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Doubly stochastic matrices

An N×N matrix A = (anm) is doubly
stochastic if

amn ≥ 0, m, n = 1, . . . , N.

N∑
n=1

anm = 1, m = 1, . . . , N

and
N∑

m=1
anm = 1, n = 1, . . . , N.

Denote the set of (N × N) doubly

stochastic matices by A and the set of
permutation matrices by P . Then

P ⊂ A.

Applications: Physics, stochastic pro-
cess, economics...
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Birkhoff Theorem

A = conv P .
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Approximate Fermat Principle

Let f : RN → R be a differentiable
function bounded from below.

Then, ∀ε > 0, ∃x ∈ RN such that

‖f ′(x)‖ < ε.

Proof. Let f (z) < inf f+ε/2 and take
x to be the minimizer of

f (y) +
ε

2
‖y − z‖2.

Then

f ′(x) = −ε‖x− z‖ · ‖ · ‖′(x− z).

The norm of the right hand side is≤ 1.
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A variational proof of
Birkhoff’s Theorem

Inclusion conv P ⊂ A. is easy to check.

We show the opposite inclusion and for
this we need a combinatorical lemma:

Lemma 1. For A ∈ A there exists
P ∈ P , the entries in A corresponding
to the 1′s in P are all nonzero.

Let E be the Euclidean space of all N×
N matrices with inner product

〈A, B〉 = tr(B>A) =
N∑

n,m=1
anmbnm.

The key is

Lemma 2. Let A ∈ A. Then for any
B ∈ E there exists P ∈ P such that

〈B, A− P 〉 ≥ 0.
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Proof. Induction on the number of
nonzero elements of A. By Lemma 1
there exists P ∈ P such that the en-
tries in A corresponding to the 1′s in
P are all nonzero. Let t ∈ (0, 1) be
the minimum of these N positive ele-
ments. Then we can verify that A1 =
(A− tP )/(1− t) ∈ A. Since A1 has at
least one less nonzero elements than A,
by the induction hypothesis there exists
Q ∈ P such that

〈B, A1 −Q〉 ≥ 0.

It follows that

〈B, A− tP − (1− t)Q〉 ≥ 0

and, therefore, at least one of 〈B, A −
P 〉 or 〈B, A−Q〉 is nonnegative. Q.E.D.
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Now define f : E → R by

f (B) := ln
 ∑
P∈P

exp〈B, A− P 〉
 .

Then f is defined for all B ∈ E , is dif-
ferentiable and is bounded from below
by 0. By the approximate Fermat prin-
ciple we can select a sequence Bi ∈ E
such that

0 = lim
i→∞

f ′(Bi) (1)

= lim
i→∞

∑
P∈P

λi
P (A− P ).

where

λi
P =

exp〈Bi, A− P 〉
∑
P∈P exp〈Bi, A− P 〉

.

Clearly, λi
P > 0 and ∑

P∈P λi
P = 1.

Thus, taking a subsequence if necessary
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we may assume that, for each P ∈ P ,

lim
i→∞

λi
P = λP ≥ 0

and ∑
P∈P

λP = 1.

Now taking limits as i → ∞ in (1) we
have

∑
P∈P

λP (A− P ) = 0.

It follows that A = ∑
P∈P λPP , as was

to be shown. Q.E.D.
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Majorization

Let x = (x1, . . . , xN ) ∈ RN , we use x↓

to denote the vector by rearranging the
components of x in a decreasing order.

Recall that x ≺ y (x majorized by y),
if

N∑
n=1

xn =
N∑

n=1
yn

and, for k = 1, . . . , N ,

k∑
n=1

x↓n ≤
k∑

n=1
y↓n.
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Characterization of Majorization

x ≺ y iff, for any z ∈ RN ,

〈z↓, x↓〉 ≤ 〈z↓, y↓〉.

Proof. Come out of Abel’s formula

〈z↓, y↓〉 − 〈z↓, x↓〉
= 〈z↓, y↓ − x↓〉
=

N−1∑
k=1

(z↓k − z
↓
k+1) ·

k∑
n=1

(y↓n − x↓n)


+z
↓
N

N∑
n=1

(y↓n − x↓n).
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Level Sets of Majorization

The level set for y ∈ RN related to the
majorization is l(y) := {x ∈ RN : x ≺
y}. We have

l(y) = conv{Py : P ∈ P}.

Proof. The inclusion

conv{Py : P ∈ P} ⊂ l(y)

is straightforward. To proof the reversed
inclusion, let x ≺ y. For any z ∈ RN ,
choose P ∈ P such that

〈z, Py〉 = 〈z↓, y↓〉 ≥ 〈z↓, x↓〉
≥ 〈z, x〉. (2)
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Then, the function

g(z) := ln
 ∑
P∈P

exp〈z, Py − x〉


is defined for all z ∈ RN , differentiable
and bounded from below (by 0). The
rest of the proof is the same as that of
Birkhoff’s theorem provided before.
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Possible Alternative Variational
Proof of Birkhoff’s Theorem

Let C = conv P . Then C is a con-
vex compact set. For any A ∈ A let
PC(A) be the projection of A to C.
Then PC(A) is characterized by

〈B − PC(A), A− PC(A)〉 ≤ 0

for all B ∈ C. The proof will be com-
pleted if we can deduce A = PC(A)
from the above necessary condition. Many
examples verify this conclusion but no
proof has been found yet.
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