathcal{A} .
$$

Applications: Physics, stochastic process, economics...

Birkhoff Theorem

$\mathcal{A}=\operatorname{conv} \mathcal{P}$.

Approximate Fermat Principle

 Let $f: \mathbf{R}^{N} \rightarrow \mathbf{R}$ be a differentiable function bounded from below.Then, $\forall \varepsilon>0, \exists x \in \mathbf{R}^{N}$ such that

$$
\left\|f^{\prime}(x)\right\|<\varepsilon
$$

Proof. Let $f(z)<\inf f+\varepsilon / 2$ and take x to be the minimizer of

$$
f(y)+\frac{\varepsilon}{2}\|y-z\|^{2}
$$

Then

$$
f^{\prime}(x)=-\varepsilon\|x-z\| \cdot\|\cdot\|^{\prime}(x-z)
$$

The norm of the right hand side is ≤ 1.

A variational proof of Birkhoff's Theorem

Inclusion cons $\mathcal{P} \subset \mathcal{A}$. is easy to check. We show the opposite inclusion and for this we need a combinatorical lemma: Lemma 1. For $A \in \mathcal{A}$ there exists $P \in \mathcal{P}$, the entries in A corresponding to the $1^{\prime} s$ in P are all nonzero.

Let \mathcal{E} be the Euclidean space of all $N \times$ N matrices with inner product

$$
\langle A, B\rangle=\operatorname{tr}\left(B^{\top} A\right)=\sum_{n, m=1}^{N} a_{n m} b_{n m} .
$$

The key is
Lemma 2. Let $A \in \mathcal{A}$. Then for any $B \in \mathcal{E}$ there exists $P \in \mathcal{P}$ such that

$$
\langle B, A-P\rangle \geq 0
$$

Proof. Induction on the number of nonzero elements of A. By Lemma 1 there exists $P \in \mathcal{P}$ such that the entries in A corresponding to the $1^{\prime} s$ in P are all nonzero. Let $t \in(0,1)$ be the minimum of these N positive elements. Then we can verify that $A_{1}=$ $(A-t P) /(1-t) \in \mathcal{A}$. Since A_{1} has at least one less nonzero elements than A, by the induction hypothesis there exists $Q \in \mathcal{P}$ such that

$$
\left\langle B, A_{1}-Q\right\rangle \geq 0
$$

It follows that

$$
\langle B, A-t P-(1-t) Q\rangle \geq 0
$$

and, therefore, at least one of $\langle B, A-$ $P\rangle$ or $\langle B, A-Q\rangle$ is nonnegative. Q.E.D.

Now define $f: \mathcal{E} \rightarrow \mathcal{R}$ by

$$
f(B):=\ln \left(\sum_{P \in \mathcal{P}} \exp \langle B, A-P\rangle\right)
$$

Then f is defined for all $B \in \mathcal{E}$, is differentiable and is bounded from below by 0 . By the approximate Fermat principle we can select a sequence $B_{i} \in \mathcal{E}$ such that

$$
\begin{aligned}
0 & =\lim _{i \rightarrow \infty} f^{\prime}\left(B_{i}\right) \\
& =\lim _{i \rightarrow \infty} \sum_{P \in \mathcal{P}} \lambda_{P}^{i}(A-P) .
\end{aligned}
$$

where

$$
\lambda_{P}^{i}=\frac{\exp \left\langle B_{i}, A-P\right\rangle}{\Sigma_{P \in \mathcal{P}} \exp \left\langle B_{i}, A-P\right\rangle}
$$

Clearly, $\lambda_{P}^{i}>0$ and $\Sigma_{P \in \mathcal{P}} \lambda_{P}^{i}=1$. Thus, taking a subsequence if necessary
we may assume that, for each $P \in \mathcal{P}$,

$$
\lim _{i \rightarrow \infty} \lambda_{P}^{i}=\lambda_{P} \geq 0
$$

and

$$
\sum_{P \in \mathcal{P}} \lambda_{P}=1
$$

Now taking limits as $i \rightarrow \infty$ in (1) we have

$$
\sum_{P \in \mathcal{P}} \lambda_{P}(A-P)=0
$$

It follows that $A={ }^{\Sigma} P \in \mathcal{P} \lambda_{P} P$, as was to be shown. Q.E.D.

Majorization

Let $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbf{R}^{N}$, we use x^{\downarrow} to denote the vector by rearranging the components of x in a decreasing order.
Recall that $x \prec y(x$ majorized by $y)$, if

$$
\sum_{n=1}^{N} x_{n}=\sum_{n=1}^{N} y_{n}
$$

and, for $k=1, \ldots, N$,

$$
\sum_{n=1}^{k} x_{n}^{\downarrow} \leq \sum_{n=1}^{k} y_{n}^{\downarrow}
$$

Characterization of Majorization

 $x \prec y$ iff, for any $z \in \mathbf{R}^{N}$,$$
\left\langle z^{\downarrow}, x^{\downarrow}\right\rangle \leq\left\langle z^{\downarrow}, y^{\downarrow}\right\rangle
$$

Proof. Come out of Abel's formula

$$
\begin{aligned}
& \left\langle z^{\downarrow}, y^{\downarrow}\right\rangle-\left\langle z^{\downarrow}, x^{\downarrow}\right\rangle \\
= & \left\langle z^{\downarrow}, y^{\downarrow}-x^{\downarrow}\right\rangle \\
= & \sum_{k=1}^{N-1}\left(\left(z_{k}^{\downarrow}-z_{k+1}^{\downarrow}\right) \cdot \sum_{n=1}^{k}\left(y_{n}^{\downarrow}-x_{n}^{\downarrow}\right)\right) \\
& +z_{N}^{\downarrow} \sum_{n=1}^{N}\left(y_{n}^{\downarrow}-x_{n}^{\downarrow}\right) .
\end{aligned}
$$

Level Sets of Majorization

 The level set for $y \in \mathbf{R}^{N}$ related to the majorization is $l(y):=\left\{x \in \mathbf{R}^{N}: x \prec\right.$ $y\}$. We have$$
l(y)=\operatorname{conv}\{P y: P \in \mathcal{P}\}
$$

Proof. The inclusion

$$
\operatorname{conv}\{P y: P \in \mathcal{P}\} \subset l(y)
$$

is straightforward. To proof the reversed inclusion, let $x \prec y$. For any $z \in \mathbf{R}^{N}$, choose $P \in \mathcal{P}$ such that

$$
\begin{align*}
\langle z, P y\rangle & =\left\langle z^{\downarrow}, y^{\downarrow}\right\rangle \geq\left\langle z^{\downarrow}, x^{\downarrow}\right\rangle \\
& \geq\langle z, x\rangle \tag{2}
\end{align*}
$$

Then, the function

$$
g(z):=\ln \left(\sum_{P \in \mathcal{P}} \exp \langle z, P y-x\rangle\right)
$$

is defined for all $z \in \mathbf{R}^{N}$, differentiable and bounded from below (by 0). The rest of the proof is the same as that of Birkhoff's theorem provided before.

Possible Alternative Variational Proof of Birkhoff's Theorem

Let $C=$ conv \mathcal{P}. Then C is a convex compact set. For any $A \in \mathcal{A}$ let $P_{C}(A)$ be the projection of A to C. Then $P_{C}(A)$ is characterized by

$$
\left\langle B-P_{C}(A), A-P_{C}(A)\right\rangle \leq 0
$$

for all $B \in C$. The proof will be completed if we can deduce $A=P_{C}(A)$ from the above necessary condition. Many examples verify this conclusion but no proof has been found yet.

