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Chapter 1

Background

1.1 Euclidean Spaces

We begin by reviewing some of the fundamental algebraic, geometric and
analytic ideas we use throughout the book. Our setting, for most of
the book, is an arbitrary Euclidean space E, by which we mean a
finite-dimensional vector space over the reals R, equipped with an inner
product 〈·, ·〉. We would lose no generality if we considered only the space
Rn of real (column) n-vectors (with its standard inner product), but a
more abstract, coordinate-free notation is often more flexible and elegant.

We define the norm of any point x in E by ‖x‖ =
√〈x, x〉, and the unit

ball is the set
B = {x ∈ E | ‖x‖ ≤ 1}.

Any two points x and y in E satisfy the Cauchy–Schwarz inequality

|〈x, y〉| ≤ ‖x‖‖y‖.
We define the sum of two sets C and D in E by

C + D = {x + y | x ∈ C, y ∈ D}.
The definition of C −D is analogous, and for a subset Λ of R we define

ΛC = {λx | λ ∈ Λ, x ∈ C}.
Given another Euclidean space Y, we can consider the Cartesian product
Euclidean space E × Y, with inner product defined by 〈(e, x), (f, y)〉 =
〈e, f〉+ 〈x, y〉.

We denote the nonnegative reals by R+. If C is nonempty and satisfies
R+C = C we call it a cone. (Notice we require that cones contain the
origin.) Examples are the positive orthant

Rn
+ = {x ∈ Rn | each xi ≥ 0},

1



2 1. Background

and the cone of vectors with nonincreasing components

Rn
≥ = {x ∈ Rn | x1 ≥ x2 ≥ · · · ≥ xn}.

The smallest cone containing a given set D ⊂ E is clearly R+D.
The fundamental geometric idea of this book is convexity. A set C in

E is convex if the line segment joining any two points x and y in C is
contained in C: algebraically, λx + (1− λ)y ∈ C whenever 0 ≤ λ ≤ 1. An
easy exercise shows that intersections of convex sets are convex.

Given any set D ⊂ E, the linear span of D, denoted span (D), is the
smallest linear subspace containing D. It consists exactly of all linear
combinations of elements of D. Analogously, the convex hull of D, denoted
conv (D), is the smallest convex set containing D. It consists exactly of
all convex combinations of elements of D, that is to say points of the form∑m

i=1 λix
i, where λi ∈ R+ and xi ∈ D for each i, and

∑
λi = 1 (see

Exercise 2).
The language of elementary point-set topology is fundamental in opti-

mization. A point x lies in the interior of the set D ⊂ E (denoted int D)
if there is a real δ > 0 satisfying x + δB ⊂ D. In this case we say D is a
neighbourhood of x. For example, the interior of Rn

+ is

Rn
++ = {x ∈ Rn | each xi > 0}.

We say the point x in E is the limit of the sequence of points x1, x2, . . .
in E, written xj → x as j → ∞ (or limj→∞ xj = x), if ‖xj − x‖ → 0.
The closure of D is the set of limits of sequences of points in D, written
cl D, and the boundary of D is cl D \ int D, written bdD. The set D is
open if D = intD, and is closed if D = cl D. Linear subspaces of E are
important examples of closed sets. Easy exercises show that D is open
exactly when its complement Dc is closed, and that arbitrary unions and
finite intersections of open sets are open. The interior of D is just the largest
open set contained in D, while cl D is the smallest closed set containing D.
Finally, a subset G of D is open in D if there is an open set U ⊂ E with
G = D ∩ U .

Much of the beauty of convexity comes from duality ideas, interweaving
geometry and topology. The following result, which we prove a little later,
is both typical and fundamental.

Theorem 1.1.1 (Basic separation) Suppose that the set C ⊂ E is closed
and convex, and that the point y does not lie in C. Then there exist real b
and a nonzero element a of E satisfying 〈a, y〉 > b ≥ 〈a, x〉 for all points x
in C.

Sets in E of the form {x | 〈a, x〉 = b} and {x | 〈a, x〉 ≤ b} (for a nonzero
element a of E and real b) are called hyperplanes and closed halfspaces,
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respectively. In this language the above result states that the point y is
separated from the set C by a hyperplane. In other words, C is contained
in a certain closed halfspace whereas y is not. Thus there is a “dual”
representation of C as the intersection of all closed halfspaces containing
it.

The set D is bounded if there is a real k satisfying kB ⊃ D, and it is
compact if it is closed and bounded. The following result is a central tool
in real analysis.

Theorem 1.1.2 (Bolzano–Weierstrass) Bounded sequences in E have
convergent subsequences.

Just as for sets, geometric and topological ideas also intermingle for the
functions we study. Given a set D in E, we call a function f : D → R
continuous (on D) if f(xi) → f(x) for any sequence xi → x in D. In
this case it easy to check, for example, that for any real α the level set
{x ∈ D | f(x) ≤ α} is closed providing D is closed.

Given another Euclidean space Y, we call a map A : E→ Y linear if any
points x and z in E and any reals λ and μ satisfy A(λx+μz) = λAx+μAz.
In fact any linear function from E to R has the form 〈a, ·〉 for some element
a of E. Linear maps and affine functions (linear functions plus constants)
are continuous. Thus, for example, closed halfspaces are indeed closed.
A polyhedron is a finite intersection of closed halfspaces, and is therefore
both closed and convex. The adjoint of the map A above is the linear map
A∗ : Y → E defined by the property

〈A∗y, x〉 = 〈y,Ax〉 for all points x in E and y in Y

(whence A∗∗ = A). The null space of A is N(A) = {x ∈ E | Ax = 0}. The
inverse image of a set H ⊂ Y is the set A−1H = {x ∈ E | Ax ∈ H} (so
for example N(A) = A−1{0}). Given a subspace G of E, the orthogonal
complement of G is the subspace

G⊥ = {y ∈ E | 〈x, y〉 = 0 for all x ∈ G},

so called because we can write E as a direct sum G⊕G⊥. (In other words,
any element of E can be written uniquely as the sum of an element of G
and an element of G⊥.) Any subspace G satisfies G⊥⊥ = G. The range of
any linear map A coincides with N(A∗)⊥.

Optimization studies properties of minimizers and maximizers of func-
tions. Given a set Λ ⊂ R, the infimum of Λ (written inf Λ) is the greatest
lower bound on Λ, and the supremum (written sup Λ) is the least upper
bound. To ensure these are always defined, it is natural to append −∞ and
+∞ to the real numbers, and allow their use in the usual notation for open
and closed intervals. Hence, inf ∅ = +∞ and sup ∅ = −∞, and for example



4 1. Background

(−∞,+∞] denotes the interval R∪{+∞}. We try to avoid the appearance
of +∞−∞, but when necessary we use the convention +∞−∞ = +∞,
so that any two sets C and D in R satisfy inf C + inf D = inf(C + D). We
also adopt the conventions 0 · (±∞) = (±∞) · 0 = 0. A (global) minimizer
of a function f : D → R is a point x̄ in D at which f attains its infimum

inf
D

f = inf f(D) = inf{f(x) | x ∈ D}.

In this case we refer to x̄ as an optimal solution of the optimization problem
infD f .

For a positive real δ and a function g : (0, δ) → R, we define

lim inf
t↓0

g(t) = lim
t↓0

inf
(0,t)

g

and
lim sup

t↓0
g(t) = lim

t↓0
sup
(0,t)

g.

The limit limt↓0 g(t) exists if and only if the above expressions are equal.
The question of attainment, or in other words the existence of an optimal

solution for an optimization problem is typically topological. The following
result is a prototype. The proof is a standard application of the Bolzano–
Weierstrass theorem above.

Proposition 1.1.3 (Weierstrass) Suppose that the set D ⊂ E is non-
empty and closed, and that all the level sets of the continuous function
f : D → R are bounded. Then f has a global minimizer.

Just as for sets, convexity of functions will be crucial for us. Given a
convex set C ⊂ E, we say that the function f : C → R is convex if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all points x and y in C and 0 ≤ λ ≤ 1. The function f is strictly
convex if the inequality holds strictly whenever x and y are distinct in C
and 0 < λ < 1. It is easy to see that a strictly convex function can have at
most one minimizer.

Requiring the function f to have bounded level sets is a “growth con-
dition”. Another example is the stronger condition

lim inf
‖x‖→∞

f(x)
‖x‖ > 0, (1.1.4)

where we define

lim inf
‖x‖→∞

f(x)
‖x‖ = lim

r→+∞ inf
{f(x)
‖x‖

∣∣∣ x ∈ C ∩ rBc
}

.

Surprisingly, for convex functions these two growth conditions are equiva-
lent.
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Proposition 1.1.5 For a convex set C ⊂ E, a convex function f : C → R
has bounded level sets if and only if it satisfies the growth condition (1.1.4).

The proof is outlined in Exercise 10.

Exercises and Commentary

Good general references are [177] for elementary real analysis and [1] for lin-
ear algebra. Separation theorems for convex sets originate with Minkowski
[142]. The theory of the relative interior (Exercises 11, 12, and 13) is devel-
oped extensively in [167] (which is also a good reference for the recession
cone, Exercise 6).

1. Prove the intersection of an arbitrary collection of convex sets is con-
vex. Deduce that the convex hull of a set D ⊂ E is well-defined as
the intersection of all convex sets containing D.

2. (a) Prove that if the set C ⊂ E is convex and if

x1, x2, . . . , xm ∈ C, 0 ≤ λ1, λ2, . . . , λm ∈ R,

and
∑

λi = 1 then
∑

λix
i ∈ C. Prove, furthermore, that if

f : C → R is a convex function then f(
∑

λix
i) ≤∑

λif(xi).

(b) We see later (Theorem 3.1.11) that the function − log is convex
on the strictly positive reals. Deduce, for any strictly positive
reals x1, x2, . . . , xm, and any nonnegative reals λ1, λ2, . . . , λm

with sum 1, the arithmetic-geometric mean inequality∑
i

λix
i ≥

∏
i

(xi)λi .

(c) Prove that for any set D ⊂ E, conv D is the set of all convex
combinations of elements of D.

3. Prove that a convex set D ⊂ E has convex closure, and deduce that
cl (conv D) is the smallest closed convex set containing D.

4. (Radstrom cancellation) Suppose sets A,B,C ⊂ E satisfy

A + C ⊂ B + C.

(a) If A and B are convex, B is closed, and C is bounded, prove

A ⊂ B.

(Hint: Observe 2A + C = A + (A + C) ⊂ 2B + C.)

(b) Show this result can fail if B is not convex.
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5. ∗ (Strong separation) Suppose that the set C ⊂ E is closed and
convex, and that the set D ⊂ E is compact and convex.

(a) Prove the set D − C is closed and convex.

(b) Deduce that if in addition D and C are disjoint then there ex-
ists a nonzero element a in E with infx∈D〈a, x〉 > supy∈C〈a, y〉.
Interpret geometrically.

(c) Show part (b) fails for the closed convex sets in R2,

D = {x | x1 > 0, x1x2 ≥ 1},
C = {x | x2 = 0}.

6. ∗∗ (Recession cones) Consider a nonempty closed convex set C ⊂
E. We define the recession cone of C by

0+(C) = {d ∈ E | C + R+d ⊂ C}.

(a) Prove 0+(C) is a closed convex cone.

(b) Prove d ∈ 0+(C) if and only if x + R+d ⊂ C for some point x
in C. Show this equivalence can fail if C is not closed.

(c) Consider a family of closed convex sets Cγ (γ ∈ Γ) with non-
empty intersection. Prove 0+(∩Cγ) = ∩0+(Cγ).

(d) For a unit vector u in E, prove u ∈ 0+(C) if and only if there is
a sequence (xr) in C satisfying ‖xr‖ → ∞ and ‖xr‖−1xr → u.
Deduce C is unbounded if and only if 0+(C) is nontrivial.

(e) If Y is a Euclidean space, the map A : E → Y is linear, and
N(A) ∩ 0+(C) is a linear subspace, prove AC is closed. Show
this result can fail without the last assumption.

(f) Consider another nonempty closed convex set D ⊂ E such that
0+(C) ∩ 0+(D) is a linear subspace. Prove C −D is closed.

7. For any set of vectors a1, a2, . . . , am in E, prove the function f(x) =
maxi〈ai, x〉 is convex on E.

8. Prove Proposition 1.1.3 (Weierstrass).

9. (Composing convex functions) Suppose that the set C ⊂ E is
convex and that the functions f1, f2, . . . , fn : C → R are convex, and
define a function f : C → Rn with components fi. Suppose further
that f(C) is convex and that the function g : f(C) → R is convex
and isotone: any points y ≤ z in f(C) satisfy g(y) ≤ g(z). Prove the
composition g ◦ f is convex.
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10. ∗ (Convex growth conditions)

(a) Find a function with bounded level sets which does not satisfy
the growth condition (1.1.4).

(b) Prove that any function satisfying (1.1.4) has bounded level sets.

(c) Suppose the convex function f : C → R has bounded level sets
but that (1.1.4) fails. Deduce the existence of a sequence (xm)
in C with f(xm) ≤ ‖xm‖/m → +∞. For a fixed point x̄ in C,
derive a contradiction by considering the sequence

x̄ +
m

‖xm‖ (xm − x̄).

Hence complete the proof of Proposition 1.1.5.

The relative interior

Some arguments about finite-dimensional convex sets C simplify and lose
no generality if we assume C contains 0 and spans E. The following exer-
cises outline this idea.

11. ∗∗ (Accessibility lemma) Suppose C is a convex set in E.

(a) Prove clC ⊂ C + εB for any real ε > 0.

(b) For sets D and F in E with D open, prove D + F is open.

(c) For x in intC and 0 < λ ≤ 1, prove λx + (1 − λ)cl C ⊂ C.
Deduce λ intC + (1− λ)cl C ⊂ int C.

(d) Deduce intC is convex.

(e) Deduce further that if intC is nonempty then cl (int C) = cl C.
Is convexity necessary?

12. ∗∗ (Affine sets) A set L in E is affine if the entire line through any
distinct points x and y in L lies in L: algebraically, λx+(1−λ)y ∈ L
for any real λ. The affine hull of a set D in E, denoted aff D, is
the smallest affine set containing D. An affine combination of points
x1, x2, . . . , xm is a point of the form

∑m
1 λix

i, for reals λi summing
to one.

(a) Prove the intersection of an arbitrary collection of affine sets is
affine.

(b) Prove that a set is affine if and only if it is a translate of a linear
subspace.

(c) Prove affD is the set of all affine combinations of elements of D.

(d) Prove clD ⊂ aff D and deduce aff D = aff (cl D).
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(e) For any point x in D, prove affD = x+span (D−x), and deduce
the linear subspace span (D − x) is independent of x.

13. ∗∗ (The relative interior) (We use Exercises 11 and 12.) The
relative interior of a convex set C in E, denoted riC, is its interior
relative to its affine hull. In other words, a point x lies in riC if there
is a real δ > 0 with (x + δB) ∩ aff C ⊂ C.

(a) Find convex sets C1 ⊂ C2 with riC1 �⊂ riC2.

(b) Suppose dimE > 0, 0 ∈ C and aff C = E. Prove C contains a
basis {x1, x2, . . . , xn} of E. Deduce (1/(n + 1))

∑n
1 xi ∈ int C.

Hence deduce that any nonempty convex set in E has nonempty
relative interior.

(c) Prove that for 0 < λ ≤ 1 we have λriC +(1−λ)cl C ⊂ riC, and
hence riC is convex with cl (riC) = cl C.

(d) Prove that for a point x in C, the following are equivalent:

(i) x ∈ riC.
(ii) For any point y in C there exists a real ε > 0 with x+ε(x−y)

in C.
(iii) R+(C − x) is a linear subspace.

(e) If F is another Euclidean space and the map A : E→ F is linear,
prove riAC ⊃ AriC.
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1.2 Symmetric Matrices

Throughout most of this book our setting is an abstract Euclidean space
E. This has a number of advantages over always working in Rn: the basis-
independent notation is more elegant and often clearer, and it encourages
techniques which extend beyond finite dimensions. But more concretely,
identifying E with Rn may obscure properties of a space beyond its simple
Euclidean structure. As an example, in this short section we describe a
Euclidean space which “feels” very different from Rn: the space Sn of
n× n real symmetric matrices.

The nonnegative orthant Rn
+ is a cone in Rn which plays a central

role in our development. In a variety of contexts the analogous role in
Sn is played by the cone of positive semidefinite matrices, Sn

+. (We call
a matrix X in Sn positive semidefinite if xT Xx ≥ 0 for all vectors x in
Rn, and positive definite if the inequality is strict whenever x is nonzero.)
These two cones have some important differences; in particular, Rn

+ is a
polyhedron, whereas the cone of positive semidefinite matrices Sn

+ is not,
even for n = 2. The cones Rn

+ and Sn
+ are important largely because of

the orderings they induce. (The latter is sometimes called the Loewner
ordering.) For points x and y in Rn we write x ≤ y if y − x ∈ Rn

+, and
x < y if y − x ∈ Rn

++ (with analogous definitions for ≥ and >). The
cone Rn

+ is a lattice cone: for any points x and y in Rn there is a point z
satisfying

w ≥ x and w ≥ y ⇔ w ≥ z.

(The point z is just the componentwise maximum of x and y.) Analogously,
for matrices X and Y in Sn we write X � Y if Y −X ∈ Sn

+, and X ≺ Y
if Y −X lies in Sn

++, the set of positive definite matrices (with analogous
definitions for � and �). By contrast, it is straightforward to see Sn

+ is not
a lattice cone (Exercise 4).

We denote the identity matrix by I. The trace of a square matrix
Z is the sum of the diagonal entries, written trZ. It has the important
property tr (V W ) = tr (WV ) for any matrices V and W for which V W is
well-defined and square. We make the vector space Sn into a Euclidean
space by defining the inner product

〈X,Y 〉 = tr (XY ) for X,Y ∈ Sn.

Any matrix X in Sn has n real eigenvalues (counted by multiplicity),
which we write in nonincreasing order λ1(X) ≥ λ2(X) ≥ . . . ≥ λn(X). In
this way we define a function λ : Sn → Rn. We also define a linear map
Diag : Rn → Sn, where for a vector x in Rn, Diag x is an n × n diagonal
matrix with diagonal entries xi. This map embeds Rn as a subspace of Sn

and the cone Rn
+ as a subcone of Sn

+. The determinant of a square matrix
Z is written det Z.
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We write On for the group of n×n orthogonal matrices (those matrices
U satisfying UT U = I). Then any matrix X in Sn has an ordered spectral
decomposition X = UT (Diag λ(X))U , for some matrix U in On. This
shows, for example, that the function λ is norm-preserving: ‖X‖ = ‖λ(X)‖
for all X in Sn. For any X in Sn

+, the spectral decomposition also shows
there is a unique matrix X1/2 in Sn

+ whose square is X.
The Cauchy–Schwarz inequality has an interesting refinement in Sn

which is crucial for variational properties of eigenvalues, as we shall see.

Theorem 1.2.1 (Fan) Any matrices X and Y in Sn satisfy the inequality

tr (XY ) ≤ λ(X)T λ(Y ). (1.2.2)

Equality holds if and only if X and Y have a simultaneous ordered
spectral decomposition: there is a matrix U in On with

X = UT (Diag λ(X))U and Y = UT (Diag λ(Y ))U. (1.2.3)

A standard result in linear algebra states that matrices X and Y have a
simultaneous (unordered) spectral decomposition if and only if they com-
mute. Notice condition (1.2.3) is a stronger property.

The special case of Fan’s inequality where both matrices are diagonal
gives the following classical inequality. For a vector x in Rn, we denote
by [x] the vector with the same components permuted into nonincreasing
order. We leave the proof of this result as an exercise.

Proposition 1.2.4 (Hardy–Littlewood–Pólya) Any vectors x and y
in Rn satisfy the inequality

xT y ≤ [x]T [y].

We describe a proof of Fan’s theorem in the exercises, using the above
proposition and the following classical relationship between the set Γn of
doubly stochastic matrices (square matrices with all nonnegative entries,
and each row and column summing to one) and the set Pn of permutation
matrices (square matrices with all entries zero or one, and with exactly one
entry of one in each row and in each column).

Theorem 1.2.5 (Birkhoff) Doubly stochastic matrices are convex com-
binations of permutation matrices.

We defer the proof to a later section (Section 4.1, Exercise 22).
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Exercises and Commentary

Fan’s inequality (1.2.2) appeared in [73], but is closely related to earlier
work of von Neumann [184]. The condition for equality is due to [180].
The Hardy–Littlewood–Pólya inequality may be found in [91]. Birkhoff’s
theorem [15] was in fact proved earlier by König [115].

1. Prove Sn
+ is a closed convex cone with interior Sn

++.

2. Explain why S2
+ is not a polyhedron.

3. (S3
+ is not strictly convex) Find nonzero matrices X and Y in S3

+

such that R+X �= R+Y and (X + Y )/2 �∈ S3
++.

4. (A nonlattice ordering) Suppose the matrix Z in S2 satisfies

W �
[

1 0
0 0

]
and W �

[
0 0
0 1

]
⇔ W � Z.

(a) By considering diagonal W , prove

Z =
[

1 a
a 1

]
for some real a.

(b) By considering W = I, prove Z = I.
(c) Derive a contradiction by considering

W = 2
3

[
2 1
1 2

]
.

5. (Order preservation)

(a) Prove any matrix X in Sn satisfies (X2)1/2 � X.
(b) Find matrices X � Y in S2

+ such that X2 �� Y 2.

(c) For matrices X � Y in Sn
+, prove X1/2 � Y 1/2. (Hint: Consider

the relationship

〈(X1/2 + Y 1/2)x, (X1/2 − Y 1/2)x〉 = 〈(X − Y )x, x〉 ≥ 0,

for eigenvectors x of X1/2 − Y 1/2.)

6. ∗ (Square-root iteration) Suppose a matrix A in Sn
+ satisfies I �

A. Prove that the iteration

Y0 = 0, Yn+1 =
1
2
(
A + Y 2

n

)
(n = 0, 1, 2, . . .)

is nondecreasing (that is, Yn+1 � Yn for all n) and converges to the
matrix I − (I −A)1/2. (Hint: Consider diagonal matrices A.)
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7. (The Fan and Cauchy–Schwarz inequalities)

(a) For any matrices X in Sn and U in On, prove ‖UT XU‖ = ‖X‖.
(b) Prove the function λ is norm-preserving.

(c) Explain why Fan’s inequality is a refinement of the Cauchy–
Schwarz inequality.

8. Prove the inequality trZ + tr Z−1 ≥ 2n for all matrices Z in Sn
++,

with equality if and only if Z = I.

9. Prove the Hardy–Littlewood–Pólya inequality (Proposition 1.2.4) di-
rectly.

10. Given a vector x in Rn
+ satisfying x1x2 . . . xn = 1, define numbers

yk = 1/x1x2 . . . xk for each index k = 1, 2, . . . , n. Prove

x1 + x2 + . . . + xn =
yn

y1
+

y1

y2
+ . . .

yn−1

yn
.

By applying the Hardy–Littlewood–Pólya inequality (1.2.4) to suit-
able vectors, prove x1 + x2 + . . . + xn ≥ n. Deduce the inequality

1
n

n∑
1

zi ≥
( n∏

1

zi

)1/n

for any vector z in Rn
+.

11. For a fixed column vector s in Rn, define a linear map A : Sn → Rn

by setting AX = Xs for any matrix X in Sn. Calculate the adjoint
map A∗.

12. ∗ (Fan’s inequality) For vectors x and y in Rn and a matrix U in
On, define

α = 〈Diag x,UT (Diag y)U〉.

(a) Prove α = xT Zy for some doubly stochastic matrix Z.

(b) Use Birkhoff’s theorem and Proposition 1.2.4 to deduce the in-
equality α ≤ [x]T [y].

(c) Deduce Fan’s inequality (1.2.2).

13. (A lower bound) Use Fan’s inequality (1.2.2) for two matrices X
and Y in Sn to prove a lower bound for tr (XY ) in terms of λ(X)
and λ(Y ).
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14. ∗ (Level sets of perturbed log barriers)

(a) For δ in R++, prove the function

t ∈ R++ �→ δt− log t

has compact level sets.
(b) For c in Rn

++, prove the function

x ∈ Rn
++ �→ cT x−

n∑
i=1

log xi

has compact level sets.
(c) For C in Sn

++, prove the function

X ∈ Sn
++ �→ 〈C,X〉 − log det X

has compact level sets. (Hint: Use Exercise 13.)

15. ∗ (Theobald’s condition) Assuming Fan’s inequality (1.2.2), com-
plete the proof of Fan’s theorem (1.2.1) as follows. Suppose equality
holds in Fan’s inequality (1.2.2), and choose a spectral decomposition

X + Y = UT (Diag λ(X + Y ))U

for some matrix U in On.

(a) Prove λ(X)T λ(X + Y ) = 〈UT (Diag λ(X))U,X + Y 〉.
(b) Apply Fan’s inequality (1.2.2) to the two inner products

〈X,X + Y 〉 and 〈UT (Diag λ(X))U, Y 〉
to deduce X = UT (Diag λ(X))U .

(c) Deduce Fan’s theorem.

16. ∗∗ (Generalizing Theobald’s condition [122]) Consider a set of
matrices X1,X2, . . . , Xm in Sn satisfying the conditions

tr (XiXj) = λ(Xi)T λ(Xj) for all i and j.

Generalize the argument of Exercise 15 to prove the entire set of
matrices {X1,X2, . . . , Xm} has a simultaneous ordered spectral de-
composition.

17. ∗∗ (Singular values and von Neumann’s lemma) Let Mn denote
the vector space of n×n real matrices. For a matrix A in Mn we define
the singular values of A by σi(A) =

√
λi(AT A) for i = 1, 2, . . . , n,

and hence define a map σ : Mn → Rn. (Notice zero may be a singular
value.)
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(a) Prove

λ

[
0 AT

A 0

]
=
[

σ(A)
[−σ(A)]

]
(b) For any other matrix B in Mn, use part (a) and Fan’s inequality

(1.2.2) to prove

tr (AT B) ≤ σ(A)T σ(B).

(c) If A lies in Sn
+, prove λ(A) = σ(A).

(d) By considering matrices of the form A+αI and B +βI, deduce
Fan’s inequality from von Neumann’s lemma (part (b)).



Chapter 3

Fenchel Duality

3.1 Subgradients and Convex Functions

We have already seen, in the First order sufficient condition (2.1.2), one
benefit of convexity in optimization: critical points of convex functions are
global minimizers. In this section we extend the types of functions we
consider in two important ways:

(i) We do not require f to be differentiable.

(ii) We allow f to take the value +∞.

Our derivation of first order conditions in Section 2.3 illustrates the
utility of considering nonsmooth functions even in the context of smooth
problems. Allowing the value +∞ lets us rephrase a problem like

inf{g(x) | x ∈ C}
as inf(g + δC), where the indicator function δC(x) is 0 for x in C and +∞
otherwise.

The domain of a function f : E→ (∞,+∞] is the set

dom f = {x ∈ E | f(x) < +∞}.
We say f is convex if it is convex on its domain, and proper if its domain
is nonempty. We call a function g : E → [−∞,+∞) concave if −g is
convex, although for reasons of simplicity we will consider primarily convex
functions. If a convex function f satisfies the stronger condition

f(λx + μy) ≤ λf(x) + μf(y) for all x, y ∈ E, λ, μ ∈ R+

we say f is sublinear. If f(λx) = λf(x) for all x in E and λ in R+ then
f is positively homogeneous: in particular this implies f(0) = 0. (Recall

33
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the convention 0 · (+∞) = 0.) If f(x + y) ≤ f(x) + f(y) for all x and y
in E then we say f is subadditive. It is immediate that if the function f
is sublinear then −f(x) ≤ f(−x) for all x in E. The lineality space of a
sublinear function f is the set

lin f = {x ∈ E | −f(x) = f(−x)}.

The following result (whose proof is left as an exercise) shows this set is a
subspace.

Proposition 3.1.1 (Sublinearity) A function f : E → (∞,+∞] is sub-
linear if and only if it is positively homogeneous and subadditive. For a
sublinear function f , the lineality space lin f is the largest subspace of E on
which f is linear.

As in the First order sufficient condition (2.1.2), it is easy to check
that if the point x̄ lies in the domain of the convex function f then the
directional derivative f ′(x̄; ·) is well-defined and positively homogeneous,
taking values in [−∞,+∞]. The core of a set C (written core (C)) is the
set of points x in C such that for any direction d in E, x + td lies in C for
all small real t. This set clearly contains the interior of C, although it may
be larger (Exercise 2).

Proposition 3.1.2 (Sublinearity of the directional derivative) If the
function f : E→ (∞,+∞] is convex then, for any point x̄ in core (dom f),
the directional derivative f ′(x̄; ·) is everywhere finite and sublinear.

Proof. For d in E and nonzero t in R, define

g(d; t) =
f(x̄ + td)− f(x̄)

t
.

By convexity we deduce, for 0 < t ≤ s ∈ R, the inequality

g(d;−s) ≤ g(d;−t) ≤ g(d; t) ≤ g(d; s).

Since x̄ lies in core (dom f), for small s > 0 both g(d;−s) and g(d; s) are
finite, so as t ↓ 0 we have

+∞ > g(d; s) ≥ g(d; t) ↓ f ′(x̄; d) ≥ g(d;−s) > −∞. (3.1.3)

Again by convexity we have, for any directions d and e in E and real t > 0,

g(d + e; t) ≤ g(d; 2t) + g(e; 2t).

Now letting t ↓ 0 gives subadditivity of f ′(x̄; ·). The positive homogeneity
is easy to check. �
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The idea of the derivative is fundamental in analysis because it allows
us to approximate a wide class of functions using linear functions. In opti-
mization we are concerned specifically with the minimization of functions,
and hence often a one-sided approximation is sufficient. In place of the gra-
dient we therefore consider subgradients, those elements φ of E satisfying

〈φ, x− x̄〉 ≤ f(x)− f(x̄) for all points x in E. (3.1.4)

We denote the set of subgradients (called the subdifferential) by ∂f(x̄),
defining ∂f(x̄) = ∅ for x̄ not in dom f . The subdifferential is always a closed
convex set. We can think of ∂f(x̄) as the value at x̄ of the “multifunction”
or “set-valued map” ∂f : E→ E. The importance of such maps is another
of our themes. We define its domain

dom ∂f = {x ∈ E | ∂f(x) �= ∅}
(Exercise 19). We say f is essentially strictly convex if it is strictly convex
on any convex subset of dom ∂f .

The following very easy observation suggests the fundamental signifi-
cance of subgradients in optimization.

Proposition 3.1.5 (Subgradients at optimality) For any proper func-
tion f : E→ (∞,+∞], the point x̄ is a (global) minimizer of f if and only
if the condition 0 ∈ ∂f(x̄) holds.

Alternatively put, minimizers of f correspond exactly to “zeroes” of ∂f .
The derivative is a local property whereas the subgradient definition

(3.1.4) describes a global property. The main result of this section shows
that the set of subgradients of a convex function is usually nonempty, and
that we can describe it locally in terms of the directional derivative. We
begin with another simple exercise.

Proposition 3.1.6 (Subgradients and directional derivatives) If the
function f : E → (∞,+∞] is convex and the point x̄ lies in dom f , then
an element φ of E is a subgradient of f at x̄ if and only if it satisfies
〈φ, ·〉 ≤ f ′(x̄; ·).

The idea behind the construction of a subgradient for a function f that
we present here is rather simple. We recursively construct a decreasing
sequence of sublinear functions which, after translation, minorize f . At
each step we guarantee one extra direction of linearity. The basic step is
summarized in the following exercise.

Lemma 3.1.7 Suppose that the function p : E → (∞,+∞] is sublinear
and that the point x̄ lies in core (dom p). Then the function q(·) = p′(x̄; ·)
satisfies the conditions
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(i) q(λx̄) = λp(x̄) for all real λ,

(ii) q ≤ p, and

(iii) lin q ⊃ lin p + span {x̄}.
With this tool we are now ready for the main result, which gives condi-

tions guaranteeing the existence of a subgradient. Proposition 3.1.6 showed
how to identify subgradients from directional derivatives; this next result
shows how to move in the reverse direction.

Theorem 3.1.8 (Max formula) If the function f : E → (∞,+∞] is
convex then any point x̄ in core (dom f) and any direction d in E satisfy

f ′(x̄; d) = max{〈φ, d〉 | φ ∈ ∂f(x̄)}. (3.1.9)

In particular, the subdifferential ∂f(x̄) is nonempty.

Proof. In view of Proposition 3.1.6, we simply have to show that for any
fixed d in E there is a subgradient φ satisfying 〈φ, d〉 = f ′(x̄; d). Choose
a basis {e1, e2, . . . , en} for E with e1 = d if d is nonzero. Now define
a sequence of functions p0, p1, . . . , pn recursively by p0(·) = f ′(x̄; ·), and
pk(·) = p′k−1(ek; ·) for k = 1, 2, . . . , n. We essentially show that pn(·) is the
required subgradient.

First note that, by Proposition 3.1.2, each pk is everywhere finite and
sublinear. By part (iii) of Lemma 3.1.7 we know

lin pk ⊃ lin pk−1 + span {ek} for k = 1, 2, . . . , n,

so pn is linear. Thus there is an element φ of E satisfying 〈φ, ·〉 = pn(·).
Part (ii) of Lemma 3.1.7 implies pn ≤ pn−1 ≤ . . . ≤ p0, so certainly, by

Proposition 3.1.6, any point x in E satisfies

pn(x− x̄) ≤ p0(x− x̄) = f ′(x̄;x− x̄) ≤ f(x)− f(x̄).

Thus φ is a subgradient. If d is zero then we have pn(0) = 0 = f ′(x̄; 0).
Finally, if d is nonzero then by part (i) of Lemma 3.1.7 we see

pn(d) ≤ p0(d) = p0(e1) = −p′0(e1;−e1) =
−p1(−e1) = −p1(−d) ≤ −pn(−d) = pn(d),

whence pn(d) = p0(d) = f ′(x̄; d). �

Corollary 3.1.10 (Differentiability of convex functions) Suppose the
function f : E → (∞,+∞] is convex and the point x̄ lies in core (dom f).
Then f is Gâteaux differentiable at x̄ exactly when f has a unique subgra-
dient at x̄ (in which case this subgradient is the derivative).
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We say the convex function f is essentially smooth if it is Gâteaux dif-
ferentiable on dom ∂f . (In this definition, we also require f to be “lower
semicontinuous”; we defer discussion of lower semicontinuity until we need
it, in Section 4.2.) We see later (Section 4.1, Exercise 21) that a function
is essentially smooth if and only if its subdifferential is always singleton or
empty.

The Max formula (Theorem 3.1.8) shows that convex functions typically
have subgradients. In fact this property characterizes convexity (Exercise
12). This leads to a number of important ways of recognizing convex func-
tions, one of which is the following example. Notice how a locally defined
analytic condition results in a global geometric conclusion. The proof is
outlined in the exercises.

Theorem 3.1.11 (Hessian characterization of convexity) Given an
open convex set S ⊂ Rn, suppose the continuous function f : cl S → R is
twice continuously differentiable on S. Then f is convex if and only if its
Hessian matrix is positive semidefinite everywhere on S.

Exercises and Commentary

The algebraic proof of the Max formula we follow here is due to [22]. The
exercises below develop several standard characterizations of convexity—
see for example [167]. The convexity of − log det (Exercise 21) may be
found in [99], for example. We shall see that the core and interior of a
convex set in fact coincide (Theorem 4.1.4).

1. Prove Proposition 3.1.1 (Sublinearity).

2. (Core versus interior) Consider the set in R2

D = {(x, y) | y = 0 or |y| ≥ x2}.

Prove 0 ∈ core (D) \ int (D).

3. Prove the subdifferential is a closed convex set.

4. (Subgradients and normal cones) If a point x̄ lies in a set C ⊂ E,
prove ∂δC(x̄) = NC(x̄).

5. Prove the following functions x ∈ R �→ f(x) are convex and calculate
∂f :

(a) |x|
(b) δR+

(c)
{−√x if x ≥ 0

+∞ otherwise
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(d)
⎧⎨⎩

0 if x < 0
1 if x = 0
+∞ otherwise.

6. Prove Proposition 3.1.6 (Subgradients and directional derivatives).

7. Prove Lemma 3.1.7.

8. (Subgradients of norm) Calculate ∂‖ · ‖. Generalize your result to
an arbitrary sublinear function.

9. (Subgradients of maximum eigenvalue) Prove

∂λ1(0) = {Y ∈ Sn
+ | trY = 1}.

10. ∗∗ For any vector μ in the cone Rn
≥, prove

∂〈μ, [·]〉(0) = conv (Pnμ)

(see Section 2.2, Exercise 9 (Schur-convexity)).

11. ∗ Define a function f : Rn → R by f(x1, x2, . . . , xn) = maxj{xj},
let x̄ = 0 and d = (1, 1, . . . , 1)T , and let ek = (1, 1, . . . , 1, 0, . . . , 0)T

(ending in (k − 1) zeroes). Calculate the functions pk defined in
the proof of Theorem 3.1.8 (Max formula), using Proposition 2.3.2
(Directional derivatives of max functions).

12. ∗ (Recognizing convex functions) Suppose the set S ⊂ Rn is
open and convex, and consider a function f : S → R. For points
x �∈ S, define f(x) = +∞.

(a) Prove ∂f(x) is nonempty for all x in S if and only if f is convex.
(Hint: For points u and v in S and real λ in [0, 1], use the
subgradient inequality (3.1.4) at the points x̄ = λu + (1 − λ)v
and x = u, v to check the definition of convexity.)

(b) Prove that if I ⊂ R is an open interval and g : I → R is
differentiable then g is convex if and only if g′ is nondecreasing
on I, and g is strictly convex if and only if g′ is strictly increasing
on I. Deduce that if g is twice differentiable then g is convex if
and only if g′′ is nonnegative on I, and g is strictly convex if g′′

is strictly positive on I.

(c) Deduce that if f is twice continuously differentiable on S then f
is convex if and only if its Hessian matrix is positive semidefinite
everywhere on S, and f is strictly convex if its Hessian matrix is
positive definite everywhere on S. (Hint: Apply part (b) to the
function g defined by g(t) = f(x + td) for small real t, points x
in S, and directions d in E.)
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(d) Find a strictly convex function f : (−1, 1) → R with f ′′(0) = 0.

(e) Prove that a continuous function h : cl S → R is convex if and
only if its restriction to S is convex. What about strictly convex
functions?

13. (Local convexity) Suppose the function f : Rn → R is twice con-
tinuously differentiable near 0 and ∇2f(0) is positive definite. Prove
f |δB is convex for some real δ > 0.

14. (Examples of convex functions) As we shall see in Section 4.2,
most natural convex functions occur in pairs. The table in Section
3.3 lists many examples on R. Use Exercise 12 to prove each function
f and f∗ in the table is convex.

15. (Examples of convex functions) Prove the following functions of
x ∈ R are convex:

(a) log
( sinh ax

sinhx

)
for a ≥ 1.

(b) log
(eax − 1

ex − 1

)
for a ≥ 1.

16. ∗ (Bregman distances [48]) For a function φ : E → (∞,+∞]
that is strictly convex and differentiable on int (domφ), define the
Bregman distance dφ : dom φ× int (dom φ)→ R by

dφ(x, y) = φ(x)− φ(y)− φ′(y)(x− y).

(a) Prove dφ(x, y) ≥ 0, with equality if and only if x = y.

(b) Compute dφ when φ(t) = t2/2 and when φ is the function p
defined in Exercise 27.

(c) Suppose φ is three times differentiable. Prove dφ is convex if
and only if −1/φ′′ is convex on int (dom φ).

(d) Extend the results above to the function

Dφ : (domφ)n × (int (dom φ))n → R

defined by Dφ(x, y) =
∑

i dφ(xi, yi).

17. ∗ (Convex functions on R2) Prove the following functions of x ∈
R2 are convex:

(a)
⎧⎨⎩

(x1 − x2)(log x1 − log x2) if x ∈ R2
++

0 if x = 0
+∞ otherwise.

(Hint: See Exercise 16.)
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(b) ⎧⎪⎪⎨⎪⎪⎩
x2

1

x2
if x2 > 0

0 if x = 0
+∞ otherwise.

18. ∗ Prove the function

f(x) =
{−(x1x2 . . . xn)1/n if x ∈ Rn

+

+∞ otherwise

is convex.

19. (Domain of subdifferential) If the function f : R2 → (∞,+∞] is
defined by

f(x1, x2) =
{

max{1−√x1, |x2|} if x1 ≥ 0
+∞ otherwise,

prove that f is convex but that dom ∂f is not convex.

20. ∗ (Monotonicity of gradients) Suppose that the set S ⊂ Rn is
open and convex and that the function f : S → R is differentiable.
Prove f is convex if and only if

〈∇f(x)−∇f(y), x− y〉 ≥ 0 for all x, y ∈ S,

and f is strictly convex if and only if the above inequality holds
strictly whenever x �= y. (You may use Exercise 12.)

21. ∗∗ (The log barrier) Use Exercise 20 (Monotonicity of gradients),
Exercise 10 in Section 2.1 and Exercise 8 in Section 1.2 to prove that
the function f : Sn

++ → R defined by f(X) = − log det X is strictly
convex. Deduce the uniqueness of the minimum volume ellipsoid in
Section 2.3, Exercise 8, and the matrix completion in Section 2.1,
Exercise 12.

22. Prove the function (2.2.5) is convex on Rn by calculating its Hessian.

23. ∗ If the function f : E→ (∞,+∞] is essentially strictly convex, prove
all distinct points x and y in E satisfy ∂f(x) ∩ ∂f(y) = ∅. Deduce
that f has at most one minimizer.

24. (Minimizers of essentially smooth functions) Prove that any
minimizer of an essentially smooth function f must lie in core (dom f).

25. ∗∗ (Convex matrix functions) Consider a matrix C in Sn
+.
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(a) For matrices X in Sn
++ and D in Sn, use a power series expansion

to prove
d2

dt2
tr (C(X + tD)−1)

∣∣∣
t=0

≥ 0.

(b) Deduce X ∈ Sn
++ �→ tr (CX−1) is convex.

(c) Prove similarly the function X ∈ Sn �→ tr (CX2) and the func-
tion X ∈ Sn

+ �→ −tr (CX1/2) are convex.

26. ∗∗ (Log-convexity) Given a convex set C ⊂ E, we say that a func-
tion f : C → R++ is log-convex if log f(·) is convex.

(a) Prove any log-convex function is convex, using Section 1.1, Ex-
ercise 9 (Composing convex functions).

(b) If a polynomial p : R → R has all real roots, prove 1/p is log-
convex on any interval on which p is strictly positive.

(c) One version of Hölder’s inequality states, for real p, q > 1 satis-
fying p−1 + q−1 = 1 and functions u, v : R+ → R,∫

uv ≤
(∫

|u|p
)1/p(∫

|v|q
)1/q

when the right hand side is well-defined. Use this to prove the
gamma function Γ : R→ R given by

Γ(x) =
∫ ∞

0

tx−1e−t dt

is log-convex.

27. ∗∗ (Maximum entropy [36]) Define a convex function p : R →
(−∞,+∞] by

p(u) =

⎧⎨⎩
u log u− u if u > 0
0 if u = 0
+∞ if u < 0

and a convex function f : Rn → (−∞,+∞] by

f(x) =
n∑

i=1

p(xi).

Suppose x̂ lies in the interior of Rn
+.

(a) Prove f is strictly convex on Rn
+ with compact level sets.

(b) Prove f ′(x; x̂ − x) = −∞ for any point x on the boundary of
Rn

+.
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(c) Suppose the map G : Rn → Rm is linear with Gx̂ = b. Prove
for any vector c in Rn that the problem

inf{f(x) + 〈c, x〉 |Gx = b, x ∈ Rn}

has a unique optimal solution x̄, lying in Rn
++.

(d) Use Corollary 2.1.3 (First order conditions for linear constraints)
to prove that some vector λ in Rm satisfies ∇f(x̄) = G∗λ − c,
and deduce x̄i = exp(G∗λ− c)i.

28. ∗∗ (DAD problems [36]) Consider the following example of Exercise
27 (Maximum entropy). Suppose the k × k matrix A has each entry
aij nonnegative. We say A has doubly stochastic pattern if there is
a doubly stochastic matrix with exactly the same zero entries as A.
Define a set Z = {(i, j)|aij > 0}, and let RZ denote the set of vectors
with components indexed by Z and RZ

+ denote those vectors in RZ

with all nonnegative components. Consider the problem

inf
∑

(i,j)∈Z(p(xij)− xij log aij)
subject to

∑
i:(i,j)∈Z xij = 1 for j = 1, 2, . . . , k∑
j:(i,j)∈Z xij = 1 for i = 1, 2, . . . , k

x ∈ RZ .

(a) Suppose A has doubly stochastic pattern. Prove there is a point
x̂ in the interior of RZ

+ which is feasible for the problem above.
Deduce that the problem has a unique optimal solution x̄, and,
for some vectors λ and μ in Rk, x̄ satisfies

x̄ij = aij exp(λi + μj) for (i, j) ∈ Z.

(b) Deduce that A has doubly stochastic pattern if and only if there
are diagonal matrices D1 and D2 with strictly positive diagonal
entries and D1AD2 doubly stochastic.

29. ∗∗ (Relativizing the Max formula) If f : E → (∞,+∞] is a
convex function then for points x̄ in ri (dom f) and directions d in E,
prove the subdifferential ∂f(x̄) is nonempty and

f ′(x̄; d) = sup{〈φ, d〉 | φ ∈ ∂f(x̄)},

with attainment when finite.
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3.2 The Value Function

In this section we describe another approach to the Karush–Kuhn–Tucker
conditions (2.3.8) in the convex case using the existence of subgradients we
established in the previous section. We consider an (inequality-constrained)
convex program

inf{f(x) | gi(x) ≤ 0 for i = 1, 2, . . . , m, x ∈ E}, (3.2.1)

where the functions f, g1, g2, . . . , gm : E→ (∞,+∞] are convex and satisfy
∅ �= dom f ⊂ ∩idom gi. Denoting the vector with components gi(x) by
g(x), the function L : E×Rm

+ → (∞,+∞] defined by

L(x;λ) = f(x) + λT g(x), (3.2.2)

is called the Lagrangian. A feasible solution is a point x in dom f satisfying
the constraints.

We should emphasize that the term “Lagrange multiplier” has different
meanings in different contexts. In the present context we say a vector λ̄ ∈
Rm

+ is a Lagrange multiplier vector for a feasible solution x̄ if x̄ minimizes
the function L( · ; λ̄) over E and λ̄ satisfies the complementary slackness
conditions: λ̄i = 0 whenever gi(x̄) < 0.

We can often use the following principle to solve simple optimization
problems.

Proposition 3.2.3 (Lagrangian sufficient conditions) If the point x̄
is feasible for the convex program (3.2.1) and there is a Lagrange multiplier
vector, then x̄ is optimal.

The proof is immediate, and in fact does not rely on convexity.
The Karush–Kuhn–Tucker conditions (2.3.8) are a converse to the above

result when the functions f, g1, g2, . . . , gm are convex and differentiable.
We next follow a very different, and surprising, route to this result, cir-
cumventing differentiability. We perturb the problem (3.2.1), and analyze
the resulting (optimal) value function v : Rm → [−∞,+∞], defined by the
equation

v(b) = inf{f(x) | g(x) ≤ b}. (3.2.4)

We show that Lagrange multiplier vectors λ̄ correspond to subgradients of
v (Exercise 9).

Our old definition of convexity for functions does not naturally extend
to functions h : E→ [−∞,+∞] (due to the possible occurrence of ∞−∞).
To generalize the definition we introduce the idea of the epigraph of h:

epi (h) = {(y, r) ∈ E×R | h(y) ≤ r}, (3.2.5)
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and we say h is a convex function if epi (h) is a convex set. An exercise
shows in this case that the domain

dom (h) = {y | h(y) < +∞}
is convex, and further that the value function v defined by equation (3.2.4)
is convex. We say h is proper if domh is nonempty and h never takes the
value −∞: if we wish to demonstrate the existence of subgradients for v
using the results in the previous section then we need to exclude −∞.

Lemma 3.2.6 If the function h : E → [−∞,+∞] is convex and some
point ŷ in core (dom h) satisfies h(ŷ) > −∞, then h never takes the value
−∞.

Proof. Suppose some point y in E satisfies h(y) = −∞. Since ŷ lies in
core (dom h), there is a real t > 0 with ŷ + t(ŷ − y) in dom (h), and hence
a real r with (ŷ + t(ŷ − y), r) in epi (h). Now for any real s, (y, s) lies in
epi (h), so we know(

ŷ,
r + ts

1 + t

)
=

1
1 + t

(ŷ + t(ŷ − y), r) +
t

1 + t
(y, s) ∈ epi (h),

Letting s→ −∞ gives a contradiction. �

In Section 2.3 we saw that the Karush–Kuhn–Tucker conditions needed
a regularity condition. In this approach we will apply a different condition,
known as the Slater constraint qualification, for the problem (3.2.1):

There exists x̂ in dom (f) with gi(x̂) < 0 for i = 1, 2, . . . , m. (3.2.7)

Theorem 3.2.8 (Lagrangian necessary conditions) Suppose that the
point x̄ in dom (f) is optimal for the convex program (3.2.1) and that the
Slater condition (3.2.7) holds. Then there is a Lagrange multiplier vector
for x̄.

Proof. Defining the value function v by equation (3.2.4), certainly v(0) >
−∞, and the Slater condition shows 0 ∈ core (dom v), so in particular
Lemma 3.2.6 shows that v never takes the value −∞. (An incidental con-
sequence, from Section 4.1, is the continuity of v at 0.) We now deduce the
existence of a subgradient −λ̄ of v at 0, by the Max formula (3.1.8).

Any vector b in Rm
+ obviously satisfies g(x̄) ≤ b, whence the inequality

f(x̄) = v(0) ≤ v(b) + λ̄T b ≤ f(x̄) + λ̄T b.

Hence, λ̄ lies in Rm
+ . Furthermore, any point x in dom f clearly satisfies

f(x) ≥ v(g(x)) ≥ v(0)− λ̄T g(x) = f(x̄)− λ̄T g(x).
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The case x = x̄, using the inequalities λ̄ ≥ 0 and g(x̄) ≤ 0, shows λ̄T g(x̄) =
0, which yields the complementary slackness conditions. Finally, all points
x in dom f must satisfy f(x) + λ̄T g(x) ≥ f(x̄) = f(x̄) + λ̄T g(x̄). �

In particular, if in the above result x̄ lies in core (dom f) and the func-
tions f, g1, g2, . . . , gm are differentiable at x̄ then

∇f(x̄) +
m∑

i=1

λ̄i∇gi(x̄) = 0,

so we recapture the Karush–Kuhn–Tucker conditions (2.3.8). In fact, in
this case it is easy to see that the Slater condition is equivalent to the
Mangasarian–Fromovitz constraint qualification (Assumption 2.3.7).

Exercises and Commentary

Versions of the Lagrangian necessary conditions above appeared in [182]
and [110]; for a survey see [158]. The approach here is analogous to [81].
The Slater condition first appeared in [173].

1. Prove the Lagrangian sufficient conditions (3.2.3).

2. Use the Lagrangian sufficient conditions (3.2.3) to solve the following
problems.

(a) inf x2
1 + x2

2 − 6x1 − 2x2 + 10
subject to 2x1 + x2 − 2 ≤ 0

x2 − 1 ≤ 0
x ∈ R2.

(b) inf −2x1 + x2

subject to x2
1 − x2 ≤ 0
x2 − 4 ≤ 0

x ∈ R2.

(c) inf x1 +
2
x2

subject to −x2 +
1
2
≤ 0

−x1 + x2
2 ≤ 0
x ∈ {(x1, x2) | x2 > 0}.

3. Given strictly positive reals a1, a2, . . . , an, c1, c2, . . . , cn and b, use the
Lagrangian sufficient conditions to solve the problem

inf
{ n∑

i=1

ci

xi

∣∣∣ n∑
i=1

aixi ≤ b, x ∈ Rn
++

}
.
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4. For a matrix A in Sn
++ and a real b > 0, use the Lagrangian sufficient

conditions to solve the problem

inf{− log det X | tr AX ≤ b, X ∈ Sn
++}.

You may use the fact that the objective function is convex with
derivative −X−1 (see Section 3.1, Exercise 21 (The log barrier)).

5. ∗ (Mixed constraints) Consider the convex program (3.2.1) with
some additional linear constraints 〈aj , x〉 = dj for vectors aj in E
and reals dj . By rewriting each equality as two inequalities (or other-
wise), prove a version of the Lagrangian sufficient conditions for this
problem.

6. (Extended convex functions)

(a) Give an example of a convex function that takes the values 0
and −∞.

(b) Prove the value function v defined by equation (3.2.4) is convex.

(c) Prove that a function h : E → [−∞,+∞] is convex if and only
if it satisfies the inequality

h(λx + (1− λ)y) ≤ λh(x) + (1− λ)h(y)

for any points x and y in domh (or E if h is proper) and any
real λ in (0, 1).

(d) Prove that if the function h : E → [−∞,+∞] is convex then
dom (h) is convex.

7. (Nonexistence of multiplier) For the function f : R → (∞,+∞]
defined by f(x) = −√x for x in R+ and +∞ otherwise, show there
is no Lagrange multiplier at the optimal solution of inf{f(x) |x ≤ 0}.

8. (Duffin’s duality gap) Consider the following problem (for real b):

inf{ex2 | ‖x‖ − x1 ≤ b, x ∈ R2}. (3.2.9)

(a) Sketch the feasible region for b > 0 and for b = 0.

(b) Plot the value function v.

(c) Show that when b = 0 there is no Lagrange multiplier for any
feasible solution. Explain why the Lagrangian necessary condi-
tions (3.2.8) do not apply.

(d) Repeat the above exercises with the objective function ex2 re-
placed by x2.
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9. ∗∗ (Karush–Kuhn–Tucker vectors [167]) Consider the convex
program (3.2.1). Suppose the value function v given by equation
(3.2.4) is finite at 0. We say the vector λ̄ in Rm

+ is a Karush–Kuhn–
Tucker vector if it satisfies v(0) = inf{L(x; λ̄) | x ∈ E}.
(a) Prove that the set of Karush–Kuhn–Tucker vectors is −∂v(0).

(b) Suppose the point x̄ is an optimal solution of problem (3.2.1).
Prove that the set of Karush–Kuhn–Tucker vectors coincides
with the set of Lagrange multiplier vectors for x̄.

(c) Prove the Slater condition ensures the existence of a Karush–
Kuhn–Tucker vector.

(d) Suppose λ̄ is a Karush–Kuhn–Tucker vector. Prove a feasible
point x̄ is optimal for problem (3.2.1) if and only if λ̄ is a La-
grange multiplier vector for x̄.

10. Prove the equivalence of the Slater and Mangasarian–Fromovitz con-
ditions asserted at the end of the section.

11. (Normals to epigraphs) For a function f : E → (∞,+∞] and a
point x̄ in core (dom f), calculate the normal cone Nepi f (x̄, f(x̄)).

12. ∗ (Normals to level sets) Suppose the function f : E → (∞,+∞]
is convex. If the point x̄ lies in core (dom f) and is not a minimizer
for f , prove that the normal cone at x̄ to the level set

C = {x ∈ E | f(x) ≤ f(x̄)}
is given by NC(x̄) = R+∂f(x̄). Is the assumption x̄ ∈ core (dom f)
and f(x̄) > inf f necessary?

13. ∗ (Subdifferential of max-function) Consider convex functions

g1, g2, . . . , gm : E→ (∞,+∞],

and define a function g(x) = maxi gi(x) for all points x in E. For a
fixed point x̄ in E, define the index set I = {i | gi(x̄) = g(x̄)} and let

C =
⋃{

∂
(∑

i∈I

λigi

)
(x̄)

∣∣∣ λ ∈ RI
+,

∑
i∈I

λi = 1
}

.

(a) Prove C ⊂ ∂g(x̄).

(b) Suppose 0 ∈ ∂g(x̄). By considering the convex program

inf
t∈R, x∈E

{t | gi(x)− t ≤ 0 for i = 1, 2, . . . , m},

prove 0 ∈ C.
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(c) Deduce ∂g(x̄) = C.

14. ∗∗ (Minimum volume ellipsoid) Denote the standard basis of Rn

by {e1, e2, . . . , en} and consider the minimum volume ellipsoid prob-
lem (see Section 2.3, Exercise 8)

inf − log det X
subject to ‖Xei‖2 − 1 ≤ 0 for i = 1, 2, . . . , n

X ∈ Sn
++.

Use the Lagrangian sufficient conditions (3.2.3) to prove X = I is the
unique optimal solution. (Hint: Use Section 3.1, Exercise 21 (The log
barrier).) Deduce the following special case of Hadamard’s inequality:
Any matrix (x1 x2 . . . xn) in Sn

++ satisfies

det(x1 x2 . . . xn) ≤ ‖x1‖‖x2‖ . . . ‖xn‖.
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3.3 The Fenchel Conjugate

In the next few sections we sketch a little of the elegant and concise theory
of Fenchel conjugation, and we use it to gain a deeper understanding of the
Lagrangian necessary conditions for convex programs (3.2.8). The Fenchel
conjugate of a function h : E → [−∞,+∞] is the function h∗ : E →
[−∞,+∞] defined by

h∗(φ) = sup
x∈E

{〈φ, x〉 − h(x)}.

The function h∗ is convex and if the domain of h is nonempty then h∗ never
takes the value −∞. Clearly the conjugacy operation is order-reversing :
for functions f, g : E→ [−∞,+∞], the inequality f ≥ g implies f∗ ≤ g∗.

Conjugate functions are ubiquitous in optimization. For example, we
have already seen the conjugate of the exponential, defined by

exp∗(t) =

⎧⎨⎩
t log t− t if t > 0
0 if t = 0
+∞ if t < 0

(see Section 3.1, Exercise 27). A rather more subtle example is the function
g : E→ (∞,+∞] defined, for points a0, a1, . . . , am in E, by

g(z) = inf
x∈Rm+1

{∑
i

exp∗(xi)
∣∣∣ ∑

i

xi = 1,
∑

i

xia
i = z

}
. (3.3.1)

The conjugate is the function we used in Section 2.2 to prove various the-
orems of the alternative:

g∗(y) = 1 + log
(∑

i

exp 〈ai, y〉
)

(3.3.2)

(see Exercise 7).
As we shall see later (Section 4.2), many important convex functions h

equal their biconjugates h∗∗. Such functions thus occur as natural pairs,
h and h∗. Table 3.1 shows some elegant examples on R, and Table 3.2
describes some simple transformations of these examples.

The following result summarizes the properties of two particularly im-
portant convex functions.

Proposition 3.3.3 (Log barriers) The functions lb : Rn → (∞,+∞]
and ld : Sn → (∞,+∞] defined by

lb (x) =
{−∑n

i=1 log xi if x ∈ Rn
++

+∞ otherwise
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f(x) = g∗(x) dom f g(y) = f∗(y) dom g

0 R 0 {0}

0 R+ 0 −R+

0 [−1, 1] |y| R

0 [0, 1] y+ R

|x|p/p, p > 1 R |y|q/q ( 1
p + 1

q = 1) R

|x|p/p, p > 1 R+ |y+|q/q ( 1
p + 1

q = 1) R

−xp/p, 0<p<1 R+ −(−y)q/q ( 1
p + 1

q = 1) −R++

√
1 + x2 R −

√
1− y2 [−1, 1]

− log x R++ −1− log(−y) −R++

cosh x R y sinh−1(y)−
√

1 + y2 R

− log(cos x) (−π
2 , π

2 ) y tan−1(y)− 1
2 log(1 + y2) R

log(cosh x) R y tanh−1(y) + 1
2 log(1− y2) (−1, 1)

ex R
{

y log y − y (y > 0)
0 (y = 0)

R+

log(1 + ex) R
{ y log y + (1− y) log(1− y)

(y ∈ (0, 1))
0 (y = 0, 1)

[0, 1]

− log(1− ex) R
{ y log y − (1 + y) log(1 + y)

(y > 0)
0 (y = 0)

R+

Table 3.1: Conjugate pairs of convex functions on R.



3.3 The Fenchel Conjugate 51

f = g∗ g = f∗

f(x) g(y)

h(ax) (a �= 0) h∗(y/a)

h(x + b) h∗(y)− by

ah(x) (a > 0) ah∗(y/a)

Table 3.2: Transformed conjugates.

and

ld (X) =
{− log det X if X ∈ Sn

++

+∞ otherwise

are essentially smooth, and strictly convex on their domains. They satisfy
the conjugacy relations

lb ∗(x) = lb (−x)− n for all x ∈ Rn, and
ld ∗(X) = ld (−X)− n for all X ∈ Sn.

The perturbed functions lb + 〈c, ·〉 and ld + 〈C, ·〉 have compact level sets
for any vector c ∈ Rn

++ and matrix C ∈ Sn
++, respectively.

(See Section 3.1, Exercise 21 (The log barrier), and Section 1.2, Exercise
14 (Level sets of perturbed log barriers); the conjugacy formulas are simple
calculations.) Notice the simple relationships lb = ld ◦Diag and ld = lb ◦λ
between these two functions.

The next elementary but important result relates conjugation with the
subgradient. The proof is an exercise.

Proposition 3.3.4 (Fenchel–Young inequality) Any points φ in E
and x in the domain of a function h : E→ (∞,+∞] satisfy the inequality

h(x) + h∗(φ) ≥ 〈φ, x〉.

Equality holds if and only if φ ∈ ∂h(x).

In Section 3.2 we analyzed the standard inequality-constrained convex
program by studying its optimal value under perturbations. A similar
approach works for another model for convex programming, particularly
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suited to problems with linear constraints. An interesting byproduct is a
convex analogue of the chain rule for differentiable functions,

∇(f + g ◦A)(x) = ∇f(x) + A∗∇g(Ax)

(for a linear map A). When A is the identity map we obtain a sum rule.
In this section we fix a Euclidean space Y. We denote the set of points

where a function g : Y → [−∞,+∞] is finite and continuous by cont g.

Theorem 3.3.5 (Fenchel duality and convex calculus) For given
functions f : E → (∞,+∞] and g : Y → (∞,+∞] and a linear map
A : E→ Y, let p, d ∈ [−∞,+∞] be primal and dual values defined, respec-
tively, by the Fenchel problems

p = inf
x∈E

{f(x) + g(Ax)} (3.3.6)

d = sup
φ∈Y

{−f∗(A∗φ)− g∗(−φ)}. (3.3.7)

These values satisfy the weak duality inequality p ≥ d. If, furthermore,
f and g are convex and satisfy the condition

0 ∈ core (dom g −Adom f) (3.3.8)

or the stronger condition

Adom f ∩ cont g �= ∅ (3.3.9)

then the values are equal (p = d), and the supremum in the dual problem
(3.3.7) is attained if finite.

At any point x in E, the calculus rule

∂(f + g ◦A)(x) ⊃ ∂f(x) + A∗∂g(Ax) (3.3.10)

holds, with equality if f and g are convex and either condition (3.3.8) or
(3.3.9) holds.

Proof. The weak duality inequality follows immediately from the Fenchel–
Young inequality (3.3.4). To prove equality we define an optimal value
function h : Y → [−∞,+∞] by

h(u) = inf
x∈E

{f(x) + g(Ax + u)}.

It is easy to check h is convex and domh = dom g − Adom f . If p is −∞
there is nothing to prove, while if condition (3.3.8) holds and p is finite
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then Lemma 3.2.6 and the Max formula (3.1.8) show there is a subgradient
−φ ∈ ∂h(0). Hence we deduce, for all u in Y and x in E, the inequalities

h(0) ≤ h(u) + 〈φ, u〉
≤ f(x) + g(Ax + u) + 〈φ, u〉
= {f(x)− 〈A∗φ, x〉}+ {g(Ax + u)− 〈−φ,Ax + u〉}.

Taking the infimum over all points u, and then over all points x, gives the
inequalities

h(0) ≤ −f∗(A∗φ)− g∗(−φ) ≤ d ≤ p = h(0).

Thus φ attains the supremum in problem (3.3.7), and p = d. An easy
exercise shows that condition (3.3.9) implies condition (3.3.8). The proof of
the calculus rule in the second part of the theorem is a simple consequence
of the first part (Exercise 9). �

The case of the Fenchel theorem above, when the function g is simply
the indicator function of a point, gives the following particularly elegant
and useful corollary.

Corollary 3.3.11 (Fenchel duality for linear constraints) Given any
function f : E → (∞,+∞], any linear map A : E → Y, and any element
b of Y, the weak duality inequality

inf
x∈E

{f(x) |Ax = b} ≥ sup
φ∈Y

{〈b, φ〉 − f∗(A∗φ)}

holds. If f is convex and b belongs to core (Adom f) then equality holds,
and the supremum is attained when finite.

A pretty application of the Fenchel duality circle of ideas is the calcu-
lation of polar cones. The (negative) polar cone of the set K ⊂ E is the
convex cone

K− = {φ ∈ E | 〈φ, x〉 ≤ 0 for all x ∈ K},

and the cone K−− is called the bipolar. A particularly important example
of the polar cone is the normal cone to a convex set C ⊂ E at a point x in
C, since NC(x) = (C − x)−.

We use the following two examples extensively; the proofs are simple
exercises.

Proposition 3.3.12 (Self-dual cones)

(Rn
+)− = −Rn

+ and (Sn
+)− = −Sn

+.
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The next result shows how the calculus rules above can be used to derive
geometric consequences.

Corollary 3.3.13 (Krein–Rutman polar cone calculus) Any cones
H ⊂ Y and K ⊂ E and linear map A : E→ Y satisfy

(K ∩A−1H)− ⊃ A∗H− + K−.

Equality holds if H and K are convex and satisfy H − AK = Y (or in
particular AK ∩ int H �= ∅).

Proof. Rephrasing the definition of the polar cone shows that for any
cone K ⊂ E, the polar cone K− is just ∂δK(0). The result now follows by
the Fenchel theorem above. �

The polarity operation arises naturally from Fenchel conjugation, since
for any cone K ⊂ E we have δK− = δ∗K , whence δK−− = δ∗∗K . The next
result, which is an elementary application of the Basic separation theo-
rem (2.1.6), leads naturally into the development of the next chapter by
identifying K−− as the closed convex cone generated by K.

Theorem 3.3.14 (Bipolar cone) The bipolar cone of any nonempty set
K ⊂ E is given by K−− = cl (conv (R+K)).

For example, we deduce immediately that the normal cone NC(x) to a
convex set C at a point x in C, and the (convex) tangent cone to C at x
defined by TC(x) = clR+(C − x), are polars of each other.

Exercise 20 outlines how to use these two results about cones to charac-
terize pointed cones (those closed convex cones K satisfying K∩−K = {0}).

Theorem 3.3.15 (Pointed cones) If K ⊂ E is a closed convex cone,
then K is pointed if and only if there is an element y of E for which the
set

C = {x ∈ K | 〈x, y〉 = 1}
is compact and generates K (that is, K = R+C).

Exercises and Commentary

The conjugation operation has been closely associated with the names
of Legendre, Moreau, and Rockafellar, as well as Fenchel; see [167, 70].
Fenchel’s original work is [76]. A good reference for properties of convex
cones is [151]; see also [20]. The log barriers of Proposition 3.3.3 play a key
role in interior point methods for linear and semidefinite programming—
see, for example, [148]. The self-duality of the positive semidefinite cone is
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due to Fejer [99]. Hahn–Banach extension (Exercise 13(e)) is a key tech-
nique in functional analysis; see, for example, [98]. Exercise 21 (Order
subgradients) is aimed at multicriteria optimization; a good reference is
[176]. Our approach may be found, for example, in [20]. The last three
functions g in Table 3.1 are respectively known as the Boltzmann–Shannon,
Fermi–Dirac, and Bose–Einstein entropies.

1. For each of the functions f in Table 3.1, check the calculation of f∗

and check f = f∗∗.

2. (Quadratics) For all matrices A in Sn
++, prove the function x ∈

Rn �→ xT Ax/2 is convex and calculate its conjugate. Use the order-
reversing property of the conjugacy operation to prove

A � B ⇔ B−1 � A−1 for A and B in Sn
++.

3. Verify the conjugates of the log barriers lb and ld claimed in Propo-
sition 3.3.3.

4. ∗ (Self-conjugacy) Consider functions f : E→ (∞,+∞].

(a) Prove f = f∗ if and only if f(x) = ‖x‖2/2 for all points x in E.
(b) Find two distinct functions f satisfying f(−x) = f∗(x) for all

points x in E.

5. ∗ (Support functions) The conjugate of the indicator function of
a nonempty set C ⊂ E, namely δ∗C : E → (∞,+∞], is called the
support function of C. Calculate it for the following sets:

(a) the halfspace {x | 〈a, x〉 ≤ b} for 0 �= a ∈ E and b ∈ R
(b) the unit ball B

(c) {x ∈ Rn
+ | ‖x‖ ≤ 1}

(d) the polytope conv {a1, a2, . . . , am} for given points a1, a2, . . . , am

in E
(e) a cone K

(f) the epigraph of a convex function f : E→ (∞,+∞]
(g) the subdifferential ∂f(x̄), where the function f : E → (∞,+∞]

is convex and the point x̄ lies in core (dom f)
(h) {Y ∈ Sn

+ | trY = 1}
6. Calculate the conjugate and biconjugate of the function

f(x1, x2) =

⎧⎪⎪⎨⎪⎪⎩
x2

1

2x2
+ x2 log x2 − x2 if x2 > 0

0 if x1 = x2 = 0
+∞ otherwise.
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7. ∗∗ (Maximum entropy example)

(a) Prove the function g defined by (3.3.1) is convex.

(b) For any point y in Rm+1, prove

g∗(y) = sup
x∈Rm+1

{∑
i

(xi〈ai, y〉 − exp∗(xi))
∣∣∣ ∑

i

xi = 1
}

.

(c) Apply Exercise 27 in Section 3.1 to deduce the conjugacy for-
mula (3.3.2).

(d) Compute the conjugate of the function of x ∈ Rm+1,{∑
i exp∗(xi) if

∑
i xi = 1

+∞ otherwise.

8. Prove the Fenchel–Young inequality.

9. ∗ (Fenchel duality and convex calculus) Fill in the details for
the proof of Theorem 3.3.5 as follows.

(a) Prove the weak duality inequality.

(b) Prove the inclusion (3.3.10).

Now assume f and g are convex.

(c) Prove the function h defined in the proof is convex with domain
dom g −Adom f .

(d) Prove the implication (3.3.9) ⇒ (3.3.8).

Finally, assume in addition that condition (3.3.8) holds.

(e) Suppose φ ∈ ∂(f + g ◦ A)(x̄). Use the first part of the theorem
and the fact that x̄ is an optimal solution of the problem

inf
x∈E

{(f(x)− 〈φ, x〉) + g(Ax)}

to deduce equality in part (b).

(f) Prove points x̄ ∈ E and φ̄ ∈ Y are optimal for problems (3.3.6)
and (3.3.7), respectively, if and only if they satisfy the conditions
A∗φ̄ ∈ ∂f(x̄) and −φ̄ ∈ ∂g(Ax̄).

10. (Normals to an intersection) If the point x lies in two convex
subsets C and D of E satisfying 0 ∈ core (C − D) (or in particular
C ∩ int D �= ∅), use Section 3.1, Exercise 4 (Subgradients and normal
cones) to prove

NC∩D(x) = NC(x) + ND(x).
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11. ∗ (Failure of convex calculus)

(a) Find convex functions f, g : R→ (∞,+∞] with

∂f(0) + ∂g(0) �= ∂(f + g)(0).

(Hint: Section 3.1, Exercise 5.)

(b) Find a convex function g : R2 → (∞,+∞] and a linear map
A : R→ R2 with A∗∂g(0) �= ∂(g ◦A)(0).

12. ∗ (Infimal convolution) If the functions f, g : E → (−∞,+∞] are
convex, we define the infimal convolution f � g : E→ [−∞,+∞] by

(f � g)(y) = inf
x
{f(x) + g(y − x)}.

(a) Prove f � g is convex. (On the other hand, if g is concave prove
so is f � g.)

(b) Prove (f � g)∗ = f∗ + g∗.

(c) If dom f ∩ cont g �= ∅, prove (f + g)∗ = f∗ � g∗.

(d) Given a nonempty set C ⊂ E, define the distance function by

dC(x) = inf
y∈C

‖x− y‖.

(i) Prove d2
C is a difference of convex functions, by observing

(dC(x))2 =
‖x‖2

2
−
(‖ · ‖2

2
+ δC

)∗
(x).

Now suppose C is convex.

(ii) Prove dC is convex and d∗C = δB + δ∗C .
(iii) For x in C prove ∂dC(x) = B ∩NC(x).
(iv) If C is closed and x �∈ C, prove

∇dC(x) = dC(x)−1(x− PC(x)),

where PC(x) is the nearest point to x in C.
(v) If C is closed, prove

∇d2
C

2
(x) = x− PC(x)

for all points x.
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(e) Define the Lambert W -function W : R+ → R+ as the inverse of
y ∈ R+ �→ yey. Prove the conjugate of the function

x ∈ R �→ exp∗(x) +
x2

2

is the function

y ∈ R �→ W (ey) +
(W (ey))2

2
.

13. ∗ (Applications of Fenchel duality)

(a) (Sandwich theorem) Let the functions f : E → (∞,+∞]
and g : Y → (∞,+∞] be convex and the map A : E → Y be
linear. Suppose f ≥ −g ◦ A and 0 ∈ core (dom g − Adom f)
(or Adom f ∩ cont g �= ∅). Prove there is an affine function
α : E→ R satisfying f ≥ α ≥ −g ◦A.

(b) Interpret the Sandwich theorem geometrically in the case when
A is the identity.

(c) (Pshenichnii–Rockafellar conditions [159]) If the convex
set C in E satisfies the condition C∩cont f �= ∅ (or the condition
intC∩dom f �= ∅), and if f is bounded below on C, use part (a)
to prove there is an affine function α ≤ f with infC f = infC α.
Deduce that a point x̄ minimizes f on C if and only if it satisfies
0 ∈ ∂f(x̄) + NC(x̄).

(d) Apply part (c) to the following two cases:

(i) C a single point {x0} ⊂ E
(ii) C a polyhedron {x |Ax ≤ b}, where b ∈ Rn = Y

(e) (Hahn–Banach extension) If the function f : E → R is
everywhere finite and sublinear, and for some linear subspace
L of E the function h : L → R is linear and dominated by f
(in other words f ≥ h on L), prove there is a linear function
α : E→ R, dominated by f , which agrees with h on L.

14. Fill in the details of the proof of the Krein–Rutman calculus (3.3.13).

15. ∗ (Bipolar theorem) For any nonempty set K ⊂ E, prove the
set cl (conv (R+K)) is the smallest closed convex cone containing K.
Deduce Theorem 3.3.14 (Bipolar cones).

16. ∗ (Sums of closed cones)

(a) Prove that any cones H,K ⊂ E satisfy (H + K)− = H− ∩K−.
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(b) Deduce that if H and K are closed convex cones then they satisfy
(H ∩K)− = cl (H− + K−), and prove that the closure can be
omitted under the condition K ∩ int H �= ∅.

In R3, define sets

H = {x | x2
1 + x2

2 ≤ x2
3, x3 ≤ 0} and

K = {x | x2 = −x3}.

(c) Prove H and K are closed convex cones.

(d) Calculate the polar cones H−, K−, and (H ∩K)−.

(e) Prove (1, 1, 1) ∈ (H ∩K)− \ (H− + K−), and deduce that the
sum of two closed convex cones is not necessarily closed.

17. ∗ (Subdifferential of a max-function) With the notation of Sec-
tion 3.2, Exercise 13, suppose

dom gj ∩
⋂

i∈I\{j}
cont gi �= ∅

for some index j in I. Prove

∂(max
i

gi)(x̄) = conv
⋃
i∈I

∂gi(x̄).

18. ∗ (Order convexity) Given a Euclidean space Y and a closed convex
cone S ⊂ Y, we write u ≤S v for points u and v in Y if v − u lies in
S.

(a) Identify the partial order ≤S in the following cases:

(i) S = {0}
(ii) S = Y
(iii) Y = Rn and S = Rn

+

Given a convex set C ⊂ E, we say a function F : C → Y is S-convex
if it satisfies

F (λx + μz) ≤S λF (x) + μF (z)

for all points x and z in E and nonnegative reals λ and μ satisfying
λ + μ = 1. If, furthermore, C is a cone and this inequality holds for
all λ and μ in R+ then we say F is S-sublinear.

(b) Identify S-convexity in the cases listed in part (a).

(c) Prove F is S-convex if and only if the function 〈φ, F (·)〉 is convex
for all elements φ of −S−.
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(d) Prove the following functions are Sn
+-convex:

(i) X ∈ Sn �→ X2

(ii) X ∈ Sn
++ �→ X−1

(iii) X ∈ Sn
+ �→ −X1/2

Hint: Use Exercise 25 in Section 3.1.

(e) Prove the function X ∈ S2 �→ X4 is not S2
+-convex. Hint:

Consider the matrices[
4 2
2 1

]
and

[
4 0
0 8

]
.

19. (Order convexity of inversion) For any matrix A in Sn
++, define

a function qA : Rn → R by qA(x) = xT Ax/2.

(a) Prove q∗A = qA−1 .

(b) For any other matrix B in Sn
++, prove 2(qA � qB) ≤ q(A+B)/2.

(See Exercise 12.)

(c) Deduce (A−1 + B−1)/2 � ((A + B)/2)−1.

20. ∗∗ (Pointed cones and bases) Consider a closed convex cone K
in E. A base for K is a convex set C with 0 �∈ cl C and K = R+C.
Using Exercise 16, prove the following properties are equivalent by
showing the implications

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) ⇒ (a).

(a) K is pointed.

(b) cl (K− −K−) = E.

(c) K− −K− = E.

(d) K− has nonempty interior. (Here you may use the fact that K−

has nonempty relative interior—see Section 1.1, Exercise 13.)

(e) There exists a vector y in E and real ε > 0 with 〈y, x〉 ≥ ε‖x‖
for all points x in K.

(f) K has a bounded base.

21. ∗∗ (Order-subgradients) This exercise uses the terminology of Ex-
ercise 18, and we assume the cone S ⊂ Y is pointed: S ∩ −S = {0}.
An element y of Y is the S-infimum of a set D ⊂ Y (written
y = infS D) if the conditions

(i) D ⊂ y + S and

(ii) D ⊂ z + S for some z in Y implies y ∈ z + S
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both hold.

(a) Verify that this notion corresponds to the usual infimum when
Y = R and S = R+.

(b) Prove every subset of Y has at most one S-infimum.

(c) Prove decreasing sequences in S converge:

x0 ≥S x1 ≥S x2 . . . ≥S 0

implies limn xn exists and equals infS(xn). (Hint: Prove first
that S ∩ (x0 − S) is compact using Section 1.1, Exercise 6 (Re-
cession cones).)

An S-subgradient of F at a point x in C is a linear map T : E → Y
satisfying

T (z − x) ≤S F (z)− F (x) for all z in C.

The set of S-subgradients is denoted ∂SF (x). Suppose now x ∈
core C. Generalize the arguments of Section 3.1 in the following steps.

(d) For any direction h in E, prove

∇SF (x;h) = inf
S
{t−1(F (x + th)− F (x)) | t > 0, x + th ∈ C}

exists and, as a function of h, is S-sublinear.

(e) For any S-subgradient T ∈ ∂SF (x) and direction h ∈ E, prove
Th ≤S ∇SF (x;h).

(f) Given h in E, prove there exists T in ∂SF (x) satisfying Th =
∇SF (x;h). Deduce the max formula

∇SF (x;h) = max{Th | T ∈ ∂SF (x)}
and, in particular, that ∂SF (x) is nonempty. (You should inter-
pret the “max” in the formula.)

(g) The function F is Gâteaux differentiable at x (with derivative
the linear map ∇F (x) : E→ Y) if

lim
t→0

t−1(F (x + th)− F (x)) = (∇F (x))h

holds for all h in E. Prove this is the case if and only if ∂SF (x)
is a singleton.

Now fix an element φ of −int (S−).

(h) Prove 〈φ, F (·)〉′(x;h) = 〈φ,∇SF (x;h)〉.
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(i) Prove F is Gâteaux differentiable at x if and only if 〈φ, F (·)〉 is
likewise.

22. ∗∗ (Linearly constrained examples) Prove Corollary 3.3.11 (Fen-
chel duality for linear constraints). Deduce duality theorems for the
following problems.

(a) Separable problems

inf
{ n∑

i=1

p(xi)
∣∣∣Ax = b

}
,

where the map A : Rn → Rm is linear, b ∈ Rm, and the function
p : R→ (∞,+∞] is convex, defined as follows:

(i) (Nearest points in polyhedrons) p(t) = t2/2 with do-
main R+.

(ii) (Analytic center) p(t) = − log t with domain R++.
(iii) (Maximum entropy) p = exp∗.

What happens if the objective function is replaced by
∑

i pi(xi)?

(b) The BFGS update problem in Section 2.1, Exercise 13.

(c) The DAD problem in Section 3.1, Exercise 28.

(d) Example (3.3.1).

23. ∗ (Linear inequalities) What does Corollary 3.3.11 (Fenchel duality
for linear constraints) become if we replace the constraint Ax = b by
Ax ∈ b + K where K ⊂ Y is a convex cone? Write down the dual
problem for Section 3.2, Exercise 2, part (a), solve it, and verify the
duality theorem.

24. (Symmetric Fenchel duality) For functions f, g : E→ [−∞,+∞],
define the concave conjugate g∗ : E→ [−∞,+∞] by

g∗(φ) = inf
x∈E

{〈φ, x〉 − g(x)}.

Prove
inf(f − g) ≥ sup(g∗ − f∗),

with equality if f is convex, g is concave, and

0 ∈ core (dom f − dom (−g)).
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25. ∗∗ (Divergence bounds [135])

(a) Prove the function

t ∈ R �→ 2(2 + t)(exp∗ t + 1)− 3(t− 1)2

is convex and is minimized when t = 1.

(b) For v in R++ and u in R+, deduce the inequality

3(u− v)2 ≤ 2(u + 2v)
(
u log

(u

v

)
− u + v

)
.

Now suppose the vector p in Rn
++ satisfies

∑n
1 pi = 1.

(c) If the vector q ∈ Rn
++ satisfies

∑n
1 qi = 1, use the Cauchy–

Schwarz inequality to prove the inequality( n∑
1

|pi − qi|
)2

≤ 3
n∑
1

(pi − qi)2

pi + 2qi
,

and deduce the inequality

n∑
1

pi log
(pi

qi

)
≥ 1

2

( n∑
1

|pi − qi|
)2

.

(d) Hence show the inequality

log n +
n∑
1

pi log pi ≥ 1
2

( n∑
1

∣∣∣pi − 1
n

∣∣∣)2

.

(e) Use convexity to prove the inequality

n∑
1

pi log pi ≤ log
n∑
1

p2
i .

(f) Deduce the bound

log n +
n∑
1

pi log pi ≤ max pi

min pi
− 1.





Chapter 4

Convex Analysis

4.1 Continuity of Convex Functions

We have already seen that linear functions are always continuous. More
generally, a remarkable feature of convex functions on E is that they must
be continuous on the interior of their domains. Part of the surprise is that
an algebraic/geometric assumption (convexity) leads to a topological con-
clusion (continuity). It is this powerful fact that guarantees the usefulness
of regularity conditions like Adom f ∩ cont g �= ∅ (3.3.9), which we studied
in the previous section.

Clearly an arbitrary function f is bounded above on some neighbour-
hood of any point in cont f . For convex functions the converse is also true,
and in a rather strong sense, needing the following definition. For a real
L ≥ 0, we say that a function f : E→ (∞,+∞] is Lipschitz (with constant
L) on a subset C of dom f if |f(x) − f(y)| ≤ L‖x − y‖ for any points x
and y in C. If f is Lipschitz on a neighbourhood of a point z then we say
that f is locally Lipschitz around z. If Y is another Euclidean space we
make analogous definitions for functions F : E → Y, with ‖F (x) − F (y)‖
replacing |f(x)− f(y)|.

Theorem 4.1.1 (Local boundedness) Let f : E → (∞,+∞] be a con-
vex function. Then f is locally Lipschitz around a point z in its domain if
and only if it is bounded above on a neighbourhood of z.

Proof. One direction is clear, so let us without loss of generality take
z = 0, f(0) = 0, and suppose f ≤ 1 on 2B; we shall deduce f is Lipschitz
on B.

Notice first the bound f ≥ −1 on 2B, since convexity implies f(−x) ≥
−f(x) on 2B. Now for any distinct points x and y in B, define α = ‖y−x‖
and fix a point w = y + α−1(y − x), which lies in 2B. By convexity we

65
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obtain

f(y)− f(x) ≤ 1
1 + α

f(x) +
α

1 + α
f(w)− f(x) ≤ 2α

1 + α
≤ 2‖y − x‖,

and the result now follows, since x and y may be interchanged. �

This result makes it easy to identify the set of points at which a convex
function on E is continuous. First we prove a key lemma.

Lemma 4.1.2 Let Δ be the simplex {x ∈ Rn
+ |

∑
xi ≤ 1}. If the function

g : Δ → R is convex then it is continuous on int Δ.

Proof. By the above result, we just need to show g is bounded above on
Δ. But any point x in Δ satisfies

g(x) = g
( n∑

1

xie
i + (1−∑

xi)0
)
≤

n∑
1

xig(ei) + (1−∑
xi)g(0)

≤ max{g(e1), g(e2), . . . , g(en), g(0)}
(where {e1, e2, . . . , en} is the standard basis in Rn). �

Theorem 4.1.3 (Convexity and continuity) Let f : E → (∞,+∞] be
a convex function. Then f is continuous (in fact locally Lipschitz) on the
interior of its domain.

Proof. We lose no generality if we restrict ourselves to the case E = Rn.
For any point x in int (dom f) we can choose a neighbourhood of x in dom f
that is a scaled down, translated copy of the simplex (since the simplex is
bounded with nonempty interior). The proof of the preceding lemma now
shows f is bounded above on a neighbourhood of x, and the result follows
by Theorem 4.1.1 (Local boundedness). �

Since it is easy to see that if the convex function f is locally Lipschitz
around a point x̄ in int (dom f) with constant L then ∂f(x̄) ⊂ LB, we
can also conclude that ∂f(x̄) is a nonempty compact convex set. Further-
more, this result allows us to conclude quickly that “all norms on E are
equivalent” (see Exercise 2).

We have seen that for a convex function f , the two sets cont f and
int (dom f) are identical. By contrast, our algebraic approach to the ex-
istence of subgradients involved core (dom f). It transpires that this is
the same set. To see this we introduce the idea of the gauge function
γC : E→ (∞,+∞] associated with a nonempty set C in E:

γC(x) = inf{λ ∈ R+ | x ∈ λC}.
It is easy to check γC is sublinear (and in particular convex) when C is
convex. Notice γB = ‖ · ‖.
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Theorem 4.1.4 (Core and interior) The core and the interior of any
convex set in E are identical and convex.

Proof. Any convex set C ⊂ E clearly satisfies int C ⊂ core C. If we
suppose, without loss of generality, 0 ∈ core C, then γC is everywhere
finite, and hence continuous by the previous result. We claim

int C = {x | γC(x) < 1}.

To see this, observe that the right hand side is contained in C, and is open
by continuity, and hence is contained in intC. The reverse inclusion is easy,
and we deduce int C is convex. Finally, since γC(0) = 0, we see 0 ∈ int C,
which completes the proof. �

The conjugate of the gauge function γC is the indicator function of a
set C◦ ⊂ E defined by

C◦ = {φ ∈ E | 〈φ, x〉 ≤ 1 for all x ∈ C}.

We call C◦ the polar set for C. Clearly it is a closed convex set containing
0, and when C is a cone it coincides with the polar cone C−. The following
result therefore generalizes the Bipolar cone theorem (3.3.14).

Theorem 4.1.5 (Bipolar set) The bipolar set of any subset C of E is
given by

C◦◦ = cl (conv (C ∪ {0})).

The ideas of polarity and separating hyperplanes are intimately related.
The separation-based proof of the above result (Exercise 5) is a good ex-
ample, as is the next theorem, whose proof is outlined in Exercise 6.

Theorem 4.1.6 (Supporting hyperplane) Suppose that the convex set
C ⊂ E has nonempty interior and that the point x̄ lies on the boundary of
C. Then there is a supporting hyperplane to C at x̄: there is a nonzero
element a of E satisfying 〈a, x〉 ≥ 〈a, x̄〉 for all points x in C.

(The set {x ∈ E | 〈a, x− x̄〉 = 0} is the supporting hyperplane.)

To end this section we use this result to prove a remarkable theorem
of Minkowski describing an extremal representation of finite-dimensional
compact convex sets. An extreme point of a convex set C ⊂ E is a point x
in C whose complement C \ {x} is convex. We denote the set of extreme
points by extC. We start with another exercise.

Lemma 4.1.7 Given a supporting hyperplane H of a convex set C ⊂ E,
any extreme point of C ∩H is also an extreme point of C.
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Our proof of Minkowski’s theorem depends on two facts: first, any
convex set that spans E and contains the origin has nonempty interior (see
Section 1.1, Exercise 13(b)); second, we can define the dimension of a set
C ⊂ E (written dim C) as the dimension of span (C−x) for any point x in
C (see Section 1.1, Exercise 12 (Affine sets)).

Theorem 4.1.8 (Minkowski) Any compact convex set C ⊂ E is the con-
vex hull of its extreme points.

Proof. Our proof is by induction on dimC; clearly the result holds when
dim C = 0. Assume the result holds for all sets of dimension less than
dim C. We will deduce it for the set C.

By translating C and redefining E, we can assume 0 ∈ C and spanC =
E. Thus C has nonempty interior.

Given any point x in bdC, the Supporting hyperplane theorem (4.1.6)
shows C has a supporting hyperplane H at x. By the induction hypothesis
applied to the set C ∩H we deduce, using Lemma 4.1.7,

x ∈ conv (ext (C ∩H)) ⊂ conv (ext C).

Thus we have proved bdC ⊂ conv (ext C), so conv (bdC) ⊂ conv (ext C).
But since C is compact it is easy to see conv (bd C) = C, and the result
now follows. �

Exercises and Commentary

An easy introduction to convex analysis in finite dimensions is [181]. The
approach we adopt here (and in the exercises) extends easily to infinite
dimensions; see [98, 131, 153]. The Lipschitz condition was introduced
in [129]. Minkowski’s theorem first appeared in [141, 142]. The Open
mapping theorem (Exercise 9) is another fundamental tool of functional
analysis [98]. For recent references on Pareto minimization (Exercise 12),
see [44].

1. ∗ (Points of continuity) Suppose the function f : E→ (∞,+∞] is
convex.

(a) Use the Local boundedness theorem (4.1.1) to prove that f is
continuous and finite at x if and only if it minorizes a function
g : E→ (∞,+∞] which is continuous and finite at x.

(b) Suppose f is continuous at some point y in dom f . Use part
(a) to prove directly that f is continuous at any point z in
core (dom f). (Hint: Pick a point u in dom f such that z =
δy + (1 − δ)u for some real δ ∈ (0, 1); now observe that the
function

x ∈ E �→ δ−1(f(δx + (1− δ)u)− (1− δ)f(u))
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minorizes f .)

(c) Prove that f is continuous at a point x in dom f if and only if

(x, f(x) + ε) ∈ int (epi f)

for some (all) real ε > 0.

(d) Assuming 0 ∈ cont f , prove f∗ has bounded level sets. Deduce
that the function X ∈ Sn �→ 〈C,X〉+ ld (X) has compact level
sets for any matrix C in Sn

++.

(e) Assuming x ∈ cont f , prove ∂f(x) is a nonempty compact con-
vex set.

2. (Equivalent norms) A norm is a sublinear function |‖·|‖ : E→ R+

that satisfies |‖x|‖ = |‖ − x|‖ > 0 for all nonzero points x in E. By
considering the function |‖ · |‖ on the standard unit ball B, prove any
norm |‖ · |‖ is equivalent to the Euclidean norm ‖ · ‖: that is, there
are constants K ≥ k > 0 with k‖x‖ ≤ |‖x|‖ ≤ K‖x‖ for all x.

3. (Examples of polars) Calculate the polars of the following sets:

(a) conv
(
B ∪ {(1, 1), (−1,−1)}) ⊂ R2.

(b)
{

(x, y) ∈ R2
∣∣∣ y ≥ b +

x2

2

}
(b ∈ R).

4. (Polar sets and cones) Suppose the set C ⊂ E is closed, convex,
and contains 0. Prove the convex cones in E×R

clR+(C × {1}) and clR+(C◦ × {−1})

are mutually polar.

5. ∗ (Polar sets) Suppose C is a nonempty subset of E.

(a) Prove γ∗
C = δC◦ .

(b) Prove C◦ is a closed convex set containing 0.

(c) Prove C ⊂ C◦◦.

(d) If C is a cone, prove C◦ = C−.

(e) For a subset D of E, prove C ⊂ D implies D◦ ⊂ C◦.

(f) Prove C is bounded if and only if 0 ∈ int C◦.

(g) For any closed halfspace H ⊂ E containing 0, prove H◦◦ = H.

(h) Prove Theorem 4.1.5 (Bipolar set).
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6. ∗ (Polar sets and strict separation) Fix a nonempty set C in E.

(a) For points x in intC and φ in C◦, prove 〈φ, x〉 < 1.

(b) Assume further that C is a convex set. Prove γC is sublinear.

(c) Assume in addition 0 ∈ core C. Deduce

cl C = {x | γC(x) ≤ 1}.

(d) Finally, suppose in addition that D ⊂ E is a convex set disjoint
from the interior of C. By considering the Fenchel problem
inf{δD +γC}, prove there is a closed halfspace containing D but
disjoint from the interior of C.

7. ∗ (Polar calculus [23]) Suppose C and D are subsets of E.

(a) Prove (C ∪D)◦ = C◦ ∩D◦.

(b) If C and D are convex, prove

conv (C ∪D) =
⋃

λ∈[0,1]

(λC + (1− λ)D).

(c) If C is a convex cone and the convex set D contains 0, prove

C + D ⊂ cl conv (C ∪D).

Now suppose the closed convex sets K and H of E both contain 0.

(d) Prove (K ∩H)◦ = cl conv (K◦ ∪H◦).

(e) If furthermore K is a cone, prove (K ∩H)◦ = cl (K◦ + H◦).

8. ∗∗ (Polar calculus [23]) Suppose P is a cone in E and C is a
nonempty subset of a Euclidean space Y.

(a) Prove (P × C)◦ = P ◦ × C◦.

(b) If furthermore C is compact and convex (possibly not containing
0), and K is a cone in E×Y, prove

(K ∩ (P × C))◦ = (K ∩ (P × C◦◦))◦.

(c) If furthermore K and P are closed and convex, use Exercise 7
to prove

(K ∩ (P × C))◦ = cl (K◦ + (P ◦ × C◦)).

(d) Find a counterexample to part (c) when C is unbounded.



4.1 Continuity of Convex Functions 71

9. ∗ (Open mapping theorem) Suppose the linear map A : E → Y
is surjective.

(a) Prove any set C ⊂ E satisfies Acore C ⊂ core AC.
(b) Deduce A is an open map: that is, the image of any open set is

open.
(c) Prove another condition ensuring condition (3.3.8) in the Fenchel

theorem is that there is a point x̂ in int (dom f) with Ax̂ in dom g
and A is surjective. Prove similarly that a sufficient condition
for Fenchel duality with linear constraints (Corollary 3.3.11) to
hold is A surjective and b ∈ A(int (dom f)).

(d) Deduce that any cones H ⊂ Y and K ⊂ E, and any surjective
linear map A : E → Y satisfy (K ∩ A−1H)− = A∗H− + K−,
providing H ∩A(int K) �= ∅.

10. ∗ (Conical absorption)

(a) If the set A ⊂ E is convex, the set C ⊂ E is bounded, and
R+A = E, prove there exists a real δ > 0 such that δC ⊂ A.

Now define two sets in S2
+ by

A =
{[

y x
x z

]
∈ S2

+

∣∣∣∣ |x| ≤ y2/3

}
, and

C = {X ∈ S2
+ | tr X ≤ 1}.

(b) Prove that both A and C are closed, convex, and contain 0, and
that C is bounded.

(c) Prove R+A = S2
+ = R+C.

(d) Prove there is no real δ > 0 such that δC ⊂ A.

11. (Hölder’s inequality) This question develops an alternative ap-
proach to the theory of the p-norm ‖ · ‖p defined in Section 2.3, Ex-
ercise 6.

(a) Prove p−1‖x‖p
p is a convex function, and deduce the set

Bp = {x | ‖x‖p ≤ 1}
is convex.

(b) Prove the gauge function γBp
(·) is exactly ‖·‖p, and deduce ‖·‖p

is convex.
(c) Use the Fenchel–Young inequality (3.3.4) to prove that any vec-

tors x and φ in Rn satisfy the inequality

p−1‖x‖p
p + q−1‖φ‖q

q ≥ 〈φ, x〉.
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(d) Assuming ‖u‖p = ‖v‖q = 1, deduce 〈u, v〉 ≤ 1, and hence prove
that any vectors x and φ in Rn satisfy the inequality

〈φ, x〉 ≤ ‖φ‖q‖x‖p.

(e) Calculate B◦
p .

12. ∗ (Pareto minimization) We use the notation of Section 3.3, Exer-
cise 18 (Order convexity), and we assume the cone S is pointed and
has nonempty interior. Given a set D ⊂ Y, we say a point y in D is
a Pareto minimum of D (with respect to S) if

(y −D) ∩ S = {0},

and a weak minimum if

(y −D) ∩ int S = ∅.

(a) Prove y is a Pareto (respectively weak) minimum of D if and
only if it is a Pareto (respectively weak) minimum of D + S.

(b) The map X ∈ Sn
+ �→ X1/2 is Sn

+-order-preserving (Section 1.2,
Exercise 5). Use this fact to prove, for any matrix Z in Sn

+, the
unique Pareto minimum of the set

{X ∈ Sn |X2 � Z2}

with respect to Sn
+ is Z.

For a convex set C ⊂ E and an S-convex function F : C → Y, we
say a point x̄ in C is a Pareto (respectively, weak) minimum of the
vector optimization problem

inf{F (x) | x ∈ C} (4.1.9)

if F (x̄) is a Pareto (respectively weak) minimum of F (C).

(c) Prove F (C) + S is convex.

(d) (Scalarization) Suppose x̄ is a weak minimum of the problem
(4.1.9). By separating (F (x̄)− F (C)− S) and intS (using Ex-
ercise 6), prove there is a nonzero element φ of −S− such that
x̄ solves the scalarized convex optimization problem

inf{〈φ, F (x)〉 | x ∈ C}.

Conversely, show any solution of this problem is a weak mini-
mum of (4.1.9).
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13. (Existence of extreme points) Prove any nonempty compact con-
vex set C ⊂ E has an extreme point, without using Minkowski’s
theorem, by considering the furthest point in C from the origin.

14. Prove Lemma 4.1.7.

15. For any compact convex set C ⊂ E, prove C = conv (bdC).

16. ∗ (A converse of Minkowski’s theorem) Suppose D is a subset
of a compact convex set C ⊂ E satisfying cl (conv D) = C. Prove
ext C ⊂ cl D.

17. ∗ (Extreme points) Consider a compact convex set C ⊂ E.

(a) If dimE ≤ 2, prove the set ext C is closed.
(b) If E is R3 and C is the convex hull of the set

{(x, y, 0) | x2 + y2 = 1} ∪ {(1, 0, 1), (1, 0,−1)},
prove ext C is not closed.

18. ∗ (Exposed points) A point x in a convex set C ⊂ E is called
exposed if there is an element φ of E such that 〈φ, x〉 > 〈φ, z〉 for all
points z �= x in C.

(a) Prove any exposed point is an extreme point.
(b) Find a set in R2 with an extreme point which is not exposed.

19. ∗∗ (Tangency conditions) Let Y be a Euclidean space. Fix a
convex set C in E and a point x in C.

(a) Show x ∈ core C if and only if TC(x) = E. (You may use
Exercise 20(a).)

(b) For a linear map A : E→ Y, prove ATC(x) ⊂ TAC(Ax).
(c) For another convex set D in Y and a point y in D, prove

NC×D(x, y) = NC(x)×ND(y) and
TC×D(x, y) = TC(x)× TD(y).

(d) Suppose the point x also lies in the convex set G ⊂ E. Prove
TC(x)− TG(x) ⊂ TC−G(0), and deduce

0 ∈ core (C −G) ⇔ TC(x)− TG(x) = E.

(e) Show that the condition (3.3.8) in the Fenchel theorem can be
replaced by the condition

Tdom g(Ax)−ATdom f (x) = Y

for an arbitrary point x in dom f ∩A−1dom g.
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20. ∗∗ (Properties of the relative interior) (We use Exercise 9 (Open
mapping theorem), as well as Section 1.1, Exercise 13.)

(a) Let D be a nonempty convex set in E. Prove D is a linear
subspace if and only if clD is a linear subspace. (Hint: riD �= ∅.)

(b) For a point x in a convex set C ⊂ E, prove the following prop-
erties are equivalent:

(i) x ∈ riC.
(ii) The tangent cone clR+(C − x) is a linear subspace.
(iii) The normal cone NC(x) is a linear subspace.
(iv) y ∈ NC(x) ⇒ −y ∈ NC(x).

(c) For a convex set C ⊂ E and a linear map A : E → Y, prove
AriC ⊃ riAC, and deduce

AriC = riAC.

(d) Suppose U and V are convex sets in E. Deduce

ri (U − V ) = riU − riV.

(e) Apply Section 3.1, Exercise 29 (Relativizing the Max formula)
to conclude that the condition (3.3.8) in the Fenchel theorem
(3.3.5) can be replaced by

ri (dom g) ∩Ari (dom f) �= ∅.

(f) Suppose the function f : E → (∞,+∞] is bounded below on
the convex set C ⊂ E, and riC ∩ ri (dom f) �= ∅. Prove there is
an affine function α ≤ f with infC f = infC α.

21. ∗∗ (Essential smoothness) For any convex function f and any point
x ∈ bd(dom f), prove ∂f(x) is either empty or unbounded. Deduce
that a function is essentially smooth if and only if its subdifferential
is always singleton or empty.

22. ∗∗ (Birkhoff’s theorem [15]) We use the notation of Section 1.2.

(a) Prove Pn = {(zij) ∈ Γn | zij = 0 or 1 for all i, j}.
(b) Prove Pn ⊂ ext (Γn).

(c) Suppose (zij) ∈ Γn \Pn. Prove there exist sequences of distinct
indices i1, i2, . . . , im and j1, j2, . . . , jm such that

0 < zirjr
, zir+1jr

< 1 (r = 1, 2, . . . ,m)
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(where im+1 = i1). For these sequences, show the matrix (z′ij)
defined by

z′ij − zij =

⎧⎨⎩
ε if (i, j) = (ir, jr) for some r
− ε if (i, j) = (ir+1, jr) for some r
0 otherwise

is doubly stochastic for all small real ε. Deduce (zij) �∈ ext (Γn).

(d) Deduce ext (Γn) = Pn. Hence prove Birkhoff’s theorem (1.2.5).

(e) Use Carathéodory’s theorem (Section 2.2, Exercise 5) to bound
the number of permutation matrices needed to represent a dou-
bly stochastic matrix in Birkhoff’s theorem.
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4.2 Fenchel Biconjugation

We have seen that many important convex functions h : E → (∞,+∞]
agree identically with their biconjugates h∗∗. Table 3.1 in Section 3.3 lists
many one-dimensional examples, and the Bipolar cone theorem (3.3.14)
shows δK = δ∗∗K for any closed convex cone K. In this section we isolate
exactly the circumstances when h = h∗∗.

We can easily check that h∗∗ is a minorant of h (that is, h∗∗ ≤ h
pointwise). Our specific aim in this section is to find conditions on a point
x in E guaranteeing h∗∗(x) = h(x). This becomes the key relationship
for the study of duality in optimization. As we see in this section, the
conditions we need are both geometric and topological. This is neither
particularly surprising or stringent. Since any conjugate function must
have a closed convex epigraph, we cannot expect a function to agree with
its biconjugate unless the function itself has a closed convex epigraph. On
the other hand, this restriction is not particularly strong since, as we saw in
the previous section, convex functions automatically have strong continuity
properties.

We say the function h : E → [−∞,+∞] is closed if its epigraph is a
closed set. We say h is lower semicontinuous at a point x in E if

lim inf h(xr)
(

= lim
s→∞ inf

r≥s
h(xr)

) ≥ h(x)

for any sequence xr → x. A function h : E → [−∞,+∞] is lower semi-
continuous if it is lower semicontinuous at every point in E; this is in fact
equivalent to h being closed, which in turn holds if and only if h has closed
level sets. Any two functions h and g satisfying h ≤ g (in which case we
call h a minorant of g) must satisfy h∗ ≥ g∗, and hence h∗∗ ≤ g∗∗.

Theorem 4.2.1 (Fenchel biconjugation) The three properties below are
equivalent for any function h : E→ (−∞,+∞]:

(i) h is closed and convex.

(ii) h = h∗∗.

(iii) For all points x in E,

h(x) = sup{α(x) | α an affine minorant of h}.

Hence the conjugacy operation induces a bijection between proper closed
convex functions.

Proof. We can assume h is proper. Since conjugate functions are always
closed and convex we know property (ii) implies property (i). Also, any
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affine minorant α of h satisfies α = α∗∗ ≤ h∗∗ ≤ h, and hence property (iii)
implies (ii). It remains to show (i) implies (iii).

Fix a point x0 in E. Assume first x0 ∈ cl (dom h), and fix any real
r < h(x0). Since h is closed, the set {x | h(x) > r} is open, so there is an
open convex neighbourhood U of x0 with h(x) > r on U . Now note that
the set dom h ∩ cont δU is nonempty, so we can apply the Fenchel theorem
(3.3.5) to deduce that some element φ of E satisfies

r ≤ inf
x
{h(x) + δU (x)} = {−h∗(φ)− δ∗U (−φ)}. (4.2.2)

Now define an affine function α(·) = 〈φ, ·〉+ δ∗U (−φ) + r. Inequality (4.2.2)
shows that α minorizes h, and by definition we know α(x0) ≥ r. Since r
was arbitrary, (iii) follows at the point x = x0.

Suppose on the other hand x0 does not lie in cl (dom h). By the Basic
separation theorem (2.1.6) there is a real b and a nonzero element a of E
satisfying

〈a, x0〉 > b ≥ 〈a, x〉 for all points x in dom h.

The argument in the preceding paragraph shows there is an affine minorant
α of h. But now the affine function α(·) + k(〈a, ·〉 − b) is a minorant of h
for all k = 1, 2, . . . . Evaluating these functions at x = x0 proves property
(iii) at x0. The final remark follows easily. �

We immediately deduce that a closed convex function h : E → [−∞,+∞]
equals its biconjugate if and only if it is proper or identically +∞ or −∞.

Restricting the conjugacy bijection to finite sublinear functions gives
the following result.

Corollary 4.2.3 (Support functions) Fenchel conjugacy induces a bi-
jection between everywhere-finite sublinear functions and nonempty com-
pact convex sets in E:

(a) If the set C ⊂ E is compact, convex and nonempty then the support
function δ∗C is everywhere finite and sublinear.

(b) If the function h : E→ R is sublinear then h∗ = δC , where the set

C = {φ ∈ E | 〈φ, d〉 ≤ h(d) for all d ∈ E}

is nonempty, compact, and convex.

Proof. See Exercise 9. �

Conjugacy offers a convenient way to recognize when a convex function
has bounded level sets.
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Theorem 4.2.4 (Moreau–Rockafellar) A closed convex proper func-
tion on E has bounded level sets if and only if its conjugate is continuous
at 0.

Proof. By Proposition 1.1.5, a convex function f : E → (∞,+∞] has
bounded level sets if and only if it satisfies the growth condition

lim inf
‖x‖→∞

f(x)
‖x‖ > 0.

Since f is closed we can check that this is equivalent to the existence of
a minorant of the form ε‖ · ‖ + k ≤ f(·) for some constants ε > 0 and k.
Taking conjugates, this is in turn equivalent to f∗ being bounded above
near 0, and the result then follows by Theorem 4.1.1 (Local boundedness).

�

Strict convexity is also easy to recognize via conjugacy, using the fol-
lowing result (see Exercise 19 for the proof).

Theorem 4.2.5 (Strict-smooth duality) A proper closed convex func-
tion on E is essentially strictly convex if and only if its conjugate is essen-
tially smooth.

What can we say about h∗∗ when the function h : E → [−∞,+∞] is
not necessarily closed? To answer this question we introduce the idea of
the closure of h, denoted clh, defined by

epi (cl h) = cl (epi h). (4.2.6)

It is easy to verify that clh is then well-defined. The definition immediately
implies clh is the largest closed function minorizing h. Clearly if h is
convex, so is cl h. We leave the proof of the next simple result as an
exercise.

Proposition 4.2.7 (Lower semicontinuity and closure) If a function
f : E → [−∞,+∞] is convex then it is lower semicontinuous at a point x
where it is finite if and only if f(x) = (cl f)(x). In this case f is proper.

We can now answer the question we posed at the beginning of the
section.

Theorem 4.2.8 Suppose the function h : E→ [−∞,+∞] is convex.

(a) If h∗∗ is somewhere finite then h∗∗ = cl h.

(b) For any point x where h is finite, h(x) = h∗∗(x) if and only if h is
lower semicontinuous at x.



4.2 Fenchel Biconjugation 79

Proof. Observe first that since h∗∗ is closed and minorizes h, we know
h∗∗ ≤ clh ≤ h. If h∗∗ is somewhere finite then h∗∗ (and hence cl h) is never
−∞ by applying Proposition 4.2.7 (Lower semicontinuity and closure) to
h∗∗. On the other hand, if h is finite and lower semicontinuous at x then
Proposition 4.2.7 shows cl h(x) is finite, and applying the proposition again
to cl h shows once more that cl h is never −∞. In either case, the Fenchel
biconjugation theorem implies clh = (cl h)∗∗ ≤ h∗∗ ≤ cl h, so cl h = h∗∗.
Part (a) is now immediate, while part (b) follows by using Proposition 4.2.7
once more. �

Any proper convex function h with an affine minorant has its biconju-
gate h∗∗ somewhere finite. (In fact, because E is finite-dimensional, h∗∗ is
somewhere finite if and only if h is proper—see Exercise 25.)

Exercises and Commentary

Our approach in this section again extends easily to infinite dimensions;
see for example [70]. Our definition of a closed function is a little different
to that in [167], although they coincide for proper functions. The original
version of von Neumann’s minimax theorem (Exercise 16) had both the
sets C and D simplices. The proof was by Brouwer’s fixed point theorem
(8.1.3). The Fisher information function introduced in Exercise 24 is useful
in signal reconstruction [35]. The inequality in Exercise 20 (Logarithmic
homogeneity) is important for interior point methods [148, Prop. 2.4.1].

1. Prove that any function h : E→ [−∞,+∞] satisfies h∗∗ ≤ h.

2. (Lower semicontinuity and closedness) For any given function
h : E→ [−∞,+∞], prove the following properties are equivalent:

(a) h is lower semicontinuous.

(b) h has closed level sets.

(c) h is closed.

Prove that such a function has a global minimizer on any nonempty,
compact set.

3. (Pointwise maxima) If the functions fγ : E → [−∞,+∞] are
all convex (respectively closed) then prove the function defined by
f(x) = supγ fγ(x) is convex (respectively closed). Deduce that for
any function h : E→ [−∞,+∞], the conjugate function h∗ is closed
and convex.

4. Verify directly that any affine function equals its biconjugate.
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5. ∗ (Midpoint convexity)

(a) A function f : E→ (∞,+∞] is midpoint convex if it satisfies

f
(x + y

2

)
≤ f(x) + f(y)

2
for all x and y in E.

Prove a closed function is convex if and only if it is midpoint
convex.

(b) Use the inequality

2(X2 + Y 2) � (X + Y )2 for all X and Y in Sn

to prove the function Z ∈ Sn
+ �→ −Z1/2 is Sn

+-convex (see Sec-
tion 3.3, Exercise 18 (Order convexity)).

6. Is the Fenchel biconjugation theorem (4.2.1) valid for arbitrary func-
tions h : E→ [−∞,+∞]?

7. (Inverse of subdifferential) For a function h : E → (∞,+∞], if
points x and φ in E satisfy φ ∈ ∂h(x), prove x ∈ ∂h∗(φ). Prove the
converse if h is closed and convex.

8. ∗ (Closed subdifferential) If a function h : E→ (∞,+∞] is closed,
prove the multifunction ∂h is closed: that is,

φr ∈ ∂h(xr), xr → x, φr → φ ⇒ φ ∈ ∂h(x).

Deduce that if h is essentially smooth and a sequence of points xr in
int (dom h) approaches a point in bd (domh) then ‖∇h(xr)‖ → ∞.

9. ∗ (Support functions)

(a) Prove that if the set C ⊂ E is nonempty then δ∗C is a closed
sublinear function and δ∗∗C = δcl convC . Prove that if C is also
bounded then δ∗C is everywhere finite.

(b) Prove that any sets C,D ⊂ E satisfy

δ∗C+D = δ∗C + δ∗D and
δ∗conv(C∪D) = max(δ∗C , δ∗D).

(c) Suppose the function h : E → (−∞,+∞] is positively homoge-
neous, and define a closed convex set

C = {φ ∈ E | 〈φ, d〉 ≤ h(d) ∀d}.
Prove h∗ = δC . Prove that if h is in fact sublinear and every-
where finite then C is nonempty and compact.
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(d) Deduce Corollary 4.2.3 (Support functions).

10. ∗ (Almost homogeneous functions [19]) Prove that a function
f : E→ R has a representation

f(x) = max
i∈I
{〈ai, x〉 − bi} (x ∈ E)

for a compact set {(ai, bi) | i ∈ I} ⊂ E×R if and only if f is convex
and satisfies supE |f − g| < ∞ for some sublinear function g.

11. ∗ Complete the details of the proof of the Moreau–Rockafellar theo-
rem (4.2.4).

12. (Compact bases for cones) Consider a closed convex cone K.
Using the Moreau–Rockafellar theorem (4.2.4), show that a point x
lies in int K if and only if the set {φ ∈ K− | 〈φ, x〉 ≥ −1} is bounded.
If the set {φ ∈ K− | 〈φ, x〉 = −1} is nonempty and bounded, prove
x ∈ int K.

13. For any function h : E → [−∞,+∞], prove the set cl (epi h) is the
epigraph of some function.

14. ∗ (Lower semicontinuity and closure) For any convex function
h : E→ [−∞,+∞] and any point x0 in E, prove

(cl h)(x0) = lim
δ↓0

inf
‖x−x0‖≤δ

h(x).

Deduce Proposition 4.2.7.

15. For any point x in E and any function h : E → (−∞,+∞] with a
subgradient at x, prove h is lower semicontinuous at x.

16. ∗ (Von Neumann’s minimax theorem [185]) Suppose Y is a
Euclidean space. Suppose that the sets C ⊂ E and D ⊂ Y are
nonempty and convex with D closed and that the map A : E→ Y is
linear.

(a) By considering the Fenchel problem

inf
x∈E

{δC(x) + δ∗D(Ax)}

prove
inf
x∈C

sup
y∈D

〈y,Ax〉 = max
y∈D

inf
x∈C

〈y,Ax〉

(where the max is attained if finite), under the assumption

0 ∈ core (dom δ∗D −AC). (4.2.9)
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(b) Prove property (4.2.9) holds in either of the two cases

(i) D is bounded, or
(ii) A is surjective and 0 lies in intC. (Hint: Use the Open

mapping theorem, Section 4.1, Exercise 9.)

(c) Suppose both C and D are compact. Prove

min
x∈C

max
y∈D

〈y,Ax〉 = max
y∈D

min
x∈C

〈y,Ax〉.

17. (Recovering primal solutions) Assume all the conditions for the
Fenchel theorem (3.3.5) hold, and that in addition the functions f
and g are closed.

(a) Prove that if the point φ̄ ∈ Y is an optimal dual solution then
the point x̄ ∈ E is optimal for the primal problem if and only if
it satisfies the two conditions x̄ ∈ ∂f∗(A∗φ̄) and Ax̄ ∈ ∂g∗(−φ̄).

(b) Deduce that if f∗ is differentiable at the point A∗φ̄ then the only
possible primal optimal solution is x̄ = ∇f∗(A∗φ̄).

(c) ∗∗ Apply this result to the problems in Section 3.3, Exercise 22.

18. Calculate the support function δ∗C of the set C = {x ∈ R2 |x2 ≥ x2
1}.

Prove the “contour” {y | δ∗C(y) = 1} is not closed.

19. ∗ (Strict-smooth duality) Consider a proper closed convex func-
tion f : E→ (∞,+∞].

(a) If f has Gâteaux derivative y at a point x in E, prove the in-
equality

f∗(z) > f∗(y) + 〈x, z − y〉
for elements z of E distinct from y.

(b) If f is essentially smooth, prove that f∗ is essentially strictly
convex.

(c) Deduce the Strict-smooth duality theorem (4.2.5) using Exercise
23 in Section 3.1.

20. ∗ (Logarithmic homogeneity) If the function f : E → (∞,+∞]
is closed, convex, and proper, then for any real ν > 0 prove the
inequality

f(x) + f∗(φ) + ν log 〈x,−φ〉 ≥ ν log ν − ν for all x, φ ∈ E

holds (where we interpret log α = −∞ when α ≤ 0) if and only f
satisfies the condition

f(tx) = f(x)− ν log t for all x ∈ E, t ∈ R++.
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Hint: Consider first the case ν = 1, and use the inequality

α ≤ −1− log(−α).

21. ∗ (Cofiniteness) Consider a function h : E → (∞,+∞] and the
following properties:

(i) h(·)− 〈φ, ·〉 has bounded level sets for all φ in E.

(ii) lim‖x‖→∞ ‖x‖−1h(x) = +∞.

(iii) h∗ is everywhere finite.

Complete the following steps.

(a) Prove properties (i) and (ii) are equivalent.

(b) If h is closed, convex and proper, use the Moreau–Rockafellar
theorem (4.2.4) to prove properties (i) and (iii) are equivalent.

22. ∗∗ (Computing closures)

(a) Prove any closed convex function g : R → (∞,+∞] is continu-
ous on its domain.

(b) Consider a convex function f : E→ (∞,+∞]. For any points x
in E and y in int (dom f), prove

f∗∗(x) = lim
t↑1

f(y + t(x− y)).

Hint: Use part (a) and the Accessibility lemma (Section 1.1,
Exercise 11).

23. ∗∗ (Recession functions) This exercise uses Section 1.1, Exercise 6
(Recession cones). The recession function of a closed convex function
f : E→ (∞,+∞] is defined by

0+f(d) = sup
t∈R++

f(x + td)− f(x)
t

for d in E,

where x is any point in dom f .

(a) Prove 0+f is closed and sublinear.

(b) Prove epi (0+f) = 0+(epi f), and deduce that 0+f is indepen-
dent of the choice of the point x.

(c) For any real α > inf f , prove

0+{y ∈ E | f(y) ≤ α} = {d ∈ E | 0+f(d) ≤ 0}.
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24. ∗∗ (Fisher information function) Let f : R → (∞,+∞] be a
given function, and define a function g : R2 → (∞,+∞] by

g(x, y) =

{
yf
(x

y

)
if y > 0

+∞ otherwise.

(a) Prove g is convex if and only if f is convex.

(b) Suppose f is essentially strictly convex. For y and v in R++

and x and u in R, prove

g(x, y) + g(u, v) = g(x + y, u + v) ⇔ x

y
=

u

v
.

(c) Calculate g∗.

(d) Suppose f is closed, convex, and finite at 0. Using Exercises 22
and 23, prove

g∗∗(x, y) =

⎧⎪⎪⎨⎪⎪⎩
yf
(x

y

)
if y > 0

0+f(x) if y = 0
+∞ otherwise.

(e) If f(x) = x2/2 for all x in R, calculate g.

(f) Define a set C = {(x, y) ∈ R2 | x2 ≤ y ≤ x} and a function

h(x, y) =

⎧⎪⎪⎨⎪⎪⎩
x3

y2
if (x, y) ∈ C \ {0}

0 if (x, y) = 0
+∞ otherwise.

Prove h is closed and convex but is not continuous relative to
its (compact) domain C. Construct another such example with
supC h finite.

25. ∗∗ (Finiteness of biconjugate) Consider a convex function h : E→
[−∞,+∞].

(a) If h is proper and has an affine minorant, prove h∗∗ is somewhere
finite.

(b) If h∗∗ is somewhere finite, prove h is proper.

(c) Use the fact that any proper convex function has a subgradient
(Section 3.1, Exercise 29) to deduce that h∗∗ is somewhere finite
if and only if h is proper.

(d) Deduce h∗∗ = cl h for any convex function h : E → (∞,+∞].
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26. ∗∗ (Self-dual cones [8]) Consider a function h : E → [−∞,∞) for
which −h is closed and sublinear, and suppose there is a point x̂ ∈ E
satisfying h(x̂) > 0. Define the concave polar of h as the function
h◦ : E→ [−∞,∞) given by

h◦(y) = inf{〈x, y〉 | h(x) ≥ 1}.

(a) Prove −h◦ is closed and sublinear, and, for real λ > 0, we have
λ(λh)◦ = h◦.

(b) Prove the closed convex cone

Kh = {(x, t) ∈ E×R | |t| ≤ h(x)}

has polar (Kh)− = −Kh◦ .

(c) Suppose the vector α ∈ Rn
++ satisfies

∑
i αi = 1, and define a

function hα : Rn → [−∞,+∞) by

hα(x) =
{∏

i xαi
i if x ≥ 0

−∞ otherwise.

Prove hα
◦ = hα/hα(α), and deduce the cone

Pα = K(hα(α))−1/2hα

is self-dual: P−
α = −Pα.

(d) Prove the cones

Q2 = {(x, t, z) ∈ R3 | t2 ≤ 2xz, x, z ≥ 0} and

Q3 = {(x, t, z) ∈ R3 | 2|t|3 ≤
√

27xz2, x, z ≥ 0}

are self-dual.

(e) Prove Q2 is isometric to S2
+; in other words, there is a linear map

A : R3 → S2
+ preserving the norm and satisfying AQ2 = S2

+.

27. ∗∗ (Conical open mapping [8]) Define two closed convex cones in
R3:

Q = {(x, y, z) ∈ R3 | y2 ≤ 2xz, x, z ≥ 0}. and

S = {(w, x, y) ∈ R3 | 2|x|3 ≤
√

27wy2, w, y ≥ 0}.

These cones are self-dual by Exercise 26. Now define convex cones in
R4 by

C = (0×Q) + (S × 0) and D = 0×R3.

(a) Prove C ∩D = {0} ×Q.
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(b) Prove −C− = (R×Q) ∩ (S ×R).

(c) Define the projection P : R4 → R3 by P (w, x, y, z) = (x, y, z).
Prove P (C−) = −Q, or equivalently,

C− + D− = (C ∩D)−.

(d) Deduce the normal cone formula

NC∩D(x) = NC(x) + ND(x) for all x in C ∩D

and, by taking polars, the tangent cone formula

TC∩D(x) = TC(x) ∩ TD(x) for all x in C ∩D.

(e) Prove C− is a closed convex pointed cone with nonempty interior
and D− is a line, and yet there is no constant ε > 0 satisfying

(C− + D−) ∩ εB ⊂ (C− ∩B) + (D− ∩B).

(Hint: Prove equivalently there is no ε > 0 satisfying

P (C−) ∩ εB ⊂ P (C− ∩B)

by considering the path {(t2, t3, t) | t ≥ 0} in Q.) Compare this
with the situation when C and D are subspaces, using the Open
mapping theorem (Section 4.1, Exercise 9).

(f) Consider the path

u(t) =
( 2√

27
, t2, t3, 0

)
if t ≥ 0.

Prove dC(u(t)) = 0 and dD(u(t)) = 2/
√

27 for all t ≥ 0, and yet

dC∩D(u(t)) → +∞ as t → +∞.

(Hint: Use the isometry in Exercise 26.)

28. ∗∗ (Expected surprise [18]) An event occurs once every n days,
with probability pi on day i for i = 1, 2, . . . , n. We seek a distribution
maximizing the average surprise caused by the event. Define the
“surprise” as minus the logarithm of the probability that the event
occurs on day i given that it has not occurred so far. Using Bayes
conditional probability rule, our problem is

inf
{

S(p)
∣∣∣ n∑

1

pi = 1
}

,
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where we define the function S : Rn → (∞,+∞] by

S(p) =
n∑

i=1

h
(
pi,

n∑
j=i

pj

)
,

and the function h : R2 → (∞,+∞] by

h(x, y) =

⎧⎪⎨⎪⎩
x log

(x

y

)
if x, y > 0

0 if x ≥ 0, y = 0
+∞ otherwise.

(a) Prove h is closed and convex using Exercise 24 (Fisher informa-
tion function).

(b) Hence prove S is closed and convex.

(c) Prove the problem has an optimal solution.

(d) By imitating Section 3.1, Exercise 27 (Maximum entropy), show
the solution p̄ is unique and is expressed recursively by

p̄1 = μ1, p̄k = μk

(
1−

k−1∑
1

p̄j

)
for k = 2, 3, . . . , n,

where the numbers μk are defined by the recursion

μn = 1, μk−1 = μke−μk for k = 2, 3, . . . , n.

(e) Deduce that the components of p̄ form an increasing sequence
and that p̄n−j is independent of j.

(f) Prove p̄1 ∼ 1/n for large n.
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4.3 Lagrangian Duality

The duality between a convex function h and its Fenchel conjugate h∗

which we outlined earlier is an elegant piece of theory. The real significance,
however, lies in its power to describe duality theory for convex programs,
one of the most far-reaching ideas in the study of optimization.

We return to the convex program that we studied in Section 3.2:

inf{f(x) | g(x) ≤ 0, x ∈ E}. (4.3.1)

Here the function f and the components g1, g2, . . . , gm : E→ (∞,+∞] are
convex, and satisfy ∅ �= dom f ⊂ ∩m

1 dom gi. As before, the Lagrangian
function L : E×Rm

+ → (∞,+∞] is defined by L(x;λ) = f(x) + λT g(x).
Notice that the Lagrangian encapsulates all the information of the pri-

mal problem (4.3.1): clearly

sup
λ∈Rm

+

L(x;λ) =
{

f(x) if x is feasible
+∞ otherwise,

so if we denote the optimal value of (4.3.1) by p ∈ [−∞,+∞], we could
rewrite the problem in the following form:

p = inf
x∈E

sup
λ∈Rm

+

L(x;λ). (4.3.2)

This makes it rather natural to consider an associated problem

d = sup
λ∈Rm

+

inf
x∈E

L(x;λ) (4.3.3)

where d ∈ [−∞,+∞] is called the dual value. Thus the dual problem
consists of maximizing over vectors λ in Rm

+ the dual function Φ(λ) =
infx L(x;λ). This dual problem is perfectly well-defined without any as-
sumptions on the functions f and g. It is an easy exercise to show the
“weak duality inequality” p ≥ d. Notice Φ is concave.

It can happen that the primal value p is strictly larger than the dual
value d (Exercise 5). In this case we say there is a duality gap. We next in-
vestigate conditions ensuring there is no duality gap. As in Section 3.2, the
chief tool in our analysis is the primal value function v : Rm → [−∞,+∞],
defined by

v(b) = inf{f(x) | g(x) ≤ b}. (4.3.4)

Below we summarize the relationships among these various ideas and pieces
of notation.
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Proposition 4.3.5 (Dual optimal value)

(a) The primal optimal value p is v(0).

(b) The conjugate of the value function satisfies

v∗(−λ) =
{−Φ(λ) if λ ≥ 0

+∞ otherwise.

(c) The dual optimal value d is v∗∗(0).

Proof. Part (a) is just the definition of p. Part (b) follows from the
identities

v∗(−λ) = sup{−λT b− v(b) | b ∈ Rm}
= sup{−λT b− f(x) | g(x) + z = b, x ∈ dom f, b ∈ Rm, z ∈ Rm

+}
= sup{−λT (g(x) + z)− f(x) | x ∈ dom f, z ∈ Rm

+}
= − inf{f(x) + λT g(x) | x ∈ dom f}+ sup{−λT z | z ∈ Rm

+}

=
{−Φ(λ) if λ ≥ 0

+∞ otherwise.

Finally, we observe

d = sup
λ∈Rm

+

Φ(λ) = − inf
λ∈Rm

+

−Φ(λ) = − inf
λ∈Rm

+

v∗(−λ) = v∗∗(0),

so part (c) follows. �

Notice the above result does not use convexity.
The reason for our interest in the relationship between a convex function

and its biconjugate should now be clear, in light of parts (a) and (c) above.

Corollary 4.3.6 (Zero duality gap) Suppose the value of the primal
problem (4.3.1) is finite. Then the primal and dual values are equal if and
only if the value function v is lower semicontinuous at 0. In this case the
set of optimal dual solutions is −∂v(0).

Proof. By the previous result, there is no duality gap exactly when the
value function satisfies v(0) = v∗∗(0), so Theorem 4.2.8 proves the first
assertion. By part (b) of the previous result, dual optimal solutions λ
are characterized by the property 0 ∈ ∂v∗(−λ) or equivalently v∗(−λ) +
v∗∗(0) = 0. But we know v(0) = v∗∗(0), so this property is equivalent to
the condition −λ ∈ ∂v(0). �

This result sheds new light on our proof of the Lagrangian necessary
conditions (3.2.8); the proof in fact demonstrates the existence of a dual



90 4. Convex Analysis

optimal solution. We consider below two distinct approaches to proving the
absence of a duality gap. The first uses the Slater condition, as in Theorem
3.2.8, to force attainment in the dual problem. The second (dual) approach
uses compactness to force attainment in the primal problem.

Theorem 4.3.7 (Dual attainment) If the Slater condition holds for the
primal problem (4.3.1) then the primal and dual values are equal, and the
dual value is attained if finite.

Proof. If p is −∞ there is nothing to prove, since we know p ≥ d. If on
the other hand p is finite then, as in the proof of the Lagrangian necessary
conditions (3.2.8), the Slater condition forces ∂v(0) �= ∅. Hence v is finite
and lower semicontinuous at 0 (Section 4.2, Exercise 15), and the result
follows by Corollary 4.3.6 (Zero duality gap). �

An indirect way of stating the Slater condition is that there is a point
x̂ in E for which the set {λ ∈ Rm

+ | L(x̂;λ) ≥ α} is compact for all real α.
The second approach uses a “dual” condition to ensure the value function
is closed.

Theorem 4.3.8 (Primal attainment) Suppose that the functions

f, g1, g2, . . . , gm : E→ (∞,+∞]

are closed and that for some real λ̂0 ≥ 0 and some vector λ̂ in Rm
+ , the

function λ̂0f + λ̂T g has compact level sets. Then the value function v
defined by equation (4.3.4) is closed, and the infimum in this equation is
attained when finite. Consequently, if the functions f, g1, g2, . . . , gm are,
in addition, convex and the dual value for the problem (4.3.1) is not −∞,
then the primal and dual values p and d are equal, and the primal value is
attained when finite.

Proof. If the points (br, sr) lie in epi v for r = 1, 2, . . . and approach
the point (b, s) then for each integer r there is a point xr in E satisfying
f(xr) ≤ sr + r−1 and g(xr) ≤ br. Hence we deduce

(λ̂0f + λ̂T g)(xr) ≤ λ̂0(sr + r−1) + λ̂T br → λ̂0s + λ̂T b.

By the compact level set assumption, the sequence (xr) has a subsequence
converging to some point x̄, and since all the functions are closed, we know
f(x̄) ≤ s and g(x̄) ≤ b. We deduce v(b) ≤ s, so (b, s) lies in epi v as we
required. When v(b) is finite, the same argument with (br, sr) replaced by
(b, v(b)) for each r shows the infimum is attained.

If the functions f, g1, g2, . . . , gm are convex then we know (from Section
3.2) v is convex. If d is +∞ then again from the inequality p ≥ d, there is
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nothing to prove. If d (= v∗∗(0)) is finite then Theorem 4.2.8 shows v∗∗ =
cl v, and the above argument shows cl v = v. Hence p = v(0) = v∗∗(0) = d,
and the result follows. �

Notice that if either the objective function f or any one of the constraint
functions g1, g2, . . . , gm has compact level sets then the compact level set
condition in the above result holds.

Exercises and Commentary

An attractive elementary account of finite-dimensional convex duality the-
ory appears in [152]. A good reference for this kind of development in
infinite dimensions is [98]. When the value function v is lower semicontin-
uous at 0 we say the problem (4.3.1) is normal; see [167]. If ∂v(0) �= ∅
(or v(0) = −∞) the problem is called stable; see, for example, [6]). For a
straightforward account of interior point methods and the penalized linear
program in Exercise 4 (Examples of duals) see [187, p. 40]. For more on
the minimax theory in Exercise 14 see, for example, [60].

1. (Weak duality) Prove that the primal and dual values p and d
defined by equations (4.3.2) and (4.3.3) satisfy p ≥ d.

2. Calculate the Lagrangian dual of the problem in Section 3.2, Exer-
cise 3.

3. (Slater and compactness) Prove the Slater condition holds for
problem (4.3.1) if and only if there is a point x̂ in E for which the
level sets

{λ ∈ Rm
+ | − L(x̂;λ) ≤ α}

are compact for all real α.

4. (Examples of duals) Calculate the Lagrangian dual problem for the
following problems (for given vectors a1, a2, . . . , am, and c in Rn).

(a) The linear program

inf
x∈Rn

{〈c, x〉 | 〈ai, x〉 ≤ bi for i = 1, 2, . . . ,m}.

(b) Another linear program

inf
x∈Rn

{〈c, x〉+ δRn
+
(x) | 〈ai, x〉 ≤ bi for i = 1, 2, . . . ,m}.

(c) The quadratic program (for C ∈ Sn
++)

inf
x∈Rn

{xT Cx

2

∣∣∣ 〈ai, x〉 ≤ bi for i = 1, 2, . . . ,m
}

.
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(d) The separable problem

inf
x∈Rn

{ n∑
j=1

p(xj)
∣∣∣ 〈ai, x〉 ≤ bi for i = 1, 2, . . . , m

}
for a given function p : R→ (∞,+∞].

(e) The penalized linear program

inf
x∈Rn

{〈c, x〉+ εlb (x) | 〈ai, x〉 ≤ bi for i = 1, 2, . . . ,m}

for real ε > 0.

For given matrices A1, A2, . . . , Am, and C in Sn, calculate the dual
of the semidefinite program

inf
X∈Sn

+

{tr (CX) + δSn
+
(X) | tr (AiX) ≤ bi for i = 1, 2, . . . ,m},

and the penalized semidefinite program

inf
X∈Sn

+

{tr (CX) + εld X | tr (AiX) ≤ bi for i = 1, 2, . . . , m}

for real ε > 0.

5. (Duffin’s duality gap, continued)

(a) For the problem considered in Section 3.2, Exercise 8, namely

inf
x∈R2

{ex2 | ‖x‖ − x1 ≤ 0} ,

calculate the dual function, and hence find the dual value.

(b) Repeat part (a) with the objective function ex2 replaced by x2.

6. Consider the problem

inf{exp∗(x1) + exp∗(x2) | x1 + 2x2 − 1 ≤ 0, x ∈ R2}.

Write down the Lagrangian dual problem, solve the primal and dual
problems, and verify that the optimal values are equal.

7. Given a matrix C in Sn
++, calculate

inf
X∈Sn

++

{tr (CX) | − log(det X) ≤ 0}

by Lagrangian duality.
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8. ∗ (Mixed constraints) Explain why an appropriate dual for the
problem

inf{f(x) | g(x) ≤ 0, h(x) = 0}
for a function h : dom f → Rk is

sup
λ∈Rm

+ , μ∈Rk

inf
x∈dom f

{f(x) + λT g(x) + μT h(x)}.

9. (Fenchel and Lagrangian duality) Let Y be a Euclidean space.
By suitably rewriting the primal Fenchel problem

inf
x∈E

{f(x) + g(Ax)}

for given functions f : E → (∞,+∞], g : Y → (∞,+∞], and linear
A : E→ Y, interpret the dual Fenchel problem

sup
φ∈Y

{−f∗(A∗φ)− g∗(−φ)}

as a Lagrangian dual problem.

10. (Trust region subproblem duality [175]) Given a matrix A in
Sn and a vector b in Rn, consider the nonconvex problem

inf
{
xT Ax + bT x

∣∣ xT x− 1 ≤ 0, x ∈ Rn
}
.

Complete the following steps to prove there is an optimal dual solu-
tion, with no duality gap.

(i) Prove the result when A is positive semidefinite.

(ii) If A is not positive definite, prove the primal optimal value does
not change if we replace the inequality in the constraint by an
equality.

(iii) By observing for any real α the equality

min
{
xT Ax + bT x

∣∣ xT x = 1
}

=

−α + min
{
xT (A + αI)x + bT x

∣∣ xT x = 1
}
,

prove the general result.

11. ∗∗ If there is no duality gap, prove that dual optimal solutions are
the same as Karush–Kuhn–Tucker vectors (Section 3.2, Exercise 9).

12. ∗ (Conjugates of compositions) Consider the composition g ◦ f
of a nondecreasing convex function g : R → (∞,+∞] with a convex
function f : E → (∞,+∞]. We interpret g(+∞) = +∞, and we
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assume there is a point x̂ in E satisfying f(x̂) ∈ int (dom g). Use
Lagrangian duality to prove the formula, for φ in E,

(g ◦ f)∗(φ) = inf
t∈R+

{
g∗(t) + tf∗

(φ

t

)}
,

where we interpret

0f∗
(φ

0

)
= δ∗dom f (φ).

13. ∗∗ (A symmetric pair [28])

(a) Given real γ1, γ2, . . . , γn > 0, define h : Rn → (∞,+∞] by

h(x) =
{∏n

i=1 x−γi

i if x ∈ Rn
++

+∞ otherwise.

By writing g(x) = exp(log g(x)) and using the composition for-
mula in Exercise 12, prove

h∗(y) =

⎧⎪⎨⎪⎩−(γ + 1)
n∏

i=1

(−yi

γi

)γi/(γ+1)

if − y ∈ Rn
+

+∞ otherwise,

where γ =
∑

i γi.

(b) Given real α1, α2, . . . , αn > 0, define α =
∑

i αi and suppose a
real μ satisfies μ > α + 1. Now define a function f : Rn ×R→
(∞,+∞] by

f(x, s) =
{

μ−1sμ
∏

i x−αi
i if x ∈ Rn

++, s ∈ R+

+∞ otherwise.

Use part (a) to prove

f∗(y, t) =
{

ρν−1tν
∏

i(−yi)−βi if − y ∈ Rn
++, t ∈ R+

+∞ otherwise

for constants

ν =
μ

μ− (α + 1)
, βi =

αi

μ− (α + 1)
, ρ =

∏
i

(αi

μ

)βi

.

(c) Deduce f = f∗∗, whence f is convex.

(d) Give an alternative proof of the convexity of f by using Section
4.2, Exercise 24(a) (Fisher information function) and induction.

(e) Prove f is strictly convex.



4.3 Lagrangian Duality 95

14. ∗∗ (Convex minimax theory) Suppose that Y is a Euclidean space,
that the sets C ⊂ Y and D ⊂ E are nonempty, and consider a
function ψ : C ×D → R.

(a) Prove the inequality

sup
y∈D

inf
x∈C

ψ(x, y) ≤ inf
x∈C

sup
y∈D

ψ(x, y).

(b) We call a point (x̄, ȳ) in C ×D a saddlepoint if it satisfies

ψ(x̄, y) ≤ ψ(x̄, ȳ) ≤ ψ(x, ȳ) for all x ∈ C, y ∈ D.

In this case prove

sup
y∈D

inf
x∈C

ψ(x, y) = ψ(x̄, ȳ) = inf
x∈C

sup
y∈D

ψ(x, y).

(c) Suppose the function py : E→ (∞,+∞] defined by

py(x) =
{

ψ(x, y) if x ∈ C
+∞ otherwise

is convex, for all y in D. Prove the function h : Y → [−∞,+∞]
defined by

h(z) = inf
x∈C

sup
y∈D

{ψ(x, y) + 〈z, y〉}

is convex.

(d) Suppose the function qx : Y → (∞,+∞] defined by

qx(y) =
{−ψ(x, y) if y ∈ D

+∞ otherwise

is closed and convex for all points x in C. Deduce

h∗∗(0) = sup
y∈D

inf
x∈C

ψ(x, y).

(e) Suppose that for all points y in D the function py defined in
part (c) is closed and convex, and that for some point ŷ in D,
pŷ has compact level sets. If h is finite at 0, prove it is lower
semicontinuous there. If the assumption in part (d) also holds,
deduce

sup
y∈D

inf
x∈C

ψ(x, y) = min
x∈C

sup
y∈D

ψ(x, y).

(f) Suppose the functions f, g1, g2, . . . , gs : Rt → (∞,+∞] are
closed and convex. Interpret the above results in the following
two cases:
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(i) C = (dom f) ∩
( s⋂

i=1

dom gi

)
D = Rs

+

ψ(u,w) = f(u) +
∑s

i=1 wigi(u).

(ii) C = Rs
+

D = (dom f) ∩
( s⋂

i=1

dom gi

)
ψ(u,w) = −f(w)−∑s

i=1 uigi(w).

(g) (Kakutani [109]) Suppose that the nonempty sets C ⊂ Y and
D ⊂ E are compact and convex, that the function ψ : C ×D →
R is continuous, that ψ(x, y) is convex in the variable x for all
fixed y in D, and that −ψ(x, y) is convex in the variable y for
all points x in C. Deduce ψ has a saddlepoint.



Chapter 5

Special Cases

5.1 Polyhedral Convex Sets and Functions

In our earlier section on theorems of the alternative (Section 2.2), we ob-
served that finitely generated cones are closed. Remarkably, a finite linear-
algebraic assumption leads to a topological conclusion. In this section we
pursue the consequences of this type of assumption in convex analysis.

There are two natural ways to impose a finite linear structure on the sets
and functions we consider. The first we have already seen: a “polyhedron”
(or polyhedral set) is a finite intersection of closed halfspaces in E, and we
say a function f : E→ [−∞,+∞] is polyhedral if its epigraph is polyhedral.
On the other hand, a polytope is the convex hull of a finite subset of E,
and we call a subset of E finitely generated if it is the sum of a polytope
and a finitely generated cone (in the sense of formula (2.2.11)). Notice we
do not yet know if a cone that is a finitely generated set in this sense is
finitely generated in the sense of (2.2.11); we return to this point later in
the section. The function f is finitely generated if its epigraph is finitely
generated. A central result of this section is that polyhedra and finitely
generated sets in fact coincide.

We begin with some easy observations collected together in the following
two results.

Proposition 5.1.1 (Polyhedral functions) Suppose that the function
f : E → [−∞,+∞] is polyhedral. Then f is closed and convex and can be
decomposed in the form

f = max
i∈I

gi + δP , (5.1.2)

where the index set I is finite (and possibly empty), the functions gi are
affine, and the set P ⊂ E is polyhedral (and possibly empty). Thus the
domain of f is polyhedral and coincides with dom ∂f if f is proper.

97
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Proof. Since any polyhedron is closed and convex, so is f , and the de-
composition (5.1.2) follows directly from the definition. If f is proper then
both the sets I and P are nonempty in this decomposition. At any point
x in P (= dom f) we know 0 ∈ ∂δP (x), and the function maxi gi certainly
has a subgradient at x since it is everywhere finite. Hence we deduce the
condition ∂f(x) �= ∅. �

Proposition 5.1.3 (Finitely generated functions) Suppose the func-
tion f : E→ [−∞,+∞] is finitely generated. Then f is closed and convex
and dom f is finitely generated. Furthermore, f∗ is polyhedral.

Proof. Polytopes are compact and convex (by Carathéodory’s theorem
(Section 2.2, Exercise 5)), and finitely generated cones are closed and con-
vex, so finitely generated sets (and therefore functions) are closed and con-
vex (by Section 1.1, Exercise 5(a)). We leave the remainder of the proof as
an exercise. �

An easy exercise shows that a set P ⊂ E is polyhedral (respectively, finitely
generated) if and only if δP is polyhedral (respectively, finitely generated).

To prove that polyhedra and finitely generated sets in fact coincide,
we consider the two extreme special cases: first, compact sets, and second,
cones. Observe first that compact, finitely generated sets are just polytopes,
directly from the definition.

Lemma 5.1.4 Any polyhedron has at most finitely many extreme points.

Proof. Fix a finite set of affine functions {gi | i ∈ I} on E, and consider
the polyhedron

P = {x ∈ E | gi(x) ≤ 0 for i ∈ I}.
For any point x in P , the “active set” is {i ∈ I | gi(x) = 0}. Suppose two
distinct extreme points x and y of P have the same active set. Then for
any small real ε the points x± ε(y − x) both lie in P . But this contradicts
the assumption that x is extreme. Hence different extreme points have
different active sets, and the result follows. �

This lemma together with Minkowski’s theorem (4.1.8) reveals the na-
ture of compact polyhedra.

Theorem 5.1.5 Any compact polyhedron is a polytope.

We next turn to cones.

Lemma 5.1.6 Any polyhedral cone is a finitely generated cone (in the
sense of (2.2.11)).



5.1 Polyhedral Convex Sets and Functions 99

Proof. Given a polyhedral cone P ⊂ E, define a subspace L = P ∩ −P
and a pointed polyhedral cone K = P ∩ L⊥. Observe the decomposition
P = K ⊕ L. By the Pointed cone theorem (3.3.15), there is an element y
of E for which the set

C = {x ∈ K | 〈x, y〉 = 1}
is compact and satisfies K = R+C. Since C is polyhedral, the previous
result shows it is a polytope. Thus K is finitely generated, whence so is P .

�

Theorem 5.1.7 (Polyhedrality) A set or function is polyhedral if and
only if it is finitely generated.

Proof. For finite sets {ai | i ∈ I} ⊂ E and {bi | i ∈ I} ⊂ R, consider the
polyhedron in E defined by

P = {x ∈ E | 〈ai, x〉 ≤ bi for i ∈ I}.
The polyhedral cone in E×R defined by

Q = {(x, r) ∈ E×R | 〈ai, x〉 − bir ≤ 0 for i ∈ I}
is finitely generated by the previous lemma, so there are finite subsets
{xj | j ∈ J} and {yt | t ∈ T} of E with

Q =
{∑

j∈J

λj(xj , 1)+
∑
t∈T

μt(yt, 0)
∣∣∣λj ∈ R+ for j ∈ J, μt ∈ R+ for t ∈ T

}
.

We deduce

P = {x | (x, 1) ∈ Q}
= conv {xj | j ∈ J}+

{∑
t∈T

μtyy

∣∣∣ μt ∈ R+ for t ∈ T
}

,

so P is finitely generated. We have thus shown that any polyhedral set
(and hence function) is finitely generated.

Conversely, suppose the function f : E → [−∞,+∞] is finitely gener-
ated. Consider first the case when f is proper. By Proposition 5.1.3, f∗

is polyhedral, and hence (by the above argument) finitely generated. But
f is closed and convex, by Proposition 5.1.3, so the Fenchel biconjugation
theorem (4.2.1) implies f = f∗∗. By applying Proposition 5.1.3 once again
we see f∗∗ (and hence f) is polyhedral. We leave the improper case as an
exercise. �

Notice these two results show our two notions of a finitely generated cone
do indeed coincide.

The following collection of exercises shows that many linear-algebraic
operations preserve polyhedrality.
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Proposition 5.1.8 (Polyhedral algebra) Consider a Euclidean space
Y and a linear map A : E→ Y.

(a) If the set P ⊂ E is polyhedral then so is its image AP .

(b) If the set K ⊂ Y is polyhedral then so is its inverse image A−1K.

(c) The sum and pointwise maximum of finitely many polyhedral func-
tions are polyhedral.

(d) If the function g : Y → [−∞,+∞] is polyhedral then so is the com-
posite function g ◦A.

(e) If the function q : E × Y → [−∞,+∞] is polyhedral then so is the
function h : Y → [−∞,+∞] defined by h(u) = infx∈E q(x, u).

Corollary 5.1.9 (Polyhedral Fenchel duality) All the conclusions of
the Fenchel duality theorem (3.3.5) remain valid if the regularity condi-
tion (3.3.8) is replaced by the assumption that the functions f and g are
polyhedral with dom g ∩Adom f nonempty.

Proof. We follow the original proof, simply observing that the value func-
tion h defined in the proof is polyhedral by the Polyhedral algebra propo-
sition above. Thus, when the optimal value is finite, h has a subgradient
at 0. �

We conclude this section with a result emphasizing the power of Fenchel
duality for convex problems with linear constraints.

Corollary 5.1.10 (Mixed Fenchel duality) All the conclusions of the
Fenchel duality theorem (3.3.5) remain valid if the regularity condition
(3.3.8) is replaced by the assumption that dom g ∩ Acont f is nonempty
and the function g is polyhedral.

Proof. Assume without loss of generality the primal optimal value

p = inf
x∈E

{f(x) + g(Ax)} = inf
x∈E, r∈R

{f(x) + r | g(Ax) ≤ r}

is finite. By assumption there is a feasible point for the problem on the
right at which the objective function is continuous, so there is an affine
function α : E × R → R minorizing the function (x, r) �→ f(x) + r such
that

p = inf
x∈E, r∈R

{α(x, r) | g(Ax) ≤ r}

(see Section 3.3, Exercise 13(c)). Clearly α has the form α(x, r) = β(x)+ r
for some affine minorant β of f , so

p = inf
x∈E

{β(x) + g(Ax)}.
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Now we apply polyhedral Fenchel duality (Corollary 5.1.9) to deduce the
existence of an element φ of Y such that

p = −β∗(A∗φ)− g∗(−φ) ≤ −f∗(A∗φ)− g∗(−φ) ≤ p

(using the weak duality inequality), and the duality result follows. The
calculus rules follow as before. �

It is interesting to compare this result with the version of Fenchel dual-
ity using the Open mapping theorem (Section 4.1, Exercise 9), where the
assumption that g is polyhedral is replaced by surjectivity of A.

Exercises and Commentary

Our approach in this section is analogous to [181]. The key idea, Theorem
5.1.7 (Polyhedrality), is due to Minkowski [141] and Weyl [186]. A nice
development of geometric programming (see Exercise 13) appears in [152].

1. Prove directly from the definition that any polyhedral function has a
decomposition of the form (5.1.2).

2. Fill in the details for the proof of the Finitely generated functions
proposition (5.1.3).

3. Use Proposition 4.2.7 (Lower semicontinuity and closure) to show
that if a finitely generated function f is not proper then it has the
form

f(x) =
{

+∞ if x �∈ K
−∞ if x ∈ K

for some finitely generated set K.

4. Prove a set K ⊂ E is polyhedral (respectively, finitely generated) if
and only if δK is polyhedral (respectively, finitely generated). Do not
use the Polyhedrality theorem (5.1.7).

5. Complete the proof of the Polyhedrality theorem (5.1.7) for improper
functions using Exercise 3.

6. (Tangents to polyhedra) Prove the tangent cone to a polyhedron
P at a point x in P is given by TP (x) = R+(P − x).

7. ∗ (Polyhedral algebra) Prove Proposition 5.1.8 using the following
steps.

(i) Prove parts (a)–(d).
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(ii) In the notation of part (e), consider the natural projection

PY×R : E×Y ×R→ Y ×R.

Prove the inclusions

PY×R(epi q) ⊂ epi h ⊂ cl (PY×R(epi q)).

(iii) Deduce part (e).

8. If the function f : E → (∞,+∞] is polyhedral, prove the subdiffer-
ential of f at a point x in dom f is a nonempty polyhedron and is
bounded if and only if x lies in int (dom f).

9. (Polyhedral cones) For any polyhedral cones H ⊂ Y and K ⊂ E
and any linear map A : E→ Y, prove the relation

(K ∩A−1H)− = A∗H− + K−

using convex calculus.

10. Apply the Mixed Fenchel duality corollary (5.1.10) to the problem
inf{f(x) | Ax ≤ b}, for a linear map A : E → Rm and a point b in
Rm.

11. ∗ (Generalized Fenchel duality) Consider convex functions

h1, h2, . . . , hm : E→ (∞,+∞]

with ∩icont hi nonempty. By applying the Mixed Fenchel duality
corollary (5.1.10) to the problem

inf
x,x1,x2,...,xm∈E

{ m∑
i=1

hi(xi)
∣∣∣ xi = x for i = 1, 2, . . . ,m

}
,

prove

inf
x∈E

∑
i

hi(x) = − inf
{∑

i

h∗
i (φ

i)
∣∣∣ φ1, φ2, . . . , φm ∈ E,

∑
i

φi = 0
}

.

12. ∗∗ (Relativizing Mixed Fenchel duality) In the Mixed Fenchel
duality corollary (5.1.10), prove the condition dom g ∩ Acont f �= ∅
can be replaced by dom g ∩Ari (dom f) �= ∅.

13. ∗∗ (Geometric programming) Consider the constrained geometric
program

inf
x∈E

{h0(x) | hi(x) ≤ 1 for i = 1, 2, . . . ,m},
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where each function hi is a sum of functions of the form

x ∈ E �→ c log
( n∑

j=1

exp 〈aj , x〉
)

for real c > 0 and elements a1, a2, . . . , an of E. Write down the
Lagrangian dual problem and simplify it using Exercise 11 and the
form of the conjugate of each hi given by (3.3.1). State a duality
theorem.
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5.2 Functions of Eigenvalues

Fenchel conjugacy gives a concise and beautiful avenue to many eigenvalue
inequalities in classical matrix analysis. In this section we outline this
approach.

The two cones Rn
+ and Sn

+ appear repeatedly in applications, as do their
corresponding logarithmic barriers lb and ld , which we defined in Section
3.3. We can relate the vector and matrix examples, using the notation of
Section 1.2, through the identities

δSn
+

= δRn
+
◦ λ and ld = lb ◦ λ. (5.2.1)

We see in this section that these identities fall into a broader pattern.
Recall the function [·] : Rn → Rn rearranges components into nonin-

creasing order. We say a function f on Rn is symmetric if f(x) = f([x])
for all vectors x in Rn; in other words, permuting components does not
change the function value. We call a symmetric function of the eigenvalues
of a symmetric matrix a spectral function. The following formula is crucial.

Theorem 5.2.2 (Spectral conjugacy) If f : Rn → [−∞,+∞] is a sym-
metric function, it satisfies the formula

(f ◦ λ)∗ = f∗ ◦ λ.

Proof. By Fan’s inequality (1.2.2) any matrix Y in Sn satisfies the in-
equalities

(f ◦ λ)∗(Y ) = sup
X∈Sn

{tr (XY )− f(λ(X))}

≤ sup
X
{λ(X)T λ(Y )− f(λ(X))}

≤ sup
x∈Rn

{xT λ(Y )− f(x)}
= f∗(λ(Y )).

On the other hand, fixing a spectral decomposition Y = UT (Diag λ(Y ))U
for some matrix U in On leads to the reverse inequality

f∗(λ(Y )) = sup
x∈Rn

{xT λ(Y )− f(x)}

= sup
x
{tr ((Diag x)UY UT )− f(x)}

= sup
x
{tr (UT (Diag x)UY )− f(λ(UT Diag xU))}

≤ sup
X∈Sn

{tr (XY )− f(λ(X))}
= (f ◦ λ)∗(Y ),
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which completes the proof. �

This formula, for example, makes it very easy to calculate ld ∗ (see the Log
barriers proposition (3.3.3)) and to check the self-duality of the cone Sn

+.
Once we can compute conjugates easily, we can also recognize closed

convex functions easily using the Fenchel biconjugation theorem (4.2.1).

Corollary 5.2.3 (Davis) Suppose the function f : Rn → (∞,+∞] is
symmetric. Then the “spectral function” f ◦ λ is closed and convex if and
only if f is closed and convex.

We deduce immediately that the logarithmic barrier ld is closed and con-
vex, as well as the function X �→ tr (X−1) on Sn

++, for example.
Identifying subgradients is also easy using the conjugacy formula and

the Fenchel–Young inequality (3.3.4).

Corollary 5.2.4 (Spectral subgradients) If f : Rn → (∞,+∞] is a
symmetric function, then for any two matrices X and Y in Sn, the follow-
ing properties are equivalent:

(i) Y ∈ ∂(f ◦ λ)(X).

(ii) X and Y have a simultaneous ordered spectral decomposition and
satisfy λ(Y ) ∈ ∂f(λ(X)).

(iii) X = UT (Diag x)U and Y = UT (Diag y)U for some matrix U in On

and vectors x and y in Rn satisfying y ∈ ∂f(x).

Proof. Notice the inequalities

(f ◦ λ)(X) + (f ◦ λ)∗(Y ) = f(λ(X)) + f∗(λ(Y )) ≥ λ(X)T λ(Y ) ≥ tr (XY ).

The condition Y ∈ ∂(f◦λ)(X) is equivalent to equality between the left and
right hand sides (and hence throughout), and the equivalence of properties
(i) and (ii) follows using Fan’s inequality (1.2.1). For the remainder of the
proof, see Exercise 9. �

Corollary 5.2.5 (Spectral differentiability) Suppose that the function
f : Rn → (∞,+∞] is symmetric, closed, and convex. Then f ◦ λ is
differentiable at a matrix X in Sn if and only if f is differentiable at λ(X).

Proof. If ∂(f ◦ λ)(X) is a singleton, so is ∂f(λ(X)), by the Spectral
subgradients corollary above. Conversely, suppose ∂f(λ(X)) consists only
of the vector y ∈ Rn. Using Exercise 9(b), we see the components of y
are nonincreasing, so by the same corollary, ∂(f ◦ λ)(X) is the nonempty
convex set

{UT (Diag y)U | U ∈ On, UT Diag (λ(X))U = X}.
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But every element of this set has the same norm (namely ‖y‖), so the set
must be a singleton. �

Notice that the proof in fact shows that when f is differentiable at λ(X)
we have the formula

∇(f ◦ λ)(X) = UT (Diag∇f(λ(X)))U (5.2.6)

for any matrix U in On satisfying UT (Diag λ(X))U = X.
The pattern of these results is clear: many analytic and geometric prop-

erties of the matrix function f ◦ λ parallel the corresponding properties of
the underlying function f . The following exercise is another example.

Corollary 5.2.7 Suppose the function f : Rn → (∞,+∞] is symmetric,
closed, and convex. Then f◦λ is essentially strictly convex (respectively, es-
sentially smooth) if and only if f is essentially strictly convex (respectively,
essentially smooth).

For example, the logarithmic barrier ld is both essentially smooth and
essentially strictly convex.

Exercises and Commentary

Our approach in this section follows [120]. The Davis theorem (5.2.3) ap-
peared in [58] (without the closure assumption). Many convexity properties
of eigenvalues like Exercise 4 (Examples of convex spectral functions) can
be found in [99] or [10], for example. Surveys of eigenvalue optimization
appear in [128, 127].

1. Prove the identities (5.2.1).

2. Use the Spectral conjugacy theorem (5.2.2) to calculate ld ∗ and δ∗Sn
+
.

3. Prove the Davis characterization (Corollary 5.2.3) using the Fenchel
biconjugation theorem (4.2.1).

4. (Examples of convex spectral functions) Use the Davis char-
acterization (Corollary 5.2.3) to prove the following functions of a
matrix X ∈ Sn are closed and convex:

(a) ld (X).

(b) tr (Xp), for any nonnegative even integer p.

(c)
{−tr (X1/2) if X ∈ Sn

+

+∞ otherwise.
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(d)
{

tr (X−p) if X ∈ Sn
++

+∞ otherwise
for any nonnegative integer p.

(e)
{

tr (X1/2)−1 if X ∈ Sn
++

+∞ otherwise.

(f)
{−(det X)1/n if X ∈ Sn

+

+∞ otherwise.

Deduce from the sublinearity of the function in part (f) the property

0 � X � Y ⇒ 0 ≤ det X ≤ det Y

for matrices X and Y in Sn.

5. Calculate the conjugate of each of the functions in Exercise 4.

6. Use formula (5.2.6) to calculate the gradients of the functions in Ex-
ercise 4.

7. For a matrix A in Sn
++ and a real b > 0, use the Lagrangian sufficient

conditions (3.2.3) to solve the problem

inf{f(X) | tr (AX) ≤ b, X ∈ Sn},

where f is one of the functions in Exercise 4.

8. ∗ (Orthogonal invariance) A function h : Sn → (∞,+∞] is or-
thogonally invariant if all matrices X in Sn and U in On satisfy the
relation h(UT XU) = h(X); in other words, orthogonal similarity
transformations do not change the value of h.

(a) Prove h is orthogonally invariant if and only if there is a sym-
metric function f : Rn → (∞,+∞] with h = f ◦ λ.

(b) Prove that an orthogonally invariant function h is closed and
convex if and only if h ◦Diag is closed and convex.

9. ∗ Suppose the function f : Rn → (−∞,+∞] is symmetric.

(a) Prove f∗ is symmetric.

(b) If vectors x and y in Rn satisfy y ∈ ∂f(x), prove [y] ∈ ∂f([x])
using Proposition 1.2.4.

(c) Finish the proof of the Spectral subgradients corollary (5.2.4).

(d) Deduce ∂(f ◦ λ)(X) = ∅ ⇔ ∂f(λ(X)) = ∅.
(e) Prove Corollary 5.2.7.
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10. ∗ (Fillmore–Williams [78]) Suppose the set C ⊂ Rn is symmetric:
that is, PC = C holds for all permutation matrices P . Prove the set

λ−1(C) = {X ∈ Sn | λ(X) ∈ C}
is closed and convex if and only if C is closed and convex.

11. ∗∗ (Semidefinite complementarity) Suppose matrices X and Y
lie in Sn

+.

(a) If tr (XY ) = 0, prove −Y ∈ ∂δSn
+
(X).

(b) Hence prove the following properties are equivalent:

(i) tr (XY ) = 0.
(ii) XY = 0.
(iii) XY + Y X = 0.

(c) Using Exercise 5 in Section 1.2, prove for any matrices U and V
in Sn

(U2 + V 2)1/2 = U + V ⇔ U, V � 0 and tr (UV ) = 0.

12. ∗∗ (Eigenvalue sums) Consider a vector μ in Rn
≥.

(a) Prove the function μT λ(·) is sublinear using Section 2.2, Exercise
9 (Schur-convexity).

(b) Deduce the map λ is (−Rn
≥)−-sublinear. (See Section 3.3, Ex-

ercise 18 (Order convexity).)

(c) Use Section 3.1, Exercise 10 to prove

∂(μT λ)(0) = λ−1(conv (Pnμ)).

13. ∗∗ (Davis theorem) Suppose the function f : Rn → [−∞,+∞] is
symmetric (but not necessarily closed). Use Exercise 12 (Eigenvalue
sums) and Section 2.2, Exercise 9(d) (Schur-convexity) to prove that
f ◦ λ is convex if and only if f is convex.

14. ∗ (DC functions) We call a real function f on a convex set C ⊂ E
a DC function if it can be written as the difference of two real convex
functions on C.

(a) Prove the set of DC functions is a vector space.

(b) If f is a DC function, prove it is locally Lipschitz on intC.

(c) Prove λk is a DC function on Sn for all k, and deduce it is locally
Lipschitz.
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5.3 Duality for Linear and Semidefinite
Programming

Linear programming (LP) is the study of optimization problems involv-
ing a linear objective function subject to linear constraints. This simple
optimization model has proved enormously powerful in both theory and
practice, so we devote this section to deriving linear programming duality
theory from our convex-analytic perspective. We contrast this theory with
the corresponding results for semidefinite programming (SDP), a class of
matrix optimization problems analogous to linear programs but involving
the positive semidefinite cone.

Linear programs are inherently polyhedral, so our main development
follows directly from the polyhedrality section (Section 5.1). But to be-
gin, we sketch an alternative development directly from the Farkas lemma
(2.2.7). Given vectors a1, a2, . . . , am, and c in Rn and a vector b in Rm,
consider the primal linear program

inf 〈c, x〉
subject to 〈ai, x〉 − bi ≤ 0 for i = 1, 2, . . . ,m

x ∈ Rn.

⎫⎬⎭ (5.3.1)

Denote the primal optimal value by p ∈ [−∞,+∞]. In the Lagrangian
duality framework (Section 4.3), the dual problem is

sup
{
− bT μ

∣∣∣ m∑
i=1

μia
i = −c, μ ∈ Rm

+

}
(5.3.2)

with dual optimal value d ∈ [−∞,+∞]. From Section 4.3 we know the
weak duality inequality p ≥ d. If the primal problem (5.3.1) satisfies the
Slater condition then the Dual attainment theorem (4.3.7) shows p = d
with dual attainment when the values are finite. However, as we shall see,
the Slater condition is superfluous here.

Suppose the primal value p is finite. Then it is easy to see that the
“homogenized” system of inequalities in Rn+1,

〈ai, x〉 − biz ≤ 0 for i = 1, 2, . . . ,m
−z ≤ 0 and

〈−c, x〉+ pz > 0, x ∈ Rn, z ∈ R

⎫⎬⎭ (5.3.3)

has no solution. Applying the Farkas lemma (2.2.7) to this system, we
deduce there is a vector μ̄ in Rn

+ and a scalar β in R+ satisfying

m∑
i=1

μ̄i(ai,−bi) + β(0,−1) = (−c, p).
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Thus μ̄ is a feasible solution for the dual problem (5.3.2) with objective
value at least p. The weak duality inequality now implies μ̄ is optimal and
p = d. We needed no Slater condition; the assumption of a finite primal
optimal value alone implies zero duality gap and dual attainment.

We can be more systematic using our polyhedral theory. Suppose that
Y is a Euclidean space, that the map A : E → Y is linear, and consider
cones H ⊂ Y and K ⊂ E. For given elements c of E and b of Y, consider
the primal abstract linear program

inf{〈c, x〉 |Ax− b ∈ H, x ∈ K}. (5.3.4)

As usual, denote the optimal value by p. We can write this problem in
Fenchel form (3.3.6) if we define functions f on E and g on Y by f(x) =
〈c, x〉+δK(x) and g(y) = δH(y−b). Then the Fenchel dual problem (3.3.7)
is

sup{〈b, φ〉 |A∗φ− c ∈ K−, φ ∈ −H−} (5.3.5)

with dual optimal value d. If we now apply the Fenchel duality theorem
(3.3.5) in turn to problem (5.3.4), and then to problem (5.3.5) (using the
Bipolar cone theorem (3.3.14)), we obtain the following general result.

Corollary 5.3.6 (Cone programming duality) Suppose the cones H
and K in problem (5.3.4) are convex.

(a) If any of the conditions

(i) b ∈ int (AK −H),

(ii) b ∈ AK − int H, or

(iii) b ∈ A(int K)−H, and either H is polyhedral or A is surjective

hold then there is no duality gap (p = d) and the dual optimal value
d is attained if finite.

(b) Suppose H and K are also closed. If any of the conditions

(i) −c ∈ int (A∗H− + K−),

(ii) −c ∈ A∗H− + int K−, or

(iii) −c ∈ A∗(int H−) + K−, and either K is polyhedral or A∗ is
surjective

hold then there is no duality gap and the primal optimal value p is
attained if finite.

In both parts (a) and (b), the sufficiency of condition (iii) follows by ap-
plying the Mixed Fenchel duality corollary (5.1.10), or the Open mapping
theorem (Section 4.1, Exercise 9). In the fully polyhedral case we obtain
the following result.
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Corollary 5.3.7 (Linear programming duality) Suppose the cones H
and K in the dual pair of problems (5.3.4) and (5.3.5) are polyhedral. If
either problem has finite optimal value then there is no duality gap and both
problems have optimal solutions.

Proof. We apply the Polyhedral Fenchel duality corollary (5.1.9) to each
problem in turn. �

Our earlier result for the linear program (5.3.1) is clearly just a special case
of this corollary.

Linear programming has an interesting matrix analogue. Given matri-
ces A1, A2, . . . , Am, and C in Sn

+ and a vector b in Rm, consider the primal
semidefinite program

inf tr (CX)
subject to tr (AiX) = bi for i = 1, 2, . . . ,m

X ∈ Sn
+.

⎫⎬⎭ (5.3.8)

This is a special case of the abstract linear program (5.3.4), so the dual
problem is

sup
{

bT φ
∣∣∣ C − m∑

i=1

φiAi ∈ Sn
+, φ ∈ Rm

}
, (5.3.9)

since (Sn
+)− = −Sn

+, by the Self-dual cones proposition (3.3.12), and we
obtain the following duality theorem from the general result above.

Corollary 5.3.10 (Semidefinite programming duality) If the primal
problem (5.3.8) has a positive definite feasible solution, there is no duality
gap and the dual optimal value is attained when finite. On the other hand,
if there is a vector φ in Rm with C −∑

i φiAi positive definite then once
again there is no duality gap and the primal optimal value is attained when
finite.

Unlike linear programming, we need a condition stronger than mere
consistency to guarantee no duality gap. For example, if we consider the
primal semidefinite program (5.3.8) with

n = 2, m = 1, C =
[

0 1
1 0

]
, A1 =

[
1 0
0 0

]
, and b = 0,

the primal optimal value is 0 (and is attained), whereas the dual problem
(5.3.9) is inconsistent.
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Exercises and Commentary

The importance of linear programming duality was first emphasized by
Dantzig [57] and that of semidefinite duality by Nesterov and Nemirovskii
[148]. A good general reference for linear programming is [53]. A straight-
forward exposition of the central path (see Exercise 10) may be found in
[187]. Semidefinite programming has wide application in control theory
[46].

1. Check the form of the dual problem for the linear program (5.3.1).

2. If the optimal value of problem (5.3.1) is finite, prove system (5.3.3)
has no solution.

3. (Linear programming duality gap) Give an example of a linear
program of the form (5.3.1) which is inconsistent (p = +∞) with the
dual problem (5.3.2) also inconsistent (d = −∞).

4. Check the form of the dual problem for the abstract linear program
(5.3.4).

5. Fill in the details of the proof of the Cone programming duality corol-
lary (5.3.6). In particular, when the cones H and K are closed, show
how to interpret problem (5.3.4) as the dual of problem (5.3.5).

6. Fill in the details of the proof of the linear programming duality
corollary (5.3.7).

7. (Complementary slackness) Suppose we know the optimal values
of problems (5.3.4) and (5.3.5) are equal and the dual value is at-
tained. Prove a feasible solution x for problem (5.3.4) is optimal if
and only if there is a feasible solution φ for the dual problem (5.3.5)
satisfying the conditions

〈Ax− b, φ〉 = 0 = 〈x,A∗φ− c〉.

8. (Semidefinite programming duality) Prove Corollary 5.3.10.

9. (Semidefinite programming duality gap) Check the details of
the example after Corollary 5.3.10.

10. ∗∗ (Central path) Consider the dual pair of linear programs (5.3.1)
and (5.3.2). Define a linear map A : Rn → Rm by (Ax)i = (ai)T x
for each index i. Make the following assumptions:

(i) There is a vector x in Rn satisfying b−Ax ∈ Rn
++.

(ii) There is a feasible solution μ in Rm
++ for problem (5.3.2).
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(iii) The set {a1, a2, . . . , am} is linearly independent.

Now consider the “penalized” problem (for real ε > 0)

inf
x∈Rn

{cT x + εlb (b−Ax)}. (5.3.11)

(a) Write this problem as a Fenchel problem (3.3.6), and show the
dual problem is

sup
{
− bT μ− εlb (μ)−k(ε)

∣∣∣ m∑
i=1

μia
i = −c, μ ∈ Rm

+

}
(5.3.12)

for some function k : R+ → R.

(b) Prove that both problems (5.3.11) and (5.3.12) have optimal
solutions, with equal optimal values.

(c) By complementary slackness (Section 3.3, Exercise 9(f)), prove
problems (5.3.11) and (5.3.12) have unique optimal solutions
xε ∈ Rn and με ∈ Rm, characterized as the unique solution of
the system

m∑
i=1

μia
i = −c

μi(bi − (ai)T x) = ε for each i

b−Ax ≥ 0, and
μ ∈ Rm

+ , x ∈ Rn.

(d) Calculate cT xε + bT με.

(e) Deduce that, as ε decreases to 0, the feasible solution xε ap-
proaches optimality in problem (5.3.1) and με approaches opti-
mality in problem (5.3.2).

11. ∗∗ (Semidefinite central path) Imitate the development of Exer-
cise 10 for the semidefinite programs (5.3.8) and (5.3.9).

12. ∗∗ (Relativizing cone programming duality) Prove other condi-
tions guaranteeing part (a) of Corollary 5.3.6 are

(i) b ∈ A(riK)− riH or

(ii) b ∈ A(riK)−H and H polyhedral.

(Hint: Use Section 4.1, Exercise 20, and Section 5.1, Exercise 12.)



Chapter 7

Karush–Kuhn–Tucker
Theory

7.1 An Introduction to Metric Regularity

Our main optimization models so far are inequality-constrained. A little
thought shows our techniques are not useful for equality-constrained prob-
lems like

inf{f(x) | h(x) = 0}.
In this section we study such problems by linearizing the feasible region
h−1(0) using the contingent cone.

Throughout this section we consider an open set U ⊂ E, a closed set
S ⊂ U , a Euclidean space Y, and a continuous map h : U → Y. The
restriction of h to S we denote h|S . The following easy result (Exercise 1)
suggests our direction.

Proposition 7.1.1 If h is Fréchet differentiable at the point x ∈ U then

Kh−1(h(x))(x) ⊂ N(∇h(x)).

Our aim in this section is to find conditions guaranteeing equality in this
result.

Our key tool is the next result. It states that if a closed function attains
a value close to its infimum at some point then a nearby point minimizes
a slightly perturbed function.

Theorem 7.1.2 (Ekeland variational principle) Suppose the function
f : E→ (∞,+∞] is closed and the point x ∈ E satisfies f(x) ≤ inf f +ε for
some real ε > 0. Then for any real λ > 0 there is a point v ∈ E satisfying
the conditions

153
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(a) ‖x− v‖ ≤ λ,

(b) f(v) ≤ f(x), and

(c) v is the unique minimizer of the function f(·) + (ε/λ)‖ · −v‖.
Proof. We can assume f is proper, and by assumption it is bounded
below. Since the function

f(·) +
ε

λ
‖ · −x‖

therefore has compact level sets, its set of minimizers M ⊂ E is nonempty
and compact. Choose a minimizer v for f on M . Then for points z �= v in
M we know

f(v) ≤ f(z) < f(z) +
ε

λ
‖z − v‖,

while for z not in M we have

f(v) +
ε

λ
‖v − x‖ < f(z) +

ε

λ
‖z − x‖.

Part (c) follows by the triangle inequality. Since v lies in M we have

f(z) +
ε

λ
‖z − x‖ ≥ f(v) +

ε

λ
‖v − x‖ for all z in E.

Setting z = x shows the inequalities

f(v) + ε ≥ inf f + ε ≥ f(x) ≥ f(v) +
ε

λ
‖v − x‖.

Properties (a) and (b) follow. �

As we shall see, precise calculation of the contingent cone Kh−1(h(x))(x)
requires us first to bound the distance of a point z to the set h−1(h(x)) in
terms of the function value h(z). This leads us to the notion of “metric
regularity”. In this section we present a somewhat simplified version of this
idea, which suffices for most of our purposes; we defer a more comprehensive
treatment to a later section. We say h is weakly metrically regular on S at
the point x in S if there is a real constant k such that

dS∩h−1(h(x))(z) ≤ k‖h(z)− h(x)‖ for all z in S close to x.

Lemma 7.1.3 Suppose 0 ∈ S and h(0) = 0. If h is not weakly metrically
regular on S at zero then there is a sequence vr → 0 in S such that h(vr) �= 0
for all r, and a strictly positive sequence δr ↓ 0 such that the function

‖h(·)‖+ δr‖ · −vr‖
is minimized on S at vr.
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Proof. By definition there is a sequence xr → 0 in S such that

dS∩h−1(0)(xr) > r‖h(xr)‖ for all r. (7.1.4)

For each index r we apply the Ekeland principle with

f = ‖h‖+ δS , ε = ‖h(xr)‖, λ = min{rε,√ε}, and x = xr

to deduce the existence of a point vr in S such that

(a) ‖xr − vr‖ ≤ min
{

r‖h(xr)‖,
√‖h(xr)‖

}
and

(c) vr minimizes the function

‖h(·)‖+ max
{

r−1,
√
‖h(xr)‖

}
‖ · −vr‖

on S.

Property (a) shows vr → 0, while (c) reveals the minimizing property of
vr. Finally, inequality (7.1.4) and property (a) prove h(vr) �= 0. �

We can now present a convenient condition for weak metric regularity.

Theorem 7.1.5 (Surjectivity and metric regularity) If h is strictly
differentiable at the point x in S and

∇h(x)(TS(x)) = Y

then h is weakly metrically regular on S at x.

Proof. Notice first h is locally Lipschitz around x (see Theorem 6.2.3).
Without loss of generality, suppose x = 0 and h(0) = 0. If h is not weakly
metrically regular on S at zero then by Lemma 7.1.3 there is a sequence
vr → 0 in S such that h(vr) �= 0 for all r, and a real sequence δr ↓ 0 such
that the function

‖h(·)‖+ δr‖ · −vr‖
is minimized on S at vr. Denoting the local Lipschitz constant by L, we
deduce from the sum rule (6.1.6) and the Exact penalization proposition
(6.3.2) the condition

0 ∈ ∂◦(‖h‖)(vr) + δrB + L∂◦dS(vr).

Hence there are elements ur of ∂◦(‖h‖)(vr) and wr of L∂◦dS(vr) such that
ur + wr approaches zero.

By choosing a subsequence we can assume

‖h(vr)‖−1h(vr) → y �= 0
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and an exercise then shows ur → (∇h(0))∗y. Since the Clarke subdifferen-
tial is closed at zero (Section 6.2, Exercise 12), we deduce

−(∇h(0))∗y ∈ L∂◦dS(0) ⊂ NS(0).

However, by assumption there is a nonzero element p of TS(0) such that
∇h(0)p = −y, so we arrive at the contradiction

0 ≥ 〈p,−(∇h(0))∗y〉 = 〈∇h(0)p,−y〉 = ‖y‖2 > 0,

which completes the proof. �

We can now prove the main result of this section.

Theorem 7.1.6 (Liusternik) If h is strictly differentiable at the point x
and ∇h(x) is surjective then the set h−1(h(x)) is tangentially regular at x
and

Kh−1(h(x))(x) = N(∇h(x)).

Proof. Assume without loss of generality that x = 0 and h(0) = 0. In
light of Proposition 7.1.1, it suffices to prove

N(∇h(0)) ⊂ Th−1(0)(0).

Fix any element p of N(∇h(0)) and consider a sequence xr → 0 in h−1(0)
and tr ↓ 0 in R++. The previous result shows h is weakly metrically regular
at zero, so there is a constant k such that

dh−1(0)(xr + trp) ≤ k‖h(xr + trp)‖
holds for all large r, and hence there are points zr in h−1(0) satisfying

‖xr + trp− zr‖ ≤ k‖h(xr + trp)‖.
If we define directions pr = t−1

r (zr − xr) then clearly the points xr + trp
r

lie in h−1(0) for large r, and since

‖p− pr‖ =
‖xr + trp− zr‖

tr

≤ k‖h(xr + trp)− h(xr)‖
tr

→ k‖(∇h(0))p‖
= 0,

we deduce p ∈ Th−1(0)(0). �
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Exercises and Commentary

Liusternik’s original study of tangent spaces appeared in [130]. Closely
related ideas were pursued by Graves [85] (see [65] for a good survey). The
Ekeland principle first appeared in [69], motivated by the study of infinite-
dimensional problems where techniques based on compactness might be
unavailable. As we see in this section, it is a powerful idea even in finite
dimensions; the simplified version we present here was observed in [94]. See
also Exercise 14 in Section 9.2. The inversion technique we use (Lemma
7.1.3) is based on the approach in [101]. The recognition of “metric” regu-
larity (a term perhaps best suited to nonsmooth analysis) as a central idea
began largely with Robinson; see [162, 163] for example. Many equivalences
are discussed in [5, 168].

1. Suppose h is Fréchet differentiable at the point x ∈ S.

(a) Prove for any set D ⊃ h(S) the inclusion

∇h(x)KS(x) ⊂ KD(h(x)).

(b) If h is constant on S, deduce

KS(x) ⊂ N(∇h(x)).

(c) If h is a real function and x is a local minimizer of h on S, prove

−∇h(x) ∈ (KS(x))−.

2. (Lipschitz extension) Suppose the real function f has Lipschitz
constant k on the set C ⊂ E. By considering the infimal convolution
of the functions f +δC and k‖ ·‖, prove there is a function f̃ : E→ R
with Lipschitz constant k that agrees with f on C. Prove furthermore
that if f and C are convex then f̃ can be assumed convex.

3. ∗ (Closure and the Ekeland principle) Given a subset S of E,
suppose the conclusion of Ekeland’s principle holds for all functions
of the form g + δS where the function g is continuous on S. Deduce
S is closed. (Hint: For any point x in clS, let g = ‖ · −x‖.)

4. ∗∗ Suppose h is strictly differentiable at zero and satisfies

h(0) = 0, vr → 0, ‖h(vr)‖−1h(vr) → y, and ur ∈ ∂◦(‖h‖)(vr).

Prove ur → (∇h(0))∗y. Write out a shorter proof when h is continu-
ously differentiable at zero.

5. ∗∗ Interpret Exercise 27 (Conical open mapping) in Section 4.2 in
terms of metric regularity.



158 7. Karush–Kuhn–Tucker Theory

6. ∗∗ (Transversality) Suppose the set V ⊂ Y is open and the set
R ⊂ V is closed. Suppose furthermore h is strictly differentiable at
the point x in S with h(x) in R and

∇h(x)(TS(x))− TR(h(x)) = Y. (7.1.7)

(a) Define the function g : U × V → Y by g(z, y) = h(z)− y. Prove
g is weakly metrically regular on S ×R at the point (x, h(x)).

(b) Deduce the existence of a constant k′ such that the inequality

d(S×R)∩g−1(g(x,h(x)))(z, y) ≤ k′‖h(z)− y‖

holds for all points (z, y) in S ×R close to (x, h(x)).

(c) Apply Proposition 6.3.2 (Exact penalization) to deduce the ex-
istence of a constant k such that the inequality

d(S×R)∩g−1(g(x,h(x)))(z, y) ≤ k(‖h(z)− y‖+ dS(z) + dR(y))

holds for all points (z, y) in U × V close to (x, h(x)).

(d) Deduce the inequality

dS∩h−1(R)(z) ≤ k(dS(z) + dR(h(z)))

holds for all points z in U close to x.

(e) Imitate the proof of Liusternik’s theorem (7.1.6) to deduce the
inclusions

TS∩h−1(R)(x) ⊃ TS(x) ∩ (∇h(x))−1TR(h(x))

and
KS∩h−1(R)(x) ⊃ KS(x) ∩ (∇h(x))−1TR(h(x)).

(f) Suppose h is the identity map, so

TS(x)− TR(x) = E.

If either R or S is tangentially regular at x, prove

KR∩S(x) = KR(x) ∩KS(x).

(g) (Guignard) By taking polars and applying the Krein–Rutman
polar cone calculus (3.3.13) and condition (7.1.7) again, deduce

NS∩h−1(R)(x) ⊂ NS(x) + (∇h(x))∗NR(h(x)).
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(h) If C and D are convex subsets of E satisfying 0 ∈ core (C −D)
(or riC ∩ riD �= ∅), and the point x lies in C ∩D, use part (e)
to prove

TC∩D(x) = TC(x) ∩ TD(x).

7. ∗∗ (Liusternik via inverse functions) We first fix E = Rn. The
classical inverse function theorem states that if the map g : U → Rn

is continuously differentiable then at any point x in U at which ∇g(x)
is invertible, x has an open neighbourhood V whose image g(V ) is
open, and the restricted map g|V has a continuously differentiable
inverse satisfying the condition

∇ (g|V )−1 (g(x)) = (∇g(x))−1
.

Consider now a continuously differentiable map h : U → Rm, and
a point x in U with ∇h(x) surjective, and fix a direction d in the
null space N(∇h(x)). Choose any (n × (n −m)) matrix D making
the matrix A = (∇h(x),D) invertible, define a function g : U → Rn

by g(z) = (h(z),Dz), and for a small real δ > 0 define a function
p : (−δ, δ) → Rn by

p(t) = g−1(g(x) + tAd).

(a) Prove p is well-defined providing δ is small.

(b) Prove the following properties:

(i) p is continuously differentiable.
(ii) p(0) = x.
(iii) p′(0) = d.
(iv) h(p(t)) = h(x) for all small t.

(c) Deduce that a direction d lies in N(∇h(x)) if and only if there
is a function p : (−δ, δ) → Rn for some δ > 0 in R satisfying
the four conditions in part (b).

(d) Deduce Kh−1(h(x))(x) = N(∇h(x)).
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7.2 The Karush–Kuhn–Tucker Theorem

The central result of optimization theory describes first order necessary
optimality conditions for the general nonlinear problem

inf{f(x) | x ∈ S}, (7.2.1)

where, given an open set U ⊂ E, the objective function is f : U → R and
the feasible region S is described by equality and inequality constraints:

S = {x ∈ U | gi(x) ≤ 0 for i = 1, 2, . . . , m, h(x) = 0}. (7.2.2)

The equality constraint map h : U → Y (where Y is a Euclidean space)
and the inequality constraint functions gi : U → R (for i = 1, 2, . . . , m) are
all continuous. In this section we derive necessary conditions for the point
x̄ in S to be a local minimizer for the problem (7.2.1).

In outline, the approach takes three steps. We first extend Liusternik’s
theorem (7.1.6) to describe the contingent cone KS(x̄). Next we calculate
this cone’s polar cone using the Farkas lemma (2.2.7). Finally, we apply
the Contingent necessary condition (6.3.10) to derive the result.

As in our development for the inequality-constrained problem in Section
2.3, we need a regularity condition. Once again, we denote the set of indices
of the active inequality constraints by I(x̄) = {i | gi(x̄) = 0}.

Assumption 7.2.3 (The Mangasarian–Fromovitz constraint qual-
ification) The active constraint functions gi (for i in I(x̄)) are Fréchet
differentiable at the point x̄, the equality constraint map h is strictly differ-
entiable, with a surjective gradient, at x̄, and the set

{p ∈ N(∇h(x̄)) | 〈∇gi(x̄), p〉 < 0 for i in I(x̄)} (7.2.4)

is nonempty.

Notice in particular that the set (7.2.4) is nonempty in the case where the
map h : U → Rq has components h1, h2, . . . , hq and the set of gradients

{∇hj(x̄) | j = 1, 2, . . . , q} ∪ {∇gi(x̄) | i ∈ I(x̄)} (7.2.5)

is linearly independent (Exercise 1).

Theorem 7.2.6 Suppose the Mangasarian–Fromovitz constraint qualifica-
tion (7.2.3) holds. Then the contingent cone to the feasible region S defined
by equation (7.2.2) is given by

KS(x̄) = {p ∈ N(∇h(x̄)) | 〈∇gi(x̄), p〉 ≤ 0 for i in I(x̄)}. (7.2.7)
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Proof. Denote the set (7.2.4) by K̃ and the right hand side of formula
(7.2.7) by K. The inclusion

KS(x̄) ⊂ K

is a straightforward exercise. Furthermore, since K̃ is nonempty, it is easy
to see K = cl K̃. If we can show K̃ ⊂ KS(x̄) then the result will follow
since the contingent cone is always closed.

To see K̃ ⊂ KS(x̄), fix an element p of K̃. Since p lies in N(∇h(x̄)),
Liusternik’s theorem (7.1.6) shows p ∈ Kh−1(0)(x̄). Hence there are se-
quences tr ↓ 0 in R++ and pr → p in E satisfying h(x̄ + trp

r) = 0 for all
r. Clearly x̄ + trp

r ∈ U for all large r, and we claim gi(x̄ + trp
r) < 0. For

indices i not in I(x̄) this follows by continuity, so we suppose i ∈ I(x̄) and
gi(x̄ + trp

r) ≥ 0 for all r in some subsequence R of N. We then obtain the
contradiction

0 = lim
r→∞ in R

gi(x̄ + trp
r)− gi(x̄)− 〈∇gi(x̄), trpr〉

tr‖pr‖
≥ −〈∇gi(x̄), p〉

‖p‖
> 0.

The result now follows. �

Lemma 7.2.8 Any linear maps A : E→ Rq and G : E→ Y satisfy

{x ∈ N(G) |Ax ≤ 0}− = A∗Rq
+ + G∗Y.

Proof. This is an immediate application of Section 5.1, Exercise 9 (Poly-
hedral cones). �

Theorem 7.2.9 (Karush–Kuhn–Tucker conditions) Suppose x̄ is a
local minimizer for problem (7.2.1) and the objective function f is Fréchet
differentiable at x̄. If the Mangasarian–Fromovitz constraint qualification
(7.2.3) holds then there exist multipliers λi in R+ (for i in I(x̄)) and μ in
Y satisfying

∇f(x̄) +
∑

i∈I(x̄)

λi∇gi(x̄) +∇h(x̄)∗μ = 0. (7.2.10)

Proof. The Contingent necessary condition (6.3.10) shows

−∇f(x̄) ∈ KS(x̄)−

= {p ∈ N(∇h(x̄)) | 〈∇gi(x̄), p〉 ≤ 0 for i in I(x̄)}−
=

∑
i∈I(x̄)

R+∇gi(x̄) +∇h(x̄)∗Y

using Theorem 7.2.6 and Lemma 7.2.8. �
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Exercises and Commentary

A survey of the history of these results may be found in [158]. The Mangas-
arian–Fromovitz condition originated with [133], while the Karush–Kuhn–
Tucker conditions first appeared in [111] and [117]. The idea of penalty
functions (see Exercise 11 (Quadratic penalties)) is a common technique
in optimization. The related notion of a barrier penalty is crucial for inte-
rior point methods; examples include the penalized linear and semidefinite
programs we considered in Section 4.3, Exercise 4 (Examples of duals).

1. (Linear independence implies Mangasarian–Fromovitz) If the
set of gradients (7.2.5) is linearly independent, then by considering
the equations

〈∇gi(x̄), p〉 = −1 for i in I(x̄)
〈∇hj(x̄), p〉 = 0 for j = 1, 2, . . . , q,

prove the set (7.2.4) is nonempty.

2. Consider the proof of Theorem 7.2.6.

(a) Prove KS(x̄) ⊂ K.

(b) If K̃ is nonempty, prove K = cl K̃.

3. (Linear constraints) If the functions gi (for i in I(x̄)) and h are
affine, prove the contingent cone formula (7.2.7) holds.

4. (Bounded multipliers) In Theorem 7.2.9 (Karush–Kuhn–Tucker
conditions), prove the set of multiplier vectors (λ, μ) satisfying equa-
tion (7.2.10) is compact.

5. (Slater condition) Suppose the set U is convex, the functions

g1, g2, . . . , gm : U → R

are convex and Fréchet differentiable, and the function h : E→ Y is
affine and surjective. Suppose further there is a point x̂ in h−1(0)
satisfying gi(x̂) < 0 for i = 1, 2, . . . ,m. For any feasible point x̄ for
problem (7.2.1), prove the Mangasarian–Fromovitz constraint quali-
fication holds.

6. (Largest eigenvalue) For a matrix A in Sn, use the Karush–Kuhn–
Tucker theorem to calculate

sup{xT Ax | ‖x‖ = 1, x ∈ Rn}.
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7. ∗ (Largest singular value [100, p. 135]) Given any m×n matrix
A, consider the optimization problem

α = sup{xT Ay | ‖x‖2 = 1, ‖y‖2 = 1} (7.2.11)

and the matrix

Ã =
[

0 A
AT 0

]
.

(a) If μ is an eigenvalue of Ã, prove −μ is also.

(b) If μ is a nonzero eigenvalue of Ã, use a corresponding eigen-
vector to construct a feasible solution to problem (7.2.11) with
objective value μ.

(c) Deduce α ≥ λ1(Ã).

(d) Prove problem (7.2.11) has an optimal solution.

(e) Use the Karush–Kuhn–Tucker theorem to prove any optimal
solution of problem (7.2.11) corresponds to an eigenvector of Ã.

(f) (Jordan [108]) Deduce α = λ1(Ã). (This number is called the
largest singular value of A.)

8. ∗∗ (Hadamard’s inequality [88]) The matrix with columns x1, x2,
. . . ,xn in Rn we denote by (x1, x2, . . . , xn). Prove (x̄1, x̄2, . . . , x̄n)
solves the problem

inf −det(x1, x2, . . . , xn)
subject to ‖xi‖2 = 1 for i = 1, 2, . . . , n

x1, x2, . . . , xn ∈ Rn

if and only if the matrix (x̄1, x̄2, . . . , x̄n) has determinant equal to
one and has columns forming an orthonormal basis, and deduce the
inequality

det(x1, x2, . . . , xn) ≤
n∏

i=1

‖xi‖.

9. (Nonexistence of multipliers [77]) Define a function sgn : R→ R
by

sgn(v) =

⎧⎨⎩
1 if v > 0
0 if v = 0
−1 if v < 0

and a function h : R2 → R by

h(u, v) = v − sgn(v)(u+)2.

(a) Prove h is Fréchet differentiable at (0, 0) with derivative (0, 1).
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(b) Prove h is not continuous on any neighbourhood of (0, 0), and
deduce it is not strictly differentiable at (0, 0).

(c) Prove (0, 0) is optimal for the problem

inf{f(u, v) | h(u, v) = 0},

where f(u, v) = u, and yet there is no real λ satisfying

∇f(0, 0) + λ∇h(0, 0) = (0, 0).

(Exercise 14 in Section 8.1 gives an approach to weakening the con-
ditions required in this section.)

10. ∗ (Guignard optimality conditions [87]) Suppose the point x̄ is
a local minimizer for the optimization problem

inf{f(x) | h(x) ∈ R, x ∈ S}

where R ⊂ Y. If the functions f and h are strictly differentiable at
x̄ and the transversality condition

∇h(x̄)TS(x̄)− TR(h(x̄)) = Y

holds, use Section 7.1, Exercise 6 (Transversality) to prove the opti-
mality condition

0 ∈ ∇f(x̄) +∇h(x̄)∗NR(h(x̄)) + NS(x̄).

11. ∗∗ (Quadratic penalties [136]) Take the nonlinear program (7.2.1)
in the case Y = Rq and now let us assume all the functions

f, g1, g2, . . . , gm, h1, h2, . . . , hq : U → R

are continuously differentiable on the set U . For positive integers k
we define a function pk : U → R by

pk(x) = f(x) + k
( m∑

i=1

(g+
i (x))2 +

q∑
j=1

(hj(x))2
)
.

Suppose the point x̄ is a local minimizer for the problem (7.2.1). Then
for some compact neighbourhood W of x̄ in U we know f(x) ≥ f(x̄)
for all feasible points x in W . Now define a function rk : W → R by

rk(x) = pk(x) + ‖x− x̄‖2,

and for each k = 1, 2, . . . choose a point xk minimizing rk on W .
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(a) Prove rk(xk) ≤ f(x̄) for each k = 1, 2, . . ..

(b) Deduce
lim

k→∞
g+

i (xk) = 0 for i = 1, 2, . . . ,m

and
lim

k→∞
hj(xk) = 0 for j = 1, 2, . . . , q.

(c) Hence show xk → x̄ as k →∞.

(d) Calculate ∇rk(x).

(e) Deduce

−2(xk − x̄) = ∇f(xk) +
m∑

i=1

λk
i∇gi(xk) +

q∑
j=1

μk
j∇hj(xk)

for some suitable choice of vectors λk in Rm
+ and μk in Rq.

(f) By taking a convergent subsequence of the vectors

‖(1, λk, μk)‖−1(1, λk, μk) ∈ R×Rm
+ ×Rq,

show from parts (c) and (e) the existence of a nonzero vector
(λ0, λ, μ) in R×Rm

+ ×Rq satisfying the Fritz John conditions:

(i) λigi(x̄) = 0 for i = 1, 2, . . . ,m.
(ii) λ0∇f(x̄) +

∑m
i=1 λi∇gi(x̄) +

∑q
j=1 μj∇hj(x̄) = 0.

(g) Under the assumption of the Mangasarian–Fromovitz constraint
qualification (7.2.3), show that the Fritz John conditions in part
(f) imply the Karush–Kuhn–Tucker conditions.
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7.3 Metric Regularity and the Limiting
Subdifferential

In Section 7.1 we presented a convenient test for the weak metric regularity
of a function at a point in terms of the surjectivity of its strict derivative
there (Theorem 7.1.5). This test, while adequate for most of our purposes,
can be richly refined using the limiting subdifferential.

As before, we consider an open set U ⊂ E, a Euclidean space Y, a
closed set S ⊂ U , and a function h : U → Y which we assume throughout
this section is locally Lipschitz. We begin with the full definition of metric
regularity, strengthening the notion of Section 7.1. We say h is metrically
regular on S at the point x in S if there is a real constant k such that the
estimate

dS∩h−1(y)(z) ≤ k‖h(z)− y‖
holds for all points z in S close to x and all vectors y in Y close to h(x).
(Before we only required this to be true when y = h(x).)

Lemma 7.3.1 If h is not metrically regular on S at x then there are se-
quences (vr) in S converging to x, (yr) in Y converging to h(x), and (εr)
in R++ decreasing to zero such that, for each index r, we have h(vr) �= yr

and the function
‖h(·)− yr‖+ εr‖ · −vr‖

is minimized on S at vr.

Proof. The proof is completely analogous to that of Lemma 7.1.3: we
leave it as an exercise. �

We also need the following chain-rule-type result; we leave the proof as
an exercise.

Lemma 7.3.2 At any point x in E where h(x) �= 0 we have

∂a‖h(·)‖(x) = ∂a〈‖h(x)‖−1h(x), h(·)〉(x).

Using this result and a very similar proof to Theorem 7.1.5, we can now
extend the surjectivity and metric regularity result.

Theorem 7.3.3 (Limiting subdifferential and regularity) If a point
x lies in S and no nonzero element w of Y satisfies the condition

0 ∈ ∂a〈w, h(·)〉(x) + Na
S(x)

then h is metrically regular on S at x.



Chapter 8

Fixed Points

8.1 The Brouwer Fixed Point Theorem

Many questions in optimization and analysis reduce to solving a nonlinear
equation h(x) = 0, for some function h : E→ E. Equivalently, if we define
another map f = I − h (where I is the identity map), we seek a point x in
E satisfying f(x) = x; we call x a fixed point of f .

The most potent fixed point existence theorems fall into three cate-
gories: “geometric” results, devolving from the Banach contraction princi-
ple (which we state below), “order-theoretic” results (to which we briefly
return in Section 8.3), and “topological” results, for which the prototype is
the theorem of Brouwer forming the main body of this section. We begin
with Banach’s result.

Given a set C ⊂ E and a continuous self map f : C → C, we ask
whether f has a fixed point. We call f a contraction if there is a real
constant γf < 1 such that

‖f(x)− f(y)‖ ≤ γf‖x− y‖ for all x, y ∈ C. (8.1.1)

Theorem 8.1.2 (Banach contraction) Any contraction on a closed sub-
set of E has a unique fixed point.

Proof. Suppose the set C ⊂ E is closed and the function f : C → C
satisfies the contraction condition (8.1.1). We apply the Ekeland variational
principle (7.1.2) to the function

z ∈ E �→
{ ‖z − f(z)‖ if z ∈ C

+∞ otherwise

at an arbitrary point x in C, with the choice of constants

ε = ‖x− f(x)‖ and λ =
ε

1− γf
.

179
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This shows there is a point v in C satisfying

‖v − f(v)‖ < ‖z − f(z)‖+ (1− γf )‖z − v‖
for all points z �= v in C. Hence v is a fixed point, since otherwise choosing
z = f(v) gives a contradiction. The uniqueness is easy. �

What if the map f is not a contraction? A very useful weakening of
the notion is the idea of a nonexpansive map, which is to say a self map f
satisfying

‖f(x)− f(y)‖ ≤ ‖x− y‖ for all x, y

(see Exercise 2). A nonexpansive map on a nonempty compact set or a
nonempty closed convex set may not have a fixed point, as simple examples
like translations on R or rotations of the unit circle show. On the other
hand, a straightforward argument using the Banach contraction theorem
shows this cannot happen if the set is nonempty, compact, and convex.
However, in this case we have the following more fundamental result.

Theorem 8.1.3 (Brouwer) Any continuous self map of a nonempty com-
pact convex subset of E has a fixed point.

In this section we present an “analyst’s approach” to Brouwer’s theo-
rem. We use the two following important analytic tools concerning C(1)

(continuously differentiable) functions on the closed unit ball B ⊂ Rn.

Theorem 8.1.4 (Stone–Weierstrass) For any continuous map f : B →
Rn, there is a sequence of C(1) maps fr : B → Rn converging uniformly
to f .

An easy exercise shows that, in this result, if f is a self map then we can
assume each fr is also a self map.

Theorem 8.1.5 (Change of variable) Suppose that the set W ⊂ Rn is
open and that the C(1) map g : W → Rn is one-to-one with ∇g invertible
throughout W . Then the set g(W ) is open with measure∫

W

|det∇g|.

We also use the elementary topological fact that the open unit ball intB
is connected; that is, it cannot be written as the disjoint union of two
nonempty open sets.

The key step in our argument is the following topological result.

Theorem 8.1.6 (Retraction) The unit sphere S is not a C(1) retract of
the unit ball B; that is, there is no C(1) map from B to S whose restriction
to S is the identity.
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Proof. Suppose there is such a retraction map p : B → S. For real
t in [0, 1], define a self map of B by pt = tp + (1 − t)I. As a function
of the variables x ∈ B and t, the function det∇pt(x) is continuous and
hence strictly positive for small t. Furthermore, pt is one-to-one for small
t (Exercise 7).

If we denote the open unit ball B \S by U , then the change of variables
theorem above shows for small t that pt(U) is open with measure

ν(t) =
∫

U

det∇pt. (8.1.7)

On the other hand, by compactness, pt(B) is a closed subset of B, and we
also know pt(S) = S. A little manipulation now shows we can write U as
a disjoint union of two open sets:

U = (pt(U) ∩ U) ∪ (pt(B)c ∩ U). (8.1.8)

The first set is nonempty, since pt(0) = tp(0) ∈ U . But as we observed, U
is connected, so the second set must be empty, which shows pt(B) = B.
Thus the function ν(t) defined by equation (8.1.7) equals the volume of the
unit ball B for all small t.

However, as a function of t ∈ [0, 1], ν(t) is a polynomial, so it must be
constant. Since p is a retraction we know that all points x in U satisfy
‖p(x)‖2 = 1. Differentiating implies (∇p(x))p(x) = 0, from which we
deduce det∇p(x) = 0, since p(x) is nonzero. Thus ν(1) is zero, which is a
contradiction. �

Proof of Brouwer’s theorem. Consider first a C(1) self map f on the
unit ball B. Suppose f has no fixed point. A straightforward exercise
shows there are unique functions α : B → R+ and p : B → S satisfying
the relationship

p(x) = x + α(x)(x− f(x)) for all x in B. (8.1.9)

Geometrically, p(x) is the point where the line extending from the point
f(x) through the point x meets the unit sphere S. In fact p must then be a
C(1) retraction, contradicting the retraction theorem above. Thus we have
proved that any C(1) self map of B has a fixed point.

Now suppose the function f is just continuous. The Stone–Weierstrass
theorem (8.1.4) implies there is a sequence of C(1) maps fr : B → Rn

converging uniformly to f , and by Exercise 4 we can assume each fr is a
self map. Our argument above shows each fr has a fixed point xr. Since B
is compact, the sequence (xr) has a subsequence converging to some point
x in B, which it is easy to see must be a fixed point of f . So any continuous
self map of B has a fixed point.
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Finally, consider a nonempty compact convex set C ⊂ E and a contin-
uous self map g on C. Just as in our proof of Minkowski’s theorem (4.1.8),
we may as well assume C has nonempty interior. Thus there is a home-
omorphism (a continuous onto map with continuous inverse) h : C → B
(see Exercise 11). Since the function h ◦ g ◦h−1 is a continuous self map of
B, our argument above shows this function has a fixed point x in B, and
therefore h−1(x) is a fixed point of g. �

Exercises and Commentary

Good general references on fixed point theory are [68, 174, 83]. The Ba-
nach contraction principle appeared in [7]. Brouwer proved the three-
dimensional case of his theorem in 1909 [49] and the general case in 1912
[50], with another proof by Hadamard in 1910 [89]. A nice exposition of the
Stone–Weierstrass theorem may be found in [16], for example. The Change
of variable theorem (8.1.5) we use can be found in [177]; a beautiful proof
of a simplified version, also sufficient to prove Brouwer’s theorem, appeared
in [118]. Ulam conjectured and Borsuk proved their result in 1933 [17].

1. (Banach iterates) Consider a closed subset C ⊂ E and a contrac-
tion f : C → C with fixed point xf . Given any point x0 in C, define
a sequence of points inductively by

xr+1 = f(xr) for r = 0, 1, . . . .

(a) Prove limr,s→∞ ‖xr − xs‖ = 0. Since E is complete, the se-
quence (xr) converges. (Another approach first shows (xr) is
bounded.) Hence prove in fact xr approaches xf . Deduce the
Banach contraction theorem.

(b) Consider another contraction g : C → C with fixed point xg.
Use part (a) to prove the inequality

‖xf − xg‖ ≤ supz∈C ‖f(z)− g(z)‖
1− γf

.

2. (Nonexpansive maps)

(a) If the n×n matrix U is orthogonal, prove the map x ∈ Rn → Ux
is nonexpansive.

(b) If the set S ⊂ E is closed and convex then for any real λ in the
interval [0, 2] prove the relaxed projection

x ∈ E �→ (1− λ)x + λPS(x)

is nonexpansive. (Hint: Use the nearest point characterization
in Section 2.1, Exercise 8(c).)
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(c) (Browder–Kirk [51, 112]) Suppose the set C ⊂ E is compact
and convex and the map f : C → C is nonexpansive. Prove f
has a fixed point. (Hint: Choose an arbitrary point x in C and
consider the contractions

z ∈ C �→ (1− ε)f(z) + εx

for small real ε > 0.)

(d)∗ In part (c), prove the fixed points form a nonempty compact
convex set.

3. (Non-uniform contractions)

(a) Consider a nonempty compact set C ⊂ E and a self map f on
C satisfying the condition

‖f(x)− f(y)‖ < ‖x− y‖ for all distinct x, y ∈ C.

By considering inf ‖x− f(x)‖, prove f has a unique fixed point.

(b) Show the result in part (a) can fail if C is unbounded.

(c) Prove the map x ∈ [0, 1] �→ xe−x satisfies the condition in part
(a).

4. In the Stone–Weierstrass theorem, prove that if f is a self map then
we can assume each fr is also a self map.

5. Prove the interval (−1, 1) is connected. Deduce the open unit ball in
Rn is connected.

6. In the Change of variable theorem (8.1.5), use metric regularity to
prove the set g(W ) is open.

7. In the proof of the Retraction theorem (8.1.6), prove the map p is
Lipschitz, and deduce that the map pt is one-to-one for small t. Also
prove that if t is small then det∇pt is strictly positive throughout B.

8. In the proof of the Retraction theorem (8.1.6), prove the partition
(8.1.8), and deduce pt(B) = B.

9. In the proof of the Retraction theorem (8.1.6), prove ν(t) is a poly-
nomial in t.

10. In the proof of Brouwer’s theorem, prove the relationship (8.1.9) de-
fines a C(1) retraction p : B → S.
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11. (Convex sets homeomorphic to the ball) Suppose the compact
convex set C ⊂ E satisfies 0 ∈ int C. Prove that the map h : C → B
defined by

h(x) =
{

γC(x)‖x‖−1x if x �= 0
0 if x = 0

(where γC is the gauge function we defined in Section 4.1) is a home-
omorphism.

12. ∗ (A nonclosed nonconvex set with the fixed point property)
Let Z be the subset of the unit disk in R2 consisting of all lines
through the origin with rational slope. Prove every continuous self
map of Z has a fixed point.

13. ∗ (Change of variable and Brouwer) A very simple proof may
be found in [118] of the formula∫

(f ◦ g)|∇g| =
∫

f

when the function f is continuous with bounded support and the
function g is differentiable, equaling the identity outside a large ball.
Prove any such g is surjective by considering an f supported outside
the range of g (which is closed). Deduce Brouwer’s theorem.

14. ∗∗ (Brouwer and inversion) The central tool of the last chapter,
the Surjectivity and metric regularity theorem (7.1.5), considers a
function h whose strict derivative at a point satisfies a certain surjec-
tivity condition. In this exercise, which comes out of a long tradition,
we use Brouwer’s theorem to consider functions h which are merely
Fréchet differentiable. This exercise proves the following result.

Theorem 8.1.10 Consider an open set U ⊂ E, a closed convex set
S ⊂ U , and a Euclidean space Y, and suppose the continuous func-
tion h : U → Y has Fréchet derivative at the point x ∈ S satisfying
the surjectivity condition

∇h(x)TS(x) = Y.

Then there is a neighbourhood V of h(x), a continuous, piecewise
linear function F : Y → E, and a function g : V → Y that is Fréchet
differentiable at h(x) and satisfies (F ◦ g)(V ) ⊂ S and

h((F ◦ g)(y)) = y for all y ∈ V .

Proof. We can assume x = 0 and h(0) = 0.



8.1 The Brouwer Fixed Point Theorem 185

(a) Use Section 4.1, Exercise 20 (Properties of the relative interior)
to prove ∇h(0)(R+S) = Y.

(b) Deduce that there exists a basis y1, y2, . . . , yn of Y and points
u1, u2, . . . , un and w1, w2, . . . , wn in S satisfying

∇h(0)ui = yi = −∇h(0)wi for i = 1, 2, . . . , n.

(c) Prove the set

B1 =
{ n∑

1

tiyi

∣∣∣ t ∈ Rn,
n∑
1

|ti| ≤ 1
}

and the function F defined by

F
( n∑

1

tiyi

)
=

n∑
1

(
t+i ui + (−ti)+wi

)
satisfy F (B1) ⊂ S and ∇(h ◦ F )(0) = I.

(d) Deduce there exists a real ε > 0 such that εBY ⊂ B1 and

‖h(F (y))− y‖ ≤ ‖y‖
2

whenever ‖y‖ ≤ 2ε.

(e) For any point v in the neighbourhood V = (ε/2)BY, prove the
map

y ∈ V �→ v + y − h(F (y))

is a continuous self map of V .

(f) Apply Brouwer’s theorem to deduce the existence of a fixed point
g(v) for the map in part (e). Prove ∇g(0) = I, and hence
complete the proof of the result.

(g) If x lies in the interior of S, prove F can be assumed linear.

(Exercise 9 (Nonexistence of multipliers) in Section 7.2 suggests the
importance here of assuming h continuous.)

15. ∗ (Knaster–Kuratowski–Mazurkiewicz principle [114]) In this
exercise we show the equivalence of Brouwer’s theorem with the fol-
lowing result.

Theorem 8.1.11 (KKM) Suppose for every point x in a nonempty
set X ⊂ E there is an associated closed subset M(x) ⊂ X. Assume
the property

conv F ⊂
⋃

x∈F

M(x)



186 8. Fixed Points

holds for all finite subsets F ⊂ X. Then for any finite subset F ⊂ X
we have ⋂

x∈F

M(x) �= ∅.

Hence if some subset M(x) is compact we have⋂
x∈X

M(x) �= ∅.

(a) Prove that the final assertion follows from the main part of the
theorem using Theorem 8.2.3 (General definition of compact-
ness).

(b) (KKM implies Brouwer) Given a continuous self map f on a
nonempty compact convex set C ⊂ E, apply the KKM theorem
to the family of sets

M(x) = {y ∈ C | 〈y − f(y), y − x〉 ≤ 0} for x ∈ C

to deduce f has a fixed point.
(c) (Brouwer implies KKM) With the hypotheses of the KKM

theorem, assume ∩x∈F M(x) is empty for some finite set F . Con-
sider a fixed point z of the self map

y ∈ conv F �→
∑

x∈F dM(x)(y)x∑
x∈F dM(x)(y)

and define F ′ = {x ∈ F | z �∈ M(x)}. Show z ∈ conv F ′ and
derive a contradiction.

16. ∗∗ (Hairy ball theorem [140]) Let Sn denote the Euclidean sphere

{x ∈ Rn+1 | ‖x‖ = 1}.
A tangent vector field on Sn is a function w : Sn → Rn+1 satisfying
〈x,w(x)〉 = 0 for all points x in Sn. This exercise proves the following
result.

Theorem 8.1.12 For every even n, any continuous tangent vector
field on Sn must vanish somewhere.

Proof. Consider a nonvanishing continuous tangent vector field u
on Sn.

(a) Prove there is a nonvanishing C(1) tangent vector field on Sn,
by using the Stone–Weierstrass theorem (8.1.4) to approximate
u by a C(1) function p and then considering the vector field

x ∈ Sn �→ p(x)− 〈x, p(x)〉x.
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(b) Deduce the existence of a positively homogeneous C(1) function
w : Rn+1 → Rn+1 whose restriction to Sn is a unit norm C(1)

tangent vector field: ‖w(x)‖ = 1 for all x in Sn.

Define a set
A = {x ∈ Rn+1 | 1 < 2‖x‖ < 3}

and use the field w in part (b) to define functions wt : Rn+1 → Rn+1

for real t by
wt(x) = x + tw(x).

(c) Imitate the proof of Brouwer’s theorem to prove the measure of
the image set wt(A) is a polynomial in t when t is small.

(d) Prove directly the inclusion wt(A) ⊂ √1 + t2A.

(e) For any point y in
√

1 + t2A, apply the Banach contraction the-
orem to the function x ∈ kB �→ y − tw(x) (for large real k) to
deduce in fact

wt(A) =
√

1 + t2A for small t.

(f) Complete the proof by combining parts (c) and (e). �

(g) If f is a continuous self map of Sn where n is even, prove either
f or −f has a fixed point.

(h) (Hedgehog theorem) Prove for even n that any nonvanishing
continuous vector field must be somewhere normal: |〈x, f(x)〉| =
‖f(x)‖ for some x in Sn.

(i) Find examples to show the Hairy ball theorem fails for all odd
n.

17. ∗ (Borsuk–Ulam theorem) Let Sn denote the Euclidean sphere

{x ∈ Rn+1 | ‖x‖ = 1}.

We state the following result without proof.

Theorem 8.1.13 (Borsuk–Ulam) For any positive integers m ≤
n, if the function f : Sn → Rm is continuous then there is a point x
in Sn satisfying f(x) = f(−x).

(a) If m ≤ n and the map f : Sn → Rm is continuous and odd,
prove f vanishes somewhere.
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(b) Prove any odd continuous self map f on Sn is surjective. (Hint:
For any point u in Sn, consider the function

x ∈ Sn �→ f(x)− 〈f(x), u〉u

and apply part (a).)

(c) Prove the result in part (a) is equivalent to the following result:

Theorem 8.1.14 For positive integers m < n there is no con-
tinuous odd map from Sn to Sm.

(d) (Borsuk–Ulam implies Brouwer [178]) Let B denote the
unit ball in Rn, and let S denote the boundary of B × [−1, 1]:

S = {(x, t) ∈ B × [−1, 1] | ‖x‖ = 1 or |t| = 1}.

(i) If the map g : S → Rn is continuous and odd, use part (a)
to prove g vanishes somewhere on S.

(ii) Consider a continuous self map f on B. By applying part
(i) to the function

(x, t) ∈ S �→ (2− |t|)x− tf(tx),

prove f has a fixed point.

18. ∗∗ (Generalized Riesz lemma) Consider a smooth norm |‖ · ‖| on
E (that is, a norm which is continuously differentiable except at the
origin) and linear subspaces U, V ⊂ E satisfying dimU > dim V = n.
Denote the unit sphere in U (in this norm) by S(U).

(a) By choosing a basis v1, v2, . . . , vn of V and applying the Borsuk–
Ulam theorem (see Exercise 17) to the map

x ∈ S(U) �→ (〈∇|‖ · ‖|(x), vi〉)n
i=1 ∈ Rn,

prove there is a point x in S(U) satisfying ∇|‖ · ‖|(x) ⊥ V .

(b) Deduce the origin is the nearest point to x in V (in this norm).

(c) With this norm, deduce there is a unit vector in U whose dis-
tance from V is equal to one.

(d) Use the fact that any norm can be uniformly approximated ar-
bitrarily well by a smooth norm to extend the result of part (c)
to arbitrary norms.

(e) Find a simpler proof when V ⊂ U .
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19. ∗∗ (Riesz implies Borsuk) In this question we use the generalized
Riesz lemma, Exercise 18, to prove the Borsuk–Ulam result, Exercise
17(a). To this end, suppose the map f : Sn → Rn is continuous and
odd. Define functions

ui : Sn → R for i = 1, 2, . . . , n + 1
vi : Rn → R for i = 1, 2, . . . , n

by ui(x) = xi and vi(x) = xi for each index i. Define spaces of
continuous odd functions on Sn by

U = span {u1, u2, . . . .un+1}
V = span {v1 ◦ f, v2 ◦ f, . . . , vn ◦ f}
E = U + V,

with norm ‖u‖ = max u(Sn) (for u in E).

(a) Prove there is a function u in U satisfying ‖u‖ = 1 and whose
distance from V is equal to one.

(b) Prove u attains its maximum on Sn at a unique point y.

(c) Use the fact that for any function w in E, we have

(∇‖ · ‖(u))w = w(y)

to deduce f(y) = 0.
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8.2 Selection and the Kakutani–Fan Fixed
Point Theorem

The Brouwer fixed point theorem in the previous section concerns functions
from a nonempty compact convex set to itself. In optimization, as we have
already seen in Section 5.4, it may be convenient to broaden our language
to consider multifunctions Ω from the set to itself and seek a fixed point—a
point x satisfying x ∈ Ω(x). To begin this section we summarize some
definitions for future reference.

We consider a subset K ⊂ E, a Euclidean space Y, and a multifunction
Ω : K → Y. We say Ω is USC at a point x in K if every open set U
containing Ω(x) also contains Ω(z) for all points z in K close to x.

Thus a multifunction Ω is USC if for any sequence of points (xn) ap-
proaching x, any sequence of elements yn ∈ Ω(xn) is eventually close to
Ω(x). If Ω is USC at every point in K we simply call it USC. On the
other hand, as in Section 5.4, we say Ω is LSC if, for every x in K, every
neighbourhood V of any point in Ω(x) intersects Ω(z) for all points z in K
close to x.

We refer to the sets Ω(x) (x ∈ K) as the images of Ω. The multi-
function Ω is a cusco if it is USC with nonempty compact convex images.
Clearly such multifunctions are locally bounded: any point in K has a
neighbourhood whose image is bounded. Cuscos appear in several impor-
tant optimization contexts. For example, the Clarke subdifferential of a
locally Lipschitz function is a cusco (Exercise 5).

To see another important class of examples we need a further definition.
We say a multifunction Φ : E→ E is monotone if it satisfies the condition

〈u− v, x− y〉 ≥ 0 whenever u ∈ Φ(x) and v ∈ Φ(y).

In particular, any (not necessarily self-adjoint) positive semidefinite lin-
ear operator is monotone, as is the subdifferential of any convex function.
One multifunction contains another if the graph of the first contains the
graph of the second. We say a monotone multifunction is maximal if the
only monotone multifunction containing it is itself. The subdifferentials
of closed proper convex functions are examples (see Exercise 16). Zorn’s
lemma (which lies outside our immediate scope) shows any monotone mul-
tifunction is contained in a maximal monotone multifunction.

Theorem 8.2.1 (Maximal monotonicity) Maximal monotone multi-
functions are cuscos on the interiors of their domains.

Proof. See Exercise 16. �

Maximal monotone multifunctions in fact have to be single-valued gener-
ically, that is on sets which are “large” in a topological sense, specifically
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on a dense set which is a “Gδ” (a countable intersection of open sets)—see
Exercise 17.

Returning to our main theme, the central result of this section extends
Brouwer’s theorem to the multifunction case.

Theorem 8.2.2 (Kakutani–Fan) If the set C ⊂ E is nonempty, compact
and convex, then any cusco Ω : C → C has a fixed point.

Before we prove this result, we outline a little more topology. A cover
of a set K ⊂ E is a collection of sets in E whose union contains K. The
cover is open if each set in the collection is open. A subcover is just a
subcollection of the sets which is also a cover. The following result, which
we state as a theorem, is in truth the definition of compactness in spaces
more general than E.

Theorem 8.2.3 (General definition of compactness) Any open cover
of a compact set in E has a finite subcover.

Given a finite open cover {O1, O2, . . . , Om} of a set K ⊂ E, a par-
tition of unity subordinate to this cover is a set of continuous functions
p1, p2, . . . , pm : K → R+ whose sum is identically equal to one and satisfy-
ing pi(x) = 0 for all points x outside Oi (for each index i). We outline the
proof of the next result, a central topological tool, in the exercises.

Theorem 8.2.4 (Partition of unity) There is a partition of unity sub-
ordinate to any finite open cover of a compact subset of E.

Besides fixed points, the other main theme of this section is the idea
of a continuous selection of a multifunction Ω on a set K ⊂ E, by which
we mean a continuous map f on K satisfying f(x) ∈ Ω(x) for all points x
in K. The central step in our proof of the Kakutani–Fan theorem is the
following “approximate selection” theorem.

Theorem 8.2.5 (Cellina) Given any compact set K ⊂ E, suppose the
multifunction Ω : K → Y is USC with nonempty convex images. Then
for any real ε > 0 there is a continuous map f : K → Y which is an
“approximate selection” of Ω :

dG(Ω)(x, f(x)) < ε for all points x in K. (8.2.6)

Furthermore the range of f is contained in the convex hull of the range of
Ω.

Proof. We can assume the norm on E×Y is given by

‖(x, y)‖E×Y = ‖x‖E + ‖y‖Y for all x ∈ E and y ∈ Y
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(since all norms are equivalent—see Section 4.1, Exercise 2). Now, since
Ω is USC, for each point x in K there is a real δx in the interval (0, ε/2)
satisfying

Ω(x + δxBE) ⊂ Ω(x) +
ε

2
BY.

Since the sets x+(δx/2)int BE (as the point x ranges over K) comprise an
open cover of the compact set K, there is a finite subset {x1, x2, . . . , xm}
of K with the sets xi + (δi/2)int BE comprising a finite subcover (where δi

is shorthand for δxi
for each index i).

Theorem 8.2.4 shows there is a partition of unity p1, p2, . . . , pm : K →
R+ subordinate to this subcover. We now construct our desired approxi-
mate selection f by choosing a point yi from Ω(xi) for each i and defining

f(x) =
m∑

i=1

pi(x)yi for all points x in K. (8.2.7)

Fix any point x in K and define the set I = {i|pi(x) �= 0}. By definition,
x satisfies ‖x − xi‖ < δi/2 for each i in I. If we choose an index j in I
maximizing δj , the triangle inequality shows ‖xj − xi‖ < δj , whence we
deduce the inclusions

yi ∈ Ω(xi) ⊂ Ω(xj + δjBE) ⊂ Ω(xj) +
ε

2
BY

for all i in I. In other words, for each i in I we know dΩ(xj)(yi) ≤ ε/2. Since
the distance function is convex, equation (8.2.7) shows dΩ(xj)(f(x)) ≤ ε/2.
Since we also know ‖x−xj‖ < ε/2, this proves inequality (8.2.6). The final
claim follows immediately from equation (8.2.7). �

Proof of the Kakutani–Fan theorem. With the assumption of the
theorem, Cellina’s result above shows for each positive integer r there is a
continuous self map fr of C satisfying

dG(Ω)(x, fr(x)) <
1
r

for all points x in C.

By Brouwer’s theorem (8.1.3), each fr has a fixed point xr in C, which
therefore satisfies

dG(Ω)(xr, xr) <
1
r

for each r.

Since C is compact, the sequence (xr) has a convergent subsequence, and
its limit must be a fixed point of Ω because Ω is closed by Exercise 3(c)
(Closed versus USC). �

In the next section we describe some variational applications of the
Kakutani–Fan theorem. But we end this section with an exact selection
theorem parallel to Cellina’s result but assuming an LSC rather than a
USC multifunction.
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Theorem 8.2.8 (Michael) Given any closed set K ⊂ E, suppose the
multifunction Ω : K → Y is LSC with nonempty closed convex images.
Then given any point (x̄, ȳ) in G(Ω), there is a continuous selection f of
Ω satisfying f(x̄) = ȳ.

We outline the proof in the exercises.

Exercises and Commentary

Many useful properties of cuscos are summarized in [27]. An excellent
general reference on monotone operators is [153]. The topology we use in
this section can be found in any standard text (see [67, 106], for example).
The Kakutani–Fan theorem first appeared in [109] and was extended in
[74]. Cellina’s approximate selection theorem appears, for example, in [4,
p. 84]. One example of the many uses of the Kakutani–Fan theorem is
establishing equilibria in mathematical economics. The Michael selection
theorem appeared in [137].

1. (USC and continuity) Consider a closed subset K ⊂ E and a
multifunction Ω : K → Y.

(a) Prove the multifunction

x ∈ E �→
{

Ω(x) for x ∈ K
∅ for x �∈ K

is USC if and only if Ω is USC.
(b) Prove a function f : K → Y is continuous if and only if the

multifunction x ∈ K �→ {f(x)} is USC.
(c) Prove a function f : E→ [−∞,+∞] is lower semicontinuous at

a point x in E if and only if the multifunction whose graph is
the epigraph of f is USC at x.

2. ∗ (Minimum norm) If the set U ⊂ E is open and the multifunction
Ω : U → Y is USC, prove the function g : U → Y defined by

g(x) = inf{‖y‖ | y ∈ Ω(x)}
is lower semicontinuous.

3. (Closed versus USC)

(a) If the multifunction Φ : E → Y is closed and the multifunction
Ω : E→ Y is USC at the point x in E with Ω(x) compact, prove
the multifunction

z ∈ E �→ Ω(z) ∩ Φ(z)

is USC at x.



194 8. Fixed Points

(b) Hence prove that any closed multifunction with compact range
is USC.

(c) Prove any USC multifunction with closed images is closed.

(d) If a USC multifunction has compact images, prove it is locally
bounded.

4. (Composition) If the multifunctions Φ and Ω are USC prove their
composition x �→ Φ(Ω(x)) is also.

5. ∗ (Clarke subdifferential) If the set U ⊂ E is open and the function
f : U → R is locally Lipschitz, use Section 6.2, Exercise 12 (Closed
subdifferentials) and Exercise 3 (Closed versus USC) to prove the
Clarke subdifferential x ∈ U �→ ∂◦f(x) is a cusco.

6. ∗∗ (USC images of compact sets) Consider a given multifunction
Ω : K → Y.

(a) Prove Ω is USC if and only if for every open subset U of Y the
set {x ∈ K | Ω(x) ⊂ U} is open in K.

Now suppose K is compact and Ω is USC with compact images.
Using the general definition of compactness (8.2.3), prove the range
Ω(K) is compact by following the steps below.

(b) Fix an open cover {Uγ | γ ∈ Γ} of Ω(K). For each point x in K,
prove there is a finite subset Γx of Γ with

Ω(x) ⊂
⋃

γ∈Γx

Uγ .

(c) Construct an open cover of K by considering the sets{
z ∈ K

∣∣∣∣ Ω(z) ⊂
⋃

γ∈Γx

Uγ

}

as the point x ranges over K.

(d) Hence construct a finite subcover of the original cover of Ω(K).

7. ∗ (Partitions of unity) Suppose the set K ⊂ E is compact with a
finite open cover {O1, O2, . . . , Om}.
(i) Show how to construct another open cover {V1, V2, . . . , Vm} of

K satisfying clVi ⊂ Oi for each index i. (Hint: Each point x in
K lies in some set Oi, so there is a real δx > 0 with x+δxB ⊂ Oi;
now take a finite subcover of {x+δxint B |x ∈ K} and build the
sets Vi from it.)
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(ii) For each index i, prove the function qi : K → [0, 1] given by

qi =
dK\Oi

dK\Oi
+ dVi

is well-defined and continuous, with qi identically zero outside
the set Oi.

(iii) Deduce that the set of functions pi : K → R+ defined by

pi =
qi∑
j qj

is a partition of unity subordinate to the cover {O1, O2, . . . , Om}.
8. Prove the Kakutani–Fan theorem is also valid under the weaker as-

sumption that the images of the cusco Ω : C → E always intersect
the set C using Exercise 3(a) (Closed versus USC).

9. ∗∗ (Michael’s theorem) Suppose all the assumptions of Michael’s
theorem (8.2.8) hold. We consider first the case with K compact.

(a) Fix a real ε > 0. By constructing a partition of unity subordinate
to a finite subcover of the open cover of K consisting of the sets

Oy = {x ∈ E | dΩ(x)(y) < ε} for y in Y ,

construct a continuous function f : K → Y satisfying

dΩ(x)(f(x)) < ε for all points x in K.

(b) Construct a sequence of continuous functions f1, f2, . . . : K → Y
satisfying

dΩ(x)(fi(x)) < 2−i for i = 1, 2, . . .

‖fi+1(x)− fi(x)‖ < 21−i for i = 1, 2, . . .

for all points x in K. (Hint: Construct f1 by applying part (a)
with ε = 1/2; then construct fi+1 inductively by applying part
(a) to the multifunction

x ∈ K �→ Ω(x) ∩ (fi(x) + 2−iBY)

with ε = 2−i−1.

(c) The functions fi of part (b) must converge uniformly to a con-
tinuous function f . Prove f is a continuous selection of Ω.



196 8. Fixed Points

(d) Prove Michael’s theorem by applying part (c) to the multifunc-
tion

Ω̂(x) =
{

Ω(x) if x �= x̄
{ȳ} if x = x̄.

(e) Now extend to the general case where K is possibly unbounded
in the following steps. Define sets Kn = K ∩ nBE for each
n = 1, 2, . . . and apply the compact case to the multifunction
Ω1 = Ω|K1 to obtain a continuous selection g1 : K1 → Y. Then
inductively find a continuous selection gn+1 : Kn+1 → Y from
the multifunction

Ωn+1(x) =
{ {gn(x)} for x ∈ Kn

Ω(x) for x ∈ Kn+1 \Kn

and prove the function defined by

f(x) = gn(x) for x ∈ Kn, n = 1, 2, . . .

is the required selection.

10. (Hahn–Katetov–Dowker sandwich theorem) Suppose the set
K ⊂ E is closed.

(a) For any two lower semicontinuous functions f, g : K → R satis-
fying f ≥ −g, prove there is a continuous function h : K → R
satisfying f ≥ h ≥ −g by considering the multifunction x �→
[−g(x), f(x)]. Observe the result also holds for extended-real-
valued f and g.

(b) (Urysohn lemma) Suppose the closed set V and the open
set U satisfy V ⊂ U ⊂ K. By applying part (i) to suitable
functions, prove there is a continuous function f : K → [0, 1]
that is identically equal to one on V and to zero on U c.

11. (Continuous extension) Consider a closed subset K of E and a
continuous function f : K → Y. By considering the multifunction

Ω(x) =
{ {f(x)} for x ∈ K

cl (conv f(K)) for x �∈ K,

prove there is a continuous function g : E → Y satisfying g|K = f
and g(E) ⊂ cl (conv f(K)).

12. ∗ (Generated cuscos) Suppose the multifunction Ω : K → Y is
locally bounded with nonempty images.
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(a) Among those cuscos containing Ω, prove there is a unique one
with minimal graph, given by

Φ(x) =
⋂
ε>0

cl conv (Ω(x + εB)) for x ∈ K.

(b) If K is nonempty, compact, and convex, Y = E, and Ω satisfies
the conditions Ω(K) ⊂ K and

x ∈ Φ(x) ⇒ x ∈ Ω(x) for x ∈ K,

prove Ω has a fixed point.

13. ∗ (Multifunctions containing cuscos) Suppose the multifunction
Ω : K → Y is closed with nonempty convex images, and the function
f : K → Y has the property that f(x) is a point of minimum norm
in Ω(x) for all points x in K. Prove Ω contains a cusco if and only if
f is locally bounded. (Hint: Use Exercise 12 (Generated cuscos) to
consider the cusco generated by f .)

14. ∗ (Singleton points) For any subset D of Y, define

s(D) = inf{r ∈ R |D ⊂ y + rBY for some y ∈ Y}.

Consider an open subset U of E.

(a) If the multifunction Ω : U → Y is USC with nonempty images,
prove for any real ε > 0 the set

Sε = {x ∈ U | s(Ω(x)) < ε}

is open. By considering the set ∩n>1S1/n, prove the set of points
in U whose image is a singleton is a Gδ.

(b) Use Exercise 5 (Clarke subdifferential) to prove that the set of
points where a locally Lipschitz function f : U → R is strictly
differentiable is a Gδ. If U and f are convex (or if f is regular
throughout U), use Rademacher’s theorem (in Section 6.2) to
deduce f is generically differentiable.

15. (Skew symmetry) If the matrix A ∈ Mn satisfies 0 �= A = −AT ,
prove the multifunction x ∈ Rn �→ xT Ax is maximal monotone, yet
is not the subdifferential of a convex function.

16. ∗∗ (Monotonicity) Consider a monotone multifunction Φ : E→ E.

(a) (Inverses) Prove Φ−1 is monotone.

(b) Prove Φ−1 is maximal if and only if Φ is.
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(c) (Applying maximality) Prove Φ is maximal if and only if it
has the property

〈u− v, x− y〉 ≥ 0 for all (x, u) ∈ G(Φ) ⇒ v ∈ Φ(y).

(d) (Maximality and closedness) If Φ is maximal, prove it is
closed with convex images.

(e) (Continuity and maximality) Supposing Φ is everywhere
single-valued and hemicontinuous (that is, continuous on ev-
ery line in E), prove it is maximal. (Hint: Apply part (c) with
x = y + tw for w in E and t ↓ 0 in R.)

(f) We say Φ is hypermaximal if Φ + λI is surjective for some real
λ > 0. In this case, prove Φ is maximal. (Hint: Apply part (c)
and use a solution x ∈ E to the inclusion v +λy ∈ (Φ+λI)(x).)
What if just Φ is surjective?

(g) (Subdifferentials) If the function f : E → (∞,+∞] is closed,
convex, and proper, prove ∂f is maximal monotone. (Hint: For
any element φ of E, prove the function

x ∈ E �→ f(x) + ‖x‖2 + 〈φ, x〉

has a minimizer, and deduce ∂f is hypermaximal.)

(h) (Local boundedness) By completing the following steps, prove
Φ is locally bounded at any point in the core of its domain.

(i) Assume 0 ∈ Φ(0) and 0 ∈ core D(Φ), define a convex func-
tion g : E→ (∞,+∞] by

g(y) = sup{〈u, y − x〉 | x ∈ B, u ∈ Φ(x)}.

(ii) Prove D(Φ) ⊂ dom g.
(iii) Deduce g is continuous at zero.
(iv) Hence show |g(y)| ≤ 1 for all small y, and deduce the result.

(j) (Maximality and cuscos) Use parts (d) and (h), and Exercise
3 (Closed versus USC) to conclude that any maximal monotone
multifunction is a cusco on the interior of its domain.

(k) (Surjectivity and growth) If Φ is surjective, prove

lim
‖x‖→∞

‖Φ(x)‖ = +∞.

(Hint: Assume the maximality of Φ, and hence of Φ−1; deduce
Φ−1 is a cusco on E, and now apply Exercise 6 (USC images of
compact sets).)
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17. ∗∗ (Single-valuedness and maximal monotonicity) Consider a
maximal monotone multifunction Ω : E → E and an open subset U
of its domain, and define the minimum norm function g : U → R as
in Exercise 2.

(a) Prove g is lower semicontinuous. An application of the Baire
category theorem now shows that any such function is generi-
cally continuous.

(b) For any point x in U at which g is continuous, prove Ω(x) is a
singleton. (Hint: Prove ‖·‖ is constant on Ω(x) by first assuming
y, z ∈ Ω(x) and ‖y‖ > ‖z‖, and then using the condition

〈w − y, x + ty − x〉 ≥ 0 for all small t > 0 and w ∈ Ω(x + ty)

to derive a contradiction.)

(c) Conclude that any maximal monotone multifunction is generi-
cally single-valued.

(d) Deduce that any convex function is generically differentiable on
the interior of its domain.
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8.3 Variational Inequalities

At the very beginning of this book we considered the problem of minimizing
a differentiable function f : E→ R over a convex set C ⊂ E. A necessary
optimality condition for a point x0 in C to be a local minimizer is

〈∇f(x0), x− x0〉 ≥ 0 for all points x in C, (8.3.1)

or equivalently
0 ∈ ∇f(x0) + NC(x0).

If the function f is convex instead of differentiable, the necessary and suf-
ficient condition for optimality (assuming a constraint qualification) is

0 ∈ ∂f(x0) + NC(x0),

and there are analogous nonsmooth necessary conditions.
We call problems like (8.3.1) “variational inequalities”. Let us fix a

multifunction Ω : C → E. In this section we use the fixed point theory we
have developed to study the multivalued variational inequality

V I(Ω, C): Find points x0 in C and y0 in Ω(x0) satisfying
〈y0, x− x0〉 ≥ 0 for all points x in C.

A more concise way to write the problem is this:

Find a point x0 in C satisfying 0 ∈ Ω(x0) + NC(x0). (8.3.2)

Suppose the set C is closed, convex, and nonempty. Recall that the
projection PC : E → C is the (continuous) map that sends points in E
to their unique nearest points in C (see Section 2.1, Exercise 8). Using
this notation we can also write the variational inequality as a fixed point
problem:

Find a fixed point of PC ◦ (I − Ω) : C → C. (8.3.3)

This reformulation is useful if the multifunction Ω is single-valued, but less
so in general because the composition will often not have convex images.

A more versatile approach is to define the (multivalued) normal map-
ping ΩC = (Ω ◦ PC) + I − PC , and repose the problem as follows:

Find a point x̄ in E satisfying 0 ∈ ΩC(x̄). (8.3.4)

Then setting x0 = PC(x̄) gives a solution to the original problem. Equiva-
lently, we could phrase this as follows:

Find a fixed point of (I − Ω) ◦ PC : E→ E. (8.3.5)
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As we shall see, this last formulation lets us immediately use the fixed point
theory of the previous section.

The basic result guaranteeing the existence of solutions to variational
inequalities is the following.

Theorem 8.3.6 (Solvability of variational inequalities) If the subset
C of E is compact, convex, and nonempty, then for any cusco Ω : C → E
the variational inequality V I(Ω, C) has a solution.

Proof. We in fact prove Theorem 8.3.6 is equivalent to the Kakutani–Fan
fixed point theorem (8.2.2).

When Ω is a cusco its range Ω(C) is compact—we outline the proof
in Section 8.2, Exercise 6. We can easily check that the multifunction
(I −Ω) ◦PC is also a cusco because the projection PC is continuous. Since
this multifunction maps the compact convex set conv (C−Ω(C)) into itself,
the Kakutani–Fan theorem shows it has a fixed point, which, as we have
already observed, implies the solvability of V I(Ω, C).

Conversely, suppose the set C ⊂ E is nonempty, compact, and convex.
For any cusco Ω : C → C, the Solvability theorem (8.3.6) implies we can
solve the variational inequality V I(I − Ω, C), so there are points x0 in C
and z0 in Ω(x0) satisfying

〈x0 − z0, x− x0〉 ≥ 0 for all points x in C.

Setting x = z0 shows x0 = z0, so x0 is a fixed point. �

An elegant application is von Neumann’s minimax theorem, which we
proved by a Fenchel duality argument in Section 4.2, Exercise 16. Consider
Euclidean spaces Y and Z, nonempty compact convex subsets F ⊂ Y and
G ⊂ Z, and a linear map A : Y → Z. If we define a function Ω : F ×G →
Y × Z by Ω(y, z) = (−A∗z,Ay), then it is easy to see that a point (y0, z0)
in F ×G solves the variational inequality V I(Ω, F ×G) if and only if it is
a saddlepoint:

〈z0, Ay〉 ≤ 〈z0, Ay0〉 ≤ 〈z,Ay0〉 for all y ∈ F , z ∈ G.

In particular, by the Solvability of variational inequalities theorem, there
exists a saddlepoint, so

min
z∈G

max
y∈F

〈z,Ay〉 = max
y∈F

min
z∈G

〈z,Ay〉.

Many interesting variational inequalities involve a noncompact set C.
In such cases we need to impose a growth condition on the multifunction
to guarantee solvability. The following result is an example.
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Theorem 8.3.7 (Noncompact variational inequalities) If the subset
C of E is nonempty, closed, and convex, and the cusco Ω : C → E is
coercive, that is, it satisfies the condition

lim inf
‖x‖→∞, x∈C

inf 〈x,Ω(x) + NC(x)〉 > 0, (8.3.8)

then the variational inequality V I(Ω, C) has a solution.

Proof. For any large integer r, we can apply the solvability theorem (8.3.6)
to the variational inequality V I(Ω, C ∩ rB) to find a point xr in C ∩ rB
satisfying

0 ∈ Ω(xr) + NC∩rB(xr)
= Ω(xr) + NC(xr) + NrB(xr)
⊂ Ω(xr) + NC(xr) + R+xr

(using Section 3.3, Exercise 10). Hence for all large r, the point xr satisfies

inf 〈xr,Ω(xr) + NC(xr)〉 ≤ 0.

This sequence of points (xr) must therefore remain bounded, by the co-
ercivity condition (8.3.8), and so xr lies in int rB for large r and hence
satisfies 0 ∈ Ω(xr) + NC(xr), as required. �

A straightforward exercise shows in particular that the growth condition
(8.3.8) holds whenever the cusco Ω is defined by x ∈ Rn �→ xT Ax for a
matrix A in Sn

++.
The most important example of a noncompact variational inequality

is the case when the set C is a closed convex cone S ⊂ E. In this case
V I(Ω, S) becomes the multivalued complementarity problem:

Find points x0 in S and y0 in Ω(x0)∩ (−S−)
satisfying 〈x0, y0〉 = 0.

(8.3.9)

As a particular example, we consider the dual pair of abstract linear pro-
grams (5.3.4) and (5.3.5):

inf{〈c, z〉 |Az − b ∈ H, z ∈ K} (8.3.10)

(where Y is a Euclidean space, the map A : E → Y is linear, the cones
H ⊂ Y and K ⊂ E are closed and convex, and b and c are given elements
of Y and E respectively), and

sup{〈b, φ〉 |A∗φ− c ∈ K−, φ ∈ −H−}. (8.3.11)

As usual, we denote the corresponding primal and dual optimal values by
p and d. We consider a corresponding variational inequality on the space
E×Y:

V I(Ω,K × (−H−)) with Ω(z, φ) = (c−A∗φ,Ax− b). (8.3.12)
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Theorem 8.3.13 (Linear programming and variational inequali-
ties) Any solution of the above variational inequality (8.3.12) consists of
a pair of optimal solutions for the linear programming dual pair (8.3.10)
and (8.3.11). The converse is also true, providing there is no duality gap
(p = d).

We leave the proof as an exercise.
Notice that the linear map appearing in the above example, namely

M : E×Y → E×Y defined by M(z, φ) = (−A∗φ,Az), is monotone. We
study monotone complementarity problems further in Exercise 7.

To end this section we return to the complementarity problem (8.3.9)
in the special case where E is Rn, the cone S is Rn

+, and the multifunction
Ω is single-valued: Ω(x) = {F (x)} for all points x in Rn

+. In other words,
we consider the following problem:

Find a point x0 in Rn
+ satisfying F (x0) ∈ Rn

+ and 〈x0, F (x0)〉 = 0.

The lattice operation ∧ is defined on Rn by (x∧y)i = min{xi, yi} for points
x and y in Rn and each index i. With this notation we can rewrite the
above problem as the following order complementarity problem.

OCP (F ): Find a point x0 in Rn
+ satisfying x0 ∧ F (x0) = 0.

The map x ∈ Rn �→ x ∧ F (x) ∈ Rn is sometimes amenable to fixed point
methods.

As an example, let us fix a real α > 0, a vector q ∈ Rn, and an n × n
matrix P with nonnegative entries, and define the map F : Rn → Rn

by F (x) = αx − Px + q. Then the complementarity problem OCP (F ) is
equivalent to finding a fixed point of the map Φ : Rn → Rn defined by

Φ(x) =
1
α

(0 ∨ (Px− q)), (8.3.14)

a problem that can be solved iteratively (see Exercise 9).

Exercises and commentary

A survey of variational inequalities and complementarity problems may be
found in [93]. The normal mapping ΩC is especially well studied when
the multifunction Ω is single-valued with affine components and the set
C is polyhedral. In this case the normal mapping is piecewise affine (see
[164]). More generally, if we restrict the class of multifunctions Ω we wish
to consider in the variational inequality, clearly we can correspondingly
restrict the versions of the Kakutani–Fan theorem or normal mappings we
study. Order complementarity problems are studied further in [26]. The
Nash equilibrium theorem (Exercise 10(d)), which appeared in [147], asserts
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the existence of a Pareto efficient choice for n individuals consuming from
n associated convex sets with n associated joint cost functions.

1. Prove the equivalence of the various formulations (8.3.2), (8.3.3),
(8.3.4) and (8.3.5) with the original variational inequality V I(Ω, C).

2. Use Section 8.2, Exercise 4 (Composition) to prove the multifunction

(I − Ω) ◦ PC

in the proof of Theorem 8.3.6 (Solvability of variational inequalities)
is a cusco.

3. Consider Theorem 8.3.6 (Solvability of variational inequalities). Use
the function

x ∈ [0, 1] �→
⎧⎨⎩

1
x

if x > 0

−1 if x = 0

to prove the assumption in the theorem—that the multifunction Ω is
USC—cannot be weakened to Ω closed.

4. ∗ (Variational inequalities containing cuscos) Suppose the set
C ⊂ E is nonempty, compact, and convex, and consider a multifunc-
tion Ω : C → E.

(a) If Ω contains a cusco, prove the variational inequality V I(Ω, C)
has a solution.

(b) Deduce from Michael’s theorem (8.2.8) that if Ω is LSC with
nonempty closed convex images then V I(Ω, C) has a solution.

5. Check the details of the proof of von Neumann’s minimax theorem.

6. Prove Theorem 8.3.13 (Linear programming and variational inequal-
ities).

7. (Monotone complementarity problems) Suppose the linear map
M : E→ E is monotone.

(a) Prove the function x ∈ E �→ 〈Mx, x〉 is convex.

For a closed convex cone S ⊂ E and a point q in E, consider the
optimization problem

inf{〈Mx + q, x〉 |Mx + q ∈ −S−, x ∈ S}. (8.3.15)

(b) If the condition −q ∈ core (S− + MS) holds, use the Fenchel
duality theorem (3.3.5) to prove problem (8.3.15) has optimal
value zero.
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(c) If the cone S is polyhedral, problem (8.3.15) is a convex “quad-
ratic program”: when the optimal value is finite, it is known that
there is no duality gap for such a problem and its (Fenchel) dual,
and that both problems attain their optimal value. Deduce that
when S is polyhedral and contains a point x with Mx+q in−S−,
there is such a point satisfying the additional complementarity
condition 〈Mx + q, x〉 = 0.

8. ∗ Consider a compact convex set C ⊂ E satisfying C = −C and a
continuous function f : C → E. If f has no zeroes, prove there is
a point x on the boundary of C satisfying 〈f(x), x〉 < 0. (Hint: For
positive integers n, consider V I(f + I/n,C).)

9. (Iterative solution of OCP [26]) Consider the order complemen-
tarity problem OCP (F ) for the function F that we defined before
equation (8.3.14). A point x0 in Rn

+ is feasible if it satisfies F (x0) ≥ 0.

(a) Prove the map Φ in equation (8.3.14) is isotone: x ≥ y implies
Φ(x) ≥ Φ(y) for points x and y in Rn.

(b) Suppose the point x0 in Rn
+ is feasible. Define a sequence (xr) in

Rn
+ inductively by xr+1 = Φ(xr). Prove this sequence decreases

monotonically: xr+1
i ≤ xr

i for all r and i.

(c) Prove the limit of the sequence in part (b) solves OCP (F ).

(d) Define a sequence (yr) in Rn
+ inductively by y0 = 0 and yr+1 =

Φ(yr). Prove this sequence increases monotonically.

(e) If OCP (F ) has a feasible solution, prove the sequence in part
(d) converges to a limit ȳ which solves OCP (F ). What happens
if OCP (F ) has no feasible solution?

(f) Prove the limit ȳ of part (e) is the minimal solution of OCP (F ):
any other solution x satisfies x ≥ ȳ.

10. ∗ (Fan minimax inequality [74]) We call a real function g on a
convex set C ⊂ E quasiconcave if the set {x ∈ C |g(x) ≥ α} is convex
for all real α.

Suppose the set C ⊂ E is nonempty, compact, and convex.

(a) If the function f : C × C → R has the properties that the
function f(·, y) is quasiconcave for all points y in C and the
function f(x, ·) is lower semicontinuous for all points x in C,
prove Fan’s inequality:

min
y

sup
x

f(x, y) ≤ sup
x

f(x, x).
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(Hint: Apply the KKM theorem (Section 8.1, Exercise 15) to
the family of sets

{y ∈ C | f(x, y) ≤ β} for x ∈ C,

where β denotes the right hand side of Fan’s inequality.)

(b) If the function F : C → E is continuous, apply Fan’s inequality
to the function f(x, y) = 〈F (y), y − x〉 to prove the variational
inequality V I(F,C) has a solution.

(c) Deduce Fan’s inequality is equivalent to the Brouwer fixed point
theorem.

(d) (Nash equilibrium) Define a set C = C1 × C2 × . . . × Cn,
where each set Ci ⊂ E is nonempty, compact, and convex. For
any continuous functions f1, f2, . . . , fn : C → R, if each function

xi ∈ Ci �→ fi(y1, . . . , xi, . . . , yn)

is convex for all elements y of C, prove there is an element y of
C satisfying the inequalities

fi(y) ≤ fi(y1, . . . , xi, . . . , yn) for all xi ∈ Ci, i = 1, 2, . . . , n.

(Hint: Consider the function

f(x, y) =
∑

i

(fi(y)− fi(y1, . . . , xi, . . . , yn))

and apply Fan’s inequality.)

(e) (Minimax) Apply the Nash equilibrium result from part (d) in
the case n = 2 and f1 = −f2 to deduce the Kakutani minimax
theorem (Section 4.3, Exercise 14).

11. (Bolzano–Poincaré–Miranda intermediate value theorem)
Consider the box

J = {x ∈ Rn | 0 ≤ xi ≤ 1 for all i}.
We call a continuous map f : J → Rn reversing if it satisfies the
condition

fi(x)fi(y) ≤ 0 whenever xi = 0, yi = 1, and i = 1, 2, . . . , n.

Prove any such map vanishes somewhere on J by completing the
following steps:

(a) Observe the case n = 1 is just the classical intermediate value
theorem.
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(b) For all small real ε > 0, prove the function f ε = f + εI satisfies
for all i

xi = 0 and yi = 1 ⇒
{

either f ε
i (y) > 0 and f ε

i (x) ≤ 0
or f ε

i (y) < 0 and f ε
i (x) ≥ 0.

(c) ¿From part (b), deduce there is a function f̃ ε, defined coordi-
natewise by f̃ ε

i = ±f ε
i , for some suitable choice of signs, satisfy-

ing the conditions (for each i)

f̃ ε
i (x) ≤ 0 whenever xi = 0 and

f̃ ε
i (x) > 0 whenever xi = 1.

(d) By considering the variational inequality V I(f̃ ε, J), prove there
is a point xε in J satisfying f̃ ε(xε) = 0.

(e) Complete the proof by letting ε approach zero.

12. (Coercive cuscos) Consider a multifunction Ω : E → E with non-
empty images.

(a) If Ω is a coercive cusco, prove it is surjective.
(b) On the other hand, if Ω is monotone, use Section 8.2, Exercise

16 (Monotonicity) to deduce Ω is hypermaximal if and only if it
is maximal. (We generalize this result in Exercise 13 (Monotone
variational inequalities).)

13. ∗∗ (Monotone variational inequalities) Consider a continuous
function G : E→ E and a monotone multifunction Φ : E→ E.

(a) Given a nonempty compact convex set K ⊂ E, prove there is
point x0 in K satisfying

〈x− x0, y + G(x0)〉 ≥ 0 for all x ∈ K, y ∈ Φ(x)

by completing the following steps:
(i) Assuming the result fails, show the collection of sets

{x ∈ K | 〈z − x,w + G(x)〉 < 0} for z ∈ K, w ∈ Φ(z)

is an open cover of K.
(ii) For a partition of unity p1, p2, . . . , pn subordinate to a finite

subcover K1,K2, . . . Kn corresponding to points zi ∈ K and
wi ∈ Φ(zi) (for i = 1, 2, . . . , n), prove the function

f(x) =
∑

i

pi(x)zi

is a continuous self map of K.
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(iii) Prove the inequality

〈f(x)− x,
∑

i pi(x)wi + G(x)〉
=

∑
i,j

pi(x)pj(x)〈zj − x,wi + G(x)〉

< 0

by considering the terms in the double sum where i = j and
sums of pairs where i �= j separately.

(iv) Deduce a contradiction with part (ii).
(b) Now assume G satisfies the growth condition

lim
‖x‖→∞

‖G(x)‖ = +∞ and lim inf
‖x‖→∞

〈x,G(x)〉
‖x‖‖G(x)‖ > 0.

(i) Prove there is a point x0 in E satisfying

〈x− x0, y + G(x0)〉 ≥ 0 whenever y ∈ Φ(x).

(Hint: Apply part (a) with K = nB for n = 1, 2, . . . .)
(ii) If Φ is maximal, deduce −G(x0) ∈ Φ(x0).

(c) Apply part (b) to prove that if Φ is maximal then for any real
λ > 0, the multifunction Φ + λI is surjective.

(d) (Hypermaximal ⇔ maximal) Using Section 8.2, Exercise 16
(Monotonicity), deduce a monotone multifunction is maximal if
and only if it is hypermaximal.

(e) (Resolvent) If Φ is maximal then for any real λ > 0 and any
point y in E prove there is a unique point x satisfying the inclu-
sion

y ∈ Φ(x) + λx.

(f) (Maximality and surjectivity) Prove a maximal Φ is surjec-
tive if and only if it satisfies the growth condition

lim
‖x‖→∞

inf ‖Φ(x)‖ = +∞.

(Hint: The “only if” direction is Section 8.2, Exercise 16(k)
(Monotonicity); for the “if” direction, apply part (e) with λ =
1/n for n = 1, 2, . . ., obtaining a sequence (xn); if this sequence
is unbounded, apply maximal monotonicity.)

14. ∗ (Semidefinite complementarity) Define F : Sn × Sn → Sn by

F (U, V ) = U + V − (U2 + V 2)1/2.

For any function G : Sn → Sn, prove U ∈ Sn solves the variational
inequality V I(G,Sn

+) if and only if F (U,G(U)) = 0. (Hint: See
Section 5.2, Exercise 11.)
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Monotonicity via convex analysis

Many important properties of monotone multifunctions can be derived us-
ing convex analysis, without using the Brouwer fixed point theorem (8.1.3).
The following sequence of exercises illustrates the ideas. Throughout, we
consider a monotone multifunction Φ : E → E. The point (u, v) ∈ E × E
is monotonically related to Φ if 〈x− u, y − v〉 ≥ 0 whenever y ∈ Φ(x):
in other words, appending this point to the graph of Φ does not destroy
monotonicity. Our main aim is to prove a central case of the Debrunner-
Flor extension theorem [59]. The full theorem states that if Φ has range
contained in a nonempty compact convex set C ⊂ E, and the function
f : C → E is continuous, then there is a point c ∈ C such that the point
(f(c), c) is monotonically related to Φ. For an accessible derivation of this
result from Brouwer’s theorem, see [154]: the two results are in fact equiv-
alent (see Exercise 19).

We call a convex function H : E × E → (∞,+∞] representative for Φ
if all points x, y ∈ E satisfy H(x, y) ≥ 〈x, y〉, with equality if y ∈ Φ(x).
Following [79], the Fitzpatrick function FΦ : E×E→ [−∞,+∞] is defined
by

FΦ(x, y) = sup{〈x, v〉+ 〈u, y〉 − 〈u, v〉 | v ∈ Φ(u)},
while [171, 150] the convexified representative PΦ : E× E → [−∞,+∞] is
defined by

PΦ(x, y) = inf
{ m∑

i=1

λi(xi, yi)
∣∣∣m ∈ N, λ ∈ Rm

+ ,

m∑
i=1

λi(xi, yi, 1) = (x, y, 1), yi ∈ Φ(xi) ∀i
}

.

These constructions are explored extensively in [30, 43, 172].

15. (Fitzpatrick representatives)

(a) Prove the Fitzpatrick function FΦ is closed and convex.

(b) Prove FΦ(x, y) = 〈x, y〉 whenever y ∈ Φ(x).

(c) Prove FΦ is representative providing Φ is maximal.

(d) Find an example where FΦ is not representative.

16. (Convexified representatives) Consider points x ∈ E and y ∈
Φ(x).

(a) Prove PΦ(x, y) ≤ 〈x, y〉.
Now consider any points u, v ∈ E.
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(b) Prove PΦ(u, v) ≥ 〈u, y〉+ 〈x, v〉 − 〈x, y〉.
(c) Deduce PΦ(x, y) = 〈x, y〉.
(d) Deduce PΦ(x, y) + PΦ(u, v) ≥ 〈u, y〉+ 〈x, v〉.
(e) Prove PΦ(u, v) ≥ 〈u, v〉 if (u, v) ∈ conv G(Φ) and is +∞ other-

wise.

(f) Deduce that convexified representatives are indeed both convex
and representative.

(g) Prove P∗
Φ = FΦ ≤ F∗

Φ.

17. ∗ (Monotone multifunctions with bounded range) Suppose
that the monotone multifunction Φ : E → E has bounded range
R(Φ), and let C = cl conv R(Φ). Apply Exercise 16 to prove the
following properties.

(a) Prove the convexity of the function f : E → [−∞,+∞] defined
by

f(x) = inf{PΦ(x, y) | y ∈ C}.
(b) Prove that the function g = infy∈C 〈·, y〉 is a continuous concave

minorant of f .

(c) Apply the Sandwich theorem (Exercise 13 in Section 3.3) to
deduce the existence of an affine function α satisfying f ≥ α ≥ g.

(d) Prove that the point (0,∇α) is monotonically related to Φ.

(e) Prove ∇α ∈ C.

(f) Given any point x ∈ E, show that Φ is contained in a monotone
multifunction Φ′ with x in its domain and R(Φ′) ⊂ C.

(g) Give an alternative proof of part (f) using the Debrunner-Flor
extension theorem.

(h) Extend part (f) to monotone multifunctions with unbounded
ranges, by assuming that the point x lies in the set int dom f −
dom δ∗C . Express this condition explicitly in terms of C and the
domain of Φ.

18. ∗∗ (Maximal monotone extension) Suppose the monotone mul-
tifunction Φ : E→ E has bounded range R(Φ).

(a) Use Exercise 17 and Zorn’s lemma to prove that Φ is contained
in a monotone multifunction Φ′ with domain E and range con-
tained in cl convR(Φ).

(b) Deduce that if Φ is in fact maximal monotone, then its domain
is E.
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(c) Using Exercise 16 (Local boundedness) in Section 8.2, prove that
the multifunction Φ′′ : E→ E defined by

Φ′′(x) =
⋂
ε>0

cl conv Φ′(x + εB)

is both monotone and a cusco.

(d) Prove that a monotone multifunction is a cusco on the interior
of its domain if and only if it is maximal monotone.

(e) Deduce that Φ is contained in a maximal monotone multifunc-
tion with domain E and range contained in cl convR(Φ).

(f) Apply part (e) to Φ−1 to deduce a parallel result.

19. ∗∗ (Brouwer via Debrunner-Flor) Consider a nonempty compact
convex set D ⊂ int B and a continuous self map g : D → D. By
applying the Debrunner-Flor extension theorem in the case where
C = B, the multifunction Φ is the identity map, and f = g ◦ PD

(where PD is the nearest point projection), prove that g has a fixed
point.

In similar fashion one may establish that the sum of two maximal
monotone multifunctions S and T is maximal assuming the condition 0 ∈
core (dom T − dom S). One commences with the Fitzpatrick inequality
that

FT (x, x∗) + FS(x,−x∗) ≥ 0,

for all x, x∗ in E. This and many other applications of representative
functions are described in [30].
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bounds on entropy measures in information theory. Mathematical
Inequalities and Applications, 1:295–304, 1998.

[136] E.J. McShane. The Lagrange multiplier rule. American Mathematical
Monthly, 80:922–924, 1973.

[137] E. Michael. Continuous selections I. Annals of Mathematics, 63:361–
382, 1956.

[138] P. Michel and J.-P. Penot. Calcul sous-différentiel pour les fonctions
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normal, see normal cone
normality of, 120
open mapping theorem, 85
partial smoothness of, 234
pointed, 54, 60, 72, 86, 99,

120, 141
polar, vii, 53, 54, 67, 69, 160

of sum and intersection,
58

polyhedral, see polyhedral
cone

program, 110–113, 115, 116
pseudotangent, 142
recession, 5, 6, 61, 83, 143
self-dual, see self-dual cone
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cone (cont.)
semidefinite, see

semidefinite cone
sums, 58, 245
support function of, 55
tangent, see tangent cone
variational inequality over,

202
conical absorption, 71
conjugate, see Fenchel conjugate
connected, 180, 183
constraint

active, 30
equality, 29, 153, 160
error, 168
function, 29
inequality, 15–32, 160

and partial smoothness,
234

convex, 43
in infinite dimensions, 248

linear, 16, 19, 21, 52, 53, 62,
109, 162

in infinite dimensions, 247
qualification, 30, 200, 234

equivalence of Slater and
Mangasarian et al, 45

in cone programming, 116
infinite-dimensional, 250
linear independence, 30,

160, 162, 176
Mangasarian–Fromovitz,

30–32, 127, 160–165
Mangasarian-Fromowitz,

232
Slater, 44–47, 90, 91, 109,

110, 162, 168
contingent

cone, 138–144, 153–162, 228
to feasible region, 160,

232
necessary condition, 139,

157, 160, 161
sufficiency, 143

continuity, 3ff
absolute, 214
and bounded level sets, 78
and maximality, 198
and USC, 193
generic, 199
in infinite dimensions,

239–250
of convex functions, 52,

65–69, 76, 241
failure, 84
univariate, 83

of extensions, 196
of linear functionals, 241
of multifunctions, 114
of partial derivatives, 132
of projection, 20, 201
of selections, 191–199

continuously differentiable, see
differentiability,
continuous

contour, 82
contraction, 179

Banach space, 250
non-uniform, 183

control theory, vii, 112
convergent subsequence, 3ff
convex

analysis, vii–ix
infinite-dimensional, 68,

249
monotonicity via, 209–211
polyhedral, 97

approximately, 224
calculus, 52, 53, 56, 139

failure, 57
sum rule, 52

combination, 2, 5ff
constraint, 43ff
function, 4, 33, 44ff

bounded, 242
characterizations, 37
composition, 6
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convex function (cont.)
conditions for minimizer,

16
continuity of, see

continuity of convex
functions

critical points of, 16, 33
difference of, 57, 108, 219
differentiability of, 36
directional derivative, 16
examples, 39
extended-valued, 33, 43,

46ff
Hessian characterization,

see Hessian, and
convexity

of matrices, 40
on Banach space, 249
recognizing, 37, 38
regularity, 131, 138
symmetric, 27

growth conditions, 7
hull, 2, 5ff

and exposed points, 249
and extreme points, 68
and Gordan’s theorem, 23
of limiting subdifferential,

145, 149
image, 190–199
log-, 41
midpoint, 80
multifunction, 114, 115
order-, see order-convex
process, see process
program, 43–48, 51ff

duality, 88
Schur-, 25, 27, 38, 108, 135
set, 2ff
spectral function, see

spectral function
strictly, see strictly convex,

essentially
subdifferential, 131ff

and limiting, 145

convexified representative,
209–210

convexity, see convex
and continuity, see

continuity of convex
functions

and differentiability, 15
and monotonicity, 129
in linear spaces, 249
in optimization, 33ff
of Chebyshev sets, ix,

220–227
core, 34

in infinite dimensions, 244
versus interior, 37, 67

cost function, 204
countable

basis, 244
codimension, 244

countably compact, 248
cover, 191, 248
critical cone

broad, 174–177
narrow, 172–177

critical point, 16
approximate, 17
strong, 234–238
unique, 19

curvature, 172
cusco, 190–211, 219–223

DAD problems, 42, 62
Davis’ theorem, 105, 106, 108
DC function, see convex

function, difference of
Debrunner-Flor extension

theorem, 209–211
dense

hyperplane, 244
range, 246, 248
subspace, 245

derivative, see differentiability
directional, see directional

derivative
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derivative (cont.)
Fréchet, see Fréchet

derivative
Gâteaux, see

differentiability,
Gâteaux

generalized, 123
Hadamard, see Hadamard

derivative
strict, see strict derivative
weak Hadamard, see weak

Hadamard derivative
determinant, 9, 163, 180, 183

order preservation, 107
Deville–Godefroy–Zizler vari-

ational principle, 250
differentiability

and pseudoconvexity, 143
bornological, 240
continuous, 132–134, 157,

159, 164
approximation by, 180

Fréchet, see Fréchet
derivative

Gâteaux, 15, 28, 61,
130–136, 139, 240–245

generic, 197, 199
of convex functions, 36, 82
of distance function, 57,

218, 222
of Lipschitz functions, ix,

133
of spectral functions, 105
of the conjugate, 225
strict, see strict derivative
twice, 172–176, 231, 233

differential inclusion, 249
dimension, 68

infinite, see infinite
dimensions

Dini
calculus, failure, 128
derivative, 127, 214

Dini (cont.)
directional derivative, 145,

147
and contingent cone, 137
continuity, 128, 146
Lipschitz case, 123, 129,

131
subdifferential, 124, 125,

129, 131, 145
of distance function, 169,

218
surjective, 128

subgradient, 124, 146, 148
exists densely, 135, 145,

150
Dirac, see Fermi–Dirac
directional derivative, 15, 61

and subgradients, 35, 123
and tangent cone, 137
Clarke, see Clarke

directional derivative
Dini, see Dini

subdifferential
Michel–Penot, see

Michel–Penot
directional derivative

of convex function, 34–42
of max-functions, 28, 33, 38
sublinear, 34, 123, 124, 137

disjoint operator ranges, 248
distance

Bregman, 39
from feasibility, 168
function, 57, 133, 137–144,

218–226
attainment, 241, 243, 248
differentiability, 241
directional derivative, 144
regularity, 138, 246
subdifferentials, 169
to level set, 171

to inconsistency, 119, 122
divergence bounds, 63
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domain
of convex function, 33, 44,

65
of multifunction, 114
of subdifferential, 35

not convex, 40
polyhedral, 97

doubly stochastic, 10, 12, 75
pattern, 42

Dowker, 196
dual

attainment, see attainment,
dual

cone, 27
function, 88
linear program, 109, 202
problem, 88

examples, 91
solution, 82, 89, 90
space, 239
value, 52, 88–96

in LP and SDP, 109–113
duality, vii, 2, 76ff

cone program, see cone
program

duality-based algorithms, vii
Fenchel, see Fenchel duality
gap, 88–96

Duffin’s, 46, 92
in LP and SDP, 110–113,

203
geometric programming, 103
in convex programming, 88
infinite-dimensional, 91, 249
Lagrangian, see Lagrangian

duality
LP, vii, 25, 109–113, 202
nonconvex, 93
norm, 117
process, 114–122
quadratic programming, 205
SDP, vii, 109–113
strict-smooth, 78, 82

duality (cont.)
weak

cone program, 109, 110
Fenchel, 52–53, 101
Lagrangian, 88, 91

Duffin’s duality gap, see duality,
gap, Duffin’s

efficient, 204
eigenvalues, 9

derivatives of, 135
functions of, 104
isotonicity of, 136
largest, 162
of operators, 249
optimization of, 106
subdifferentials of, 135
sums of, 108

eigenvector, 19, 163
Einstein, see Bose–Einstein
Ekeland variational principle, 17,

153–157, 179, 224, 225
in metric space, 250

engineering, ix
entropy

Boltzmann–Shannon, 55
Bose–Einstein, 55
Fermi–Dirac, 55
maximum, 41, 56, 62

and DAD problems, 42
and expected surprise, 87

epi-Lipschitz-like, 248
epigraph, 43ff

as multifunction graph, 193
closed, 76, 81
normal cone to, 47
polyhedral, 97
regularity, 246
support function of, 55

equilibrium, 193
equivalent norm, see norm,

equivalent
essentially smooth, 37, 74, 80

conjugate, 78, 82
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essentially smooth (cont.)
log barriers, 51
minimizers, 40
spectral functions, 106

essentially strictly convex, see
strictly convex,
essentially

Euclidean space, 1–9, 239
subspace of, 24

exact penalization, see
penalization, exact

existence (of optimal solution,
minimizer), 4, 79, 90ff

expected surprise, 86
exposed point, 73

strongly, 249
extended-valued, 145

convex functions, see convex
function,
extended-valued

extension
continuous, 196
maximal monotone, 210

extreme point, 67
existence of, 73
of polyhedron, 98
set not closed, 73
versus exposed point, 73

Fan
–Kakutani fixed point

theorem, 190–201, 203
inequality, 10–14, 104, 105
minimax inequality, 205
theorem, 10, 13

Farkas lemma, 23–25, 109, 160
and first order conditions,

23
and linear programming,

109
feasible

in order complementarity,
205

region, 29, 160

feasible region (cont.)
partly smooth, 234

solution, 29, 43, 110
Fenchel, ix, 54

–Young inequality, 51, 52,
71, 105

-Young inequality, 225
biconjugate, 49, 55, 76–85,

99, 105, 106, 126
and duality, 89
and smoothness, 225, 226

conjugate, 23, 49–63
and Chebyshev sets, 221
and duality, 88
and eigenvalues, 104
and subgradients, 51
examples, 50
of affine function, 79
of composition, 93
of exponential, 49, 56, 62,

63
of indicator function, 55
of quadratics, 55
of value function, 89
self-, 55
strict-smooth duality, 78,

82
transformations, 51

duality, 52–63, 73, 77, 81,
102

and complementarity, 204
and LP, 110–113
and minimax, 201
and relative interior, 74
and second order

conditions, 174
and strict separation, 70
generalized, 102
in infinite dimensions,

239, 249
linear constraints, 53, 62,

71, 100
polyhedral, 100, 101
symmetric, 62
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Fenchel duality (cont.)
versus Lagrangian, 93

problem, 52
Fermi–Dirac entropy, 55
Fillmore–Williams theorem, 108
finite codimension, 246
finite dimensions, 239–250
finitely generated

cone, 25, 26, 97–99
function, 97–101
set, 97–101

first order condition(s)
and max-functions, 28–32
and the Farkas lemma, 23
for optimality, 16
Fritz John, see Fritz John

conditions
in infinite dimensions, 248
Karush–Kuhn–Tucker, see

Karush–Kuhn–Tucker
theorem

linear constraints, 16, 19,
21, 42

necessary, 15, 16, 29, 139,
160, 174, 175

sufficient, 16
Fisher information, 79, 84, 87
Fitzpatrick function, 209
fixed point, 179–211

in infinite dimensions, 250
methods, 203
property, 184
theorem

of Brouwer, see Brouwer
fixed point theorem

of Kakutani–Fan, see
Kakutani–Fan fixed
point theorem

Fourier identification, 246
Fréchet derivative, 132–134, 153,

213–216
and contingent necessary

condition, 139, 157
and inversion, 184–185

Fréchet derivative (cont.)
and multipliers, 163
and subderivatives, 152
in constraint qualification,

160
in infinite dimensions,

240–250
Fritz John conditions, 29–31,

130, 165
and Gordan’s theorem, 30
nonsmooth, 127
second order, 175

Fubini’s theorem, 214–216
functional analysis, 239, 248
fundamental theorem of

calculus, 214, 216
furthest point, 73, 221, 226–227
fuzzy sum rule, 146, 148, 150

Gδ, 191, 197
gamma function, 41
Gâteaux

derivative, see derivative,
Gâteaux

differentiable, see
differentiability,
Gâteaux

gauge function, 66, 71, 184
generalized

derivative, 123
Hessian, 217
Jacobian, 216–217

generated cuscos, 196
generating cone, 120
generic, 190

continuity, 199
differentiability, 197, 199
single-valued, 199

geometric programming, 101,
102

global minimizer, see minimizer,
global

Godefroy, see Deville–Godefroy–
Zizler
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Gordan’s theorem, 23–27
and Fritz John conditions,

30
graph, 114, 190

minimal, 197
normal cone to, 150
of subdifferential, 145

Graves, 157
Grossberg, see Krein–Grossberg
Grothendieck space, 243
growth condition, 4, 20

cofinite, 83
convex, 7
multifunction, 201, 208

Guignard
normal cone calculus, 158
optimality conditions, 164,

177

Haberer, Guillaume, viii
Hadamard, 182

derivative, 240–250
inequality, 48, 163

Hahn
–Banach extension, 55, 58

geometric version, 248
–Katetov–Dowker sandwich

theorem, 196
Hairy ball theorem, 186–187
halfspace

closed, 3, 25ff
in infinite dimensions, 246
open, 23, 25
support function of, 55

Halmos, viii
Hardy et al. inequality, 10–12
Hedgehog theorem, 187
hemicontinuous, 198
Hessian, 17, 172–176

and convexity, 37, 38, 40
generalized, 217

higher order optimality
conditions, 175

Hilbert space, 221, 239

Hilbert space (cont.)
and nearest points, 249

Hiriart–Urruty, vii, 25
Hölder’s inequality, 31, 41, 71
homeomorphism, 182, 184
homogenized

linear system, 109
process, 120

hypermaximal, 198, 207, 208
hyperplane, 2, 25ff

dense, 244
separating, see separation

by hyperplanes
supporting, 67, 122,

240–249

identity matrix, 9
improper polyhedral function,

101
incomplete, 239
inconsistent, 29, 111

distance to, 122
indicator function, 33, 67, 137

limiting subdifferential of,
146

subdifferential of, 37
inequality constraint, see

constraint, inequality
infimal convolution, 57, 137, 157
infimum, 3ff
infinite-dimensional, viii, 79,

157, 239–250
interior, 2ff

relative, see relative interior
tangent characterization,

170
versus core, see core versus

interior
interior point methods, vii–ix,

54, 79, 91, 162
inverse

boundedness, 120
function theorem, 159, 184,

235
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inverse (cont.)
image, 3, 100
Jacobian, 180
multifunction, 114–122

inversion, 221, 226
Ioffe, 149
isometric, 85, 86
isotone, 6, 205

contingent cone, 141
eigenvalues, 136
tangent cone, 143

Jacobian, generalized, 216–217
James theorem, 243, 249
Jordan’s theorem, 163
Josephson–Nissenzweig

sequence, 243
theorem, 243

Kakutani
–Fan fixed point theorem,

190–201, 203
minimax theorem, 96, 206

Karush–Kuhn–Tucker
theorem, 30–32, 130, 160

convex case, 43–45, 131
infinite-dimensional, 250
nonsmooth, 127

vector, 47, 93
Katetov, 196
Kirchhoff’s law, 20
Kirk, see Browder–Kirk
Klee cavern, 221
Knaster–Kuratowski–Mazurkie-

wicz principle, 185, 206
König, 11
Krein

–Grossberg theorem, 120
–Rutman theorem, 54, 158
-Rutman theorem, 230

Kruger, 149
Kuhn, see Karush–Kuhn–Tucker

Lagrange multiplier, 17, 29–32,
161

Lagrange multiplier (cont.)
and second order

conditions, 172–176
and subgradients, 43
bounded set, 162
convex case, 43–47
in infinite dimensions, 249
nonexistence, 46, 163, 185

Lagrangian, 29, 172–176
convex, 43, 88
duality, 88–96, 103

infinite-dimensional, 249
linear programming, 109

necessary conditions, see
necessary conditions,
Lagrange

sufficient conditions, 43–48,
107

Lambert W-function, 58
lattice

cone, 9
ordering, 11, 203

Ledyaev, ix
Legendre, 54
Lemaréchal, Claude, vii, viii
level set, 3, 13

bounded, 4, 7, 69, 78, 83
closed, 76
compact, 20, 41, 51, 95, 154

of Lagrangian, 90, 91
distance to, 168
normal cone to, 47, 171

Ley, Olivier, viii
limit (of sequence of points), 2
limiting

mean value theorem, 151
normal cone, see normal

cone, limiting
subdifferential, 145–152

and regularity, 166–171
of composition, 150
of distance function, 170
sum rule, see nonsmooth

calculus
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line segment, 2, 142
lineality space, 34
linear

constraint, see constraint,
linear

functional
continuous, 241
discontinuous, 248

independence qualification,
see constraint
qualification, linear
independence

inequality constraints, 62
map, 3ff

as process, 120
objective, 109
operator, 249
programming (LP), vii, 54,

91
abstract, 110, 111, 202
and Fenchel duality,

110–113
and processes, 114
and variational

inequalities, 203
duality, see duality, LP
penalized, 91, 113, 162
primal problem, 109

space, 249
span, 2
subspace, 2

linearization, 153
Lipschitz, ix, 65, 66, 68, 123–152,

155, 183, 213–217
bornological derivatives, 240
eigenvalues, 108, 135
extension, 157
generic differentiability, 197
non-, 127
perturbation, 250

Liusternik, 157
theorem, 156, 158, 160

via inverse functions, 159
local minimizer, 15–19, 29ff

local minimizer (cont.)
strict, 174

localization, 120
locally bounded, 65, 66, 68, 78,

190, 194, 196–198
locally Lipschitz, see Lipschitz
Loewner ordering, 9
log, 5, 13, 49, 55, 62, 92, 104
log barrier, 49
log det, 13, 15, 20, 21, 32, 37, 40,

46, 48, 49, 55, 69, 92,
104–106

log-convex, 41
logarithmic homogeneity, 79, 82
lower norm, 117
lower semicontinuous, 37, 76–81,

101
and attainment, 248
and USC, 193
approximate minimizers,

153
calculus, 146–148
generic continuity, 199
in infinite dimensions, 239
multifunction, 114
sandwich theorem, 196
value function, 89, 90, 95
versus closed function, 76

LP, see linear programming
LSC (multifunction), 114–119,

190, 192–196, 204
Lucet, Yves, viii

Mangasarian–Fromovitz
constraint qualification,
see constraint
qualification,
Mangasarian–
Fromovitz

manifold, 233–238
mathematical economics, viii,

119, 193
matrix, see also eigenvalues

analysis, 104
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matrix (cont.)
completion, 21, 40
optimization, 109

Max formula, 36–42, 53, 61, 116,
123

and Lagrangian necessary
conditions, 44

nonsmooth, 124, 125, 139
relativizing, 42, 74

max-function(s)
and first order conditions,

28–32
directional derivative of, 28
subdifferential of, 47, 59,

125
Clarke, 129, 151
limiting, 151, 171

maximal monotonicity, 190–211
maximizer, vii, 3ff
maximum entropy, see entropy,

maximum
Mazurkiewicz, see

Knaster–Kuratowski–
Mazurkiewicz

mean value theorem, 128, 136,
217

infinite-dimensional, 250
limiting, 151

measure theory, 213–217
metric regularity, vii, 153–159,

183, 184, 229
and second order

conditions, 172–173
and subdifferentials,

166–171
in Banach space, 250
in infinite dimensions, 239
weak, 154–158

metric space, 250
Michael selection theorem,

193–196, 204
infinite-dimensional, 250

Michel–Penot
directional derivative,

124–144
subdifferential, 124–135
subgradient, 124

unique, 130, 132
midpoint convex, 80
minimal

cusco, 219–223
graph, 197
solution in order

complementarity, 205
minimax

convex-concave, 95
Fan’s inequality, 205
Kakutani’s theorem, 96, 206
von Neumann’s theorem,

see von Neumann
minimax theorem

minimizer, vii, 3ff
and differentiability, 15
and exact penalization, 137
approximate, 153
existence, see existence
global, 4, 16, 33ff
local, 15–19, 29ff
nonexistence, 17
of essentially smooth

functions, 40
strict, 174
subdifferential zeroes, 35,

123
minimum volume ellipsoid, 32,

40, 48
Minkowski, 5, 101

theorem, 68, 73, 98, 182
converse, 73
in infinite dimensions, 249

minorant, 76
affine, 76, 79, 84, 100
closed, 78

Miranda, see Bolzano–Poincaré–
Miranda

monotonically related, 209–210
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monotonicity
and convexity, 129
maximal, 190–211
multifunction, 190–211
of complementarity

problems, 203, 204
of gradients, 40
via convex analysis, 209–211

Mordukhovich, 149, 169
Moreau, 54

–Rockafellar theorem,
78–83, 249

Motzkin-Bunt theorem, 221
multicriteria optimization, 140
multifunction, vii, 114–122,

190–211
closed, 80

and maximal monotone,
198

versus USC, 193
set-valued map, 114
subdifferential, 35

multiplier, see Lagrange
multiplier

multivalued
complementarity problem,

202
variational inequality, 200

narrow critical cone, 172–177
Nash equilibrium, 204, 206
nearest point, 19, 24, 57, 182,

188
and prox-regularity, 228
and proximal normals,

218–223
and subdifferentials, 169
and variational inequalities,

200
in epigraph, 135
in infinite dimensions, 239,

248
in polyhedron, 62
projection, 20, 211

nearest point (cont.)
selection, 193, 199
unique, see also Chebyshev

set, 228
necessary condition(s), 125, 138

and subdifferentials, 123
and sufficient, 175
and variational inequalities,

200
contingent, see contingent

necessary condition
first order, see first order

condition(s), necessary
for optimality, 16
Fritz John, see Fritz John

conditions
Guignard, 164, 177
higher order, 175
Karush–Kuhn–Tucker, see

Karush–Kuhn–Tucker
theorem

Lagrange, 44–46, 49, 89,
130, 131

nonsmooth, 126, 130, 139,
145, 149, 151

limiting and Clarke, 170
second order, 172
stronger, 127, 145

neighbourhood, 2
Nemirovski, ix
Nesterov, ix
Newton-type methods, 172
Nikodým, see Radon–Nikodým
Nissenzweig, see

Josephson–Nissenzweig
noncompact variational

inequality, 202
nondifferentiable, 18, 33ff
nonempty images, 114, 118
nonexpansive, 180, 182, 220

in Banach space, 250
nonlinear

equation, 179
program, 160, 177
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nonnegative cone, 245
nonsmooth

analysis, viiff
and metric regularity, 157
infinite-dimensional, 149
Lipschitz, 137

calculus, 125, 128, 139, 155
and regularity, 133
equality in, 131
failure, 145, 149
fuzzy, 146
infinite-dimensional, 250
limiting, 145, 148–151,

167, 169
mixed, 134
normed function, 166
sum rule, 125

max formulae, see Max
formula, nonsmooth

necessary conditions, see
necessary condition(s),
nonsmooth

optimization, see
optimization,
nonsmooth

regularity, see regular
norm, 1

-attaining, 240, 243, 245,
249

-preserving, 10, 12
equivalent, 66, 69, 192
lower, 117
of linear map, 117
of process, 117–122
smooth, 188
strictly convex, 249
subgradients of, 38
topology, 241–243
upper, 117

normal
proximal, ix, 218–223

normal cone, 15, 16, 18
and polarity, 53
and relative interior, 74

normal cone (cont.)
and subgradients, 37, 56
and tangent cone, 54
Clarke, see Clarke normal

cone
examples, 18
limiting, 146, 166–171

and subdifferential, 150
proximal, 218
to epigraph, 47
to graphs, 150
to intersection, 56, 86
to level sets, 47

normal mapping, 200, 203
normal problem, 91
normal vector, 15, 218
normed space, 239, 244
null space, 3, 116, 117

objective function, 29, 30ff
linear, 109

one-sided approximation, 35
open, 2

functions and regularity,
169, 183

mapping theorem, 71, 82,
101, 110, 120

for cones, 85
for processes, 118
in Banach space, 249
in infinite dimensions, 239

multifunction, 114–121
operator

linear, 249
optimal

control, viii
solution, 4ff
value, 51, 88–96, 100, 174

function, 43
in LP and SDP, 109–113,

202
primal, 52

optimality conditions, vii, 15–22
and the Farkas lemma, 24
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optimality conditions (cont.)
and variational inequalities,

200
first order, see first order

condition(s) for
optimality

higher order, 175
in Fenchel problems, 56, 82
necessary, see necessary

condition(s)
nonsmooth, 123
second order, see second

order conditions
sufficient, see sufficient

condition(s)
optimization, vii, 3ff

and calculus, 16
and convexity, 33
and nonlinear equations,

179
computational, vii, 162, 172
duality in, 76, 88
infinite-dimensional, viii, 79,

157
linear, 109
matrix, 109
multicriteria, 55
nonsmooth, 28, 33, 123–152

infinite-dimensional, 250
one-sided approximation, 35
problem, 4, 29ff
subgradients in, 35, 123
vector, 72, 140, 141

order
-convex, 59–62, 72, 80, 108
-reversing, 49
-sublinear, 59–62, 108, 121
-theoretic fixed point

results, 179
complementarity, 203–205
epigraph, 121
infimum, 60
interval, 120
preservation, 11, 72

order preservation (cont.)
of determinant, 107

statistic, 129
regularity, 135
subdifferential, 152

subgradients, 55, 60–62
ordered spectral decomposition,

10
ordering, 9

lattice, 11
orthogonal

complement, 3
invariance, 107
matrix, 10, 182
projection, 25
similarity transformation,

107
to subspace, 24

orthonormal basis, 163

p-norm, 31, 71
paracompact, 250
Pareto minimization, 72, 204

proper, 141
partition of unity, 191–195, 207
partly smooth, ix, 233–238
penalization, 91, 113, 162

exact, 137–140, 155, 158,
167, 229

quadratic, 164
Penot, see Michel–Penot
permutation

matrix, 10, 27, 75, 108
perturbation, 43, 51ff
Phelps, see Bishop–Phelps
piecewise linear, 184
Poincaré, see Bolzano–Poincaré–

Miranda
pointed, see cone, pointed
pointwise maximum, 79
polar

calculus, 70, 117
concave, 85
cone, see cone, polar
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polar (cont.)
set, 67, 69–70

polyhedral
algebra, 100–101, 116
calculus, 101
complementarity problem,

205
cone, 98, 102, 110, 113, 161
Fenchel duality, 100
function, 97–102
multifunction, 114
problem, 109, 110
process, 116
quasi-, 175
set, see polyhedron
variational inequality, 203

polyhedron, 3, 9, 11, 58, 97–102
compact, 98
in vector optimization, 141
infinite-dimensional, 246
nearest point in, 62
partial smoothness of, 237
polyhedral set, 97
tangent cone to, 101

polynomial
nearest, 21

polytope, 55, 97–99
in infinite dimensions, 246

positive (semi)definite, 9ff
positively homogeneous, 33
Preiss, see Borwein–Preiss
primal

linear program, 109
problem, 88
recovering solutions, 82
semidefinite program, 111
value, see optimal value

process, 114–122, 249
product, see Cartesian product
projection, see also nearest point

continuity, 223
onto subspace, 24
orthogonal, 25
relaxed, 182

proper
function, 33, 44, 76, 97, 116
Pareto minimization, 141
point, 142

prox-regular, 228–238
proximal normal, ix, 218–223
pseudoconvex

function, 143
set, 142, 143

Pshenichnii–Rockafellar
conditions, 58

quadratic
approximation, 172–175
conjugate of, 55
path, 173
penalization, 164
program, 91, 175, 205

quasi relative interior, 244, 248
quasiconcave, 205
quasipolyhedral, 175
quotient space, 247

Rademacher’s theorem, ix, 133,
197, 213–216, 218

Radon–Nikodým property, 249
Radstrom cancellation, 5
range

closed, 241
dense, see dense range

range of multifunction, 114, 191,
194, 201

bounded, 210–211
rank-one, 122
ray, 242, 247
Rayleigh quotient, 19
real function, 123
recession

cone, see cone, recession
function, 83

reflexive Banach space, 239–249
regular, 130–136, 138

and generic differentiability,
197
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regular (cont.)
and Rademacher’s theorem,

216
regularity

condition, 30, 44, 65, 100,
160

epigraphical, 246
metric, see metric regularity
prox-, see prox-regular
tangential, see tangential

regularity
relative interior, 5–8, 173, 185

and cone calculus, 159
and cone programming, 113
and Fenchel duality, 74, 102
and Max formula, 42
calculus, 74
in infinite dimensions, 242,

248
quasi, 244, 248

relaxed projection, 182
representative, 209–210
resolvent, 208
retraction, 180, 183
reversing, 206
Riesz lemma, 188
Robinson, 119, 157
Rockafellar, vii–ix, 54, 58, 78,

119, 250
Rutman, see Krein–Rutman

saddlepoint, 95, 96, 201
Sandwich theorem, 58, 210

Hahn–Katetov–Dowker, 196
scalarization, 72, 140, 142
Schur

-convexity, see convex,
Schur-

space, 243
Schwarz, see Cauchy–Schwarz
SDP, see semidefinite program
second order conditions, 17,

172–177, 237
selection, 190–199

self map, 179–188, 207
in Banach space, 250

self-conjugacy, 55
self-dual cone, 18, 53, 54, 85,

105, 111
selfadjoint, 249
semidefinite

complementarity, 108, 208
cone, 9, 18, 53, 54, 104, 106,

109, 233
matrix, 9
program (SDP), vii, 54, 92,

109–113, 162
central path, 113

Sendov, Hristo, viii
sensitivity analysis, 233
separable, 62, 92

and semicontinuity, 247
Banach space, 241–245

separation, 2, 5, 25ff
and bipolars, 54, 67
and Gordan’s theorem, 23
and Hahn–Banach, 248
and scalarization, 142
Basic theorem, 2, 17, 77
by hyperplanes, 3
in infinite dimensions, 241
nonconvex, 142
strict, 70
strong, 6

set-valued map, see
multifunction

Shannon, see
Boltzmann–Shannon

signal reconstruction, 79
simplex, 66, 79
simultaneous ordered spectral

decomposition, 10, 105
single-valued, 190, 197

generic, and maximal
monotonicity, 199

singular value, 13
largest, 163

skew symmetric, 197
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Slater condition, see constraint
qualification, Slater

smooth Banach space, 241
solution

feasible, see feasible solution
optimal, 4ff

solvability of variational
inequalities, 201–208

spectral
conjugacy, 104, 106, 107
decomposition, 10, 19
differentiability, 105
function, 104–108, 133

convex, 105, 106
subgradients, 105, 107
theory, 249

sphere, 180, 186–189
inversion in, 226

square-root iteration, 11
stable, 91

Clarke tangent cone, 138
steepest descent

and Cauchy–Schwarz, 31
Stella’s variational principle, 250
Stern, ix
Stiemke’s theorem, 26
Stone–Weierstrass theorem,

180–183
strict

complementarity, 234–237
derivative, 132–134, 149,

150, 155–167
generic, 197

local minimizer, 174
separation, 70

strict-smooth duality, 78, 82
strictly convex, 4, 38–41

and Hessian, 38
conjugate, 78, 82
essentially, 35, 40, 84
log barriers, 51
norm, 249
power function, 21
spectral functions, 106

strictly convex (cont.)
unique minimizer, 19

strictly differentiable, see strict
derivative

strong
critical point, 234–238

subadditive, 34
subcover, 191
subdifferential, see also

subgradient(s)
and essential smoothness, 74
bounded multifunction, 242
calculus, 123
Clarke, see Clarke

subdifferential
closed multifunction, 80,

134, 145, 149, 156, 167
compactness of, 66
convex, see convex

subdifferential
Dini, see Dini

subdifferential
domain of, see domain of

subdifferential
in infinite dimensions, 250
inverse of, 80
limiting, see limiting

subdifferential
maximality, 240
Michel–Penot, see

Michel–Penot
subdifferential

monotonicity, 190, 197, 198
nonconvex, 123
nonempty, 36, 240
of distance functions,

219–223
of eigenvalues, 135
of polyhedral function, 102
on real line, 149
smaller, 145
support function of, 55
versus derivative, 123

subgradient(s), vii, 35
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subgradient(s) (cont.)
and conjugation, 51
and Lagrange multipliers, 43
and lower semicontinuity, 81
and normal cone, 37, 56
at optimality, 35
Clarke, see Clarke

subgradient
construction of, 35
Dini, see Dini subgradient
existence of, 36, 43, 53, 100,

116
in infinite dimensions, 239
Michel–Penot, see

Michel–Penot
subgradient

of convex functions, 33–42
of distance functions,

219–223
of max-functions, see

max-function,
subdifferential of

of maximum eigenvalue, 38
of norm, 38
of polyhedral function, 98
of spectral functions, see

spectral subgradients
order, see order subgradient
unique, 36, 242, 245

sublinear, 33, 35, 58, 66, 69, 85,
107, 108, 137

and support functions, 77
directional derivative, see

directional derivative,
sublinear

everywhere-finite, 77
order-, 59–62
recession functions, 83

subspace, 2
closed, 241
complemented, 239
countable-codimensional,

244
dense, 245

subspace (cont.)
finite-codimensional, 246
projection onto, 24
sums of, see sum of

subspaces
sufficient condition(s)

and pseudoconvexity, 143
first order, see first order

condition(s), sufficient
Lagrangian, see Lagrangian

sufficient conditions
nonsmooth, 149
partly smooth, 234
second order, 174

sum
direct, 3
of cones, see cone sums
of sets, 1
of subspaces, 245, 247
rule

convex, see convex
calculus

nonsmooth, see
nonsmooth calculus

sun, 220–224
support function(s), 55, 80, 82

and sublinear functions, 77
directional derivative,

124–128
of subdifferentials, 125

support point, 240–245
supporting

functional, 240–245
hyperplane, see hyperplane,

supporting
supremum, 3

norm, 243
surjective

and growth, 198, 207
and maximal monotone,

198, 208
Jacobian, 155, 156, 159,

166, 173, 176, 184
linear map, 71, 101, 110
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surjective (cont.)
process, 114–122

surprise, expected, 86
symmetric

convex function, 27
function, 104–108
matrices, 9–14
set, 108

tangency properties, 241
tangent cone, 137–144

and directional derivatives,
137

as conical approximation,
137

calculus, 73, 86, 159, 228
Clarke, see Clarke tangent

cone
coincidence of Clarke and

contingent, 138
convex, 54, 74, 138
ideal, 143
intrinsic descriptions, 138,

140
to graphs, 141, 150
to polyhedron, 101

tangent space, 157
tangent vector field, 186
tangential regularity, 138, 156,

158, 229, 233, 246
Theobald’s condition, 13
theorems of the alternative,

23–27, 97
Todd, Mike, viii
trace, 9
transversality, 158, 164, 228–232,

234
trust region, 93
Tucker, see

Karush–Kuhn–Tucker
twice differentiable, see

differentiability, twice

Ulam, 182

uniform
boundedness theorem, 249
convergence, 180, 195
multipliers, 176

unique
fixed point, 179, 183
minimizer, 19
nearest point, 248
subgradient, see

subgradient, unique
upper norm, 117
upper semicontinuity (of

multifunctions), 117
Urysohn lemma, 196
USC (multifunction), 190–207

value function, 43–48, 52, 88–91,
116, 119

polyhedral, 100
Vandenberghe, ix
variational

inequality, 200–208
principle, 17

in infinite dimensions,
239, 250

of Ekeland, see Ekeland
variational principle

vector field, 186–187
vector optimization, see

optimization, vector
Ville’s theorem, 26
viscosity subderivative, 149, 151
von Neumann, 11

lemma, 13
minimax theorem, 79, 81,

201, 204

Wang, Xianfu, viii
weak

-star topology, 241–243
duality, see duality, weak
Hadamard derivative,

240–241
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weak (cont.)
metric regularity, see metric

regularity, weak
minimum, 72
topology, 241–243

weakly compact, 243, 249
and nearest points, 249

Weierstrass, see also
Bolzano–Weierstrass,
Stone–Weierstrass

proposition, 4, 17ff
Wets, vii–ix
Weyl, 101
Williams, see Fillmore–Williams
Wolenski, ix

Young, see Fenchel–Young

Zizler, see Deville–Godefroy–
Zizler

Zorn’s lemma, 190, 210
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