
Solutions to Selected Exercises in Chapter 5
Exercises from Section 5.1

5.1.1. (a) Suppose A ⊂ X is not empty. Observe that (A◦)◦ is a closed balance convex set
containing A so it contains the closed balanced convex hull of A. Now suppose x ∈ (A◦)◦ but is
not in the closed balanced hull of A. By the basic separation theorem (4.1.12), choose φ ∈ X∗
such that 〈φ, x〉 > 1 > supA φ. Then φ ∈ A◦, but this implies x 6∈ (A◦)◦ which is a contradiction.
(b) This is similar to (a). Suppose B ⊂ X∗ is not empty. Observe that (B◦)◦ is a weak∗-

closed balance convex set containing B so it contains the weak∗-closed balanced convex hull of B.
Suppose φ ∈ (B◦)◦ but is not in the weak∗-closed balanced hull of B. By the weak∗-separation
theorem (4.1.12), choose x ∈ X such that 〈φ, x〉 > 1 > supB x. Then x ∈ B◦, but this implies
φ 6∈ (B◦)◦ which is a contradiction.

5.1.2. (a) ⇒ (c): Suppose (c) is not true. Choose a supporting functional φ ∈ SX∗ of x. Then
there exist φn ∈ BX∗ such that φn(x) → 1, and ε > 0 and h ∈ BX∗ such that (φ − φn)(h) ≥ ε.
Now choose tn → 0+ such that 1− φn(x) ≤ tnε

2 . Then

‖x+ tnh‖+ ‖x− tnh‖ − 2‖x‖ ≥ φn(x+ tnh) + φ(x− tnh)− 2‖x‖
≥ φn(x) + φ(x) + tn(φn − φ)(h)− 2

≥ tnε+ φn(x)− 1 ≥ tnε

2
.

Consequently, ‖ · ‖ is not Gâteaux differentiable at x by Proposition 5.1.3(b).
(c)⇒ (b): Let Λn, φn, xn, yn be as in (b). Choose a supporting functional φ ∈ SX∗ with φ(x) = 1.

Now φn(x) → 1 and Λn(x) → 1 since xn → x and yn → x. According to (c) φn →w∗ φ and
Λn →w∗ φ and so (φn − Λn)→w∗ 0 as desired.
(b) ⇒ (a): Suppose ‖ · ‖ is not Gâteaux differentiable at x. Then for φ ∈ SX∗ with φ(x) = 1,

there exist tn → 0+, h ∈ SX and ε > 0 such that

‖x+ tnh‖ − ‖x‖ − φ(tnh) > εtn

for all n. Choose φn ∈ SX∗ so that φn(x + tnh) = ‖x + tnh‖. The previous inequality implies
φn(tnh)− φ(tnh) > εtn and so φn 6→ φ which shows (b) is not true.

5.1.3. This follows from Šmulian’s theorems (4.2.10) and (4.2.11) with the observation φ ∈ SX∗ ,
φ ∈ ∂ε‖ · ‖ if and only if φ(x) ≥ 1− ε.

5.1.4. Suppose |||x|||1 + |||y|||1 = |||x + y|||1 = 2 where |||x|||1 = |||y|||1 = 1. Then ‖Tx‖Y + ‖Ty‖Y =
‖Tx+ Ty‖Y . Because ‖ · ‖Y is strictly convex and T is one-to-one, Fact 5.1.9 implies Tx = λTy
for some λ > 0. Then x = λy and because |||x|||1 = |||y|||1 = 1, this implies x = y, and so ||| · |||1 is
strictly convex as desired.

5.1.5. Suppose ‖ · ‖ is a dual norm on X∗ that is Fréchet differentiable at φ ∈ SX∗ . Choose
x∗∗ ∈ SX∗∗ such that 〈x∗∗, φ〉 = 1. Now choose xn ∈ BX so that φ(xn) → 1. By Smulian’s
theorem (5.1.4), xn → x∗∗ so x∗∗ ∈ SX . Now if x ∈ SX is such that φ(x) = 1, then x = x∗∗ and
the statement follows.
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Conversely, suppose φ ∈ SX∗ , and x ∈ SX are such that φ(x) = 1 and ‖xn − x‖ → 0 whenever
xn ∈ BX are such that φ(xn) → 1. Suppose ‖ · ‖ is not Fréchet differentiable at φ. Then there
are hn ∈ SX∗ , tn → 0+ and ε > 0 such that

‖φ+ tnhn‖+ ‖φ− tnhn‖ − 2 > εtn

for all n. Choose xn ∈ SX so that 〈φ + tnhn, xn〉 > ‖x + tnhn‖ − tnε/3 and yn ∈ SX so that
〈φ− tnhn, xn〉 > ‖x− tnhn‖− tnε/3. Then φ(xn)→ 1 and φ(yn)→ 1, but 〈xn− yn, tnhn〉 > εtn/3
and so xn 6→ x and yn 6→ x which is a contradiction.

5.1.6. Let x ∈ SX and choose a supporting functional f ∈ SX∗ so that f(x) = 1. Suppose
fn ∈ BX∗ satisfies fn(x)→ 1. Then, ‖f+fn‖ ≥ (f+fn)(x)→ 2. Because ‖·‖ is locally uniformly
convex, ‖fn − f‖ → 0. According to Smulian’s theorem (5.1.4), ‖ · ‖ is Fréchet differentiable at
x.

5.1.7. (a) Suppose x := (xi) is such that xi 6= 0 for all i ∈ N. Then the unique supporting func-
tional in `∞(N) is Λ := (signxi)∞i=1. Thus ‖ · ‖1 is Gâteaux differentiable at x by Corollary 5.1.7.
Conversely, suppose x := (xi) and xi0 = 0, then there are infinitely many support functionals in
`∞(N) because the i0-th coordinate can be any number whose absolute value does not exceed 1.
(b) We need consider only the points x = (xi) ∈ S`1 of Gâteaux differentiability, let yn ∈ S`∞

where yni = sign(xi), i = 1, . . . , n, and yi = 0 otherwise. Then yn(x) = 1 − εn where εn =∑∞
i=n+1 |xi|. Now yn(x) → 1, but ‖yn − yn+1‖∞ = 1 and so (yn) does not converge in norm.

According to Šmulian’s theorem (5.1.4), ‖ · ‖1 is not Fréchet differentiable at x.
(c) Suppose x = (xγ)γ∈Γ. Then xγ0 = 0 for some γ0 ∈ Γ, and so there fails to be a unique

supporting functional for x.

5.1.10. Let {xn}∞n=1 ⊂ SX be dense. For each n, choose fn ∈ SX∗ such that fn(xn) = 1
(Remark 4.1.16). Because the norm-attaining functionals are dense in SX∗ by the Bishop-Phelps
theorem (4.3.4), it suffices to show that {fn}∞n=1 contains the norm-attaining functionals in SX∗

(this will show SX∗ is separable). Now let f ∈ SX be a norm-attaining functional, say f(x) = 1.
Choose xnk → x. Now fnk(xnk) = 1, and so fnk(x)→ 1. According to Šmulian’s theorem (5.1.4),
fnk → f . Thus, {fn}∞n=1 contains the norm-attaining functionals as desired.

5.1.15. (a) Suppose ‖ · ‖ is not uniformly convex. Then we choose (xn), (yn) ⊂ BX such that
‖xn + yn‖ → 2 but ‖xn − yn‖ → 0. Passing to a subsequence and using compactness, we have
xnk → x̄, ynk → ȳ, ‖x̄+ ȳ‖ = 2 and ‖x̄− ȳ‖ = 0. Hence ‖ · ‖ is not strictly convex.
(b) Similarly, suppose ‖ · ‖ is not uniformly smooth. This means its derivative (if it exists) is not

uniformly continuous on SX , and hence not continuous on SX . Thus ‖ · ‖ is not Gâteaux differ-
entiable (since a differentiable convex function on a Euclidean space has continuous derivative).
(c) Suppose x0 ∈ SX an exposed point of BX . Let φ ∈ SX∗ be an exposing functional. Suppose

(xn) ⊂ BX and φ(xn) → 1, and, again, by compactness, we may assume xn → x̄ ∈ BX . Then
φ(x̄) = 1 Thus x̄ = x0. From this, we may deduce that x0 is strongly exposed by φ.

5.1.16. The respective cases follow by using characterizations in Fact 5.1.9(c), Fact 5.1.12(b) and
Fact 5.1.17(b). We illustrate this in the uniformly convex case. Suppose (xn), (yn) are bounded
sequences such that

2|||xn|||2 + 2|||yn|||2 − |||xn + yn|||2 → 0
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Then Fact 5.1.8 implies
2‖xn‖21 + 2‖yn‖21 − ‖xn + yn‖21 → 0

and the uniform convexity of ‖ · ‖1 as characterized in Fact 5.1.17(b) implies ‖xn− yn‖1 → 0 and
so |||xn − yn||| → 0. Using Fact 5.1.17(b) we deduce ||| · ||| is uniformly convex.

5.1.26. Define ||| · ||| by

|||x||| := max
{

1
2
‖x‖, |x1|

}
+

√√√√ ∞∑
n=1

x2
i

2i

The ||| · ||| is strictly convex by Proposition 5.1.10(a), and hence the dual norm is Gâteaux dif-
ferentiable. Now e1/|||e1||| is exposed by φ := e1|||e1||| but is not strongly exposed by φ since
|||e1 + en||| → |||e1|||, φ(e1 + en) → φ(e1) but |||(e1 + en) − e1||| > 1/2 for all n. The dual norm will
not be Fréchet differentiable at φ, since φ does not strongly expose e1/|||e1|||.

Exercises from Section 5.2

5.2.1. From the definition it follows that a strongly exposed point of f is exposed. Conversely,
suppose x0 is an exposed point of f . Choose φ ∈ ∂f(x0) so that f −φ attains its strict minimum
at x0. Now suppose x0 is not a strongly exposed point of f − φ. Then we can find a sequence
(xn) ⊂ E so that (f − φ)(xn)→ (f − φ)(x0) but ‖xn − x0‖ ≥ ε > 0 for all n. Let 0 < λn ≤ 1 be
chosen so that λn‖xn − x0‖ = ε. Then set

yn := x0 + λn(xn − x0) = λnxn + (1− λn)x0.

Using the convexity of f − φ we have

(f − φ)(x0) < (f − φ)(yn) ≤ λn(f − φ)(xn) + (1− λn)(f − φ)(x0)→ (f − φ)(x0).

Now (yn) is a bounded sequence, so passing to a subsequence we have ynk → ȳ for some ȳ ∈ E
and ȳ 6= x0. Using the lower semicontinuity of f − φ, we obtain

(f − φ)(ȳ) ≤ lim inf
k

(f − φ)(ynk) = (f − φ)(x0)

which is a contradiction with the fact that f − φ attains its strict minimum at x0. Thus x0 is a
strongly exposed point of f − φ.
Consider the function g(x, y) := x2 when x > 0, g(0, 0) := 0 and g(x, y) := +∞ otherwise. Now

let φ denote the 0 functional on R2. Then g − φ is convex and attains its strict minimum at 0.
Therefore, g is exposed by φ at (0, 0). However, (g − φ)(n−1, 1) → (g − φ)(0, 0) and so g is not
strongly exposed by φ at (0, 0).

5.2.2. (a) Suppose f is Tikhonov well-posed with minimum at x̄. This says f − φ attains its
strong minimum at x̄ where φ is the zero-functional. According to Exercise 5.2.6 f is coercive,
and so by the Moreau-Rockafellar theorem (4.4.10), f∗ is continuous at 0. Now 0 ∈ ∂f (x̄) and
so x̄ ∈ ∂f∗(0) by Proposition 4.4.5(b). Suppose xn ∈ ∂εnf∗(0) where εn → 0, then 0 ∈ ∂εnf(xn)
by Proposition 4.4.5(b). Then ‖xn − x̄‖ → 0 by the equivalence of (c) and (d) in Theorem 5.2.3.
According to Šmulian’s theorem (Exercise 4.2.10), f∗ is Fréchet differentiable at 0 with ∇f∗(0) =
x̄.
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The converse was more generally shown in (e)⇒ (d) of Theorem 5.2.3 assuming f is lower semi-
continuous. However, when f is also convex one doesn’t need the more difficult Exercise 4.4.2.
Indeed, suppose additionally f is lower semicontinuous and convex, and that f∗ is Fréchet dif-
ferentiable at 0 with x̄ = ∇f∗(0). According to Proposition 4.4.5(a), 0 ∈ ∂f(x̄). Now suppose
f(xn) ≤ f(x̄) + εn where εn → 0+. Then by the equivalence of (c) and (d) in Theorem 5.2.3
0 ∈ ∂εnf(xn). Proposition 4.4.5(b) implies xn ∈ ∂εnf∗(0). Šmulian’s theorem (4.2.10) then shows
xn → 0 as desired.
(b) When f is lower semicontinuous and convex, part (a) shows f−φ0 attains its strong minimum

at x0 if and only if (f − φ0)∗ is Fréchet differentiable at 0 with derivative x0 which occurs if and
only if f∗ is Fréchet differentiable at φ0 with Fréchet derivative x0. Thus (a) and (e) are equivalent
in Theorem 5.2.3 when f is a proper lower semicontinuous convex function.
(c) This follows from Proposition 5.2.4(a) and expressing Tikhonov well-posedness in terms of

strongly exposed points by equivalence of (a) and (c) in Theorem 5.2.3.

5.2.3. Let φ ∈ ∂f(x̄). Then Proposition 4.4.5(a) ensures that x̄ ∈ ∂f∗(φ). Because f∗ is Fréchet
differentiable at φ, this implies x̄ is the Fréchet derivative ∇f∗(φ). Now xn → x̄ weakly implies
φ(xn)→ φ(x̄) and f(xn)→ f(x̄) was given. Therefore,

(f − φ)(xn)→ (f − φ)(x̄).

According to Theorem 5.2.3, ‖xn − x̄‖ → 0 as desired.
Certainly it was needed that xn → x̄ weakly, otherwise we choose f := 1

2‖ · ‖
2 on `2. Then

f∗ = f , and f∗ is Fréchet differentiable. However, f(en) = f(e1) for all n, but en does not
converge weakly to e1.

5.2.4. (a) Suppose x0 exposes f∗ at φ0, then x0 ∈ ∂f∗(φ0) by Proposition 5.2.2. According
to Proposition 4.4.5(a), φ0 ∈ ∂f(x0), and then the Fenchel–Young equality (Proposition 4.4.1)
implies f∗(φ0) − 〈x0, φ0〉 = −f(x0). The assumption in the exercise then implies f∗(φn) −
〈x0, φn〉 → −f(x0). So let εn → 0+ be chosen so that f∗(φn) − 〈x0, φn〉 < −f(x0) + ε for each
n ∈ N. The defintion of f∗ then ensures φn(x)−f(x)−φn(x0) ≤ −f(x0)+ εn for all x ∈ X. Thus
φn ∈ ∂εnf(x0).
For (b), consider the function f(t) := t2 if t ≤ 1, and f(t) := 2t− 1 if t ≥ 1; see Figure 5.3.

5.2.5. Suppose f∗ : X∗ → (−∞,+∞] is a proper, weak∗-lower semicontinuous convex function
that is exposed at φ0 ∈ X∗ by x0 ∈ X and that

(1) f∗(φn)− 〈x0, φn〉 → f∗(φ0)− 〈x0, φ0〉.

(a) Let (φn)∞n=1 ⊂ X∗ be bounded. Now suppose by way of contradiction φn 6→w∗ φ0. Because
(φn)∞n=1 is bounded, it then has a weak∗-convergent subnet (φnα) that converges to φ̄ 6= φ0. Now,

f∗(φ0)− 〈x0, φ0〉 = lim sup
n

f∗(φn)− 〈x0, φn〉 [by (1)]

≥ lim inf
α

f∗(φnα)− 〈x0, φnα〉

≥ f∗(φ̄)− 〈x0, φ̄〉 [since f∗ is w∗-lsc].

This constradicts that f∗ − x0 attains its minimum uniquely at φ0.
(b) An example where (φn) is bounded and f∗ is Lipschitz with (1) holding is as follows. Define
f∗ : `1 → R where f((xi)) :=

∑
2−i|xi|. Then f∗ is exposed at 0 by the zero functional in c0
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since f attains its minimum uniquely at 0, but f∗(nen) − 〈0, nen〉 = n
2n and nen 6→w∗ 0 where

(en) is the standard basis of `1.
(c) Suppose f is continuous at x0, where f∗ is the conjugate of f . According to Exercise 5.2.4(a),
the condition (1) implies φn ∈ ∂εnf(x0) where εn → 0. Hence it is easy to check that (φn) must
be bounded, because f is continuous at x0.
Further Notes. We will say an exposed point φ of the function h : X∗ → (−∞,+∞] is w∗-exposed

by x∗∗ if φn →w∗ φ whenever

(h− x∗∗)(φn)→ (h− x∗∗)(φ).

Then one extend this and the previous exercise to show: Suppose f : X → (−∞,+∞] is a proper
lower semicontinuous convex function, x0 ∈ X and f∗ is exposed by x0 at φ0 ∈ X∗. Then f∗ is
w∗-exposed by x0 at φ0 if and only if f is continuous at x0. The ‘if’ portion follows directly
from Exercise 5.2.4(a) and part (c) of this exercise. For the ‘only if’ implication, suppose f is not
continuous at x0. By replacing f∗ with f∗−x0 and then shifting f∗ we may suppose f∗(0) = 0 is
the strict minimum of f∗ and f is not continuous at 0. By the Moreau-Rockafellar dual theorem,
f∗ is not coercive because f is not continuous at 0. Thus we choose x∗n with ‖x∗n‖ → ∞ but
f∗(x∗n) ≤ N for some N > 0 and all n. By passing to a subsequence as necessary, we may assume

‖x∗n‖ > n2. Let φn =
1
n
x∗n. By the convexity of f∗ we obtain

f∗(φn) = f∗
(
n− 1
n

0 +
1
n
x∗n

)
≤ n− 1

n
f∗(0) +

1
n
f∗(x∗n) ≤ N

n
.

Thus we obtain
(f∗ − 0)(φn)→ (f∗ − 0)(0)

but (φn) does not converge weak∗ to 0, because it is unbounded (Uniform boundedness principle)
since a pointwise convergent sequence is pointwise bounded.

5.2.6. (a) There exists δ > 0 such that (f − φ)(u) ≥ (f − φ)(x) + δ whenever ‖u − x‖ = 1 for
otherwise we would choose un such that ‖un − x‖ = 1 and (f − φ)(un) → (f − φ)(x) but then
we obtain the contradiction ‖un − x‖ → 0 because f − φ attains its strong minimum at x. Now
suppose ‖u− x‖ = α with α ≥ n. The convexity of (f − φ) now implies

1
α

(f − φ)(u) +
(

1− 1
α

)
(f − φ)(x) ≥ (f − φ)

(
x+

1
α

(u− x)
)
≥ (f − φ)(x) + δ.

Then α−1(f−φ)(u) ≥ α−1(f−φ)(x)+δ and so (f−φ)(u) ≥ (f−φ)(x)+nδ whenever ‖x−u‖ ≥ n
where n ∈ N. Consequently, if ‖u‖ → ∞, ‖u − x‖ → ∞, and so (f − φ)(u) → ∞. This shows
f − φ is coercive.
(b) By part (a), f∗ − x0 is coercive, and by the Moreau-Rockafellar theorem (4.4.11) we deduce
f∗∗ is continuous at x0. Because f is lower semicontinuous, Proposition 4.4.2(a) ensures that
f∗∗|X = f , and the conclusion follows.

5.2.7. This is a proof of the equivalence of (a) and (b) in Theorem 5.2.3.
(a) ⇒ (b): Suppose (x0, f(x0)) is strongly exposed by (φ0,−1), and that (φ0 − f)(xn)→ (φ0 −
f)(x0). Then

(φ0,−1)(xn, f(xn))→ (φ0,−1)(x0, f(x0))

and (a) implies ‖(xn, f(xn))− (x0, f(x0))‖ → 0 which implies ‖xn − x0‖ → 0.
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(b)⇒ (a): Suppose that φ0−f has a strong maximum at x0. Then by Proposition 5.2.2, (φ0,−1)
exposes epi f at (x0, f(x0)). Now if (xn, tn) ∈ epi f and (φ0,−1)(xn, tn) → (φ0,−1)(x0, f(x0)),
then (φ0,−1)(xn, f(xn))→ (φ0,−1)(x0, f(x0)) since f(xn) ≤ tn for all n. Therefore,

(2) (φ0 − f)(xn)→ (φ0 − f)(x0).

Now, (b) implies that ‖xn − x0‖ → 0. Therefore φ0(xn)→ φ0(x0); this with (2) implies f(xn)→
f(x0). Therefore, ‖(xn, f(xn))− (x0, f(x0))‖ → 0 as desired.

5.2.8. To see that Theorem 5.2.3(c) does not generally imply Theorem 5.2.3(e) for proper func-
tions, let f(t) = min{|t|, 1}. Then f − 0 attains a strong minimum at 0, but f∗ = δ{0} is not
Fréchet differentiable at 0. Let g(t) = |t| if t 6= 0 and
To see that Theorem 5.2.3(e) does not generally imply Theorem 5.2.3(e) for functions that are

not lower semicontinuous, let g(t) = |t| if t 6= 0 and g(0) = +∞ (or simply g(0) > 0 will do).
Then g∗ = δ[−1,1] so ∇g∗(0) = 0 as a Fréchet derivative, but g − 0 does not attain its strong
minimum at 0, and in fact does not attain its infimum.

5.2.8 (a) For any norm, 0 is the only exposed point of f(x) = ‖x‖ and, in fact, f is strongly
exposed at 0 by the 0 functional. For any u 6= 0, any functional φ that exposes f at u would
satisfy ‖φ‖ = 1, and φ(u) = ‖u‖. Then

(f − φ)(tu) = 0 = (f − φ)(u) for any t ≥ 0.

Thus u cannot be an exposed point of f .
(b) Observe that φ ∈ SX∗ strongly exposes x0 if and only if φ(x0) = 1 and xn → x0 whenever
‖xn‖ → 1 and φ(xn) → 1. We know from the duality mapping that Λ ∈ ∂‖x‖2 if and only
if Λ := 2‖x‖φx where φx ∈ SX and φx(x) = ‖x‖. (An elementary check of this is as follows.
Suppose Λ = 2‖x‖φx. Then

Λ(y)− Λ(x) = 2‖x‖φx(y)− 2‖y‖φx(x) = 2‖x‖(φx(y)− φx(x))
≤ 2‖x‖(‖y‖ − ‖x‖) ≤ (‖y‖+ ‖x‖)(‖y‖ − ‖x‖) = ‖y‖2 − ‖x‖2.

Thus Λ ∈ ∂‖x‖2. Conversely, considering g(t) := ‖tx‖2 we have g′(1) = 2‖x‖ so ‖Λ‖ = 2‖x‖
when Λ ∈ ∂‖x‖2; moreover, since Λ(y) ≤ Λ(x) whenever ‖y‖2 = ‖x‖2 it is clear Λ attains its
norm at x when Λ ∈ ∂‖x‖2.)
Then φ ∈ ∂f(x0) if and only if ‖φ/2‖ = 1 and φ(x0)/2 = 1, and (φ − f)(xn) → (φ − f)(x0)

implies ‖xn‖ → 1. Thus (φ− f)(xn)→ (φ− f)(x0) implies φ(xn)→ φ(x0) and ‖xn− x0‖ → 0.

5.2.10. This provides of a proof of Proposition 5.2.4(b).
Suppose f∗ is exposed at φ by x ∈ X. Then x ∈ ∂f∗(φ) and so Proposition 4.4.5(a) implies
φ ∈ ∂f(x). Now Proposition 5.2.2 implies ∂f(x) = {φ} and so f is Gâteaux differentiable at x
according to Corollary 4.2.5.
Conversely, suppose f is Gâteaux differentiable at x with f ′(x) = φ. Then ∂f(x) = {φ}. Then
x ∈ ∂f∗(φ) according to Proposition 4.4.5(a), and moreover, x 6∈ ∂f∗(Λ) for Λ 6= φ (or else
Λ ∈ ∂f(x)). Therefore, Proposition 5.2.2 implies that f∗ is exposed by x at φ.

Exercises from Section 5.3

5.3.1. Suppose that it is known ‖xn − x0‖ → 0 whenever

(3)
1
2
f(xn) +

1
2
f(x0)− f

(
xn + x0

2

)
→ 0
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and (xn) is a bounded sequence in the domain of f . Suppose there exists an unbounded sequence
(xn) ⊂ dom f for which (3) holds, but ‖xn−x0‖ 6→ 0. By shifting f , we may assume x0 = 0, and
f(0) = 0. Further, by passing to a subsequence, we may assume ‖xn‖ → ∞, and in particular
‖xn‖ > 2 for all n. Now let tn := ‖xn‖, and let un = 2

tn
xn. Since ‖un − 0‖ = 2, we know

1
2
f(0) +

1
2
f(un)− f

(
0 + un

2

)
6→ 0.

So we can find ε > 0 such that

f
(un

2

)
≤ 1

2
f(0) +

1
2
f(un)− ε ≤ 1

tn
f(xn)− ε,

where we used f(un) ≤ tn−2
tn

f(0) + 2
tn
f(xn) = 2

tn
f(xn) for the last inequality. Now we compute

f

(
0 + xn

2

)
= f

(
tn

2tn − 2
· 1
tn
xn +

tn − 2
2tn − 2

xn

)
≤ tn

2tn − 2
f

(
1
tn
xn

)
+

tn − 2
2tn − 2

f(xn)

≤ tn
2tn − 2

(
1
tn
f(xn)− ε

)
+

tn − 2
2tn − 2

f(xn)

=
1
2
f(xn)− tn

2tn − 2
ε ≤ 1

2
f

(
0 + xn

2

)
− ε

2
.

This contradicts (3) and completes the proof.

Exercises from Section 5.4

5.4.1. (a) First, f ′(t) = ptp−1 when t ≥ 0, and f ′(t) = −p|t|p−1 when p < 0. If s, t both have the
same sign, then Lemma 5.4.4 implies |f ′(t)− f ′(s)| ≤ p|t− s|p−1. If s < 0 < t, then

|f ′(t)− f ′(s)| = p|t|p−1 + p|s|p−1 ≤ 2p|t− s|p−1

and so f ′ is (p− 1)-Hölder as desired. Now Exercise 5.4.13 implies f has modulus of smoothness
of power type p. The statements on the moduli of convexity of |t|p for p > 1 now follow from
Theorem 5.4.2. Note that an alternate approach to this and part (b) is given in Exercise 5.4.2 .

5.4.2. (a) Observe that g is convex because g′′ ≥ 0 on [a,∞). Let a ≤ x < y and write x = x̄−h,
y = x̄+ h where x̄ = (x+ y)/2. By Taylor’s theorem

g(y) = g(x̄) + g′(x̄)(h) + . . .+
g(n)(x̄)(h)

n!
hn +

g(n+1)(c)
(n+ 1)!

hn+1

≥ g(x̄) + g′(x̄)(h) +
g(n)(x̄)(h)

n!
hn.

By convexity
g(x) ≥ g(x̄) + g′(x̄)(−h).

Adding the previous two inequalities and dividing by 2 yields

1
2
g(y) +

1
2
g(x) ≥ g

(
x+ y

2

)
+
α|x− y|n

n!2n
.
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Consequently, δg(ε) ≥
αεn

n!2n
as needed for (a). Notice that (b) follows from (a) because g(k)(t) =

(ln b)kbt ≥ (ln b)k for all t ≥ 0, and take some care for noninteger values of p.
To prove (c), we follow the argument and notation as in (a). Observe x̄ ≥ h. Thus when
n ≤ p < n− 1,

g(n)(x̄) = (p− 1)(p− 2) · · · (p− n+ 1)x̄p−n

≥ (p− 1)(p− 2) · · · (p− n+ 1)hp−n.

Proceeding as in (a), we conclude

g(y) ≥ g(x̄) + g′(x̄)(h) + (p− 1)(p− 2) · · · (p− n+ 1)
hp−nhn

n!

and then
1
2
g(y) +

1
2
g(x) ≥ g

(
x+ y

2

)
+ (p− 1)(p− 2) · · · (p− n+ 1)

hp

n!

which provides the desired result.

5.4.3. Suppose f has modulus of convexity of power type p > 0, say δf (ε) ≥ Kεp for all ε ≥ 0.
Fix x̄, h ∈ X, and φ ∈ ∂f(x̄). Then

2K‖h‖p ≤ f(x̄+ h) + f(x̄)− 2f
(
x̄+

1
2
h

)
= (f − φ)(x̄+ h) + (f − φ)(x̄)− 2(f − φ)

(
x̄+

1
2
h

)
.

Because (f − φ) attains its minimum at x̄, this implies

(f − φ)(x̄+ h) ≥ (f − φ)(x̄) + 2K‖h‖p.

Rearranging, f(x̄+ h) ≥ f(x̄) + φ(h) + 2K‖h‖p, so the result holds with C = 2K.
Conversely, suppose x, y ∈ X and let ε = ‖x − y‖. Let x̄ = (x + y)/2 and let h be such that
y = x̄+ h, x = x̄− h, and fix φ ∈ ∂f(x̄). Then

f(x̄+ h) ≥ f(x̄) + φ(h) + C‖h‖p and f(x̄− h) ≥ f(x̄) + φ(−h) + C‖h‖p.

Adding these two inequalities and dividing by 2 yields

1
2
f(y) +

1
2
f(x) ≥ f

(
x+ y

2

)
+ C

( ε
2

)p
.

It then follows that δf (ε) ≥ C
2p ε

p as desired.
The interested reader should see [445, Corollary 3.5.11] for several other conditions equivalent

to moduli of power type.

5.4.4. (a) Observe first

δf (ε) = inf
{

1
2
f(x) +

1
2
f(y)− f

(
x+ y

2

)
: ‖x− y‖ ≥ ε, x, y ∈ dom f

}
≤ 1

2
f(x) +

1
2
f(y)− f

(
x+ y

2

)
+

1
2
g(x) +

1
2
g(y)− g

(
x+ y

2

)
8



for all x, y ∈ domh, ‖x− y‖ ≥ ε since g is convex. From this, δh(ε) ≥ δf (ε) for ε ≥ 0.
(b) When h = f g, Lemma 4.4.15 shows h∗ = f∗ + g∗. Because h is proper, we know h∗ is

proper, and thus by (a), δh∗ ≥ δf∗. Then Theorem 5.4.1(a) ensures ρh ≤ ρf as desired.

5.4.5. (a) Suppose f is affine, then f(t) = at+ b for some a, b ∈ R. Thus f ′′ = 0. On the other
hand, suppose f ′′(x0) 6= 0 for some x0 ∈ R. By replacing f with −f as necessary, there is an
open interval I containing x0 and ε > 0 so that f ′′ > ε on I. Then |f ′(t)− f ′(s)| ≥ ε|t− s| for all
s, t ∈ I, as |s− t| → 0+ this will contradict the α-Hölder condition.
(b) If f ′′ = 0 almost everywhere, then by the Fundamental theorem of calculus, f ′ is constant,

and consequently, f is affine (observe f ′ is absolutely continuous because it satisfies a Hölder
condition). In the case f ′′ is not 0 almost everywhere, by convexity we know f ′′ ≥ 0 almost
everywhere, and so we find some ε > 0 so that S := {t : f ′′ ≥ ε} has positive measure. Use that
the metric density of S is 1 at almost every point of S (see [384, p. 141]) to fix r0 > 0, and x0 ∈ S
so that

λ(E ∩ (x0 − r0, x0 + r0))
2r

≥ 1
2

for all 0 < r < r0.

Then for x0 − r < s < t < x0 + r0, the Fundamental theorem of calculus implies

f ′(t)− f ′(s) =
∫ t

s
f ′′(x) dx ≥ ε

2
(t− s)

Hence f ′ does not satisfy and α-Hölder condition for α > 1 on the interval (x0−r0, x0 +r0) which
is a contradiction.

5.4.6. Both (a) and (b) are straightforward from the definitions involved. (c) Use Exer-
cise 5.4.5(b) and check that the connection between modulus of smoothness of power type and
α-Hölder derivatives is valid for α ≥ 1 (see Exercise 5.4.13).
(d) Observe that power type duality is valid for p > 1. Suppose f is uniformly convex with

modulus of convexity of power type p0 where p0 < 2. Let h := f + | · |2 on one dimension. Then h
has modulus of convexity of power type p for any p0 < p ≤ 2. Indeed, choose C1 > 0 and C2 > 0
so that

1
2
h(s) +

1
2
h(t)− h

(
s+ t

2

)
≥ C1|s− t|p0

and
1
2
|t|+ 1

2
|s| −

∣∣∣∣s+ t

2

∣∣∣∣ ≥ C2|s− t|2

now separate the cases when |s − t| ≥ 1 and |s − t| ≤ 1. To show δh(ε) ≥ Cεp where C :=
min{C1, C2} and p0 ≤ p ≤ 2. In particular, h has modulus of convexity of power type p for some
(any) p between 1 and 2. By duality, deduce that h∗ has modulus of smoothness of power type q
for q > 2. Consequently h∗ is affine, i.e. h∗(t) = at+b. Conclude that domh = {a} is a singleton.
This is true along any line, so dom f must be a singleton as desired.
An alternate proof for (d) in the case 0 < p < 1 is as follows. As in Exercise 5.4.3 on can show

that for a proper lower semicontinuous convex function of power type p > 0, there exists C > 0
such that

f(x̄+ h) ≥ f(x̄) + φ(h) + C‖h‖p whenever h ∈ X, x̄ ∈ dom(∂f), φ ∈ ∂f(x̄).

Because dom(∂f) 6= ∅, it follows from the convexity of f that dom f is a singleton whenever f
has modulus of convexity of power type p ∈ (0, 1).
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For (e), let ||| · ||| on R2 be a norm that does not satisfy a modulus of convexity of power type p
for any p (see [245]). Let ‖ · ‖ be the usual norm on R2. Check that f := ||| · |||2 + max{‖ · ‖2− 2, 0}
is one such function.

5.4.7. (a) First we fix positive constants A, B corresponding to the respective moduli, and let
C > 0 be as given. That is,

δf (ε) ≥ Aεp for all ε > 0, δ‖·‖(ε) ≥ Bεp for all 0 ≤ ε ≤ 2, and f ′+(t) ≥ Ctp−1 for all t > 0.

Let ε > 0 be fixed, and suppose x, y ∈ X satisfy ‖x− y‖ ≥ ε. We may assume ‖y‖ ≤ ‖x‖.
Suppose first, ‖y‖+ ε/2 ≤ ‖x‖. Using the modulus of convexity of f we obtain

(4)
1
2
f(‖x‖) +

1
2
f(‖y‖)− f

(∥∥∥∥x+ y

2

∥∥∥∥) ≥ 1
2
f(‖x‖) +

1
2
f(‖y‖)− f

(
‖x‖+ ‖y‖

2

)
≥ A

( ε
2

)p
.

Thus for the remainder of the proof we will assume ‖y‖+ε/2 > ‖x‖. Let a := ‖y‖ and x̃ = x/‖x‖,
ỹ = y/‖y‖. Then ‖y − ax̃‖ > ε/2. Consequently, ‖ỹ − x̃‖ > ε

2a . Then the modulus of convexity

implies
∥∥∥∥ x̃+ ỹ

2

∥∥∥∥ ≤ 1−B
( ε

2a

)p
and thus

(5)
∥∥∥∥x+ y

2

∥∥∥∥ ≤ a(∥∥∥∥ x̃+ ỹ

2

∥∥∥∥)+
‖x‖ − a

2
≤ 1

2
‖x‖+

1
2
‖y‖ −Ba

( ε

2a

)p
.

We now consider the case, Ba
(
ε

2a

)p ≥ a/2. Recalling that ‖x‖ + ‖y‖ ≥ ‖x − y‖ ≥ ε, we have
‖y‖ ≥ ε/4 since ‖y‖ ≥ ‖x‖ − ε/2. Because a = ‖y‖, it follows that a/2 ≥ ε/8. Thus, letting
t0 := (‖x‖+ ‖y‖)/2− a/2, we have t0 ≥ a/2 and the nondecreasing property of f ensures

f

(∥∥∥∥x+ y

2

∥∥∥∥) ≤ f(t0).

Now we use this with the convexity of f to compute,

1
2
f(‖x‖) +

1
2
f(‖y‖) ≥ f

(
‖x‖+ ‖y‖

2

)
≥ f(t0) + f ′+(t0) · (a/2)

≥ f(t0) + f ′+(a/2) · (a/2) ≥ f(t0) + f ′+(ε/8) · (ε/8)

≥ f

(∥∥∥∥x+ y

2

∥∥∥∥)+ C
( ε

8

)p
.(6)

For our remaining case, we suppose Ba
(
ε

2a

)p ≤ a/2. Then the right hand side of (5) is at least
a/2. Now use the fact f ′(t) ≥ C(a/2)p−1 when t ≥ a/2 to compute

f

(∥∥∥∥x+ y

2

∥∥∥∥) ≤ f

(
1
2
‖x‖+

1
2
‖y‖
)
−Ba

( ε

2a

)p
· C
(a

2

)p−1

≤ 1
2
f(‖x‖) +

1
2
f(‖y‖)−BC

( ε
4

)p
.(7)

Putting (4), (6) and (7) together we see that f ◦ ‖ · ‖ has modulus of convexity of power type p
as desired.

(b) In fact the following stronger statement is true: Suppose f : [0,+∞) → [0,+∞) is convex
and increasing. Then f ◦ ‖ · ‖ is uniformly convex if and only if

(8) lim inf
t→∞

f ′+(t) · δ‖·‖
(ε
t

)
· t > 0
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for each ε > 0, f is uniformly convex and ‖ · ‖ is uniformly convex. For details on this, see
Theorem 2.1 of the paper found at

http://faculty.lasierra.edu/∼jvanderw/ConvexFunctions/Notes/cmb651v2.pdf

Further information related to other parts of this question can also be found in that note.

(c) Additionally, we will use the known moduli of `p norms (see [180]). That is, if 1 < p ≤ 2,
‖ · ‖p has modulus of convexity of power type 2. If p > 2, then ‖ · ‖p has modulus of convexity of
power type p but not less, and trivially a norm with modulus of convexity of power type p also
satisfies power type r when r ≥ p. Also, according to Exercise 5.4.2, t 7→ |t|p is uniformly convex
on [0,∞) with modulus of convexity of power type p.
(i) Therefore, applying (a), we see that f := ‖ ·‖2p is uniformly convex with modulus of convexity

of power type 2 when 1 < p ≤ 2. Likewise, when r > p we may apply ‖ · ‖p has modulus of
convexity of power type r, so we may likewise apply (a) to verify f := ‖ · ‖rp is uniformly convex
with modulus of convexity of power type r.
(ii) Example 5.3.11 ensures that f := ‖ · ‖p for p > 1 is uniformly convex on bounded sets when
‖ · ‖ is uniformly convex. When p ≥ 2, as in (i) ‖ · ‖p has modulus of convexity of power type
r ≥ p, thus we may apply (a) to deduce f := ‖ · ‖rp uniformly convex with modulus of convexity
of power type r. When r ≥ p ≥ 2, we may apply the condition in (a) to see that f := ‖ · ‖rp is
uniformly convex with modulus of convexit of power type r.
(iii) Use (a) for this part as well.

5.4.10. (a) Suppose f has modulus of convexity of power type p > 1, that is δf (ε) ≥ Cεp for some
C > 0 and all ε > 0. According to Theorem 5.4.1(b), we have ρf∗(τ) = sup

{
τ ε2 − δf (ε) : ε ≥ 0

}
for all τ ≥ 0. Therefore, ρf∗(τ) ≤ sup

{
τ ε2 − Cε

p : ε ≥ 0
}

. The supremum occurs when ε =(
τ

2pC

) 1
p−1 , and so ρf∗(τ) ≤ 1

2(2pC)
1
p−1

τ
p
p−1 as needed.

Conversely, suppose ρf∗(τ) ≤ Cτ
p
p−1 . It follows from Theorem 5.4.1(b), that τ ε2−Cτ

p
p−1 ≤ δf (ε)

for ε ≥ 0 and τ ≥ 0. For fixed ε ≥ 0, the supremum on the left hand side occurs when

τ =
(

(p−1)ε
2pC

)p−1
and thus δf (ε) ≥ Kεp where

K =
(

(p− 1)ε
2pC

)p−1 [1
2
− p− 1

2p

]
> 0 because p > 1, C > 0.

This proves (a).
(b) Suppose f∗ has modulus of convexity of power type p. By part (a), f∗∗ has modulus of

smoothness of power type q, and hence so does f = f∗∗|X . Conversely, suppose f has modulus of
smoothness of power type q. Proceeding as in the previous paragraph, but using Theorem 5.4.1(a)
we obtain that f∗ has modulus of convexity of power type p.
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