Solutions to Selected Exercises in Chapter 5

Exercises from Section 5.1

5.1.1. (a) Suppose $A \subset X$ is not empty. Observe that $\left(A^{\circ}\right)_{\circ}$ is a closed balance convex set containing A so it contains the closed balanced convex hull of A. Now suppose $x \in\left(A^{\circ}\right)$ 。 but is not in the closed balanced hull of A. By the basic separation theorem (4.1.12), choose $\phi \in X^{*}$ such that $\langle\phi, x\rangle>1>\sup _{A} \phi$. Then $\phi \in A^{\circ}$, but this implies $x \notin\left(A^{\circ}\right)_{\circ}$ which is a contradiction. (b) This is similar to (a). Suppose $B \subset X^{*}$ is not empty. Observe that $\left(B_{\circ}\right)^{\circ}$ is a weak*closed balance convex set containing B so it contains the weak*-closed balanced convex hull of B. Suppose $\phi \in\left(B_{\circ}\right)^{\circ}$ but is not in the weak*-closed balanced hull of B. By the weak*-separation theorem (4.1.12), choose $x \in X$ such that $\langle\phi, x\rangle>1>\sup _{B} x$. Then $x \in B_{0}$, but this implies $\phi \notin\left(B_{\circ}\right)^{\circ}$ which is a contradiction.
5.1.2. (a) \Rightarrow (c): Suppose (c) is not true. Choose a supporting functional $\phi \in S_{X^{*}}$ of x. Then there exist $\phi_{n} \in B_{X^{*}}$ such that $\phi_{n}(x) \rightarrow 1$, and $\epsilon>0$ and $h \in B_{X^{*}}$ such that $\left(\phi-\phi_{n}\right)(h) \geq \epsilon$. Now choose $t_{n} \rightarrow 0^{+}$such that $1-\phi_{n}(x) \leq \frac{t_{n} \epsilon}{2}$. Then

$$
\begin{aligned}
\left\|x+t_{n} h\right\|+\left\|x-t_{n} h\right\|-2\|x\| & \geq \phi_{n}\left(x+t_{n} h\right)+\phi\left(x-t_{n} h\right)-2\|x\| \\
& \geq \phi_{n}(x)+\phi(x)+t_{n}\left(\phi_{n}-\phi\right)(h)-2 \\
& \geq t_{n} \epsilon+\phi_{n}(x)-1 \geq \frac{t_{n} \epsilon}{2} .
\end{aligned}
$$

Consequently, $\|\cdot\|$ is not Gâteaux differentiable at x by Proposition 5.1.3(b).
$(\mathrm{c}) \Rightarrow(\mathrm{b})$: Let $\Lambda_{n}, \phi_{n}, x_{n}, y_{n}$ be as in (b). Choose a supporting functional $\phi \in S_{X^{*}}$ with $\phi(x)=1$. Now $\phi_{n}(x) \rightarrow 1$ and $\Lambda_{n}(x) \rightarrow 1$ since $x_{n} \rightarrow x$ and $y_{n} \rightarrow x$. According to (c) $\phi_{n} \rightarrow_{w^{*}} \phi$ and $\Lambda_{n} \rightarrow_{w^{*}} \phi$ and so $\left(\phi_{n}-\Lambda_{n}\right) \rightarrow_{w^{*}} 0$ as desired.
$(\mathrm{b}) \Rightarrow(\mathrm{a}):$ Suppose $\|\cdot\|$ is not Gâteaux differentiable at x. Then for $\phi \in S_{X^{*}}$ with $\phi(x)=1$, there exist $t_{n} \rightarrow 0^{+}, h \in S_{X}$ and $\epsilon>0$ such that

$$
\left\|x+t_{n} h\right\|-\|x\|-\phi\left(t_{n} h\right)>\epsilon t_{n}
$$

for all n. Choose $\phi_{n} \in S_{X^{*}}$ so that $\phi_{n}\left(x+t_{n} h\right)=\left\|x+t_{n} h\right\|$. The previous inequality implies $\phi_{n}\left(t_{n} h\right)-\phi\left(t_{n} h\right)>\epsilon t_{n}$ and so $\phi_{n} \nrightarrow \phi$ which shows (b) is not true.
5.1.3. This follows from Šmulian's theorems (4.2.10) and (4.2.11) with the observation $\phi \in S_{X^{*}}$, $\phi \in \partial_{\epsilon}\|\cdot\|$ if and only if $\phi(x) \geq 1-\epsilon$.
5.1.4. Suppose $\|x\|_{1}+\|y\|_{1}=\|x+y\|_{1}=2$ where $\|x\|_{1}=\|y\|_{1}=1$. Then $\|T x\|_{Y}+\|T y\|_{Y}=$ $\|T x+T y\|_{Y}$. Because $\|\cdot\|_{Y}$ is strictly convex and T is one-to-one, Fact 5.1.9 implies $T x=\lambda T y$ for some $\lambda>0$. Then $x=\lambda y$ and because $\|x\|_{1}=\|y\|_{1}=1$, this implies $x=y$, and so $\|\cdot\|_{1}$ is strictly convex as desired.
5.1.5. Suppose $\|\cdot\|$ is a dual norm on X^{*} that is Fréchet differentiable at $\phi \in S_{X^{*}}$. Choose $x^{* *} \in S_{X^{* *}}$ such that $\left\langle x^{* *}, \phi\right\rangle=1$. Now choose $x_{n} \in B_{X}$ so that $\phi\left(x_{n}\right) \rightarrow 1$. By Smulian's theorem (5.1.4), $x_{n} \rightarrow x^{* *}$ so $x^{* *} \in S_{X}$. Now if $x \in S_{X}$ is such that $\phi(x)=1$, then $x=x^{* *}$ and the statement follows.

Conversely, suppose $\phi \in S_{X^{*}}$, and $x \in S_{X}$ are such that $\phi(x)=1$ and $\left\|x_{n}-x\right\| \rightarrow 0$ whenever $x_{n} \in B_{X}$ are such that $\phi\left(x_{n}\right) \rightarrow 1$. Suppose $\|\cdot\|$ is not Fréchet differentiable at ϕ. Then there are $h_{n} \in S_{X^{*}}, t_{n} \rightarrow 0^{+}$and $\epsilon>0$ such that

$$
\left\|\phi+t_{n} h_{n}\right\|+\left\|\phi-t_{n} h_{n}\right\|-2>\epsilon t_{n}
$$

for all n. Choose $x_{n} \in S_{X}$ so that $\left\langle\phi+t_{n} h_{n}, x_{n}\right\rangle>\left\|x+t_{n} h_{n}\right\|-t_{n} \epsilon / 3$ and $y_{n} \in S_{X}$ so that $\left\langle\phi-t_{n} h_{n}, x_{n}\right\rangle>\left\|x-t_{n} h_{n}\right\|-t_{n} \epsilon / 3$. Then $\phi\left(x_{n}\right) \rightarrow 1$ and $\phi\left(y_{n}\right) \rightarrow 1$, but $\left\langle x_{n}-y_{n}, t_{n} h_{n}\right\rangle>\epsilon t_{n} / 3$ and so $x_{n} \nrightarrow x$ and $y_{n} \nrightarrow x$ which is a contradiction.
5.1.6. Let $x \in S_{X}$ and choose a supporting functional $f \in S_{X^{*}}$ so that $f(x)=1$. Suppose $f_{n} \in B_{X^{*}}$ satisfies $f_{n}(x) \rightarrow 1$. Then, $\left\|f+f_{n}\right\| \geq\left(f+f_{n}\right)(x) \rightarrow 2$. Because $\|\cdot\|$ is locally uniformly convex, $\left\|f_{n}-f\right\| \rightarrow 0$. According to Smulian's theorem (5.1.4), $\|\cdot\|$ is Fréchet differentiable at x.
5.1.7. (a) Suppose $x:=\left(x_{i}\right)$ is such that $x_{i} \neq 0$ for all $i \in \mathbb{N}$. Then the unique supporting functional in $\ell_{\infty}(\mathbb{N})$ is $\Lambda:=\left(\operatorname{sign} x_{i}\right)_{i=1}^{\infty}$. Thus $\|\cdot\|_{1}$ is Gâteaux differentiable at x by Corollary 5.1.7. Conversely, suppose $x:=\left(x_{i}\right)$ and $x_{i_{0}}=0$, then there are infinitely many support functionals in $\ell_{\infty}(\mathbb{N})$ because the i_{0}-th coordinate can be any number whose absolute value does not exceed 1 . (b) We need consider only the points $x=\left(x_{i}\right) \in S_{\ell_{1}}$ of Gâteaux differentiability, let $y^{n} \in S_{\ell_{\infty}}$ where $y_{i}^{n}=\operatorname{sign}\left(x_{i}\right), i=1, \ldots, n$, and $y_{i}=0$ otherwise. Then $y^{n}(x)=1-\epsilon_{n}$ where $\epsilon_{n}=$ $\sum_{i=n+1}^{\infty}\left|x_{i}\right|$. Now $y_{n}(x) \rightarrow 1$, but $\left\|y_{n}-y_{n+1}\right\|_{\infty}=1$ and so $\left(y_{n}\right)$ does not converge in norm. According to Šmulian's theorem (5.1.4), $\|\cdot\|_{1}$ is not Fréchet differentiable at x.
(c) Suppose $x=\left(x_{\gamma}\right)_{\gamma \in \Gamma}$. Then $x_{\gamma_{0}}=0$ for some $\gamma_{0} \in \Gamma$, and so there fails to be a unique supporting functional for x.
5.1.10. Let $\left\{x_{n}\right\}_{n=1}^{\infty} \subset S_{X}$ be dense. For each n, choose $f_{n} \in S_{X^{*}}$ such that $f_{n}\left(x_{n}\right)=1$ (Remark 4.1.16). Because the norm-attaining functionals are dense in $S_{X^{*}}$ by the Bishop-Phelps theorem (4.3.4), it suffices to show that $\overline{\left\{f_{n}\right\}_{n=1}^{\infty}}$ contains the norm-attaining functionals in $S_{X^{*}}$ (this will show $S_{X^{*}}$ is separable). Now let $f \in S_{X}$ be a norm-attaining functional, say $f(x)=1$. Choose $x_{n_{k}} \rightarrow x$. Now $f_{n_{k}}\left(x_{n_{k}}\right)=1$, and so $f_{n_{k}}(x) \rightarrow 1$. According to Šmulian's theorem (5.1.4), $f_{n_{k}} \rightarrow f$. Thus, $\overline{\left\{f_{n}\right\}_{n=1}^{\infty}}$ contains the norm-attaining functionals as desired.
5.1.15. (a) Suppose $\|\cdot\|$ is not uniformly convex. Then we choose $\left(x_{n}\right),\left(y_{n}\right) \subset B_{X}$ such that $\left\|x_{n}+y_{n}\right\| \rightarrow 2$ but $\left\|x_{n}-y_{n}\right\| \rightarrow 0$. Passing to a subsequence and using compactness, we have $x_{n_{k}} \rightarrow \bar{x}, y_{n_{k}} \rightarrow \bar{y},\|\bar{x}+\bar{y}\|=2$ and $\|\bar{x}-\bar{y}\|=0$. Hence $\|\cdot\|$ is not strictly convex.
(b) Similarly, suppose $\|\cdot\|$ is not uniformly smooth. This means its derivative (if it exists) is not uniformly continuous on S_{X}, and hence not continuous on S_{X}. Thus $\|\cdot\|$ is not Gâteaux differentiable (since a differentiable convex function on a Euclidean space has continuous derivative).
(c) Suppose $x_{0} \in S_{X}$ an exposed point of B_{X}. Let $\phi \in S_{X^{*}}$ be an exposing functional. Suppose $\left(x_{n}\right) \subset B_{X}$ and $\phi\left(x_{n}\right) \rightarrow 1$, and, again, by compactness, we may assume $x_{n} \rightarrow \bar{x} \in B_{X}$. Then $\phi(\bar{x})=1$ Thus $\bar{x}=x_{0}$. From this, we may deduce that x_{0} is strongly exposed by ϕ.
5.1.16. The respective cases follow by using characterizations in Fact 5.1.9(c), Fact 5.1.12(b) and Fact 5.1.17(b). We illustrate this in the uniformly convex case. Suppose $\left(x_{n}\right),\left(y_{n}\right)$ are bounded sequences such that

$$
2\left\|x_{n}\right\|^{2}+2\left\|y_{n}\right\|^{2}-\left\|x_{n}+y_{n}\right\|^{2} \rightarrow 0
$$

Then Fact 5.1.8 implies

$$
2\left\|x_{n}\right\|_{1}^{2}+2\left\|y_{n}\right\|_{1}^{2}-\left\|x_{n}+y_{n}\right\|_{1}^{2} \rightarrow 0
$$

and the uniform convexity of $\|\cdot\|_{1}$ as characterized in Fact 5.1.17(b) implies $\left\|x_{n}-y_{n}\right\|_{1} \rightarrow 0$ and so $\left\|x_{n}-y_{n}\right\| \rightarrow 0$. Using Fact $5.1 .17(\mathrm{~b})$ we deduce $\|\cdot\|$ is uniformly convex.
5.1.26. Define $\|\|\cdot\|$ by

$$
\|x\|:=\max \left\{\frac{1}{2}\|x\|,\left|x_{1}\right|\right\}+\sqrt{\sum_{n=1}^{\infty} \frac{x_{i}^{2}}{2^{i}}}
$$

The $\|\cdot\|$ is strictly convex by Proposition 5.1.10(a), and hence the dual norm is Gâteaux differentiable. Now $e_{1} /\left\|e_{1}\right\|$ is exposed by $\phi:=e_{1}\left\|e_{1}\right\|$ but is not strongly exposed by ϕ since $\left\|e_{1}+e_{n}\right\| \rightarrow\left\|e_{1}\right\|, \phi\left(e_{1}+e_{n}\right) \rightarrow \phi\left(e_{1}\right)$ but $\left\|\left(e_{1}+e_{n}\right)-e_{1}\right\|>1 / 2$ for all n. The dual norm will not be Fréchet differentiable at ϕ, since ϕ does not strongly expose $e_{1} /\left\|e_{1}\right\|$.

Exercises from Section 5.2

5.2.1. From the definition it follows that a strongly exposed point of f is exposed. Conversely, suppose x_{0} is an exposed point of f. Choose $\phi \in \partial f\left(x_{0}\right)$ so that $f-\phi$ attains its strict minimum at x_{0}. Now suppose x_{0} is not a strongly exposed point of $f-\phi$. Then we can find a sequence $\left(x_{n}\right) \subset E$ so that $(f-\phi)\left(x_{n}\right) \rightarrow(f-\phi)\left(x_{0}\right)$ but $\left\|x_{n}-x_{0}\right\| \geq \epsilon>0$ for all n. Let $0<\lambda_{n} \leq 1$ be chosen so that $\lambda_{n}\left\|x_{n}-x_{0}\right\|=\epsilon$. Then set

$$
y_{n}:=x_{0}+\lambda_{n}\left(x_{n}-x_{0}\right)=\lambda_{n} x_{n}+\left(1-\lambda_{n}\right) x_{0} .
$$

Using the convexity of $f-\phi$ we have

$$
(f-\phi)\left(x_{0}\right)<(f-\phi)\left(y_{n}\right) \leq \lambda_{n}(f-\phi)\left(x_{n}\right)+\left(1-\lambda_{n}\right)(f-\phi)\left(x_{0}\right) \rightarrow(f-\phi)\left(x_{0}\right) .
$$

Now $\left(y_{n}\right)$ is a bounded sequence, so passing to a subsequence we have $y_{n_{k}} \rightarrow \bar{y}$ for some $\bar{y} \in E$ and $\bar{y} \neq x_{0}$. Using the lower semicontinuity of $f-\phi$, we obtain

$$
(f-\phi)(\bar{y}) \leq \liminf _{k}(f-\phi)\left(y_{n_{k}}\right)=(f-\phi)\left(x_{0}\right)
$$

which is a contradiction with the fact that $f-\phi$ attains its strict minimum at x_{0}. Thus x_{0} is a strongly exposed point of $f-\phi$.
Consider the function $g(x, y):=x^{2}$ when $x>0, g(0,0):=0$ and $g(x, y):=+\infty$ otherwise. Now let ϕ denote the 0 functional on \mathbb{R}^{2}. Then $g-\phi$ is convex and attains its strict minimum at 0 . Therefore, g is exposed by ϕ at $(0,0)$. However, $(g-\phi)\left(n^{-1}, 1\right) \rightarrow(g-\phi)(0,0)$ and so g is not strongly exposed by ϕ at $(0,0)$.
5.2.2. (a) Suppose f is Tikhonov well-posed with minimum at \bar{x}. This says $f-\phi$ attains its strong minimum at \bar{x} where ϕ is the zero-functional. According to Exercise 5.2.6 f is coercive, and so by the Moreau-Rockafellar theorem (4.4.10), f^{*} is continuous at 0 . Now $0 \in \partial f(\bar{x})$ and so $\bar{x} \in \partial f^{*}(0)$ by Proposition 4.4.5(b). Suppose $x_{n} \in \partial_{\epsilon_{n}} f^{*}(0)$ where $\epsilon_{n} \rightarrow 0$, then $0 \in \partial_{\epsilon_{n}} f\left(x_{n}\right)$ by Proposition 4.4.5(b). Then $\left\|x_{n}-\bar{x}\right\| \rightarrow 0$ by the equivalence of (c) and (d) in Theorem 5.2.3. According to Šmulian's theorem (Exercise 4.2.10), f^{*} is Fréchet differentiable at 0 with $\nabla f^{*}(0)=$ \bar{x}.

The converse was more generally shown in $(\mathrm{e}) \Rightarrow(\mathrm{d})$ of Theorem 5.2.3 assuming f is lower semicontinuous. However, when f is also convex one doesn't need the more difficult Exercise 4.4.2. Indeed, suppose additionally f is lower semicontinuous and convex, and that f^{*} is Fréchet differentiable at 0 with $\bar{x}=\nabla f^{*}(0)$. According to Proposition 4.4.5(a), $0 \in \partial f(\bar{x})$. Now suppose $f\left(x_{n}\right) \leq f(\bar{x})+\epsilon_{n}$ where $\epsilon_{n} \rightarrow 0^{+}$. Then by the equivalence of (c) and (d) in Theorem 5.2.3 $0 \in \partial_{\epsilon_{n}} f\left(x_{n}\right)$. Proposition 4.4.5(b) implies $x_{n} \in \partial_{\epsilon_{n}} f^{*}(0)$. Šmulian's theorem (4.2.10) then shows $x_{n} \rightarrow 0$ as desired.
(b) When f is lower semicontinuous and convex, part (a) shows $f-\phi_{0}$ attains its strong minimum at x_{0} if and only if $\left(f-\phi_{0}\right)^{*}$ is Fréchet differentiable at 0 with derivative x_{0} which occurs if and only if f^{*} is Fréchet differentiable at ϕ_{0} with Fréchet derivative x_{0}. Thus (a) and (e) are equivalent in Theorem 5.2.3 when f is a proper lower semicontinuous convex function.
(c) This follows from Proposition 5.2.4(a) and expressing Tikhonov well-posedness in terms of strongly exposed points by equivalence of (a) and (c) in Theorem 5.2.3.
5.2.3. Let $\phi \in \partial f(\bar{x})$. Then Proposition 4.4.5(a) ensures that $\bar{x} \in \partial f^{*}(\phi)$. Because f^{*} is Fréchet differentiable at ϕ, this implies \bar{x} is the Fréchet derivative $\nabla f^{*}(\phi)$. Now $x_{n} \rightarrow \bar{x}$ weakly implies $\phi\left(x_{n}\right) \rightarrow \phi(\bar{x})$ and $f\left(x_{n}\right) \rightarrow f(\bar{x})$ was given. Therefore,

$$
(f-\phi)\left(x_{n}\right) \rightarrow(f-\phi)(\bar{x}) .
$$

According to Theorem 5.2.3, $\left\|x_{n}-\bar{x}\right\| \rightarrow 0$ as desired.
Certainly it was needed that $x_{n} \rightarrow \bar{x}$ weakly, otherwise we choose $f:=\frac{1}{2}\|\cdot\|^{2}$ on ℓ_{2}. Then $f^{*}=f$, and f^{*} is Fréchet differentiable. However, $f\left(e_{n}\right)=f\left(e_{1}\right)$ for all n, but e_{n} does not converge weakly to e_{1}.
5.2.4. (a) Suppose x_{0} exposes f^{*} at ϕ_{0}, then $x_{0} \in \partial f^{*}\left(\phi_{0}\right)$ by Proposition 5.2.2. According to Proposition 4.4.5(a), $\phi_{0} \in \partial f\left(x_{0}\right)$, and then the Fenchel-Young equality (Proposition 4.4.1) implies $f^{*}\left(\phi_{0}\right)-\left\langle x_{0}, \phi_{0}\right\rangle=-f\left(x_{0}\right)$. The assumption in the exercise then implies $f^{*}\left(\phi_{n}\right)-$ $\left\langle x_{0}, \phi_{n}\right\rangle \rightarrow-f\left(x_{0}\right)$. So let $\epsilon_{n} \rightarrow 0^{+}$be chosen so that $f^{*}\left(\phi_{n}\right)-\left\langle x_{0}, \phi_{n}\right\rangle<-f\left(x_{0}\right)+\epsilon$ for each $n \in \mathbb{N}$. The defintion of f^{*} then ensures $\phi_{n}(x)-f(x)-\phi_{n}\left(x_{0}\right) \leq-f\left(x_{0}\right)+\epsilon_{n}$ for all $x \in X$. Thus $\phi_{n} \in \partial_{\epsilon_{n}} f\left(x_{0}\right)$.
For (b), consider the function $f(t):=t^{2}$ if $t \leq 1$, and $f(t):=2 t-1$ if $t \geq 1$; see Figure 5.3.
5.2.5. Suppose $f^{*}: X^{*} \rightarrow(-\infty,+\infty]$ is a proper, weak*-lower semicontinuous convex function that is exposed at $\phi_{0} \in X^{*}$ by $x_{0} \in X$ and that

$$
\begin{equation*}
f^{*}\left(\phi_{n}\right)-\left\langle x_{0}, \phi_{n}\right\rangle \rightarrow f^{*}\left(\phi_{0}\right)-\left\langle x_{0}, \phi_{0}\right\rangle \tag{1}
\end{equation*}
$$

(a) Let $\left(\phi_{n}\right)_{n=1}^{\infty} \subset X^{*}$ be bounded. Now suppose by way of contradiction $\phi_{n} \not \overbrace{w^{*}} \phi_{0}$. Because $\left(\phi_{n}\right)_{n=1}^{\infty}$ is bounded, it then has a weak*-convergent subnet ($\phi_{n_{\alpha}}$) that converges to $\bar{\phi} \neq \phi_{0}$. Now,

$$
\begin{aligned}
f^{*}\left(\phi_{0}\right)-\left\langle x_{0}, \phi_{0}\right\rangle & =\limsup _{n} f^{*}\left(\phi_{n}\right)-\left\langle x_{0}, \phi_{n}\right\rangle \quad[\text { by (1)] } \\
& \geq \liminf _{\alpha} f^{*}\left(\phi_{n_{\alpha}}\right)-\left\langle x_{0}, \phi_{n_{\alpha}}\right\rangle \\
& \geq f^{*}(\bar{\phi})-\left\langle x_{0}, \bar{\phi}\right\rangle \quad\left[\text { since } f^{*} \text { is } \mathrm{w}^{*}-\mathrm{lsc}\right] .
\end{aligned}
$$

This constradicts that $f^{*}-x_{0}$ attains its minimum uniquely at ϕ_{0}.
(b) An example where $\left(\phi_{n}\right)$ is bounded and f^{*} is Lipschitz with (1) holding is as follows. Define $f^{*}: \ell_{1} \rightarrow \mathbb{R}$ where $f\left(\left(x_{i}\right)\right):=\sum 2^{-i}\left|x_{i}\right|$. Then f^{*} is exposed at 0 by the zero functional in c_{0}
since f attains its minimum uniquely at 0 , but $f^{*}\left(n e_{n}\right)-\left\langle 0, n e_{n}\right\rangle=\frac{n}{2^{n}}$ and $n e_{n} \not \not_{w^{*}} 0$ where $\left(e_{n}\right)$ is the standard basis of ℓ_{1}.
(c) Suppose f is continuous at x_{0}, where f^{*} is the conjugate of f. According to Exercise 5.2.4(a), the condition (1) implies $\phi_{n} \in \partial_{\epsilon_{n}} f\left(x_{0}\right)$ where $\epsilon_{n} \rightarrow 0$. Hence it is easy to check that $\left(\phi_{n}\right)$ must be bounded, because f is continuous at x_{0}.
Further Notes. We will say an exposed point ϕ of the function $h: X^{*} \rightarrow(-\infty,+\infty]$ is w^{*}-exposed by $x^{* *}$ if $\phi_{n} \rightarrow w^{*} \phi$ whenever

$$
\left(h-x^{* *}\right)\left(\phi_{n}\right) \rightarrow\left(h-x^{* *}\right)(\phi) .
$$

Then one extend this and the previous exercise to show: Suppose $f: X \rightarrow(-\infty,+\infty]$ is a proper lower semicontinuous convex function, $x_{0} \in X$ and f^{*} is exposed by x_{0} at $\phi_{0} \in X^{*}$. Then f^{*} is w^{*}-exposed by x_{0} at ϕ_{0} if and only if f is continuous at x_{0}. The 'if' portion follows directly from Exercise 5.2.4(a) and part (c) of this exercise. For the 'only if' implication, suppose f is not continuous at x_{0}. By replacing f^{*} with $f^{*}-x_{0}$ and then shifting f^{*} we may suppose $f^{*}(0)=0$ is the strict minimum of f^{*} and f is not continuous at 0 . By the Moreau-Rockafellar dual theorem, f^{*} is not coercive because f is not continuous at 0 . Thus we choose x_{n}^{*} with $\left\|x_{n}^{*}\right\| \rightarrow \infty$ but $f^{*}\left(x_{n}^{*}\right) \leq N$ for some $N>0$ and all n. By passing to a subsequence as necessary, we may assume $\left\|x_{n}^{*}\right\|>n^{2}$. Let $\phi_{n}=\frac{1}{n} x_{n}^{*}$. By the convexity of f^{*} we obtain

$$
f^{*}\left(\phi_{n}\right)=f^{*}\left(\frac{n-1}{n} 0+\frac{1}{n} x_{n}^{*}\right) \leq \frac{n-1}{n} f^{*}(0)+\frac{1}{n} f^{*}\left(x_{n}^{*}\right) \leq \frac{N}{n} .
$$

Thus we obtain

$$
\left(f^{*}-0\right)\left(\phi_{n}\right) \rightarrow\left(f^{*}-0\right)(0)
$$

but (ϕ_{n}) does not converge weak ${ }^{*}$ to 0 , because it is unbounded (Uniform boundedness principle) since a pointwise convergent sequence is pointwise bounded.
5.2.6. (a) There exists $\delta>0$ such that $(f-\phi)(u) \geq(f-\phi)(x)+\delta$ whenever $\|u-x\|=1$ for otherwise we would choose u_{n} such that $\left\|u_{n}-x\right\|=1$ and $(f-\phi)\left(u_{n}\right) \rightarrow(f-\phi)(x)$ but then we obtain the contradiction $\left\|u_{n}-x\right\| \rightarrow 0$ because $f-\phi$ attains its strong minimum at x. Now suppose $\|u-x\|=\alpha$ with $\alpha \geq n$. The convexity of $(f-\phi)$ now implies

$$
\frac{1}{\alpha}(f-\phi)(u)+\left(1-\frac{1}{\alpha}\right)(f-\phi)(x) \geq(f-\phi)\left(x+\frac{1}{\alpha}(u-x)\right) \geq(f-\phi)(x)+\delta .
$$

Then $\alpha^{-1}(f-\phi)(u) \geq \alpha^{-1}(f-\phi)(x)+\delta$ and so $(f-\phi)(u) \geq(f-\phi)(x)+n \delta$ whenever $\|x-u\| \geq n$ where $n \in \mathbb{N}$. Consequently, if $\|u\| \rightarrow \infty,\|u-x\| \rightarrow \infty$, and so $(f-\phi)(u) \rightarrow \infty$. This shows $f-\phi$ is coercive.
(b) By part (a), $f^{*}-x_{0}$ is coercive, and by the Moreau-Rockafellar theorem (4.4.11) we deduce $f^{* *}$ is continuous at x_{0}. Because f is lower semicontinuous, Proposition 4.4.2(a) ensures that $\left.f^{* *}\right|_{X}=f$, and the conclusion follows.
5.2.7. This is a proof of the equivalence of (a) and (b) in Theorem 5.2.3.
(a) $\Rightarrow(\mathrm{b})$: Suppose $\left(x_{0}, f\left(x_{0}\right)\right)$ is strongly exposed by $\left(\phi_{0},-1\right)$, and that $\left(\phi_{0}-f\right)\left(x_{n}\right) \rightarrow\left(\phi_{0}-\right.$ $f)\left(x_{0}\right)$. Then

$$
\left(\phi_{0},-1\right)\left(x_{n}, f\left(x_{n}\right)\right) \rightarrow\left(\phi_{0},-1\right)\left(x_{0}, f\left(x_{0}\right)\right)
$$

and (a) implies $\left\|\left(x_{n}, f\left(x_{n}\right)\right)-\left(x_{0}, f\left(x_{0}\right)\right)\right\| \rightarrow 0$ which implies $\left\|x_{n}-x_{0}\right\| \rightarrow 0$.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$: Suppose that $\phi_{0}-f$ has a strong maximum at x_{0}. Then by Proposition 5.2.2, $\left(\phi_{0},-1\right)$ exposes epi f at $\left(x_{0}, f\left(x_{0}\right)\right)$. Now if $\left(x_{n}, t_{n}\right) \in \operatorname{epi} f$ and $\left(\phi_{0},-1\right)\left(x_{n}, t_{n}\right) \rightarrow\left(\phi_{0},-1\right)\left(x_{0}, f\left(x_{0}\right)\right)$, then $\left(\phi_{0},-1\right)\left(x_{n}, f\left(x_{n}\right)\right) \rightarrow\left(\phi_{0},-1\right)\left(x_{0}, f\left(x_{0}\right)\right)$ since $f\left(x_{n}\right) \leq t_{n}$ for all n. Therefore,

$$
\begin{equation*}
\left(\phi_{0}-f\right)\left(x_{n}\right) \rightarrow\left(\phi_{0}-f\right)\left(x_{0}\right) . \tag{2}
\end{equation*}
$$

Now, (b) implies that $\left\|x_{n}-x_{0}\right\| \rightarrow 0$. Therefore $\phi_{0}\left(x_{n}\right) \rightarrow \phi_{0}\left(x_{0}\right)$; this with (2) implies $f\left(x_{n}\right) \rightarrow$ $f\left(x_{0}\right)$. Therefore, $\left\|\left(x_{n}, f\left(x_{n}\right)\right)-\left(x_{0}, f\left(x_{0}\right)\right)\right\| \rightarrow 0$ as desired.
5.2.8. To see that Theorem 5.2.3(c) does not generally imply Theorem 5.2.3(e) for proper functions, let $f(t)=\min \{|t|, 1\}$. Then $f-0$ attains a strong minimum at 0 , but $f^{*}=\delta_{\{0\}}$ is not Fréchet differentiable at 0 . Let $g(t)=|t|$ if $t \neq 0$ and
To see that Theorem 5.2.3(e) does not generally imply Theorem 5.2.3(e) for functions that are not lower semicontinuous, let $g(t)=|t|$ if $t \neq 0$ and $g(0)=+\infty$ (or simply $g(0)>0$ will do). Then $g^{*}=\delta_{[-1,1]}$ so $\nabla g^{*}(0)=0$ as a Fréchet derivative, but $g-0$ does not attain its strong minimum at 0 , and in fact does not attain its infimum.
5.2.8 (a) For any norm, 0 is the only exposed point of $f(x)=\|x\|$ and, in fact, f is strongly exposed at 0 by the 0 functional. For any $u \neq 0$, any functional ϕ that exposes f at u would satisfy $\|\phi\|=1$, and $\phi(u)=\|u\|$. Then

$$
(f-\phi)(t u)=0=(f-\phi)(u) \quad \text { for any } t \geq 0
$$

Thus u cannot be an exposed point of f.
(b) Observe that $\phi \in S_{X^{*}}$ strongly exposes x_{0} if and only if $\phi\left(x_{0}\right)=1$ and $x_{n} \rightarrow x_{0}$ whenever $\left\|x_{n}\right\| \rightarrow 1$ and $\phi\left(x_{n}\right) \rightarrow 1$. We know from the duality mapping that $\Lambda \in \partial\|x\|^{2}$ if and only if $\Lambda:=2\|x\| \phi_{x}$ where $\phi_{x} \in S_{X}$ and $\phi_{x}(x)=\|x\|$. (An elementary check of this is as follows. Suppose $\Lambda=2\|x\| \phi_{x}$. Then

$$
\begin{aligned}
\Lambda(y)-\Lambda(x) & =2\|x\| \phi_{x}(y)-2\|y\| \phi_{x}(x)=2\|x\|\left(\phi_{x}(y)-\phi_{x}(x)\right) \\
& \leq 2\|x\|(\|y\|-\|x\|) \leq(\|y\|+\|x\|)(\|y\|-\|x\|)=\|y\|^{2}-\|x\|^{2}
\end{aligned}
$$

Thus $\Lambda \in \partial\|x\|^{2}$. Conversely, considering $g(t):=\|t x\|^{2}$ we have $g^{\prime}(1)=2\|x\|$ so $\|\Lambda\|=2\|x\|$ when $\Lambda \in \partial\|x\|^{2}$; moreover, since $\Lambda(y) \leq \Lambda(x)$ whenever $\|y\|^{2}=\|x\|^{2}$ it is clear Λ attains its norm at x when $\Lambda \in \partial\|x\|^{2}$.)
Then $\phi \in \partial f\left(x_{0}\right)$ if and only if $\|\phi / 2\|=1$ and $\phi\left(x_{0}\right) / 2=1$, and $(\phi-f)\left(x_{n}\right) \rightarrow(\phi-f)\left(x_{0}\right)$ implies $\left\|x_{n}\right\| \rightarrow 1$. Thus $(\phi-f)\left(x_{n}\right) \rightarrow(\phi-f)\left(x_{0}\right)$ implies $\phi\left(x_{n}\right) \rightarrow \phi\left(x_{0}\right)$ and $\left\|x_{n}-x_{0}\right\| \rightarrow 0$.
5.2.10. This provides of a proof of Proposition 5.2.4(b).

Suppose f^{*} is exposed at ϕ by $x \in X$. Then $x \in \partial f^{*}(\phi)$ and so Proposition 4.4.5(a) implies $\phi \in \partial f(x)$. Now Proposition 5.2.2 implies $\partial f(x)=\{\phi\}$ and so f is Gâteaux differentiable at x according to Corollary 4.2.5.
Conversely, suppose f is Gâteaux differentiable at x with $f^{\prime}(x)=\phi$. Then $\partial f(x)=\{\phi\}$. Then $x \in \partial f^{*}(\phi)$ according to Proposition 4.4.5(a), and moreover, $x \notin \partial f^{*}(\Lambda)$ for $\Lambda \neq \phi$ (or else $\Lambda \in \partial f(x))$. Therefore, Proposition 5.2.2 implies that f^{*} is exposed by x at ϕ.

Exercises from Section 5.3

5.3.1. Suppose that it is known $\left\|x_{n}-x_{0}\right\| \rightarrow 0$ whenever

$$
\begin{equation*}
\frac{1}{2} f\left(x_{n}\right)+\frac{1}{2} f\left(x_{0}\right)-f\left(\frac{x_{n}+x_{0}}{2}\right) \rightarrow 0 \tag{3}
\end{equation*}
$$

and $\left(x_{n}\right)$ is a bounded sequence in the domain of f. Suppose there exists an unbounded sequence $\left(x_{n}\right) \subset \operatorname{dom} f$ for which (3) holds, but $\left\|x_{n}-x_{0}\right\| \nrightarrow 0$. By shifting f, we may assume $x_{0}=0$, and $f(0)=0$. Further, by passing to a subsequence, we may assume $\left\|x_{n}\right\| \rightarrow \infty$, and in particular $\left\|x_{n}\right\|>2$ for all n. Now let $t_{n}:=\left\|x_{n}\right\|$, and let $u_{n}=\frac{2}{t_{n}} x_{n}$. Since $\left\|u_{n}-0\right\|=2$, we know

$$
\frac{1}{2} f(0)+\frac{1}{2} f\left(u_{n}\right)-f\left(\frac{0+u_{n}}{2}\right) \nrightarrow 0
$$

So we can find $\epsilon>0$ such that

$$
f\left(\frac{u_{n}}{2}\right) \leq \frac{1}{2} f(0)+\frac{1}{2} f\left(u_{n}\right)-\epsilon \leq \frac{1}{t_{n}} f\left(x_{n}\right)-\epsilon,
$$

where we used $f\left(u_{n}\right) \leq \frac{t_{n}-2}{t_{n}} f(0)+\frac{2}{t_{n}} f\left(x_{n}\right)=\frac{2}{t_{n}} f\left(x_{n}\right)$ for the last inequality. Now we compute

$$
\begin{aligned}
f\left(\frac{0+x_{n}}{2}\right) & =f\left(\frac{t_{n}}{2 t_{n}-2} \cdot \frac{1}{t_{n}} x_{n}+\frac{t_{n}-2}{2 t_{n}-2} x_{n}\right) \\
& \leq \frac{t_{n}}{2 t_{n}-2} f\left(\frac{1}{t_{n}} x_{n}\right)+\frac{t_{n}-2}{2 t_{n}-2} f\left(x_{n}\right) \\
& \leq \frac{t_{n}}{2 t_{n}-2}\left(\frac{1}{t_{n}} f\left(x_{n}\right)-\epsilon\right)+\frac{t_{n}-2}{2 t_{n}-2} f\left(x_{n}\right) \\
& =\frac{1}{2} f\left(x_{n}\right)-\frac{t_{n}}{2 t_{n}-2} \epsilon \leq \frac{1}{2} f\left(\frac{0+x_{n}}{2}\right)-\frac{\epsilon}{2}
\end{aligned}
$$

This contradicts (3) and completes the proof.

Exercises from Section 5.4

5.4.1. (a) First, $f^{\prime}(t)=p t^{p-1}$ when $t \geq 0$, and $f^{\prime}(t)=-p|t|^{p-1}$ when $p<0$. If s, t both have the same sign, then Lemma 5.4.4 implies $\left|f^{\prime}(t)-f^{\prime}(s)\right| \leq p|t-s|^{p-1}$. If $s<0<t$, then

$$
\left|f^{\prime}(t)-f^{\prime}(s)\right|=p|t|^{p-1}+p|s|^{p-1} \leq 2 p|t-s|^{p-1}
$$

and so f^{\prime} is $(p-1)$-Hölder as desired. Now Exercise 5.4.13 implies f has modulus of smoothness of power type p. The statements on the moduli of convexity of $|t|^{p}$ for $p>1$ now follow from Theorem 5.4.2. Note that an alternate approach to this and part (b) is given in Exercise 5.4.2 .
5.4.2. (a) Observe that g is convex because $g^{\prime \prime} \geq 0$ on $[a, \infty)$. Let $a \leq x<y$ and write $x=\bar{x}-h$, $y=\bar{x}+h$ where $\bar{x}=(x+y) / 2$. By Taylor's theorem

$$
\begin{aligned}
g(y) & =g(\bar{x})+g^{\prime}(\bar{x})(h)+\ldots+\frac{g^{(n)}(\bar{x})(h)}{n!} h^{n}+\frac{g^{(n+1)}(c)}{(n+1)!} h^{n+1} \\
& \geq g(\bar{x})+g^{\prime}(\bar{x})(h)+\frac{g^{(n)}(\bar{x})(h)}{n!} h^{n} .
\end{aligned}
$$

By convexity

$$
g(x) \geq g(\bar{x})+g^{\prime}(\bar{x})(-h) .
$$

Adding the previous two inequalities and dividing by 2 yields

$$
\frac{1}{2} g(y)+\frac{1}{2} g(x) \geq g\left(\frac{x+y}{2}\right)+\frac{\alpha|x-y|^{n}}{n!2^{n}}
$$

Consequently, $\delta_{g}(\epsilon) \geq \frac{\alpha \epsilon^{n}}{n!2^{n}}$ as needed for (a). Notice that (b) follows from (a) because $g^{(k)}(t)=$ $(\ln b)^{k} b^{t} \geq(\ln b)^{k}$ for all $t \geq 0$, and take some care for noninteger values of p.
To prove (c), we follow the argument and notation as in (a). Observe $\bar{x} \geq h$. Thus when $n \leq p<n-1$,

$$
\begin{aligned}
g^{(n)}(\bar{x}) & =(p-1)(p-2) \cdots(p-n+1) \bar{x}^{p-n} \\
& \geq(p-1)(p-2) \cdots(p-n+1) h^{p-n} .
\end{aligned}
$$

Proceeding as in (a), we conclude

$$
g(y) \geq g(\bar{x})+g^{\prime}(\bar{x})(h)+(p-1)(p-2) \cdots(p-n+1) \frac{h^{p-n} h^{n}}{n!}
$$

and then

$$
\frac{1}{2} g(y)+\frac{1}{2} g(x) \geq g\left(\frac{x+y}{2}\right)+(p-1)(p-2) \cdots(p-n+1) \frac{h^{p}}{n!}
$$

which provides the desired result.
5.4.3. Suppose f has modulus of convexity of power type $p>0$, say $\delta_{f}(\epsilon) \geq K \epsilon^{p}$ for all $\epsilon \geq 0$. Fix $\bar{x}, h \in X$, and $\phi \in \partial f(\bar{x})$. Then

$$
\begin{aligned}
2 K\|h\|^{p} & \leq f(\bar{x}+h)+f(\bar{x})-2 f\left(\bar{x}+\frac{1}{2} h\right) \\
& =(f-\phi)(\bar{x}+h)+(f-\phi)(\bar{x})-2(f-\phi)\left(\bar{x}+\frac{1}{2} h\right) .
\end{aligned}
$$

Because $(f-\phi)$ attains its minimum at \bar{x}, this implies

$$
(f-\phi)(\bar{x}+h) \geq(f-\phi)(\bar{x})+2 K\|h\|^{p} .
$$

Rearranging, $f(\bar{x}+h) \geq f(\bar{x})+\phi(h)+2 K\|h\|^{p}$, so the result holds with $C=2 K$.
Conversely, suppose $x, y \in X$ and let $\epsilon=\|x-y\|$. Let $\bar{x}=(x+y) / 2$ and let h be such that $y=\bar{x}+h, x=\bar{x}-h$, and fix $\phi \in \partial f(\bar{x})$. Then

$$
f(\bar{x}+h) \geq f(\bar{x})+\phi(h)+C\|h\|^{p} \text { and } f(\bar{x}-h) \geq f(\bar{x})+\phi(-h)+C\|h\|^{p} .
$$

Adding these two inequalities and dividing by 2 yields

$$
\frac{1}{2} f(y)+\frac{1}{2} f(x) \geq f\left(\frac{x+y}{2}\right)+C\left(\frac{\epsilon}{2}\right)^{p} .
$$

It then follows that $\delta_{f}(\epsilon) \geq \frac{C}{2^{p}} \epsilon^{p}$ as desired.
The interested reader should see [445, Corollary 3.5.11] for several other conditions equivalent to moduli of power type.
5.4.4. (a) Observe first

$$
\begin{aligned}
\delta_{f}(\epsilon) & =\inf \left\{\frac{1}{2} f(x)+\frac{1}{2} f(y)-f\left(\frac{x+y}{2}\right):\|x-y\| \geq \epsilon, x, y \in \operatorname{dom} f\right\} \\
& \leq \frac{1}{2} f(x)+\frac{1}{2} f(y)-f\left(\frac{x+y}{2}\right)+\frac{1}{2} g(x)+\frac{1}{2} g(y)-g\left(\frac{x+y}{2}\right)
\end{aligned}
$$

for all $x, y \in \operatorname{dom} h,\|x-y\| \geq \epsilon$ since g is convex. From this, $\delta_{h}(\epsilon) \geq \delta_{f}(\epsilon)$ for $\epsilon \geq 0$.
(b) When $h=f \square g$, Lemma 4.4.15 shows $h^{*}=f^{*}+g^{*}$. Because h is proper, we know h^{*} is proper, and thus by (a), $\delta_{h^{*}} \geq \delta f^{*}$. Then Theorem 5.4.1(a) ensures $\rho_{h} \leq \rho_{f}$ as desired.
5.4.5. (a) Suppose f is affine, then $f(t)=a t+b$ for some $a, b \in \mathbb{R}$. Thus $f^{\prime \prime}=0$. On the other hand, suppose $f^{\prime \prime}\left(x_{0}\right) \neq 0$ for some $x_{0} \in \mathbb{R}$. By replacing f with $-f$ as necessary, there is an open interval I containing x_{0} and $\epsilon>0$ so that $f^{\prime \prime}>\epsilon$ on I. Then $\left|f^{\prime}(t)-f^{\prime}(s)\right| \geq \epsilon|t-s|$ for all $s, t \in I$, as $|s-t| \rightarrow 0^{+}$this will contradict the α-Hölder condition.
(b) If $f^{\prime \prime}=0$ almost everywhere, then by the Fundamental theorem of calculus, f^{\prime} is constant, and consequently, f is affine (observe f^{\prime} is absolutely continuous because it satisfies a Hölder condition). In the case $f^{\prime \prime}$ is not 0 almost everywhere, by convexity we know $f^{\prime \prime} \geq 0$ almost everywhere, and so we find some $\epsilon>0$ so that $S:=\left\{t: f^{\prime \prime} \geq \epsilon\right\}$ has positive measure. Use that the metric density of S is 1 at almost every point of S (see [384, p. 141]) to fix $r_{0}>0$, and $x_{0} \in S$ so that

$$
\frac{\lambda\left(E \cap\left(x_{0}-r_{0}, x_{0}+r_{0}\right)\right)}{2 r} \geq \frac{1}{2} \text { for all } 0<r<r_{0} .
$$

Then for $x_{0}-r<s<t<x_{0}+r_{0}$, the Fundamental theorem of calculus implies

$$
f^{\prime}(t)-f^{\prime}(s)=\int_{s}^{t} f^{\prime \prime}(x) d x \geq \frac{\epsilon}{2}(t-s)
$$

Hence f^{\prime} does not satisfy and α-Hölder condition for $\alpha>1$ on the interval ($x_{0}-r_{0}, x_{0}+r_{0}$) which is a contradiction.
5.4.6. Both (a) and (b) are straightforward from the definitions involved. (c) Use Exercise $5.4 .5(\mathrm{~b})$ and check that the connection between modulus of smoothness of power type and α-Hölder derivatives is valid for $\alpha \geq 1$ (see Exercise 5.4.13).
(d) Observe that power type duality is valid for $p>1$. Suppose f is uniformly convex with modulus of convexity of power type p_{0} where $p_{0}<2$. Let $h:=f+|\cdot|^{2}$ on one dimension. Then h has modulus of convexity of power type p for any $p_{0}<p \leq 2$. Indeed, choose $C_{1}>0$ and $C_{2}>0$ so that

$$
\frac{1}{2} h(s)+\frac{1}{2} h(t)-h\left(\frac{s+t}{2}\right) \geq C_{1}|s-t|^{p_{0}}
$$

and

$$
\frac{1}{2}|t|+\frac{1}{2}|s|-\left|\frac{s+t}{2}\right| \geq C_{2}|s-t|^{2}
$$

now separate the cases when $|s-t| \geq 1$ and $|s-t| \leq 1$. To show $\delta_{h}(\epsilon) \geq C \epsilon^{p}$ where $C:=$ $\min \left\{C_{1}, C_{2}\right\}$ and $p_{0} \leq p \leq 2$. In particular, h has modulus of convexity of power type p for some (any) p between 1 and 2. By duality, deduce that h^{*} has modulus of smoothness of power type q for $q>2$. Consequently h^{*} is affine, i.e. $h^{*}(t)=a t+b$. Conclude that $\operatorname{dom} h=\{a\}$ is a singleton. This is true along any line, so $\operatorname{dom} f$ must be a singleton as desired.
An alternate proof for (d) in the case $0<p<1$ is as follows. As in Exercise 5.4.3 on can show that for a proper lower semicontinuous convex function of power type $p>0$, there exists $C>0$ such that

$$
f(\bar{x}+h) \geq f(\bar{x})+\phi(h)+C\|h\|^{p} \quad \text { whenever } \quad h \in X, \bar{x} \in \operatorname{dom}(\partial f), \phi \in \partial f(\bar{x}) .
$$

Because $\operatorname{dom}(\partial f) \neq \emptyset$, it follows from the convexity of f that $\operatorname{dom} f$ is a singleton whenever f has modulus of convexity of power type $p \in(0,1)$.

For (e), let $\|\cdot\|$ on \mathbb{R}^{2} be a norm that does not satisfy a modulus of convexity of power type p for any p (see [245]). Let $\|\cdot\|$ be the usual norm on \mathbb{R}^{2}. Check that $f:=\|\cdot\|^{2}+\max \left\{\|\cdot\|^{2}-2,0\right\}$ is one such function.
5.4.7. (a) First we fix positive constants A, B corresponding to the respective moduli, and let $C>0$ be as given. That is,
$\delta_{f}(\epsilon) \geq A \epsilon^{p}$ for all $\epsilon>0, \quad \delta_{\|\cdot\|}(\epsilon) \geq B \epsilon^{p} \quad$ for all $0 \leq \epsilon \leq 2, \quad$ and $\quad f_{+}^{\prime}(t) \geq C t^{p-1} \quad$ for all $t>0$.
Let $\epsilon>0$ be fixed, and suppose $x, y \in X$ satisfy $\|x-y\| \geq \epsilon$. We may assume $\|y\| \leq\|x\|$.
Suppose first, $\|y\|+\epsilon / 2 \leq\|x\|$. Using the modulus of convexity of f we obtain

$$
\begin{equation*}
\frac{1}{2} f(\|x\|)+\frac{1}{2} f(\|y\|)-f\left(\left\|\frac{x+y}{2}\right\|\right) \geq \frac{1}{2} f(\|x\|)+\frac{1}{2} f(\|y\|)-f\left(\frac{\|x\|+\|y\|}{2}\right) \geq A\left(\frac{\epsilon}{2}\right)^{p} . \tag{4}
\end{equation*}
$$

Thus for the remainder of the proof we will assume $\|y\|+\epsilon / 2>\|x\|$. Let $a:=\|y\|$ and $\tilde{x}=x /\|x\|$, $\tilde{y}=y /\|y\|$. Then $\|y-a \tilde{x}\|>\epsilon / 2$. Consequently, $\|\tilde{y}-\tilde{x}\|>\frac{\epsilon}{2 a}$. Then the modulus of convexity implies $\left\|\frac{\tilde{x}+\tilde{y}}{2}\right\| \leq 1-B\left(\frac{\epsilon}{2 a}\right)^{p}$ and thus

$$
\begin{equation*}
\left\|\frac{x+y}{2}\right\| \leq a\left(\left\|\frac{\tilde{x}+\tilde{y}}{2}\right\|\right)+\frac{\|x\|-a}{2} \leq \frac{1}{2}\|x\|+\frac{1}{2}\|y\|-B a\left(\frac{\epsilon}{2 a}\right)^{p} . \tag{5}
\end{equation*}
$$

We now consider the case, $B a\left(\frac{\epsilon}{2 a}\right)^{p} \geq a / 2$. Recalling that $\|x\|+\|y\| \geq\|x-y\| \geq \epsilon$, we have $\|y\| \geq \epsilon / 4$ since $\|y\| \geq\|x\|-\epsilon / 2$. Because $a=\|y\|$, it follows that $a / 2 \geq \epsilon / 8$. Thus, letting $t_{0}:=(\|x\|+\|y\|) / 2-a / 2$, we have $t_{0} \geq a / 2$ and the nondecreasing property of f ensures

$$
f\left(\left\|\frac{x+y}{2}\right\|\right) \leq f\left(t_{0}\right) .
$$

Now we use this with the convexity of f to compute,

$$
\begin{align*}
\frac{1}{2} f(\|x\|)+\frac{1}{2} f(\|y\|) & \geq f\left(\frac{\|x\|+\|y\|}{2}\right) \geq f\left(t_{0}\right)+f_{+}^{\prime}\left(t_{0}\right) \cdot(a / 2) \\
& \geq f\left(t_{0}\right)+f_{+}^{\prime}(a / 2) \cdot(a / 2) \geq f\left(t_{0}\right)+f_{+}^{\prime}(\epsilon / 8) \cdot(\epsilon / 8) \\
& \geq f\left(\left\|\frac{x+y}{2}\right\|\right)+C\left(\frac{\epsilon}{8}\right)^{p} . \tag{6}
\end{align*}
$$

For our remaining case, we suppose $B a\left(\frac{\epsilon}{2 a}\right)^{p} \leq a / 2$. Then the right hand side of (5) is at least $a / 2$. Now use the fact $f^{\prime}(t) \geq C(a / 2)^{p-1}$ when $t \geq a / 2$ to compute

$$
\begin{align*}
f\left(\left\|\frac{x+y}{2}\right\|\right) & \leq f\left(\frac{1}{2}\|x\|+\frac{1}{2}\|y\|\right)-B a\left(\frac{\epsilon}{2 a}\right)^{p} \cdot C\left(\frac{a}{2}\right)^{p-1} \\
& \leq \frac{1}{2} f(\|x\|)+\frac{1}{2} f(\|y\|)-B C\left(\frac{\epsilon}{4}\right)^{p} . \tag{7}
\end{align*}
$$

Putting (4), (6) and (7) together we see that $f \circ\|\cdot\|$ has modulus of convexity of power type p as desired.
(b) In fact the following stronger statement is true: Suppose $f:[0,+\infty) \rightarrow[0,+\infty)$ is convex and increasing. Then $f \circ\|\cdot\|$ is uniformly convex if and only if

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} f_{+}^{\prime}(t) \cdot \delta_{\|\cdot\|}\left(\frac{\epsilon}{t}\right) \cdot t>0 \tag{8}
\end{equation*}
$$

for each $\epsilon>0, f$ is uniformly convex and $\|\cdot\|$ is uniformly convex. For details on this, see Theorem 2.1 of the paper found at
http://faculty.lasierra.edu/~jvanderw/ConvexFunctions/Notes/cmb651v2.pdf

Further information related to other parts of this question can also be found in that note.
(c) Additionally, we will use the known moduli of ℓ_{p} norms (see [180]). That is, if $1<p \leq 2$, $\|\cdot\|_{p}$ has modulus of convexity of power type 2 . If $p>2$, then $\|\cdot\|_{p}$ has modulus of convexity of power type p but not less, and trivially a norm with modulus of convexity of power type p also satisfies power type r when $r \geq p$. Also, according to Exercise 5.4.2, $t \mapsto|t|^{p}$ is uniformly convex on $[0, \infty)$ with modulus of convexity of power type p.
(i) Therefore, applying (a), we see that $f:=\|\cdot\|_{p}^{2}$ is uniformly convex with modulus of convexity of power type 2 when $1<p \leq 2$. Likewise, when $r>p$ we may apply $\|\cdot\|_{p}$ has modulus of convexity of power type r, so we may likewise apply (a) to verify $f:=\|\cdot\|_{p}^{r}$ is uniformly convex with modulus of convexity of power type r.
(ii) Example 5.3.11 ensures that $f:=\|\cdot\|^{p}$ for $p>1$ is uniformly convex on bounded sets when $\|\cdot\|$ is uniformly convex. When $p \geq 2$, as in (i) $\|\cdot\|_{p}$ has modulus of convexity of power type $r \geq p$, thus we may apply (a) to deduce $f:=\|\cdot\|_{p}^{r}$ uniformly convex with modulus of convexity of power type r. When $r \geq p \geq 2$, we may apply the condition in (a) to see that $f:=\|\cdot\|_{p}^{r}$ is uniformly convex with modulus of convexit of power type r.
(iii) Use (a) for this part as well.
5.4.10. (a) Suppose f has modulus of convexity of power type $p>1$, that is $\delta_{f}(\epsilon) \geq C \epsilon^{p}$ for some $C>0$ and all $\epsilon>0$. According to Theorem 5.4.1(b), we have $\rho_{f^{*}}(\tau)=\sup \left\{\tau \frac{\epsilon}{2}-\delta_{f}(\epsilon): \epsilon \geq 0\right\}$ for all $\tau \geq 0$. Therefore, $\rho_{f^{*}}(\tau) \leq \sup \left\{\tau \frac{\epsilon}{2}-C \epsilon^{p}: \epsilon \geq 0\right\}$. The supremum occurs when $\epsilon=$ $\left(\frac{\tau}{2 p C}\right)^{\frac{1}{p-1}}$, and so $\rho_{f^{*}}(\tau) \leq \frac{1}{2(2 p C)^{\frac{1}{p-1}}} \tau^{\frac{p}{p-1}}$ as needed.
Conversely, suppose $\rho_{f^{*}}(\tau) \leq C \tau^{\frac{p}{p-1}}$. It follows from Theorem 5.4.1(b), that $\tau^{\epsilon}-C \tau^{\frac{p}{p-1}} \leq \delta_{f}(\epsilon)$ for $\epsilon \geq 0$ and $\tau \geq 0$. For fixed $\epsilon \geq 0$, the supremum on the left hand side occurs when $\tau=\left(\frac{(p-1) \epsilon}{2 p C}\right)^{p-1}$ and thus $\delta_{f}(\epsilon) \geq K \epsilon^{p}$ where

$$
K=\left(\frac{(p-1) \epsilon}{2 p C}\right)^{p-1}\left[\frac{1}{2}-\frac{p-1}{2 p}\right]>0 \text { because } p>1, C>0 .
$$

This proves (a).
(b) Suppose f^{*} has modulus of convexity of power type p. By part (a), $f^{* *}$ has modulus of smoothness of power type q, and hence so does $f=\left.f^{* *}\right|_{X}$. Conversely, suppose f has modulus of smoothness of power type q. Proceeding as in the previous paragraph, but using Theorem 5.4.1(a) we obtain that f^{*} has modulus of convexity of power type p.

