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Elsewhere Kronecker said “In mathematics,

I recognize true scientific value only in con-

crete mathematical truths, or to put it more

pointedly, only in mathematical formulas.”

... I would rather say “computations” than

“formulas”, but my view is essentially the

same. (Harold M. Edwards, 2004)
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Two Scientific Quotations

Kurt Gödel overturned the mathematical apple cart
entirely deductively, but he held quite different ideas
about legitimate forms of mathematical reasoning:

If mathematics describes an objective world
just like physics, there is no reason why in-
ductive methods should not be applied in
mathematics just the same as in physics.∗

and Christof Koch accurately captures scientific dis-
taste for philosophizing:

Whether we scientists are inspired, bored,
or infuriated by philosophy, all our theoriz-
ing and experimentation depends on partic-
ular philosophical background assumptions.
This hidden influence is an acute embarrass-
ment to many researchers, and it is therefore
not often acknowledged. (Christof Koch†,
2004)

∗Taken from an until then unpublished 1951 manuscript in his
Collected Works, Volume III.
†In “Thinking About the Conscious Mind,” a review of John
R. Searle’s Mind. A Brief Introduction, OUP 2004.
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Three Mathematical Definitions

mathematics, n. a group of related subjects, in-
cluding algebra, geometry, trigonometry and calcu-
lus , concerned with the study of number, quantity,
shape, and space, and their inter-relationships, ap-
plications, generalizations and abstractions.

This definition taken from the Collins Dictionary
makes no immediate mention of proof, nor of the
means of reasoning to be allowed. Webster’s Dic-
tionary contrasts:

induction, n. any form of reasoning in
which the conclusion, though supported by
the premises, does not follow from them
necessarily ; and

deduction, n. a process of reasoning in
which a conclusion follows necessarily from
the premises presented, so that the conclu-
sion cannot be false if the premises are true.

I, like Gödel, and as I shall show many others, sug-
gest that both should be openly entertained in math-
ematical discourse.
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My Intentions in these Lectures

I aim to discuss Experimental Mathodology, its phi-
losophy, history, current practice and proximate fu-
ture, and using concrete accessible—entertaining I
hope—examples, to explore implications for math-
ematics and for mathematical philosophy.

Thereby, to persuade you both of the power
of mathematical experiment and that the
traditional accounting of mathematical learn-
ing and research is largely an ahistorical car-
icature.

The four lectures are largely independent

The tour mirrors that from the recent books:

Jonathan M. Borwein and David H. Bailey,
Mathematics by Experiment: Plausible Rea-
soning in the 21st Century; and with Roland
Girgensohn, Experimentation in Mathemat-
ics: Computational Paths to Discovery, A.K.
Peters, Natick, MA, 2004.
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The Four Clifford Lectures

1. Plausible Reasoning in the 21st Century, I.

This first lecture will be a general introduc-

tion to

Experimental Mathematics, its Practice and

its Philosophy.

It will reprise the sort of ‘Experimental method-

ology’ that David Bailey and I—among many

others—have come to practice over the past

two decades.∗

Dalhousie-DRIVE
∗All resources are available at www.experimentalmath.info.
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2. Plausible Reasoning in the 21st Century, II.

The second lecture will focus on the differ-

ences between

Determining Truths or Proving Theorems.

We shall explore various of the tools avail-

able for deciding what to believe in math-

ematics, and—using accessible examples—

illustrate the rich experimental tool-box math-

ematicians can now have access to.

Dalhousie-DRIVE
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3. Ten Computational Challenge Problems.

This lecture will make a more advanced analy-
sis of the themes developed in Lectures 1
and 2. It will look at ‘lists and challenges’
and discuss Ten Computational Mathemat-
ics Problems including

∫ ∞
0

cos(2x)
∞∏

n=1

cos
(

x

n

)
dx

?
=

π

8
.

This problem set was stimulated by Nick
Trefethen’s recent more numerical SIAM 100
Digit, 100 Dollar Challenge.∗

· · · · · ·

Die ganze Zahl schuf der liebe Gott, alles
Ubrige ist Menschenwerk. God made the in-
tegers, all else is the work of man. (Leopold
Kronecker, 1823-1891)

∗The talk is based on an article to appear in the May
2005 Notices of the AMS, and related resources such as
www.cs.dal.ca/∼jborwein/digits.pdf.
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4. Apéry-Like Identities for ζ(n) .

The final lecture comprises a research level

case study of generating functions for zeta

functions. This lecture is based on past re-

search with David Bradley and current re-

search with David Bailey.

One example is:

Z(x) := 3
∞∑

k=1

1(
2k
k

)
(k2 − x2)

k−1∏

n=1

4x2 − n2

x2 − n2

=
∞∑

n=1

1

n2 − x2
(1)


=

∞∑

k=0

ζ(2k + 2)x2 k =
1− πx cot(πx)

2x2


 .

Note that with x = 0 this recovers

3
∞∑

k=1

1(
2k
k

)
k2

=
∞∑

n=1

1

n2
= ζ(2).
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Experiments and Implications

I shall talk broadly about experimental and heuris-

tic mathematics, giving accessible, primarily visual

and symbolic, examples. The typographic to digital

culture shift is vexing in math, viz:

• There is still no truly satisfactory way of dis-

playing mathematics on the web

• We respect authority∗ but value authorship deeply

• And we care more about the reliability of our

literature than does any other science

While the traditional central role of proof in math-

ematics is arguably under siege, the opportunities

are enormous.

• Via examples, I intend to ask:

∗Judith Grabiner, “Newton, Maclaurin, and the Authority of
Mathematics,” MAA, December 2004
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MY QUESTIONS

F What constitutes secure mathematical knowl-

edge?

F When is computation convincing? Are humans

less fallible?

• What tools are available? What methodologies?

• What of the ‘law of the small numbers’?

• Who cares for certainty? What is the role of

proof?

F How is mathematics actually done? How should

it be?
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DEWEY on HABITS

Old ideas give way slowly; for they are more

than abstract logical forms and categories.

They are habits, predispositions, deeply en-

grained attitudes of aversion and preference.

· · · Old questions are solved by disappear-

ing, evaporating, while new questions cor-

responding to the changed attitude of en-

deavor and preference take their place. Doubt-

less the greatest dissolvent in contemporary

thought of old questions, the greatest pre-

cipitant of new methods, new intentions,

new problems, is the one effected by the

scientific revolution that found its climax in

the “Origin of Species.” ∗ (John Dewey)

∗The Influence of Darwin on Philosophy, 1910. Dewey knew
‘Comrade Van’ in Mexico.
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and MY ANSWERS

² “Why I am a computer assisted fallibilist/social
constructivist”

F Rigour (proof) follows Reason (discovery)

F Excessive focus on rigour drove us away from
our wellsprings

• Many ideas are false. Not all truths are provable.
Not all provable truths are worth proving . . .

F Near certainly is often as good as it gets— in-
tellectual context (community) matters

• Complex human proofs are fraught with error
(FLT, simple groups, · · · )

F Modern computational tools dramatically change
the nature of available evidence
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I Many of my more sophisticated examples origi-

nate in the boundary between mathematical physics

and number theory and involve the ζ-function,

ζ(n) =
∑∞

k=1
1
kn, and its relatives.

They often rely on the sophisticated use of Integer

Relations Algorithms — recently ranked among the

‘top ten’ algorithms of the century. Integer Rela-

tion methods were first discovered by our colleague

Helaman Ferguson the mathematical sculptor.

In 2000, Sullivan and Dongarra wrote “Great algo-

rithms are the poetry of computation,” when they

compiled a list of the 10 algorithms having “the

greatest influence on the development and practice

of science and engineering in the 20th century”.∗

• Newton’s method was apparently ruled ineligible

for consideration.

∗From “Random Samples”, Science page 799, February 4,
2000. The full article appeared in the January/February 2000
issue of Computing in Science & Engineering. Dave Bailey
wrote the description of ‘PSLQ’.
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The 20th century’s Top Ten

#1. 1946: The Metropolis Algorithm for Monte

Carlo. Through the use of random processes,
this algorithm offers an efficient way to stumble
toward answers to problems that are too com-
plicated to solve exactly.

#2. 1947: Simplex Method for Linear Program-

ming. An elegant solution to a common prob-
lem in planning and decision-making.

#3. 1950: Krylov Subspace Iteration Method. A
technique for rapidly solving the linear equations
that abound in scientific computation.

#4. 1951: The Decompositional Approach to

Matrix Computations. A suite of techniques
for numerical linear algebra.

#5. 1957: The Fortran Optimizing Compiler. Turns
high-level code into efficient computer-readable
code.
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#6. 1959: QR Algorithm for Computing Eigenval-
ues. Another crucial matrix operation made
swift and practical.

#7. 1962: Quicksort Algorithms for Sorting. For
the efficient handling of large databases.

#8. 1965: Fast Fourier Transform. Perhaps the
most ubiquitous algorithm in use today, it breaks
down waveforms (like sound) into periodic com-
ponents.

#9. 1977: Integer Relation Detection. A fast
method for spotting simple equations satisfied
by collections of seemingly unrelated numbers.

#10. 1987: Fast Multipole Method. A breakthrough
in dealing with the complexity of n-body calcula-
tions, applied in problems ranging from celestial
mechanics to protein folding.

Eight of these appeared in the first two decades of
serious computing. Most are multiply embedded in
every major mathematical computing package.
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FOUR FORMS of EXPERIMENTS

We should discuss what Experiments are!

♣ Kantian examples: generating “the

classical non-Euclidean geometries (hyperbolic, el-

liptic) by replacing Euclid’s axiom of parallels (or

something equivalent to it) with alternative forms.”

♦ The Baconian experiment is a contrived as op-

posed to a natural happening, it “is the consequence

of ‘trying things out’ or even of merely messing

about.”

♥ Aristotelian demonstrations: “apply electrodes

to a frog’s sciatic nerve, and lo, the leg kicks; always

precede the presentation of the dog’s dinner with

the ringing of a bell, and lo, the bell alone will soon

make the dog dribble.”
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♠ The most important is Galilean: “a critical ex-

periment – one that discriminates between possibil-

ities and, in doing so, either gives us confidence in

the view we are taking or makes us think it in need

of correction.”

• The only form which will make Experimental

Mathematics a serious enterprise.

A Julia set From Peter Medawar

(1915–87) Advice to a

Young Scientist (1979)
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A PARAPHRASE of HERSH

In any event mathematics is and will remain a uniquely

human undertaking. Indeed Reuben Hersh’s argu-

ments for a humanist philosophy of mathematics,

as paraphrased below, become more convincing in

our computational setting:

1. Mathematics is human. It is part of

and fits into human culture. It does not

match Frege’s concept of an abstract, time-

less, tenseless, objective reality.

2. Mathematical knowledge is fallible. As in

science, mathematics can advance by mak-

ing mistakes and then correcting or even re-

correcting them. The “fallibilism” of math-

ematics is brilliantly argued in Lakatos’ Proofs

and Refutations.
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3. There are different versions of proof or

rigor. Standards of rigor can vary depend-

ing on time, place, and other things. The

use of computers in formal proofs, exempli-

fied by the computer-assisted proof of the

four color theorem in 1977 (1997), is just

one example of an emerging nontraditional

standard of rigor.

A 4-coloring

4. Empirical evidence, numerical experimen-

tation and probabilistic proof all can help

us decide what to believe in mathematics.

Aristotelian logic isn’t necessarily always the

best way of deciding.
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5. Mathematical objects are a special variety

of a social-cultural-historical object. Con-

trary to the assertions of certain post-modern

detractors, mathematics cannot be dismissed

as merely a new form of literature or reli-

gion. Nevertheless, many mathematical ob-

jects can be seen as shared ideas, like Moby

Dick in literature, or the Immaculate Con-

ception in religion.

I “Fresh Breezes in the Philosophy of Mathemat-

ics”, MAA Monthly, Aug 1995, 589–594.

A 2-coloring?
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A PARAPHRASE of ERNEST

The idea that what is accepted as mathematical
knowledge is, to some degree, dependent upon a
community’s methods of knowledge acceptance is
central to the social constructivist school of math-
ematical philosophy.

The social constructivist thesis is that math-
ematics is a social construction, a cultural
product, fallible like any other branch of knowl-
edge. (Paul Ernest)

Associated most notably with the writings of Paul
Ernest∗ social constructivism seeks to define math-
ematical knowledge and epistemology through the
social structure and interactions of the mathemati-
cal community and society as a whole.

r DISCLAIMER: Social Constructivism is not Cul-
tural Relativism

∗In Social Constructivism As a Philosophy of Mathematics,
Ernest, an English Mathematician and Professor in the Phi-
losophy of Mathematics Education, carefully traces the in-
tellectual pedigree for his thesis, a pedigree that encom-
passes the writings of Wittgenstein, Lakatos, Davis, and
Hersh among others.
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A NEW PROOF
√

2 is IRRATIONAL

One can find new insights in the oldest areas:

• Here is Tom Apostol’s lovely new graphical proof∗
of the irrationality of

√
2. I like very much that

this was published in the present millennium.

Root two is irrational
(static and self-similar pictures)

∗MAA Monthly, November 2000, 241–242.
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PROOF. To say
√

2 is rational is to draw a right-

angled isoceles triangle with integer sides. Consider

the smallest right-angled isoceles triangle with in-

teger sides—that is with shortest hypotenuse.

Circumscribe a circle of radius one side and con-

struct the tangent on the hypotenuse [See picture].

Repeating the process once yields a yet smaller such

triangle in the same orientation as the initial one.

The smaller triangle again has integer sides . . .QED

Note the philosophical transitions.

• Reductio ad absurdum ⇒ minimal configuration

• Euclidean geometry ⇒ Dynamic geometry
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FOUR Humanist VIGNETTES

I. Revolutions

By 1948, the Marxist-Leninist ideas about the

proletariat and its political capacity seemed

more and more to me to disagree with real-

ity ... I pondered my doubts, and for several

years the study of mathematics was all that

allowed me to preserve my inner equilibrium.

Bolshevik ideology was, for me, in ruins. I had

to build another life.

Jean Van Heijenoort (1913-1986) With Trotsky in

Exile, in Anita Feferman’s From Trotsky to Gödel

• Dewey ran Trotsky’s ‘treason trial’ in Mexico
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II. It’s Obvious . . .

Aspray: Since you both [Kleene and Rosser]

had close associations with Church, I was

wondering if you could tell me something

about him. What was his wider mathemat-

ical training and interests? What were his

research habits? I understood he kept rather

unusual working hours. How was he as a lec-

turer? As a thesis director?

Rosser: In his lectures he was painstakingly

careful. There was a story that went the

rounds. If Church said it’s obvious, then

everybody saw it a half hour ago. If Weyl

says it’s obvious, von Neumann can prove it.

If Lefschetz says it’s obvious, it’s false.∗

∗One of several versions of this anecdote in The Princeton
Mathematics Community in the 1930s. This one in Tran-
script Number 23 (PMC23)

25



III. The Evil of Bourbaki

“There is a story told of the mathe-

matician Claude Chevalley (1909–84),

who, as a true Bourbaki, was extremely

opposed to the use of images in geo-

metric reasoning.

He is said to have been giving a very abstract and

algebraic lecture when he got stuck. After a moment

of pondering, he turned to the blackboard, and, try-

ing to hide what he was doing, drew a little diagram,

looked at it for a moment, then quickly erased it,

and turned back to the audience and proceeded with

the lecture.. . .

. . .The computer offers those less expert, and less

stubborn than Chevalley, access to the kinds of im-

ages that could only be imagined in the heads of the

most gifted mathematicians, . . .”a (Nathalie Sinclair)

aChapter in Making the Connection: Research and Practice in
Undergraduate Mathematics, MAA Notes, 2004 in Press.
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IV. The Historical Record

And it is one of the ironies of this entire field

that were you to write a history of ideas in

the whole of DNA, simply from the docu-

mented information as it exists in the liter-

ature - that is, a kind of Hegelian history of

ideas - you would certainly say that Watson

and Crick depended on Von Neumann, be-

cause von Neumann essentially tells you how

it’s done.

But of course no one knew anything about

the other. It’s a great paradox to me that

this connection was not seen. Of course,

all this leads to a real distrust about what

historians of science say, especially those of

the history of ideas.∗ (Sidney Brenner)

∗The 2002 Nobelist talking about von Neumann’s essay on
The General and Logical Theory of Automata on pages 35–
36 of My life in Science as told to Lewis Wolpert.
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POLYA and HEURISTICS

“[I]ntuition comes to us much earlier and

with much less outside influence than for-

mal arguments which we cannot really un-

derstand unless we have reached a relatively

high level of logical experience and sophisti-

cation.”∗ (George Polya)

Scatter-plot discovery of a cardioid

∗In Mathematical Discovery: On Understanding, Learning and
Teaching Problem Solving, 1968.
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Polya on Picture-writing

Polya’s illustration of the change solution∗

Polya, in a 1956 American Mathematical Monthly

article provided three provoking examples of con-

verting pictorial representations of problems into

generating function solutions. We discuss the first

one.

1. In how many ways can you make change for a

dollar?

∗Illustration courtesy Mathematical Association of America
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This leads to the (US currency) generating function

∑

k≥0

Pkxk =
1

(1− x)(1− x5)(1− x10)(1− x25)(1− x50)

which one can easily expand using a Mathematica

command,

Series[1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)),

{x,0,100}]

to obtain P100 = 292 (243 for Canadian currency,

which lacks a 50 cent piece but has a dollar coin in

common circulation).

• Polya’s diagram is shown in the Figure
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• To see why, we use geometric series and con-

sider the so called ordinary generating function

1

1− x10
= 1 + x10 + x20 + x30 + · · ·

for dimes and

1

1− x25
= 1 + x25 + x50 + x75 + · · ·

for quarters etc.

• We multiply these two together and compare

coefficients

1

1− x10

1

1− x25
= 1 + x10 + x20 + x25

+ x30 + x35 + x40 + x45

+ 2x50 + x55 + 2x60 + · · ·

We argue that the coefficient of x60 on the right

is precisely the number of ways of making 60 cents

out of identical dimes and quarters.

31



• This is easy to check with a handful of change

or a calculator, The general question with more

denominations is handled similarly.

• I leave it open whether it is easier to decode

the generating function from the picture or vice

versa

– in any event, symbolic and graphic experi-

ment provide abundant and mutual reinforce-

ment and assistance in concept formation.

“In the first place, the beginner must be

convinced that proofs deserve to be stud-

ied, that they have a purpose, that they are

interesting.” (George Polya)

While by ‘beginner’ George Polya intended young

school students, I suggest this is equally true of

anyone engaging for the first time with an unfamiliar

topic in mathematics.
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Our MOTIVATION and GOALS

INSIGHT – demands speed ≡ micro-parallelism

• For rapid verification.

• For validation; proofs and refutations; “monster

barring”.

F What is “easy” changes: HPC & HPN blur,

merging disciplines and collaborators — democ-

ratizing math but challenging authenticity.

• Parallelism ≡ more space, speed & stuff.

• Exact ≡ hybrid ≡ symbolic ‘+’ numeric (Maple

meets NAG, Matlab calls Maple).

• In analysis, algebra, geometry & topology.
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. . . Moreover

• Towards an Experimental Mathodology— phi-

losophy and practice.

I Intuition is acquired — mesh computation and

mathematics.

• Visualization — 3 is a lot of dimensions.

I “Monster-barring” (Lakatos) and “Caging” (JMB):

– randomized checks: equations, linear alge-

bra, primality.

– graphic checks: equalities, inequalities, ar-

eas.
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. . . Graphic Checks

• Comparing y − y2 and y2 − y4 to − y2 ln(y) for

0 < y < 1 pictorially is a much more rapid way

to divine which is larger than traditional analytic

methods.

• It is clear that in the later case they cross, it is

futile to try to prove one majorizes the other. In

the first case, evidence is provided to motivate

a proof.

Graphical comparison of

y − y2 and y2 − y4 to − y2 ln(y) (red)
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MINIMAL POLYNOMIALS of MATRICES

Consider matrices A, B, C, M :

A :=
[
(−1)k+1

(2n− j

2n− k

)]
, B :=

[
(−1)k+1

(2n− j

k − 1

)]

C :=
[
(−1)k+1

(j − 1

k − 1

)]

(k, j = 1, . . . , n) and set

M := A + B − C

• In work on Euler Sums we needed to prove M

invertible: actually

M−1 =
M + I

2
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• The key is discovering

A2 = C2 = I (2)

B2 = CA, AC = B.

∴ The group generated by A,B,C is S3

¦ Once discovered, the combinatorial proof of this
is routine – for a human or a computer (‘A = B‘,
Wilf-Zeilberger).

One now easily shows using (2)

M2 + M = 2I

as formal algebra since M = A + B − C.

• In truth I started in Maple with cases of

‘minpoly(M, x)‘

and then emboldened I typed

‘minpoly(B, x)‘ . . .

– Random matrices have full degree minimal
polynomials.

– Jordan Forms uncover Spectral Abscissas.
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OUR EXPERIMENTAL MATHODOLOGY

1. Gaining insight and intuition

2. Discovering new patterns and relationships

3. Graphing to expose math principles

4. Testing and especially falsifying conjectures

5. Exploring a possible result to see if it merits

formal proof

6. Suggesting approaches for formal proof

7. Computing replacing lengthy hand derivations

8. Confirming analytically derived results
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A BRIEF HISTORY OF RIGOUR

• Greeks: trisection, circle squaring, cube dou-

bling and
√

2

• Newton and Leibniz: fluxions/infinitesimals

• Cauchy and Fourier: limits and continuity

• Frege and Russell, Gödel and Turing: para-

doxes and types, proof and truth

• ENIAC and COQ: verification and validation

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.5 1 1.5 2 2.5 3
x

For continuous

functions

Fourier series

need

not converge:

in 1810, 1860 or

1910?
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THE PHILOSOPHIES OF RIGOUR

• Everyman: Platonism—stuff exists (1936)

• Hilbert: Formalism—math is invented; formal

symbolic games without meaning

• Brouwer: Intuitionism-—many variants; (‘em-

bodied cognition’)

• Bishop: Constructivism—tell me how big; (not

‘social constructivism’)

f Last two deny excluded middle: A ∨ Ã and res-

onate with computer science—as does some of

formalism.

Ξ Absolutism versus Fallibilism.
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SOME SELF PROMOTION

• Today Experimental Mathematics is being dis-

cussed quite widely

From Scientific American, May 2003
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From Science News April 2004
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A Discovery in SnapPea
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CONCLUSION

From American Scientist, March 2005

© In the next Lecture we will return to these themes
more mathematically.
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