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BRAGG and BLAKEI

“I feel so strongly about
the wrongness of read-
ing a lecture that my lan-
guage may seem immod-
erate. .-+ The spoken
word and the written word
are quite different arts.
I feel that to collect
an audience and then read
one’s material is like invit-
ing a friend to go for a
walk and asking him not
to mind if you go along-
side him in your car.”

Songs of Innocence and
Sir Lawrence Bragg (1890-1971) Experience (1825)

Nobel Crystallographer (Adelaide) (We are both.)



SANTAYANAI

“I my teachers had begun by telling me that
mathematics was pure play with presupposi-
tions, and wholly in the air, I might have be-
come a good mathematician. But they were
overworked drudges, and I was largely inatten-
tive, and inclined lazily to attribute to incapac-
ity in myself or to a literary temperament that
dullness which perhaps was due simply to lack
of initiation.”
(George Santayana)
Persons and Places, 1945, 238-9.

TWO FINE REFERENCES:

1. J.M. Borwein and Qiji Zhu, Techniques
of Variational Analysis, CMS /Springer-Verlag,
New York, 2005.

2. J.M. Borwein and A.S Lewis, Convex Analy-
sis and Nonlinear Optimization, CMS/Springer-
Verlag, 2nd expanded edition, New York, 2005.

3



OUTLINEI

I shall discuss in “tutorial mode” the formaliza-
tion of inverse problems such as signal recovery
and option pricing as (convex and non-convex)
optimization problems over the infinite dimen-
sional space of signals. I shall touch on* the
following:

1. The impact of the choice of “entropy”
(e.g., Boltzmann-Shannon, Burg entropy,
Fisher information) on the well-posedness of
the problem and the form of the solution.

2. Convex programming duality:
what it is and what it buys you.

3. Algorithmic consequences.

4. Non-convex extensions: life is hard. But
sometimes more works than should.

# Related papers at http://docserver.cs.dal.ca/

*More is an unrealistic task!



THE GENERAL PROBLEM I

e Many applied problems reduce to “best’” solv-
ing (under-determined) systems of linear (or

non-linear) equations

Ax = b

- where b € IR™,

and the unknown z lies in some appropriate

function space.

Discretization reduces this to a finite-dimensional
setting where A is now a m X n matrix.

¢ In many cases, I believe it is better to ad-
dress the problem in its function space home,
discretizing only as necessary for computation.

e [ hus, the problem often is how do we esti-
mate x from a finite number of its ‘'moments’?
This is typically an under-determined linear in-
version problem where the unknown is most
naturally a function, not a vector in IR™.

5



EXAMPLE 1. AUTOCORRELATIONI

e Consider, extrapolating an autocorrelation
function R(t) given sample measurements.

¢ The Fourier transform S(z) of the autocor-
relation is the power spectrum of the data.

Fourier moments of the power spec-
trum are the same as samples of the
autocorrelation function, so by com-
puting several values of R(¢) directly
from the data, we are in essence com-
puting moments of S(z).

e \We compute a finite number of moments of
S, and estimate S from them, and may com-
pute more moments from the estimate S by
direct numerical integration.

e [ hereby extrapolating R, without directly
computing R from potentially noisy data.
6



THE ENTROPY APPROACH I

e Following (B-Zhu) I sketch a maximum en-
tropy approach to under-determined systems
where the unknown, x, is a function, typically
living in a Hilbert space, or more general space
of functions.

T his technique picks a “best” represen-
tative from the infinite set of feasible
functions (functions that possess the
same n moments as the sampled func-
tion) by minimizing an integral func-
tional, f, of the unknown.

http://projects.cs.dal.ca/ddrive



¢ T he approach finds applications in countless
fields including:

Acoustics, constrained spline fitting, im-
age reconstruction, inverse scattering,
optics, option pricing, multidimensional
NMR, tomography, statistical moment
fitting, and time series analysis, etc.

(Many thousands of papers)

e However, the derivations and mathematics
are fraught with subtle errors.

I will discuss some of the difficulties in-
herent in infinite dimensional calculus,
and provide a simple theoretical algo-
rithm for correctly deriving maximum
entropy-type solutions.



WHAT iSI

Boltzmann (1844-1906) Shannon (1916-2001)
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WHAT is ENTROPY?I

Despite the narrative force that the concept of
entropy appears to evoke in everyday writing,
in scientific writing entropy remains a thermo-
dynamic quantity and a mathematical formula
that numerically quantifies disorder. When the
American scientist Claude Shannon found that
the mathematical formula of Boltzmann de-
fined a useful quantity in information theory,
he hesitated to name this newly discovered
quantity entropy because of its philosophical
baggage.

The mathematician John von Neumann en-
couraged Shannon to go ahead with the name
entropy, however, since “no one knows what
entropy is, so in a debate you will always have
the advantage.”

e 19C: Boltzmann—thermodynamic disorder
e 20C: Shannon—information uncertainty
e 21C: JMB—potentials with superlinear growth
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CHARACTERIZATIONS of ENTROPYI

e Information theoretic characterizations abound.
A nice one is:

Theorem H(p') = — Y1 p 109 py, is the unique
continuous function (up to a positive scalar
multiple) on finite probabilities such that

I. Uncertainty grows:

P

H

S |
S|

increases with n.

II. Subordinate choices are respected: for dis-
tributions p7 and p> and 0 < p < 1,

H (pp1, (1 —p)p3) = p H(p1)+(1—p) H(p3).
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ENTROPIES FOR USI

e Let X be our function space, typically Hilbert
space L2(Q), or the function space L1(Q) (or
a Sobelov space).

o Forp>1,

ILP(Q2) = {x measurable : /Q |z () [Pdt < oo}.

It is well known that L2(2) is a Hilbert
space with inner product

(z,y) = /Qw(t)y(t)dt,

(with variations in Sobelov space).

e A bounded linear map A : X — IR™ is deter-
mined by

(Az); = / 2(t)a; () di

fori=1,...,n and a; € X* the ‘dual’ of X
(L? in the Hilbert case, L™ in the L1 case).

12



e [0 pick a solution from the infinitude of pos-
sibilities, we may freely define “best’ .

&® The most common approach is to find the
minimum norm solution™, by solving the Gram
system

AAT N =] .

@ The solution is then z = AT ). This recap-
tures all of Fourier analysis!

e [ his actually solved the following variational
problem:

inf{/Q:c(t)th T Ar=0b x € X}.

*Even in the (realistic) infeasible case.
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e \\We generalize the norm with a strictly convex
functional f as in

min{f(x) : Ax=10b, x € X}, (P)

where f is what we call, an entropy functional,
f: X — (—oo,400]. Here we suppose f is a
strictly convex integral functional™ of the form

fla) = /Q $((t))dt.

The functional f can be used to include other
constraints’.

For example, the constrained L2 norm func-
tional (‘positive energy’),

f(x):{fc}x(t)th if z >0

~+ o0 else

IS used in constrained spline fitting. Protter and Arun

use this model

e Entropy constructions abound: Bregman and
Csizar distances model statistical divergences.

*Essentially ¢”(t) > 0.
fIncluding nonnegativity, by appropriate use of 4oc.
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e T wo popular choices for f are the Boltzmann-
Shannon entropy (in image processing)

f(2) = [aloga,
and the Burg entropy (in time series analysis),
fz) = —/Iog x

o Both implicitly impose a nonnegativity con-
straint (positivity in Burg’'s non-superlinear case).

e [ here has been much information-theoretic
debate about which entropy is best.
This is more theology than science!

e More recently, the use of Fisher Information

/ 2

/ z'(t)
r,x ) = dt

fle.a) = |5 o 1)

has become more usual as it penalizes large

derivatives; and can be argued for physically
(‘hot’ over past five years).
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WHAT ‘WORKS’ BUT CAN GO WRONG?I

e Consider solving Az = b, where, b € IR"™ and
x € L2[0,1]. Assume further that A is a contin-
uous linear map, hence represented as above.

e As L? is infinite dimensional, so is N(A): if
Ax = b is solvable, it is under-determined.

We pick our solution to minimize

f(@) = [ o(@(®) n(dt)

O d(x(t),2'(t)) in Fisher-like cases [BN1, BN2,
B-Vanderwerff (Convex Functions, CUP 2009)].

e \We introduce the Lagrangian
L(x,\) =

[ 6@+ 3 5 (b~ (@),
1=1

and the associated dual problem

max ;nei)rg{L(x, A} (D)

16



e So we formally have a “dual pair” (BL1)

min{f(x) : Ax=10b, x € X}, (P)
and
max ;nei)rg{L(x, A} (D)

e Moreover, for the solutions z to (P), )\ to
(D), the derivative (w.r.t. ) of L(z,)\) should
be zero, since L(Z,)\) < L(xz,\),Vx.

T his implies
z(t) = (¢)71 (Z Xiai(t))

i=1
CORVPE

e \We can now reconstruct the primal solu-
tion (qualitatively and quantitatively) from
a presumptively easier dual computation.

17



A DANTZIG ANECDOTE I

“George wrote in "Reminiscences about the
origins of linear programming,” 1 and 2, Oper.
Res. Letters, April 1982 (p. 47):

“The term Dual is not new. But sur-
prisingly the term Primal, introduced
around 1954, is. It came about this
way. W. Orchard-Hays, who is respon-
sible for the first commercial grade L.P.
software, said to me at RAND one day
around 1954: ‘We need a word that
stands for the original problem of which
this is the dual.’

I, in turn, asked my father, Tobias
Dantzig, mathematician and author, well
known for his books popularizing the
history of mathematics. He knew his
Greek and Latin. Whenever I tried to
bring up the subject of linear program-
ming, Toby (as he was affectionately
known) became bored and yawned.

18



But on this occasion he did give the
matter some thought and several days
later suggested Primal as the natural
antonym since both primal and dual
derive from the Latin. It was Toby’s
one and only contribution to linear pro-
gramming: his sole contribution unless,
of course, you want to count the train-
ing he gave me in classical mathematics
or his part in my conception.”

A lovely story. I heard George recount this a
few times and, when he came to the *“concep-
tion” part, he always had a twinkle in his eyes.
(Saul Gass, Oct 2006)

e In a Sept 2006 SIAM book review, I as-
serted George assisted his father—for rea-
sons I believe but cannot reconstruct.

I also called Lord Chesterfield, Chesterton
(gulp!).

19



PITFALLS ABOUND I

There are 2 major problems to this approach.*

1. The assumption that a solution x exists.
For example, consider the problem

inf {/le(t)dt : /Olta:(t)dtz 1,z > o}.

reL1[0,1]

¢ The optimal value is not attained. Similarly,
existence can fail for the Burg entropy with
trig moments. Additional conditions on ¢ are
needed to insure solutions exist. (BL2)

2. The assumption that the Lagrangian is dif-
ferentiable. In the above, f is oo for every x
negative on a set of positive measure.

¢ T hisimplies the Lagrangian is +oo on a dense
subset of L1, the set of functions not nonneg-

ative a.e.. The Lagrangian is nowhere contin-
uous, much less differentiable.

*A third, the existence of )\, is less difficult to surmount.

The solution is actually the absolutely continuous part
of a measure in C(Q2)*.

20



FIXING THE PROBLEM I

e One approach to circumvent the differen-
tiability problem, is to pose the problem in
L*°(2), or in C(£2), the space of essentially
bounded, or continuous, functions. However,
in these spaces, even with additional side qual-
ifications, we are not necessarily assured solu-
tions to (P) exist.

o In (BL2), an example is given of a one pa-
rameter problem on the torus in IR3, using the
first four Fourier coefficients, and Burg’'s en-
tropy, where solutions fail to exist for certain
feasible data values.

e Alternatively, Minerbo poses the problem of
tomographic reconstruction in C(€2) with the
Boltzmann-Shannon entropy. Unfortunately,
the functions a; are characteristic functions of
strips across €2, and the solution is piecewise
constant, not continuous.

21



CONVEX ANALYSIS (AN ADVERT)I

We prepare to state a theorem that guarantees
that the form of solution found in the above
faulty derivation |z = (¢/)~1(A4TX)| is, in fact,
correct. A full derivation is given in (BL2) and
(BZ05).

e We introduce the Fenchel (Legendre) conju-
gate (see BL1) of a function ¢ : IR — (—o0, +o0]:

¢*(u) = sup{uv — ¢(v)}.
veEIR

e Often this can be (pre-)computed explicitly,
using Newtonian calculus. Thus,

o(v) =wvlogv —v,—logwv and v2/2
yield
¢*(u) = exp(u), —1 — log(—u) and u?/2

respectively. The red is the log barrier of in-
terior point famel!

e [ he Fisher case is similarly explicit.
22



EXAMPLE 2. CONJUGATES & NMRI

The Hoch and Stern information measure, or
neg-entropy, is defined in complex n—space by

n
H(z) = ) h(z/b),
J=1
where h is convex and given (for scaling b) by:

h(z) 2 |2|log (|z| +y14+ |z|2> 1422

for quantum theoretic (NMR) reasons.

e Recall the Fenchel-Legendre conjugate
f*(y) := sup{y,z) — f(z).

e Our symbolic convex analysis package (stored
at www.cecm.sfu.ca/projects/CCA/, also in Chris
Hamilton's package at Dal) produced:

h*(z) = cosh(]z|)
o Compare the Shannon entropy:
(zlogz — 2)" = exp(z).

23



COERCIVITY AND DUALITY I

e We say ¢ possess regular growth if either
d = oo, or d < oo and k > 0, where d =

iMu—oo () /u and k = limy; 4(d — v) (%) (v).*

e The domain of a convex function is dom(¢) =

{u: ¢(u) < +oo}; ¢ is proper if dom(¢p) # 0.
Let + = infdom(¢) and o = supdom(¢).

e Our constraint qualification,m (CQ), reads

Jz € L1(Q), such that Az = b,
f(Zx) e R, 1 <ZT <o a.e.

o In many cases, (CQ) reduces to feasibility,
(e.g., spectral estimation) and trivially holds.

e In this language, the dual problem for (P) is
sup {<b, A) — /Q qb*(ATA(t))dt}. (D)

*-log does nor possess regular growth; v — vlogv does.

"The standard Slater’s condition fails: this is what guar-
antees dual solutions exist.

24



Theorem 1 (BL2) Let Q2 be a finite inter-
val, u Lebesgue measure, each a;, continuously
differentiable (or just locally Lipschitz) and ¢
proper, strictly convex with regular growth.

Suppose (CQ) holds and also
(1) )
37 € R" such that ) ta;(t) <d Vt€ [a,b],
i=1
then the unique solution to (P) is given by

(2) z(t) = (#9)'( Y Niai(t))
1=1

where X\ is any solution to dual problem (D)
(and such X must exist).

e T his theorem generalizes to cover 2 C IR",
and more elaborately in Fisher-like cases. These
results can be found in (BL2, BN1).

¢ ‘Bogus’ differentiation of a discontinuous func-

tion becomes the delicate

(Jo @) (@) = Jq o™ (z") |

25




e [ hus, the form of the maximum entropy so-
lution can be legitimated simply by validating
the easily checked conditions of Theorem 1.

& Also, any solution to Ax = b of the form in
(2) is automatically a solution to (P).

So, solving (P) is equivalent to finding A\ € IR™
with
() (@) (ATN),a5) =b;, i=1,...,n,

a finite dimensional set of non-linear equations.

One can then apply a standard ‘indus-
trial strength’ nonlinear equation solver,
like Newton’'s method, to this system,
to find the optimal .

e Often, |(¢))~1 = (¢*)'| and so the 'dubious’
solution agrees with the 'honest’ solution.

Importantly, we may tailor (¢')~1 to our needs.

26



e Note that discretization is only needed to
compute terms in (3). Indeed, these integrals
can sometimes be computed exactly (e.g., in
some tomography and option estimation prob-
lems). This is the gain of not discretizing early.

By waiting to see the form of dual prob-
lem, one can customize one’s integra-
tion scheme to the problem at hand.

e For European option pricing the constraints
are based on ‘hockey-sticks’ of the form

a;(z) ;= max{0,x — t;}

so the dual can be computed exactly and leads
to a relatively small and explicit nonlinear equa-
tion to solve (BCM).

¢ Even when this is not the case one can of-
ten use the shape of the dual solution to fash-
ion veryefficient heuristic reconstructions that
avoid any iterative steps (see BN2).

27



Momént+4 I

e Momént+ (www.cecm.sfu.ca/interfaces/) has
code for entropic reconstructions as above. Mo-
ments (including wavelets), entropies and di-
mension are easily varied. It also allows for
adding noise and relaxation of the constraints.

Several methods of solving the dual are
possible, including Newton and quasi-
Newton methods (BFGS, DFP), con-
Jjugate gradients, and the suddenly sexy
Barzilai-Borwein line-search free method.

e For iterative methods below, I recommend:

H.H. Bauschke and J.M. Borwein, “On pro-
jection algorithms for solving convex feasibil-
ity problems,” SIAM Review, 38 (1996), 367—
426 (cited over 100 time by MathSciNet, 215
times in ISI, 350 in Google!), and a forthcom-

ing CMS-Springer book written by Bauschke
and Combettes.
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COMPARISON OF ENTROPIES I

e The positive L2, Boltzmann-Shannon and
Burg entropy reconstruction of the charac-
teristic function of [0,1/2] using 10 algebraic

moments (b; = f01/2 t*=1dt) on Q = [0, 1].

T
chi(0,.5,;t) —
Boltzmann- Shannon -----

o Burg -----
35 i Positive L2~ ]

25

15 |

05

e Solution: z(t) = (¢*)'(X1_q Nt 1).
Burg over-oscillates since (¢*)'(t) = 1/t.

29
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THE NON-CONVEX CASE I

e In general non-convex optimization is a much
less satisfactory field. We can usually hope
only to find critical points (f'(z) = 0) or lo-
cal minima. Thus, problem-specific heuristics
dominate.

e Crystallography: We of course wish to es-
timate z in L2(IR™)* Then the modulus ¢ = |Z|
is known (Z is the Fourier transform of z).T

Now {y: |y| = ¢}, is not convex. So the issue
is to find = given ¢ and other convex infor-
mation. An appropriate optimization problem
extending the previous one is

min{f(x) : Az =0b,||Mx|| =¢, x € X}, (NP)
where M models the modular constraint, and
f is asin Theorem 1.

*Here n = 2 for images, 3 for holographic imaging, etc.

TObservation of the modulus of the diffracted image in
crystallography. Similarly, for optical aberration cor-
rection.

30



EXAMPLE 3: CRYSTALLOGRAPHYI

e My Parisian collaborator Combettes is ex-
pert on optimization perspectives of cognates
to (NP) and related feasibility problems.

¢ Most methods rely on a two-stage (easy con-
vex, hard non-convex) decoupling schema—
the following from Decarreau et al. (D). They
suggest solving

min {f(z) : Az =y, ||Byy| = by, =€ X},
(NP*)
where ||Bry|| = b, k € K encodes the hard
modular constraints.

e [ hey solve formal first-order Kuhn-Tucker
conditions for a relaxed form of (NP*). The
easy constraints are treated by Thm 1.

I am obscure, largely because the results were
largely negative:
31



e [ hey applied these ideas to a prostaglandin
molecule (25 atoms), with known structure,
using quasi-Newton (which could fail to find
a local min), truncated Newton (better) and
trust-region (best) numerical schemes.

¢ T hey observe that the “reconstructions were
often mediocre’” and highly dependent on the
amount of prior information — a small propor-
tion of unknown phases to be satisfactory.

“Conclusion: It is fair to say that the
entropy approach has limited efficiency,
in the sense that it requires a good
deal of information, especially concern-
ing the phases. Other methods are
wanted when this information is not
available.”

e Thus, I offer this part of my presentation
largely to illustrate the difficulties.
32



EXAMPLE 4. HUBBLE TELESCOPEI

The basic setup—more details follow.
e Electromagnetic field: v :R2 — C e L2

e DATA: Field intensities for m =1,2,..., M:

m R? =Ry € L' NL?N L™

e MODEL: Functions F,, : L? — L2, are mod-
ified Fourier Transforms, for which we can mea-
sure the modulus (intensity)

| Fm(u)| =¢Ym Vm=1,2,..., M.

d INVERSE PROBLEM: For the given trans-
forms F,, and measured field intensities y¥m
(form=1,...,M), find a robust estimate of
the underlying .
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... AND SOME HOPE FROM HUBBLEI

e The (human-ground) lens with a micro-asymmetry
was mounted upside-down. The perfect back-
up (computer-ground) lens stayed on earth!

o NASA challenged ten teams to devise algo-
rithmic fixes.

e Optical aberration correction, using the
Misell algorithm, a method of alternating pro-
Jjections, works much better than it should—

given that it is being applied to find a member
of a version of

V= () {z:Az =0, || Mz|| =c, =€ X},
k=1M
(NCFP)
which is a non-convex feasibility problem as

on the next page.

Is there hidden convexity?
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HUBBLE IS ALIVE AND KICKINGI

Hubble reveals most distant planets yet

Last Updated: Wednesday, October 4, 2006 | 7:21 PM ET
CBC News

Astronomers have discovered the farthest planets from Earth yet found, including one with a year as short as 10 hours — the
fastest known.

Using the Hubble space telescope to peer deeply into the centre of the galaxy, the scientists found as many as 16 planetary
candidates, they said at a news conference in Washington, D.C., on Wednesday.

The findings were published in the journal Nature.

Looking into a part of the Milky Way known as the galactic bulge, 26,000 light years from Earth, Kailash Sahu and his team
of astronomers confirmed they had found two planets, with at least seven more candidates that they said should be planets.

The bodies are about 10 times farther away from Earth than any planet previously detected.

A light year is the distance light travels in one year, or about 9.46 trillion kilometres.

e From Nature Oct 2006. Hubble has since
been reborn twice and exoplanets have become
quotidian. There were 228 exoplanets listed at
www.exoplanets.org in Sept 08 and March 09.

330 now?
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5 Facts About Kepler (launch March 6)

-- Kepler is the world's first mission with the ability to find true Earth analogs -- planets that
orbit stars like our sun in the "habitable zone." The habitable zone is the region around a star
where the temperature is just right for water -- an essential ingredient for life as we know it -- to
pool on a planet's surface.

-- By the end of Kepler's three-and-one-half-year mission, it will give us a good
idea of how common or rare other Earths are in our Milky Way galaxy. This will be
an important step in answering the age-old question: Are we alone?

-- Kepler detects planets by looking for periodic dips in the brightness of stars.
Some planets pass in front of their stars as seen from our point of view on Earth;
when they do, they cause their stars to dim slightly, an event Kepler can see.

-- Kepler has the largest camera ever launched into space, a 95-megapixel array
of charge-coupled devices, or CCDs, as in everyday digital cameras.

-- Kepler's telescope is so powerful that, from its view up in space, it
could see one person in a small town turning off a porch light at night.

NASA 05.03.2009



TWO MAIN APPROACHES I

I. Non-convex (in)feasibility problem: Given
Ym # 0, define Qg C L? convex, and

Qm = {u € L? | |Fn(uw)| = v, a.e.} (nonconvex)

we wish to find uw € NM_,Qm = 0.

(O via an alternating projection method: e.g.,
for two sets A and B, repeatedly compute

r — Pp(z) =y — Pa(y) =: =

II. Error reduction of a nonsmooth objec-
tive (‘entropy’) : for fixed G, > 0

(O we attempt to solve

S
minimize E(u) = »_ deiStz(qum)
m=0

over u € L2,

36



ALTERNATING PROJECITIONSFOR CIRCLE AND RAY

0=0.82

x=(1.61]-0.46)



jb616
Typewritten Text

jb616
Typewritten Text
ALTERNATING PROJECTIONS FOR CIRCLE AND RAY

jb616
Typewritten Text


I: NON-CONVEX PROJECTION CAN FAIL

o If ANB # () and A, B are closed convex then
weak convergence (only 2002) is assured—von
Neumann (1933) for subspaces, Bregman (1965).

(» Consider the alternating projection method
to find the unique red point on the line-segment
A (convex) and the blue circle B (non-convex).
e [ he method is ‘myopic’.

B

e Starting on line-segment outside the
red circle, we converge to the unique
feasible solution.

e Starting inside the red circle leads to
a period-two locally ‘least-distance’ so-
lution.

37



I PROJECTION METHOD OF CHOICEI

e For optical abberation correction this is the
alternating projection method:

xr — Py (Pp(x))

—Pa(x)
RA(X)

e For crystallography it is better to use (HIO)
over-relax and average: reflect to Ry(x) =
2 Py(x) —x and use

r+ Ryq(Rp(x))
2

e Both parallelize neatly: A :=diag, B :=1[]; C;.
e Both are nonexpansive in the convex case.
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APPROACH I: NAMES CHANGE ... I

e T he optics community calls projection al-
gorithms “Iterative Transform Algorithms' .

Hubble used Misell’s Algorithm, which
IS just averaged projections. The best
projection algorithm Luke* found was
cyclic projections (with no relaxation).

e For the crystallography problem the best
known method is called the Hybrid Input-Output
algorithm in the optical setting. Bauschke-
Combettes-Luke (JMAA, 2004) showed HIO,
Lions-Mercier (1979), Douglas-Rachford, Feinup,
and divide-and-concur coincide.

e When u(t) > 0 is imposed, Feinup’s no longer
coincides, and LM (‘HPR’) is still better.

*My former PDF, he was a Hubble Graduate student.
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ELSER, QUEENS and SUDOKUI

2006 Veit Elser at Cornell has had huge suc-
cess (and press) using divide-and-concur on
protein folding, sphere-packing, 3SAT, Sudoku
(R2916)  and more. Bauschke and Schaad like-
wise study Eight queens problem (R2°%) and
image-retrieval (Science News, 08).

Given a partially completed grid, fill it so that each
column, each row, and each of the nine 3 x 3 regions
contains the digits from 1 to 9 only once.

8 3 1
9 1 3
6 7 |58
7 1 [309

e This success (a.e.?) is not seen with alter-

nating projections and cries out for explana-
tion.
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A SAMPLE RECONSTRUCTION (via II)I

e [ he object and its spectrum

Top row: data
Middle: reconstruction

Bottom: truth and error
41



EXAMPLE 5. INVERSE SCATTERINGI

e Central problem: determine the location
and shape of buried objects from measure-
ments of the scattered field after illuminating
a region with a known incident field.

e Recent techniques: determine if a point z is
inside or outside of the scatterer by determin-
ing solvability of the linear integral equation
?
fgz = Pz

where F — X is a compact linear operator con-
structed from the observed data, and ¢, € X
is a known function parameterized by z.

e F has dense range, but if z is on the exterior
of the scatterer, then ¢, ¢Range(F).
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e Since F is compact, any numerical implemen-
tation to solve the above integral equation will
need some reqularization scheme.

e If Tikhonov regularization is used—in a re-
stricted physical setting—the solution to the
regularized integral equation, g, has the be-
haviour

l9z,a]l =00 as a—0

if and only if z is a point outside the scatterer.

e An important open problem is to deter-
mine the behavior of regularized solutions g; .
under different regularization strategies.

In other words, when can these techniques fail?

(On going joint work with Russell Luke for a
2009 IMA Summer School: also in Experimen-
tal Math in Action, AKP, 2007).
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FINIS: REFLECTIONS IN THE CIRCLEI

e Dynamics when B is the unit circle and A
IS the blue horizontal line at height o > 0 are
already fascinating. Steps are for

I+ RpoRp

5 ;
with 6,, the argument this becomes set
Tp41 i= COS O, Yn+1 = Yn + o — sin 6,,.

T =

e o = 0: converge iff start off y-axis (‘chaos’):

=
ea>1=y— oo, Whilea=095 (0<a<1l)
(unproven) and o« = 1 respectively produce:
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DYNAMIC GEOMETRY I

Show Construction

e I finish with a Cinderella demo developed
with Chris Maitland.

e Next week a proper introduction to the
package will be given by Ulli Kortenkamp
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The Surprise Examination or Unexpected Hang-
ing Paradox has long fascinated mathematicians
and philosophers, as the number of publications
devoted to it attests.

For an exhaustive bibliography on the
subject, the reader is referred to [1].

Herein, the optimization problems arising from
an information theoretic avoidance of the Para-
dox are examined and solved.

They provide a very satisfactory application of
both the Kuhn-Tucker theory and of various
classical inequalities and estimation techniques.

> Although the necessary convex analytic con-
cepts are recalled in the course of the presenta-
tion, some elementary knowledge of optimiza-
tion is assumed.



REFERENCE. D. Borwein, J. M. Bor-
wein and P. Marchal, “Surprise maxi-
mization,” The American Mathematical

Monthly, 107 June-July 2000, 527—-537.
[CECM Preprint 98:116].

www.cecm.sfu.ca/preprints/1998pp.html

Open Question. How does one quantify aver-
age multiple surprise?




INFORMATION MEASURE OF SURPRISEI

Tim Chow's [3] version of the Paradox:

A teacher announces in class that an
examination will be held on some day
during the following week, and more-
over that the examination will be a sur-
prise. The students argue that a sur-
prise exam cannot occur. For suppose
the exam were on the last day of the
week. Then on the previous night, the
students would be able to predict that
the exam would occur on the following
day, and the exam would not be a sur-
prise. So it is impossible for a surprise
exam to occur on the last day.



But then a surprise exam cannot oc-
cur on the penultimate day, either, for
in that case the students, knowing that
the last day is an impossible day for a
surprise exam, would be able to predict
on the night before the exam that the
exam would occur on the following day.
Similarly, the students argue that a sur-
prise exam cannot occur on any other
day of the week either. Confident in
this conclusion, they are of course to-
tally surprised when the exam occurs (on
Wednesday, say). The announcement is
vindicated after all. Where did the stu-
dents’ reasoning go wrong?



In this work, we study two optimization prob-
lems arising from an entropic approach to max-
imizing surprise. Such an approach was pro-
posed in outline by Karl Narveson [3, p. 49].

We do not discuss here the various approaches
to the logical resolution of the paradox itself;
one may consult [1,3].

> Rather we ask the question:

What should be the probability distrib-
ution of an event occurring once every
week so that it maximizes the surprise it
creates?

> This requires us to find a measure of surprise.



> Let us start by posing an information theo-
retic counterpart of the paradox:

during a period of m days an event (such
as a test given by a teacher or a surprise
tax audit) occurs with probability p; on
day :=1,...,m.

We wish to find a probability distribution that
maximizes the average surprise caused by the
event when it occurs.

> We consider a measure of surprise analogous
to the one used in the celebrated definition of
the Shannon entropy [2,4,6].



> The surprise on day 7 is the negative of the
logarithm of the probability the event occurs on
day ¢ given that it has not occurred so far.

> As in the classical definition, —logp is used to
measure the surprise associated with an event
of probability p, which is also a measure of how
much we learn if it occurs.

> The logarithm makes the measure additive:
the information associated with independent events
should sum up when they both occur.

> T he use of conditional probabilities introduces
some causality: it accounts for what is already
known of the previous days.



The event ‘test occurs on day i’ is simply de-
noted by ¢, and its probability is denoted by P(7)
or p;,. The event ‘test does not occur on day i’
will be denoted by ~z.

> Thus, we need to maximize:

_ip(@logP(ﬂ~1,...,~(i—1)). (1)

=1

Using Bayes’ formula for conditional probabili-
ties, we obtain an explicit formula:

P(i|w1,...,~(i—1))

P(Nl,...,w(z’ - 1)|i) P(>i)
j= ~1,...,~(i—1))
( P@)
1— (P +--+ Pi—1))
P@)
P(i) +---+ P(m)’




> We are led to the next optimization problem:

(Pm) inf{Sm(p) | peR™, 1 =(u,p)} (2)

Here, u is the m—vector of 1’s and:

> Sm is the (m-dimensional) surprise function

Sm(p) := ) _ pjlog — = > b
j=1 —> p;  J=1
Mi>j

More precisely,

m 1 m
=1 =

where h is defined on R?2 by

"

xlogf—x if >0 and y > 0,

L Yy
h(z,y) '=1 0 if z=0 and y > 0,
\ —+ o0 otherwise.

(3)



> For all p satisfying the constraint in (2), Sm(p)
differs from the negative of the quantity in (1)
only by a constant.

The factor m—1 makes subsequent com-
putations more aesthetic and the limit
analysis more harmonious.

> Note that S;,(p) can be viewed as the Kullback-
Leibler information measure of p relative to its
(normalized) tail q:

qa = (qg1,...,9m) with
(4)

: 1 -
4 = 2i=ipbi J=1,...,m.



The Kullback-Leibler information measure [2, 5]
is an extension of Boltzmann-Shannon entropy.
It is also called the relative information measure,
cross-entropy or I-divergence.

Given two probability measures P and
@, the relative information of P with re-
spect to @ is

K(PIQ) = [ (G509 35 — 45) @

= f(log 40 1> dP
if P is absolutely continuous with re-

spect to @, and K(P||Q) := +oo oth-
erwise, [5].

> For an extended discussion on the Maximum
Entropy Principle, one may consult [4] and ref-
erences therein.
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We suppose that the event occurs at some point ¢
in the time interval [0,T], with probability den-

sity p(t).

> By analogy with the discrete case, we con-
sider the following optimization problem:

(P) inf{S(p)|peL1([0,T]), 1 ={u,p)} (5)

in which the surprise function § is the functional
defined on Ll([O,T]) by

s = [ h (mx% [ b ds) i,

and u=1 [0,T].

As above h is defined by

( T

xlog——x if x>0 and y > 0,
h(xz,y) := 1 Y -
Y - 0 if =0 and y > 0,
| +oo otherwise.



WHAT isl

Boltzmann (1844-1906) Shannon (1916-2001)



WHAT is ENTROPY? I

Despite the narrative force that the concept of entropy
appears to evoke in everyday writing, in scientific writ-
ing entropy remains a thermodynamic quantity and a
mathematical formula that numerically quantifies dis-
order. When the American scientist Claude Shannon
found that the mathematical formula of Boltzmann de-
fined a useful quantity in information theory, he hesi-
tated to name this newly discovered quantity entropy
because of its philosophical baggage. The mathemati-
cian John Von Neumann encouraged Shannon to go
ahead with the name entropy, however, since “no one
knows what entropy is, so in a debate you will always
have the advantage.”

e 19C: Boltzmann—thermodynamic disorder
e 20C: Shannon—information uncertainty

e 21C: JMB—ypotentials with superlinear growth



SURPRISINGLY, SURPRISE IS CONCAVEI

> We now establish the convexity of (the neg-
ative of) our measure of surprise. An extended
real-valued function on R" is closed (convex) if
its epigraph (the set of points which are above
or on its graph) is closed (convex) in R*+1.

> The domain of a convex function f is the
set of points where it is less than +oo, denoted
by dom f.

> If a convex function is not identically 4o
and is nowhere —oo (such functions are proper),
then being closed is the same as being /lower
semi-continuous.



> Given any function f on R"™ (convex or not),
the convex conjugate of f is the function

f7(€) :=sup{(x, &) - f(x) [ x € R"}

for £ € R™.

It is easily shown that f* is always closed and
convex [2, 7]. Furthermore, if f is closed, proper,
and convex, then so is f* and the bi-conjugate
.= (f)*is [ itself [2, 7].

Even without this theoretical underpin-
ning, computation of f as a double-conjugate
provides an accessible way of establish-
ing both convexity and semi-continuity.



Lemma 1 The function h defined in (3) is closed
and convex.

Proof. One may directly show that A is the
convex conjugate of the indicator function

0 if (§,n) € C,
+oco0 otherwise,

6((&n)]|C):= {
where C' is the convex set

{(&,m) e R?In < —expg}.

This proves that h is closed and convex. u

Convexity of h can also be derived from
the easy fact that, for any interval I, a
function

(z,9) — y flzy™ 1)

is convex on I x (0,00) if and only if f is
convex on I. [A ‘bad’ way is to check the
Hessian matrix is positive semi-definite.]



> Figure 1 displays h.

Using Lemma 1, we deduce that S,, and S are
convex. Indeed, we have

Sm(p) =>4 h(p;, [JP);)  and

S(p) = Jg h(p®), [TPI(®)) dt,

in which J is the (m x m)-matrix whose entries
are m—1 on and above the diagonal and O else-
where, and J: L1([0,T]) — C([0,T]) is the linear
mapping defined by

TR0 =7 [ pls)ds (6)

In passing, we recall that the composi-
tion of a convex function with an arbi-

trary linear mapping is convex.



— — .

x
Y

Figure 1. Graph of (z,y) — zlog



DISCRETE TIME ANALYSIS I

Constrained optimization problems such as (2)
are traditionally approached using concepts from
duality theory, which flows from the theory of
LLagrange multipliers.

Roughly speaking, duality theory reduces
constrained optimization problems to sim-
pler or unconstrained ones.

> A modern version of duality theory is posed
in the language of Fenchel conjugation [2, 7].

We recall some additional basic facts. Let f
be a closed proper convex function on R”, let A
be an (m x n)-matrix, and let y € R™,
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We consider the linearly constrained optimiza-
tion problem

(P) inf{f(x)|xeR", y—Ax=0}. (7)

> We denote the optimal value of (P) by V(P),
the feasible set by F(P) and the solution set
by S(P). Thus,

F(P) .= {x]y — Ax = 0}
and

S(P) :={xe F(P)|f(x) =V(P)}.



> The Lagrangian of (7) is the function

LAx) = f(x)+ (A, y — Ax),

for A e R™, x ¢ R". For agiven A\, L(\,x) can
be regarded as a ‘“penalized” version of f.

Each component of A fixes the price
(positive or negative) to be paid if the
corresponding constraint is violated.

> Under favourable circumstances, it is possi-
ble to find a particular value A of X such that
minimizers of £L(\, -) also solve (7). Such a X is
then called a Lagrange Multiplier or a shadow
price.



> Now minimizing £(X, ) is an unconstrained
problem (save for any implicit constraints im-
posed by dom f.)

We can now state the Kuhn-Tucker Theorem
which provides necessary and sufficient condi-
tions (on A and x) for x to be a solution of (7),
[7] or [2].

Theorem 1 (Kuhn-Tucker) Suppose V(P) #*
—oo and that

(CQ) |F(P)nintdom f #= 0.

Then, the following are equivalent:

(i) xe S(P);

(i) supL(-,x) = L(\,x) = inf L(X, -) for some
A\

(iii) x € F(P) and A*X € 0f(x) for some .



> In condition (iii), A* is the matrix transpose
of A and 0f(x) denotes the subdifferential of f
at x, i.e., the set of subgradients of f at x.

> Precisely, a vector £ € R" is a subgradient
of f at x if the subgradient inequality

f(z) > g(z) := f(x) + ({2 — x)

holds for all z € R".

If f is convex and differentiable at x, Vf(x) is
the unique subgradient of f at x, and conversely.

e In the words of Rockafellar, the subgradient in-
equality says that "“the graph of the affine func-
tion g is a non-vertical supporting hyperplane to
the epigraph of f at (x, f(x))." [7].



> Points (X, x) satisfying condition (ii) are said
to be saddle points of L.

The requirements in (iii) are a form of the Kuhn-
Tucker conditions. Notice that, in condition (ii),
A appears as the maximizer of the (concave)
dual function

D) := inf L, -).

> We now return to the study of Problem (2).

The Lagrangian of (2) is

L(p, ) ;= Sm(p) + A(1 — (u, p)),
for p e R™, XeR.



Theorem 1 tells us that p is a solution for (2)
if and only if:

(Oé} 0=1- <U_,p>;

(B) forsomeXeRO0 e OSm(p)—l—Xé?[l—(u, -)} (p).

Indeed, one can check that V(P,) # —co and
that (P,,) has a feasible solution in

intdom S, ={peR"™|p>0}.

> Furthermore, S,, is differentiable in the inte-
rior of its domain, and we have

oS

—(p) = logmpug — > i,

apk i<k
where

b =K/ Y Pj- (8)

j=k



> Consequently, condition (B8) becomes

O=logmur— > pi—A, k=1,...,m. (9)

Now, by definition, um,m = 1, so setting £k = m
in (9) gives

A=logm — ) pu,

from which we obtain the recursion

pm =1, pp =exp (— Z;n:]H_l Nj) ; (10)
fork=m-—1,...,1. Also

Pk—1 = €xp (— 2=k Mj)

= exp(—pug) exp (— Z?’zlﬂ_l Mj) :

Thus, the backward recursion (10) can be rewrit-
ten as

pm =1,  pp_1 = pp exXp (—pg) (11)

fork=m,...,2.

> Values of u; are shown in Figure 2, while
Figure 3 shows optimal probability distributions.



0.8
0.6

0.4 1

0.2

Fig. 2. Recursion for the u.’s.

] 0.04
0.2- ]
] 0.03
0.15 ;
] 0.02

0.1+ ]
0.05 0.01-

017 2 3 4 5 6 7 O 10 20 30 40 50

Fig. 3. Optimal distributions
m =7 (left) and m = 50 (right).



> Finally, from condition («) and the values of
the ui's, we see that the components of p must
obey the following forward recursion:

k—1
kEk =2,...,m.

The vector p defined in (12) satisfies
conditions («) and (B), and therefore
uniquely solves Problem (Pn,) in (2).

Most pleasingly, the iteration is easy to han-
dle both numerically and theoretically. For ex-
ample, its components form an increasing se-

quence. Indeed,

pr = i (P + -+ pPm)
and

Pr—1 = pp—1 Pr—1+ -+ pm).



> From whence we deduce, using (11), that

e _ e (D — 1)

Pk—1 1
= exXp pp X (1 — eXD(—Mk))
= exp py, — pg > 1,

(13)

since pg > 0.
> We recapitulate the prior discussion as:

Algorithm 1 T he unique probability distribution
p™ maximizing surprise in Problem (Pn,), given
in (2), is strictly increasing and is determined
as follows.

a. Compute for j =m,...,2

pm = 1, mi—1 =y exp (—ps),  (14)
and then
b. compute for k=2,...,m

k—1
pP1 = K1, pk=uk><<1—zpz')- (15)
i=1



Remark 1 Asin [3, p. 50], the (optimal) condi-
tional probability that the event occurs on the
ith-to-the-last day, given that it has not oc-
curred thus far, is independent of m.

> This is immediate from (11) and the equality
P(m—i|~1,...,~(m—1i—1))

. —-1
]J=m—1
Furthermore, as the u.'s are defined via a back-

ward recursion, p,,—;/Pm—i—1 1S also independent
of m. |

Remark 2 We may also obtain the solution to
Problem (P,,) of (2) via the optimization prob-
lem

inf{S/,(p,a) | 1=(1,p), q=Jp},

where

Sm(P,q) ==Y h(pj,q;)-



> T he needed Kuhn-Tucker conditions are

(¢/) 0=1—(u,p) and 0 =q — Jp;

(B) thereexist A\e Rand A= (\1,...,A\p) in R™
such that

0 €99,(p,qa)+23f(p,q)
+X10f1(p,q) + -+ A 0 fm(p,q)

with f and f = (f1,..., fm) defined by
f(p,q) =1~ (u,p)
and

f(p,q) :==q—- Jp.

> It is then easy to check that the Aj’s derived
from (o) and (8') coincide with the p;'s of the
previous discussion multiplied by m. ]



HOW THE DISTRIBUTION BEHAVES?I

Striking characteristics of the optimal distribu-
tion were already shown in Remark 1. We will
study asymptotic behaviour of Problem (Pn,)
as m tends to infinity.

We now establish three key properties.

> First, we show that asymptotically the least
probability p{™ behaves like m~1.

The nub is an analysis of the rate of conver-
gence of the Picard-Banach iteration,

tn—l—l — g(tn),

to the unique fixed point of a contractive self-
map, g, on [0, 1].



> But, when the fixed point, t, has |¢/(t)| = 1,
and so is not strictly contractive. Recall that g
iS contractive if

l9(t) —g(s)| <[t — s
for all t # s in [0,1]. We use z +— zexp(—x).

Proposition 1 The quantity mpgm) tends to one
as m tends to oo.

Proof. We define a sequence {t,} by setting

e, (m)
tj = 'um—l—l—i

foro. =1,....m, m = 1,2,.... Observe that
t; is independent of m, that t,, = pgm), and
satisfies the recursion

t1 =1, tpp1 = tpexp(—tg),
for £k > 1.



> We note that ¢, tends monotonically to a
limit ¢ which must necessarily be zero. Hence

~1 ~1 ~1
which tends to exp’(0) = 1 as k tends to infin-

ity. Whence, since Cesaro averaging preserves
limits,

1 1 m=lete —q 1
T = Z 4 -
mitm, N — L mitq
also tends to 1. ]

> It is fun to perform a similar analysis for a
general g : [0,1] — [O, 1].

Next, we show that the ratio between
the last (biggest) and first (smallest)
components converges.



Proposition 2

p(m)
lim 2 _ exists and is finite.
M — 00 p(m)
1

Proof. We have from (13) and the above def-
inition of {t,}, that

(m) (m)

lim % = liMm—oco H;nzz(euj — /{gm))
1
~ 2.132979....

The limit exists since
1 <expt;—t; <141t
while Y;¢% < oo by Proposition 1.

Finally recall that I],,(1 4 |an|) and >, |an| con-
verge together. u



Third — and more subtly - we establish that in
the limit our solution value approaches that of
the uniform solution of the next section.

Proposition 3 The optimal value of (Pn,), V(Pm),
tends to zero as m tends to infinity.

Proof. To establish this, we show that

limsup V(Pn) <0,
and that
O <IliminfV(Pm).



a. The first inequality is easily obtained from
identifying a Riemann sum:

1 1
V(Pm) < Sm(—,...,—>
m ™m
O '
= logm — I
m
1 k
= —— > log— -1
mk:]_ ™m
1
—  — 0 logtdt —1 =0

b. obtain the other inequality, consider

m—1 ( )
Tm = Y (m)log (m) p,gm)
=1 9i+1

and

m—1 ( )
=y (m) (m)



> We make two claims:

(i) ™m —om tends to 0 as m tends to infinity;

(i) 7m > —pS™ log m.

Proof of (i). We recall from (4) and (8) that
g™ = p{"™ /(mg{"™) and so

m—1

Tm — Om = — Z pgm) log(1 — Mz(m)),
1=1

(m)

whence, as p;

; increases with z,

0 <7m—o0m= _Zm_l (m) log(1l — tz-_|_1)

> i=1 Pm—_;

< —pim) > tlog(l —ti4q) — 0,

since t;, — 0 and mpglm) = 0O(1).



The proof of (ii) is deferred to the next section
where it is a consequence of a general integral
inequality.

> Now, by design,

V(Pm) =om+ pq(nm) logm — pﬁnm).

It follows from (ii) that
V(Pm) > om — Tm — pglm).

And so, since

p — 0,
(i) shows
liminf V(Pmy) >0
as needed. |

> These techniques allow much more precise
assertions about the asymptotics of p™.



CONTINUOUS TIME ANALYSIS I

In the discrete case, the distribution is strictly
increasing, with a sharp increase at the tip of
the tail (see Figure ). In measure, this is washed
out in the limit.

> Indeed, the optimal continuous distribution is
flat, as the following theorem shows.

Theorem 2 For all p € L1([0,T]), we have

/OTp(t)log PO s OTp(t)dt

= | pls)ds

— equivalently S(p) > 0 — with equality if and
only if p is constant on [0,T].



Proof. Without loss p is (a.e.) nonnegative,
else S(p) = oc.

As in (6), set

1 T
a(t) = [Tpl(0) = | p(s)ds.
t
On integrating by parts,

5w = [ (r0106"3 <500 a

= [ () 10 (1) ~ p(0))
+T § ¢/ (1) 10g (1) dt

— /OTp(t) log p(t) dt —T'q(0) 1og q(0),

> We shall be done once we show

/OTpos) log p(t) dt > Tq(0) log q(0).  (16)

with equality if and only if p is constant.



But, applying the integral version of Jensen’s
inequality to the strictly convex function g :=
x+— xlogx — x yields

/ (p(t) p(t) p(t)> "
T q(0) q(O) q(0)

from which (16) follows immediately. |

> Theorem 2 shows that the (unique) solution
of Problem (P) given in (5) is the uniform prob-
ability density on [0, T1].

> A consequence of Theorem 2, which com-
pletes the considerations of the last Section,
follows:



Corollary 1 As claimed in Section ,

Tm > —pgzm) log m.

Proof. Apply Theorem 2 with

T:=1 and p(t):=pi™

—1
tE(n ’n] (n=1,...,m).
m - m

For 2=t < ¢ < and n <m— 1,

m k
TOREEDS ﬁ_lp(t>dt
k:n m
1 (m)
- Z pk _qn—l—l’
k n—+1

and, for ™1 ¢+ < 1,
m

g(t) = piM (1 —1).



Hence 1,;,, majorizes
m—1 .n
mnz /7le p(t) {Iog (ZE&) — 1} dt
= m/ om (t){log <p§ ;) —1} dt
- Lrofen (i) 2] o

1
+ m 1pm>{|og<1 t) + 1} dt

> 00— p( )Iogm,

on evaluating the second integral and applying
Theorem 2. |

> T his finishes the proof that the optimal value
of (Pm) tendsto O ( =V (P)), as claimed above.



‘CONCLUSIONI

T he entropic formulation of the Surprise Exam-
iInation Problem provides a beautiful case study
of the application of concepts from the elemen-
tary theory of convex constrained optimization,
probability and classical inequality theory. Its at-
tractiveness comes in part from the very explicit
recursive nature of the (discrete time) solution,
which derives from the Kuhn-Tucker Theorem.
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A DUAL APPROACH TO LINEAR INVERSE PROBLEMS WITH
CONVEX CONSTRAINTS*

LEE C. POTTER! AND K. S. ARUN?

Abstract. A simple constraint qualification is developed and used to derive an explicit solution
to a constrained optimization problem in Hilbert space. A finite parameterization is obtained for
the minimum norm element in the intersection of a linear variety of finite co-dimension and a closed
convex constraint set. The result extends previous duality theorems for convex cone set constraints.
A fixed point iteration is presented for computing the parameters and yields a least-squares solution
when the variety and constraint set have empty intersection. Proofs rely on nearest-point projections
onto convex sets and the properties of monotone, firmly nonexpansive, and averaged mappings.

Key words. constrained optimization, semi-infinite convex program, constraint qualification,
successive approximations, nearest-point projection, monotone operator

AMS(MOS) subject classifications. 49A, 49B, 49D

1. Introduction. The recovery of a signal from linear measurements and prior
information is a central problem in signal analysis and remote sensing applications
ranging from tomographic imaging and radio astronomy to well logging and respira-
tory physiology. Simplicity and generality are sought in characterizing and computing
signals that successfully reflect available prior knowledge. To this end, the signal is
abstractly represented as an element of a Hilbert space, and each known property of
the signal is incorporated by restricting the reconstructed signal to lie in a specified
closed convex set. In addition, the requirement that the signal be consistent with a
finite number of linear measurements defines a linear variety of finite co-dimension.
The intersection of this variety and the convex constraint set is termed the feasible set
of signals. In this paper, the recovery task is formulated as the infinite-dimensional
programming problem of determining the feasible signal closest to a specified nominal
signal.

The desired signal is shown to admit a dual parameterization by exploiting the
properties of monotone operators and nearest-point mappings onto closed convex sets.
The parameter vector is seen to be a fixed point of a nonlinear, monotone, firmly
nonexpansive operator in a finite-dimensional space; these properties lead both to a
novel constraint qualification assuring the existence of the parameters and to iterative
computational schemes. Convergence to a least-squares fit of the linear measurements
is obtained when the feasible set is empty. The duality result does not require the
constraint sets to have interior and allows direct derivation of the optimal Ly solution
in [8]. In addition, more recent L, optimization results 2], [9] that likewise eschew the
traditional Slater-type constraint qualification are extended, in Hilbert space, from
the special case of a convex cone to general convex set constraints.

2. Problem formulation. Let S be a real Hilbert space with inner product
(-,-). By the Riesz representation theorem, any N continuous, linear measurement
functionals on S may be expressed by inner products with measurement signals
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and in part by a grant from the Strategic Defense Initiative Organization/Innovative Science and
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91,92, ---,9N8 in 8. Accordingly, define the mapping A from S into Euclidean N-
space RV by

Az = [(z,91),-- -, (z,gn)]",

where []* denotes vector transpose. For a given 8 € RV, the set of all z satisfying
Az = (3 is a linear variety of co-dimension not exceeding N. The adjoint operator A*
maps a vector § € RN with k** entry 6y to the signal A*0 = EkN___l 0rgx. Thus, A*0
is very simply a linear combination of the N measurement signals, and the range of
A* is the finite-dimensional subspace G C S spanned by the measurement signals:
range(A*) = G = span{gi,...,gn}. Let II be the orthogonal projection onto G. The
orthogonal complement of G is the null space of A, denoted ker(A); the linear variety
{z : Az = 8} is a translate of ker(A) and is therefore a closed convex set.

Let K1,Ks,...,Kpr be closed convex sets with nonempty intersection K. The
set K is referred to as the constraint set; K may be infinite-dimensional and is not
assumed to have interior. For a fixed measurement vector 3 the feasible set F is
defined to be the intersection of the variety {z : Az = B} with the constraint set .
That is, F is the closed and convex set {x € K : Az = }. Finally, let £ denote the
extendible set in R defined to consist of all measurement vectors 3 for which the
associated F is nonempty.

The recovery problem is to characterize and compute the signal in the feasible
set F closest to a specified nominal signal. Without loss of generality, the nominal
signal, Tpom, is the origin: for z,.m # 0, the data vector is replaced by 8 — AZpom,
and the constraint set is translated by —z,0m. This constrained inverse problem is
concisely written

(P) min ||z|| subject to Az = .
zeK

The special case in which K is a convex cone is considered in [2], [8], [9], and [25], and
subspace or linear variety constraints are considered in (3], [14]. Problem (P) is the
linear inverse problem Az = 3 with the additional convex set constraint = € K.

Were the distinction between the closed convex data constraint Ar = (3 and
the set constraint K to be abandoned, the minimum norm element of the feasible
set, F, would be trivially characterized by the projection of the origin onto closed
convex set F. However, this conceptual approach is undesirable since the aim is to
explicitly determine solutions. First, to combine the data constraint with the set K
forfeits the structural advantage afforded by the finite co-dimensionality of the linear
variety. Second, the nearest-point projection operator onto F may not be computable
in a tractable manner; the set X, on the other hand, typically arises from physically
meaningful constraints that give rise to an easily implemented nearest-point projection
operator onto XC. Third, the distinction between the data matching and set constraints
allows for the computation of a least-squares solution when measurement noise renders
the feasible set empty.

3. An optimality condition. In the absence of the constraints imposed by the
convex set K, the projection theorem, e.g., [13] simply and elegantly characterizes
the minimum norm element of the variety {z : Az = (8} as a linear combination
2,2;1 Oxgx, where the parameters § € RV are determined by the normal equations.
In a similar manner, the constraints embodied by K are incorporated, and a particu-
larly simple and geometrically appealing optimization result for (P) is obtained. The
following theorem establishes a parsimonious parameterization of the solution Z.
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First, two basic facts are reviewed for closed convex sets in a Hilbert space.

LEMMA 1. Let K denote any closed convex subset of a Hilbert space S. Then
there exists a unique y € K such that inf,cx ||z — 2| = ||z — ]|
This correspondence is denoted by y = Px(x), where P : S +— K is said to be the
nearest-point projection operator, or simply the projection, of S onto the closed convex
set K. The operator Py is linear if and only if K is a subspace.

LEMMA 2. Let K be a closed convez subset of S. Then the following are equivalent:

(a) Px(z)=
® llz=yll<|lz—=2| forall z€ek
(¢) (x—y,z—y) <0 forall zeKk.

THEOREM 1. If there ezists € RN such that 3 = AP A*(9), then & = PcA*(6)
is the unique solution to (P).

Proof 18], [20]. The feasible set F := K(\{z : Az = B} is closed and convex, and
the existence of a unique minimum norm element follows from Lemma 1, provided F
is nonempty. Let y := A*6 where 6 is the parameter vector of the hypothesis. It must
be shown that

Jnf flz]l = || Pc()]-

From Lemma 2, it suffices to show that({Px(y),z — Px(y)) > 0 for all z € F. To this
end, let z denote an arbitrary element of . Now write Px(y) as y — (y — Px(y)) to
yield

(Pc(y),x — Pe(y)) = (y, = — Pc(y)) — (y — Pe(y), = — Pe(y))-

First, observe that (y,z — Px(y)) = 0 since y € G = range(A*) and Az = 3 = APx(y)
implies (z — Px(y)) € ker(A). Turning to the second term, observe from Lemma 2
that (y — Px(y),z — Px(y)) <0 for all z € K. In particular, F is a subset of K, so the
inequality holds for all z in F. Hence, (Px(y),z — Px(y)) > 0 for all z in F. o

The result in Theorem 1 is a nonlinear generalization of the classical projection
theorem, which follows as a simple corollary.

COROLLARY 1. For K = 8 and F # 0, the solution & to (P) is given by A*6,
where 0 satisfies the normal equations AA*0 = 3.

Figure 1 provides an illustration of Theorem 1 in the Euclidean plane and, al-
though depicting the degenerate case of S = %2, illuminates the similarities between
Theorem 1 and the projection theorem. The minimum norm element x,,, of the
variety {z : Az = B} is the orthogonal projection of the origin onto the variety.
Thus, Tpm, = Zszl 0rgr, where the coefficients 6 are uniquely specified by the lin-
ear equations in Corollary 1. However, the minimum norm solution lies outside the
constraint set X, in general. Yet, the constrained minimum norm element % is found
in an analogous manner: £ is the nearest-point pl‘OJeCtlon onto K of an element
A*f = Z k=1 61 gk in G, where the parameter vector 6 is determined by the equations
in Theorem 1. Thus, in order to constrain the minimum norm solution to lie in the
constraint set K, the linear normal equations AA*6 = 3 are replaced by the nonlinear
equations APcA* (é) = 3, and the solution z,,, = A*@ is replaced by & = PxA*(0).

4. A constraint qualification. The hypothesis of Theorem 1 requires the ex-
istence of a solution 6 to a nonlinear system of equations, and the optimal signal £ is
then parameterized by this solution via £ = PcA* (0) For a nonempty feasible set,
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span[gy, ..., gn]

Az =0

F1G. 1. The minimum norm feasible signal is the projection onto the constraint set of an
element in the span of the measurement signals.

existence and uniqueness of a solution, £, to (P) follow from Lemma 1. Therefore, the
statement of the theorem immediately raises the questions: When does the represen-
tation of & by 6 exist? Is the representation unique? How may it be computed? To
address the issues of existence and uniqueness requires an investigation of the ranges
of the nonlinear operator APcA* : RV — RN and its set-valued inverse. That is,
there exists a solution to APcA*(#) = 3 if and only if 3 is in the range of APcA*,
and the solution is unique if and only if (APcA*)~!(B) is single valued. Pertinent
properties of these ranges are derived in this section by making use of their finite
dimensionality and utilizing results from the theory of monotone operators. These
properties are then used both to establish a novel constraint qualification (Cor. 2),
which gives a condition on the data vector (3 to ensure the existence of a parameter-
ization and to characterize uniqueness. The third issue, computation, is deferred to
§5, where the solution of APcA*(0) = 3 is viewed as a nonlinear fixed point problem.

A set M in the Cartesian product RN x RV is said to be monotone, e.g., [27], if

(@* —y", 2z —y) 20 V (2,27),(y,y") € M.

A mazimal monotone set is one not properly contained in another monotone set. A
(possibly set valued) mapping f : RV 2®" is called a monotone operator if its
graph {(z,z*)|z* € f(x)} is a monotone set in RV x RY; the operator is said to
be mazimal monotone if its graph is a maximal monotone set. The operator f~! is
defined as the mapping which has as its graph the set {(z*,z)|(z,z*) € graph of f}.
Since monotonicity is invariant under transposition of the domain and range of a
map, f and f~! are simultaneously monotone or maximal monotone. In the sequel,
set-valued mappings will be viewed as multifunctions, and the notation f : RY — RV
will be employed.

The properties of maximal monotone operators in finite-dimensional spaces and
convex sets in RN are combined to guarantee that for any data vector (3 in the
relative interior of the extendible set £ there exists a parameter vector 6 providing
the representation £ = PcA* (é) The requisite properties are established as two
brief lemmas; the resulting theorem gives the desired constraint qualification as an
immediate corollary.

LEMMA 3. The operators APcA* : RN +— RN and IIPcI1 : S — S are mazimal
monotone operators.
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Proof. From the linearity of A and the definition of the adjoint A*,it follows that

(APcA*(z) — APcA*(y),x — y) = (PcA*(z) — PcA*(y), A*(z — y))
= (Px(e*) = Pc(y"), =" —y"),

where z* = A*z and y* = A*y. Immediately, this inner product is nonnegative since
the projection Px is monotone [7]. Next, since APxA* is continuous and defined for
all z in R, it is maximal monotone [15]. The proof for IIPcII is identical. ]

LEMMA 4 ([17]). The closure of the range of a mazimal monotone operator is a
conver set.

As defined above, the set of all data vectors (3 that can be generated by measuring
some signal = from the constraint set K is termed the extendible set. This set, £ :=
{B € RN : B = Ax,z € K}, is convex (immediately from the linearity of A) but not
necessarily closed. Lemmas 3 and 4 are used to establish that the extendible set and
the range of AP A* are the same to within closure.

THEOREM 2. The closure of the extendible set is equal to the closure of the set
of all measurement vectors obtainable from parameterized signals of the form r =
PcA*(6), 8 € RV ; i.e., cl(€) := cl{ Az : x € K} = cl(range(APc A*)).

Proof. [19] It must be shown that

inf ||Ag— APcA*(0)|?> = .
(nf 1l 4q kAT (@)°=0 Vge K

To this end, observe that ker(A) is orthogonal to range(A*) = G and recall II is the
orthogonal projection onto G. Thus, it must be shown that

inf |[[I(g— Pc(p))II> =0 VYgeK.
PEG

If G = range(A*) = 0, then II = 0 and the claim is proven; so attention is restricted
to the case of G nontrivial.

Proceeding by contradiction, assume there exists some ¢ € K for which the infi-
mum is € > 0. The closure of range(ILPxII) is convex from Lemma 4. Let z denote
the nearest point in cl(range(ITPcII)) to Ig, with ||IIg — 2||?> = €. Then, there exists
a hyperplane H in the finite dimensional subspace G containing h = %(Hq + z) and
normal to (IIg — z). The hyperplane H separates Ilg from range(IIPxII).

Next, a point p; is constructed to provide a contradiction. Let p, = IIg+t(Ilg—z),
t > 0. For t sufficiently large, p; is closer to ¢ than to H. In particular, let Q =
[|(I — II)g||?> and observe

llps — qll* = [ITlg + ¢(Tlg — 2) — (g + (I — M)g)||* = t?e + Q
On the other hand, the projection of p; onto H is h for all ¢ > 0. Thus,

1 1\*
i — 2 = —_— —_— 2 = — .
af e~ vl = g+ o(TTg =) - 30Tg+ 2 = (143 ) ¢
Hence, for (¢t + 3)e > Q, d(pt, q) < d(ps, H), where d(, -) is adopted as a distance
notation. Now, let J = H @ G and let J* denote the halfspace in S containing
range(IIPxII). Then,

d(pt, ’C) S d(Pt, Q) < d(pt’ H) = d(pta J) S d(pt) J+ N ’C)
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implying Px(p:) € J~, whence IIPx(p;) € J~ and IIPx(p:) & range(IlPcII). But
IIp, = p;, providing a contradiction. Therefore, it must be the case that the infimum
is indeed zero. O

The relative interior of a convex set C C RV, denoted ri(C), is defined as the
interior that results when C is regarded as a subset of the intersection of all closed
linear varieties containing C. Given convex sets C; and Cp in RV, cl(C;) = cl(Cp) if
and only if ri(C;) = ri(Cz) [23]. The desired existence result now follows immediately
from the theorem. This result can also be developed from convex duality theory [4].

COROLLARY 2 (CONSTRAINT QUALIFICATION). If 8 € ri(€), then there exists 6
such that APxA*(6) = B, i.e., B € range(APxA*).

Proof. From Theorem 2, cl(£) = cl(range(APxA*)). Hence, equivalence of the
relative interiors follows: ri(€) = ri(range(APxA*)). 0

In an infinite-dimensional Hilbert space there exist closed convex sets X without
interior for which support points are only dense in the boundary and form only a set
of the first category, the complementary set being dense as well [10]. Yet, a simple
consequence of Corollary 2 is that for 8 € ri(£), the solution & to (P) is, in fact, a
support point of K and, moreover, some normal to K at % intersects the subspace G.

Two commonly employed but more restrictive constraint qualifications found in
the literature follow as corollaries to the result in Theorem 2.

COROLLARY 3 (SLATER CONSTRAINT). If K has interior and the feasible set
F := K(\{z : Az = B} contains points interior to K, then there ezists § such that
APcA*(9) = 6.

COROLLARY 4 ([2], [8]). Let S = Ly and let K be the closed convex cone of
nonmegative functions in Ly. If B € int(E), then there exists § such that APcA*(§) =
8.

Theorem 2 answers the question of existence of the parameterization £ = PxA*(6).
The second issue, uniqueness of a parameter vector, is equivalent to the single-valued-
ness of the operator f = (APcA*)~1.

PROPOSITION 1. If £ has nonempty interior, then a parameter vector  satisfying
AP A*(0) = 3 is unique for almost every 8 € £.

Proof. The mapping (AP A*)™! is a monotone operator by Lemma 3. From [27,
Thm. 1], the set of points where a monotone operator on a finite-dimensional Hilbert
space is not single valued has zero Lebesgue measure. O

Furthermore, the set of points in £ for which the representation is unique is a
subset of the relative interior of range(APxA*) [22, Cor. 1.1]. For linearly depen-
dent measurement signals {g;,...,gn} the extendible set £ C R is contained in a
subspace of dimension less than N and int(€) = 0.

5. Iterative computation. From Theorems 1 and 2, the solution & to (P)
is parameterized by & = PcA* (é), where the vector 6 solves the nonlinear system
AP A*(0) = (8. Equivalently, the parameter vector 6 is a fixed point of the opera-
tor T : RY — RN defined by T'(6) = 6 + 3 — APcA*(6). The operator T is not a
contraction, nor does it have a compact domain; therefore, the well-known Banach
and Brouwer fixed point results are not applicable. Nonetheless, the properties of
firmly nonexpansive and averaged mappings are exploited to show that the sequence
of Picard iterations

(1) 9D = (™) L A[B — APcA* (™)), A€ (0,2)

converges to a fixed point of T. Additionally, the sequence is shown to characterize a
least-squares solution to (P) when there exists no fixed point.
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Case 1. First, the sequence {6(™} is considered for the case in which T has a fixed
point. Convergence is established by relying on three simple lemmas in Euclidean N-
space. A mapping f : RN — R is said to be nonezpansive if || f(z) — f(v)|| < ||z —y||
for all z,y in RN . Further, fis firmly nonexpansive if and only if 2f — I is nonexpansive
[7].

LEMMA 5. As defined above, let T be the operator given by T(0) = 6 + 8 —
APxcA*(6). If the measurement signals {g1,...,gn} satisfy Spy llgxl|? < 1, then T
is firmly nonexpansive.

Proof. To show that T is firmly nonexpansive, 21— I is shown to be nonexpansive.
To this end, direct computation using the definitions of 7" and of the adjoint A* yields

IeT-Dz~2T-Dyl® < lz—ylI* & (Pc(z')~Pc(y), 2’ ~y") > | A(Pe(z")~Pc ()]

where 2’ := A*z and y' := A*y. From Lemma 2,(Px(z')— Px(y'), 2’ —y') > || Pc(z’) —
Px(y')||?. Furthermore, by hypothesis on the measurement signals and application of
the Cauchy-Bunyakovskii-Schwarz inequality, A is nonexpansive:

N N
lAwl® = Y ((ge,w)* < Y lgllPllwl® < flw|® Vw € S.
k=1 k=1
Hence,
1Pc(z’) = Pe(@)II? > |A(Pe(') — Pe(y)I?,
and T is firmly nonexpansive. O

LEMMA 6 ([7]). Let f: RN — RV be a nonezpansive operator with a fized point.
Then, {f™(z)} converges to a fized point of f if and only if f is asymptotically regular,
i.e.,

lim f"(x) — () = 0 for all z € RV,

As an example of a nonexpansive operator R to R with a fixed point and not asymp-
totically regular, consider f(z) = —z — 1. Although a nonexpansive operator f may
not be asymptotically regular, the averaged mapping f» := Af + (1 — A)I, where
0 < X\ < 1, shares the same fixed point set and has desirable asymptotic properties.
LeEMMA 7 ([5]). Let f be a nonexpansive operator in RY. Although the operator
f itself may not be asymptotically reqular, if f has a fized point, then the averaged
mapping fx is asymptotically regular.
The result now follows directly.
THEOREM 3. Assume T has a fired point. For A € (0,2) let f : RY — RV be
defined by

f(0) =0+ A8 — APcA™(6)]

If the measurement signals {g1,...,9n} satisfy Zle llgxll> < 1, then the sequence of
Picard iterates {f™(0)} converges to a fized point of T for any 6 € RN .

Proof. From Lemma 5, T is firmly nonexpansive, so 21" — I is nonexpansive and
has the same fixed point set as T'. Simply note that for 0 < § < 1, f is the averaged
mapping f = 62T —I)+(1—-6)I = 26T+ (1—26)I. By Lemma 7, f is asymptotically
regular. Application of Lemma 6 then yields Picard iterates {f™(6)} converging to a
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fixed point of 2T — I. Thus, the limit 6 is a fixed point of T and, therefore, satisfies
AP A*(0) = . O

For all §8 in the relative interior of the extendible set £, T has a fixed point
by Corollary 2, and the Picard iteration {f™(#)} yields the solution to (P). The
hypothesis that the measurement signals have square sum not exceeding one can
always be satisfied by simple scaling.

Case 2. Next, the behavior of the sequence {f™(0)} is considered for the general
case in which T' may be fixed point free. First, T is trivially fixed point free when
the measurement vector (3 is not extendible, i.e., when there exists no signal x in the
constraint set K for which Az = 3, and hence, no solution to (P). In application, such
a nonextendible vector # may result from either measurement noise or from failure
of the constraint set X to reflect physical reality. In addition, 7" may have no fixed
point for 3 in the relative boundary of £.

The objective of determining a feasible signal z € S satisfying both x € K and
Az = f3 is unobtainable when g fails to lie in the extendible set. A well-motivated
and popular recourse is to find a signal in the constraint set K that best matches
the measurement vector 3 in the least-squares sense: infyex || Az — B||. (This choice
implicitly supposes greater confidence in the knowledge expressed by the constraint set
K than in the noisy measurement 3.) If more than one signal achieves this infimum,
then the unique infimizer of minimum norm is termed the minimum norm least-squares
solution and solves

! . . " _
(P') min [lz]| subject to || Az — 6| = inf || 4y - 6]

A weighted least-squares formulation is easily adopted with corresponding change in
the definition of the adjoint, A*. For a closed convex constraint set X and a linear
measurement operator A, the extendible set £ = A(K) C RV, though not necessarily
closed, is convex. Hence, for a measurement vector 3 ¢ £, there exists a unique closest
vector in the closure of £, namely, the projection of 3 onto cl(£), Pz(3).

PROPOSITION 2. The infimum in (P') is achieved if and only if Pz(8B) is in E.

Proof. With Pg as above, infycx || Ay — B|| = || Pz(8) — || 0

Therefore, for Pz(8) € £, problem (P) is equivalent to (P) with measurement
vector Pz(3).

The asymptotic behavior of averaged mappings provides the solution to (P’), as
readily demonstrated using the following asymptotic property of nonexpansive maps.

LemMMA 8 ([1]). Let h : RN — RN be nonezpansive and define the averaged
mapping hy = Ah+ (1 — X)I, A € (0,1). Then for all 6 in RV

(a) lim,_ o 225;_9_) =-v

(b) limaoolh(6) — 5T (0)] = v,

where v is the unique point of least norm in cl(range(I — hy)). Additionally, h has no
fized point if and only if lim,_,o ||A3(8)|| = oo for all § in RV.
In relation to the asymptotic regularity condition of Lemma 6, observe that h™(0)
is a Cauchy sequence if and only if h has a fixed point and v is the zero vector.
THEOREM 4. Let B € RN be an observed measurement vector, and let f :
RN — RN be defined by f(0) = 0 + \[B — APcA*(0)] for XA € (0,2). Also, assume
SN llgkll? < 1. Let {8} denote the sequence of Picard iterates 6™ = f™(6(?)



1088 LEE C. POTTER AND K. S. ARUN

with initial iterate (). Then, for any 6(©) € RN, the sequence {APcA*(0(™)} con-
verges to Pz(B), the projection of 5 onto the closure of the extendible set.

Proof. [19] By Theorem 2, cl(range(APxcA*)) = cl(€). Therefore, the closure of
the range of (I — f) is simply a scaled translate of the closure of the extendible set:

cl(range(I — f)) = cl{y : v = AN(APcA*(6) — B),6 € RV} = Mcl(€) - B}

Then, the minimum norm element of cl(range(I — f)) is A\v, where v is the minimum
norm element of cl(€£) — 3. Hence, the projection of 8 onto cl(£) is given by the sum
Pz(8) = B+ v. By Lemma 8, given € > 0, there exists some integer M, such that for
all n exceeding M,

e> [ — (6™ — D)
= ||Av — 0™ 400 4 A[G — AP A*(0™)]||
= M| Pg(8) — APcA*(6™))].

Hence, APcA*(0(™) — Pz(8) as n — oo. 0

COROLLARY 5. If, in addition to the hypotheses of Theorem 4, Pz(f) is con-
tained in the extendible set £, then the sequence of approzimate reconstructions {z(™},
(™ := P A*(6™), is bounded, and there exists a subsequence {x("3)} that converges
weakly to &, the solution to (P').

Proof. From Proposition 2, there exists a solution, %, to (P’). By Theorem 4,
€n = ||TI(Z — 2(™)|| — 0. Then, employ Lemma 2, a direct sum decomposition with
G, and the Cauchy-Bunyakovskii-Schwarz inequality to learn

0< ||& — A0 — [|PcA™™ — 46|
< || - m)(@)]| - (I - D)(PeA*0™)]| +
ITL(& — A*™)| — [TI(PeA*6™ — A*0™))|
< (I = @) - (2 = I (PcA*0™)]| + en.

Therefore, (™ = PxA*0(™ is a bounded sequence in K, and consequently there exists
some subsequence {z("))} that converges weakly. Let y be the weak limit. Now,
y € K, Ily = II#, and Ay = Pz(8) by Theorem 4. Thus, ||Z|| < ||ly|| by definition of &.
Conversely, ||(I —II)(y)|| < |[(I —II)(&)|| from above, whence ||y|| = ||£||. Since, from
Lemma 1, & is the unique element of minimum norm in K for which AZ = Pz(8), it
follows that y = . 0

A practical criterion for convergence in computer implementation of Theorem 4
is to test the sequence of differences in successive iterations for convergence to Av
within a given tolerance. However, the vector v is not known a priori and is zero if
and only if 3 is an observation vector in the closure of the extendible set. Nonetheless,
{0(") - 0(""'1)} is indeed a Cauchy sequence in R by Lemma 8. Therefore, observing
that

0™ — gt — g(*) _ £(9(™)) = \[Pc A* (™) — 3]

is simply the residual error scaled by A, the iterations may be terminated when the
change in the residual error from iterate n to n+1 is less than some prescribed value.
Moreover, this sequence of residual errors is monotonically nonincreasing in norm due
to the nonexpansiveness of f. Although {#(™} is divergent, it grows only linearly as
nAv. Therefore, the divergence presents no practical computational overflow prob-
lems, even for a large number of iterations, since ||v||? is bounded by the noise power
in the measurement 3.
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T2

A%g(n)

{ ]
-1 0 h

T

£=[-1,1] AP A*(6™)

F1G. 2. An example in the plane.

6. Example. The results of §§3, 4, and 5 are illustrated by a simple exam-
ple in the Euclidean plane. Although analytical nuances are lost from the infinite-
dimensional case, the relationships among the relative interior of the extendible set,
fixed points, and Picard iterations are clearly illuminated. (An example application
to an infinite-dimensional problem is found in [21].) In the Hilbert space S = RZ let
the constraint set I be the closed convex set depicted in Fig. 2. Let the measurement
B be simply the first coordinate of a vector in ®2. Accordingly, the single measure-
ment signal is g; = [1 0]%, yielding A : % — R given by [1 0] and A* = g;. The
extendible set £ := A(K) is the closed interval [—1,1]. That £ is closed is implied by
the boundedness of K. For a given 3, the feasible set F is the intersection of K with
the line z, = 3.

By Corollary 2, if the measurement is in the open interval ri(€) = (—1,1), then
there exists some scalar 0 such that £ = PxA*(0) is the solution to (P). For the
measurement 3 = 1 on the boundary of £, no finite # provides a parameterization;
the measurement 3 = —1 is likewise on the boundary of £, yet § = —2 provides the
solution to (P). The dense uniqueness in Proposition 1 is illustrated by the infinitely
many parameterizations, § € (oo, —2], for § = —1. (A translation of K by [0 1]
provides an example of nonunique parameterization for 3 in the interior of £.)

The iterative procedure of Theorems 3 and 4 is given by

FrLHO@) = gintD) = g™ 4 \[B — APA*(6™)], X € (0,2).

The action of APcA* : R — R is depicted in Fig. 2 and is given by

-1, 9< -2
APcA*(0) ={ 39, . T2<6<0
0(6%*+1)"2, 6>0.

The existence of a parameterization 6 is equivalent to the existence of a fixed point
for f. For B € [-1,1), there exists a fixed point for f, and by Theorem 3, the
sequence {6(™} converges to a parameter yielding #, the minimum norm element of
the feasible set. For 8 > 1, f has no fixed point and {|§(™|} diverges as Anv, where
v = B — 1 is the distance of 8 from the extendible set. Yet, by Theorem 4, the
sequence {APcA*(0(™)} converges to Pg, and by Corollary 5, a subsequence of the
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approximate reconstructions {PcA*(#(™)} converges to the minimum norm, least-
squares solution to (P’), £ = [1 1]t. Finally, the parameter vector is unique for every
B in € except 3 = —1, where the solution to (P) is not a regular point of K.

7. Discussion. The method of successive projections is an alternative scheme
for computing an element in the feasible set [26]. Treating the variety Az = 3 as an
additional closed convex constraint set Kps41, the iteration

(2) gt = (P’CM+1P’CMP’CM—1 cee PIC1 )m(n)

converges weakly in & to an element of the feasible set, provided one exists. The
method is attractive in that any number of convex constraint sets may be incorporated
without requiring synthesis of the projection onto the intersection K = ﬂ;u:l K;.
However, the technique does not allow the preferential selection of one feasible signal
over others, as provided by the optimality criterion in (P’). In general, the limit
point of Eq. (2) depends on both the initial estimate z(°) and the ordering of the
composition of projection operators. Moreover, the iterations are performed in the
(perhaps infinite-dimensional) signal space S rather than in ®" and typically suffer
from slow convergence rates and high computational cost per iteration [11], [24]. In
addition, successive projections do not in general provide a least-squares solution when
no feasible signal exists.

In contrast, the signal recovery algorithm established in Theorems 1-4 provides
a finite-dimensional parameterization for a signal reconstruction. The iterative al-
gorithm is performed in the parameter space to preferentially produce the unique
least-squares solution consistent with the constraints and closest to a specified nomi-
nal signal. Moreover, Newton-Raphson iterations may typically be applied in Y for
quadratically convergent iterative computation; the requisite derivatives are guaran-
teed to exist almost everywhere since APcA* is Lipschitz. A potential difficulty in
implementing the iterative scheme in Eq. (1) is the need to construct AP A*, which
may require numerical approximation of the projection onto X, the intersection of con-
straint sets. Yet, in application, K is physically motivated and, as such, typically gives
rise to an intuitive and tractable projection operator. Furthermore, sensitivity of the
solution Z to errors in the parameters 6 is low since PxA* is nonexpansive. Although
the constraint set must be convex and the signal space is Hilbertian, the formulation
admits a large and relevant class of sets for incorporating prior information.

Many well-known linear reconstruction results follow immediately from Theorem
1 for the special case of constraint sets K that are subspaces, e.g., [3], [6], [12], [16].
Likewise, Theorems 1 and 2 extend, in Hilbert space, the optimization results in {2],
(8], and [9] from closed convex cones to arbitrary closed convex constraint sets. For
example, the minimum energy correlation extension presented in [8] and [25] may be
directly obtained with S = L, and K the convex cone of nonnegative spectral esti-
mates. Kuhn-Tucker, Lagrange multiplier, and Fenchel duality theorems, e.g., [13] are
similar dual optimization results that have been applied to signal recovery problems
and, in addition, admit cost functions more general than the weighted norm. How-
ever, the hypotheses of these classical results require nonempty interior and regularity
conditions that are absent in Theorems 1-4. These seemingly technical restrictions
are, in fact, of great importance to application in many practical reconstruction tasks
since, for example, the set of nonnegative signals in L, is without interior.

8. Conclusion. Motivated by practical reconstruction, estimation, and interpo-
lation problems, an explicit solution to a constrained minimization problem has been
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derived. The finite parameterization led to a simple and computationally attractive
iterative algorithm. The constraint qualification for the infinite-dimensional program
with linear equality constraints and a convex set cons’raint extended previous results
for a convex cone set constraint.
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5.1.4 Continuity of Multifunctions

The basic definition is given below.

Definition 5.1.15 (Continuity of Multifunction) Let X and Y be two Haus-
dorff topological spaces and let F: X — 2Y be a multifunction. We say that

F' is upper (lower) semicontinuous at T € X provided that for any open set U
in'Y with F(z) C U, (F(z)NU #0),

{reX|Flx)cU} ({zeX|F(z)nU #0})

is an open set in X. We say that F is continuous at T if it is both upper
and lower semicontinuous at T. We say that F is upper (lower) continuous
on S C X if it is upper (lower) continuous at every x € S. We omit S when
it coincides with the domain of F.

We will also need a sequential approach to limits and continuity of multi-
functions. This is mainly for applications in the subdifferential theory because
the corresponding topological approach often yields objects that are too big.

Definition 5.1.16 (Sequential Lower and Upper Limits) Let X and Y be
two Hausdorff topological spaces and let F: X — 2Y be a multifunction. We
define the sequential lower and upper limit of F' at T € X by

s-liminf F(x) := m{lim inf F(z;) | z; — %}
71— 00

and
s-limsup F'(z) := U{limsup F(x;) | ¢ — z}.
When

s-liminf F'(z) = s-limsup F ()
we call the common set the sequential limit of F at T and denote it by
s-lim, .z F'(x).

Definition 5.1.17 (Semicontinuity and Continuity) Let X and Y be two
Hausdorff topological spaces and let F: X — 2Y be a multifunction. We say
that F is sequentially lower (upper) semicontinuous at & € X provided that
F(z) C s-liminf F(z) (s-limsup F(x) C F(Z)).
r—x T—T
When F is both upper and lower semicontinuous at T we say it is continuous
at . In the notation introduced above,

F(z) = s-lim F(z).

T—T
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Clearly, when Y is a metric space the sequential and the topological (semi)
continuity coincide.

The following example illustrates how the semicontinuity and continuity
of multifunctions relate to that of functions.

Example 5.1.18 (Profile Mappings) Let X be a Banach space and let
f: X — RU{+o0} be a function. Then the epigraphic profile of f, E; is
upper (lower) semicontinuous at Z if and only if f is lower (upper) semicon-
tinuous at z. Consequently, E is continuous at Z if and only if f is continuous.

Example 5.1.19 (Sublevel Set Mappings) Let X be a Banach space and
let f: X — RU{+c0} be a lsc function. Then the sublevel set mapping
S(a) = f~1((—o0,a]) is upper semicontinuous.

When X and Y are metric spaces we have the following characterizations
of the sequential lower and upper limit.

Theorem 5.1.20 (Continuity and Distance Functions) Let X and Y be two
metric spaces and let F: X — 2V be a multifunction. Then F is sequentially
lower (upper) semicontinuous at T € X if and only if for every y € Y, the
distance function © — d(F(x);y) is upper (lower) semicontinuous. Conse-
quently, F is continuous at T if and only if for every y € Y, the distance
function x — d(F(z);y) is continuous.

Proof. This follows from Lemma 5.1.11. Details are left as Exercise 5.1.15.
[ ]

5.1.5 Uscos and Cuscos

The acronym usco (cusco) stands for a (convex) upper semicontinuous non-
empty valued compact multifunction. Such multifunctions are interesting be-
cause they describe common features of the maximal monotone operators, of
the convex subdifferential and of the Clarke generalized gradient.

Definition 5.1.21 Let X be a Banach space and let Y be a Hausdorff topo-
logical vector space. We say F: X — 2Y is an usco (cusco) provided that F is
a nonempty (convex) compact valued upper semicontinuous multifunction. An
usco (cusco) is minimal if it does not properly contain any other usco (cusco).

A particularly useful case is when Y = X* with its weak-star topology. In this
case we use the terminology weak*-usco (-cusco).
Closed multifunctions and uscos have an intimate relationship.

Proposition 5.1.22 Let X and Y be two Hausdorff topological spaces and
let F: X — 2Y be a multifunction. Suppose that F is an usco. Then it is
closed. If in addition, range F is compact, then F is an usco if and only if F
is closed.
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Proof. It is easy to check that if F: X — 2Y is an usco, then its graph
is closed (Exercise 5.1.16). Now suppose F is closed and range F' is compact.
Then clearly F' is compact valued. We show it is upper semicontinuous. Sup-
pose on the contrary that F' is not upper semicontinuous at £ € X. Then
there exists an open set U C Y containing F'(Z) and a net z, — Z and
Yo € F(x4)\U for each a. Since range F' is compact, we can take subnet
(z3,y3) of (T, Ya) such that g — Z and yz — 3§ € U. On the other hand it
follows from F' is closed that § € F(Z) C U, a contradiction. o

An important feature of an usco (cusco) is that it always contains a mini-
mal one.

Proposition 5.1.23 (Existence of Minimal usco) Let X and Y be two Haus-
dorff topological spaces and let F: X — 2Y be an usco (cusco). Then there
exists a minimal usco (cusco) contained in F.

Proof. By virtue of of Zorn’s lemma we need only show that any decreasing
chain (F,) of usco (cusco) maps contained in F' in terms of set inclusion
has a minimal element. For 2 € X define Fy(z) = (| Fa(z). Since F,(x) are
compact, Fy(x) is nonempty, (convex) and compact. It remains to show that
Fy is upper semicontinuous. Suppose that @ € X, U is open in Y and Fy(x) C
U. Then F,(z) C U for some «. Indeed, if each F, (x)\U were nonempty then
the intersection of these compact nested sets would be a nonempty subset of
Fy(z)\U, a contradiction. By upper semicontinuity of F,, there exists an open
set V' containing x such that Fo(V) C F, (V) C U. °

When Y = R the proposition below provides a procedure of constructing
a minimal usco contained in a given usco.

Proposition 5.1.24 Let X be a Hausdorff topological space and F: X — 2R
an usco. For each x € X, put f(z) := min{r | r € F(x)}. Let G: X — 28 be
the closure of f (i.e., the set-valued mapping whose graph is the closure of the
graph of f). Now put g(x) := max{r | r € G(x)} for each x € X. Finally let
H: X — 2% be the closure of g. Then H is a minimal usco contained in F.

Proof. Since the graph of F' is closed, G is contained in F', and G is an usco
as G is closed and F' is an usco. For the same reason H is an usco contained
in G.

To show that H is minimal, consider open sets U C X and W C R, such
that there is some w € H(U) N W. It is sufficient to find a nonempty open
subset of U, whose image under H is entirely contained in W.

Fix some ¢ < d(R\ W;w). Since w € H(U), there is some x € U such that
g(z) € (w— &;w + €). This means that G(x) C (—oo;w + ¢€) and by upper
semi-continuity of G there is an open VC U, V' 3 z, such that G(V) C (—o0 ;
w+e).
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As g(z) € (w—e,w+¢€), there is some 2’ € V with f(2') € (w —e,w+¢).
This means that F(z') C (w — &,4+00) and by upper semi-continuity of F'
there is an open V' C V, V' 35 2/, such that F(V') C (w — &, +00).

Now H(V') c F(V')NG(V) C (w—¢e,w+¢) C W. Thus H is a minimal
usco. °

Maximal monotone operators, in particular, subdifferentials of convex
functions provide interesting examples of w*cuscos. We leave the verification
of the following example as a guided exercise (Exercise 5.1.17).

Example 5.1.25 Let X be a Banach space, let F: X — 2% be a maximal
monotone multifunction and let S be an open subset of dom F'. Then the
restriction of F' to S is a w*cusco.

To further explore the relationship of maximal monotone multifunctions
and cuscos we need to extend the notion of maximal monotone multifunctions
to arbitrary set.

Definition 5.1.26 (Maximal Monotone on a Set) Let X be a Banach space,
let F: X — 2% be a monotone multifunction and let S be a subset of X. We
say that F' is mazimal monotone in S provided the monotone set

graph FN (S x X*) :={(z,2") € Sx X" |z € S and z* € F(z)}

is maximal under the set inclusion in the family of all monotone sets contained
in S x X*.

It turns out that a monotone cusco on an open set is maximal.

Lemma 5.1.27 Let X be a Banach space, let F: X — 25" be a monotone
multifunction and let S be an open subset of X. Suppose that S C dom F' and
F is a w*-cusco on S. Then F is mazimal monotone in S.

Proof. We need only show that if (y,y*) € S x X* satisfies

(y* —a*,y—x) >0forall z € S,2* € F(x), (5.1.15)
then y* € F(y). If not, by the separation theorem there exists z € X\ {0} such
that F(y) C {z* € X* | (z*,2) < (y*,2)} = W. Since W is weak* open and F'
is w*-upper semicontinuous on S, there exists an h > 0 with By (y) C S such

that F\(Bp(y)) € W. Now, for ¢ € (0,h/|z|), we have y + tz € By(y), and
therefore F(y +tz) C W. Applying (5.1.15) to any u* € F(y + tz) we get

0<(y" —u'y—(y+tz)) = —t{y" —u", 2),
which implies (u*, z) > (y*, z), that is u* & W, a contradiction. °

As a corollary we have
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Corollary 5.1.28 Let X be a Banach space, let F: X — 2% be a mazimal
monotone multifunction and let S be an open subset of X. Suppose that S C
dom F'. Then F is mazimal monotone in S.

Proof. By Example 5.1.25 the maximal monotonicity of F' implies that F' is
a w*-cusco on S, so the result follows from Lemma 5.1.27. ®

Now we can prove the interesting relation that a maximal monotone mul-
tifunction on an open set is a minimal cusco.

Theorem 5.1.29 (Maximal Monotonicity and Minimal cusco) Let X be a
Banach space, let S be an open subset of X and let F' be a mazimal monotone
multifunction in S. Then F is a minimal w*-cusco.

Proof. We know by Example 5.1.25 that F' is a w*cusco. Suppose that
G: S — 2% is a w*cusco and graph G C graph F. By Lemma 5.1.27, G is
maximal monotone, and therefore G = F'. )

Note that a maximal monotone multifunction need not be a minimal usco.
The following example clarifies the difference whose easy proof is left as Ex-
ercise 5.1.18.

Example 5.1.30 Define monotone multifunctions Fy, F; and F from R —
28 by
Fo(z) = Fi(x) = Fo(x) =sgn z if © #0,

while
-F(](O) = {_1}7F1(0) = {_]-7 1} and F2(0) = [_17 1}

Then graph Fy C graph F} C graph F5, and they are all distinct. The multi-
function F5 is maximal monotone and minimal cusco, F} is minimal usco and
Fpy does not have a closed graph.

5.1.6 Monotone Operators and the Fitzpatrick Function

Throughout this subsection, (X, || - ||) is a reflexive Banach space with dual
X* and T: X — 2X" is maximal monotone. The Fitzpatrick function Fr,
associated with T, is the proper closed convex function defined on X x X* by

Fr(z,z) = sup [(y", )+ (=", y) — (¥, )]
y*€Ty
= (z%,2) + sup (z" —y",y — ).
y €Ty

Since T is maximal monotone

sup (z" —y",y—x) >0
y*€Ty
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and the equality holds if and only if * € Tx, it follows that
Fr(z,z*) > (¥, ) (5.1.16)

with equality holding if and only if 2* € Tz. Thus, we capture much of a
maximal monotone multifunction via an associated convex function.

Using only the Fitzpatrick function and the decoupling lemma we can
prove the following fundamental result remarkably easily.

Theorem 5.1.31 (Rockafellar) Let X be a reflexive Banach space and let
T: X — 2% be a maximal monotone operator. Then range(T + J) = X*.
Here J is the duality map defined by J(z) := 0||x||?/2.

Proof. The Cauchy inequality and (5.1.16) implies that for all x, z*,

]* + fl=*|1”

FT(J:71'*)+ 2

> 0. (5.1.17)
Applying the decoupling result of Lemma 4.3.1 to (5.1.17) we conclude that
there exists a point (w*,w) € X* x X such that

0 < Fr(z,z*) — (w*,z) — (", w)

2 * (|2
+
L ll” Tyl

5 + (w*,y) + (¥, w) (5.1.18)

Choosing y € —Jw* and y* € —Jw in inequality (5.1.18) we have

2 * (|2

(5.1.19)
For any z* € Tz, adding (w*, w) to both sides of the above inequality and
noticing Frr(x,z*) = (x*,z) we obtain

2 * (|2
) 2 B )

+ (w*,w) > 0. (5.1.20)
Since (5.1.20) holds for all * € Tz and T is maximal we must have w* € Tw.
Now setting * = w* and z = w in (5.1.20) yields

[w]] + [l

2 +<U}*,w>:07

which implies —w* € Jw. Thus, 0 € (T 4+ J)w. Since the argument applies
equally well to all translations of T', we have range(T + J) = X* as required.
[

There is a tight relationship between nonexpansive mappings and monotone
operators in Hilbert spaces, as stated in the next lemma.
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Lemma 5.1.32 Let H be a Hilbert space. Suppose that P and T are two
multifunctions from subsets of H to 2 whose graphs are related by the con-
dition (z,y) € graph P if and only if (v,w) € graph T where x = w +v and
y=w—v. Then

(i) P is nonexpansive (and single-valued) if and only if T is monotone.
(ii) dom P = range(T + I).

Proof. Exercise 5.1.29. ®

This very easily leads to the Kirszbraun—Valentine theorem [161, 254] on
the existence of nonexpansive extensions to all of Hilbert space of nonex-
pansive mappings on subsets of Hilbert space. The proof is left as a guided
exercise.

Theorem 5.1.33 (Kirszbraun—Valentine) Let H be a Hilbert space and let
D be a non-empty subset of H. Suppose that P: D — H is a nonexpansive
mapping. Then there exists a nonexpansive mapping P: H — H defined on
all of H such that P|p = P.

Proof. Exercise 5.1.30. ]

Alternatively [226], one may directly associate a convex Fitzpatrick func-
tion Fp with a non-expansive mapping P, and thereby derive the Kirszbraun—
Valentine theorem, see Exercise 5.1.31.
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ON PROJECTION ALGORITHMS FOR SOLVING CONVEX
FEASIBILITY PROBLEMS*

HEINZ H. BAUSCHKE! AND JONATHAN M. BORWEIN!

Ahstraet. Due to their extraordinary utility and broad applicability in many areas of ¢lassical mathematics and
madern physical sciences {most notably, computerized tomography), algorithms for salving canvex feasibility prob-
lems continue to receive great attention. Ta unify, generalize, and review some of these algorithms, a very broad and
fiexible framework is investigated. Several crucial new concepts which allow a systematic discussion of questions an
behaviour in general Hilbett spaces and on the quality of convergence are brought out. Numerous examples are given.

Key words. angle between twa subspaces, averaged mapping, Cimmino's method, computerized tomography,
convex feasibility problem, convex function, convex inequalities, convex programming, convex set, Fejér monatane
sequence, firmly nonexpansive mapping, Hilbert space, image recovery, iterative method, Kaczmarz’s method, linear
convergence, linear feasibility problem, linear inequalities, nonexpansive mapping, orthogonal prajection, projection
algorithm, projection method, Slater point, subdifferential, subgradient, subgradient algorithimn, successive projections

AMS subject dassifications, 47H{9, 49M435, 63-02, 65105, 90C25

1. Introduction, preliminaries, and notation. A very common problem in diverse areas
of mathematics and physical sciences consists of trying to find a point in the intersection
of convex sets. This problem is referred to as the convex feasibility problem; its precise
mathematical formulation is as follows.

Suppose X is a Hilbert space and Cy, ..., Cy ate closed convex subsets
with nonempty intersection C:

C=Clﬂ‘--ﬂCN5éﬁ.

Convex feasibility problem: Find some point x in C.

We distinguish two major types.

1. Theset C; is “simple” in the sense that the projection (i.e., the nearest point mapping)
anto C; can be calculated explicitly; C; might be a hyperplane or a halfspace.

2. It is not possible to obtain the projection onto C;; however, it is at least possible to
describe the projection onto some approximating superset of C;. (There is always a trivial
approximating superset of C;, namely, X.) Typically, C; is a lower level set of some convex
function.

One frequently employed approach in solving the convex feasibility problem is algorith-
mic. The idea is to involve the projections onta each set C; (resp., onto a superset of C;) to
generate a sequence of points that is supposed to converge to a solution of the convex feasibility
problem. This is the approach we will investigate. We are aware of four distinct {although
intertwining) branches, which we classify hy their applications.

L. Best approximation theory.
Properties: Bach set €, is a closed subspace. The algorithmic scheme is simple
(“cyclic” control).
Basic results: von Neumann [103, Thm. 13.7], Halperin [61].
Commenis: The generated sequence converges in norm to the pointin C that is closest
to the starting point. Quality of convergence is well understood.
References: Deutsch [44].

*Received by the editors July 7, 1993; accepted for publication (in revised form) June 19, 1995. This research
was supparted by NSERC and by the Shrum Endowment.

t Department of Mathematics and Statisties, Simon Fraser University, Burnaby, British Columbia, Canada V3A
156 (bauschke @cecm sfiLca and jborwein@cecm.sfu.ca).
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Areas of application: Diverse. Statistics (linear prediction theory), partial differential
equations (Dirichlet problem), and complex analysis (Bergman kernels, conformal
mappings), to name only a few.

IL. Image reconstruction: Discrete models.
Properties: Bach set C; is a halfspace or a hyperplane. X is a Euclidean space (i.e.,
a finite-dimensional Hilbert space). Very flexible algorithmic schemes.
Basic results: Kaczmarz [71], Cimmino [29], Agmon [1], Motzkin and Schoen-
berg [83].
Comments: Behaviour in general Hilbert space and quality of convergence only par-
tially understood.
References: Censor [21, 23, 24], Censor and Herman [27], Viergever [102],
Sezan [21].
Areas of application: Medical imaging and radiation therapy treatment planning
{computerized tomegraphy), electron microscopy.

ITL. Image reconstruction: Continuous models.
Properties: X is usually an infinite-dimensional Hilbert space. Fairly simple algo-
rithmic schemes.
Basic results: Gubin, Polyak, and Raik [60].
Comments: Quality of convergence is fairly well understood.
References: Herman [63], Youla and Webb [108], Stark [95].
Avreas of application: Computerized tomography, signal processing.

1V. Subgradient algorithms.
Properties: Some sets C; are of type 2. Fairly simple algorithmic schemes (“cyclic”
or “weighted” control).
Basic results: Eremin [52], Polyak [86], Censor and Lent [28].
Comments: Quality of convergence is fairly well understood.
References: Censor [22], Shor [92].
Areas of application: Solution of convex inequalities, minimization of convex non-
smooth functions.

To improve, unify, and review algorithms for these branches, we must study a flexible
algorithmic scheme in general Hithert space and be able to draw conclusions on the quality
of convergence. This is our objective in this paper.

We will analyze algotithms in a very broad and adaptive framework that is essentially
due to Flim and Zowe [53]. (Related frameworks with somewhat different ambitions were
investigated by Browder [17] and Schott [89].) The algorithmic scheme is as follows.

Given the current iterate x| the next iterate x®+1 is obtained by

N
(*) X = 4 = (Z A [(1 — ol 4 & P!-(“)]) x®,

=]

where every Pi(") is the projection onto some approxtmating superset CE(") of C;, every ai(") is
a relaxation parameter between O and 2, and the kf”)’s are nonnegative weights summing up
to 1. In short, x® TV is @ weighted average of relaxed praojections of x™.

Censor and Herman [27] expressly suggested the study of a {slightly) restricted version of
(x) in the context of computerized tomography. It is worthwhile to point out that the scheme
(#) can be thought of as a combination of the schemes investigated by Aharoni, Berman, and
Censor [2] and Aharoni and Censor [3]. In Euclidean spaces, norm convergence results were
obtained by Flim and Zowe for () and by Aharoni and Censor [3] for the restricted version.
However, neither behaviour in general Hilbert spaces nor quality of convergence has been
much discussed so far. To do this comprehensively and clearly, it is important to bring out
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some underlying recurring concepts. We feel these concepts lie at the heart of many algorithms
and will be useful for other reseatchers as well.

The paper is organized as follows.

In §2, the two important concepts of attracting mappings and Fejér monotone sequences
are investigated. The former concept captures essential properties of the operator A™,
whereas the latter deals with inherent qualities of the sequence (x™).

The idea of a focusing algorithm is introduced in §3. The very broad class of focusing
algorithms admits results on convergence. In addition, the well-known ideas of cyclic and
weighted control are subsumed under the notion of intermittent control. Weak topology results
" on intermittent focusing algorithms are given. We actually study a more general form of the
iteration (x) without extra work; as a by-product, we obtain a recent result by Tseng [100] and
make connections with work by Browder [17] and Baillon [7].

At the start of §4, we exclusively consider algorithms such as (), which we name projec-
tion algorithms. Prototypes of focusing and linearly focusing (a stronger, more quantitative
version) projection algorithms are presented. When specialized to Euclidean spaces, our
analysis yields basic results by Flim and Zowe [53] and Aharoni and Censor [3].

The fifth section discusses norm and particularly linear convergence. Many known suffi-
cient sometimes ostensibly different looking conditions for linear convergence can be thought
of as special instances of a single new geometric concept—regularity. Here the N-tuple
(C\, ..., Cy)iscalled regular if “closeness to all sets C; implies closeness to their intersection
€ Four quantitative versions of (bounded) (linear) regularity are described. Having gotten
all the crucial concepts together, we deduce aur main results, one of which states in short that

linearly focusing projection algorithm
+
intermittent control
+ imply linear convergence.
“nice” relaxation parameters and weights
+
{Cy, ..., Cy) boundedly linearly regular

This section ends with results on (bounded) (linear) regularity, including a characterization of
regular N-tuples of closed subspaces.

Section 6 contains a multitude of examples of algorithms from branches I, II, and IIL

The final section examines the subgradient algorithms of branch I'V, to which our previous
results also apply. Thus, a well-known Slater point condition emerges as a sufficient condition
for a subgradient algorithm to be linearly focusing, thus yielding a conceptionally simple
proof of an important result by De Pierro and Tusem [40]. It is very satisfactory that analogous
results are obtained for algorithms suggested by Dos Santos [47] and Yang and Murty [105].

For the reader’s convenience, an index is included.

We conclude this section with a collection of frequently-used facts, definitions, and no-
tation. .

The “stage” throughout this paper is a real Hilbert space X ; its unitball (x € X : [x|| < 1}
is denoted By.

FacTs 1.1.

(i} (parallelogram law) If x, y € X, then

e + ¥ 17+ lx = yIF = 20x 1% + 1y1).
(i) (strict convexity) If x, vy € X, then :
lx + yll = x|l + Iyl implies [yl -x = [lx[ - y.
(iii) Every bounded sequence in X possesses a weakly convergent subsequence.
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Proof. (i) is easy to verify and implies (ii). (iii) follows from the Eberlein—Smulian
theorem (see, for example, Holmes [67, §18]). 0

All “actors” turn out to be members of the distinguished class of nonexpansive mappings.
A mapping T : D — X, where the domain D is a closed convex nonempty subset of X, is
called nonexpansive if :

[Tx—Ty| < |lx—y|| forallx,ye D,

If |Tx — Ty = |x — y||, for all x, y € D, then we say T is an isometry. In conirast, if
ITx — Ty|| < [lx — ¥, for all distinct x, ¥y € D, then we speak of a strictly nonexpansive
mapping. If T is a nonexpansive mapping, then the set of all fixed points Fix T, which is
defined by

FixT={xeD:x=Tx},

is always closed and convex [38, Lem. 3.4].
FacT 1.2 (demiclosedness principle). If D is a closed convex subsetof X, 7: D — X
18 nonexpansive, {x,) is a sequence in D, and x € D, then

Xp — X . . .
implies x € Fix T,
x,—Tx, >0

where, by convention, “—" (resp., “—") stands for norm {resp., weak) convergence,

Proof. This is a special case of Opial’s (84, Lem. 2]. 0

Itis obvious that the identity Id is nonexpansive and easy to see that convex combinations of
nonexpansive mappings are also nonexpansive. In particular, if N is a nonexpansive mapping,
then 30 is

(1l-w)d+aN foralle € [0, 1].

These mappings are called averaged mappings. A firmly nonexpansive mapping is a nonex-
pansive mapping that can be written as

;—,Id + %N for some nonexpansive mapping M.

FACT 1.3, If D is a closed convex subset of X and T : D —> X is a mapping, then the
following conditions are equivalent.
(i) T is firmly nonexpansive.
(i) |Tx—Ty|? < (Tx — Ty, x—y)forallx, y € D.
(iii) 2T — Id is nonexpansive.
Proof. See, for example, Zarantonello’s [109, §1] or Goebel and Kirk's [36,
Thm. 12.1]. O
A mapping is called relaxed firmly nonexpansive if it can be expressed as

(1 —a)ld+a«F for some firmly nonexpansive mapping F.

COROLLARY 1.4. Suppose D is a closed convex subset of X and T : D — X isa
mapping. Then T is averaged if and only if it is relaxed firmly nonexpansive.

The “principal actor” is the projection operator. Given a closed convex nonempty subset
C of X, the mapping that sends every point to its nearest point in C (in the norm induced by
the inner product of X) is called the projection onto € and denoted Pc.
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FacTS 1.5. Suppose C is a closed convex nonempty subset of X with projection Pe. Then
(i) Pe is fimly nonexpansive,
(i) If x € X, then Frx is characterized by

Bex e C  and (C — Pex,x — Pex) <0Q.

Proof. See, for example, (109, Lem. 1.2] for (i) and [109, Lem. 1.1] for (ii). O

Therefore,
projection
L
firmly nonexpansive
L
relaxed firmly nonexpansive = averaged
i
isometry = nonexpansive <= strictly nonexpansive.

The associated function d(-,C) : X — R : x > infeec |x —¢ll = ||x — Pex| is

called the distance function to C; it is easy to see that 4(-, ) is convex and continuous (hence
weakly lower semicontinuons).

A good reference on nonexpansive mappings is Goebel and Kirk's recent book [58]. Many
results on projections are in. Zarantonello's [109].

The algorithms’ quality of convergence will be discussed in terms of linear convergence:
a sequence {x,,) in X is said to converge linearly to its limit x (with rate 8) if g € [0, 1[ and
there is some & > ( such that {s.L.)

[lxy — x| <af” foralln.

PROPOSITION 1.6. Suppose (x,) is a sequence in X, p is some positive integer, and x is
a point in X. If (xpn)n converges linearly to x and (||x, — x|} is decreasing, then the entire
sequence (x,), converges linearly to x.

Proof. Thereissome e > Qand 8 € [0, 1[ s.t.

||x,cm - x| <af” for all .
Now fix an arbitrary positive integer m and divide by p with remainder; i.e., write

m=p-n+r, wherere{0,1,...,p~1}L

We estimate
e
i = 2l < lxpn — 1l < @ (87)
\nptr
«(8?) a N/
= 3y ¥ E L p—l (ﬁ IF,) 1
() " \(e)
and the result follows. O

Finally, we recall the meaning of the following.
If § and ¥ are any subsets of X, then span 8, convS, S, inty S, icrS, and intS denote,
respectively, the sparn of S, the closed convex hull of S, the closure of S, the interior of § with
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respect to (w.r.t.) Y, the intrinsic core of § (= itz S, where aff S is the closed daffine span of
§), and the interior of S (= inty §).

§ is called a cone if it is nonempty, convex, and closed under nonnegative scalar multi-
plication. If S is the intersection of finitely many halfspaces, then S is a polyhedron.

If ¥ is a real number, then r* := max({r, 0} is called the pasitive part of r. In the context
of sequences of real numbers, lim (resp., lim) stands for limes superior (resp., limes inferior).
Occasionally, we will use the quantifiers ¥ (for all) and 3 (there exists) to avoid monstrous

sentences.

2. Two useful tools: Attracting mappings and Fejér monotone sequences. We fo-
cus on two important concepts. The first generalizes the idea of averaged (resp., strictly)
nonexpansive mappings.

DEFINITION 2.1. Suppose D is a closed convex nonempty set, T : I — D is nonex-
pansive, and F is a closed convex nonempty subset of D. We say that T is atrracting w.rt. F
ifforeveryx e D\ F, f € F,

ITx — fIl < llx = £1I.

In other words, every point in F attracts every point outside F. A more quantitative and
stronger version is the following,

We say that T is strongly attracting wrt F if there is some ¢ > 0 s.t. for every x €
D, feF,

illx = Tx||> < lx — £II* = ITx — I~

Altematively, if we want to emphasize « explicitly, we say that T is x-attracting w.rt. F.
In several instances, F is Fix T'; in this case, we simply speak of attracting, strongly attracting,
oF K -attracting mappings.

REMARKS 2.2. Some authors do not require nopexpansivity in the definition of attracting
mappings; see, for example, Bruck’s “strictly quasi- nonexpansivc mappings” [18], Elsner,
Koltracht, and Neumann’s “paracontracting mappings” [51], Eremin’s “ F-weakly Fejér maps”
[52], and Istratescu’s “T-mappings” [69, Chap. 6]. For our purposes, however, the above
definitions are already general enough. As we will see, the class of strongly attracting mappings
contains properly all averaged nonexpansive mappings and thus all relaxed projections—the
mappings we are primarily interested in.

We would like to mention (but will not use) the fact that the class of attracting mappings
properlycontains all three of the following classes: the class of strictly nonexpansive mappings,
Bruck and Reich’s strongly nonexpansive mappings [19], and a very nice class of nonexpansive
mappings introduced by De Pierro and Jusem [41, Def. 1]. The mapping x — 1 —In(1 +&*)
is a first example of a mapping that is strictly nonexpansive but not averaged; hence the class of
attracting mappings is genuinely bigger than the class of strongly attracting mappings. Finally,
neither class contains isometries with fixed points.

The asserted proper containment staterents are demanstrated by the following example.

EXAMPLE 2.3. Suppose D is a closed convex symmetric interval in R that contains the
interval [—1, +1] strictly. Let

Y Bl iflxl <1,
s — L 1

|x| — 3 otherwise.

Then

+ T is nonexpansive and Fix T = (0}.
* T is not strictly nonexpansive.
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¢ T is not strongly nonexpansive (in the sense of Bruck and Reich [19]); in particular,

T is not averaged [19, Prop. 1.3].
s T is not nonexpansive in the sense of De Pierro and [usem [41, Def. 1].
o T is attracting. _
T is strongly attracting if and only if D is compact.

LEMMA 2.4 (prototype of a strongly attracting mapping). Suppose D is a closed convex
nonempty set, T : DD — D is firmly nonexpansive with fixed points, and o € 10, 2[. Let

Ri=(l-—a)ld+aT andfixx € D, f € Fix T. Then
) Fix R = Fix T.
) x— fix—Tx} = |lx —Tx|? and {x — Tx,Tx — f) = 0.
(i) lx = fI* = |Rx — f* = 20{x — f,x — Tx} —a*|x — Tx|%
(iv) R is (2 — w)/a-aracting:
lx— £ = IRx — £I* 2 2 — &) /erllx — Rx]* = @ — a)efx — Tx||*.

Proof. (i) is immedijate.
(ii): Since T is firmly nonexpansive, we abtain

1Tx - fIF < {Tx— fix— f)
= 1Tx=xIP+ I — fI?+2(Tx —x,x = f) < (Tx — fix — f)
=S ITx—xPs{x—Tx,x— f)=(x=Tx,(x—Tx)+ (Tx — f))
= 0=<{x—Tx,Tx — f).

{iii) is a direct calculation:

lx — £ — |1Rx = 1>
=[x = fI* = (1 — a}(x — f) +a(Tx — £
=lx— fI* =LA —a)’lx — fI* +2ITx — FI? +2a(l —e){x — £, Tx — f}]
=2allx — fI* - o’x — fI* =¥ Tx — FI*

+20%x — f,Tx— f)—20lx— £, Tx— f)
=2a{x— f,(x— [} — (Tx— f))

—allx — fIP+ 1Tx = fI”P = 2(x — £, Tx = )]
=2aix — fix —Tx) —e?|Ix — Tx|~

(iv): By (ii), (iii), and the definition of R, we get
lx = FI* = 1Rx — fII* = 20(x — fix — Tx) —a?|x — Tx|?
> 2allx — Tx|* — &*x — Tx|*
=a2—-a)x — Tx|?
=(2—a)ja|x—Rx|>. 0O

Note that (i) and {iii) are actually true for an arbitrary nonexpansive mapping T this
will, however, not be needed in what follows. Since prajections are firmly nonexpansive
(Facts 1.5.(i}), we immediately obtain the following result which slightly improves Fldm and

Zowe's [53, Lem. 1].

COROLLARY 2.5. If P is the projection onto some closed convex nonempty set § and
o €]0,2 then R := (1 —a)ld+aPis (2 — a)/a-attracting wrt. S andforx € X,s € S,

lx — sl — | Rx — s[* = 2 — a)ad’(x, 5).
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DEFINITION 2.6. Suppose (x,) is a sequence in X. We say that (x,) is asymprotically
regular if

Xy — Xnpp — O

ExAMPLE 2.7. Suppose D isaclosed convex nonempty set, F is a closed convex nonempty
subset of D, and (T,,} =0 is a sequence of nonexpansive self mappings of D, where each T, is
&y-attracting w.rt. F and lim «, > 0. Suppose further the sequence (x,) is defined by

xp € D arbitrary, Xyt = Taxy, forallm = Q.

Then (x,) is asymptotically regular.
Proof. Fix f € F and choose 0 < x < lim ,&,. Then for all large »,

2 2
kXt — Xall* < (%t — FI* = llxe — FI™

Summing these inequalities shows that 3, [|Xu—1 — X |I? is finite: the result follows. ]

COROLLARY 2.8. Suppose D is a closed convex nonempty setand T : D — D isstrongly
attracting with fixed points. Then the sequence of itevates (T" xq)n»q is asymptotically regular
for every xq € D.

REMARK 2.9, The corollary is well known for firmly nonexpansive and, more generally,
strongly nonexpansive mappings (see [19, Prop. 1.3 and Cor. 1.1]). In the literature, the
conclusion of the corollary is often “T is asymptatically regular at xq.” We hope the reader
accepts this as an a posteriori justification for introducing the notion of an asymptotically
regular sequence.

The next propositions show that {strongly} attracting mappings respect compasitions and
convex combinations.

PROPOSITION 2.10. Suppose D is a closed convex nonempty set, Ty, ..., Ty : D — D
are attracting, and (1., Fix T; is nonempty. Then

) Fix (TyTy_1---T)) = n:\le Fix T; and TyTy_, - - - T\ is attracting.
(ii} Ifevery T; is «;-attracting, then Ty Ty, -+ - T ismin{cy, . .., kn}/2Y'-attracting,

Proof. It is enough to prove the proposition for N = 2; the general case follows induc-
tively.

(i); Clearly, Fix Ty NFix T; € Fix (IT1). To prove the other inclusion, pick f €
Fix (T, T|). It is enough to show that f € Fix T|. If this were false, then T} f ¢ Fix T,. Now
fix f € Fix 7| NFix T;. Then, since T, is attracting,

If = FIl =1 f) = Fll < ITf — FIL < I1F = FII,

which is absurd. Thus Fix T} NFix T» = Fix (T3 7}). It remains to show that 7, 7| is attracting.
Fix x € D\Fix (I,TY), f € Fix(QT)). If x = T1x, then Thx # x and hence | ThTix — f|| =
[Tox — fIl < |x — fI. Otherwise x # Tyx; then |[2Tix — fIl < |Tix — fll < lx— fll. In
either case, T, T is attracting.

(ii): Given x € D, f € Fix (T T\), we estimate

lx — TTyx|* < (Jx — Tix| + [ Tix — LTx))?
< AUlx — Tix|* + I Tix — TTix(?)

2
Zlx— fIP=1Tix = £
K|

1A

2
+ o Tix FIP =T - fI»

1A

————(lx = fI* = IBTx— fI)). U
min{«, &3}
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REMARK 2.11. Let X 2 {0}, D:=X, N:=2, and T} := T, := —Id. Then
Fix T} NFix T, = {0} & X = Fix (1Y),

hence the formula on the fixed point sets given in (i) of the last proposition does not hold in
general for nonexpansive mappings.

PROPOSITION 2.12. Suppose D is a closed convex nonempty set, Ty, ..., Ty : D — D
are attracting, and ﬂ;”:l Fix T; is nonempty. Suppose further 11, ..., ky > Qwith Zi LA =
1. Then

() Fix (V0L L T) = /L Fix T; and Y1, T, is antracting.
(i) If every T; is x;-attracting, then Zil AT ismin{xy, ..., «n}-attracting.

Progf. Again we have only to consider the case when N = 2.

(iy: Once more, Fix T) NFix T3 € Fix (A 71 + 2273). Conversely, pick f € Fix (4,11 +
A2Ty), f € Fix Tj N Fix T5. Then

I1f = 7l = IMTf + MTaf — A f = A fl
2AITSf = fll+ 2T f = £
SMIf = fll+2llf = fll=1f = 1.
Hence the above chain of inequalities is actually one of equalities. This, together with the

strict convexity of X, implies f = T} f = T, f. Next, we show that &, 7| + A, 73 is attracting,.
Suppose x # M T1x + A Tox and f € Fix (7| + %2 73). Then x & Fix 7y NFix T; and thus

I Tix + 22Tox — fIl < MlITix — fll + 2l Tax — £
< Allx = fll + 2allx = fll = llx = .

Gi): If x := min{xy, x2}, x € D, and f € Fix (4| T1 + 4273), then

kllx — (o Tix + 2T < khllx — Tixl + Aallx — Tox|))?
< &l — Tix||” + Azllx — Tax|%)
< Aieyllx = Tyxl|? + Aakallx — Tox|?
< Xllx = fI* = 1Tx — £13)
+hallx = fIF = 1 Tax — £I3)
<llx = FIP = I Tix + 2Ty — fIF. O

REMARK 2.13. In contrast to the last remark, the above proof shows that the formula
Fix (va:l M) = ?":1 Fix T; holds even if the 7;’s are not attracting.

EXAMPLE 2.14. Suppose §, ..., Sy are closed convex nonempty sets with projections
Py, ..., Py and with nonempty intersection. Then

T PiL+ PP+ - +PyPy_- - P
o N

is strongly attracting, Fix T = m;\le §;, and the sequence of iterates (T™xg) is asymptotically
regular for every xg.
The second concept captures essential properties of iterates of nonexpansive mappings.
DEFINITION 2.15. Suppose C is a closed convex nonempty set and {x,) is a sequence in
X. We say that (x, )0 IS Fejér monotone w.rt. C if

[xpet —¢ll < llxn —cll foralle € C andevery n = 0.
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THEOREM 2.16 (basic properties of Fejér monotone sequences). Suppose the sequence
{Xy)n>a 15 Fejér monotone w.rt, C. Then
()} (x,) is bounded and d(xp 11, C) < d(x,, C).
(ii} (x,) has at most one weak cluster point in C. Consequently, {x,) converges weakly
to some point in C if and only if all weak cluster points of (x,,) lie in C.
(iii) If the interior of C is nonempty, then (x,} converges in norm.
(iv) The sequence (Pcx,) converges in norm.
v} The following are equivalent:
1. (x,) converges in norm to some point in C.
2. (x) has norm cluster points, all lying in C.
3. (x.) has norm cluster points, one lying in C.
4, dix,, C) — 0.
5. x4 — Prx,, —> Q.
Maoreover, if (x,) converges to some x € C, ther ||x, — x|| < 2d(x,, C) foralln = 0.
(vi) Ifthere is some constanta > 0s.t. ad?(x,, C) < d*(xy, C}—d* (X, 41, C) for every
n, then (x,,) converges linearly to some point x in C. More precisely,

lxn — x|l < 2¢1 — @) ?d(xy, C)} foreveryn > 0.

Proof. {i} is obvious.

(il): Forany ¢ € C, the sequence (|| x,||2—2{x», ¢}) converges. Hence if we suppose ¢, ¢3
are two weak cluster points of (x,,) in C, then we conclude that the sequence ({x., ¢\ — ¢2})
converges and that {¢;, ¢| — ¢3) = {ca,¢1 — ¢2}. Thus ¢ = 9.

(iii); Fix ¢q € int C and get € > 0 s.t. cy+ €By € C.

. 2
Claim: 2€(1%n — Xustl| < l%n — col* = IXns1 — col*  foralln > 0.

We can assume x,, # Xq41. Then cg +€(xy — Xn11)/ 1| Xa — Xn41/l € C and hence, by Fejér
monotonicity, '

Xy Xuil
cp +é€———— ) —Xp4)
||xn - xn+l||

S ‘

Xy — X
(Ca +E———+l ) — Xl -
I|xﬂ = Xntl ||
Squaring and expanding yields the claim.
The claim implies 2¢ [|x, — Xn4zll < x4 — col? = |[%nsk — coll? forall #, k > Q. Because
the sequence (|| x, — col| %) converges, we recognize (x,) as a Cauchy sequence.
(iv): Applying the parallelogram law [la — b[|? = 2[|a||> + 21&]% - lla + b|* to a :=
PeXppr — Xnye and b i= Pex, — Xpqp, we obtain for all n, k > 0,
1 Pcxnse = Pexnll® = 21 Pexnsk = Snsiel® + 2 Pexa — Xl
— 4| PrXms + Pexe)/2 — Xnpil?
< 2| PeXwrt — Xnril? + 20 Pexn — Xngall?
— 4| Pexnake — naill”
< 2 Pexy — Xnkll* = 20 Pexnrs — Xnsall

2 2
= Ul Pexn — xall” = | PeXnk = Xnrkll)-

We identify { Pcx,) as a Cauchy sequence because (|| x,, — Pcx,||) converges by (i).
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(v}. The equivalences follow easily from (i), (iv}, and the definition of Fejér monotonicity.
The estimate follows from letting & tend to infinity in

[ Xnsk = Xull < (Xntx — Poxall + | Poxe — xall

= lxn — Pexull + | Poxa — xall = 2d(x,, C).

(vi): Summing the given inequalities shows that d2(x,, C) tends to 0; therefore, (x,)
converges to some point x in € by (v}. The estimate on the rate of convergence of (x, ) follows
easily from the estimate given in (v). ]

REMARKS 2.17. As far as we know, the notion of Fejér monotonicity was coined by
Motzkin and Schoenberg [83] in 1954. Moreau [81] inspired (iii); see also [69, Thm. 6.5.3].
(ivirestsonanideaby Baillon and Brezis [8, Lemme 3] and partially extends [46, Thm. 3.4.(c)].
Finally, (v) and (vi) appeared implicitly in Gubin, Polyak, and Raik’s [60, Proof of Lem. 6].

EXAMPLE 2.18 (Krasnoselski/Mann iteration). Suppose C is a closed convex nonempty
set, T : C — C is nonexpansive with fixed points, and the sequence (x,} is given by

X0 €C,  Xnp1:={1—t)x, +1,Tx,

for all n = 0 and some sequence (,)n=q in [0, 1]. Then (x,) is Fejér monotone w.r.t. Fix T

REMARKS 2.19. In the early days, the Krasnoselski/Mann iteration was studied in Hilbert
space. Some authors then implicitly used properties of Fejér monotone sequences; see [79,
Proof of Thm. 1] and [90, Proof of Thm. 2]. However, tremendous progress has been made
and today the iteration is studied in nonmed or even more general spaces (see [15, 57] for
further information).

EXAMPLE 2.20 (Example 2.14 continued). The sequence (T"xy) converges weakly to
some fixed point of T for every xq.

Proof. (T"xp) is asymptotically regular (Example 2.14) and Fejér monotone w.rt. Fix T
{Example 2.18). By the demiclosedness principle, every weak limit point of (T"xg) lies in
Fix T. The result now follows from Theorem 2.16.(ii). a

REMARK 2.21. Alternatively, one can use Baillon, Bruck, and Reich’s results on averaged
mappings [9, Thms. 1.2 and 2.1] to understand the last example. In fact, using a suitable mod-
ification of [9, Thm. 1.1], one can show that ("% xq) converges in norm whenever S, ..., Sy
are closed affine subspaces.

REMARK 2.22. We conclude this section by mentioning a method due to Halpern [62]
which generates a sequence that converges in norm to the fixed point of 7' that is closest ta the
starting point. For extensions of Halpern’s result, the interested reader is referred to Lions’s
[77], Wittmann’s [104], and the first author’s [11].

3. The algorithm: Basic properties and convergence results.
Setting. Suppase D is a closed convex nonempty set and Cy, ..., Cy are finitely many
closed convex subsets of D with nonempty intersection:

C=N,C+#0b.

For every i € {1,..., N} (we will often refer to i as an index} and all r > 0, suppose that
T . D —s D js firmly nonexpansive with

Fix ™ 2 ¢,
that af") € [0, 2] is a relaxation parameter and

RM = (1- o+ o T
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" is the corresponding relaxation of T, (underrelaxed if a™ e [0, 11, overrelaxed if o™ €
[1, 21), that (™)X, in [0, 1] is a weight, i.e., TN, 4 = 1, and finally that

AP = T AR

is the corresponding weighted average of the relaxations.
With these abbreviations, we define the algorithm by the sequence

x® e D abitrary,  x"V = A®® foralln > 0,

with the implicit assumption that the sequence (x™) lies in DD, We alsa define the set of active
indices

I =(ie{l,..  N:1\">0),

and we say i is active at n ot n is active for i if A’ > 0;ie.,i € I, We always assume that
every index is picked infinitely often; i.e., I is active at infinitely many n (this is sometimes
referred to as repetitive control; see [22]). To facilitate the presentation, we abbreviate

p = 2 We 2 - Z?;l lﬁ")aj‘")] for every index i and n > 0.

For convenience, we introduce some more notions. We say the algorithm is asymptotically
regular if every sequence generated by the algorithm is. We say the algorithm is unrelaxed
if al.(“) = 1 for all n and every index i active at any n; note that in this case the algorithm
reduces to a product of finnly nonexpansive mappings. We say the algorithm is singular if
1™ is a singleton for every n. Singular algorithms are also called row—action methods (see,
for example, [21]). Finally, we say the algorithm is weighted if IV = {1, ..., N} for all n:
the reader may also find the words “parallel” or “simultaneous” in the literature.

REMARK 3.1. The algorithm is a direct generalization of Flim and Zowe's algorithm [53].
In fact, one just chooses X finite dimensional and 7}(") as the projection onto a hyperplane
containing C;. We will examine their algorithm in detail in §4,

LEMMA 3.2 (basic properties of the algorithm).

() Ifx € Dandn > 0, then

1 2 2
||x(’l) _ x||2 - ”x(ﬂ"‘ Y x| = Zlfn)lﬁﬂ)algﬂ)a}ﬂ) ||Tl_(")x(ﬂ) — I}(ﬂ)x(ﬂJ I
i<

+ 2Zlfn)af"}(x(’” — T T e _

+ Zlgﬂ)a;ﬂ][z _ ZJ-A.;”}CE}M]”I(M _ ‘I‘l(’l)x(rl) ||2‘

(i) Ifx € My C: andn > 0, then

2
e = x[? — ™D — x| 2 3 e — TR,

L

(iii) Ifx € (V5 Nico Ci andm > n > 0, then

m—l

2 2 ! { 1} 002

e e e (RED I I 4 P Al i
t=n i

In particular, this estimate holds whenever x € C.
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(iv) The sequence (x 1y is Fejér monotone w.rt. C and hence is bounded. Also,

+00
[} )
+oo > Y Y udx® - TOxO2
=0 i

(v) Ifn = 0, then

12+ — x| = 3 AW — 70,

I

Proof. (i): We omit the somewhat tedious and lengthy but elementary calculation. It is
easy to see that “(i) == (ii) = (i) = (iv)” (use Lemma 2.4.(ii)). (v) is immediate by the
definition of the algorithm. 0

Using the tools from the previous section, we obtain the following corollary.

COROLLARY 1.3 (sufficient conditions for norm convergence).

G) Ifthe interior of C is nonempty, then the sequence (x™) converges in norm to some
point in D.

(i) If the sequence (x™) has a subsequence (x)) with d(x"}, C) —> 0, then the
entire sequence (x™) converges in norm to some point in C.

Proof. This follows from Lemma 3.2.(iv) and Theorem 2.16. O

REMARK 34. If the interior of C is empty, then the convergence might only be weak:
Genel and Lindenstrauss [56] present an example of a firmly nonexpansive self mapping T of
some closed convex nonempty set in £, such that the sequence of iterates (7"xq} converges
weakly but not in norm for some starting point xo. (A norm convergent method is mentioned
in Remark 2.22.} Since (T"xp) is Fejér monotone w.r.t. Fix T (Example 2.18}, we conclude
that Fix 7 has empty interior and norm convergence of the algorithm needs some hypothesis.

COROLLARY 3.5 (asymptotically regular algorithms). The algorithm is asymptotically
regular whenever

(1) Ii_m,m active for | #’gn) = Ofor every index i or
(i) TiM o active or i & < 2 for every index i.

Proof. (i): There exists an € > 0 s.t. for all n sufficiently large, ,u?') = ¢ for every
index i active at n. Lemma 3.2.(iv) implies that 3, 3", cive aer X — Tix® (12 is finite.
Coansequently,

Zm active at n ||x(n} - nx("JH — 0.
On the other hand, by Lemma 3.2.(v),
[|x(n+1} - x(n) |I = z.i:i activeatn A‘i(n]a.i(n) ||x("IJI - fo(n) I|

Hence (x®) is asymptotically regular.

(ii): By Lemma 2.4.(iv) and Proposition 2.12, every A™ is «,-attracting w.r.t. C, where
Ky = min{(2 — af")) /af” : i active at n}. The hypothesis guarantees lim «, > 0, so the
conclusion follows from Example 2.7. O

The following simple example shows that the algorithm is not necessarily asymptotically
regular.

EXAMPLE 3.6. Suppose X := R, N := 1, T{" := Py = 0, o := 2. Then x™ =
(—1)"x®; hence the sequence (x™) is not asymptotically regular for x@ # 0.

The algorithm should converge at least weakly to some point; however, as the last example
shows, further assumptions are necessary.
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DEFINITION 3.7. We say the algorithm is focusing if for every index i and every subse-
quence (x"), of the algorithm,

x(nk) —_ X

x) — Ty 0 3 implies x € C;.

i active at n

Thanks to the demiclosedness principle, we immediately obtain a first example.

EXAMPLE 3.8. Suppose N = 1, Tl(") =T, and €y := Fix T. Then the algorithm is
focusing.

REMARK 3.9. As almost all upcaming results show, the concept of a focusing algorithm
is crucial. It can be viewed as a generalization of the demiclosedness principle for firmly non-
expansive mappings. The concept itself is investigated in Proposition 3.16 (cf. Theorem 4.3,
Corollary 4.9, Theorem 7.7, and Theorem 7.12}.

THEOREM 3.10 (dichotomy I). Suppose the algorithm is focusing. If B, , scrive for u >
0 for every index i, then the sequence (x™) either converges in norm to some point in C or
has no norm cluster points at all.

Proof. In view of the Fejér monotonicity of {x®) and Theorem 2.16.(v), it suffices to
show that any norm cluster point of (x%) lies in C. Suppose to the contrary that the theorem
were false. Then there is some subsequence (x**), converging to some point x ¢ C. Let us
define

hai={el,... . N}:xeC;} and I={ie{l,.... Nl:x€Ci};
then /.. is nonempty. We assume, after passing to a subsequence if necessary, that

I(M) U 1(ﬂ*+1) U Joenml) o {1,...,N}L

Now get my € (Ag, ..., et — 1} minimal s.t. 7% N [ # @, Thus for ng < m < my, we
have 1™ C I, Since x € ()¢, Ci, Lemma 3.2.(iii) yields [ —x|[ > [x®* — x|, which
implies

() PALC R

After passing to another subsequence if necessary, we can assume that there is some index
is.t i )

(2) eIty for all k.

By Lemma 3.2.(iv), +00 > 3, ™ |00 — 70" x®) |2 By (2) and the hypothesis
on (11™), we conclude that

€)) gl gyl g,

Because the algorithm is focusing, (1}, (2), and (3) imply x € C;, which is a contradiction
to i € I,y Therefore, the proof is complete. 1]
" REMARKS 3.11. The finite-dimensional version of the last theorem is relatively recent and
was discavered (in some form or another) independently by Flam and Zowe [53], Tseng [100],
and Elsner, Koltracht, and Neumann (51]. Unfortunately, since firmly nonexpansive mappings
are not weakly continuous in general (see, for example, Zarantonello’s [109, Example on
p. 24351), the proaf does not work in the weak topology.
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COROLLARY 3.12. Suppase X is finite dimensional and the algorithm is focusing. If
WM, crive for i ,U-f“} > (O for every index i, then the sequence (x™) converges in noym to some
point in C.

Proaf. (x*}is bounded (Lemma 3.2.(iv)) and hence possesses a norm cluster point. Now
apply Theorem 3.10. a

REMARK 3.13 (guaranteeing the “liminf” condition). A simple way to guarantee
M, serive cors #4070 for some index { is to assume the existence of some ¢ > 0 s.t.

)

“ <2 ¢ and € <A™ forall large n active at i,

€ < o
because then ,u,f") > ¢3. Moreover, this assumption is eguivalent to {cf. to Corollary 3.5)

Lim,,., setive for ¢ P'J,'(n) >0 and lim,, aetive for i ﬂ;(n} <2
Flam and Zowe [53] used this assumption with great success; see also Example 4.18.

EXAMPLE 3.14 (Tseng’s framework [100, Thm. 1]). Suppose X is finite dimensional and
the algorithm is singular. Suppose further T}(") =T, C; = Fix T}, and there is some ¢ >
st e =< af’” < 2—¢ forall nand every index i. Then the sequence (x®) converges in norm
to some point in C.

Proof. The demiclosedness principle readily implies that the algorithm is focusing. By
the last remark, 1 ... aoive o « p™ > 0 for every index i. The result follows from the last
corollary. |

DEFINITION 3.15. Given an algorithm, we say that (T}(")] converges actively pointwise to
T; for some index § if

lim T"d = T,d foreveryd € D.

n:n active for f

PROPOSITICN 3.16 (prototype of a focusing algorithm). Suppose Ty, ..., Ty : D — D
are firmly nonexpansive and let C; .= Fix T, for every indexi. If (Ti("}) converges actively
poinrwise to T; for every index i, then the algorithm is focusing.

Proof. Fix an index i and a subsequence (x®) of (x™) with x — x € D, x™) —
T xt) 5 0, and i active at every n,. We must show that x € C;. Fix any u € X. Because
T{.("“) Pp is nonexpansive,

(™ —u) — (Zﬂ("*)x("") — Tl.(“”PDu), e — gy > Q0 forall k.
Let & tend to infinity; then, by hypothesis on (T}(")) and (x®™)), we conclude that
{T; Ppot —u,x —uy = 0.

Since u has been chosen arbitrarily, we might as well choose 4 = x + tu, where v is an
arbitrary vector and ¢ = 0. Then

(T Pp(x +1v) — (x +ru},0) <O
hence, by letting ¢ tend to 0, we get {T; Ppx — x, v} < 0. For v = x — T; Ppx, we abtain
x =T Ppx.

But x € I}, s0 Ppx = x and therefore x € Fix T; = C,. a
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REMARKS 3.17.
» Thelastproofis aspecial case of an argument of Baillon [7, Chapitre 6, Démonstration
du Théoréme L3].
» Note that the last proposition gives another explanation of the fact that the algorithms
of Examples 3.8 and 3.14 are focusing.
DEFINITION 3.18 (control). We say the algarithm is cyelic if

[“VU={nmod N} forn>1,
where we use {1, ..., N} as remainders. If there is a positive integer p s.t.
PefMureth . pmh -l for every index i and all n > 0,

then we speak of an intermittent or p-intermittent algorithm or of intermittent control. Fol-
lowing Censor [21], we call an algorithm almosr cyclic if it is intermittent and singular. We say
the algorithm considers only blocks and speak of block control (cf. [25]) and a block algorithm
if the following two conditions hold.

1. There is a decompasition Sy N ---N Sy ={1,... N}with J, #Band F, N Jp =8
forallm,m' € {1,..., M}and m # m’.

2. There is a positive integer p s.t. foralln > Oand everym € {1, ..., M}, [® = 1,
forsomen’ € n,n+1,...,n+p—1}.

Finally, if we want to emphasize that the active indices do not necessarily follow some
form of control, then we use the phrases random control and random algorithm. Clearly,

cyclic — almost cyclic

h

considers only blocks ——  intermittent —> random.

/
weighted

REMARKS 3.19.
s Recently, block algorithms have received much attention in radiation therapy treat-
ment planning; see [25] and the subsection on polyhedra in §6.
s Equivalent to the phrase “almost cyclic” is Amemiya and Ando’s “quasi-periodic”
[5] or Browder’s “admissible (for finitely many sets)” [17].
THEOREM 3.20 (weak topology results).

(1} Suppose the algorithm is focusing and intermittent. If im ., .o por ; ;,Lf’” = Q for
every index i, then the sequence (x™) is asymptotically regular and converges weakly to some
point in C.

(1} Suppose the algorithm is focusing and p-intermittent for some positive integer p.
Let

Uy = min[u,f” cnp <l<in+1)p—1andi active atl} foralin = Q.

If ¥, v = 400, then the sequence (x™) has a unique weak cluster point in C. More
precisely, there is a subsequence (x ) converging weakly to this unique weak cluster point
of ™) in C s.t.

(me+1)p—1
) Y Y s — IO — 0, which implies
I=mp e

(**) x(ﬂkp"f'?‘k) _ x(ﬂkﬂ‘f‘.!}) —0
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for all sequences (ry),{(s;) in {0,...,p — 1}. In particular, this happens whenever
li—[nn:n active for § ,u(?'l} > Ofor £very index i.

(iit) Suppose the algorithm is focusing and the sequence (x™) converges weakly to some
pointx. If S, 1™ = o0 for some index i, then x € C;. Consequently, if ¥, u™ = +o0
for every index i, then x € C.

Proof. (i): (x*) is asymptotically regular (Corollary 3.5.(i)). Suppose to the contrary
that (x™}) does not converge weakly to some point in C. Then, by the Fejér monotonicity of
- (™} and Theorem 2.16.(ii}, there exists an index i and a subsequence (x“*}), converging

weakly to some point x & C;. Because the algorithm is intermittent, we obtain m; with
me < <m+p—1 and el forallk >0,
Since the algorithm is asymptotically regular, we have x ™ — x®™ —  and hence
(x®);, converges weakly to x.
Since the algorithm is focusing, we conclude that
lim, ||x(m") _ T}(mk)x(mk)” = 0.

On the other hand, by Lemma 3.2.(iv), 400 > ¥, u™||x®) — T,/ x0) |12, This contra-
dicts the hypothesis on (,u.f”)); thus (i) holds.
(ii): Fix momentarily ¢ € C. Then, by Lemma 3.2.¢iii) and the definition of u,,

(rt1p-1
2 i 2 t B )2
1P = c|? = x @D — 2y, Y0 Y - 709
I=np et

foralln = (. Summing over # and considering the hypothesis on (1), we obtain a subsequence
(xmy, g

{ne+i)p-1 ;
(x) > 2 IO -19x9) —o0.
I=mep ief®
By Lemma 3.2.(v), we also have
(%%} yleptnd _ luptn)
for all sequences (r;), (sg)in {0, 1, ..., p — 1}. After passing to a subsequence if necessary,

we may assume that (xP)), converges weakly to some x € D.
Claim: x € C.

Fix any index {. Since the algorithm is intermittent, there is some sequence (ry) in
0,1,...,p—1}st

0] x(mcp-l—!e) oy
(this follows from (%) with 5, = 0) and

2) ie 1ot forall k.
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By (%),

3) Ouptred 'I}(ﬂtp“k)x(nmﬂn — 0.

Since the algarithm is focusing, (1}, (2), and (3} imply x € C;. The claim follows.

By Theorem 2.16.(ii), x is the unique weak cluster paint of (x™) in C. The proof of (ii)
is complete.

(iii): By Lemma 3.2.Gv), +00 > ¥, 2 |x® — T, x ™) |12, Since we assume 3, ,u,f”’ =
4ox, the limes inferior of the sequence

(||x(”) - T}(n)x(n)")n 1 n active for §

must equal 0. Since the algorithm is focusing, we readily see that x is in C;. The entire
theorem is proven. O

REMARKS 3.21. (i) is our basic weak convergence result. (ii) is a generalization of an
idea due to Trummer [97, Thm. 1]. Tseng’s [100, Thm. 2] is also a result on the existence of
a unique weak cluster point of (x™) in C; his hypothesis, however, is somewhat contrasting:
he considers less general relaxation parameters and weights but more general control. (jii)
can be viewed as a generalization of Flam and Zowe’s [53, Thm. 2] (see also Corollary 3.24
and Example 4.18.¢1i)} and Aharoni and Censor’s [3, Thm. I] (see also Corollacy 4.17 and
Example 4.19).

COROLLARY 3.22. Suppose T\, ..., Ty : D —> D are firmly nonexpansive, C; =
Fix T;, and (I}(”)) converges actively pointwise to T,. Suppose further there is some € > Q 5.1,
€< al‘(") <2—cande < )Lf")for all n > 0 and every index i active at n. If the algorithm is
intermittent, then the sequence (x) converges weakly to some point in C.

Proof. The algorithm is focusing (Proposition 3.16) and im ., yeveror¢ #0 > O for
every index { (Remark 3.13). The result now follows from Theorem 3.20.(i). |

REMARKS 3.23.

(i) (a special case of a theorem of Browder) If the algorithm is almost cyclic and
Ti(") = T}, then the last corollary gives [17, Thm. 5 for finitely many sets].

(ii) (a remark of Baillon) If the algorithm is almost cyclic and unrelaxed, then the last
corollary gives Baillon’s {7, Chapitre 6, Remarque IL.2].

COROLLARY 3.24. Suppose the algorithm is focusing and the interior of C is nonempty.
¥Y, 1wl = +00 for every index i, then the sequence (x™) converges in norm to some point
inC.

Proof. It is immediate from Corollary 3.3.(i) and Thearem 3.20.(ii1). 0

COROLLARY 3.25. Suppose X is finite dimensional and the algorithm is focusing and p-
intermittent. If 3 v, = -+00 (where v, is defined as in Theorem 3.20.(i1)), then the sequence
(x™) converges in narm to some point in C.

Proof. By Theorem 3.20.(ii), (x™) has a weak cluster point x € €. Since X is finite
dimensional, the point x is a norm cluster point of (x®). Now apply Corollary 3.3.(ii). )

REMARK 3.26 (guaranteeing the “divergent sum” condition). One way to guarantee
3, ,u,g") = 4o for some index { is to assume that there exists some € > Q s.t.

e<a™ <2-¢ foralln and T, 2" = +oo.

This corresponds (in the case when the T;'s are projections) to Fldm and Zowe's [53, Thm. 2]
(see also Example 4.18.{i)). Another way is to assume that
the algorithm is singular and 3. ..o @2 —a™) = 400,

because then the preceding sum equals >_, ,u,f").
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4. Harvest time I: Projection algorithms. From now on, we consider exclusively the
SJollowing situation.

Setting. We maintain the hypotheses of the last section, where we defined the algorithm.
In addition, we assume that T}(") is the projection onto some closed convex nonempty set C,-("}
containing C;:

?}(") L P‘.("’ = Poen and CI.(") 2 C; foreveryindexi andalln > 0.

We also assume that D := X; that is possible since projections are defined everywhere. We
abbreviate

F; .= Pc, foreveryindexi € (1,..., N}

and refer to the algorithm in this setting as the projection algorithm. We say the projection
algorithm has constant sets if CI-("’ = (; for all n > 0 and every index i,

REMARK 4.1. The projection algorithm is formally a slight generalization of Flim and
Zowe's algorithm [53] (¢f. Remark 3.1). Nevertheless, since we allow infinite-dimensional
Hilbert spaces and assume less restrictive hypotheses, we will obtain a number of genuinely
more general results,

Of caurse, all the results of the previous section may be applied to the projection algorithm.
However, before we can do so, we first must understand the meaning of a focusing projection
algorithm. A first prototype is formulated in terms of set convergence in the sense of Mosco
[82] (see [10] for a good survey article on set convergence). It is essentially a reformulation
of Tsukada’s [101] characterization of Mosco convergence.

LEMMA 4.2. Suppose (S,) is a sequence of closed convex sets and there is some closed
convex nonempty set S with § C 8, for all n. Then the following conditions are equivalent.

(i) Ps, — Pg pointwise in norm.

(i} S, —> S in the sense of Masco; i.e., the following two conditions are satisfied
(a) For every s € §, there exists a sequence (s,) converging in norm to s with s, € S, for

alln.
(0) If (sn, ) is a weakly convergent sequence with s,, € Sy, for all k, then its weak limit lies

in 8.

() If (xn, )i is @ weakly convergent sequence with x,, — Pg, Xy, —> 0, then its weak

limit lies in 8.
Moreover, if one {and hence each) of the above conditions is satisfied, then

S=0, S
Proof. “(i}¢=>(ii)": This is the Hilbert space case of Tsukada’s [101, Thm. 3.2]. The
proof of “(ii)<=>{iii)" and the “Moreover” part is easy and is thus omitted. 0

THEOREM 4.3 (first prototype of a focusing projection algorithm). Jf (PI.(’”) converges
actively pointwise to P; for every index i, then the projection algorithm is focusing and
Ci = ﬂn:n active for i Ci(n) fﬂr every index i.

Proof. Apply Lemma 4.2 to (Cf")),ml active for ¢ [OT every index i. 0

EXAMPLE 4.4. Suppose C; = ], € and (C), is decreasing; i.c.,

cVoac®o...oc2cP 2., foralln > 0 and every index i.

Then the projection algorithm is focusing. If, furthermore, the projection algorithm is intermit-
tent and Bim,., scive por : 447 > O for every index i, then the sequence (x®) is asymptotically
regular and converges weakly to some point in C.
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Proof. Mosco proved that a decreasing sequence of closed convex sets converges to its
intersection in his sense {82, Lem. 1.3]. The last theorem and the last lemma imply that the
projection algorithm is focusing. The result now follows from Theorem 3.20.(i). O

REMARK 4.5. Baillon obtained the last example when the algorithm is in addition almost
cyclic and unrelaxed [7, Chapitre 6, Remarque IL6].

EXAMPLE 4.6 (random projections). Suppose the projection algorithm is singular, unre-
laxed, and has constant sets. If for some index j the set C; is boundedly compact, then the
sequence (x“}) converges in norm to some point in C. In particular, this holds whenever X is
finite dimensional.

Progf. The last example shows that the algorithm is focusing. Also, ,u.f"} = 1 for all
n > 0 and every index i active at n. The sequence (x™),.; active for 7 lies in C; and thus must
have a norm cluster point; therefore, by Theorem 3.10, the entire sequence (x™) converges
in norm to some point in C. g

REMARKS 4.7. The finite-dimensional version of the last example also follows from
Aharoni and Censor’s (3, Thm. 1], Flam and Zowe’s {53, Thm. 1], Tseng’s (100, Thm. 1], and
Elsner, Koltracht, and Neumann’s {51, Thm. 1]. We discuss generalizations of Example 4.6
in §6. Not too much is known when the compactness assumption is dropped. It is known that
weak convergence is obtained whenever

) N=2or
(ii) each C; is a subspace,
but no example is known where the convergence is not actually in norm.

Case (i} is also known as von Neumann's alternating projection algorithm. Since projec-
tions are idempaotent, one can view the sequence generated by the random projection algorithm
as an altemating projection algorithm. In (13], we discussed this algorithm in some detail and
provided sufficient conditions for norm (or even linear) convergence.

In 1965, Amemiya and Ando [5] proved weak convergence for Case (ji)—-this is still
one of the best results. Recently, the first authar [12] obtained norm convergence for Case
(ii) whenever a certain condition (which holds, for example, if all subspaces have finite co-
dimension) is satisfied.

In order to formulate the second prototype of a focusing projection algorithm (as well
as the norm and linear convergence results in the following sections), we require some more
definitions.

DEFINITION 4.8, We say a projection algorithm is linearly focusing if there is some g > 0
s.L.

Bd(x™,C) < d(x™,C™) for all large » and every index i active at n.
We speak of a strongly focusing projection algorithm if
x(ﬂk} — ¥
d(x®™), C™) 5> 0 1 implies d(x™, ;) » 0
i active at n;,

for every index i and every subsequence (x™)), of (x™).
By Definition 3.7 and the weak lower semicontinuity of d(-, C;), we obtain the following:

linearly focusing = strongly focusing == focusing.

COROLLARY 4.9 (second prototype of a focusing projection algorithm). Every linearly
focusing projection algorithm is focusing.

REMARK 4.10. Flim and Zowe [53] used linearly focusing projection algorithms in
Fuclidean spaces with great success (see also Example 4.18).
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COROLLARY 4.11 {prototype of a linearly focusing projection algorithm). If the projection
algorithm has constant sets, then it is linearly focusing,

COROLLARY 4.12 {prototype of a strongly focusing projection algorithm). Suppose the
projection algorithm is focusing. If the terms of the sequence (x) form a relatively compact
set, then the projection algorithm is strongly focusing. In particular, this happens whenever
X is finite dimensional or the interior of C is nonempty.

Proof. Suppose not. Then we get ¢ > 0, x € X, an index i, and a subsequence {x™),
with x@ — y  xO)— P‘.("")x("*) — 0,i activeatny, but || x™} — P,x®|| > ¢ forall k. Since
the algorithm is focusing, x € C;. After passing to a subsequence if necessary, we may assume
(by the compactness assumption) that ™) —» x. But then x™ — Px™} — x — Pix = 0,
which is absurd. Therefore, the projection algorithmn is strongly focusing. If X is finite
dimensional, then the terms of (x®™) form a relatively compact set because (x™) is bounded
(Lemma 3.2.(iv)). Finally, if int C 2 9, then (x™) converges in norm (Corollary 3.3.(i)). The
proof is complete. a

The two pratotypes of a focusing projection algorithm (¢f. Theorem 4.3 and Corollary 4.9)
are unrelated, as the following examples demonstrate.

EXAMPLE 4.13. Suppose X =R, N =1, C :=C ;= {0}, Cl(”) = [0, 1/(n + 1}],
and @ := 2. Then the projection algorithm is strongly focusing and the sequence (Cf"))
of compact convex decreasing sets converges to C in the sense of Mosco (Example 4.4 and
Corollary 4.12). However, the projection algorithm is not linearly focusing. Indeed, forn = 1,
1 dx®,c™y 1

)y —
¥TEL M Gew ey Taxt
EXAMPLE 4.14. Suppose X .= R, N :=1, C = C; = {0}, C{" = (-1)"[0, 1], and
x@ € X arbitrary. Then the projection algorithm is linearly focusing since x™ = 0 € C for
n > 2. However, the sequence (C ?‘)} of compact convex sets does not converge to C in the
sense of Mosco.

Having gotten a feeling for the concept of a linearly focusing projection algorithm, we
document its usefulness through a dichotomy result inspired by Aharoni and Censor’s [3,
Proof of Thm. 1].

THEOREM 4.15 {dichotomy II). Suppose the projection algorithm is linearly focusing and
there is some € > 0 s.t. € < o:i(") < 2 — € for all large n and every index i active at n. Then
the sequence (x*)) either converges in norm or has no norm cluster points at all.

Proof. Assume to the contrary that (x*®) has at least two distinct norm cluster points,
say y and z. Get 8 > Os.t. Bd(x®, C;) <d(x®, C?) for all large  and every index i active
atl. Fix ¢ € C. Since y € C (otherwise, the sequence (x%)) would converge in nerm by
Corollary 3.3.(ii)), the set of indices I ;= {i € (I,..., N} : ¥ & C;} is nonempty. Define
Bi=y+rBy,wherer = (1/2ymin({l|ly — zll} U {d{y, C;) : i € I'}.

Y eB ]
y >0 Llarge

— Q.

Claim 1: implies [|x® — ¢|| — 1x*V — ¢ z y D AP
ief
On the one hand, by Lemma 3.2.(ii), the definition of 8, and ||y — x@| = d{y, C;) —
d(‘x(”‘! Cl‘))
Ix® el =[x — c)? 2 Y " ufa? (@, ¢
ref
2 Y Ml e, ¢)
ief
> 2622320,

ief
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On the other hand,
Ix® = el = x4 — cl® = (Ix®@ — el = UxED — ey x Ux® = ell + [xD — e,

and the norm of the latter factor is at most 2¢r + ||y — ¢l|). Altogether, y; = €282 /(2(r +
¥ — ¢ll)) does the job and Claim 1 is verified.

xYeB ]

Claim 2:
»n >0 Ilarge

implies ‘) = y| = [x@ = y|| <32 »_ AL,

i€l
Forevery i € (1,..., Nj\ I, the point y is fixed under the nonexpansive mapping Rf”
(cf. Facts 1.5.(1), Fact 1.3.(iii), and Corollary 1.4); thus we estimate

(t+1) Z }Li(':)(Ri(“x(“ -9+ ZA':('“(RI'(”JCG} - )

fefl,.. MinS iel

1 1 A
KON =y 43 APNRI O — y|
fefl,.. NP ief

! I
1@ =yl + > AL RO = 2O+ 1@ - yity
iel

[ i {
< 129 =yl + 32515 — PO+ 129 — yiI}

icf

(B -yl =

N

1A

< 120 — 31 + Y 204D, ) + 1)
ief
< 129 — 31+ Y282, ) + 129 = yI) +r).
ief
Therefore, y» = 2max{d{y, C;) : i € I't + 3r does the job and Claim 2 is also verified.
The rest is done quickly. Set
Y1
ntnr

di=r

(<r)

and find n large s.t. [[x® — y| < &; thus x e B. Now z is another norm cluster point of
(x™) and has positive distance to B, so there is a minimal m > n withx®™ ¢ B. By the Fejér
monatonicity of (x) and Claim 1,

m—1
t
ly —ell < Ix™ —cll < [1x®@ —cll =y 3 328

{=n (€]
m—|
4
<Btly—cl-wny_ Y A
l=n ief
thus
m—1
8

Syl
i=n i€l Y1

By Claim 2, however,

=1
Y
™ — gl < ™ =yl + 1Y D A <8+ fa =
!

t=n fef
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which contradicts y ¢ B. Therefore, the sequence (x}) has at most one norm cluster
point. a

REMARK 4,16, As Example 3.6 demonstrates, some assumption is necessary to guarantee
at most one porm cluster point.

COROLLARY 4 17. Suppose the projection algorithm is linearly focusing and there is some
€>0ste < o: < 2 — ¢ forall large n and every index [ active at n. Suppose further that
X is finite dtmemzona! or the interior of C is nonempty. Then the sequence (x®) converges
in norm to some point x. If 3, u(") = 400 for some index i, then x € C;. Consequently, if
> ;LL(") = +o0 for every index i, then x € C.

Proof. If int C # @, then (x™) converges in norm by Corollary 3.3.¢). If X is finite
dimensional, then (x®) has a narm cluster point; thus, by the last theorem, {x®) is also narm
convergent. The result now follows from Theorem 3.20.(iii). a

The next two examples follow immediately.

EXAMPLE 4.18 (Flim and Zowe's framework [53, Thms. 1 and 2]). Suppose X is finite
dimensional, the projection algorithm is linearly focusing, and there is some € > 0s.t. € <

I.(”) < 2 — ¢ for all large n and every index i active at n. Then the sequence (x™)) converges
in norm ta some point x.
(i) Iflim,.... seive for i ,u,f > 0 for every index i, then x € C.
(i) fint C # P and 3, ,uf”} = 400 for every index i, then x € C.

EXAMPLE 4.19 (Abaroni and Censor's framework [3, Thm. 1]). Suppose X is finite
dimensional, the projection algorithm has constant sets (and is therefore linearly focusing by
Corollary 4.11), and there is some € > 0s.t. € < o™ = a® < 2 — ¢ for all large n and every
index i active at n. Then the sequence (x*) is norm convergent and its limit lies in [ cer Cia
where J i=f{i € {1,...,N}: ¥, o = +oo}.

REMARKS 4.20.

# Under the assumption on the relaxation parameters in the preceding examplcs, the
condition lim ..., .csive for i ,u.I " > 0 is equivalent to Lim,.., acive for i JLE" > 0 (cf. to
Remark 3.13) and the condition _, 4™ = +oc is equivalent to 3, A = 400 (ef.
to Remark 3.26) for every index i.

e Example 4.18.(i) follows not only from Corollary 4.17 but also from Thearem 3.10.

The nextexample shows that if one drops the assumption ), u; @ — to0inExample 4.19,
then ane cannot expect the limit of (x™) to lie in C;.

EXAMPLE 421. Let X (=R, N :=2, €| := C 1= )= 00,0],and C; := € =
[0, +oc[. Suppose x@ = 0, o:f’) = rxg‘) = 372, and kg"] < 2/3 for all #. Then

3 e 3
= (1= 2 (1- ) oo,

lim, x™ € €y &= lim, x™ =0 =Y, ,u(") = +00.

and therefore

THEOREM 4.22. Given a projection algorithm, suppose (P:-("]} converges actively point-
wise to F; for every index i. Suppose further there is some subsequence (v') of (n) s.1. for
every index i,

o:l.(”r) —» a; and kE“r] — A
for some o; €10, 2] and A; €10, 1). If the interior of C is nonempty, then the sequence (x)
converges in HO¥m [0 some point in C.
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Proof. By Corollary 3.3.(i), (x®)) converges in norm to some point x. We must show
thatx € C.

Claim: P™MIx 5 Pix for every index i.

Because ||P‘-(”‘Jx(”r] - P‘.(”J}xll < [x®7 = x|, we have P“("’)x("’) - Pl.(”')x —5 0. Since
kf") — A; > 0, we see that { is active at n’ for all large »’. The assumption on (Pf”) implies

Pi("r)x —> P.x. The claim follows.
Now

LT — Z,Nzl li(,,:) ((l _ af’”)x("'} + af"’}P{-("’)x(”')) :
hence, by taking limits along the subsequence (x ™1y and by the claim,

x =30 M —a)x + o Px)

or
N A
X =3 (_N"E;L_) Pix.
2;‘=1 O
Propasition 2.12 implies that x € C; the proof is complete. ad

EXAMPLE 4.23 (Butnariu and Censor’s framework [20, Thm. 4.4]). Suppose X is finite
dimensional, the projection algorithm has constant sets, and the relaxation parameters de-
pend only on #, say af"} = a™ for every index i and all n. Suppose further there is some
subsequence (n') of (n) s.t. for every index {, }LE”'] — A, for some A; > 0.

(i) If thereis some € > O s.t. € < a® < 2 — ¢ for all large n, then the sequence (x®)
converges in narm to some pointin C.

(i) If the interior of C is nonempty and there is some subsequence (n”) of (n') s.t.
a® — 2, then the sequence (x™) converges in norm to some point in C.

Proof. (i): The assumption on the weights implies }, ,uf’] = +oo for every index i.
Thus (i) follows from Example 4.19. (ii) is immediate from Theorem 4.22, d

REMARK 4.24. Note that the last theorem works especially when af") = 2. Since in this

case p,f"’ = (0, none of the previous results are applicable. If we drop the assumption that
int C % @, then the conclusion of the last theorem need not hold; see Example 3.6.
DEFINITION 4.25 {control). We say the projection algorithm considers remotest sets if for

every n, at least one remotest index is active; ie.,
I = (i 1 d(x™, ;) = max(d(x™, Cj): j=1...N}NI® #£0.

Following Censor [21], we speak of remotest set control if the projection algorithm is singular
and considers remotest sets. Obviously,

remotest set control

N

considers rematest sets,

weighted

THEOREM 4.26 (weak topology results). Suppose the projection algorithm is strongly
focusing and considers remotest sets. Suppose further that (i™) is a sequence of active
remotest indices; i.e., i™ € I&) for all n.
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G) Y, %) = +00, then there is a subsequence (x™Y; of (x™) s.1.
max{d(x™, C;): j=1...N} — 0,

and (x™)), converges weakly to the unique weak cluster point of (x™) in C.
i) If li_mn,u.fﬁ,)] > 0, then (x) converges weakly to some point in C and

max{d(x*™, C;) 1 j =1...N} — 0.

Proof. (i): By Lemma 3.2.(iv), the series Y, ,u,ﬁﬂdz(x("}, Cf;,’,i) is convergent. Hence
lim ,d(x®, C)) = 0. Thus we can extract a subsequence (x®*); and fix an index i s.t.
d(x Ci(’”") — 0,i™) =i, and (x")) converges weakly. Since the algorithm is strongly
focusing and considers remoiest sets, we conclude that

max{d(x™, C)): j=1...N} — 0.

By weak lower semicontinuity of d(-, C;) for every index j, the weak limit of (x}) lies in C.
By Theorem 2.16.(ii), (x®) has at most one weak cluster point in C; therefore, (i) is verified.
(ii) is proved similarly. O

REMARK 4.27. Remotest set control is an old and successful concept. In 1954, Agmon [1]
and Motzkin and Schoenberg [83] studied projection algorithms for solving linear inequalities
using remotest set control. Bregman [16] considered the situation when there is an arbitrary
collection of intersecting closed convex sets. We will recapture Agmon’s main result [1,
Thm. 3] and some generalizations in §6.

5. Guaranteeing norm or linear convergence: Regularities. We uphold the notation
of the preceding sections; in particular, we remember that C|, . .., Cy are closed convex sets
with nonempty intersection C.

Norm convergence and (bounded) regularity.

DEFINITION 5.1. We say that the N-tuple of closed convex sets (C|, ..., Cx) is regular if
V dix, C) < e,
e>08=>0 xe X

max {d(x,C;}: j=1...N} <§

If this holds only on bounded sets, i.e.,

4 d(x, C) <,
X2 Sbounded e >0 5 >0 xeS;

max {d(x,Cp): j=1...N} <$

then we speak of a boundedly regular N-wple (Cy, ..., Cx).

Although the definition of (bounded) regularity is independent of the arder of the sets,
we prefer to think of Cy,..., Cy as a tuple. The geometric idea behind this definition is
extremely simple; “If you are close to all sets, then the intersection cannot be toa far away.” In
[13], we utilized this notion ta formulate some norm convergence results for von Neumann’s
alternating projection algorithm for two sets.

The results of this subsection will illustrate the usefulness of this concept in our present
framework.
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THEOREM 3.2. Suppose the projection algorithm is strongly focusing and p-intermitrent
for some positive integer p. Suppose further the N-tuple (C\, . .., Cy) is boundedly regular.
Let

Uy 1= min{,uf) inp <l <{n+1)p—1andiactiveatl} foralln > 0.

If)", vn = +00, then the sequence (x™) converges in norm to some point in C. In particular,
this happens whenever i ., soe ror i 1 > O for every index i
Proof. By Theorem 3.20.(ii), we obtain a subsequence (x*#)), of (x*) s.t. (x@#h,
canverges weakly to the unique weak cluster point of (x™) in C, say x,

{(m+p—1
(%) > 3 aa9 c®) —0, and

f=myp el
(%) pleeptnd _ lup) 0

for all sequences (r;) in {0, ..., p — 1}. Fix any index i. Because the projection algorithm
1s intermittent, we get a sequence (r) in {0, ..., p — 1} s.t. i € [P+ for all k. Then, by
(%), d(xtmeptnd C(-(”""’Jr"“)) — 0. Since (x™217)), also converges to x (by (s+)) and the
projection algorithm is strongly focusing, we deduce that

d(x(”tp"f'?'k]’ C) — 0.
Hence, by (x%), 4(x®P} ;) — 0. Since i has been chosen arbitrarily, we actually have
max{d(x®?, C;): j=1...N} — 0.

Now (Cy,...,Cx) is boundedly regular and (x*), is bounded; consequently,

d(x®P) ) —> 0. Therefore, by Corollary 3.3.(ii), (x®) converges in norm to x. 0
THEOREM 5.3. Suppose the projection algorithm is strongly focusing and considers re-

motest sets. Suppose further the N-tuple (C\, ..., Cy) is boundedly regular and (i*V) is a

sequence of active remotest indices. If Y, #f:fg, = +00, then the sequence (x™) converges in

norm to some point in C. In particular, this happens whenever lim , ;.LI(E‘)} > 0.

Proof. By Theorem 4.26.(i), there exists a weakly convergent subsequence (x®), of
(x®)) with max{d(x®), C;): j = 1... N} —> 0. Since (Cy, ..., Cy) is boundedly regular,
we get d (x™, ) — 0. Now apply Corollary 3.3.¢ii). 0

In order to make use of these theorems, we must know when an N-tuple (Cy, ..., Cy)
1s boundedly regular. Fortunately, our abservations on bounded regularity of a pair in [13]
generalize easily to the N-set case.

PROPOSITION 5.4,

(1) If some set C; is boundedly compact, then the N-tuple (C, ..., Cy) is boundedly
regular,
(i) {fthe N-tuple (C\, ..., Cy) is boundedly regular and some set C; is bounded, then
(C,....Cy)is regular
(1) If X is finite dimensional, then every N-tuple (Cy, ..., Cy) is boundedly regular

Proof. An easy modification of [13, Thm. 3.9 (resp., Thm. 3.13) given for twa sets} yields
(i) (resp., (i1)). (iii) follows from (i). d

REMARK 5.5. We gave an example [13, Ex. 5.5] of a pair which is not boundedly regular;
therefare, bounded regularity requires some assumption,
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Linear convergence and (hounded) linear regularity. The following stronger and mare
quantitative version of (bounded) regularity allows us to discuss rates of convergence.

DEFINITION 5.6. We say that the N-tuple of closed convex sets (C), ..., Cy) is linearty
regular if

3 V d(x,C) = kmax{d{x,C;): j=1...N}.
k>0xeX

Again, if this holds only on bounded sets, i.e.,

V 3 v dx,C) < kgmax{d{x,C;) 1 j =1...N},
X 2 Sbounded x5 >0 x e § ) = ksmax{d(x, Cy) « j i

then we say that (Cy, ..., Cy) is boundedly linearly regular.

Clearly,
linearly regular == boundedly linearly regular
4 4
regular = boundedly regular.

THEOREM 5.7. Suppose the projection algorithm is linearly focusing and intermittent.
Suppose further the N-tuple (C\, ..., Cy) is boundedly linearly regular and there is some
e>0ste¢< a;-(") <2—cande < Af")for all large n and every index i active atn. Then the
sequence (x™) converges linearly to some point in C; the rate of convergence is independent
of the starting point whenever (C\, ..., Cy) is linearly regular.

Proof. Suppose the projection algorithm is p-intermittent, Fix any index i. Then,
forall k = 0, we get my withkp < my < (k+ 1)p — T andi € 1™, Now x —
Al AR &) and, by Lemma 2.4.(iv) and Proposition 2.12.(ii),

A® is min{(2 — a}’”) /o:}”’ . j active at n}-attracting w.r.t. ¢ for all # = 0.

Hence, by the assumption on the relaxation parameters, A?) is € /2-attracting w.r.t. C for all
large n. Thus, by Proposition 2.10.(ii),

AT ptke) g %-attracting wrt. C  forall large k.

Since the projection algorithm is linearly focusing, there is some 8 > 0 s.t. Bd(x®, Ci) =<
dx™, C}")) for all large # and every index j active at n. Now

0, C < (1 — ™+ ™, €))?
< 2[[x®P) — xOmed |2 4 242 (x| Crx:

here the first inequality follows from the nonexpansivity of d(-, C;) and the second one s just
“la + b)* < 2a® + 2b*" Fix an arbitrary point ¢ € C. On the one hand, for all large k&,

||x(kp) — () ||2 — "A(mk_l) co ARR) D) x(k.ﬂ)”l

20! tiep) 2 (mg) 2
< T("X Ph—ef® = lx"™) — ¢|%)

201
= (IO — el = D2 — e,
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On the other hand, by the assumptions on 8, relaxation paramctérs, weights, and by
Lemma 3.2.(ii) and Remark 3.13, we estimate for all large k that

1
d(x", ¢ < B—;dz(x(*“*), crmy

1
(e me) _ plme) ()2
_ﬁ2||x 1) pime |
< U — el — x @ — )
= ﬁi (mk} X [ X

m 2 myg+1 2

< 7 3(||x< O — e ~ 2D — )y
< e == (122 — e|* — [0 — |

altogether
20, G0 ¥, 2 @) s )p
d (x™, Cp) < t g Ux® =l = |1x —cl?,
which, after choosing ¢ 1= Pcx®), yields

d*(x® C;) < (2 )(dﬁ(x“‘f’ C) — d*(xrn ¢y,

Ble3
Because i has been chosen arbitrarily, the last estimate is true for every index i, provided
that % is large enough. Since (Cy, ..., Cy) is boundedly linearly regular, we obtain for

S:={x™:n>0}aconstant ks > 0s.t.
d(x™,C) < ksmax{d(x™,C)): j=1...N} foralln = 0.

Note that if (Cy, ..., Cy) is linearly regular, then the constant x5 can be chosen independent
of S. Combining gives

A ) <k} (2p )(dﬂ(x(**” C) — d2(x D oy,

ﬂ23

Therefore, by Theorem 2.16.(vi) applied to (x*)), the sequence (x*P}) canverges linearly
to some point x in C. By Theorem 2.16.(i) and Proposition 1.6, the entire sequence (x™))
converges linearly to x; the rate of convergence is independent of the starting point whenever
(Cy,...,Cy) is lincarly regular. d

THEOREM 35.8. Suppose the projection algorithm is linearly focusing and considers re-
motest sets. Suppose further the N-tuple (C\, ..., Cy) is boundedly linearly regular and
(i™) is a sequence of active remotest indices. If li_mnu.gﬁ,)] > 0, then the sequence (x™)
converges linearly to some point in C; the rate of convergence is independent of the starting
point whenever (C\, ..., Cy) is linearly regular.

Proof. First, since the projection algorithm is linearly focusing, we get 8§ > 0 st
Bd(x", ;) < d(x™, C™) forall n and every index i activeatn, Secand, since (Cy, ..., Cy)
is boundedly linearly regular, we abtain for § := {x® : n > 0} a constant x5 > 0 s.t,
d(x®,C) < kgmax{d(x™, C;) - j=1...N}foralln > 0. Once more, the constant x5 can
be chosen independent of § whenever {Cy, ..., Cy) is linearly regular. Third, there is some
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€ > 0st puf {,,, > € for all large n. Putting this together and using Lemma 3.2.(ii), we estimate
for all largc n that

d*(x®, ) < cimax(d®(x™,C;): j=1...N}
= x_%dl(x(”), Ci'{n])

2
Ks
< (F) ) = P&

2
K3 1 n
= (—) (I = Pex®|? = |0 — pex®?)

B wi
Kg 2 1
< (—) — (™, 0) - "0, 0)).
8) e
Therefore, by Theorem 2.16.(vi), (x™) converges linearly to some point in C (again with a
rate independent of the starting point whenever (C,, ..., Cy) is linearly regular). 0

(Bounded) linear regularity: Examples. Having seen the power of (bounded) linear
regularity, we now investigate this concept itself and provide basic prototypes.
PROPOSITION 5.9. If each set C; is a closed convex cone, then the follawing conditions
are equivalent.
(i) (Cy,...,Cy) is regular.
(ii} (Cy, ..., Cx) is linearly regular
(iii) (C\, ..., Cy) is boundedly linearly regular.
Progf. Adapt the proof of {13, Thm. 3.17]. g
REMARK 5.10. It follows that (i), (ii), and (jii) are equivalent if

e (1, ..., Cy are closed convex translated cones with a common vertex (a simple
translation argument),
e (y, ..., Cy are closed affine subspaces with nonempty intersection.

THEOREM 5 11 ((bounded) linear regularity: reduction to pairs). If each of the N — 1
pairs
(C11 Cﬂ)s
(C1N Gy, Cy),

(C NGO NECx_a, Cyy),
(NG N---NCyaNCp_y, Cy)
is (boundedly) linearly regular, then so is the N-tuple (Cy, ..., Cy).

Proof. We consider the case when all pairs are boundedly linearly regular; the case when
all pairs are linearly regular is treated apalogously. Fix a bounded set § and get (by hypothesis)
K, ..., kxy—1 > 0s.t forevery x € 8, we have the estimates

d(x, C) N Cy) iy max{d(x, Cr), d(x, C2)},
dix,C,NCNCy) < kymax{d(x, C; N Cy), d(x, Ca)},

1A

d(x,Clﬂ---ﬂCN)

1A

iy max{d{(x, Ci N+ NCy_y),d{x, Cy)};

hence d(x, Cy N NCx) < 1yka iy maxfd{x, C):j=1...N}. a
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For bounded linear regularity of pairs, we gave the following sufficient condition (see
(13, Cor. 4.5]).
FACT 5.12. Suppose E, F are two closed convex sets. If 0 € icr (E — F), then the pair
{E, F) is houndedly linearly regular. In particular, this happens whenever
(i) 0ecint (E— F)or
(iiYy E — F is a closed subspace.
Combining the two preceding results immediately yields the following.
COROLLARY 5.13. If

Qeicr (C) —C)Nicr (CiNEC) —C) N - Nier {{Cy N---NCy_y) — Cy),

then the N -tuple (C,, . .., Cy) is boundedly linearly regular.

COROLLARY 5.14. If Cy Nint (C) N --- N Cxy_y) # @, then (Cy, ..., Cy) is boundedly
linearly regular.

REMARK 5.15. These sufficient conditions for bounded linear regularity do depend on the
order of the sets, whereas baunded linear regularity does not. Consequently, these conditions
might still be applicable after a suitable permutation of the sets.

Tn applications, the N sets almost always have additional structure. One important case is
when all sets are closed subspaces. In the following, we will completely characterize regularity
of an N-tuple of closed subspaces. We begin with the case when N = 2.

Recall that the angle y = v (Cy, Ca) € [0, 7/2] between two subspaces 1, C is given
by (see Friedrichs [54] or Deutsch [42, 43])

cosy = sup{{e), 1) 1 ¢p € C1 N(C) NC)F 2 € CLNC NCDY eyl = llezll = 1)

PROPOSITION 5.16. If C,, Ca are two closed subspaces and y is the angle between them,
then the following conditions are eguivalent.
i) y >0
(i) Cy + C; is closed.
(i) Ci + Cy is closed.
(iv) {Cy, C4) is linearly regular.
(v} (Cy, Cy) is boundedly linearly regular.
{vi) (Cy, Cy) is regular.
(vii) (C), Cs) is boundedly regular.
Proaf. “(i)<=>(ii)" is due to Deutsch [42, Lem. 2.5.(4)] and Simonié ([93], a proof can
be found in [13, Lem. 4.10]). “(ii)<=(iii)" is well known (see Jameson's [70, Car. 35.6]).
“(il)=%(iv}<=>(v) <= (vi)==(vi1)": Combine Fact 5.12.(ii) and Proposition 5.9.
“(vii)==(i)": Let us prove the contrapositive. Suppose y = 0. Then we obtain two
sequences (ci”’], (&™) with

ey, e =11 =1, Penc,e” = Poneyes” =0
for every n, and
(ci”’, cg‘)} — 1 =cas0.

Expanding [lc}" — ¢ yields e — " — 0. On the one hand, if we define x® :=
(™ + ¢{)/2, then, by the parallelogram law,

x| — 1.
On the other hand,

Ponc,x® =0, x® — 0, 2™ - cg‘) — 0.
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Altogether, (x®?) is bounded, d(x®, C|) — 0, d(x*, C;) — 0, butd(x™, C, N Cy) =
lx¥| — 1. Therefore, (Cy, C3) is not boundedly regular and the proof is complete. d

A short excursion into a useful product space. We build—in the spirit of Pierra [85]—
the product space

X =I5 X w0 )
- and define the diagonal
A= ((x,...,x0) X =x3=---=xy € X}
and the product
B:=[[Y,C.

This allows us to identify the set C with AN B. Then (see, for example, [83]) forx, ¥ € X,
we have

LS|
lx —yl1* = 3,0, 1l — wll?,

and the projections onto A and B are given by

N o1 N o N
Palxy,x0,...,x5) = (Zf:[ ¥ Xia Zf:[ X Z;_‘:[ ﬁxi) s

Paxy xz, .. xn) = (Pixy, Paxa, ooy Puxy).

PROPOSITION 5.17. If 0 € icr (A — B), then (A, B) is boundedly linearly regular.
Progf. This is nothing but Fact 5.12 applied in X, 0
We now tackle the N-subspace case.
LEMMA 5.18. If each set C; is a closed subspace, then the following conditions are
egitivalent.
) CL+- + Cy is closed.

(i) A+ Bis closed.

{iii) (A, B) is (boundedly) (linearly) regular.
Proof. Denote Ci" + - - - + Cy; by S and consider

T:X— X:{x,....x8) > X1 + -+ xn.

Clearly, T is onto and kernel 7 = A'. By a useful consequence of the open mapping theorem
(see, for example, Holmes's [67, Lem. 17.H]),

Sisclosed <= A +[]7, C}isclosed.

Now apply Proposition 5.16 to Aand Bin X. a
THEOREM 35.19 (linear regularity and subspaces). If each set C; is a closed subspace, then
the following conditions are equivalent.,
(i) Cif + -+ + Cy is closed.

(i) (Cy, ..., Cy) is linearty regular.

(iii} (Cy, ..., Cy) is boundedly linearly regular.

(iv) (Cy, ..., Cy) is regular.

(V) (Cy, ..., Cy) is boundedly regular.
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Proof. “(1)==>(ii)": By the last lemma, there is some « > 0 s.t.
d(x, AN B) <« max(d(x, A),d(x, B)} foreveryxeX.
In particular, if x € X and x := {x,..., x) € A, then
d*(x, C) = d*(x, AOB) < ¥?d%(x, B);
therefore, the linear regularity of (Cy, ..., Cx) follows from

d2(x,C) < k*(d*(x,C)) + - -+ d*(x, Cw))/N
<kt max{d*(x,C)):i=1...N}.

“(ii}e=>(iil) == (iv)==(v)" follows from Proposition 5.9.

“(v)==>(i)": We prove the contrapositive. Suppase Ci- + -+ - + Cj is not closed. Then,
by the preceding lemma, (A, B) is not boundedly regular. We thus obtain a bounded sequence
(x™" s.t.

d(x™, Ay — 0, 4(x*,B) — 0, but lim ,dx™, ANB) > 0.

Define x* to be the first coordinate of Pax®™. Then the sequence (x™) is hounded,
5 S &2 x®, ¢y — 0, but lim,,d*(x®™, MY, €) > 0. Therefore, (Cy, ..., Cy) is not
boundedly regular and the proof is complete. a
REMARKS 5.20.
& Browder implicitly proved “(i)==(ii)" of the last theorem in [17, §2].
e It is interesting that, unless N = 2, the closedness of the sum €y + --- + Cy is
not related to the regularity of the N-tuple (C), ..., Cy). Indeed, for N = 3, take
two closed subspaces €y, C; with nonclosed sum. (i): Set €4 :=--- = Cy 1= X;
then (Cy, ..., Cy) is not regular {Proposition 5.16), but the sum C| + - -- + Cy is
closed. (ii): Set Cq :=--- := Cy = {0}; then (C,, ..., Cy) is regular, but the sum
C; + ---+ Cy is not closed. Altogether, the closedness af the sum C| + -+ Cy
is neither necessary nor sufficient for regularity of the N-tuple (Cy, ..., Cy).
¢ For closed intersecting affine subspaces, a corresponding version of the last theorem
can be formulated (since regularity is preserved under translation of the sets by some
fixed vector).
e Applying the last theorem to orthogonal complements yields the following charac-
terization.

If each set C; is a closed subspace, then the following conditions are
equivalent.

i) Cy +---+ Cy is closed.

(ii) Thereis some x > { s.t. for every x € X,

I Permeyxll < €Ul Pexll + -+ - + | PepxI).
(iii) For every bounded sequence (x®),

max{|| Pcl.x(") [:i=1...N} — 0 implies | me(”)ll — 0.

COROLLARY 5.21. Suppose each set C; is a closed subspace. Then the N-tuple
{C1, ..., Cy) is linearly regular whenever
() at least one subspace is finite dimensional or
(i) all subspaces except possibly one have finite co-dimension.
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Proof. (i): Using Proposition 5.16, induction on N, and the well-known fact that the sum
of a closed subspace and a finite-dimensional subspace is closed (see, for example, Jameson’s
[70, Prop. 20.1]), we abtain readily that Cll + 4 C,{; is finite co-dimensional and closed.
Now apply the last theorem.

(ii): If without loss of generality Cy, .. ., Cy— are finite co-dimensjonal, then Ci- +- - -+
Cy_ is finite dimensional. Again, C}* +--.+C}; is closed and the last theorem applies. [

Once more, an analogous version of the last corollary holds for closed intersecting affine
subspaces. We state the most important case,

COROLLARY 5.22 (linear regularity and intersecting hyperplanes), If each set C; is a
hyperplane, then the N-tuple (C\, ..., Cy) is linearly regular

We now give another important class of linearly regular N-tuples.

FAcT 5.23 (linear regularity and intersecting halfspaces). If each set C; is a halfspace,
then the N-tuple (C), ..., Cy) is linearly regular,

REMARK 5.24. In 1952, Hoffman [66] proved this fact, relying on some results by Agmon
(1] for Euclidean spaces. It turns out that his proof also works for Hilbert spaces; a detailed
proof will appear in the thesis of the first author.

The following result shows how one builds more examples of (boundedly) {linearly)
regular tuples.

PROPOSITION 5.25. Suppose (Cy, ..., Cy) is a (boundedly) (linearly) regular N-tuple
and Jy U - Udy = (1,..., N} is a disjoint decomposition of {1, ..., N} ie, I, # @ and
Ju Ve =8 form, m’ €{1,... ., MYandm # m’. If we set

D, ;:ﬂc,- foreverym € (1, ..., M},

{edy

then the M-tuple (Dy, ..., Dy) is (boundedly) (linearly) regular.
Proaf. Suppose (C\, ..., Cy) is linearly regular. Then there is some ¢ > Qs.t. d(x, C; N
<N Cx) < kmax, dx, C,) for every x € X; thus

A, DyN - NDy) =dx,C 0 --NCy)

< xmaxd{x, Cp)
= ¥ maxmaxd(x, C,)
m  ned,

< g maxd(x, D).
m

Therefore, (Dy, ..., Dy) is linearly regular. The proofs of the remaining cases are similar
and thus are omitted. O

CORQILARY 5.26 (linear regularity and intersecting polyhedra). If each set C; is a poly-
hedron, then the N-tuple (C,, ..., Cy) is linearly regular.

We finish this section with a result on the “frequency™ (in the sense of Baire category) of
boundedly linear N -tuples. Quite surprisingly, “bounded linear regularity is the rule.” Since
we will not use this result in what follows, we only sketch a proof. For basic results an the
Hausdorff metric, we recommend Klein and Thompson's [76, §4]; for basic results on Baire
category see, for example, Holmes’s [67, §17].

THEOREM 5.27. Suppose T is the set of all N -tuples of the form (C|, ..., Cy), where each
set C; is bounded closed convex and the intersection ﬂ;”:l C; is nonempty. Then the subset of
all boundedly linearly regular N -tuples is residual in T (equipped with the Hausdorff metric).

Sketch of a Proof. We work in the product space X.

Step 1: Show that 7 is a closed subset in the complete metric space consisting of all
closed subsets of X equipped with the Hausdorff metric.
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Step 2: Dencte by R the subset of T consisting of all boundedly linearly regular N -tuples.
Deduce from Proposition 5.17 thatif B = (Cy, ..., Cy) € T and 0 € int (A—R), thenB ¢ R.

Step 3: Define O := (B e T :0 € int (A — B)} and show that ) is dense in 7 (given
B =(C,...,Cy) € T, consider the “nearby” (C, + ¢Bx, ..., Cy + €Bx) in © for small
€ > 0).

Step 4: Prove that @ is open in 7. Indeed, denote the Hausdorff metric by &, fix B € O,
and gete > 0 s.t. e By € A — B. Suppose B’ € T with A(B, B') < ¢/2. Then

€B+€
27X 73

By Radstrém’s cancellation lemma [87, Lem. 1],

szeBng—BgA—B’+§Bx.

£
“ByCA-W;
2 Bx < B’

thus B € O.
Conclusion. R is residual in T because R > @ and ¢ is open and dense in 7.
REMARK 5.28. In view of Theorems 5.7, 5.8, and 5.27, we can loosely say that “linear
convergence is the rule for certain algorithms.” The restriction that every C; be bounded is not
really severe since a reduction to this case can be made as soon as the starting point is chosen.

6. Harvest time II: Examples. In this section, numerous examples for our resulis are
given. To demonstrate the applicability of our framework, we mainly chose examples that are
closely related to known results and only occasionally comment on (sometimes very substan-
tial) possible generalizations.

“Fairly” general sets.
Y

Random contrel.
EXAMPLE 6.1. Suppose the projection algorithm is linearly focusing and some set C; is
boundedly compact. Suppose further that
() B, scivetor; 220 > O for every index i or
(ii) thereissome € > 0s.t.€ <a™ <2 —cand ¥, sonve fors 147 = +00 for every
index i and all large » active for i.
Then the sequence (x) converges in norm to some pointin C.
Proof. By Lemma 3.2.Gv), the sum 3", e ror; 45 d*(x™, C*) is finite. Since the
projection algerithm is linearly focusing, the assumptions on (M;(n]) imply the existence of a
subsequence (x®) of (x™) with

@) — Px®}| = d(x™,C;) — 0 and jis active at ',

After passing to a subsequence if necessary, we can assurne that (Pj-x("’)) 18 nonm convergent;
hence, so is (x*)). Therefore, the sequence (x®') has a norm cluster point. If (i) holds, then
the result follows from Theorem 3.10. Otherwise (ii) holds and then the result follows from
Theorems 4.15 and 3.20.Gii). d
REMARKS 6.2.
« This result improves Examples 4.6, 4.18.(i), and 4.19.
e As we commented in Remarks 4.7, the problem becomes much harder without a
compactness assumption. Nevertheless, some interesting results were obtained by
Bruck [18], Youla [107], and Dye and Reich [48].
An immediate consequence of Example 6.1 is the following.
ExAMPLE 6.3 (Bruck’s [18, Cor. 1.2]). Suppose the projection algorithm is singular and
has constant sets where (at least) one is boundedly compact. If there is some € > 0 s.t.
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€< arf”’ = o; < 2 — ¢ for every index i, then the sequence (x*') converges in norm to some
point in C.
REMARK 6.4, Bruck'’s proof is quite different and is highly recommended.

Intermittent control. We start with some results on linear convergence.,

EXAMPLE 6.5 (Browder’s [17, Thm. 3]). Suppose the projection algorithm is almost
cyclic, unrelaxed, and has constant sets. Suppose further that ¢ € C and for every r > 0, there
is some x, > Os.t.

(*) lx]l <« max{d(x,C;):i=1...N} forall x € rBy.

Then C = (0} and the sequence (x™) converges linearly to 0.

Proof. By (*), obviously C N rBy = {0}. Since r can be chosen arbitrarily large, it
follows that C = {0}. Thus (%) states that d(x, C) = ||x|| < max{d{x,C;) :i =1...N):
i.e., the N-tuple (Cy, ..., Cy) is boundedly linearly regular. The result now follows from
Theorem 5.7. H

EXAMPLE 6.6 (Youla and Webb’s (108, Thm. 3]). Suppose the projection algerithm is
cyclic and has constant sets. Suppose further the relaxation parameters satisfy 0 < al.(“) =
a; < 2forevery index i and all n active for {. If there is some index j € {1,..., N} s.Lt.

G Nnint [ G#8,
iefl. MR}

then the sequence (x®) converges linearly to some point in €.

Proof. By Corollary 5.14 (cf. Remark 5.15), the N-tuple (Cy,..., Cy) is boundedly
linearly regular. Now apply Theorem 5.7, 0

REMARK 6.7, Anextended version of Youlaand Webh’s well-written paperis Youla’s [106].

Analogously, we can prove the following.

EXAMPLE 6.8 (Gubin, Pelyak, and Raik’s [60, Thm. 1.(2)]). Suppose the projection
algorithm is cyclic and has constant sets. Suppose further there is some € > Qs.t.¢ < al.(“) =
2 — ¢ for every index i and all n active for {. If there is some index j € {1,..., N} s.t.

¢ nint () G #8,
ie(l . NH D

then the sequence (x™) converges in norm (in fact, linearly) to some point in C.

REMARK 6.9. Gubin, Polyak, and Raik’s paper [60] is a cornerstone for this field and
containg many original results and applications.

REMARK 6.10. The preceding examples all followed from Theorem 5.7 and the results
on bounded linear regularity. Since Theorem 5.7 allows more general control, other iterations
are covered as well. For example, the conclusions of the last three examples remain valid if
we replace “(almost) cyclic” by “weighted.” Similarly, adjusting Theorem 5.2 yields various
examples on norm converge.

The following results on weak convergence follow readily from Theorem 3.20.¢).

ExXaMPLE6.11 (Browder’s [17, Thm. 2] for finitely many sets). Suppose the projection al-
gorithm is almost cyclic, unrelaxed, and has constant sets. Then the sequence (x™) converges
weakly to some point in C.

REMARK 6.12 (cyclic projections). If in the last example “almost cyclic™ is replaced by
“cyclic,” then one obtains the method of cyclic projections; the conelusion of the last example
becomes Bregman’s [16, Thm. 1]. The case when the sets C; do not necessarily intersect is
discussed in some detail in [14].
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EXAMPLE 6.13 (Crombez’s [38, Thm. 3]). Suppose the projection algorithm is weighted
and has constant sets. Suppose further the relaxation parameters and weights satisfy 0 <
a = @, < 2and 0 < A" = A for every index i and all n. Then the sequence (x™))
converges weakly to some point in C.

REMARK 6.14. Crombez [38] assumed in addition that one of the sets is the entire space
(which has the identity as projection).

Congsideration of remotest sets control.

EXAMPLE 6.15 (Gubin, Polyak, and Raik’s [60, Thm. 1.(a)] for finitely many sets). Sup-
pose the projection algorithm has remotest set control and constant sets. Suppose further there
issome ¢ > 05t € < af’” < 2 — ¢ for every index i and all » active for i. If there is some
index j e {L,..., N}s.t

G it () C#8,
fefl,...NW{f}

then the sequence (x™) converges linearly to some point in C.

Proof. The projection algorithm is linearly focusing and the N-tuple (Cy, ..., Cy) is
boundedly linearly regular {Corollary 5.14 and Remark 5.13). The result follows from Theo-
rem 35.8. O

EXAMPLE 6.16 (Bregman's [16, Thm. 2] for finitely many sets). Suppose the projection
algorithm is unrelaxed and has remotest set control and constant sets. Then the sequence (x®))
converges weakly to some point in C.

Proof. It is immediate from Theorem 4.26.(ii). 0

Suhspaces.
EXAMPLE 6.17 (Browder’s (17, Cor. to Thm. 3]). Suppose the projection algorithm is
almost cyclic, unrelaxed, and has constant sets that are closed subspaces. If

Ci+--+Cy

is closed, then the sequence (x?) converges linearly.

Proof. Combine Theorems 5.7 and 5.19, a

EXAMPLE 6.18 (a remark on Smith, Selmon, and Wagner’s [94, Thm. 2.2]). Suppose the
prajection algorithm is cyclic, unrelaxed, and has constant sets that are closed subspaces. If
the angle between

C; and CH.]_ ﬂ---ﬂCN

is positive for every index i € {1,..., N — 1}, then the sequence (x®™) converges linearly.
Proof. Combine Theorems 5.7 and 5.11 and Proposition 5.16. O
REMARKS 6.19.

o In the last two examples, the two quite different looking hypotheses on the subspaces
turned out to be special instances of bounded linear regularity. This, together with
Theorem 5.7, explained linear convergence.

o It follows from Amemiya and Ando’s work [5] that the limits of the sequences of the
two previous examples equal

ch(m.

o The grandfather of these results on subspaces is the following.
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Suppose the projection algorithm is cyclic, unrelaxed, and has constant
sets that are closed subspaces. Then the sequence (x) converges in
norm to Pex®.

The 2-subspace version is due to von Neumann [103, Thm. 13.7]; Halperin [61,
Thm. 1] proved the N-subspace version. The reader will note that there is no hypoth-
esis on the subspaces (and, however, no conclusion on the rate of convergence). Since
bounded regularity and linear regularity of an N-tuple of subspaces are the same (The-
orem 5.19), our framework is incapable of recapturing the von Neumann/Halperin
result. For applications, though, one is often interested in lirear convergence re-
sults. Those follow under additional hypotheses that imply regularity (see the last
two examples) and are thus covered by our framework. The best and most complete
reference on the von Neumann/Halperin framework and its impressive applications
is Deutsch’s survey article [44]; see also Deutsch and Hundal’s recent [45].

s Although mathematically intriguing, controls that are different from intermittent or
remotest set control seem to be of little use for applications; consider, for example, two
closed subspaces with closed sum and with intersection {0}. A singular unrelaxed
prajection algorithm for these two sets converges linearly whenever its control is
intermittent or considers remotest sets (cf. Theorems 3.7 and 5.8). However, if we
consider, for example, the random control version where we project onto the first
subspace whenever n is a power of 2, and onto the second subspace otherwise, then
the resulting sequence (x®™} is not linearly convergent.

Hyperplanes. Hyperplanes play an important role in applications for two reasons. First,
the solution of a system of linear equations is nothing but the intersection of the corresponding
hyperplanes. Second, projections onto hyperplanes can be calculated easily. In fact, if a
hyperplane C; is given by

Ci={xeX:{ax)=b)
for some a; € X \ (0} and b; € R, then, forevery x € X,

(@) =B i g gy = B0 b

Px=Prx=x—
fla: 12 lla: I

Intermittent control.

EXAMPLE 6.20. Suppose the projection algorithm is intermittent and has constant sets
that are hyperplanes. Suppase further there is some ¢ > O s.t. € < o:,-(”) <2—¢€ande < lf.’”
for all large n and every index i active at n. Then the sequence converges linearly to some
point in C with a rate independent of the starting point.

Proof. Combine Theorem 5.7 and Corollary 5.22. g

The following special cases of the last example are well known.

EXAMPLE 6.21 (Herman, Lent, and Luiz’s [64, Cor. 1], Trummer’s [97, Thm. 5]). Suppose
X is finite dimensional and the projection algorithm is cyclic and has constant sets that are
hyperplanes. Suppose further there is some € > O s.t. € < afm < 2 — € for all large n and
every index i active at n. Then the sequence (x*) converges linearly to some point in C with
a rate independent of the starting point.

EXAMPLE 6.22 (Kaczmarz [71], Gordon, Bender, and Herman [59]). Suppose X is finite
dimensienal and the projection algorithm is cyclic, unrelaxed, and has constant sets that are
hyperplanes. Then the sequence (x*)) converges linearly to some point in C with a rate
independent of the starting point.
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REMARKS 6.23.

o The precursor of these results is certainly the last example, which was discovered by
Kaczmarz as early as 1937,

o Kaczmarz's method is well understood even in the infeasible case; we refer the
interested reader to Tanabe's [96] and Trummer’s [97, 99].

+ The iteration described in Example 6.21 is also known as “ART” {algebraic recon-
struction technique).

ExaMPLE 6.24 (Trummer’s [97, first part of Thm. 1]). Suppose X is finite dimensional
and the projection algorithm is cyclic and has constant sets that are hyperplanes. If v, is
defined as in Theorem 5.2 and ¥, v, = +o0c, then the sequence (x*)) converges in norm to
some point in C.

Proaof. It is immediate from Theorem 5.2. a

REMARKS 6.25.

s Trummer also investigated the infeasible case; see [97, 99].

s Using Theorem 5.2, we can similarly recapture Trummer’s [97, second part of
Thm. 1], where he describes an iteration that yields a nonnegative solution (assuming
there exists at least one).

REMARK 6.26. Herman et al. [63] used block control variants of Example 6.20 for
image reconstruction. Their algorithms are based on a (more matrix-theoretic) framework
by Eggermont, Herman, and Lent [49].

Weighted control.

EXAMPLE 6.27 (Trummer’s [98, Thm. 8]). Suppose X is finite dimensional and the
praejection algorithm is weighted, unrelaxed, and has constant sets that are hyperplanes C; =
(x € X : {g;, x) = b;}. If the weights are given by

) _ lla; 2

i N ,
Z_j:[ ||aj ||2

then the sequence (x™) converges linearly to some point in C.
Proof. The control is L-intermittent; thus, the result follows from Example 6.20. d
REMARK 6.28. Trummer even allowed infeasible systems and identified the limit; see [98].
THEQREM 6.29. Suppose the projection algorithm is weighted and has constant sets that
are hyperplanes C; = |x € X : {a;, x) = b;). Suppose further there exists a subseguence
(n) of (n) and some € > O s.1.

e <a™, A" forall n' and every index .

Ifspan {ay, ..., ay) is at least two dimensional, then the sequence (x™) converges in norm
to some point in C.
Proof. Without loss of generality, we assume ||«;|| = 1 for every index i. Fix x € C.

Then, by Lemima 3.2.(i),

) 2 (n+1) 2 )y ) ) (b opon) _ po ()2
lx® — x? — @ — 2 = 3" Ao P — Px®)
P f
for all v > 0. Summing over » and remembering that each set C; 18 a hyperplane, we obtain
a convergent series whose general term

Yo AP aa (e, x) = ba; — (e, @) = bl

i<
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tends to 0. Hence, along the subsequence (x), we have
() (a;, x* = B)a; — (la;, x®™) — by)a; —» O wheneveri # j.

Now fix any index i and obtain another index j # { s.t. {a;, 4;} are linearly independent.
Then, by (%),

(g, x®y — b — 0.

Thus d(x, C;) = [{a;, x®)} — b;| —> 0. Since i has been chosen arbitrarily, we conclude
that

max{d(x®,C;y: i=1...N} — 0,
and further, by linear regularity of (C, ..., Cy) (Carollary 5.22),
d(x®),C) — 0.

The result follows from Corollary 3.3.ii). O

The following classical example is now obvious.

EXAMPLE 6.30 (Cimmino's method [29] in Hilbert space). Suppose the projection algo-
rithm is weighted and has constant sets that are hyperplanes C; = {x € X : {a;, x} = b;}.
Suppose further the relaxation parameters and weights satisfy

=2, AP =x>0

for all # > 0 and every index i. If span {a;, ..., ay} is at least two dimensional, then the
sequence (x™) converges in norm to some point in C.
REMARKS 6.31.
o For Euclidean spaces, the last example was known to Cimmino as far back as 1938.
His method has a nice geometric interpretation: one obtains x**+! from x™ by
reflecting x in all N hyperplanes and then taking a weighted average.
¢ As Example 3.6 shows, the assumption on span (a;, ..., ay} is essential.
» Due to their parallelizability, Cimmino's and related methods with weighted control
are currently used with great success; see Censor's survey article [23].
We present a variation of Cimmino’s method that includes a method suggested by Ansorge.
EXAMPLE 6.32 (a generalization of Ansorge’s method [6]). Suppose X is finite dimen-
sional and the projection algorithm has constant sets where Cyy = X. Suppose further that

CEK:]EI, JLK:)EJLNbO, aEH)E---Eag?)_IEQ,

and

- 1) ¢

(1 N}“N}f(d((i] + Cl)) ifx(n) Q’ C,

iy A, C))
1=dy atherwise
N—-1
for some strictly increasing continuous function f : [0, +-oc[ — [0, 400 with f(0) = Q.
Then the sequence (x™) converges in norm to some point in C.

Proof. Clearly, the projection algorithm is strongly focusing and considers remotest sets.
The N-tuple (C), . . ., Cx) is boundedly regular (Proposition 5.4.(iii)). Suppose that (i) is
a sequence of active remotest indices. Then i) € {I,..., N — [} and

() .__
A=

1 =202,

[k
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Ify, lff), = 400, then we are done by Theorem 5.3. Otherwise ), Af:‘), < 400 and hence

A% —> 0. Now (x®) is bounded and f is continuous; thus (3 S f@dE® CYyy is a
bounded sequence. Consequently,

FUEE™, CH) < fdx™, Cim)) — 0 for every index i,
which implies that
max{d(x™, C):i=1...N} — Q.
Because of the bounded regularity of (Ci, ..., Cy), we get d(x™, C) — 0; now Corol-
lary 3.3.(ii) completes the proof. a
REMARK 6.33. Ansorge’s method [6] arises when the sets Cy, ..., Cx—_; are hyperplanes
and f = | |¥ fory = 0.

Halfspaces. Halfspaces play an important role for essentially the same reasons hyper-
planes do: their intersection describes the solution of the corresponding system. of linear
inequalities (this problem is also referred to as the linear feasibility problem) and the projec-
tions are easy to calculate. Indeed, if a halfspace C; is given by

Ci={xe€X:{ax)<h}
for some a; € X \ {0} and b; € R, then, for every x € X,

5 Xy — b))t a;, xy — byt

({a;, x} - i) a and d(x,C;) = ({ {2 X) i) )
lla: |l [la:

Some of the algorithms for finding a solution of the linear feasibility problem discussed below

have heen used with great success in radiation therapy treatment planning; we refer the reader

to Censor, Altschuler, and Powlis’s interesting survey article [25].

Px=Pox=x—

Intermittent control.

EXAMPLE 6.34. Suppose the projection algorithm is intermittent and has constant sets
that are halfspaces. Suppose further there is some € > 0 s.t. ¢ < af"] <2—cande <A™
for all large n and every index i active at n. Then the sequence (x™) converges linearly to
sore point in C with a rate independent of the starting point.

Proof. Combine Theorem 5.7 and Fact 3.23. g

We deduce readily the next two examples.

EXAMPLE 6.35 (Gubin, Polyak, and Raik’s (60, Thm. 1.(d}], Herman, Lent, and Lutz’s [64,
Thm. 17). Suppose the projection algorithm is cyclic and has constant sets that are halfspaces.
Suppose further there is some € > 0 st € < af") < 2 — ¢ for all large n and every index i
active at n. Then the sequence (x®') converges in norm to some point in C.

REMARKS 6.36. By Example 6,34, the rate of convergence of the sequence (x ) is actually
linear and independent of the starting point. Herman, Lent, and Lutz assumed additionally
that X is finite dimensional. Mandel [78, Thm. 3.1] offered an upper bound for the rate of
convergence for the case when X is finite dimensional and 0 < o™ = & < 2.

EXAMPLE 6.37 (Censor, Altschuler, and Powlis’s [25, Alg. 3]). Suppose the projection
algorithm considers only blocks and has constant sets that are hyperplanes. Suppose further
thereissome ¢ > 0s.t. € < oef” < 2—¢ foralln > 0 and every index i. Suppose finally that
for every index i, there is some A; > 0 s.t, lf’” = A; for all n active for i. Then the sequence
(x™) converges linearly to some point in C with a rate independent of the starting point.

REMARKS 6.38. Censor, Altschuler, and Powlis [25] offered no results on convergence;
however, Aharoni and Censor’s [3, Thim. 1] yields norm convergence of (x®) in Euclidean
spaces. We thus add two features. First, we remove the restriction on finite dimensionality.
Second, we establish linear convergence.
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Weighted contrel. The following two examples are also conseguences of Example 6,34,

EXAMPLE 6.39 (Eremin’s [52, Cor. to Thm. 1.2]). Suppose the projection algorithm is
weighted and has constant sets that are halfspaces. Suppose further the relaxation parameters
and weights satisfy

2
O<o™=w<2 0<AP =2, akr <%

for every index i and all n. Then the sequence (x®) canverges linearly to some point in C
with a rate independent of the starting point.

EXAMPLE 6.40 (the feasible case of De Pierro and Iusem’s [39, Lem. 8]). Suppose X
is finite dimensional and the projection algorithm is weighted and has constant sets that are
halfspaces. Suppose further there is some € > Ost. e <™ =a®™ <2 —¢, 0 <A =4,
for every index i and all n. Then the sequence (x™) converges in norm to some point in C.

REMARKS 6.41. In the last example, the rate of convergence of the sequence (x®) is
acrually linear and independent of the starting paint. For a slightly more restrictive scheme,
De Pierro and Iusem could alse identify the limit of (x*) in the infeasible case as a least
squares solution; see [39].

Consideration of remotest sets control.

EXAMPLE 6.42. Suppose the projection algorithm considers remotest sets and has constant
sets that are halfspaces. Suppose further that (i) is a sequence of active remotest indices.
If li_n'lln,uLfEf,)J > 0, then the sequence (x™) converges linearly to some point in € with a rate
independent of the starting point.

Proof. Combine Theorem 5.8 and Fact 5.23. 0

EXAMPLE 6.43 (Gubin, Polyak, and Raik’s [60, Thm. 1.(d)]). Suppose the projection
algorithm has remotest set control and constant sets that are halfspaces. If there is some ¢ > 0
ste =< arf"} < 2 —¢ for all # and every index i active at », then the sequence (x™) converges
linearly to some point in C with a rate independent of the starting point.

Proof. We have for any index { active at n,

W =302 - T ) =« - af) 2 ¢

the result thus follows from the previous example. a

The basic result in this subsection is due to Agmon and Motzkin and Schoenberg. It dates
back to as early as 1954.

EXAMPLE 6.44 (Agmon’s [1, Thm. 3], Motzkin and Schoenberg’s [83, Case 1 in. Thm. 1
and Thm. 2]). Suppose X is finite dimensional and the ?rojection algorithm has remotest set
conteol and constant sets that are halfspaces. If 0 < o:,-(" = o « 2 for all n and every index i
active at n, then the sequence (x) converges in norm to some point in C.

Proof. This is a special case of the preceding example. O

REMARKS 6.45.

e While Agmon considered only the case when & = 1, he already obtained linear
convergence of (x™) with a rate independent of the starting point.

o Motzkin and Schoenberg did not establish linear convergence; they discussed, how-
ever, the case when o = 2.

o It follows from Example 6.43 that the rate of convergence is linear and independent
of the starting point. Again, Mandel provided an upper bound for the rate; see (78,
Thm. 2.2].

THEOREM 6.46. Suppose N = 2, the projection algorithm has constant sets that are
halfspaces C; = (x € X : {&;, x) < b;}, and violated constraints correspond exactly to active
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indices; i.e., if x & C, then
Mgl = ie ™

Suppose further that there is some € > 0 5.1 € < o: JL( for all large n and every index i
active at n and that

1™ = (i} implies o™ <2 —e.

Suppaose finally that if i and j are two distinct indices, then

(*) or X \ C; € C; (equivalently, X \ C; C C;),

< either {a;, a;} is Uinearly independent
but never baih.,

Then the sequence (x™) converges in norm to some point in C.

Proof. We assume without loss that [la;|| = 1 for every index i and that x® ¢& C for
all n (otherwise, the projection algorithm becomes constant anyway). Clearly, the projection
algorithm is linearly focusing and considers rematest sets, so let ;")) be a sequence of active
remotest indices. Since the N-tuple (Cy, ..., Cy) is linearly regular (Fact 5.23), we can also

assume that ), ,u(ﬁ,), < 400 (otherwise, we are done by Theorem 35.3). Hence

n N "
ﬂ'fg} ;tn]“f{n?(g Zj ( ) (n)) — 0.
Claim 1 1" is not a singleton  for all large .
Othcrwme thcre would be a subsequence (#') of (r) s.t. I™) = {{®7}. On the other
hand, p‘ﬁ,) {H,, (2 r,) > €?, which would contradict ,u({,,), — 0. Hence Claim 1 s

verified.
By Claim 1, we can find a subsequence (r') of (n) and two distinct indices i, jst

V= and {i,j} €I forall #'.
Claim 2: {:, a;} is linearly independent.

Otherwise, X \ C; € C;. Since x*} ¢ C;, we would conclude x®) € C;, which would
contradict j € I*". Thus Cla1m 2 halds.
Similarly to the proof of Theorem 6.29, we get

Px™ — pix®) 5 0

i ({as,x"")) —bs) a — ({apx("”)) —bj) a; — 0.

Now (a;, x*)) — b; = d(x™), ;) and {a;, x™) — b; = d(x®?, C;); hence Claim 2 implies
in particular that d(x*?}, C;) — 0, or, recalling that 1(") =i,

max{d(x™, ) :I=1...N} — 0.

The linear regularity of (Cy, ..., Cy) yields d(x*?,C) — 0. Now apply Corollary
33.3Gi). O

EXAMPLE 6.47 (Censor and Elfving’s framework [26, Alg. 1]). Suppose X is finite
dimensional, N > 2, and the projection algorithm has constant sets that are halfspaces.
Define ) = {i € (1,...,N} : x™ ¢ C}forall n > 0, and let my, ..., my > O be
given constants with ZEL m; = 1. Suppose further the relaxation parameters and weights
are chosen according to the following cases.
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0: 1) is empty. Then choose the relaxation parameters and weights as you wish (the
projection algorithm becomes constant anyway).
LoplnY gy s :
L: Iy = {i¥} is a singleton. Then set

a™ = 2mey and I® = (@)
2: 1% contains at Ieast two indices. Then set
a if x*) € C;,
« =2 and A =

L. otherwise.
Zj;jgcj 1

Suppose finally that if / and j are two distinct indices, then

(%) ot X \ C; € C; (equivalently, X \ C; € (),

( either {a;, 4;) is linearly independent
but never hoth.

Then the sequence (x“!) converges in norm to some point in C.
Proof. This is a special case of the previous example. g
REMARKS 6.48.

« Censor and Elfving also investigated an iteration [26, Alg. 2] that is more general
than the iteration in Example 6.47. Their method of proof is more matrix theoretic
and is quite different from ours.

s They claimed that the last example does not need the hypothesis (x). This is, how-
ever, false since otherwise a suitable modification of Example 3.6 would yield a
counterexample.

o It is possible to recapture Cimmino’s method (Example 6.30) for pairwise distinct
hyperplanes by describing each hyperplane {x € X : {g;, x} = b;} by the corre-
sponding two halfspaces {x € X : {a;, x}) < b;}, {x € X : {(—a;,x) < —b;} and then
applying the previous example. This nice observation is due to Censor and Elfv-
ing. The assumption that the hyperplanes are pairwise distinct is not really severe; it
merely means that “each hyperplane should be counted only once.”

REMARK 6.49. More algorithms for solving the linear feasibility problem are given
in §7.

Polyhedra. The class of polyhedra is large: it contains the class of halfspaces, the class
of hyperplanes, and the class of finite-co-dimensional affine subspaces. It is generally not easy
to calculate projections onto polyhedra; there are, however, besides the examples discussed
in the previous subsections, two additional important exceptions—hyperslabs and the finite-
dimensional positive cone.

A hyperslab C; is given by

Ci={xeX: ¢ <{a,x) <b)}
for some a; € X \ {0} and two real numbers ¢; < b;. Then, for every x,

((a!:! x) - bi)+ - (Ci' — (aia x))+
liae |2

Px=FPox=1x—

and

[(ai, x) — b))+ = (¢ — {a;, )

llll

d(x‘ CI} =
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The positive cone in X 1= R? is denoted X* and is givenby X* = {x € X : x; >
0 for i = 1,...,d}. Its projection is given by x = (x,){_, — x* 1= ()L, for every
xeX.

EXAMPLE 6.50 (Censor, Altschuler, and Powlis’s [25, Alg. 4]). Suppose X is finite
dimensional and the projection algorithm has constant sets that are hyperslabs except Cy =
X*. Suppose further the projection algorithm considers only blocks, where the number of
blocks is M and Jy; = (N}. If there is some ¢ > Qs.t. € < af") <2—cande < Jnf”) for all n
and every index i active at n, then the sequence (x*) converges linearly to some point in C
with a rate independent of the starting point,

Proof. By Corollary 5.26, the N-tuple (C\, ..., Cy) is linearly regular. Now apply
Theorem 5.7. 0

REMARK 6.51. Again, Aharoni and Censor’s [3, Thm. 1] guarantees norm convergence.
We obtain in addition linear convergence.

7. Harvest time III: Subgradient algorithms.

Theory. We return to the setting of §4, where we defined projection algorithms. Loosely
speaking, “a projection algorithm that for at least one index i chooses its supersets C{-(") of
C; to be halfspaces constructed from subgradients of a fixed convex function” is called a
subgradient algorithm. Before we make this “construction” precise, we collect some basic
facts on subgradients.

DEFINITION 7.1. Suppose f : X —> R is a convex function. Given a point xy € X, the
set

(x" e X : {x* x — xq} < f(x)— f(xg) forall x € X}

is called the subdifferential of f at xy and is denoted 3f (xq). The elements of df(xy) are
called subgradients of f ar xo. If 8f (xq) is nonempty, then f is said to be subdifferentiable
ar xg.

The importance of this concept stems from the easy-to-verify fact that

X9 is aminimizer of f <= 0€ af(xy).

Deeper are the following facts: for proofs see, for example, Fkeland and Temam'’s [50,
Chap. I: Car. 2.5, Prop. 5.3, Prop. 5.2, and Cor. 2,3].
FACTs 7.2. Suppose f : X — R is a convex function and xy € X. Then
(i) f iscontinuous at xq and 31 (xg) is a singleton if and only if f is lower semicontin-
uous and Giteaux differentiable at x4. In this case, the unique subgradient of f at xq coincides
with the Giteaux derivative of f at xg.
(i} If f is continuous at xg, then f is subdifferentiable at x,.
(i) If X is finite dimensional, then f is continuous and subdifferentiable everywhere.
LEMMA 1.3. Suppose f . X — R is a convex function, xq € X, and f is subdifferen-
tiable at xy. Suppase further § = {x € X : f(x) < 0} is nonempty. For any g(xo) € 3f(x0),
define the closed convex set H by

H = H(f x0,8(x0)} == [x € X : f(xg) + {g(x0), x — x¢} < O}.
Then
(iy H 2 S Ifg(xg) £ O, then H is a halfspace; otherwise, H = X.

_ _ftxo) .
(i) Puxq= g ilg(xo)lllg(xc') ¥ fx) >0,
Xg otherwise.
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flxa)
i) dxg, Hy = | 168G if £ (x0) > 0,

0 otherwise.

Proof. (i): If s € §, then f(xq) + {g(xq). § — xq) < f(s) <0andhence s € H.

(ii): Use Facts 1.5.(ii) to verify the candidate for Pgpxq. (iii) follows immediately
from (ii). a

REMARK 7.4. The importance of the halfspace defined in the last lemnma is explained by
the following. Suppose we want to find a point in S; i.e., we look for a solution of the convex
feasibility problem f(x} < 0. If f(xg) < Q, then we are done. Otherwise f(xg) > 0. It
is usually “hard” to solve f{x) = 0 (otherwise, we would just solve); therefore, we instead
consider a first-order approximation of f, say

Fx)~ F(x) i= fxo) + (8(x0), x — x0) for some g(xg) & df (x0),
and solve f(xy) = 0, to which a solution is given by

f(xo) g
llg Cxa) I
We now give the precise definition of a subgradient algorithm.

DEFINITION 7.5. Suppose for some index i € {1, ..., N} and for all r every set c™ ofa
given projection algorithm is of the form

(xq).

Pyxg=x9—

C® = H(fi, x™, g:(x™)
={x € X: fi(x™) + (g x"), x — x™) < 0}

for some fixed convex function f; : X — R, where f; is subdifferentiable at every x® and
2:(x™) € 3f: (x™). Suppose further that

Ci={xeX: fi(x) =0}

Then we call this projection algorithm a subgradient algorithm. Every such index i is called
a subgradient index; the set of all subgradient indices is denoted 1.
REMARKS 7.6.
o Subgradient algorithms and projection algorithms are closely related in the following
sense.
(i) Every subgradient algorithm is a projection algorithm (by definition).
(ii) Every projection algorithm with constant sets can be viewed as a sub-
gradient algorithm. To see this, one chooses f; := d(-, C;) and takes into account

that
x— FBx .
Tx—Pal TX€C

af;(x} = dd(x, C;) =
Ne(x) N By  otherwise,

where N¢, (x) = {x* € X : {C; — x, x*} < 0} is the normal cone of C; at x.
¢ The aim of subgradient algorithms is to solve convex feasibility prablems. For a good
© survey on subgradient algorithms and other methods for solving convex feasibility
methods, see Censor's [22).
¢ The reader should be warned that our use of the term “subgradient algorithm” is not
quite standard. In the literature, “subgradient algorithms" may refer to considerably
more general algorithms; see, for example, Shor’s [92].
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We now provide a fairly large class of focusing subgradient algorithms to which our
previous results are applicable.

THEOREM 7.7 (prototype of a focusing subgradient algorithm). Given a subgradient
algorithm, suppose the subdifferentials of fi; are nonempty and uniformly bounded on bounded
sets for every index i € I. Suppose further (Pi("}) converges actively pointwise to P; for every
indexi € {1,..., N} \ I;. Then the subgradient algorithm is focusing.

Proof. Fix anindex i € {1,..., N}. Suppose (x™™}) is a subsequence of (x™) with
PG A - Pf(”*)x(”*) — 0, and { is active at n; for all k. We must show that x € C;.
In view of Lemma 4.2, we need only consider the case when i € [;. Then, by weak lower
semicontinuity of f;,

filx) < lim,, f;(x™).

If fi(x"+)) < Qinfinitely often, then clearly f;(x) < Oandso x € C;. Otherwise f,(x)) = 0
for all large k. Since the sequence (x™) is bounded, there is some M > 0 s.t. the norm of
every subgradient of f; at x™ is at most M. Thus, by Lemma 7.3.(iii),

L) fie)
lg Gl = M

0« d(x("“), Cx'(n*)) —

hence f; (x®*)) —s 0. Therefore, f;(x) < 0and x € C.. 0

The property that 4f; is uniformly bounded on bounded sets is a standard assumption for
theorems on subgradient algorithms; see, for example, [52, 86, 28, 4, 40]. We now characterize
this property.

PROPOSITION 7.8 (uniform boundedness of subdifferentials on bounded sets). Suppose
f i X — R isaconvex function. Then the following conditions are equivalent.

(i) f is bounded on bounded sets.
(ii) [ is (globally) Lipschitz continuous on bounded sets.

(iit) The subdifferentials of f are nonempty and uniformly bounded on bounded sets.
Proof. “{i}==(ii)" can be found in Roberts and Varberg’s [88, Proof of Thm. 41.B].
“(ii)==(iii)": By Facts 7.2.(ii), f is subdifferentiable everywhere. It is enough to show

that the subgradients of f are uniformly bounded on open balls centered at 0. So fix r > 0
and obtain (by assumption) a Lipschitz constant for f onint # By, say L. Now fix x € int r By
and gets > 0s.t. x + 5By CintrBy. Pick any x* € df(x) and b € By. Then

{(x*, sb) < f(x +5b) — f(x) < Lsl|lbll;

thus | x*|| = sup{x*, Bx} < L and therefore the subgradients of f are uniformly bounded on
intrBy by L.

“(iii)=-(1)": It is enough to show that f is bounded on ¥ By for every ¥ > (. By
assumption, there i3 some M > 0 s.t. the norm of any subgradient of f at any point in » By is
atmost M. Fix x € r Bx. Onthe one hand, pick x* € 3f(x). Then {x*, 0—x} < f(0)— fix);
thus f(x) < f{0)+{x*, x} < f(0)+ Mr. Hence f is bounded above on# By by f({0)+ Mr.
On the other hand, picking x4 € 3f(() shows similarly that f is bounded below on r By by
F(@) — Mr. Altogether, f is bounded on r By and the proof is complete. 0

COROLLARY 7.9. If X is finite dimensional, then every convex function from X to R is
subdifferentiable everywhere and its subdifferentials are uniformly bounded on bounded sets.

Proof. By Facts 7.2.(iii}, any convex function from X to R is continuous everywhere.
Since X is finite dimensional, this function attains its minimuwm and maximum on bounded
closed sets; in particular, it is bounded on bounded closed sets. The result now follows from
the previous proposition. g
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REMARKS 7.10.
o The last corollary implies that if X is finite dimensional, then every convex function
from X to R can be used in Theorem 7.7.
s Asthe following example demonstrates, the assumption that X is finite dimensional in
the last corollary cannot be dropped. Consequently, the convex function constructed
below cannot be used in Theorem 7.7
EXaMPLE 7.11. Define the function f by
f i X=8t — R : x=(x) — 22 nx
Then f is everywhere finite, convex, continuous, and subdifferentiable. However, on By,
neither is the function f bounded nor are the subdifferentials of f uniformly bounded.
Proof. Fix an arbitrary x = (x,,) € X. Then, on the one hand, x, — 0. On the other
hand, &n — 1. Hence, eventually

1 1
a n
X, = e nx; = —;
(&n)? " n?

thus £ (x) is finite. Also, f is, as the supremum of convex and lower semicontinuous functions
# 2
f=sup} nx”,
m

convex and lower semicontinuous too. Therefore, f is everywhere continnous (see, for ex-
ample, [30, Chap. I: Cor. 2.5]) and subdifferentiable {(Fact 7.2.(ii)). Choosing x = nth unit
vector in X shows that

sup f(Bx) = f(x)=n;

thus f is unbounded on By. The proof of “(iii}==>(i)" in the last proposition shows that the
subgradients of f are not uniformly bounded on By. ]

Under a Slater-type constraint qualification, we even obtain linearly focusing subgradient
algorithms.

THEOREM 7.12 (prototype of a linearly focusing subgradient algorithm). Given a subgra-
dient algorithm, suppose that there is some Slater point X € X s.t.

fi(k) <0
and that the subdifferentials of f; are nonempty and uniformly bounded on bounded sets for
every subgradient index i € Iy. Suppose further there is some § > 0 5.t.
pd(x™, C;) <dx™, )

Joreveryindexi € {1, ..., N}\ I3 and all large n active for i. Then the subgradient algorithm
is linearly focusing.
Proof. Fix any index i € {1, ..., N}. Itis sufficient to show that there is some §; > 0s.t.

(%) B:d(x™, C)y < d(x™,C™) for all large n active for i.
Case l: i e{l,..., N}\ I;. Then 8; = B does the job for (%),

Case 2. i € I;. Since (x*} is bounded, there is some M > 0 st foralln > 0,
|£ — x™|| < M and the norm of every subgradient of f; at every x™ is at most M. Now
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fix n active for {. Without loss, we assume that f;(x™) > 0 (otherwise, (%) holds trivially).
Define '

- L €
€ = —ﬁ(x) = O, A= —__ﬁ(x(”)) Te

c]0, 1[
and set
yi= (1 — AL + 2x™,
Then
fM = LA —DE+ ™) < - MAE) + AL =0;

hence y € C;. We estimate

A(x®, C) < ™ —yi? = (1= 2% - x7)P

(x ™) 2
B (f(f;'((+))-|)-g) % — xtnl HE

< (ff(x(”’) )2 M?

€

" " 2
_ (d(x("), Cyilg (x¢ ’)u) o

€

M4
?ﬁw£m.

1A

Therefore, (%) holds with 8; = ¢/ M? and the proof is complete. d
Examples.

Censor and Lent’s framewerk. We investigate in this subsection a framework essen-
tially suggested by Censor and Lent [28]. They considered (cf. Example 7.14) subgradient
algorithms where every index is a subgradient index; i.e., I; = {1, ..., N). Then

c=¢C=

=] i

N
freX: filxy =0}
=1

is the set of solutions of the convex feasibility problem
fix) <0 fori=1,..., N,

where each f; is a continuous convex function from X to R.

THEOREM 7.13 (Censor and Lent’s framework in Euclidean spaces). Suppose X is finite
dimensional. Then the sequence (x™)) converges in norm to some point in C whenever one
of the following conditions holds.

(i) (random control) WM ... segve for i 1 > 0 for every index i.
(ii) (intermittent control) The subgradient algorithm is p-intermittent and Y ue =
+00 (where v, is defined as in Theorem 3.20.(i1)).

Progf. By Theorem 7.7 and Corollary 7.9, the subgradient algorithm is focusing. Now
(i) follows from Corollary 3.12, whereas (ii) is immediate from Carollary 3.25. O

We now obtain Censor and Lent's fundamental result as a special case of the last theorem.
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EXAMPLE 7.14 (Censor and Lent’s [28, Thm. 1]). Suppose X is finite dimensional and the
subgradient algorithm is almost cyclic. Suppose further there is some € > 0 st. € < af”) <
2 — ¢ for all n and every index i active at n. Then the sequence (x) converges in norm to
some point in C.

THEOREM 7.15 (Censor and Lent's framework in Hilbert spaces). Suppose the projec-
tion algorithm is p-intermittent and the functions f; have nonempty and uniformly bounded
subdifferentials on bounded sets.

@ UM, e for i p > 0 for every index i, then the sequence (x™) converges
weakly to some point in C.

(i) If )", v, = +ox (where v, is defined as in Theorem 3.20.(ii)), then the sequence
(x™)Y has a (unique) weak cluster point in C.

Proof. By Theorem 7.7, the subgradient algorithm is focusing. The result is now imme-
diate from Theorem 3.20. a

EXAMPLE 7.16 (Eremin’s [52, Thm. 1.1 for convex functions and subgradients]). Suppose
N =1 and f; has nonempty and uniformly bounded subdifferentials on bounded sets.

(i) Ifthereissomee > 08t e < a'}") < 1, then the sequence (x™) converges weakly
to some point in C.

(i) Iflim, o” <2and 3", a™ = +o0, then the sequence (x™) converges weakly
to some point in C.

REMARKS 7.17.

« Eremin considered a more abstract iteration scheme.

e Inview of Theorem 7.15, the assumptions in Example 7.16 can be weakened to “there

issome € > 0s.t. € <ol <2—¢"for (i), and “Y", ¥ 2 — &™) = +o0” for (ii).

THEOREM 7.18 (Censor and Lent’s framework with a Slater point}. Suppose each function
[ has nonempty and uniformly bounded subdifferentials on bounded sets and there is some
Slater point £ € C, i.e, fi(X) < O, for every index i. Then the sequence (x™) converges in
norm to some point in X, say x.

W Iry., ,u.f") = 400 for every index i, then x € C.

(i) If the subgradient algorithm is intermittent and there is some € > 05t € < o:f(”’ <
2—cande < }Lf”) Jor all large n and every index [ active at n, then x € C and the sequence
(x™h converges linearly to x.

Proof. By Thearem 7.12, the subgradient algorithm is linearly focusing. The Slater point
£ lies in the interior of C; = {x € X : fi(x) < 0} thus £ € int € and (Cy, ..., Cy) is
boundedly linearly regular (Corollary 5.14). (i) follows from Theorem 3.20.(iit), whereas (ii)
follows from Theorem 5.7 O

EXAMPLE 7.19 (De Pierro and Iusem’s [40, Thm. 2]). Suppose X is finite dimensional
and there is some Slater point ¥ € €. Suppose further the subgradient algorithm is almost
¢yclic and there is some € > 0 st € < a:j("’ < 2 — ¢ for all » and every index { active at n.
Then the sequence (x™) converges linearly to some point in C.

Proof. Combine Corollary 7.9 and Theorem 7.18.(ii). O

REMARK. 7.20. De Pierro and [usem’s proof is different from ours. They obtain Exam-
ple 7.19 via an investigation of an iteration that converges finitely when a Slater point exists
(but may diverge otherwise).

EXAMPLE 7.21 (Eremin’s [52, Thm. 1.3]}. Suppose each function f; has nonempty and
uniformly bounded subdifferentials on bounded sets and there is some Slater point ¥ € C. If
0 < lf”) = A; and 0 < al.(”) = a; < 2 for every index i, then the sequence (x™) converges
linearly to some point in C.

Proof. The subgradient algorithm is weighted; hence it is l-intermittent and Theo-
rem 7.18.(ii} applies. a
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Polyak’s framework. In this subsection, we concentrate on a framework suggested by
Polyak [86]. He considered a subgradient algorithm where

N=2 5L={l}, and C{’ =C,.

Hence the set C = €, N Cy = {x € €y : fi(x} < 0} describes the solutions of the convex
feasibility problem

fillx) 20, x € Gy,

where f) is a continuous convex function from X to R.

We can view Polyak’s framework as a special case of Censor and Lent’s framework by
setting N = 2 and letting f2 = d{(-, C3). We now “translate” some results obtained in the last
subsection to this framework.

For example, Theorem 7.15.(i) becomes the following theorem.

THEOREM 7.22. Suppose the projection algorithem is 2-intermittent and the function f, has
nonempty and uniformly bounded subdifferentials on bounded sets. If lim,,., ..., fori p.f") =0
Jori =1 and 2, then the sequence (x™) converges weakly to some point in C.

ExaMPLE 7.23 (Polyak’s [86, Thm. 1]). Suppase the function f; has nonempty and
uniformly hounded suhdlffcrcnnals on bounded sets If the subgradient algorithm is ¢yclic
and there is some € > Ost. ¢ < a®™ <2 —¢, o = 1 for all n, then the sequence (x®)
converges weakly to some point in C ;

A “translation” of Theorem 7.13.(ii) yields the following theorem.

THEOREM 7.24. Suppose X is finite dimensional. If the subgradient algorithm is 2-
intermittent and 3, v, = +00 (where v, is defined as in Theorem 3.20.(ii)), then the sequence
(x™) converges in norm to some point in C.

EXAMPLE 7.25 (a special case of Allen et al.’s [4, Prop. 7]). Suppose X is finite dimen-
sional, the subgradient algorithm is cyclic, and there is some € > 0s.t. 0 < o:f" < 2—e¢and
& =« = 1foralln > 0. If 3, o = +o, then the sequence (x™) converges in
norm to some point in C.

Progf. The subgradient algorithm is certainly 2-intermittent; hence define v, as in The-
orem 3.20.(ii) and check that v, = alz’”(2 fz")} > a:{me. Therefore, 3", v, = 400 and
the result follows from Theorem 7.24. O

REMARKS 7.26.

# An inspection of the proof shows that we can replace the assumptions on (& gm) by
the more general “Y", (2 — o) = 100

o Allen et al. [4] also investigated the situation where it is allowed that f, takes the
value +o00 and € is empty.

The next theorem does not follow from Censor and Lent’s framework. The necessary
wark, however, is modest.

THEOREM 7.27. Suppose the subgradient algorithm is intermittent and there is some % €
Cy with f1(X) < 0. Suppose further f has nonem;ny and uniformly bounded subdifferentials
on bounded sets. If there is some € > Qst. e <o) <2—ecande < kf“) for all large n and
every index i active at n, then the sequence (x ('”} converges linearly to some point in C.

Proof. By Theorem 7.12, the subgradient algorithm is linearly focusing. Since x €
Cy Mint C, the pair (Cy, Cy) is boundedly linearly regular (Corollary 5.14). Now apply
Thearem 5.7. a

EXAMPLE 7.28 (a case of Polyak’s [86, Thm. 4]). Suppose the subgradient algorithm
is cyclic and there is some £ & C, with (%) < 0. Suppose further f; has nonempty and
uniformly bounded subdifferentials on bounded sets. If there is some € = 0 s.t. ¢ < o:lm =
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@0 = o = 1 for all n, then the sequence (x®) converges linearly to some

2—cand o
peint in C.
REMARKS 7.29. On first sight, Polyak’s framewark looks fairly special since it deals
only with one function. A standard trick, however, allows one to handle finitely many convex
functions. Suppose we are given M continuous convex functions ¢, . .., ¢y from X to R. If

we want to solve the convex feasibility problem
xeCy and @xy =<0, i=1,..., M,
then we simply set

fri=max{g,....du}, Cl:={xeX: fi(x) =0},

and we see that C = €| N €, are precisely the solutions of the above problem. Hence all
methods discussed in this subsection are applicable. For example, the reformulation of the
last theorem to this situation yields a partial generalization of Polyak’s [86, Thm. 6]. It only
remains to describe df). The reader can find a formula in Toffe and Tibomirov's book [68,
Thm. 3 on p. 201f] that becomes in our setting

8y (x) = conv U 3y (x).
i) =¢;00)

A generalization of Dos Santos’s framework. In this section, we discuss a generaliza-
tion of a framework due to Dos Santos (cf. Example 7.34). On first sight, this framework
looks like a subgradient algorithm,; it is, however, actually a projection algorithm as defined
in §4. It works as follows.

Suppose we are given M continuous convex functions ¢; ; from X to R that are partitioned
into ¥ (< M) “blocks,” where the ith block consists of M; functions

{hi1,... dia) foreveryindex i,
sothat M) + -+ My =M. Let
Ci={xeX gip(x)=<0fork=1,..., M} foreveryindexi;
then C = N, C; is the set of solutions of the convex fe;'lsibility problem
$ip(x) <0, i=1,...,N, k=1,..., M,.

As always, we assume feasibility; i.e., C is nonempty.
Given a point x™, we define N continuous convex functions

Mi fk(x(“})
fi(n) X —Rixr— me J ti){f’k(x)‘
k=1

B el o () 12

where we use the convention that

and where 1 (x®™) € 8¢, (x®) and w{y are nonnegative real numbers with 324 ) = 1
for every index i and k = 1, ..., M;. We further set

() () N B (n)
g =y wl ———— i, (x*")  for every index i
‘ ; e |12
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and note that g™ (x®) € a £, (x), Sticking to the notation of Lemma 7.3, we finally define
N closed convex sets by

Cc = H(F", x®, g (x™Y)  for every index 1.
Then Lemma 7.3 (and the convention g = 0) yields the following lenuna.
LEMMA 7.30. For every index i and all n = 0,
CHPoxeX: [P <0

M;

@ 2 n[x € X :¢ixlx) <0}
k=1
-c.

i £y
iy AP = X0 ~ ("u—z P ).
lig; (¥l

AR
g™ (x|
By Lemma 7.30.(i), we are thus given a prajection algorithm to which we refer as the
generalized DS algorithm. Dos Santos [47, §6] gave an excellent motivation for a special case
of the generalized DS algorithm. Of course, now we wish to bring our convergence results
into play; hence, we must know what makes a generalized DS algorithm (linearly) focusing.
DEFINITION 7.3 (control). We say that the generalized DS algorithm considers most

violated constrainis if there is some t > () s.t. for every index i, thereis some k € {1, ..., M;)
with

(iii) d(x™, C* =

¢F () = mflthm(x‘:")) and @y >t foralla > 0.

THEOREM 7.32 (prototype of a (linearly} focusing generalized DS algorithm). Suppose
the generalized DS algorithm considers most violated constraints and the functions &; , have
nonempty and uniformly bounded subdifferentials on bounded sets.

(i) Then the generalized DS algorithm is focusing.

(i) Suppase thar in addition for every index i ar least one of the following conditions
holds.

L. There is some Slater point ; € C; 5.t

Gip(X) <0 foreverwk=1,..., M.
2. Each ¢ is a distance function to some closed convex set Ci . and the M;-tuple
City .-y Ciag) is boundedly linearly regular.

Then the generalized DS algorithm is linearly focusing.
' Proof. Tirst, we get L) > 0s.t. ||¢,, (x®)|| < Ly forall n > 0, every index i, and all

k=1,...,M;. Second, wegetr > Qs.t foralln > 0 and every index i, wf’}) > 1 for
some k* € {1, ..., M;} with ¢, (x*)} = max, ¢, (x®). Now fix an index i and » > 0 and
assume (without loss, as we will see) that x™ & C. It is convenient to abbreviate
o= o, gpom DD ™)
Lk [k ) 1 e
and to let any appearing k’s range in {k € {1,..., M;} : z. # 0}. Using the convexity of || - ||

and ()%, we estimate
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A WD ST
PNl I o gzl

d(x(n), C‘(ﬂ}) —

Yoodi Y wdi
T ongillzll X, wign

&, wvan)?
z—_—_ = .
>k Did ;

By choice of T and L, we conclude that

(%) dx®, ¢y > Li max ¢ (x™)  for every index i and all n > 0.
!

Note that if x® € C, then (x) holds trivially.

(i) If (x™) is a weakly convergent subsequence of (x®)) with weak limit x and
d(x™, "y —> 0, then, by (x), lim, maxg 7, (x*) < 0. Since $;Fy is weakly lower
semicontinuous, this implies qb:'k (x) <0fork =1,..., M;. Hence x € C; and the general-
ized DS algorithm is focusing.

(ii): Case 1; Condition 1 holds. Get Ly > 0s.t. ||£; — x®| < L, forall # > 0. Now fix
an index { and r. Define

yi= (1 —R)E + Ax™,
where
. miny {—gi . (%)}
ming {—¢; « ()} + max, {¢;7, (x )}
Then one readily verifies that ¢; ;. (¥} < 0 for all k; thus y € C;. We estimate
™, C) < e = yIF = (1 = 1)*E — 2P

min{—-g: (%)) ] F

€10, 11

Combining the previous estimate with (%) yields
T ming{—¢; v (X))
Lil,y

Case 2: Condition 2 holds. Because (Cy y, ..., Ci p,) is boundedly linearly regular, there
exists some Ly = 0 s.t.

d(x®,C) = d(x™, ™) foralln > 0.

dx™,C) < L4 mflxd(x(’ﬂ, Cip) =L mfxéi‘k(x("}) foralln > Q.
Fix an index i. Combining the last estimate with (=) this time yields
L da™,C) <dx™,c™) foralln 2 0.
LiLs

In both cases, we have found an inequality that makes the generalized DS algorithm linearly
focusing. d

Having identified nice classes of (linearly) focusing generalized DS algorithms, we could
now systematically “translate™ our previous results to this situation; again, we opt for a small
selection.
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Dos Santos’s original framework. Dos Santos considered the situation when ¥ = 2,
and we set L := M),

L= L= dLm

M; = 1, and @2 | = d(-, Ca) for some closed convex nonempty set Ca. Thus C = C, N Cy s
the set of solutions of the convex feasibility problem

x€C and ¢pix) =0 fork=1,..., L.

We refer to the generalized DS algorithm in this framework as the DS algorithm.
THEOREM 7.33 (Dos Santos’s original framework). Suppose the DS algorithm is inter-
mittent and considers most violated constraints and there is some € > (} 5.l € < ocf”} <2—¢

and € < lf") for all n and every index i active ar n. Suppose further each ¢ has nonempty
and uniformly bounded subdifferentials on bounded sets.
(i) Then the sequence (x™) converges weakly to some point in C. Consequently, if X
is finite dimensional, then the sequence (x™) converges in norm 1o some point in C.
(it) If there is some £ € Ca s.t. ¢u(X) < O fork = 1,..., L, then the sequence (x™)
canverges linearly to some point in C.
Proof. (i): By Theorem 7.32.(i), the DS algorithm is focusing. The result now follows
from Remark 3.13 and Theorem 3.20.(i).
(ii): On the one hand, the DS algorithm is linearly focusing (Theorem 7.32.(ii)). On
the ather hand, £ € Cy Nint €y, so (Cy, Cy) is boundedly linearly regular (Corollary 5.14).
Altogether (Theorem 5.7), the sequence (x™)) converges linearly to some point in C. 0
EXAMPLE 7.34 (Dos Santos’s [47, Thm.]). Supgosc X is finite dimensional, the DS
algorithm is cyclic, and there is some € > O s.t. € < oc‘i ") =< 2 —¢and aé") =1foralln = 0.
Suppose further 0 < cuﬁ:} =, fork = 1,..., L. Then the sequence (x™) converges in
nor. to some point in C.
Proof. Since wy > 0 for all &, the DS algorithm certainly considers most violated
constraints. Now combine Corollary 7.9 and Theorem 7.33.(i). d
REMARKS 7.35.
» For L = 1, Dos Santos’s and Polyak’s frameworks coincide.
» Dos Santos reports good numerical results on his algorithm. Theorem 7.33.(ii) shows
that the qualitative performances of his and Censor and Lent’s frameworks are com-
parable (cf. Theorem 7.18 and Example 7.19).

The polyhedral framework. The polyhedral framework is the special case of the gener-
alized Dos Santos framework, where ¢; ; is the distance function to some polyhedron C; ; for
every indexi and all k = 1, ..., M;. Throughout this subsection, we investigate this situation.

THEOREM 7.36 (polyhedron framework). In the polyhedral framework, suppose the gen-
eralized DS algorithm considers most violated constraints. Suppose further it is inteymittent
or considers remotest sets. Suppose finally there is some € > Q5.1 € < ai("”) <= 2—¢cand
€< .kf"’ for all n and every index [ active at n. Then the sequence (x 2}y converges linearly
to some point in C with a rate independent of the starting point.

Proof. Foreveryindex i, the M;-tuple (C; 1, .. ., C; s, ) is linearly regular (Corollary 5.26).
Hence, by Theorem 7.32.(ii), the generalized DS algorithm is linearly focusing. Now each C;
is alsa a polyhedron; thus by Corollary 5.26, (Cy, ..., Cy) is linearly regular. Therefore, the
result follows from Theorem 5.7 (for intermittent control) or Theorem 5.8 (if the algorithm
considers remotest sets). 0

REMARK 7.37. If N = M, each C; is a halfspace, mf"’l’ = w; > 0, and there is some

€>0ste=< af“) = a™ < 2 — ¢ for all n and every index i, then we recapture Example 6.40
{which is due to De Pierro and Iusem [39]).
We register two more special cases.
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EXaMPLE 7.38 (Merzlyakov's [80, Thm.]). In the polyhedral framework, suppose X is
finite dimensional, N = 1, each C;; isahalfspace, and the generalized DS algorithm considers
most violated constraints. Suppose further § < a:{") = a; < 2. Then the sequence (1)
converges linearly to some point in C with a rate independent of the starting point.

REMARK 7.39. Merzlyakov [80] actually considered a more general version, where the
wﬁ) need not necessarily sum up to 1.

ExaMPLE 7.40 (Yang and Murty’s [105]). In the polyhedral framework, suppose X is
finite dimensional, each C; ; is a halfspace, and there i3 some € > (0 s.t. the generalized DS

algorithm satisfies

=40 ifx(”] € Cip,
(n) ’
Dy

> ¢ atherwise

for all n, every index i, and all k = 1,..., M;. Suppose further the relaxation parameters
satisfy 0 < ai("] = a < 2 for all » and every index i. Then the sequence (x) converges
linearly to some point in C with a rate independent of the starting point whenever one of the
following conditions holds.

1. (basic surrogate constraint method: [105, §3) N = 1.

2. (sequential surrogate constraint method: [105, §4]) The generalized DS algorithm
is cyclic.

3. (parallel surrogate constraint method: [105, §5]) There is some ¢’ > 0 s.L. x® & C;
implies lf") > ¢ for all n and every index .

Proaf. Obviously, the generalized DS algorithm considers most violated constraints. The

first condition is a special case of the second one, which in turn follows from Theorem 7.36.
The assumption in the third condition guarantees that the algorithm considers remotest sets;
hence, this case is also covered by Theorem 7.36. a
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the contributors who should have been included here but are not. The manuscript is merely
a snapshot of what the authors knew in mid-1993; time, of course, has not stood still. The
manuscripts sent to us recentty by Combettes [30-37], Garcfa-Palomares [55], and Kiwiel
[72-75] deal with exciting new generalizations and deserve much attention. A synthesis of a
selection of these results may be found in the first author’s Ph.D. thesis (Projection Algorithms
and Monotone Operators, Simon Fraser University, 1996).
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Notes on non-convex Lions-Mercier iterations

Jonathan M. Borwein*

June 27, 2009

1 Introduction

Let Ra(x) := 2Pa(x) — z,Rp(z) := 2 Pg(x) — x, where P4, Pg denote the
Euclidean metric projections, or nearest point maps, on closed sets A and B. In
our setting, the Lions-Mercier (LM) iteration (which can be given many other
names [?] such as Douglas-Rachford or Feinup’s algorithm) is the procedure:
reflect, reflect and average:

© o T(z) = %@B“)). (1)
Note that a fixed point z of T produces precisely a point w such that w :=
Pp(z) = P4 (Rp(2)) is an element of A N B. Moreover, if one shows that
IT(2n) — 2zn|| — 0 (known as asymptotic reqularity of z,4+1 := T(zy)) then every
cluster point of the corresponding orbit produces a fixed point z.

The consequent theory of this and related iterations is well understood in the
convex case [?, 7, ?]. In the non-convex case the iteration, also called “divide-
and-concur” [?], has been very successful in a variety of reconstruction problems
[?, 7] but the theory to explain why is largely absent.

In this note we look at a simple but illustrative special case. The subtlety of
this prototype indicates a good deal about the behaviour of the general iteration.
Since (LM) has performed much better than other projection iterations on a
variety of hard problems [?, ?] we focus on its behaviour.!

*School of Mathematical and Physical Sciences, University of Newcastle, NSW, 2308, Aus-
tralia and Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 2W5, Canada,
jborwein@cs.dal.ca, jonathan.borwein@newcastle.edu.au. Supported in part by NSERC
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n optical abberation correction as required on the Hubble telescope, however, cyclic
projection and its variants have worked well.
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Figure 1: Two steps showing the construction.

2 Dynamics with the circle

In the simplest non-convex case where B is the unit circle and A is a horizontal
line of height « the recursion becomes z := x, Yo := y and
Tn

Tpy1 = T—zcos@,“ (2)
n

Ynil = :yn—i—a—j{—n:yn—i—a—sinﬁm (3)

n

where 6, ;= arctan(y,, /x,) and r, = /22 + y2.

Figure 7?7 shows two steps of the underlying geometric construction. All
figures were constructed in Cinderella (www.cinderella.de). A web applet
version of the underlying Cinderella construction is available at
http://kortenkamps.net/material/IterationBorwein.html. Indeed, many
of the insights for the proofs below came from examining the constructions (the
number of iterations N, the height of the line, and the the initial point are all
dynamic—changing one changes the entire visible trajectory).

Let z, := (2, yn). By symmetry we restrict to o > 0. It is easy to see that
if g = 0 then the iteration remains on the vertical axis. We leave this case for
the next section.

Thus, we assume that xo > 0 and it follows from equation (??) that we have
O0<zx,<l1lforalln>1.

We distinguish four cases:

1. @ = 0. In this case we prove in Theorem ?? below that z, — (1,0). (See
Figure ?7.)

2. 0 < a < 1. In this case we conjecture that z, — (V1 — a2, «). (See Figure
?7)
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Show Construction

Figure 2: Case with a = 0.

3. o = 1. In this case we prove in Theorem ?7? below that z, — (0,7) for
some finite 5 > 1. (See Figure ?7?.)

4. « > 1. In this infeasible case we prove in Theorem 7?7 below that y,, — oo
at linear rate and z,, — 0.

Theorem 1 (Infeasible case) Ifa > 1 theny, — oo at linear rate asn — oo,
and x, — 0.

Proof. An easy estimate from equation (??) is yp+1 — yn > o — 1 > 0. The

assertion about ¥, follows and the behaviour of x,, is left as an exercise. [ |

For the remaining feasible cases the following preliminary computation is
useful. We write

2

xi Yn Yn

a1 = ﬁ+ﬁ+(yn+a)2_25(yn+a)

2 1
= 1+a2+y3<1)+2ayn<1).
Tn Tn
Thus,
2 2, .2 2 1
Tha1—1 = o +y, l—r— + 2ayy l—r— . (4)

Proposition 1 Suppose that o = 0 and that n > 0 and r, > 1. Then 1,41 <
T
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Figure 3: Case with a = 0.9.
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Figure 4: Case with a = 1.



Proof. Equation (??) becomes

2 Yn (2 yn 2
Thi1—1 = r;(rn_QTn+1)_7;§(Tn_l)~
n n

Hence TZH 1< (ry — 1)2. Thus, either r,41 < lor0<rpy; —1 <7, —1.
In either case we are done. |
Proposition 2 Suppose that « = 0 and thatn >0 andr,, < 1. Thenr,11 < 1.

Proof. This time we use Equation (??) in the form

1 2 _ yr%
—Thg = T—(2—rn)>07

since r, < 1. |

Proposition 3 Suppose that o = 1 and that n > 0 and r, > 2. Then 1,41 <
Tr-

Proof. Equation (??) rewrites as

2

2 —1 = 1+y—;(ri—2rn)—|—2%(7‘n—l).
n n

Hence 72 ., —1 < 14 (r2 =2r,) + 2 (r,—1) = 72 — 1, and rpyq < 7y, a8
required. |

Theorem 2 (Equatorial case) If o =0 then z, — (1,0).

Proof. By Proposition ?? either (a) 7, strictly decreases to r > 1, which is
easily seen to be impossible, or (b) in finitely many steps r,, < 1. We appeal to
Proposition ?? to conclude that r,,, < 1 for all m < n.

We note that

| tan(bni1)| = [1 = ral| tan(bn)| < [tan(6,)], (5)

and so tan(d,,) is decreasing in modulus. It follows, on taking limits in formula
(??) that (a) r, — 1 or (b) 8, — 0. In case (a) we see from equation (??) that
yn — 0 and from (??) that z,, — 1.

Thus, we are left only with the case that 6, — 0. But now z,,1 =
cos(theta,) — 1 and asyny1/Tn+1 — 0, the proof is complete. |

Theorem 3 (Tangent case) If o = 1 then then z, — Zz := (0,7) for some
finite 5 > 1 (and the projection on the sphere of Z is the intersection point of
the two sets).



Proof. An easy estimate from equation (??) is yp11 — yn > 0. Thence y, is
nondecreasing with possibly infinite limit y. If 7 is finite then taking limits in
(??) shows lim, oo 7 = lim, o Yn, which completes the proof—as r < 1 is
easy to rule out.

In the remaining case, by relabeling, we may assume that r,, > y,, > 2 for
all n. Thence Proposition 7?7 inductively shows that r,, decreases to some finite
7 > 7. This contradiction concludes the proof. |

It remains to consider 0 < a < 1 and it seems probable that similar but
more careful arguments using Equation (??) are key to showing the ubiquitous
behaviour shown in Figure 77.

3 Behaviour on the vertical axis

It is clear both geometrically and analytically that the vertical axis is left invari-
ant by the iteration (??,77). Even so, starting with xy = 0 leads to quite varied
behaviour. We note that Pg(0) is the entire unit disk, and so the mapping is
intrinsically multivalued at zero.

Again we distinguish four cases:

1. @ = 0. In this case the mapping has period two for y in [-1,1]. For
[yl > 1, however T®([0,y]) = [0,y — 2sign(y)]

2. 0 < a < 1. In this case, the behaviour of the map is quite subtle and
depends on the the starting point and «. It exhibits periodicity of varied
orders when both are rational.

3. = 1. In this case T'([0,y]) = [0,y] for y > 0 and T'([0,y]) = [0, y + 2] for
y < 0. Hence after a finite number of iterations the iteration terminates.

4. « > 1. In this infeasible case we again see simpler translational behaviour
of T.

4 Extensions

Several natural extensions to study (graphically and analytically) take B as the
sphere in n-dimensional space E and consider:

e A as an affine subspace in F of dimension 2 < m < n;

e A as a polyhedron (or polyhedral cone) with n =2 or n = 3.

Remark 1 Note, even in two dimensions, alternating projections, alternating
reflections, project-project and average, and reflect-reflect and average will all
often converge to (locally nearest) infeasible points even when A is simply the
ray R := {[z,0]: x > —1/2} and B is the circle as before. They can also behave
quite ‘chaotically’. (See Figure ?? for a periodic illustration in Maple.) So the
affine nature of the convex set seems quite important.



sphere and segment

Figure 5: Iterated reflection on the ray R.

Remark 2 (Nearest point to an ellipse) Consider the ellipse

in standard form. The best approximation Pg(u,v) = (a‘fi‘t, bb;ft> where t

solves % + % = 1. This generalizes neatly to a hyperbola (one solves

the general quartic z* — uz® + vz — 1 = 0 and [z, 1/x] is the nearest point.)

Remark 3 (Nearest point to the p-sphere) For 0 < p < oo, consider the
p-sphere in two dimensions

Sp = {(@, ) [2" +[yl” =1}

Let z* := (1 — 2P)//P. For uwv # 0, the best approximation Ps, (u,v) =
(sign(u)z, sign(v)z*) where either z = 0,1 or 0 < z < 1 solves

2Pz = Jul) = 27N~ o)) = 0.

[Then one computes the two or three distances and select the point yielding the
least value. It is instructive to make a plot, say for p = 1/2.] This extends to
the case where uv = 0. Note that this also yields the nearest point formula for
the p-ball.



It should be possible to consider local convergence by linearization of T' from
Equation (??). This makes it important to understand approximate solution of
a point in the intersection of two hyperplanes.

For the hyperplane H, := {x: (a,x) = b} the projection is

x|—>m+{<a,x>—b}ﬁ.

The consequent averaged-reflection version of the Douglas-Rachford or Lions-
Mercier recursion for a point in the intersection of N distinct hyperplanes is:

N
2 ay
T T+ — ag,xr) — b} ——. 6

The corresponding-averaged projection algorithm is:

ag

N

1
x4+ — Y {{ag,x) —bp} ——
P e
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