Typos, Errors and Additional Notes

(16 April 2013)

Chapter 1.

- p. 2, in definition of a proper function: specify the domain is not empty.
- p. 4, Figure 1.1 Caption: function is from Chapter 7 not Chapter 6.
- p. 4, Theorem 1.2.2 last part of (c) should say: in infinite dimensions lower-semicontinuity is not automatic.
- p. 8 , definition of distance function the inf should be over $s \in S: \inf _{s \in S}\|x-s\|$
- p. 9, Example 1.3.6: (c) $\log f$ is a convex function.
- p. 9, line -17: $\beta(x, y)=\Gamma(x) \Gamma(y) / \Gamma(x+y)$
- p. 10 , Example 1.39 should say suppose g is concave (which implies $\log \mathrm{g}$ is concave)

Chapter 2.

- p. 21, line 2: whose epigraph is the closure of the epigraph of f
- p. 21: Convex combinations should have been introduced with convex hulls and the basic characterization of convex hulls using convex combinations should have been given in Section 2.1. Details are available at
http://faculty.lasierra.edu/~jvanderw/ConvexFunctions/Notes/convcomb.pdf
- p. 27, Proof of Fact 2.1.16: $f(t \bar{x}+d)$ should be $f(\bar{x}+t d)$
- p. 32, Hint for Exercise 2.1.24: $x \log (n) \leq(n+1+x)-g(n+1) \leq x \log (n+1)$ should be $x \log (n) \leq g(n+1+x)-g(n+1) \leq x \log (n+1+x)$. And right-most side of first displayed inequality should be $x \log \left(1+\frac{1}{n}\right)$ in place of $\log \left(1+\frac{1}{n}\right)$
- p. 35, further details for the argument suggested in the second last sentence of the proof of Theorem 2.2.1 can be found at
http://faculty.lasierra.edu/~jvanderw/ConvexFunctions/Notes/Thm221.pdf
- p. 42, Exercise 2.2.14: Rado's result: " $k\left(A_{k}-G_{k}\right) \geq(k-1)\left(A_{k-1} / G_{k-1}\right)$ " should be replaced by " $k\left(A_{k}-G_{k}\right) \geq(k-1)\left(A_{k-1}-G_{k-1}\right)$ "
- p. 47, line $-7: p \geq d$ (should match theorem statement)
- p. 51, line 17: $\inf _{x \in E}\{($ the '(' is missing
- p. 52, Exercise 2.3.14(f): note the convex function $f: E \rightarrow \mathbb{R}$ is automatically continuous by Theorem 2.1.12
- p. $53,2.3 .15(\mathrm{c}): f: E \rightarrow \mathbb{R}$ (just for consistency, though valid in any normed space X)
- p. 53, 2.3.17(a): $f: E \rightarrow(-\infty,+\infty$] (just for consistency, though valid on any normed space X)
- p. 54 , line -6 : should be $\frac{1}{2} d_{S}^{2}$ on left-hand side in displayed equation
- p. 55, Theorem 2.3.7: The definition of h in the hint should be $h(x):=\inf _{\mathbb{R}} \ldots$
- p. 56, Exercise 2.2.23: Replace ϕ_{0} with ϕ_{1} in first constraint: $\int_{T} \phi_{1}(x(t), t) \mu(\mathrm{d} t)=b_{1}$
- p. 58, Exercise 2.3.27, in the definition of the polar function replace $\left(k_{C}\right)^{\circ}(x):=$ with $k_{C}^{\circ}\left(x^{*}\right):=$
- p. 60, Exercise 2.3.28(d): missing period at end of statement.
- p. 60, Exercise 2.3.29, the definition of D_{f} should be: $f(x)-f(y)-\left\langle f^{\prime}(y), x-y\right\rangle$
- p. 65, $\phi \neq 0$ in Corollary 2.4.3.
- p. 66, Thm 2.4.6: Suppose $\operatorname{dim} E>0$
- p. 67, Thm 2.4.7: Note a stronger result is available, namely the separation holds if and only if ri $C_{1} \cap \mathrm{ri} C_{2}=\emptyset$. See Theorem 11.3 in Rockafellar's book Convex Analysis for this.
- p. 69, line 9: should be $\alpha(x):=\left\langle A^{*} \phi, x\right\rangle+r$
- p. 70: in (2.4.12): $\sum_{i=0}^{m} \lambda_{i} x_{i}$ (first sum should also be from $i=0$ to $i=m$).
- p. 70: i is missing in (2.4.13): for $i=0,1,2, \ldots, m, x \in E$.
- p. 81, Hint to Exercise 2.5.2: $G_{n, m}:=\left\{x \in U: \sup _{\|h\| \leq \frac{1}{m}} f(x+h)+f(x-h)-2 f(x)<\frac{1}{m n}\right\}$.
- p. 82, line -6: See [95, Chapter 6] for a
- Section 2.6: functions are tacitly assumed closed, e.g. Proposition 2.6.3
- p. 84, line -3 : as $t \rightarrow 0^{+}$?
- p. 85 , line $-11: h \in W($ not $w \in W)$
- p. 85, Proposition 2.6.3: the function $\Delta_{t}^{2} f(x)$ is closed nonnegative and convex
- p. 86, Theorem 2.6.4: equivealently, generalied should be equivalently, generalized
- p. 88, line -4, Exercise 2.6.4(c) should read: $\lim _{t \rightarrow 0} \frac{\phi_{t}-\nabla f(x)}{t}=A h$ where $\phi \in \partial f(x+t h)$.
- p. 91, Hint to 2.6.13, second last line should read: there is a continuous strictly increasing function g such that $g^{\prime}(t)=\infty$ for all $t \in G$

Chapter 3.

- p. 99, the third line of Section 3.2: Diag: \mathbb{R}^{n}
- p. 118, line 3 of proof of Theorem 3.5.3: should refer to Exercise 3.5.12
- p. 121, Exercise 3.5.7, the first line of Hint: $f(x)-f\left(x_{0}\right)+\epsilon$

Chapter 4.

- p. 131, Proposition 4.1.9, last line: $\bar{x} \in \operatorname{cont} f$
- p. 132, Corollary 4.1.12: $C \subset X \ldots \phi \in X^{*}$ (note automatically $\phi \neq 0$)
- p. 133, Remark 4.1.16(b): $\phi(x)=1$;
- p. 136, Corollary 4.1.20: note (automatically) $\phi \neq 0$
- p. 136, Theorem 4.1.22: note (automatically) $x_{0} \neq 0$
- p. 133, in the sandwich theorem: f and g can be extended real-valued functions
- p. 134 , line $-10:+\frac{1}{2^{i}} S+\quad(S$ is missing)
- p. 135, line 7: definitions of a and b should be interchanged
- p. 135 , line -3 : should be $g(T x)$ not $g(A x)$.
- p. 136, Proposition 4.1.23, line -3 : one need only assume $x_{0}^{*} \in \operatorname{dom} f$, and on p. 137, line 5 , it suffices to have $x_{0}^{*} \in \operatorname{dom} f$.
- p. 137, line 7: $\left\langle x_{0}, x_{0}^{*}-\alpha\right\rangle$ should be $\left\langle x_{0}, x_{0}^{*}\right\rangle-\alpha$
- p. 138,: In Hint for 4.1.2(b)(ii) " $f(x)=0$ for all x in a dense convex subset ..." should be replaced with something like " $f(x)=\Lambda(x)$ " for all x in a dense convex subset of B_{X} where Λ is an appropriately chosen discontinuous linear functional ..."
- p. 142 , Exercise 4.1.21(a): $\Lambda: c_{00} \rightarrow \mathbb{R}$ (Λ will be extended to c_{0} in (b))
- p. 146, Exercise 4.1.46(c): $f^{*}(x)=\|x\|^{2} / 2$ if $x \in \overline{\operatorname{conv}} F$ and $f^{*}(x)=+\infty$ otherwise.
- p. 151, line 15: norm dense in S_{X}
- p. 154, Cor. 4.2.12: U is an open convex set
- p. 157, proof of Proposition 4.2.16: there are subtleties in the directional modification of the proof of Proposition 4.2.14 when f is not Lipschitz. Full details of the proof of Proposition 4.2.16 are at
http://faculty.lasierra.edu/~jvanderw/ConvexFunctions/Notes/Prop4216.pdf
- p. 160, line -2 : strict for distinct $x, y \in U$.
- p. 167, line 3: Then there is
- p. 168, Hint to Exercise 4.3.6: specify $x_{0} \in \operatorname{bnd} C$.
- p. 171, Proposition 4.4.1(c) should read: If $f \leq g$, then $f^{*} \geq g^{*}$.
- p. 172, Proposition 4.4.2(a) should include assumption f is lsc at some point of its domain (to apply epi-separation theorem)
- p. 173, 2nd line of proof of Fact 4.4.4: $\left\{u \in X^{* *}: f^{* *}(u) \leq K\right\} \quad($ capital $K)$
- p. 188, Fact 4.5.3, In particular statement specify nonempty: every nonempty closed convex
- p. 190, Theorem 4.5.7(c) should read: d_{C}^{2} is Gâteaux differentiable and C is proximal. For some further information related to distance functions and differentiability see http://faculty.lasierra.edu/~jvanderw/ConvexFunctions/Notes/distancefun.pdf
- p. 191, Exercise 4.5 .4 should additionally assume: A is proximal
- p. 193, Exercise 4.5.9: in definition of approximately convex the ball D must be disjoint from C
- p. 194, Exercise 4.5.10, definition of a sun: "for $x \in S$ " should be "for any x in the Hilbert space"
- p. 202, Theorem 4.6.13: If $\nabla^{2} f(\bar{x})(h, h)>0$ for all $\bar{x} \in U, h \in S_{X}$, then f is strictly convex.
- p. 204, Remark 4.6.17(d): mention that C has empty interior
- p. 205, Exercise 4.6.4(b): end question with "?"
- p. 205, Exercise 4.6.6, specify $x \neq y$ in definition of strictly convex norm: whenever $\|x\|=\|y\|$ and $x \neq y$

Chapter 5.

- tacitly uses $\delta(\cdot)$ or $\delta_{\|\cdot\|}(\cdot)$ in place of $\delta_{X}(\cdot)$.
- p. 217, line -2 : forevery
- p. 221, last line of proof of Theorem 5.1.32 should read: of weaker results (delete 'a')
- p. 236, Hint to Exercise 5.2.6(b): $f^{*}\left(n e_{n}\right)-\left\langle 0, n e_{n}\right\rangle=\frac{n}{2^{n}}$
- p. 236, second line of Hint to Exercise 5.2.6: now implies $(f-\phi)(u) \geq(f-\phi)(x)+n \delta$ (should not be $>$)
- p. 241: It is worth noting that each condition in Theorem 5.3.7(b) is equivalent to f^{*} being strongly rotund as introduced in Section 6.4. For details see
http://faculty.lasierra.edu/~jvanderw/ConvexFunctions/Notes/Thm537.pdf
- p. 244: $\delta_{f}:[0, \infty) \rightarrow[0, \infty]$

Chapter 6.

- p. 276, line -7: replace $T(S)=\bigcup_{x \in A} T(x)$ with $T(S)=\bigcup_{x \in S} T(x)$
- p. 279, last line of proof of Theorem 6.1.5 should read: ... $v_{0} \in \partial f\left(x_{0}\right)$ as desired.
- p. 280 Thm 6.1.7 and its proof T_{U} should be $\left.T\right|_{U}$
- p. 283, Exercise 6.1.8 should say Hint and not Proof.

Chapter 7.

- p. 339: Lemma 7.2.2: $x \in \operatorname{bndy} \operatorname{dom} \partial f$
- p. 340, first line: $x \in \operatorname{bndy} \operatorname{dom} \partial f$
- p. 347, Third line of Hint to Exercise 7.3.3(b): should be Lemma 7.3.1(a) not 7.3.1(i)
- p. 348, Exercise 7.3.7: extra)
- p. 351: Theorem 7.4.4 parenthetical statement should read: where we note $(A-x)^{\circ}$ is equal to the negative polar cone $(A-x)^{-}$

Chapter 9.

- p. 404, note f need not be closed and convex
- p. 404, second paragraph: the subdifferential of a proper convex lsc function on a Banach space is the typical...
- p. 406, Corollary 9.1.5: f and g need to also be lsc
- p. 436 , last line: $\left\langle y_{n}^{*}, y_{n}\right\rangle=-\left\langle j_{n}^{*}, y_{n}\right\rangle$
- p. 451: Theorem 9.7.2 should be for $x \in X$ or $\hat{x} \in X^{* *}$.
- p. 451, proof of Theorem 9.7.2, line 6: right parenthesis should be before $\leq: \max (\ldots) \leq 0$
- p. 454: Exercise 9.7.9(d): . . . of the Hamel basis to F.

Chapter 10.

- p. 460: 4th line of 10.1.1 a real-valued convex functions
- p. 477, line 9: in various forms for were given

Index.

- p. 512, line -18 , left column: characerization

Acknowledgments. We are grateful to Professor Ernö Robert Csetnek for kindly informing us of several of the infelicites that have been listed here.

