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Our Goals for the Week

A brief introduction to some key ideas
from optimization that should be
useful later in your careers

Convex Analysis
« Duality and Optimality Conditions

* Fixed Points and Monotone Mappings

Variational Principles
« Stability and Reqgularity

Models and Algorithm Design
« Some Concrete Examples
« Some Experimentation




Mathematics is not a

spectator subject

It is not knowledge, but the act of learning, not possession but the
act of getting there, which grants the greatest enjoyment. When I
have clarified and erhausted a subject, then I turn away from it,
i order to go into darkness again; the never-satisfied man is so
strange if he has completed a structure, then it s not in order to
dwell in 1t peacefully, but in order to begin another. I imagine the
world conqueror must feel thus, who, after one kingdom s scarcely
conquered, stretches out his arms for others.

(Carl Friedrich Gauss 1777-1855)

In an 1808 letter to his friend Farkas Bolyai
(the father of Janos Bolyai).




Outline of Week’'s Lectures

Day 1 A big-picture Overview of the Week
Day 2 Convex Duality and Applications
Day 3 Variational Principles & Applications
Monotone & Non-expansive Maps
Algebraic Reconstruction Methods
and Interactive Geometry




The primary source iIs Chapters 3-5, 7-8 o

Jonathan M. Borwein and Adrian S. Lewis
Convex Analysis and Nonlinear Optimization:
Theory and Examples Second Edition

CMS Books in Mathematics

A comerstone of modern optimization and analysis, convexity pervades applications h M B . d . S L .

Y ° A
ranging through engineering and computation to finance. This concise introduction ]Onat an . orwein rian . €WI1S
1o convex analysis and its extensions aims at first year graduate students, and

indudes many quided exerdses.The corrected Second Edition adds a chapter empha

sizing conaete models. New topics indude monotone operator theory, Rademacher's
theorem, proximal normal geometry, Chebyshey sets, and amenability. The final

Convex Analysis
and Nonlinear
Optimization

material on "partial smoothness” won a 2005 SIAM Outstanding Paper Prize.

Jonathan M. Borwein, FRSC is Canada Research Chair in Collaborative Technology at

Dathousie University. A Fellow of the AAAS and a foreign member of the Bulgarian
Academy of Sdence, he received his Doctorate from Oxford in 1974 as a Rhodes
Scholar and has worked at Waterloo, Carnegie Mellon and Simon Fraser Universities.
Recognition for his extensive publications in optimization, analysis and computa
tional mathematics indudes the 1993 Chauvenet prize

Adrian S, Lewis is a Professor in the School of Operations Research and Industrial
Engineering at Comell. Following his 1987 Doctorate from Cambridge, he has

Theory and Examples

worked at Waterloo and Simon Fraser Universities. He received the 1995 Aisenstadt
Prize, from the University of Montreal, and the 2003 Lagrange Prize for Continuous

Optimization, from SIAM and the Mathem atical Programming Sodiety.

Second Edition

About the First Edition

“..avery rewarding book, and | highly recommend it.."
MJ.Todd, in the internationat Journal of Robust and Nonlinear (ontrof

“...abeautifully written book... highly recommended...
L.Gi, in the Austratian Mathematical Society Gazette

“This book represents a tour de force for introducing so many topics of present interest in such a small space and with
such darity and elegance.”
J.-P.Penot, in Canadian Mathematical Society Notes

“There is a fascinating interweaving of theory and applications...”
J.R.Giles, in Mathematical Reviews
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“..an ideal introductory teaching text..."
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Assuring a minimum
The basis of all optimization is:

- Theorem (Weierstrass) A proper lower semicontinuous function on a com-
pact set in a topological space achieves its infimum.
Hence a proper lower semicontinuous function on a weakly compact set in a
Banach space achieves its infimum.

« When this holds we are in business.

« If not we have to work harder to establish the
minimum exists

« e.g., the isoperimetric problem (of Queen Dido).




The Fermat (location) problem
with a twist

current number of fermat pts

4

add fermat pt

fermat gquadrilateral

rermowe paint ar quad

restart

[50.08,107.8,100.12,101.91] angles fram [D,E,F,G]
[75.08,104.81] aim
[74.29,109.27,75.89,100.55] current [QFe1,OFe2 OF e3,GF a4]



L1. Overview and Surprise/fermatpoint3.cdy

Day 1: An Overview of the Week
and
How to Maximize Surprise

"What it comes down to is our software
is too hard and our hardware is too soft."



L1. Overview and Surprise/inverse-UN.pdf
L1. Overview and Surprise/surprise-talk09.pdf

Day 2: Convex Duality and
Applications

"It says it's sick of doing things like inventories
and payrolls, and it wants to make some break-
throughs in astrophysics."
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Convex functions

A set is convex iff its
IS

A function is convex
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A subtle convex function

An essentially strictly convex function f
which is not strictly convex and dom 0f is non-convex:

(z,y) — max{(z — 2)* + y* — 1, —(zy)"/*}
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Subgradients CFC3

Max formula =
subgradient
and

Fenchel duality

Figure 2.2: The Max formula (2.1.3) for max{z?, —z}.
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Figure 2.15: Failure of Fenchel duality for /z and —/—z.

2.3.32 (Symbolic convex analysis).T It is possible to perform a significant
amount of convex analysis in a computer algebra system—both in one and
several dimensions. Some of the underlying ideas are discussed in [87]. The
computation of f5 .= z — |z| — 24/1 — 2 in Chris Hamilton’s Maple package
SCAT (http://flame.cs.dal.ca/~chamilto/files/scat.mpl) is shown in
Figure 2.11. Figure 2.12 and Figure 2.13 illustrate computing sdf5 = 0fs and
gs = f¢ respectively. Note the need to deal carefully with piecewise smooth
functions. Figure 2.13 also confirms the convexity of f5. The plots of f; and
are shown in Figure 2.14.




2.3.31 (NMR entropy).T Let z = (z,%) and let |z| denote the Euclidean norm.

Plot{sdf5,-3..1,view=[-3..1,-3..5] ,axes=none),

Show that z +— cosh(|z]) and z — |z|log (\z| +/1+ |z\2) — /1 + 2% are {} . <=3

mutually conjugate convex function on R? {or C). They are shown in Figure (_1[:%3]1’: r==3
2.10. The latter is the building block of the Hoch-Stern information function { o—1 b (=3 < =) and (z <0)

introduced for entropy-based magnetic resonancing [102]. sdfh = [0, 2], z=0
(—UVIEVIZE () < g and (7 < 1)

{} r—1

{} 1<z

Figure 2.12: Symbolic convex analysis of 3fs.

( =3y +1, y < —1
5 _ -
, ga , ¥= =
Y (5 <y) and (y < 0)
gd 1= ¢ 2, y =0
NMR 2, (0 < y) and (y < 2)
2, y =2
Figure 2.10: The NMR entropy and its conjugate. \ ygjﬁ’;z, 2 <y
: Conj(gh,x):
piecewige (-3<=x and x<=1,abs(x)-2*sqrt(1-x),infinity) (£5,F5);
true

f5 := convert (%,PWF);

f5 .=

Figure 2.11: Symbolic convex analysis of fs.

1,
—2y/1—xz—z, (-3<z) and (z<0)

9. z =0
—2y/1—z+z, (0<z)and (z<1)
1, x =1 ;
0, 1l <=z ]

o0, T < —3
T = —3

Figure 2.13: Symbolic convex analysis of g5 = fi.

Figure 2.14: Plots f5 and dfs.



Application to Reflections

Rc is nonexpansive. First Po(x) exists and is unique. Then
min.cc 3|z — ¢||* = mingen 3/ly — z||* — te(y), and so for p := Po(x)

1
0ed (§H _— —bc> ) el —pp-c <oveec

Hence with ¢ := Pc(y) we have
#—-pp—q)<0,{y—qq—p)<0=(z—yp—q) ={p—q¢,p—q)
< ||Ro(z) — Ro)ll < [z —yll, vo,y € X.

X Pc is “firmly nonexpansive”: for

some nonexpansive T
S I'+1

2

Assuming ||A|| - 1 we check M4 := AP A* is also firmly nonexpansive




DUAlIZINg FotteElTailt=AEUN
Potter and Arun show

v(b) ;== min.cc{||z||: Az =0b}
is solved by

May(x) = A(Pc(A*x)) = b
assuming b € int A(C'), the (CQ).
—as we saw.
e Check this follows from —\ € Juv(b)
and projection characterization.
e Thursday we will look at solving

Masx =0

with M 4 firmly nonexpansive.




Day 3: Variational Principles and

Applications
<

"What I appreciate even more than its
remarkable speed and accuracy are the
words of understanding and compassion
I get from it."




Parallel Implementation of Multiple-Precision
Arithmetic and 1, 649, 267, 440, 000 Decimal

000 Decimal Digit Calculation

esults ol @ 1,649

The calculations of # by Gauss-Legendre algorithm and Borweins’ quartically

DigitS of m Calculation convergent algorithm were performed on 256 nodes of Appro Xtreme-X3 super-
computer.

All routines were written in FORTRAN 7T with MPI and OpenMP. Main

Daisuke Takahashi program and wverification program were run on 1,024 MPI processes, i.e. each

node has 4 MPI processes. Due to the time limit of a job, two programs were

Graduate School of Systems and Information Engineering, University of Tsukuba performed in 10 sfens respectively

1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan Main program run:
daisuke@cs.tsukuba.ac.j )
alstirefics tamkiba.ac.Jp Job start : 2nd January 2009 21:17:26 (JST)
Job end : 5th January 2009 23:56:23 (IST)
Total elapsed time : 64 hours 14 minutes
Abstract. We present efficient parallel algorithms for multiple-precision Main memory : 6732 GB ]
arithmetic operations of more than several million decimal digits on Algorithm : Gauss-Legendre algorithm
distributed-memory parallel computers. A parallel implementation of Verification program run:
floating-peint real FFT-based multiplication is used because a key op- Job start : 6th January 2009 01:36:45 (JST)
eration in fast multiple-precision arithmetic is multiplication. We also Job end : 26th January 2000 08:45:58 (JST)
parallelized an operation of releasing propagated carries and borrows in Total el d ] "3 b 98 minut o
multiple-precision addition, subtraction and multiplication. More than MO ‘a, clapse 1me: Olér];) HURULES
1.6 trillion decimal digits of 7 were computed on 256 nodes of Appro all memory 1 6348 T, . .
Xtreme-X3 (648 nodes, 147.2 GFlops/node, 95.4 TFlops peak perfor- Algorithm : Borweins” quartically convergent algorithm
fﬂaﬂce) with a computing ela:psed time of 137 hours 42 minutes which The decimal numbers of 7 and 1/7 from T, 649, 267, 430, 051-5t to
includes the time for verification. 1,649,267, 440, 000-th digits are:

Previous Record: December 2002 | =: 7712856414 0105560548 9805732574 3212539317 0912654849
171 . 1/7T 7726694296 8436590719 4h49360485 H5E55663940 4302590248,
1.4 trillion decimals
1. .. The main computation took 40 iterations of the improved Gauss-Legendre
(]_ trillion hex d]gltS) algorithm for 7, to yield 3 x 23Y = 1,649,267, 441,664 digits of 7. This computa-
. tion was checked with 20 iterations of improved Borweins’ quartically convergent
by Kanada and his team:. P 1 VoI

algorithm for 1/7, followed by a reciprocal operation.

They U.S@d M&Chin formulae A comparison of these output results gave no discrepancies except for the
last 139 digits due to the normal truncation errors.
confirmed by BBP hex formula.
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1. cano2f.pdf
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Fig. 5.2. A Pacman set)\star and normal

To(x) = No(x)°
shrinks as K¢ (x) grows
e a nonconvex pathology

Theorem 6.3.6 (Tangent cones) Suppose the point x lies in a set S
i E.

(a) The contingent cone Kg(x) consists of those vectors h in E for which
there are sequencest, | 0 in R and h™ — h in E such that x + t,.h"”
lies in S for all r.

(b) The Clarke tangent cone Tg(x) consists of those vectors h in E such
that for any sequences t, | 0 in R and ©” — x in 5, there is a
sequence h™ — h in E such that " 4+ .7 lies in S for all r.

Intuitively, the contingent cone Kg(z) consists of limits of directions to
points near x in &, while the Clarke tangent cone Tg(z) “stabilizes” this
tangency idea by allowing perturbations of the base point z.

We call the set § tangentially regular at the point £ € S if the contin-
gent and Clarke tangent cones coincide (which clearly holds if the distance
function dg is regular at z). The convex case is an example.

Corollary 6.3.7 (Convex tangent cone) If the point x lies in the con-
vex set C C B, then C is tangentially reqular of x with

To(z) = Ko(z) =cl Ry (C — ).

Proof. The regularity follows from Theorem 6.2.2 (Regularity of convex
functions). The identity Ko (z) = cl R, (C — ) follows easily from the
contingent cone characterization in Theorem 6.3.6. O

Our very first optimality result (Proposition 2.1.1) required the condi-
tion —V f(z) € N () if the point 2 is a local minimizer of a differentiable
function f on a convex set C C E. If the function f: E — (co,+o0] is
convex and continuous at € C, then in fact a necessary and sufficient
condition for global minimality is

0 € O(f +dc)(z) = 0f (z) + Nc(z),




Ekeland’s principle in Euclidean

8l _Space
Theorem 3.5.1 (Ekeland’s variational principle). Let E be Fuclidean and let
fi E — (—o0,+o0] be a lsc function bounded from below. Suppose that & > 0

and z € B satisfy

flz) < i%ff—l— €.
Suppose A > 0 is given, then there exists y € E such that
(o) llz =yl <A, (b)) fly)+(e/AN)lz—y| < f(2), and

(c) f(z)+ (/A)llz —yll > fy), for all z € B\ {y}.
Proof. Let g be defined by g(z) := f(z) + (¢/A)||x — z||. Then g is lsc and

coercive and so achieves its minimum at a point y. Hence

f@)+ e/ Mz— 2] = fy) + /A= -yl (3.5.1)

for all z € E. In particular infg f+2 > f(z) > fly)+ (e/A)||z — v||, whence (a)
and (b) follow. The triangle inequality applied to (3.5.1) gives (c). uy




Ekeland’s principle is Pareto optimality

for an ice-cream (second-order) cone

xg is e-optimal, x; is an improvement, and x is a point guaranteed by EVP

Fig. 2.1. Ekeland variational principle. Top cone: f(zo) — 2|z — zo|; Middle cone:
f(x1) — glz — z1|; Lower cone: f(y)— =z — y|.




This can be fixed

oE 08 1 12 14 1B 18 2 22 24

4

Fig. 2.5. Smooth attained perturbations of 1/x



Definition 2.5.1 Let (X,d) be a metric space. We say that a continuous
function p: X x X — [0,00] 8 a gauge-type function on a complete metric
space (X, d) provided that

(i) p(x,z) =0, foralxec X,
(ii) for any & > 0 there exists & > 0 such that for ol y,z € X we have
oy, z) < & implies that d(y, z) < .

Theorem 2.5.2 (Borwein—Preiss Variational Principle) Let (X, d) be a corrn-
plete metric space and let f: X — R U {+oo} be a lsc function bounded from
below. Suppose that p is a gauge-type function and (0;)3°, is a sequence of
positive numbers, and suppose that £ > 0 and z € X satisfy

f(z) < i%ff + =.

Ther there exist y and a sequence {x;} < X such that p -

(i)  plz,y) < &/do, plxs,y) < £/(2°00),
() )+ 322 dspu, 2e) < (=), and
(i) f(z) + > o dip(m, i) > Fy) + Doy dip(y, ), for all z € X\{y}.

Theorem 4.3.6 (Smooth variational principle). Let X be a Banach space that
admats o Lipschitz function with bounded nonempty support that is Fréchet dif-
ferentiable (resp. Gateauz differentiable). Then for every proper lsc bounded
below function f defined on X and every € > O, there exists a function g which
is Lipschitz and Fréchet differentiable (resp. Gateauz differentiable) on X such
that ||g||lce €2, |6l < & and f + ¢ attains its strong minimum on X.




Error bounds and the distance to

the intersection of two convex sets

Theorem [Distance to the intersection| Suppose that C' and D are closed
convex sets in a Banach space and that

0 € int{C — D}.
Then for any M > 0 there is £ > 0 such that
denp(x) < k{de(z) + dp(z)}

for all x with ||z|| < M.
Proof sketch The multifunction Q(x) := z — D for x € C, and empty
elsewhere, is weakly metrically regular.

Holds Fails




Asplund spaces

An important corollary is

Theorem If a Banach space X has a Fréchet (respectively Gateaux) differ-
entiable norm then every continuous convex function on X is densely Fréchet

(respectively Gateaux) differentiable.
Proof. A concave function must be differentiable at any point at which a
smooth minorant touches.




Computing Projections using Multipliers

Remark 2 (Nearest point to an ellipse) Consider the ellipse

2 2
in standard form. The best approximation Pg(u,v) = ( e, bbg_”t

) where ¢

a’u’” by?
(@i—8) T Gt

the general quartic * — uz® + vz — 1 =0 and [z,1/z] is the nearest point.)

solves = 1. This generalizes neatly to a hyperbola (one solves

Remark 3 (Nearest point to the p-sphere) For 0 < p < oo, consider the
p-sphere in two dimensions

Sp = {(z,y): 2" + [y" = 1}.

Let z* := (1 — 2”)Y/P. For uv # 0, the best approximation Pg (u,v) =
(sign(u)z,sign(v)z*) where either z = 0,1 or 0 < z < 1 solves

P (e — [ul) — P71 — o]) = 0.

[Then one computes the two or three distances and select the point yielding the
least value. It is instructive to make a plot, say for p = 1/2.] This extends to
the case where uv = 0. Note that this also yields the nearest point formula for
the p-ball.




The Raleigh Quotient

Let A: H — H be symmetric, compact and linear.
Consider the convex mazrimization

= max{(Az, ): 2|2 < 1}

e The max exists since the A is compact.
e The KKT theorem applies, yielding A > 0 and ||z*|| = 1:

Ax™ = \z*

and provides a maximal eigenvector.




Day 4: Monotonicity & Applications

"He was very big in Vienna."




Goethe about Us

“"Die Mathematiker sind eine Art Franzosen; redet
man mit ihnen, so Ubersetzen sie es in ihre Sprache,
und dann ist es alsobald ganz etwas anderes.
[Mathematicians are a kind of Frenchman: whatever
you say to them they translate into their own

language, and right away it is something entirely
different.]”

(Johann Wolfgang von Goethe, 1748-1932)

Maximen und Reflexionen, no. 1279, p.160 Penguin Classic ed.




Moebius transformationg
and Chemical potentials

Rogness and Arnold Helaman Ferguson
Sculpture



http://www.ima.umn.edu/~arnold/moebius/
http://www.ima.umn.edu/~arnold/moebius/

Topics for today

Cuscos and Fenchel Duality as

SRR on section 5.1.4 from TOVA

Sum theorem for maximal monotones
‘Monotonicity of the Laplacian

Potter and Arun revisited

* iterates of firmly non-expansive mappings

- implementing our model! for the week
(Potter and Arun)



L4. Monotone & Nonexpansive mppings/tova5.1.pdf
L4. Monotone & Nonexpansive mppings/tova5.1.pdf
L2. Convex Duality/potter-arun.pdf

Minimal and non-minimal Cuscos

<\

Figure 6.1: A cusco with Q(xg) C V.

—__

Figure 6.2: Two nonminimal cusces on [—2,2].

Figure 6.3: A minimal cusco and smaller minimal usco on [—2,2].




Fenchel Duality as Decoupling

Lemma 4.3.1 (Decoupling Lemma) Let X and Y be Banach spaces, let the
functions f: X — R and g: Y — R be convexr and the map A: X — Y be
linear and bounded. Suppose that f, g and A satisfy either the condition

0 € core(domg — A dom f) (4.3.1)

and both f and g are (sc, or the condition

A dom f M cont g # 0. (4.3.2)

Then there is a y* € Y* such that for anyx € X andye Y,

p<[f(z) - Az)] + |9(v) + (v v, (4.3.3)
where p = infx{f(x) 4+ g(Azx)}.




The Sum
Theorem

xExercise 5.1.44 Let X be a reflexive Banach space. Prove that a monotone
mapping 7' : X — 2% is maximal if and only if the mapping T'(: + z) + J is
surjective for all z in X. References: [33, 240].

x Exercise 5.1.45 Prove the following theorem.

Theorem 5.1.35 Let X be a reflexive space, let T' be maximal and let | b
closed and convex. Suppose that

0 € core{conv dom(7") — convdom I(f)}.

Then

(a)O0f +T + J is surjective.
(b)0f + T s mazimal monotone.
(c) Of is mazimal monotone.

Hint: Consider the Fitzpatrick function Fr(z,z*) and further introduce
fr(x) = f(z)+1/2||z||%. Let G(z,z*) :== —fs(z) — f3(—=x*). Observe that

Fr(z,z2*) > (z,2%) > G(z,z")

pointwise thanks to the Fenchel-Young inequality. Now apply the decoupling
result in Lemma 4.3.1 and Exercise 5.1.44.

+ Exercise 5.1.46 Deduce the following result in [240] as a corollary of Theo-
rem 5.1.35.

Theorem 5.1.36 Let X be a reflexive Banach space, let T, S : X — 2% be

maximal monotone operators. Suppose that
0 € core[convdom(T") — convdom(5)].

Then 1"+ S is maztmal monotone.

Hint: Apply Theorem 5.1.35 to T'(z,y) = (I1(z),T>(y)) and the indicator
function f(z,y) = t{z=y1(z,¥).




9.3.2 (Elliptic partial differential equations [195, 131, 273]).T Much early impe- -

tus for the study of maximal monotone operators came out of partial differential La p I a C I a n S

equations and takes place within the confines of Sobclev space —and so we con-

tent ourselves with an example of what Is possible. a S
As an application of their study of existence of eigenvectors of second order

nonlinear elliptic equations in Ls(£), the authors of [273] assume that @ C -

R?, (n > 1) is a bounded open set with boundary belonging to ¢ for some o > M a x I m a I

0. They assume that one has functions |a;(z, )| < v (1 < i < n)and |ag(z, u)| <

v|u| +a(z) for some a € Ly(Q) and v > 0; where all a; are measurable in = and
continuous in v (a.e. z). Tghey then consider the normalized eigenvalue problem M O n Oto n e
Operators

Au—}—)\{Zai(J:,u)g—u—i—ag(cc,u)} =0, zecl, (9.3.8)
i—1 i

2
where Au = —V?u = -7 | 371_5 is the classical Laplacior . To make this

accessible to Sobolev theory, a weak solution is requested to (9.3.8) for 0 < A < 1
when w € W22(£2) N Wy>*(Q). In this setting, a solution of

Au+Tu = f(z)

for all 7 > 0 and all f € Lo (and with ||ul2 = 1) is assured. Minty’s surjectivity
condition (Proposition 9.3.1) implies 7' := A is linear and maximal monotone

on Lo(Q) with domain W22(Q) N W,-*(Q). Of course, one must first check

monotonicity of A using integration by parts in the form

/Q@,Au; :/ﬂwu,vu),

for all v € WL2(Q),u € C°(Q) € Wy ° (). One is now able to provide a
Fredholm alternative type result for (9.3.8) (273, Theorem 10]. In like-fashion
one can make sense of the assertion that for 2 < p < oc the p-Laplacian A, is
maximal monotone: Aju is given by

Apu = —div(|VulP ?Vu) ¢ W 14(Q)
for u € W2 () with 1/p+1/g = 1.




Nonexpansive

In Hilbert space: P nonexpansive implies I — P is monotone.
| Pz — Py|| < |z — y| = (I — P)(@) — (I — P)(y),x — y) > 0.

A monotone, continuous M is maximal: for £ > 0

t— (M(z +th) —y,z +th—x) = (M(x +th) —y,h) > 0,Vh.

Thus, M(x,) —w* Y, Tn — =y = M(x).
Suppose P nonexpansive and F' :=Fix(T) # (). For p € F,x € H

dp(P(z)) < |lp— P(x)| = |P(p) = P(x)l| < llz —pl  (¥)

and so
dp(P(z)) < dp(z).

e (*) is a very strong property called Féjer monotonicity.




(Firmly) Nonexpansive Maps
demiclosure. (I — P)(z,) = yn

Yn — 0,2, —w = = P(x)
because I — P is marimal monotone.

Facts. (Krasnoselski) Let P be non-expansive and
set xp11 := P(xy). Then lim, |[x,11 — .| =: 0 > 0.
oc=0<« |z, —z| — 0 for some x € F.

(Takahashi) If P is firmly nonexpansive then o = 0.

and so iteration provide solutions to Potter and
Arun’s formulation

T.:=1+71(b— APcA*)
is firmly nonexpansive for 0 < 7 < 2
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A really new work: based on Potter and Arun’s model

Search or Article-id (Help | Advanced search)

arXiv.org > math > arXiv:0907.0436v2 S

Mathematics > Optimization and Control

Download:
Dualization of Signal Recovery : ﬁ%SFtSC”Pt
Problems e Other formats
Patrick L. Combettes, Dinh Dung, Bang Cong Vu Current browse context:
math.0C

<Sybmitted on 2 Jul 2009 (v1), last revised 3 Jul 2009 (this version, v2)) >

< prev | next >
In convex optimization, duality theory can sometimes lead to simpler new | recent | 0907
solution methods than those resulting from direct primal analysis. In this
paper, this principle is applied to a class of composite variational problems

Change to browse by:

C . math
arising in signal recovery. These problems are not easily amenable to math EA
solution by current methods but they feature Fenchel-Moreau-Rockafellar
dual problems that can be solved reliably by forward-backward splitting and Bookmark what is this?)
allow for a simple construction of primal solutions from dual solutions. The Bl & 3% g8 .ﬁ:

proposed framework is shown to capture and extend several existing
duality-based signal recovery methods and to be applicable to a variety of
new problems beyond their scope.

Subjects: Optimization and Control (math.0C); Functional Analysis
(math.FA)

MSC classes: gocos,
Cite as: arXiv:0907.0436v2 [math.0C]
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Topics: Algebraic Phase
Reconstruction and Discovery

- Alternating Projections and Reflections
- Parallelization

- Related ODES and Linearizations

- Proofs and a final Variation on a Theme

Periodicity with
reflections on half
line and circle
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‘2=N’": Inverse Problems as Feasibility

Problems
To find z € AN B one may use the method of alternating projections

UYn = PB(ajn)a LInt+1 = PA(yn)

This parallelizes efficiently to products of sets (project and average):

M
A::HAka B::{('Tlaan'”azN)‘xl:$2:"':x]\f}
k=1

PA:(PAlaPA29°"9PAN)7 PB(x17$2a”'axN)i:

e The theory is rich for convex sets.




A P R

Projectors and Reflectors: P,(X) is the metric projection or
and R,(x) in the tangent: x is

projectors

projection (black) and reflection iblue) of point (red) on
boundary (blue) of ellipse (yellow)

oF Sapins Loe, Comveld Pty Relitices (s Crowmahd & Comell Sulvartte

"All physicists and a good
many quite respectable
mathematicians are

contemptuous about proof."
reflectors - G. H. Hardy (1877-1947)

Veit Elser, Ph.D.




APRIWhy does'it wWork?

In a wide variety of problems (protein folding, 3SAT, Sudoku) the set
B is non-convex but “divide and concur” works better than theory can
explain. It is:

Ru(z) =2 Py(z) — « and ¢ — 2TEallp(@))

Consider the of a line A of height h and the unit circle B.
With the iteration becomes

Tp41 = COSOn,Yp41 :=Yn+a—Sinby, (O = argzy)
For h=0 we will prove convergence to one of the two points in A N B iff
we do not start on the vertical axis (where we have chaos). For h>1
(infeasible) it is easy to see the iterates go to infinity (vertically). For
h=1 we converge to an infeasible point. For h in (0,1)
Two representative pictures follow



http://users.cs.dal.ca/~jborwein/lm-june.html

Interactive APR in Cinderella
Recall the simplest case of a line A of height h and unit circle B.

With

Tpt1 = COSOn,Ypi1 :=yn+a—sinby, (On:=argzy)

The pictures are lovely but full proofs escape us.
A Cinderella picture of two steps from (4.2,-0.51)

¥=04.2]-0.57}
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Divide —and-Concur
before and after accessing numerical
output from Maple
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Divide-and-concur and variations

o=0.43

~ Il < T

red discrete
fqreemn linearized
=]\ [ continuous
magenta linearin y
CYan linearin x
MN=17

¥=01.44|0.13)

Show Canstruction




We considered the analogous differential equation since asymptotic tech-
niques for such differential equations are better developed.

We decided

P'(t) = o —a(t) [r(t) = V() +y()?]

is a reasonable counterpart to the Cartesian formulation—we replaced the differ-
ence T,+1 — T, by 2'(t), etc.— as shown in the picture below:

This convinced us
that a local
convergence

u=0.97

result was
possible

¥=(1.44]0.13)

red discrete
green linearised
wyellow continuous
magenta lineariny
cyan linearin x Show Construction
¥ [ .N—QD
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Perron’s Theorem

Theorem 0.1 (Perron, see for example [2]). If f: Nx R™ — R™ satisfies,
TS

==0 |z

uniformly in n and M is a constant n X n matriz all of whose eigenvalues lie
inside the unit disk, then the zero solution [provided it is an isolated solution/ of
the difference equation,

Tntl — M-In + f(na I?’l)a

18 exponentially asymptotically stable; that is, there exists 6 > 0, K > 0 and
¢ € (0,1) such that if ||zo|| < & then ||z,] < K|zo|¢™.

Sims and I apply this to our iteration at the intersection
point: The Hessian is fine for |h| <1

h? —hV1 — h?
h

V1 — h? h?




Theorem Let H be a hyperplane of height h.

Let B the unit sphere in /N-space.

Except for intial values in a lower dimensional subspace we have:

(a) For h = 0 reflect-reflect and average converges to a point in H N B.
(b) For —1 < h < 1 reflect-reflect and average converges locally.

(c) For |h| = 1 reflect-reflect and average converges to an infeasible point.
(d) For |h| > 1 reflect-reflect and average diverges to infinity.

For O0< |h|<1, why is convergence global?

Does this analysis lift to a general convex set ?

*To a p-ball (O<p<x), ellipse, ...?
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Other General References

2009

Convex Functions
Constructions, Characterizations and Counterexamples

Encyclopedia of Mathematics and Its Applications 109

Coming

CONVEX FUNCTIONS Soon!
constructions,Characterizations
and Counterexamples

Jonathan . Borwein, Dhiversity of fMeweastle, Mew South Wales
Jon D Vanderwerft, Lo Serra University, Culifrnia

Like differentiability, convexity is a natural and powerful property of functions that playe a significant role
in many areas of mathermatics, both pure and applied. It ties together notions from topology, algebrm, ge-
ometry and analysis, and isan important tool in optimization, mathematical programming and game theory.
This book, whichisthe product of a collaboration of ower 15 years, isunique in that it focuses on conves

chatacteristics and applications, treating cotivesz functions in both Euclidean and Banach spaces. The book
can either be read secquentially for a graduate course, or dipped into by researchers and practitioners. Fach

About the Book:

functions themselves, rather than on conves analysis. Theawthors explore the vanous classes and their

chapter contains a vanety of specific exarnples, and over 600 exercises are included, ranging in difficulty
from eardy graduate to research level

BEE CAMBRIDGE
%E}? UNIVERSITY PRESS

www.cambridge.org

2005

(MS Books in Mathematics

J.M. Borwein

Q.). Zhu

Techniques of

Variational
Analysis
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