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Abstract. Motivated by the need for new mathematical tools appli-
cable to the study of fractal point-cloud distributions, expectations of
complex-valued functions defined over general ‘deterministic’ fractal do-
mains are considered, following the development of a measure-theoretic
foundation for their analysis. In particular, we wish to understand and
evaluate separation moments as given by integrals of the form

Bn(s) =

∫
Rn

|x|sdµ(x) and ∆n(s) =

∫
Rn

|x− y|sdµ(x)dµ(y)

in the case where µ is a normalized Borel measure supported on a self-
similar subset of Rn. Previous work concerning such integrals supported
over the special class of String-generated Cantor Set (SCS) fractals
(see [5]) is generalised to encompass all fractal sets that can be expressed
as the attractor of an Iterated Function System (IFS). The development
of a generalised functional equation for expectations over IFS attractors
(Proposition 3.2) enables the symbolic evaluation of certain even-order
separation moments over attractors of affine IFSs, including such cele-
brated fractal sets as the von Köch Snowflake and Sierpiński Triangle—
and more generally, any IFS attractor generated from real-world data
by means of the Collage Theorem.

1. Introduction

The following mathematical considerations regarding expectations of func-
tions defined over fractal domains were principally motivated by recent
breakthroughs in the nano-scale imaging of biological structures. In par-
ticular, a team of scientists led by Steven Smith (at Smithlab, Stanford
Medical School) have pioneered new array tomography techniques within
the last decade, enabling the measurement of three-dimensional spatial co-
ordinates for over one million mouse-brain synapses1 at a resolution on the
order of 10−8 metres (see [37], [38] and [39]).

Date: September 23, 2015.
*Corresponding author.
1An entry-level overview of neurology can be found in [34], and can be briefly summa-

rized as follows: the human central nervous system primarily comprises over 100 billion
highly-interconnected neurons. The junction points between these neurons are small phys-
ical spaces called synapses; different types of neurons can have anywhere from hundreds
to tens of thousands of synaptic connections, each of which selectively transmits, blocks,
amplifies or redirects signals via chemical neurotransmitters. The spatial distribution of
these synapses reflects the spatial distribution of the associated neurons within the brain.
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The existence of these large-scale empirical point-cloud neural distribu-
tions raises many interesting mathematical questions concerning the precise
details of their structure. The arrangement of the synapses displays clear
fractal signatures, with an average Minkowski (box-counting) dimension of
2.8 ± 0.05 over the entire imaged volume and sharp changes in the local-
ized Minkowski dimension across biologically-predicted neural layers [25];
yet mathematical analysis based purely on the investigation of fractal di-
mensions can only partially resolve the full complexity of the structure.1

Thus, mathematical methods that can symbolically and numerically eval-
uate, over a wide range of fractal sets, the same statistical measures that
have been empirically determined for the neural data-sets—such as aver-
age neural separation—are of considerable interest, not least for their role
in enabling the selection of suitable fractal models that can reproduce the
measured distributions in detail.

The foundations for a theory of fractal separation expectations, or gener-
alised fractal box integrals, were established by Crandall in 2012 immediately
following the first analysis of the Smithlab data-sets from a mathematical
standpoint [25]. To faciliate a comparison between the empirically-measured
synapse separation moments and the statistics of a random point-cloud set,
Crandall drew upon previous work with Bailey and Borwein regarding classi-
cal box integrals, which encapsulate separation moments between points ran-
domly distributed throughout a unit hypercube (see for instance [3], [4], [21]
and [26]). Subsequent attempts to fit the experimentally-observed frac-
tal properties of the synapse distributions to an appropriate mathematical
model raised the question of how classical box integral theory might be
extended to provide a means of calculating separation moments of points
restricted to lie within an arbitrary fractal set, and particular consideration
of a special class of fractals known as String-generated Cantor Sets (SCSs)
lead to a collaboration between Bailey, Crandall and the present authors [5].

Having developed a mathematical theory of fractal expectations (with
a particular focus on biologically-relevant separation expectations) for the
special class of SCS fractals, this sequel examines the extension of the theory
to encapsulate the much more general class of so-called ‘deterministic’ frac-
tal sets—namely, the class of fractals that can be expressed as the attractor
of an appropriate Iterated Function System (IFS). In the remainder of this
introductory section we review the main results from the prior analysis of
expectations over SCS fractals and the relevant pieces of IFS theory that
are needed to extend the analysis. In Section 2 the fundamental definitions
concerning expectations of complex-valued functions over IFS attractors are

1Unsurprising, given that we are considering but one measurable parameter of an in-
finitely intricate set. Classical geometry provides many instances where geometric objects
of vastly different character nonetheless have a common (topological) dimension, and the
same is true in fractal geometry—as a case in point, both the unit square and the boundary
of the Mandelbrot set share a Hausdorff dimension of 2.
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established, proceeding from the generalization of the fundamental defini-
tions from the SCS setting into a measure-theoretic framework. This en-
ables the development of a functional equation (Proposition 3.2) in Section
3 that encapsulates the self-similarity of the fractal sets under consideration.
Echoing the central role played by the equivalent SCS relation, this provides
the key to establishing closed-form results and algorithms for the symbolic
computation of fractal expectations in certain special cases. This functional
equation is also used to develop several results concerning the complex poles
of fractal separation moments. Section 4 concerns the exact evaluation of
special cases—in particular, for even-order separation moments over affine
IFSs, which are completely resolved by means of a readily-automated sym-
bolic algorithm. Of particular interest is the existence of well-established
algorithms [45] for encoding a wide variety of empirical data (particularly
from digital images) into the IFS attractor framework via the Collage The-
orem [6]. The symbolic evaluation of fractal expectations over affine IFS
attractors thus has important implications regarding the analysis and mod-
eling of real-world data.

We note that the functional equation of Proposition 3.2 is foreshadowed
in the literature by [14], [16], [17], [18] and [22].

1.1. Box Integrals. One of the measures most relevant to the present
study of neurological data-sets are the separation moments over a fractal
set embedded in the unit hypercube. Separation moments over the full unit
hypercube were first investigated in 1976 by Anderssen, Brent, Daley and
Moran [1] and subsequently developed over the last decade into the modern
theory of box integrals by Bailey, Borwein, Crandall and their colleagues
(particularly in [3], [4] and [21]).

A general box integral X is formally defined as the expectation of the
(order-s) distance from a fixed point to a point equidistributed randomly
over the unit hypercube in n-dimensions. The canonical definition, estab-
lished in [4], is as follows:

Definition 1.1 (Box Integral). Given dimension n, complex parameter s
and a fixed point q in the unit n-cube, the box integral Xn(s, q) is defined
as the expectation of a certain norm |r − q|s, with q fixed and r chosen at
random from a uniform distribution over the unit n-cube. That is,

Xn(s, q) : = 〈|r − q|s〉r∈[0,1]n =

∫
r∈[0,1]n

|r − q|sDr(1.1)

where Dr := dr1 . . . drn is the n-space volume element.

Of particular interest are the B and ∆ box integrals, developed as func-
tionals of the X-integrals. These are tailored to the analysis of expected
norm and separation, respectively, of points uniformly distributed through
unit hypercubes à la [1].
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Definition 1.2 (Classical Instances of Box Integrals). The B box in-
tegral Bn(s), the order-s moment of separation between a random point and
a vertex of the unit n-cube (such as the origin), is:

Bn(s) := Xn(s, 0) = 〈|r|s〉r∈[0,1]n =

∫
r∈[0,1]n

|r|sDr;(1.2)

The ∆ box integral ∆n(s), the order-s moment of separation between two
random points in the unit n-cube, is:

∆n(s) := 〈Xn(s, q)〉q∈[0,1]n = 〈|r − q|s〉r,q∈[0,1]n =

∫
r,q∈[0,1]n

|r − q|sDrDq.

(1.3)

The ∆n(s) box integrals—particularly ∆3(1), the expected Euclidean dis-
tance between two points in the unit cube—are the measures whose gener-
alisation is most relevant to the analysis of empirical synapse distributions.
Thus, while this paper is concerned with expectations of arbitrary func-
tions defined over fractal domains, particular attention will be given to the
generalisation of the classical B and ∆ box integrals into the fractal setting.

1.2. String-generated Cantor Sets (SCSs). As a first step towards a
complete theory of expectations of general functions (and separation mo-
ments in particular) over arbitrary fractal sets, the class of String-generated
Cantor Sets (SCSs) was selected for consideration in [5]. This class of sets,
which aimed to capture the intuitive notion of ‘Cantor-like structure’,1 al-
lowed for fine-control over the fractal dimension2 of a selected representative
and struck a balance between the simplicity required to facilitate a first
analysis of fractal expectations and the complexity required to produce in-
teresting results.

As the name suggests, each SCS is uniquely determined by an associated
generating string. For a given embedding dimension n, let P = P1P2 . . . Pp
denote a periodic string of digits with period p, some positive integer, satis-
fying the restriction that Pi ≤ n for all i. For example, with n = 1, P = 01
denotes the period-2 string 010101 . . . .

The string supplies parameters to a generating procedure that is, in
essence, an extension of the classic representation of the Cantor middle-
thirds set as those points in the interval [0, 1] with a ternary expansion
that is entirely devoid of the digit 1. Consider the ternary expansion for

1Characterised by hypercubic symmetry in the unit n-cube and deterministic self-
similarity. The class of SCSs includes the Cantor middle-thirds set, Cantor dust (embed-
ded in arbitrary dimension) and the Menger sponge, among others of the same flavour.

2The phrase ‘fractal dimension’ here refers to both the Minkowski and Hausdorff di-
mensions, which are equivalent for any given SCS.
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coordinates of an arbitrary point x = (x1, . . . , xn) ∈ [0, 1]n:

x1 = 0 . x11 x12 x13 . . .

x2 = 0 . x21 x22 x23 . . .
...

xn = 0 . xn1 xn2 xn3 . . .

↑ ↑ ↑
c1 c2 c3 . . .

with every digit xjk ∈ {0, 1, 2} and the vectors ck = (x1k, . . . , xnk) com-
prising respective columns of kth ternary digits. A given periodic string
defines a unique SCS by providing a criterion for selecting points with ‘ad-
missible’ ternary expansions; the associated SCS is simply the collection of
such admissible points. In a given string P , the value of Pk determines the
maximum number of coordinates of x that are permitted to take the digit 1
in the kth (and (k + p)th, (k + 2p)th, . . .) place of the ternary expansion.

For the purpose of enumerating the digits that are restrained by the gen-
erating strings, it is useful to define two counting functions: the unit counter,
appropriate for standard ternary vectors c having all elements ∈ {0, 1, 2}:

U(c) := #{1’s in standard ternary vector c};

and for use with ‘balanced’ ternary vectors b having all elements ∈ {−1, 0, 1}
(obtained from a standard ternary vector c by the shift b = c−1n), the zero
counter :

Z(b) := #{0’s in balanced-ternary vector b}.
The class of String-generated Cantor Sets can then be formally defined

in the following manner:

Definition 1.3 (String-generated Cantor Set). Fix positive integers n
and p. Given an embedding space [0, 1]n and an entirely-periodic string
P = P1P2 . . . Pp of non-negative integers with Pi ≤ n for all i = 1, 2, . . . , p,
the associated String-generated Cantor Set (SCS), denoted Cn(P ), is the
set:

(1.4) {x ∈ [0, 1]n : U(ck) ≤ Pk for all k ∈ N}

with notational periodicity assumed: Pk+p := Pk for all k ∈ N.

The following column-counting formula occurs commonly in calculations
involving SCSs:

Lemma 1.4. For an SCS Cn(P ) with periodic generating string P , the
associated set of admissible columns ck is enumerated by:

(1.5) Nk(P, n) := Nk =

Pk∑
j=0

(
n

j

)
2n−j .
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Lemma 1.4 follows directly from the observation that, in the kth digit of
the ternary expansion of a given point, j ≤ Pk coordinates are permitted to
take the value 1, leaving n− j coordinates free to take either values 0 or 2.

Every SCS fractal encapsulated by this framework has a straightforward
representation as the attractor of an appropriate IFS consisting entirely of
similarity mappings that share an identical contraction factor (see Section
1.4 for the relevant definitions), as established by the following:

Proposition 1.5 (IFS representation of a given SCS). The SCS Cn(P )
is the unique attractor of the IFS:

{[0, 1]n ⊂ Rn; f1, f2, . . . , fm}

where

fi (x = (x1, x2, . . . , xn)) =

(
1

3

)p
x+

(
1

3

)
c1i +

(
1

3

)2

c2i + . . .+

(
1

3

)n
cni

for i ∈ {1, 2, . . . ,m} ranging over all admissible columns ck (as defined in

Definition 1.3), where m =
∏p
k=1Nk and Nk =

∑Pk
j=0

(
n
j

)
2n−j. Each map-

ping fi is a similarity mapping with contraction factor ci = 3−p.

Proof. The SCS string P = P1P2 . . . Pp encodes a structure that repeats
after a resolution of 3−p. Overlay the unit n-cube with 3pn hypercubes of
side length 3−p and consider the similarities fi that map the unit n-cube into
these hypercube subsets. All such similarities have contraction factor 3−p,
and the set Cn(P ) can be identified with the attractor of the IFS consisting of
those ‘admissible’ similarities Si which map the unit n-cube into a hypercube
subset that intersects Cn(P ). These admissible similarities are enumerated
by the column-counting formula 1.5 of Lemma 1.4.

Consider the pre-fractal approximation to Cn(P ) obtained by truncation
of the periodic string P to its first p digits (its first complete period). This set
is identical to Cn(P ) on scales greater than 3−p but contains no fine structure
below this limit. Equivalently, an equivalence relation can be established
on points in [0, 1]n with classes containing those points in the unit n-cube
whose coordinate ternary expansions are equal up to and including the p-th
digit. Each equivalence class (represented by a coordinate ternary expansion
consisting of all 0’s after the p-th place) can be injectively mapped onto its
own 3−pn-scaled hypercube. The number of such hypercubes that intersect
Cn(P ) is therefore equal to the number of admissible equivalence classes.

Each admissible equivalence class corresponds to a ordered concatenation
of admissible ck columns for k = 1, . . . , p, so the admissible subsets are
enumerated by the column-counting formula (1.5):

Nk =

Pk∑
j=0

(
n

j

)
2n−j .
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For the kth ternary place there are Nk admissible columns ck, so the
number of admissible similarities is enumerated by:

m =

p∏
k=1

Nk

and these similarities can be expressed in terms of column concatenation
via:

fi (x = (x1, x2, . . . , xn)) =

(
1

3

)p
x+

(
1

3

)
c1i +

(
1

3

)2

c2i + . . .+

(
1

3

)n
cni .

�

This IFS representation of an arbitrary SCS Cn(P ) enables all subsequent
developments of the theory to be checked against the established analogous
statements of [5] concerning expectations over SCSs.

1.3. Expectations over SCS Fractals. Self-similarity considerations played
a central role in unlocking all subsequent results in the special case of SCS
fractal analysis. In particular, the following functional equation from [5] is
the precursor of the generalised functional equation of Proposition 3.2:

Proposition 1.6 (Functional Equations for Expectations). For x, y ∈
Rn and a complex-valued function F : Rn → C:

〈F (x)〉x∈Cn(P ) =
1∏p

j=1Nj

∑
U(ck)≤Pk

〈F (x/3p + c1/3 + · · ·+ cp/3
p)〉(1.6)

〈F (d := x− 1/2)〉x∈Cn(P ) =
1∏p

j=1Nj

∑
Z(bk)≤Pk

〈F (d/3p + b1/3 + · · ·+ bp/3
p)〉

(1.7)

〈F (d := x− y)〉x,y∈Cn(P ) =
1∏p

j=1N
2
j

∑
Z(bk)≤Pk
Z(ak)≤Pk

〈F (d/3p +

p∑
j=1

(bj − aj)/3j)〉

(1.8)

where Nk(P, n) := Nk =
∑Pk

j=0

(
n
j

)
2n−j is the number of admissible columns

ck for the given generating string P .

Exploiting the self-similarity fundamentally encoded by the functional
equation of Proposition 1.6 led to a number of closed-form special cases for
SCS expectations; we conclude this section by presenting a relevant selection.
First, application of Proposition 1.6 to the standard Cantor middle-thirds
set C1(0), followed by invoking the linearity properties of the expectations,
established the following relation for the B box integral of order-s:

(1.9) B(s, C1(0)) =
1

2 · 3s − 1
〈(x+ 2)s〉 .
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This expression reveals a pole in the s-plane for B(s, C1(0)) at s =
− log3 2. That the pole happens to be located at the negated fractal di-
mension of the Cantor middle-thirds set is highly suggestive; indeed the
self-similarity leveraged by Proposition 1.6 implies the following [5]:

Theorem 1.7 (Pole of B(s, Cn(P ))). For any SCS Cn(P ), the analytically-
continued box integral B(s, Cn(P )) has a single pole on the real axis at

(1.10) s = −δ(Cn(P )).

This result demonstrates consistency with the classical theory of box inte-
grals on unit hypercubes. Over the full unit n-cube Cn(n), the analytically-
continued box integral B(s, Cn(n)) has precisely one complex pole at s = −n
[4]. Though it is known that ∆n(s, Cn(n)) has precisely (n + 1) complex
poles [3], the pole structure for integrals ∆(s, Cn(P )) with arbitrary Cn(P )
remains unresolved—no evidence of multiple ∆ poles for any fractal has yet
been encountered, aside from the trivial hypercube cases Cn(n).

Besides establishing the B box integral poles, the functional expectation
relations of Proposition 1.6 directly yield closed forms for all second-order
separation expectations B(2, Cn(P )) and ∆(2, Cn(P )). In the s = 2 case
both the B and ∆ box integrals evaluate as rational numbers, depending
only on the defining string P and embedding dimension n, as follows:

Theorem 1.8 (Closed Form for Second-Order Moments B(2, Cn(P ))).
For any embedding dimension n and SCS Cn(P ), the box integral B(2, Cn(P ))
is given by the rational closed form:

(1.11) B(2, Cn(P )) =
n

4
+

1

1− 9−p

p∑
k=1

1

9k

∑Pk
j=0

(
n
j

)
2n−j(n− j)∑Pk

j=0

(
n
j

)
2n−j

.

Theorem 1.9 (Closed Form for Second-Order Moments ∆(2, Cn(P ))).
For any embedding dimension n and SCS Cn(P ), the box integral ∆(2, Cn(P ))
is given by the rational closed form:

(1.12) ∆(2, Cn(P )) = 2B(2, Cn(P ))− n

2
,

with B(2, Cn(P )) given by the closed form of Equation (1.11).

Theorems 1.8 and 1.9 immediately imply the following rationality result:

Corollary 1.10 (Rationality of Second-Order SCS Box Integrals).
For any SCS Cn(P ), the moments B(2, Cn(P )), ∆(2, Cn(P )) are rational.

Closed-form results such as these will be explored in the IFS attractor
setting in Sections 3 and 4.

1.4. Iterated Function Systems. The concept of an Iterated Function
System (IFS) was first introduced by Hutchinson in 1981 (see [35]). Hutchin-
son used IFSs to develop a rigorous framework in support the pioneering
ideas of Mandelbröt, as put forth in the seminal essay [36]. Many subsequent
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developments of IFS theory, including the random iteration algorithm (or
Chaos Game) and the Collage Theorem, were developed by Barnsley in [8].
A comprehensive recent survey of IFS theory can be found in [9], from which
most of the following standard definitions and notation are taken.

Definition 1.11 (Iterated Function System). An iterated function sys-
tem (IFS) F is a complete metric space X together with a finite set of
continuous functions fi : X → X, i = 1, 2, . . . ,m (with m ≥ 2), denoted by:

(1.13) F = {X; f1, f2, . . . , fm}

An iterated function system with probabilities (pIFS) is an iterated func-
tion system for which every fi has an associated pi ∈ (0, 1), subject to the
restriction that

∑m
i=1 pi = 1.

TThe following convention is important to note in the context of frac-
tal expectations: in the absence of any explicit probability assignment, an
IFS shall be considered to have a uniform probability distribution assigned
to its mappings; that is, pi = 1

m for all i. This ensures that the measure
is uniform across the corresponding fractal attractor, which is required for
considerations of standard separation moments. Adjustments to probability
assignments away from this default are typically used to optimise the effi-
ciency of the Chaos Game algorithm (see Section 1.6) when plotting graph-
ical representations of IFS attractors;1 however, care must be taken to note
that assigning non-uniform probabilities to IFS mappings in an algorithm
will alter the underlying measure (discussed in Section 1.8).

The objects of primary interest to this paper are closely linked to Iterated
Function Systems, which play an analogous role to the generating string of
an SCS in encoding the fractal structure. The sets regarded here as ‘deter-
ministic fractals’—the most general class of objects over which expectations
will be defined—are the attractors each IFS uniquely defines. The introduc-
tion of the notion of IFS attractors requires several preliminary definitions.

Definition 1.12 (Hutchinson Operator). Let H(X) denote the collec-
tion of nonempty compact subsets of a metric space X. Given an IFS F =
{X; f1, f2, . . . , fm}, the associated Hutchinson operator F : H(X)→ H(X)
is defined for all S ∈ H(X) by:

F (S) :=
⋃
f∈F

f(S)

where f(S) denotes the set-valued mapping f(S) = {f(x) : x ∈ S}.

1In each iteration the Chaos Game algorithm selects one of the IFS mappings at ran-
dom, with the mapping fi chosen with probability pi. By adjusting the probabilities pi so
they are in proportion to the invariant measure of the set-valued mapping fi(A), where A
is the fractal attractor, the Chaos Game algorithm will effectively allocate time to plotting
points in each piece of the fractal proportional to the size of the piece.
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The mappings of an IFS each represent one of the self-similar pieces of
the associated fractal attractor; the (set-valued) Hutchinson operator unites
these pieces to create the entire fractal object. Notions of convergence upon
iterating the Hutchinson operator first require the introduction of an appro-
priate metric—the Hausdorff metric.

Definition 1.13 (Hausdorff Metric). Let dX be the metric on the metric
space X. The corresponding Hausdorff metric on H(X) is:

(1.14) dH(S1, S2) = min {ε ≥ 0 : | S1 ⊂ B(S2, ε) and S2 ⊂ B(S1, ε)}
for all S1, S2 ∈ H(X), where B(S, ε) is the dilation of S by ε:

(1.15) B(S, ε) = {x ∈ X : dX(s, x) ≤ ε for some s ∈ S}

The Hausdorff metric dH can be intuitively regarded as the maximum
distance (in the sense of the metric dX) that one would possibly have to
travel when starting at an arbitrary point in one of the sets and then moving
to the other set by taking the shortest path to the closest possible point.
Note that the completeness of (X, dX) implies the completeness of (H, dH),
and likewise for compactness [6].

One final notational convention is required: for S ∈ H(X), define F 0(S) :=
S and denote by F k(S) the k-fold composition :

F k(S) := F ◦ F ◦ · · ·F︸ ︷︷ ︸
k times

(S)

Equivalently, F k(S) comprises the union of fi1 ◦ fi2 ◦ · · · ◦ fik(S) over all
finite words i1i2 . . . ik of length k, where ij ∈ {1, 2, . . . ,m} for all j (see
Section 1.5).

The attractor of an IFS can now be defined in the following manner:

Definition 1.14 (Attractor of an Iterated Function System). The
associated attractor A of the IFS F = {X; f1, f2, . . . , fm} is the unique set
A ∈ H(X) such that there exists an open set U ⊂ X satisfying A ⊂ U and

(1.16) lim
k→∞

F k(S) = A

for all S ∈ H(X) with S ⊂ U , where the limit is with respect to the Hausdorff
metric on H(X).

Initial considerations of the existence of attractors used the Banach fixed-
point theorem1 as a natural starting point, from which the uniqueness of IFS
attractors follows. Consequently the use of contraction mappings—functions
whose image sets would shrink upon successive iterations and thereby con-
verge to a fixed point—was paramount. The following relevant definitions
are taken from [2].

1The Banach fixed-point theorem states that, given a closed subset S ⊂ X of a complete
metric space X and a contraction mapping f : S → S, there exists a unique element z ∈ S
such that f(z) = z.
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Definition 1.15 (Contraction and Similarity Mappings). Given a
metric space X with associated metric dX , a mapping fi : X → X is
a contraction if there exists a contraction factor 0 < ci < 1 such that
dX (fi(x)− fi(y)) ≤ ci · dX(x − y) for all x, y ∈ X. If equality holds for all
x and y the mapping is said to be a similarity.

Definition 1.16 (Contractive Iterated Function System). Given a
metric space X with associated metric dX , an IFS F = {X; f1, f2, . . . , fm}
is contractive if each function fi is a contraction (of contraction factor ci)
with respect to a metric that induces the same topology on X as the metric
dX . The contraction factor of a contractive IFS, c, is given by:

(1.17) c := max {c1, . . . , cm} .

Definition 1.17 (Hyperbolic Iterated Function System). Given a
metric space X with associated metric dX , an IFS F = {X; f1, f2, . . . , fm}
is hyperbolic if there is a metric on X, Lipschitz-equivalent to dX , with
respect to which each function fi is a contraction mapping.

Unless otherwise stated, all IFSs considered herein are assumed to be hy-
perbolic IFSs. The following pivotal theorem by Hutchinson [35] establishes
the existence and uniqueness of attractors for contractive IFSs:

Theorem 1.18 (The Contraction Mapping Theorem). Let
F = {X; f1, f2, . . . , fm} be a contractive IFS on a nonempty complete met-
ric space (X, dX) with contraction factor c. Then F has a unique attractor
A ∈ H(X). That is, the transformation defined by the Hutchinson operator
F in Equation 1.16 is a contraction mapping on H(X) (with respect to the
Hausdorff metric) with contraction factor c and unique fixed point A.

Though the class of IFS attractors captures a rich diversity of fractal ob-
jects, all such fractal sets share the property of ‘deterministic self-similarity’;
that is, there are no probabilistic methods employed in their definition. Al-
though IFS attractors are typically extremely complicated in a geometric
sense, despite their simple definition, the information needed to describe
such geometrical complexity in its exact details is fully encapsulated by the
IFS, enabling complete reproducibility of the fractal set. Statistically-self-
similar sets and random fractals are not covered by this current framework;
such sets represent a next logical step in the generalisation of the theory.

1.5. Code Space. The IFS framework provides a natural addressing struc-
ture for points in an IFS attractor that is often far more useful than the
standard Cartesian system of coordinates; namely, the code space associ-
ated with the IFS. The application of an infinite ordered sequence of IFS
mappings to any starting point in the embedding metric space will con-
verge to a precise point within the attractor of the IFS, hence a collection
of infinite strings listing the order in which IFS mappings are to be applied
can serve as coordinates tailor-made for a particular IFS attractor. The
following definitions are taken from [12].
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Definition 1.19 (Code Space). Let F = {X; f1, f2 . . . , fm} be a hyper-
bolic IFS with attractor A. The associated alphabet A is the nonempty finite
set of integer symbols A := {1, 2, . . . ,m}. Given such an alphabet A, the
code space ΩA is the set of all infinite strings of symbols from the alphabet
A. That is, ω ∈ ΩA if and only if it can be written, for ωk ∈ A for all k ∈ N,
as:

(1.18) ω = ω1ω2 · · ·ωk . . .
The elements ω of the code space are known as addresses.

Definition 1.20 (Finite Code Space). The finite code space ΩN
A denotes

the set of all finite strings of symbols from the alphabet A of length N . That
is, ω ∈ ΩN

A if and only if it can be written as:

(1.19) ω = ω1ω2 · · ·ωN
Finite code spaces are useful in the context of pre-fractal approximations

to given attractors, whereas considerations of a full fractal attractor set
employ the associated infinite code space.

Definition 1.21 (Code Space Metric). Given an IFS
F = {X; f1, . . . , fm} with associated code space ΩA, the code space metric
on addresses in ΩA is defined by:

(1.20) dΩ (ω, σ) = dΩ (ω1ω2 . . . , σ1σ2 . . .) :=
∞∑
k=1

|ωk − σk|
(m+ 2)k

for all ω, σ ∈ ΩA.
The finite code space metric on addresses in ΩN

A is defined by:

(1.21) d′Ω (ω, σ) = d′Ω (ω1ω2 . . . ωN , σ1σ2 . . . σN ) :=
N∑
k=1

|ωk − σk|
(m+ 1)k

Both (ΩA, dΩ) and (ΩN
A , d

′
Ω) are metric spaces. Combining the framework

of code space with the Chaos Game algorithm, discussed in the next sec-
tion, immediately provides the following addressing structure that will be
employed in the definition of expectations over IFS attractors in Section 2.

Definition 1.22 (Address Function). A mapping φ : ΩA → X is an
address function for X, and any point ω ∈ ΩA such that φ(ω) = x is called
an address of x ∈ X

In particular, the mapping defined in the following Theorem 1.23, known
as the code-space mapping, is of particular interest.

Theorem 1.23 (Well-defined mapping from code-space to points
[6]). Let (X, d) be a complete metric space. Let {X; f1, f2, . . . , fm} be a
hyperbolic IFS with attractor A and associated code space ΩA. For each
ω ∈ Ω, n ∈ N and x ∈ X let

φ(ω, n, x) := fω1 ◦ fω2 ◦ . . . ◦ fωn(x).
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Then

φ(ω) := lim
n→∞

φ(ω, n, x)

exists, belongs to A and is independent of x ∈ X. If K is a compact subset
of X then the convergence is uniform over x ∈ K. The function φ : ΩA → A
thus provided is continuous and onto.

The code-space mapping furnishes IFS attractors with their natural ad-
dress structure.

Definition 1.24 (Addresses [6]). Let {X; f1, f2 . . . , fm} be a hyperbolic
IFS with attractor A and associated code space ΩA. Let φ : ΩA → A be the
code-space mapping. An address of a point a ∈ A is any member of the set

φ−1(a) := {ω ∈ ΩA : φ(ω) = a}

This set is called the set of addresses of a ∈ A.

Note that points in A can have multiple addresses if the IFS is not totally
disconnected - for example, consider the unit interval [0, 1] as represented
by the attractor A of the IFS{

[0, 1] ⊂ R; f1(x) =
1

2
x, f2(x) =

1

2
x+

1

2

}
.

In this case, the point 1
2 ∈ A can be represented using either of the infinite

strings 1222... or 2111...

1.6. The Random Iteration (or ‘Chaos Game’) Algorithm. One
straightforward way of visualising the attractor of a given iterated func-
tion system is by direct application of the associated Hutchinson operator
(Equation 1.16) to an arbitrary compact embedding space taken as a level-0
pre-fractal—the mappings of the IFS are first applied to the entirety of the
embedding space, then to the resulting union of images, and so on for the de-
sired amount of iterations; the fractal attractor thus being approximated by
the pre-fractal set comprising the union of the final collection of image sets.
However, this approach is relatively slow and time-consuming compared to
the standard means of generating visual representations of IFS attractors,
which forms the focus of this section.

The pictures of IFS attractors in Section 4 were produced using the
Random Iteration Algorithm, also known as the Chaos Game, a fast and
memory-efficient algorithm introduced by Barnsley in [8]. Beyond the visual
approximation of IFS attractors, the Chaos Game has found applications in
a wide variety of fractal contexts, particularly with regards to transforma-
tions between fractal sets (see for example [13]). The fundamental definition
of expectation over IFS attractors in Section 2 has a straightforward link to
the Chaos Game, which leads to an immediate Monte Carlo algorithm for
numerical expectation of said expectations.

At the core of the Chaos Game is the idea of a Chaos Game orbit.
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Definition 1.25 (Chaos Game Orbit). Given an IFS
F = {X; f1, f2 . . . , fm} and address ω = ω1ω2 · · ·ωn · · · ∈ ΩA, the chaos
game orbit of a point x0 ∈ X with respect to ω is the sequence (xn)∞n=0
where

(1.22) xn = fωn(xn−1) for n = 1, 2, . . .

The chaos game orbit (xn)∞n=0 is a random orbit of x0 if there exists p ∈
(0, 1/m] such that for each k ∈ {1, 2, . . .},

(1.23) P (wk = n | x0, ω1, ω2, . . . , ωk−1) > p

The use of random orbits—the weighted selection of functions by their
associated probabilities at each step of the orbit—is used to improve the
efficiency of the algorithm with regards to ‘filling out’ the attractor. Broadly
speaking, probabilities are weighted towards those mappings with larger
image sets (more precisely, the probabilities are closely aligned with the
invariant measure of the image sets, discussed in Section 1.8)—hence the
choice of probabilities in the Barnsley Fern pIFS in Section 4.

The convergence of the chaos game orbits to the attractor of an IFS is
guaranteed by the following theorem [11]:

Theorem 1.26 (Convergence of Chaos Game Orbits). Let X be a
proper complete metric space and let F = {X; f1, f2, . . . , fm} be a hyperbolic
IFS with attractor A and basin B. If (xn)∞n=0 is a random orbit of x0 ∈ B
under F , then with probability 1

(1.24) lim
j→∞

{xn | n ≥ j} =
⋂
j≥1

{xn | n ≥ j} = A

where convergence is with respect to the Hausdorff metric.

The Chaos Game algorithm operates as follows: given an iterated function
system, choose an arbitrary starting point and generate a random orbit on
the attractor (with probabilities weighted to the invariant measure of the
image sets of the mappings, for extra efficiency) by selecting a mapping fi
from the IFS (with probability pi) and applying it the the current point to
obtain a new point. Repeat for the desired number of iterations and discard
the first N points that were obtained before sufficient convergence to the
attractor had occurred (in practice, N can usually be taken as small as 10).

Once a large number of points of an attractor have been generated by the
Chaos Game, they can be plotted to visualise the attractor. They can also
be used to sample points from the attractor in an efficient manner.

A more general theorem concerning conditions under which the chaos
game algorithm yields the attractor of an iterated function system ‘almost
surely’ (with probability 1) is provided in [19]. There it is shown that the
condition of contractive functions may be relaxed to requiring continuous
functions over a proper metric space (in which closed balls are compact).
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1.7. The Open Set Condition. A particularly nice class of IFSs that will
concern us are those satisfying the open set condition, which captures the
notion of the fractal being built up from distinct ‘non-overlapping’ pieces.
For the particular class of fractals satisfying the open set condition, the
Hausdorff-Besicovitch and Minkowski (Box-Counting) fractal dimensions
can be shown to be equivalent, thus opening the way for the Hausdorff-
Besicovitch dimension to be computed in an accessible manner. Further,
the open set condition allows the equivalent fractal dimensions to be tied to
the contraction factors of the IFS mappings. This has important implica-
tions for the investigation of box-integral poles in Section 3.1.

Definition 1.27 (The Open Set Condition). Let F = {X; f1, . . . , fm}
be a hyperbolic IFS with attractor A. The IFS is said to obey the open set
condition1 if the attractor A contains a non-empty set O ⊂ A, which is open
in the metric space A and satisfies

(1) fi(O) ∩ fj(O) = ∅ for all i, j ∈ {1, 2, . . . ,m} with i 6= j; and
(2) F (O) =

⋃m
i=1 fi(O) ⊂ O.

It is worth noting that IFS attractors can be classed according to whether
the individual self-similar pieces (the images of the mappings applied to the
entire set) are entirely disconnected, overlap ‘non-trivially’, or overlap only
at their boundaries, as follows:

Definition 1.28 (Classification of IFS attractors [6]). Let
{X; f1, f2 . . . , fm} be a hyperbolic IFS with attractor A. The IFS is said
to be totally disconnected if each point in the attractor possess a unique
address, just-touching if it is not totally disconnected, but satisfies the open-
set condition, and overlapping if it is neither just-touching nor disconnected.

The definition of totally disconnected IFS attractors is equivalent to:

Theorem 1.29 (Total disconnection [6]). Let {X; f1, f2, . . . , fm} be a
hyperbolic IFS with attractor A. Then the IFS is totally disconnected if and
only if fi(A) ∩ fj(A) = ∅ for all i, j ∈ {1, 2, . . . ,m} with i 6= j.

The open set condition leads to the aforementioned fundamental result
concerning the fractal dimension of an IFS.

Theorem 1.30 (Fractal Dimension with the Open Set Condition).
[35] Let F = {Rn; f1, f2, . . . , fm} be an IFS satisfying the open-set con-

dition, where the mappings fi are similarity mappings with associated con-
traction factors {c1, c2, . . . , cm}. Then the Hausdorff-Besicovitch dimension

1Strictly speaking, it is the ‘intrinsic’ open set condition that is defined by Definition
1.27. The intrinsic open set condition is implied by the ‘strong’ open set condition, in
which the subset O must also, with probability 1, have non-empty intersection with A.
On the other hand, it is more restrictive than the standard open set condition, in which
the subset O is open in a topological sense.
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and Minkowski dimension of the attractor of the IFS are equal and take the
value δ, where:

(1.25)
m∑
i=1

(ci)
δ = 1.

It is important to reiterate that there are many different definitions of
’fractal dimension’ to which the phrase can refer. In light of Theorem 1.30,
throughout this work the phrase ’fractal dimension’ will be used interchange-
ably for both the Minkowski (box-counting) and Hausdorff-Besicovitch di-
mensions (and will thus assume that the open set condition holds for the
fractal attractor of interest).

Note the following result from [5] concerning fractal dimensions of String-
generated Cantor Sets:

Proposition 1.31 (Fractal dimension of an SCS). The fractal dimen-
sion (in both the Hausdorff and box-counting sense) δ(Cn(P )) of the SCS
Cn(P ) is given by the closed form

δ (Cn(P )) =
log
∏p
k=1Nk(P, n)

p log 3
.

The proof of the above proposition essentially relies on first encoding an
SCS as the attractor of an IFS satisfying the open set condition, then appeal-
ing to Theorem 1.30. Consequently, though a closed-form for fractal dimen-
sion has been exhibited for SCS fractals—and perhaps might be discovered
for attractors of graph-directed similitude IFSs—no further generalisation of
this dimensional closed form into the IFS attractor setting beyond Theorem
1.30 seems feasable, aside from the following result established in [14]:

Theorem 1.32 (Fractal dimension bounds for a hyperbolic IFS).
Suppose that the open set condition holds for the hyperbolic IFS
F = {Rn; f1, f2, . . . , fm} (with associated contraction factors {c1, c2, . . . , cm}).
If there exist numbers li, ui such that li|x−y| ≤ |fi(x)−fi(y)| ≤ ui|x−y| for
all x, y ∈ Rn and i = 1, . . . ,m, then the Hausdorff-Besicovitch dimension
δ(A) of the IFS attractor (A) is bounded by:

(1.26) min {n,L} ≤ δ(A) ≤ U

where L and U are the positive solutions of

(1.27)
m∑
i=1

(li)
L = 1 and

m∑
i=1

(ui)
−U = 1

If the open set condition does not hold, the upper bound remains valid.

1.8. Invariant Measure of an IFS. Central to our analysis of expecta-
tions over fractal sets is the application of an appropriate measure defined
over the fractal of interest. The following definitions are taken from [29].
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Definition 1.33 (Normalised and Invariant Measures). A measure µ
on X is normalised if µ(X) = 1 and is invariant for a mapping f : X → X
if for every subset A ⊂ X we have

µ
(
f−1(A)

)
= µ (A)

A measure µ is ergodic for f if every measurable set A such that A = f−1(A)
has µ(A) = 0 or µ(X \A) = 0.

It can be shown (see [6] Chapter 9) that every IFS attractor supports
a unique normalised invariant measure, known as the residence measure,
which is defined in [6] as follows:

Definition 1.34 (Residence Measure). Let F = {X; f1, f2, . . . , fm} be a
hyperbolic IFS with attractor A ∈ H(X), with all mappings being similarity
mappings of identical contraction factor. Let {xk}∞k=0 denote a chaos game
orbit of the IFS starting at x0 ∈ A. Let B be a Borel subset of X with
µ(B′) = 0 (where B′ is the boundary of B). The residence measure µ on A
is defined by the almost-sure limit:

(1.28) µ(B) := lim
n→∞

#{x0, x1, . . . , xn} ∩B
n+ 1

for all x0 ∈ A.

It is this residence measure with respect to which functions will be inte-
grated in order to compute expectations via the definition of expectations
over IFS attractors. The residence measure of a Borel set B is the limit-
ing proportion of points produced by the Chaos Game that lie within B;
accordingly, the residence measure may be visualised by terminating the
Chaos Game after a relatively small number of iterations and examining the
approximate mass distribution of points on the attractor.

That the residence measure µ is normalised follows immediately from its
definition, as all points in the chaos game orbit lie on the attractor (provided
x0 ∈ A). The invariant nature of µ is proven in [29]; moreover, ergodic theory
shows that the limit in Equation 1.34 exists and is identical for µ-almost all
points in the basin of attraction. The residence measure µ is supported by
an attractor of F , since the measure is concentrated on the set of points to
which fk(x) comes arbitrarily close to infinitely often [29].

Helpfully, Definition 1.34 immediately lends itself to a simple Chaos-Game
algorithm that may be employed for numerical estimation of the residence
measure of Borel sets. The Chaos Game algorithm for Monte-Carlo-style
estimation of fractal expectations in Section 5 is in very much the same
spirit.

Finally, the following theorem has important implications for linking the
residence measure to fractal expectations.

Theorem 1.35 (Existence of Limit [30]). Let f : X → X, let µ be a
finite measure on X that is invariant under f and let φ ∈ L1(µ)). Then the
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limit

(1.29) Φ(x) := lim
k→∞

1

k

k−1∑
j=0

φ(f j(x))

exists for µ-almost all x. Moreover, if µ is ergodic then

(1.30) Φ(x) =
1

µ(X)

∫
X
φ(y)dµ(y)

1.9. Affine Iterated Function Systems. An important subclass of iter-
ated function systems are the affine iterated function systems, being IFSs
for which the mappings fi in Definition 1.11 are all affine mappings:

Definition 1.36 (Affine Iterated Function System). An affine iterated
function system (affine IFS) F is a complete metric space X = Rn along
with a finite set of affine functions fi : Rn → Rn, i = 1, 2, . . . ,m, denoted:

(1.31) F = {Rn; f1, f2, . . . , fm}
where the action of each fi can be expressed in the form:

(1.32) fi(x) = Li(x) + Ti

where Li is a linear mapping (corresponding to multiplication of x by an
n×n matrix) and Ti is a translation (corresponding to addition by an n× 1
matrix), for all x ∈ Rn.

Many celebrated fractal sets can be represented as attractors of appro-
priate affine IFSs—in particular, every SCS and every example presented in
Section 4 arises in this manner. The subclass of affine IFSs is of interest to
the theory of fractal expectations for two reasons: first, the affine structure
of the mappings enables additional theoretical results, such as Proposition
3.3, to be obtained; second, the approximation of digital images via the
Collage Theorem always generates affine mappings (as discussed in Section
1.10) and consequently affine IFSs are closely tied to the fractal modeling
of real-world image data. In particular, even-order box integrals can always
be symbolically evaluated over affine IFSs by means of Algorithm 4.1.

Aside from their emergence from the Collage Theorem, perhaps the most
important result concerning affine IFSs is the classification theorem of Atkins
et al. in [2]. This theorem requires the establishment of the following defi-
nitions (also taken from [2]):

Definition 1.37 (Coding Map). A continuous map π : Σ → Rn is a
coding map for the IFS F = {Rn; f1, f2, . . . , fm} if, for each i = 1, 2, . . . ,m,
the following diagram commutes (where si : Σ→ Σ denotes the inverse shift
map si(σ) = iσ):

Σ
si−−−−→ Σyπ yπ

Rn fi−−−−→ Rn



EXPECTATIONS OVER ATTRACTORS OF ITERATED FUNCTION SYSTEMS 19

Definition 1.38 (Point-Fibred IFS). An IFS F = {Rn; f1, f2, . . . , fm}
is point-fibred if for each σ = σ1σ2σ3 · · · ∈ Σ, the limit

(1.33) π(σ) := lim
k→∞

fσ1 ◦ fσ2 ◦ · · · ◦ fσk(x)

exists and is independent of x ∈ Rn for fixed σ, and the map π : Σ→ Rn is
a coding map.

Though not every affine IFS is hyperbolic on all of Rn, it can be shown
that if F has a coding map then F is always hyperbolic on some affine
subspace of Rn [2] [44]. Note that this is not true in general [20].

Theorem 1.1 (Classification for Affine Hyperbolic IFSs [2]). If
F = {Rn; f1, f2, . . . , fm} is an affine iterated function system, then the
following statements are equivalent: (i.) F has an attractor. (ii.) F is
hyperbolic. (iii.) F is point-fibred. (iv.) F is a topological contraction with
respect to some convex body K ⊂ Rn. (v.) F is non-antipodal with respect
to some convex body K ⊂ Rn.

The classification Theorem 1.1 demonstrates the tight link between sev-
eral fundamental concepts in IFS theory when in the context of affine IFSs.

1.10. The Collage Theorem. One striking application of IFS theory is the
encoding of digital images as the attractors of appropriate Iterated Function
Systems, facilitated by Barnsley’s Collage Theorem. A famous instance of
such an application was the compression of the over 7000 photographs of
the original Microsoft Encarta encyclopedia in order to permit their storage
on a single CD-ROM [10].

The Chaos Game algorithm described in Section 1.6 permits efficient
computation of the unique attractor of a given IFS. The inverse problem—
namely, of finding a given IFS whose attractor approximates a given subset
of a compact metric space—was effectively solved by the introduction of the
Collage Theorem [15].1

Theorem 1.39 (The Collage Theorem [6]). Let (X, d) be a complete
metric space. Given an target image L ∈ H(X) and an ε ≥ 0, choose an
IFS F = {Rn; f1, f2, . . . , fm} with contractivity factor 0 ≤ c < 1 such that

(1.34) h

(
L,

m⋃
i=1

fi(L)

)
≤ ε

where h is the Hausdorff metric. Then

(1.35) h(L,A) ≤ ε

1− c
where A is the attractor of the IFS F .

1The construction of the Barnsley Fern by means of the Collage Theorem was first
presented in the same paper
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The Collage Theorem leads to the simple algorithm that, given an input
target set, generates an affine IFS ‘by hand’, whose attractor approximates
the target set to within an error tolerance (as measured by the Hausdorff
metric) that can be made arbitrarily small [10]. The algorithm is presented
below for encoding two-dimensional digital images, though it is easily ex-
tended to higher dimensions.

Algorithm 1.40 (Generating an IFS attractor approximation [15]).
Given a digital target image, the following procedure generates an affine
IFS whose attractor approximates the target image to within an arbitrary
accuracy.

• Given a (binary) digital target image, rescale coordinates so as to
embed the target image in the unit square.
• Overlay a smooth boundary curve around the target image.
• Construct a ‘collage’ of the target image by overlaying m smaller

copies of the boundary curve, each transformed via a contractive
affine mapping Ai, so as to approximately neatly cover the original
boundary curve and its interior.
• Use the collection of affine mappings to form the encoding IFS
{[0, 1]2;A1, A2 . . . , Am}.
• Construct the attractor of the encoding IFS via the Chaos Game

and compare to the target image. If the difference exceeds error tol-
erances, repeat steps 3-4 with a refined collage.

The process of constructing the collage for a particular target image (of a
fern), and the resulting attractor of the encoding IFS, is illustrated in [15].

The above algorithm relies on the property that small changes to the
particular affine mappings used in the encoding IFS will lead to small, con-
trollable changes in the resulting IFS attractor. This is guaranteed by the
following theorem.

Theorem 1.41 (Continuous dependence of an IFS attractor on the
mappings [6]). Let F = {X; f1, f2, . . . , fm} be a hyperbolic IFS. For all
i = 1, 2, . . . ,m, let the mapping fi depend continuous on a parameter p ∈ P ,
where P is a compact metric space. Then the IFS attractor A(p) ∈ H(X)
depends continuously on p ∈ P , with respect to the Hausdorff metric.

The algorithm presented above for applying the Collage Theorem to gen-
erate an encoding IFS has been facilitated by many software packages that
greatly ease the process of creating the collage and extracting the associated
affine mappings. In particular, the process of constructing a collage of the
target set has been automated by algorithms which search through the pa-
rameter space of all possible affine mappings and evaluate the constructed
approximation by computing the Hausdorff distance between the target set
and the attractor of the encoding IFS [45].
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Note the exciting corollary that the Collage Theorem provides a means
by which any real-world image of interest can be well approximated by con-
sidering only attractors of affine IFSs. The class of affine IFSs is therefore of
particular practical interest, as well as being theoretically accessible. Results
pertaining to affine IFSs will be developed in the following sections.

2. Fundamental Definition of IFS Expectations

The fundamental definition of the expectation of a complex-valued func-
tion F : Rn → C over a fractal SCS Cn(P ) arose from considerations of the
discrete expectation of the (finitely-many) evaluations of F at every admis-
sible point in successively-finer pre-fractal approximations of the SCS, as
follows:

〈F (x)〉x∈Cn(P ) := lim
j→∞

1

N1 · · ·Nj

∑
U(ci)≤Pi

F (c1/3 + c2/3
2 + · · ·+ cj/3

j),

(2.1)

〈F (x− y)〉x,y∈Cn(P ) := lim
j→∞

1

N2
1 · · ·N2

j

∑
U(ci)≤Pi

U(di)≤Pi

F ((c1 − d1)/3 + · · ·+ (cj − dj)/3j),

(2.2)

where ci and di range over the set of admissible columns as per Definition
1.3.

The extension of the fundamental definition of fractal expectation to en-
compass attractors of iterated function systems follows along precisely the
same lines. The expectation may be approximated by examining the dis-
crete expectation over a pre-fractal approximation to the attractor, where
only finitely-many evaluations of F are required. The true expectation is
thus defined by evaluating the limit of the discrete expectation approxima-
tions as the pre-fractal resolution is increased without limit—that is, as the
transition from the pre-fractal approximations to the full fractal attractor
is made. The fundamental definition thus adopted is most naturally stated
in the language of code-space, as follows:

Definition 2.1 (IFS Fractal Expectation). Let F = {X; f1, f2, . . . , fm}
be a contractive IFS with attractor A ∈ H(X) and associated code space ΩA.

Let Ωj
A denote the set of finite codes of length j. Given a complex-valued

function F : X → C, the expectation of F over A is defined as:

(2.3) 〈F (x)〉x∈A := lim
j→∞

1

mj

∑
σ∈ΩjA

F (φ(σ))

when the limit exists.

The question of precisely when these limits exist will be addressed in
Section 2.2 after an equivalent formulation of the above definitions has been
developed in Section 2.1. This reformulation enables the use of the Ergodic
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Theorem (Theorem 1.35) to prove that the limit in Definition 2.1 (and the
limits in Definitions 2.2 and 2.3 below) exist almost always in a measure-
theoretic sense.

Definition 2.1 can be readily extended to multivariable functions in the
following manner:

Definition 2.2 (Multivariable IFS Fractal Expectation). Let
F = {X; f1, f2, . . . , fm} be a contractive IFS with attractor A ∈ H(X) and

associated code space ΩA. Let Ωj
A denote the set of finite codes of length j.

Given a complex-valued function F : Xn → C, the expectation of F over A
is defined as:

〈F (x = (x1, x2, . . . , xn))〉x∈An

:= lim
j→∞

1

mnj

∑
σ1∈ΩjA

∑
σ2∈ΩjA

· · ·
∑

σn∈ΩjA

F (φ(σ1), φ(σ2), . . . , φ(σn))(2.4)

when the limit exists.

Consequently, separation expectations arise as a two-variable special case of
Definition 2.2 as follows:

Definition 2.3 (IFS Fractal Separation Expectation). Let
F = {X; f1, f2, . . . , fm} be a contractive IFS with attractor A ∈ H(X).
Given a complex-valued function F : X → C, the separation expectation of
F over A is defined as:

(2.5) 〈F (x− y)〉x,y∈A := lim
j→∞

1

m2j

∑
σj∈ΩJA

∑
τj∈ΩJA

F (φ(σj)− φ(τj))

when the limit exists.

Note that these definitions preserve the familiar classical properties of
expectations: the IFS fractal expectations so-defined are both linear, as
〈F (x) + αG(x)〉 = 〈F (x)〉 + α 〈G(x)〉, and monotonic, as F (x) ≤ G(x) for
all x ∈ A implies 〈F (x)〉 ≤ 〈G(x)〉. Further, applying Definition 2.1 to
an IFS with an SCS attractor immediately recovers the prior definitions of
fractal expectations over SCSs (Equations 2.1 and 2.2). To see this, recall
from Proposition 1.5 the formulation of any given SCS as the attractor of
the associated IFS:

{[0, 1]n ⊂ Rn; f1, f2, . . . , fm}
where

fi (x = (x1, x2, . . . , xn)) =

(
1

3

)p
x+

(
1

3

)
c1i +

(
1

3

)2

c2i + . . .+

(
1

3

)n
cni

for i ∈ {1, 2, . . . ,m} ranging over all admissible columns ck, where m =∏p
k=1Nk and Nk =

∑Pk
j=0

(
n
j

)
2n−j .

Now the address mappings φ(σ) on codes of length 1 in Definition 2.1
correspond to a sample point in the image of each permutation of admissible
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columns, up to the resolution defined by the period p. For codes of length j
we have j-fold repetition, so the definition

〈F (x)〉x∈A := lim
j→∞

1

mj

∑
σ∈ΩjA

F (φ(σ))

translates to:

〈F (x)〉x∈A = lim
j→∞

1

(N1 · · ·Np)j

∑
U(ci)≤Pi

F (c1/3+c2/3
2+· · ·+cp/3p+· · ·+cjp/3jp)

where an additional p terms are added each time the length of the code
strings is extended by 1. This can be recast as:

〈F (x)〉x∈A = lim
k→∞

1

N1 · · ·Nk

∑
U(ci)≤Pi

F (c1/3 + c2/3
2 + · · ·+ ck/3

k)

which is precisely Equation 2.1.

2.1. Equivalent Formulation via the Random Iteration Algorithm.
A useful reformulation of Definition 2.1 in terms of the Chaos Game (of
Section 1.6) is presented below, in which the expectations are reinterpreted
as the limiting value of the arithmetic mean of function values evaluated at
points chosen by a random-iteration sampling process over the IFS attractor.
Note that the use of this particular definition regarding expectations over
IFS attractors is well-established in the literature - see [30], for example.

Definition 2.4 (IFS Fractal Expectation - Chaos Game Definition).
Let F = {X; f1, f2, . . . , fm} be a contractive IFS with attractor A ∈ H(X).
Let {xn}∞n=0 denote a chaos game orbit of the IFS starting at x0 ∈ X, that
is, xn = fσn ◦ · · · ◦ fσ1(x0) where the maps are chosen independently for all
n ∈ N according to the uniform probabilities pi = 1/m for i = 1, . . . , pm.
Given a complex-valued function F : X → C, define the expectation of F
over A by:

(2.6) 〈F (x)〉x∈A := lim
n→∞

1

n+ 1

n∑
k=0

F (xk)

independently of x0 ∈ A, where the limit exists.

A pictorial illustration of Definition 2.1 is shown in Figure 1.
The equivalence of Definitions 2.1 and 2.4 will be shown in Section 2.2.

The alternate form of the fundamental definition of expectation in 2.4 has
two advantages. First, it allows for expectations so-defined to be connected
with a formulation of expectations as integrals with respect to an appropriate
measure in Section 2.2. Secondly, Definition 2.4 leads immediately to a
simple algorithm for numerical computation of expectations in Section 5.
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Figure 1. Representation of the box integrals B2 =〈
|x|2
〉
x=A

(left) and ∆2 =
〈
|x− y|2

〉
x,y=A

(right) over the

unit Sierpiński Triangle, showing the first 100 randomly-
sampled points within the attractor generated by the chaos-
game definition 2.4. The colours represent sampled function
values, with colours further towards the red end of the spec-
trum indicating larger magnitudes. The respective box inte-
grals are the expectation of these function values.

Also, the fundamentally important functional equations of Proposition 3.1
in Section 3 stem from the code-space form of Definition 2.1.

2.2. Measure-Theoretic Considerations. Paralleling the development
of SCS fractal expectation theory, the next objective, after having estab-
lished a fundamental definition of expectation over attractors of iterated
function systems, is to connect the fractal expectations to the notion of
integration over an IFS attractor A by determining a measure µ such that:

〈F (x)〉x∈A =

∫
X
F (x)dµ(x)

It turns out that the unique residence measure of Equation (1.34) as-
sociated with an IFS (see Section 1.8) allows a straightforward connection
between Definition 2.4 and a suitable integral, as would be expected for an
appropriately-defined notion of expectation. Recall the residence measure µ
on the attractor A of an iterated function system is defined as:

(2.7) µ(B) := lim
n→∞

#{x0, x1, . . . , xn} ∩B
n+ 1

for all Borel subsets B of X with boundary of measure 0, where {xk}∞k=0
denote a chaos game orbit of the IFS starting at x0 ∈ A.

The residence measure can be essentially regarded as following an infinite
chaos-game orbit on the attractor and tracking the proportion of points that
fall inside the particular Borel set under consideration. That the residence
measure is normalised follows directly from its definition, as all points in
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the chaos game orbit lie on the attractor, and its invariant nature is proven
in [29]. For the remainder of this paper µ will refer to the residence measure
of Equation (1.34).

Using the residence measure, the existence of the limits involved in the
fundamental definitions 2.1 and 2.4 can be justified by invoking the following
ergodic theorem (see [29]):

Theorem 2.5 (The Ergodic Theorem). Let f : X → X, let µ be a finite
measure on X that is invariant under f and let σ ∈ L1(µ). Then the limit

(2.8) lim
k→∞

1

k

k−1∑
j=0

σ(f j(x))

exists for µ-almost all x. Moreover, if µ is ergodic then

(2.9) lim
k→∞

1

k

k−1∑
j=0

φ(f j(x)) =
1

µ(X)

∫
X
σ(y)dµ(y)

for µ-almost all x.

Thus, the limits in the fundamental definitions exist for µ-almost all x -
that is, for all x excepting a set of µ-measure zero.

The equivalence of Definitions 2.1 and 2.4 follows from interpretation of
the addressing function φ from definition 2.1 in terms of the composition of
the IFS mappings, starting from an arbitrary point x0 in the attractor, as
follows:

〈F (x)〉x∈A : = lim
j→∞

1

mj

∑
σ∈ΩJA

F (φ(σ))

= lim
j→∞

1

mj

m∑
σj=1

· · ·
m∑

σ2=1

m∑
σ1=1

F
(
fσj ◦ · · · fσ2 ◦ fσ1(x0)

)
This definition considers the average of the function values evaluated si-

multaneously over all possible orbits of a fixed length, as the length of orbits
tends to infinity. However, it follows from Theorem 2.5 that any infinite
chaos-game orbit is ergodic and thus will trace out every point in the at-
tractor. Hence, the summation over all deterministic chaos-game orbits of
a fixed length can be replaced by a single sum over just one random chaos
game orbit without affecting the limit.

The next theorem by Elton (see [28] and [33]) provides a direct connection
between integration with respect to the residence measure and Definition 2.4.

Theorem 2.6 (Elton’s Theorem (Special Case)). Let (X, d) be a com-
pact metric space and let {X; f1, . . . , fm; p1, . . . , pm} be a hyperbolic IFS. Let
{xn}∞n=0 denote a chaos game orbit of the IFS starting at x0 ∈ X, that is,
xn = fσn ◦. . .◦fσ1(x0) where the maps are chosen independently according to
the probabilities p1, . . . , pm for n ∈ N. Let µ be the unique invariant measure
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for the IFS. Then, with probability 1 (i.e. for all code sequences excepting a
set having probability 0),

(2.10) lim
n→∞

1

n+ 1

n∑
k=0

F (xk) =

∫
X
F (x)dµ(x)

It immediately follows that the adopted definition of fractal expectation
allows the expectation of a function F to be expressed as the integral of F
with respect to the residence measure:

Corollary 2.7. Let F = {X; f1, f2, . . . , fm} be an IFS with attractor A ∈
H(X). Given a complex-valued function f : X → C, the expectation of f
over A as defined by 2.1 or 2.4 is given by the integral:

(2.11) 〈F (x)〉x∈A =

∫
X
F (x)dµ(x)

3. The Functional Equations for IFS Expectations

The functional equations for SCS expectations of Proposition 1.6 general-
ize to a powerful functional relation in the IFS attractor setting, shown below
in Proposition 3.1. Closely shadowing the development of the SCS theory,
the self-similarity encapsulated by such functional equations underpins all
the results that follow, including the symbolic computation of separation
expectations in special cases.

Proposition 3.1 (Functional equation for expectations). Let F =
{X; f1, f2, . . . , fm} be a contractive IFS with attractor A ∈ H(X). Then the
expectation for a complex-valued function F : X → C satisfies the functional
equation:

〈F (x)〉x∈A =
1

m

m∑
j=1

〈F (fj(x))〉(3.1)

Proof. From the expectation definition 2.1, make the variable shift from
j → j + 1, which preserves the limit, and then ‘pull back’ to level j—this
has the effect of moving from the expectation over the attractor (at ‘level
0’) to the expectation of the fractal sets in the image of one application of
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the contraction mappings (at ‘level 1’), as follows:

〈F (x)〉x∈A : = lim
j→∞

1

mj

∑
σ∈ΩJA

F (φ(σ))

= lim
j+1→∞

1

mj+1

∑
σ∈ΩJ+1

A

F (φ(σ))

= lim
j→∞

1

mj

1

m

∑
σ∈ΩJA

F (φ(σ1σ)) + F (φ(σ2σ)) + · · ·+ F (φ(σmσ))

=
1

m

m∑
i=1

 lim
j→∞

1

mj

∑
σ∈ΩJA

F (φ(σiσ))


=

1

m

m∑
i=1

〈F (fi(x))〉

�

The proof immediately leads to other functional equations obtained by
shifting to j+ k and pulling back, so moving to expectations at the ‘level k’
pre-fractal images of the fractal attractor. Such functional equations may
find applications in development of numerical algorithms for expectations.

Proposition 3.1 is readily extended to multivariable functions as follows:

Proposition 3.2 (Multivariable functional equation for expecta-
tions). Let F = {X; f1, f2, . . . , fm} be a contractive IFS with attractor
A ∈ H(X). Then the expectation for a complex-valued function F : Xn → C
satisfies the functional equation:

〈F (x1, x2, . . . , xn)〉 =
1

mn

m∑
j1=1

m∑
j2=1

· · ·
m∑

jn=1

〈F (fj1(x1), fj2(x2), . . . , fjn(xn))〉

(3.2)

The proof of the multivariable functional equation of Proposition 3.2 is an
immediate generalisation of the proof of Proposition 3.1.

Consequently, separation expectations satisfy the following functional equa-
tion arising as a two-variable special case of Proposition 3.2:

〈F (x, y)〉x,y∈A =
1

m2

m∑
j=1

m∑
k=1

〈F (fj(x), fk(y))〉(3.3)

⇒ 〈F (x− y)〉x,y∈A =
1

m2

m∑
j=1

m∑
k=1

〈F (fj(x)− fk(y))〉(3.4)

Note that these generalised functional equations do have some precedent
in the literature - in particular, see [14], [16], [17], [18] and [22] .
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3.1. Pole Results. Recall Theorem 1.7 concerning poles of B box integrals
over SCSs: for any SCS Cn(P ), the (analytically-continued) box integral
B(s, Cn(P )) has a pole at s = −δ(Cn(P )). This theorem expanded upon
the classical result of [3]: in the case of the unit n-cube, Bn(s) contains a
pole at −n, the negated dimension of the set.

The functional equation 3.1 immediately leads to a slight generalisation
of Theorem 1.7 into the IFS attractor setting. However, the following propo-
sitions are only a partial result, requiring additional assumptions that are
almost certainly too strict. In particular, Proposition 3.3 is only applica-
ble to attractors of IFSs whose contraction mappings are affine mappings
with the same contraction factor. Further, the open set condition must be
be satisfied so as to obtain a dimensional relation via 1.30. Despite these
restrictions, Proposition 3.3 is applicable to many well-known fractal sets
including the Sierpiński triangle and von Köch snowflake.

Proposition 3.3 (Pole of B Integrals over Uniform Affine IFSs). Let
F = {X; f1, f2, . . . , fm} be a contractive affine IFS satisfying the open set
condition with uniform contraction factors; that is, c1 = c2 = . . . = cm. The
(analytically continued) box integral B(s,A) over the attractor A ∈ H(X)
has a single pole on the real axis at

(3.5) s = −δ(A)

where the fractal dimension δ(A) is established by Theorem 1.30.

Proof. Write each affine mapping as fj(x) = Ajx + Tj , with linear compo-
nent Aj and translation component Tj , under an appropriate selection of
coordinates so that f1 can be expressed as a pure scaling mapping; that is,
A1x = c1x and T1 = 0. The functional relation of Proposition 1.30 yields

B(s,A) := 〈|x|s〉x∈A =
1

m

m∑
j=1

〈|Aj(x) + Tj |s〉

=
1

m
cs1〈|x|s〉+

1

m

m∑
j=2

〈|Aj(x) + Tj |s〉

where the summation term in the right-hand-side is always finite (and non-
zero) for any complex s, as it is a finite sum of expectations of nonzero
vectors (by the open set condition).

Regrouping leads to:

〈|x|s〉x∈A
(

1− cs

m

)
=

1

m

m∑
j=2

〈|Aj(x) + Tj |s〉(3.6)

B(s,A) =
1

1− cs

m

1

m

m∑
j=2

〈|Aj(x) + Tj |s〉(3.7)

Now the companion factor to B in Equation (3.6), namely (1− cs

m ), vanishes

at the fractal dimension s = −δ(A) as
∑m

j=1(cj)
δ = 1⇒ mcδ = 1⇒ c−δ

m = 1
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while the right side remains bounded away from zero. It follows that B must
have a pole at such s. �

Further generalisations of this result remain an active problem. In par-
ticular, the following is conjectured:

Conjecture 3.4 (Pole of B Integrals over Contractive IFSs). Propo-
sition 3.3 holds for all contractive IFSs.

For separation expectations ∆, the following preliminary result establishes
bounds on poles for ∆(s,A) in the case of an IFS of similarity mappings
(though now the contraction factors need not be uniform):

Proposition 3.5 (Bounds on Pole of ∆ Integrals over Similarity
IFSs). Let F = {X; f1, f2, . . . , fm} be a similarity IFS (that is, that is,
|fi(x)−fi(y)| = ci|x−y| for all i) satisfying the open set condition. Then, if
the (analytically continued) box integral ∆(s,A) over the attractor A ∈ H(X)
has a pole on the real axis, then this pole is bounded by:

(3.8)
log(m)

log(cmax)
≤ s ≤ log(m)

log(cmin)

where cmax = c = max{c1, . . . , cm} and cmin = min{c1, . . . , cm}.

Proof. Given F = {X; f1, f2, . . . , fm}, the functional relation of Proposition
1.30 yields

∆(s,A) := 〈|x− y|s〉x,y∈A =
1

m2

m∑
j=1

m∑
k=1

〈|fj(x)− fk(y)|s〉

=
1

m2

m∑
j=1

〈|fj(x)− fj(y)|s〉+
1

m2

m∑
j=1
j 6=k

m∑
k=1
k 6=j

〈|fj(x)− fj(y)|s〉

where the summation term has been split into cases where the indices do and
do not match. In the former case, the similarity property |fi(x) − fi(y)| =
ci|x− y| for all i yields:

〈|x− y|s〉x,y∈A

1− 1

m2

m∑
j=1

csj

 =
1

m2

m∑
j=1
j 6=k

m∑
k=1
k 6=j

〈|fj(x)− fj(y)|s〉

⇒ ∆(s,A) =
1(

1− 1
m2

∑m
j=1 c

s
j

) 1

m2

m∑
j=1
j 6=k

m∑
k=1
k 6=j

〈|fj(x)− fj(y)|s〉

The summation on the right-hand-side is strictly positive, so the compan-
ion factor to ∆(s,A), namely (1 − 1

m2

∑m
j=1 c

s
j), yields existence of a pole
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when

(3.9)
1

m2

m∑
j=1

csj = 1.

Confining our attention to the real axis, first note that it cannot be the
case that s ≥ 0. Otherwise, the pole condition of Equation 3.9 contradicts
the requirement that 0 < ci ≤ 1, which in the case that s ≥ 0 leads to:

1

m2

m∑
j=1

csj ≤
1

m2

m∑
j=1

cj ≤
1

m
< 1.

Thus s < 0. Since the contraction factors satisfy 0 < ci ≤ 1 for all i, it
follows that

1

m2
csmax ≤

1

m2

m∑
j=1

csj ≤
1

m2
csmin

Consequently, the existence of a pole requires

1

m2
csmax ≤ 1 ≤ 1

m2
csmin ⇒ csmax ≤ m ≤ csmin

⇒ cmin ≤
1

m−s
≤ cmax

⇒ log(m)

log(cmax)
≤ s ≤ log(m)

log(cmin)

as required. �

4. Symbolic Evaluation of Box Integrals

While the functional equations of Theorems 3.1 and 3.2 hold generally,
success in their application to resolve expectations symbolically depends
heavily on the nature of both the function and the IFS under consideration.
In certain special cases, such as separation moments of even degree over
attractors of affine IFSs, the following procedure can be used to obtain exact
symbolic evaluations. Note that the Collage Theorem process (discussed in
Section 1.10) used to model a real-world image as an IFS attractor always
produces affine IFSs, which are well-suited to this procedure.

Algorithm 4.1. Symbolic Computation for Special Expectations

(1) Given the attractor A of an IFS F = {X; f1, f2, . . . , fm} and a
complex-valued function F : A → C, substitute the input data into
the functional equations 3.1.

(2) Exploit the linear nature of the expectations to split the right-hand
side into a sum of simpler expectations. Shift any resulting copies of
the main expectation over the the left-hand side of the equation.

(3) Repeat steps 1-2 for each of the simpler expectations on the right-
hand side



EXPECTATIONS OVER ATTRACTORS OF ITERATED FUNCTION SYSTEMS 31

(4) Solve the resulting system of equations simultaneously to resolve all
the simpler expectations, and hence the main expectation.

To illustrate this algorithm, the problem of computing the second-order
B(2, A) and ∆(2, A) box integrals over a number of well-known fractal sets is
examined in the remainder of this section. Limited numerical confirmation
of the results so-obtained is presented in Section 5.

4.1. The Unit Square. Though not strictly classed as (non-trivial) frac-
tal sets, nonetheless many classical objects, such as the unit square, can be
represented in the framework of IFS attractors. This permits a direct con-
nection between IFS fractal expectations and known results from classical
box integral theory.

The unit square can be represented as the attractor of the IFS F ={
[0, 1]2; f1, f2, f3, f4

}
where f1(x, y) =

(
1
2x,

1
2y
)
, f2(x, y) =

(
1
2x+ 1

2 ,
1
2y
)
,

f3(x, y) =
(

1
2x,

1
2y + 1

2

)
and f4(x, y) =

(
1
2x+ 1

2 ,
1
2y + 1

2

)
. Evaluation of the

B2 box integral (corresponding to the expectation
√

(x2 + y2)2) using the
functional equation 3.1 leads to:〈

x2 + y2
〉

=
1

3
(〈x〉+ 〈y〉+ 1)

The simpler expectations can be re-evaluated as 〈x〉 = 1
2 and 〈y〉 = 1

2
leading to: 〈

x2 + y2
〉

=
2

3
corresponding to the trivially-known classical value.

Similarly, evaluation of the ∆2 box integral (corresponding to the expec-
tation√

(x− x′)2 + (y − y′)2)2) using the functional equation 3.1 leads to:〈
(x− a)2 + (y − b)2

〉
=

1

4

(〈
x2
〉
− 2 〈xa〉+

〈
a2
〉

+
〈
y2
〉
− 2 〈yb〉+

〈
b2
〉)

+
1

4

Upon factoring to quadratic form, we obtain:〈
(x− a)2 + (y − b)2

〉
=

1

4

〈
(x− a)2 + (y − b)2

〉
+

1

4

and hence 〈
(x− a)2 + (y − b)2

〉
=

1

3
in agreement with classical theory.

4.2. The Cantor Middle-Thirds Set. The simplest non-trivial fractal
SCS is the middle-thirds Cantor Set C1(0), which can be represented as the
attractor of the IFS F = {[0, 1]; f1, f2} with contraction mappings f1(x) =
1
3 and f2(x) = 1

3x+ 2
3 .

To compute the expected distance of a point in C1(0) from the origin—
that is, the B(1, C1(0)) box integral—requires evaluation of the expectation
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of |x| over the domain C1(0). Noting that x ≥ 0, substitution of the function
F (x) = x and the contraction mappings f1 and f2 into 3.1 yields:

〈x〉x∈C =
1

2
(〈f1(x)〉+ 〈f2(x)〉)

=
1

2

(〈
1

3
x

〉
+

〈
1

3
x+

2

3

〉)
=

1

3

〈
1

3
x

〉
+

1

3

upon exploiting the linearity of the expectation. Rearranging of the terms
immediately yields:

〈x〉x∈C =
1

2
.

Similarly, for the expectation of the second-order moment of distance from
the origin—that is, the B(2, C1(0)) box integral—consider the expectation
of x2 over the domain C1(0). The functional relation 3.1 now leads to:〈

x2
〉
x∈C =

1

2

(〈
(f1(x))2

〉
+
〈

(f2(x))2
〉)

=
1

2

(〈(
1

3
x

)2
〉

+

〈(
1

3
x+

2

3

)2
〉)

=
1

9

〈
x2
〉

+
2

9
〈x〉+

2

9
.

At this stage the nominal next step would be to compute the expecta-
tion 〈x〉 by restarting the calculation for this new function F (x) = x that
appeared in the calculation. Having thus computed 〈x〉 = 1/2 in the pre-
ceding calculation, substitution of this expectation into the right-hand-side
and rearrangement of terms leads to:

〈x〉x∈C =
3

8
.

Next, consider the expected square of separation between two points cho-
sen randomly from C1(0)—that is, the ∆(2, C1(0) box integral. The relevant
expectation is now that of (x − y)2 over the domain C1(0). Applying the
functional relation 3.1 produces:〈
(x− y)2

〉
x,y∈C =

1

4

(〈
(f1(x)− f1(y))2

〉
+
〈

(f1(x)− f2(y))2
〉

+
〈

(f2(x)− f1(y))2
〉

+
〈

(f2(x)− f2(y))2
〉)

=
1

4

(〈(
1

3
x− 1

3
y

)2
〉

+

〈(
1

3
x−

(
1

3
y +

2

3

))2
〉

+

〈(
1

3
x+

2

3
− 1

3
y

)2
〉

+

〈(
1

3
x+

2

3
−
(

1

3
y +

2

3

))2
〉)

=
1

9

(〈
x2
〉

+
〈
y2
〉
− 2 〈xy〉

)
+

2

9
.
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At this point the calculation can be iterated twice to cover the new ex-
pectations that have appeared; namely, 〈x2〉 and 〈xy〉 (using the one- and
two-variable forms of the functional expectation, respectively). Note that
the expectations are invariant under exchange of x and y and so separate
computation of the expectation 〈y2〉 is not required. Alternatively, the first
term on the right-hand-side can be folded back into quadratic form, leaving:〈

(x− y)2
〉

=
1

9

〈
(x− y)2

〉
+

2

9

and hence 〈
(x− y)2

〉
x,y∈C =

1

4

These results are in agreement with prior symbolic calculations in the SCS
framework [5].

4.3. The Isosceles Sierpiński Triangle. The subsequent examples lie
outside the scope of the SCS framework. While exact theoretical verifi-
cation is no longer available, the symbolic results of the following examples
are supported by limited numerical computations as discussed in Section
5. The first calculation of an entirely new result considers the isosceles
Sierpiński Triangle; a set which possesses the nice feature of expectations
being identical in each coordinate.

The isosceles Sierpiński Triangle (of unit side length) can be represented as
the attractor of the IFS F =

{
[0, 1]2; f1, f2, f3

}
where f1(x, y) =

(
1
2x,

1
2y
)
,

f2(x, y) =
(

1
2x+ 1

2 ,
1
2y
)

and f3(x, y) =
(

1
2x,

1
2y + 1

2

)
. Evaluation of the

B2 box integral (corresponding to the expectation
√

(x2 + y2)2) using the
functional equation 3.1 leads to:〈

x2 + y2
〉

=
2

9
(〈x〉+ 〈y〉+ 1)

The simpler expectations can be re-evaluated as 〈x〉 = 1
3 and 〈y〉 = 1

3
leading to: 〈

x2 + y2
〉

=
10

27
.

Similarly, evaluation of the ∆2 box integral (corresponding to the ex-

pectation
√

((x− x′)2 + (y − y′)2)2) using the functional equation 3.1 leads
directly to: 〈

(x− a)2 + (y − b)2
〉

=
1

4

〈
(x− a)2 + (y − b)2

〉
+

2

9

and hence 〈
(x− a)2 + (y − b)2

〉
=

8

27
.
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4.4. The Equilateral Sierpiński Triangle. The next example considers
a set for which expectations are no longer identical in each coordinate.

The equilateral Sierpiński Triangle (of unit side length) can be repre-
sented as the attractor of the IFS F =

{
[0, 1]2; f1, f2, f3

}
where f1(x, y) =(

1
2x,

1
2y
)
, f2(x, y) =

(
1
2x+ 1

4 ,
1
2y +

√
3

4

)
and f3(x, y) =

(
1
2x+ 1

2 ,
1
2y
)
. Evalu-

ation of theB2 box integral (corresponding to the expectation of
√

(x2 + y2)2)
using the functional equation 3.1 leads to:

〈
x2 + y2

〉
=

1

3

〈
F

(
1

2
x,

1

2
y

)〉
+

1

3

〈
F

(
1

2
x+

1

4
,
1

2
y +

√
3

4

)〉
+

1

3

〈
F

(
1

2
x+

1

2
,
1

2
y

)〉

=
1

3

〈
x2

22
+
y2

22

〉
+

1

3

〈(
x

2
+

1

4

)2

+

(
y

2
+

√
3

4

)2〉
+

1

3

〈(
x

2
+

1

2

)2

+
y2

22

〉

Rearranging both sides and exploiting linearity of the expectation yields:

〈
x2 + y2

〉
=

1

32

(
3〈x〉+

√
3〈y〉+ 2

)
.

The simpler expectations re-evaluate as: 〈x〉 = 1
2 and 〈y〉 = 4

9 leading to:

〈
x2 + y2

〉
=

4

9
.

Similarly, evaluation of the ∆2 box integral (corresponding to the expec-

tation of
√

((x− a)2 + (y − b)2)2) using the functional equation 3.1 leads
directly to (after exploiting (a− b)2 + (a+ b)2 = 2(a2 + b2):

〈
(x− a)2 + (y − b)2

〉
=

1

4

〈
(x− a)2 + (y − b)2

〉
+

1

6

and hence 〈
(x− a)2 + (y − b)2

〉
=

2

9
.

These expectations for B and ∆ box integrals are illustrated in Figure 2.

4.5. The von Köch Curve. The unit von Köch Curve (three copies of
which can be arranged to form the celebrated von Köch Snowflake) can be
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Figure 2. Representations of the box integrals B2 = 4
9 (left)

and ∆2 = 2
9 (right) over the unit equilateral Sierpiński tri-

angle. Each set is overlayed with 100 random uniformly
sampled points (or point-pairs), with distances indicated by
colour—as distance increases, the displayed colour shifts fur-
ther towards the violet end of the visible spectrum.

represented1 as the attractor of the IFS F =
{

[0, 1]2; f1, f2, f3, f4

}
where

f1(x, y) =

(
1

3
x,

1

3
y

)
f2(x, y) =

(
1

6
x−
√

3

6
y +

1

3
,

√
3

6
x+

1

6
y

)

f3(x, y) =

(
1

6
x+

√
3

6
y +

1

2
,−
√

3

6
x+

1

6
y +

√
3

6

)

f4(x, y) =

(
1

3
x+

2

3
,
1

3
y

)
Evaluation of theB2 box integral (corresponding to the expectation

√
(x2 + y2)2

using the functional equation 3.1 leads to:〈
x2 + y2

〉
=

5

32
〈x〉+

√
3

32
〈y〉+

1

4

The simpler expectations can be re-evaluated as 〈x〉 = 1
2 and 〈y〉 =

√
3

18
leading to:

B2 =
1

3
.

1The von Köch Curve also has a representation as the attractor of an IFS with only
two affine mappings, if the associated metric space on which the mappings are defined is
changed to the complex plane (in place of [0, 1]2)—see for instance [43].



36 JONATHAN M. BORWEIN AND MICHAEL G. ROSE*

Similarly, evaluation of the ∆2 box integral (corresponding to the expec-

tation
√

((x− x′)2 + (y − y′)2)2 using functional equation 3.1 leads to:〈
(x− a)2 + (y − b)2

〉
=

1

9

(〈
x2
〉

+
〈
y2
〉

+
〈
a2
〉

+
〈
b2
〉)
− 7

144
(〈x〉+ 〈a〉)

+

√
3

144
(〈y〉+ 〈b〉)− 1

8
(〈xa〉+ 〈yb〉) +

11

72

By symmetry,〈
(x− a)2 + (y − b)2

〉
=

2

9

(〈
x2
〉

+
〈
y2
〉)
− 7

72
(〈x〉) +

√
3

72
(〈y〉)− 1

8
(〈xa〉+ 〈yb〉) +

11

72
.

The simpler expectations can be re-evaluated as:

〈x〉 =
1

2
,
〈
x2
〉

=
19

60
, 〈xa〉 =

1

4
,

〈y〉 =

√
3

18
,
〈
y2
〉

=
1

60
, 〈yb〉 =

1

108

leading to:

∆2 =
4

27
.

4.6. The Barnsley Fern. The final example illustrates how current theory
of IFS fractal expectations allows certain expectations (in particular, second-
order box integrals) to be computed over fractal sets generated from real-
world image data via the Collage Theorem, a powerful tool by which an affine
IFS may be generated with attractor lying within a pre-determined tolerance
(in the sense of Hausdorff distance) of the input image (see Section 1.10).
The well-known Barnsley Fern is taken as an illustrative example, though
the algorithm is applicable to any image data that can be so-represented.

The Barnsley Fern can be represented as the attractor of the IFS F ={
[0, 1]2; f1, f2, f3, f4

}
where

f1(x, y) = (0, 0.16y)

f2(x, y) = (0.85x+ 0.04y,−0.04x+ 0.85y + 1.6)

f3(x, y) = (0.20x− 0.26y, 0.23x+ 0.22y + 1.6)

f4(x, y) = (−0.15x+ 0.28y, 0.26x+ 0.24y + 0.44)

Evaluation of theB2 box integral (corresponding to the expectation
√

(x2 + y2)2)
using the functional equation 3.1 leads to:〈
x2 + y2

〉
=

10267

40000

〈
x2
〉
+

10017

40000

〈
y2
〉
+

523

2500
〈x〉+568

625
〈y〉− 27

10000
〈xy〉+3321

2500
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The simpler expectations can be re-evaluated by the functional equation,
leading to the system of equations:

〈x〉 =
13

50
〈x〉+

3

200
〈y〉 , 〈y〉 =

9

80
〈x〉+

147

400
〈y〉+

91

100
,〈

x2
〉

=
4523

20000

〈
x2
〉

+
369

10000

〈
y2
〉
− 211

5000
〈xy〉 ,〈

y2
〉

=
1221

40000

〈
x2
〉

+
8541

40000

〈
y2
〉

+
79

2000
〈xy〉+

523

2500
〈x〉+

568

625
〈y〉+

3321

2500
,

〈xy〉 = − 7

5000

〈
x2
〉

+
11

1000

〈
y2
〉

+
7979

40000
〈xy〉+

919

2000
〈x〉 − 143

2500
〈y〉 .

Solving this system yields:

〈x〉 =
1092

37309
, 〈y〉 =

53872

37309
, 〈xy〉 = − 23413005490249872

580160660775546421
,〈

x2
〉

=
94495707021238368

580160660775546421
,

〈
y2
〉

=
1954945096116443536

580160660775546421
.

leading to 〈
x2 + y2

〉
=

2049440803137681904

580160660775546421
.

Similarly, evaluation of the ∆2 box integral (corresponding to the expec-

tation
√

((x− a)2 + (y − b)2)2) using the functional equation 3.1 leads to:〈
(x− a)2 + (y − b)2

〉
=

89

10000
〈x〉+

4799

10000
〈y〉+

10267

20000

〈
x2
〉

+
10017

20000

〈
y2
〉
− 27

5000
〈xy〉

− 7239

40000
〈xb〉 − 12841

80000
〈xa〉 − 4329

16000
〈yb〉+

5003

5000
The simpler expectations can be re-evaluated by the functional equation,

leading to the additional set of equations (taken together with those derived
from the B2 computation):

〈xb〉 =
1183

5000
〈x〉+

273

20000
〈y〉+

441

80000
〈yb〉+

117

4000
〈xa〉+

7779

80000
〈xb〉

〈xa〉 =
9

40000
〈yb〉+

169

2500
〈xa〉+

39

5000
〈xb〉

〈yb〉 =
819

4000
〈x〉+

13377

20000
〈y〉+

21609

160000
〈yb〉+

81

6400
〈xa〉+

1323

16000
〈xb〉+

8281

10000
Solving this system yields:

〈x〉 = 〈a〉 =
1092

37309
, 〈y〉 = 〈b〉 =

53872

37309
,〈

x2
〉

=
〈
a2
〉

=
94495707021238368

580160660775546421
,

〈
y2
〉

=
〈
b2
〉

=
1954945096116443536

580160660775546421
,

〈xy〉 = 〈ab〉 = − 23413005490249872

580160660775546421
, 〈xb〉 = 〈ay〉 =

58828224

1391961481
,

〈xa〉 =
1192464

1391961481
, 〈yb〉 =

2902192384

1391961481
.
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Figure 3. Representations of the box integrals B2 =
2049440803137681904
580160660775546421 (left) and ∆2 = 1561818604387599983932186

541130352321871535527225
(right) over the Barnsley Fern. The B2 integral represents
the expected square of the distance between the origin (at
the base of the fern’s stem) and a random point chosen from
within the fern (as represented by the ladybird), while the
∆2 integral represents the expected square of the separation
between the two random points chosen from within the fern
(as represented by the two ladybirds).

leading to:〈
(x− a)2 + (y − b)2

〉
=

1561818604387599983932186

541130352321871535527225
.

These expectations for B and ∆ box integrals are illustrated in Figure
3. Note that the second-order separation moments can be symbolically
evaluated for any IFS attractor generated by means of the Collage Theorem
on using the same sequence of computations.

5. Numerical Approximation of Box Integrals

5.1. Monte Carlo Algorithm. A simple and direct approximation to the
expectations of Definition 2.4 can be obtained by truncating the right-hand
side of Equation 2.6 after a finite number of steps in the Chaos-Game orbit.
This leads to the following Chaos-Game algorithm for computing numerical
approximations to expectations over IFS attractors.

Algorithm 5.1 (Chaos-Game Sampling over 1st-order IFS). Given
an arbitrary IFS, the following procedure computes a Monte-Carlo approxi-
mation of an expectation defined over the IFS attractor.

(1) Select a point x0 in the attractor (typically x0 = 0 for suitable choice
of coordinates).
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(2) For a fixed number of iterations N , compute an (N + 1)-step Chaos-
Game orbit (xk) starting at x0 via successive applications of the IFS
mappings to the current point xk, with the IFS mappings chosen
uniformly at random at each step.

(3) Evaluate the function F at each sampled point in the Chaos-Game
orbit.

(4) Compute the approximation to the expectation via truncation of Def-
inition 2.4:

〈F (x)〉x∈A = lim
n→∞

1

n+ 1

n∑
k=0

F (xk) ≈
1

N + 1

N∑
k=0

F (xk)

Alternatively, if an explicit starting point within the attractor is unknown,
the fixed-point nature of the attractor may be leveraged by selecting an
arbitrary starting point and discarding a finite number of initial Chaos-
Game orbit points (say 100), after which the orbit will be trapped within
an acceptable distance of the attractor [6]. Table 1 shows a selection of
approximations to various separation expectations over the fractal sets in
Section 4 obtained via the Chaos Game algorithm.

While the Chaos Game algorithm is easy to implement and highly par-
allelisable, only a few digits can be accessed in a reasonable time-frame (a
limitation suffered by all Monte-Carlo sampling algorithms).

In addition to Chaos Game sampling, a generalization of an algorithm
employed for numerics over SCS fractals [5] lead to an approach analogous
to the original expectation definition, in which points were systematically
sampled over a level-q pre-fractal set by considering all q-fold compositions
of mappings chosen from the m IFS contractions and sampling of one point
from each of the resulting mq image sets. More precisely:

Algorithm 5.2 (Systematic Sampling over qth-order IFS). Given
an arbitrary IFS, the following procedure computes an approximation of an
expectation defined over the IFS attractor via considerations of the level-q
pre-fractal set.

(1) For a fixed pre-fractal depth q, pre-compute the qth-level IFS by tak-
ing all mq possible q − fold compositions of the IFS mappings.

(2) Select a point x0 in the attractor (typically x0 = 0 for suitable choice
of coordinates).

(3) Apply each qth-level IFS mapping to x0 to generate the sequence (xk)
of points systematically sampled across the qth-level pre-fractal of the
attractor.

(4) Evaluate the function F at each sampled point in the Chaos-Game
orbit.



40 JONATHAN M. BORWEIN AND MICHAEL G. ROSE*

Fractal Function Iterations Value Exact
Full Isosceles Triangle ∆(1) 109 0.414
Full Isosceles Triangle ∆(2) 108 0.222
Cantor Middle-Thirds Set B(1) 2× 105 0.500 0.5
Cantor Middle-Thirds Set B(2) 2× 105 0.375 0.375
Isosceles Sierpiński Triangle B(1) 108 0.566
Isosceles Sierpiński Triangle B(2) 105 0.374
Isosceles Sierpiński Triangle B(2) 108 0.373 0.370
Isosceles Sierpiński Triangle ∆(1) 109 0.481
Isosceles Sierpiński Triangle ∆(2) 108 0.297 0.296
Equilateral Sierpiński Triangle B(1) 103 0.612
Equilateral Sierpiński Triangle B(1) 108 0.621
Equilateral Sierpiński Triangle B(1) 109 0.621
Equilateral Sierpiński Triangle B(2) 105 0.447 0.4
Equilateral Sierpiński Triangle B(2) 108 0.448 0.4
Equilateral Sierpiński Triangle ∆(1) 103 0.436
Equilateral Sierpiński Triangle ∆(1) 105 0.420
Equilateral Sierpiński Triangle ∆(1) 1010 0.423
Equilateral Sierpiński Triangle ∆(2) 105 0.222 0.2
von Köch Curve B(2) 106 0.333 0.3
von Köch Curve ∆(2) 106 0.148 0.148
Barnsley Fern B(2) 106 3.534 3.532540. . .
Barnsley Fern ∆(2) 106 2.886 2.886215. . .

Table 1. A selection of approximations to various separa-
tion expectations over the fractal sets in Section 4 obtained
via the Chaos Game algorithm. The exact values were com-
puted using Algorithm 4.1 as exhibited in in Section 4. Note
that in the ∆ calculations, 2 points were sampled per itera-
tion. All sets are of unit length (with regards to the level-0
pre-fractal), excepting the Barnsley Fern.

(5) Compute the approximation to the expectation via truncation of Def-
inition 2.4:

〈F (x)〉x∈A ≈
1

N + 1

N∑
k=0

F (xk)

For attractors of affine IFSs, the first step of Algorithm 5.2 becomes an
easily-computed exercise in matrix algebra. This approach was able to ex-
tract one extra correct digit in the same time-frame as the Chaos Game
Algorithm 5.1, at the cost of losing parallelisability. Unfortunately the ap-
proach was unable to produce high-precision estimates, since the special
additive structure of admissible SCS columns can no longer be exploited in
the general setting. This approach does have the advantage of leading to
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bounds on the expectations through careful choice of the starting point x0,
similar to the related SCS algorithm of [5].

Further progress in the development of algorithms for high-precision nu-
merical estimates of expectations over IFS attractors is discussed below.

6. Future Directions

In the general IFS setting, promising progress has been made regarding
extreme-precision1 evaluation of certain unresolved fractal box integrals in
collaboration with Nathan Clisby, who has applied a generalised Richardson
extrapolation technique (introduced in [41]; see also [42], [23] and [40]) to
the problem of computing fractal expectations numerically.

In the first attempts at extreme-precision evaluation of fractal expecta-
tions over IFS attractors, the box integral has been considered as an analytic
function of parameter k, where expectations are approximated by taking the
finite mean of points uniformly sampled from the kth pre-fractal (or equiva-
lently, uniformly sampled from Chaos Game orbits of length mk), assuming
the error behaves as a power series in 1

k . Combining Richardson’s deferred
approach to the limit with sequence extrapolation techniques has enabled
the Bs=1 integral over the equilateral unit Sierpiński triangle to be evaluated
to the following 112 digits, computed in 4000 CPU-hours:

0.618008217158224707417741862455516783449248164143896087979657

276528949927817241259628464958573670699106107561807

This computationally-intensive result was non-trivial, only being possible
thanks to some subtle ideas from Nathan Clisby. These ideas originated
from fruitful discussions concerning the numerical study of characteristics
of self-avoiding random walks, via techniques that can efficiently sample
such walks uniformly at random (see for example [24]).

Currently we are combining this result with the PSLQ integer relation
detection algorithm (see [31], [32]) in an attempt to discover closed forms
for such odd-order moments that can guide further theoretical developments.
In addition, we are aiming to improve the numerical algorithm by employing
an analogue of the Bulirsch-Stöer method, in which the expectations are fit
to appropriate rational functions of k.

Our work in fractal expectations has also led to renewed interest in fractal
quadrature techniques that may also be of use in obtaining precise numerics.
In particular, the recent work of Dereich and Müller-Gronbach [27], which
cites our work in [5], provides deterministic and random quadrature rules for
self-similar probability distributions that perform asymptotically optimally.

Once the techniques herein are refined for deterministic fractal sets (be-
yond affine IFSs to all attractors of hyperbolic iterated function systems),

1‘High-precision’ being taken to mean at least 20 digits, whereas previous works have
used the phrase ‘extreme precision’ to mean at least 100 digits, or certainly enough to
discover identities via integer-relation detection.
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the next logical progression would be to move beyond deterministic fractals
and consider random fractal sets. In particular, the gap between determinis-
tic and random fractals are bridged by V-variable fractals and superfractals
(collections of V-variable random fractals), which can be described in a more
generalised IFS framework [7]. Just as SCS fractal expectations were gen-
eralised to IFS fractal expectations, it seems only natural that IFS fractal
expectations may in turn be generalised to encompass V-variable fractals
and superfractals.
Acknowledgements. We wish particularly to thank Nathan Clisby for
his extreme-precision numerical calculations of separation moments for the
Sierpiński triangle.
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