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BRAGG and BLAKE

“I feel so strongly about

the wrongness of read-

ing a lecture that my lan-

guage may seem immod-

erate. · · · The spoken

word and the written word

are quite different arts.

· · · I feel that to collect

an audience and then read

one’s material is like invit-

ing a friend to go for a

walk and asking him not

to mind if you go along-

side him in your car.”

Sir Lawrence Bragg (1890-1971)

Nobel Crystallographer (Adelaide)

Songs of Innocence and
Experience (1825)

(We are both.)
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SANTAYANA

“If my teachers had begun by telling me that

mathematics was pure play with presupposi-

tions, and wholly in the air, I might have be-

come a good mathematician. But they were

overworked drudges, and I was largely inatten-

tive, and inclined lazily to attribute to incapac-

ity in myself or to a literary temperament that

dullness which perhaps was due simply to lack

of initiation.”

(George Santayana)

Persons and Places, 1945, 238–9.

TWO FINE REFERENCES:

1. J.M. Borwein and Qiji Zhu, Techniques

of Variational Analysis, CMS/Springer-Verlag,

New York, 2005.

2. J.M. Borwein and A.S Lewis, Convex Analy-

sis and Nonlinear Optimization, CMS/Springer-

Verlag, 2nd expanded edition, New York, 2005.
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OUTLINE

I shall discuss in “tutorial mode” the formaliza-

tion of inverse problems such as signal recovery

and option pricing as (convex and non-convex)

optimization problems over the infinite dimen-

sional space of signals. I shall touch on∗ the

following:

1. The impact of the choice of “entropy”

(e.g., Boltzmann-Shannon, Burg entropy,

Fisher information) on the well-posedness of

the problem and the form of the solution.

2. Convex programming duality:

what it is and what it buys you.

3. Algorithmic consequences.

4. Non-convex extensions: life is hard. But

sometimes more works than should.

♠ Related papers at http://docserver.cs.dal.ca/

∗More is an unrealistic task!
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THE GENERAL PROBLEM

• Many applied problems reduce to “best” solv-

ing (under-determined) systems of linear (or

non-linear) equations Ax = b , where b ∈ IRn,

and the unknown x lies in some appropriate

function space.

Discretization reduces this to a finite-dimensional

setting where A is now a m× n matrix.

⋄ In many cases, I believe it is better to ad-

dress the problem in its function space home,

discretizing only as necessary for computation.

• Thus, the problem often is how do we esti-

mate x from a finite number of its ’moments’?

This is typically an under-determined linear in-

version problem where the unknown is most

naturally a function, not a vector in IRm.
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EXAMPLE 1. AUTOCORRELATION

• Consider, extrapolating an autocorrelation

function R(t) given sample measurements.

⋄ The Fourier transform S(z) of the autocor-

relation is the power spectrum of the data.

Fourier moments of the power spec-

trum are the same as samples of the

autocorrelation function, so by com-

puting several values of R(t) directly

from the data, we are in essence com-

puting moments of S(z).

• We compute a finite number of moments of

S, and estimate S from them, and may com-

pute more moments from the estimate Ŝ by

direct numerical integration.

• Thereby extrapolating R, without directly

computing R from potentially noisy data.
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THE ENTROPY APPROACH

• Following (B-Zhu) I sketch a maximum en-

tropy approach to under-determined systems

where the unknown, x, is a function, typically

living in a Hilbert space, or more general space

of functions.

This technique picks a “best” represen-

tative from the infinite set of feasible

functions (functions that possess the

same n moments as the sampled func-

tion) by minimizing an integral func-

tional, f , of the unknown.

http://projects.cs.dal.ca/ddrive
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⋄ The approach finds applications in countless

fields including:

Acoustics, constrained spline fitting, im-

age reconstruction, inverse scattering,

optics, option pricing, multidimensional

NMR, tomography, statistical moment

fitting, and time series analysis, etc.

(Many thousands of papers)

• However, the derivations and mathematics

are fraught with subtle errors.

I will discuss some of the difficulties in-

herent in infinite dimensional calculus,

and provide a simple theoretical algo-

rithm for correctly deriving maximum

entropy-type solutions.
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WHAT is

Boltzmann (1844-1906) Shannon (1916-2001)
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WHAT is ENTROPY?

Despite the narrative force that the concept of

entropy appears to evoke in everyday writing,

in scientific writing entropy remains a thermo-

dynamic quantity and a mathematical formula

that numerically quantifies disorder. When the

American scientist Claude Shannon found that

the mathematical formula of Boltzmann de-

fined a useful quantity in information theory,

he hesitated to name this newly discovered

quantity entropy because of its philosophical

baggage.

The mathematician John von Neumann en-

couraged Shannon to go ahead with the name

entropy, however, since “no one knows what

entropy is, so in a debate you will always have

the advantage.”

• 19C: Boltzmann—thermodynamic disorder

• 20C: Shannon—information uncertainty

• 21C: JMB—potentials with superlinear growth
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CHARACTERIZATIONS of ENTROPY

• Information theoretic characterizations abound.

A nice one is:

Theorem H(−→p ) = −
∑N
k=1 pk log pk is the unique

continuous function (up to a positive scalar

multiple) on finite probabilities such that

I. Uncertainty grows:

H







n
︷ ︸︸ ︷

1

n
,
1

n
, · · · ,

1

n







increases with n.

II. Subordinate choices are respected: for dis-

tributions −→p1 and −→p2 and 0 < p < 1,

H
(

p−→p1, (1 − p)−→p2
)

= pH(−→p1)+(1−p)H(−→p2).

11



ENTROPIES FOR US

• Let X be our function space, typically Hilbert

space L2(Ω), or the function space L1(Ω) (or

a Sobelov space).

⋄ For p ≥ 1,

Lp(Ω) =

{

x measurable :

∫

Ω
|x(t)|pdt <∞

}

.

It is well known that L2(Ω) is a Hilbert

space with inner product

〈x, y〉 =

∫

Ω
x(t)y(t)dt,

(with variations in Sobelov space).

• A bounded linear map A : X → IRn is deter-

mined by

(Ax)i =
∫

x(t)ai(t) dt

for i = 1, . . . , n and ai ∈ X∗ the ‘dual’ of X

(L2 in the Hilbert case, L∞ in the L1 case).
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• To pick a solution from the infinitude of pos-

sibilities, we may freely define “best”.

⊗
The most common approach is to find the

minimum norm solution∗, by solving the Gram

system

AATλ = b .

⊕
The solution is then x̂ = ATλ. This recap-

tures all of Fourier analysis!

• This actually solved the following variational

problem:

inf

{∫

Ω
x(t)2dt : Ax = b x ∈ X

}

.

∗Even in the (realistic) infeasible case.
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• We generalize the norm with a strictly convex

functional f as in

min {f(x) : Ax = b, x ∈ X} , (P)

where f is what we call, an entropy functional,

f : X → (−∞,+∞]. Here we suppose f is a

strictly convex integral functional∗ of the form

f(x) =
∫

Ω
φ(x(t))dt.

The functional f can be used to include other

constraints†.

For example, the constrained L2 norm func-

tional (‘positive energy’),

f(x) =

{ ∫ 1
0 x(t)

2 dt if x ≥ 0
+∞ else

is used in constrained spline fitting.

• Entropy constructions abound: Bregman and

Csizar distances model statistical divergences.

∗Essentially φ′′(t) > 0.
†Including nonnegativity, by appropriate use of +∞.
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• Two popular choices for f are the Boltzmann-

Shannon entropy (in image processing)

f(x) =
∫

x log x,

and the Burg entropy (in time series analysis),

f(x) = −
∫

logx.

⋄ Both implicitly impose a nonnegativity con-

straint (positivity in Burg’s non-superlinear case).

• There has been much information-theoretic

debate about which entropy is best.

This is more theology than science!

• More recently, the use of Fisher Information

f(x, x′) =

∫

Ω

x′(t)2

2x(t)
µ(dt)

has become more usual as it penalizes large

derivatives; and can be argued for physically

(‘hot’ over past five years).
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WHAT ‘WORKS’ BUT CAN GO WRONG?

• Consider solving Ax = b, where, b ∈ IRn and
x ∈ L2[0,1]. Assume further that A is a contin-

uous linear map, hence represented as above.

• As L2 is infinite dimensional, so is N(A): if
Ax = b is solvable, it is under-determined.

We pick our solution to minimize

f(x) =

∫

φ(x(t))µ(dt)

⊙
φ(x(t), x′(t)) in Fisher-like cases [BN1, BN2,

B-Vanderwerff (Convex Functions, CUP 2009)].

• We introduce the Lagrangian

L(x, λ) :=
∫ 1

0
φ(x(t))dt+

n∑

i=1

λi (bi − 〈x, ai〉) ,

and the associated dual problem

max
λ∈IRn

min
x∈X

{L(x, λ)}. (D)
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• So we formally have a “dual pair” (BL1)

min {f(x) : Ax = b, x ∈ X} , (P)

and

max
λ∈IRn

min
x∈X

{L(x, λ)}. (D)

• Moreover, for the solutions x̂ to (P), λ̂ to

(D), the derivative (w.r.t. x) of L(x, λ̂) should

be zero, since L(x̂, λ̂) ≤ L(x, λ̂),∀x.

This implies

x̂(t) = (φ′)−1





n∑

i=1

λ̂iai(t)





= (φ′)−1
(

AT λ̂
)

.

• We can now reconstruct the primal solu-

tion (qualitatively and quantitatively) from

a presumptively easier dual computation.
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A DANTZIG ANECDOTE

“George wrote in “Reminiscences about the
origins of linear programming,” 1 and 2, Oper.

Res. Letters, April 1982 (p. 47):

“The term Dual is not new. But sur-

prisingly the term Primal, introduced
around 1954, is. It came about this

way. W. Orchard-Hays, who is respon-
sible for the first commercial grade L.P.

software, said to me at RAND one day
around 1954: ‘We need a word that

stands for the original problem of which

this is the dual.’
I, in turn, asked my father, Tobias

Dantzig, mathematician and author, well
known for his books popularizing the

history of mathematics. He knew his
Greek and Latin. Whenever I tried to

bring up the subject of linear program-
ming, Toby (as he was affectionately

known) became bored and yawned.
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But on this occasion he did give the

matter some thought and several days

later suggested Primal as the natural

antonym since both primal and dual

derive from the Latin. It was Toby’s

one and only contribution to linear pro-

gramming: his sole contribution unless,

of course, you want to count the train-

ing he gave me in classical mathematics

or his part in my conception.”

A lovely story. I heard George recount this a

few times and, when he came to the “concep-

tion” part, he always had a twinkle in his eyes.

(Saul Gass, Oct 2006)

• In a Sept 2006 SIAM book review , I as-

serted George assisted his father—for rea-

sons I believe but cannot reconstruct.

I also called Lord Chesterfield, Chesterton

(gulp!).
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PITFALLS ABOUND

There are 2 major problems to this approach.∗

1. The assumption that a solution x̂ exists.

For example, consider the problem

inf
x∈L1[0,1]

{
∫ 1

0
x(t)dt :

∫ 1

0
tx(t) dt = 1, x ≥ 0

}

.

⋄ The optimal value is not attained. Similarly,

existence can fail for the Burg entropy with

trig moments. Additional conditions on φ are

needed to insure solutions exist.† (BL2)

2. The assumption that the Lagrangian is dif-

ferentiable. In the above, f is +∞ for every x
negative on a set of positive measure.

⋄ This implies the Lagrangian is +∞ on a dense

subset of L1, the set of functions not nonneg-

ative a.e.. The Lagrangian is nowhere contin-

uous, much less differentiable.
∗A third, the existence of λ̂, is less difficult to surmount.
†The solution is actually the absolutely continuous part
of a measure in C(Ω)∗.
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FIXING THE PROBLEM

• One approach to circumvent the differen-

tiability problem, is to pose the problem in

L∞(Ω), or in C(Ω), the space of essentially

bounded, or continuous, functions. However,

in these spaces, even with additional side qual-

ifications, we are not necessarily assured solu-

tions to (P) exist.

⋄ In (BL2), an example is given of a one pa-

rameter problem on the torus in IR3, using the

first four Fourier coefficients, and Burg’s en-

tropy, where solutions fail to exist for certain

feasible data values.

• Alternatively, Minerbo poses the problem of

tomographic reconstruction in C(Ω) with the

Boltzmann-Shannon entropy. Unfortunately,

the functions ai are characteristic functions of

strips across Ω, and the solution is piecewise

constant, not continuous.
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CONVEX ANALYSIS (AN ADVERT)

We prepare to state a theorem that guarantees

that the form of solution found in the above

faulty derivation x̂ = (φ′)−1(AT λ̂) is, in fact,

correct. A full derivation is given in (BL2) and

(BZ05).

• We introduce the Fenchel (Legendre) conju-

gate (see BL1) of a function φ : IR → (−∞,+∞]:

φ∗(u) = sup
v∈IR

{uv − φ(v)}.

• Often this can be (pre-)computed explicitly,

using Newtonian calculus. Thus,

φ(v) = v log v − v,− log v and v2/2

yield

φ∗(u) = exp(u),−1 − log(−u) and u2/2

respectively. The red is the log barrier of in-

terior point fame!

• The Fisher case is similarly explicit.

22



EXAMPLE 2. CONJUGATES & NMR

The Hoch and Stern information measure, or

neg-entropy, is defined in complex n−space by

H(z) =
n∑

j=1

h(zj/b),

where h is convex and given (for scaling b) by:

h(z) , |z| log
(

|z| +
√

1 + |z|2
)

−
√

1 + |z|2

for quantum theoretic (NMR) reasons.

• Recall the Fenchel-Legendre conjugate

f∗(y) := sup
x

〈y, x〉 − f(x).

• Our symbolic convex analysis package (stored

at www.cecm.sfu.ca/projects/CCA/, also in Chris

Hamilton’s package at Dal) produced:

h∗(z) = cosh(|z|)

⋄ Compare the Shannon entropy:

(z log z − z)∗ = exp(z).
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COERCIVITY AND DUALITY

• We say φ possess regular growth if either

d = ∞, or d < ∞ and k > 0, where d =

limu→∞ φ(u)/u and k = limv↑d(d− v)(φ∗)′(v).∗

• The domain of a convex function is dom(φ) =

{u : φ(u) < +∞}; φ is proper if dom(φ) 6= ∅.
Let ı = inf dom(φ) and σ = supdom(φ).

• Our constraint qualification,† (CQ), reads

∃x ∈ L1(Ω), such that Ax = b,
f(x) ∈ IR, ı < x < σ a.e.

⋄ In many cases, (CQ) reduces to feasibility ,

(e.g., spectral estimation) and trivially holds.

• In this language, the dual problem for (P) is

sup

{

〈b, λ〉 −
∫

Ω
φ∗(ATλ(t))dt

}

. (D)

∗-log does nor possess regular growth; v → v log v does.
†The standard Slater’s condition fails; this is what guar-
antees dual solutions exist.
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Theorem 1 (BL2) Let Ω be a finite inter-

val, µ Lebesgue measure, each ak continuously

differentiable (or just locally Lipschitz) and φ

proper, strictly convex with regular growth.

Suppose (CQ) holds and also

(1)

∃ τ ∈ IRn such that
n∑

i=1

τiai(t) < d ∀t ∈ [a, b],

then the unique solution to (P) is given by

(2) x̂(t) = (φ∗)′(
n∑

i=1

λ̂iai(t))

where λ̂ is any solution to dual problem (D)

(and such λ̂ must exist).

• This theorem generalizes to cover Ω ⊂ IRn,

and more elaborately in Fisher-like cases. These

results can be found in (BL2, BN1).

⋄ ‘Bogus’ differentiation of a discontinuous func-

tion becomes the delicate (
∫

Ω φ)
∗(x∗) =

∫

Ω φ∗(x∗) .
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• Thus, the form of the maximum entropy so-

lution can be legitimated simply by validating

the easily checked conditions of Theorem 1.

♠ Also, any solution to Ax = b of the form in

(2) is automatically a solution to (P).

So, solving (P) is equivalent to finding λ ∈ IRn

with

(3) 〈(φ∗)′(ATλ), ai〉 = bi, i = 1, . . . , n,

a finite dimensional set of non-linear equations.

One can then apply a standard ‘indus-

trial strength’ nonlinear equation solver,

like Newton’s method, to this system,

to find the optimal λ.

• Often, (φ′)−1 = (φ∗)′ and so the ’dubious’

solution agrees with the ’honest’ solution.

Importantly, we may tailor (φ′)−1 to our needs.
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• Note that discretization is only needed to

compute terms in (3). Indeed, these integrals

can sometimes be computed exactly (e.g., in

some tomography and option estimation prob-

lems). This is the gain of not discretizing early.

By waiting to see the form of dual prob-

lem, one can customize one’s integra-

tion scheme to the problem at hand.

• For European option pricing the constraints

are based on ‘hockey-sticks’ of the form

ai(x) := max{0, x− ti}

so the dual can be computed exactly and leads

to a relatively small and explicit nonlinear equa-

tion to solve (BCM).

⋄ Even when this is not the case one can of-

ten use the shape of the dual solution to fash-

ion veryefficient heuristic reconstructions that

avoid any iterative steps (see BN2).
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MomEnt+

• MomEnt+ (www.cecm.sfu.ca/interfaces/) has

code for entropic reconstructions as above. Mo-

ments (including wavelets), entropies and di-

mension are easily varied. It also allows for

adding noise and relaxation of the constraints.

Several methods of solving the dual are

possible, including Newton and quasi-

Newton methods (BFGS, DFP), con-

jugate gradients, and the suddenly sexy

Barzilai-Borwein line-search free method.

• For iterative methods below, I recommend:

H.H. Bauschke and J.M. Borwein, “On pro-

jection algorithms for solving convex feasibil-

ity problems,” SIAM Review, 38 (1996), 367–

426 (cited over 100 time by MathSciNet, 215

times in ISI, 350 in Google!), and a forthcom-

ing CMS-Springer book written by Bauschke

and Combettes.
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COMPARISON OF ENTROPIES

• The positive L2, Boltzmann-Shannon and

Burg entropy reconstruction of the charac-

teristic function of [0,1/2] using 10 algebraic

moments (bi =
∫ 1/2
0 ti−1dt) on Ω = [0,1].

0
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

chi(0,.5,t)
Boltzmann-Shannon

Burg
Positive L2

• Solution: x̂(t) = (φ∗)′(
∑n
i=1 λ̂it

i−1).

Burg over-oscillates since (φ∗)′(t) = 1/t.
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THE NON-CONVEX CASE

• In general non-convex optimization is a much

less satisfactory field. We can usually hope

only to find critical points (f ′(x) = 0) or lo-

cal minima. Thus, problem-specific heuristics

dominate.

• Crystallography: We of course wish to es-

timate x in L2(IRn)∗ Then the modulus c = |x̂|
is known (x̂ is the Fourier transform of x).†

Now {y : |ŷ| = c}, is not convex. So the issue

is to find x given c and other convex infor-

mation. An appropriate optimization problem

extending the previous one is

min {f(x) : Ax = b, ‖Mx‖ = c, x ∈ X} , (NP)

where M models the modular constraint, and

f is as in Theorem 1.

∗Here n = 2 for images, 3 for holographic imaging, etc.
†Observation of the modulus of the diffracted image in
crystallography. Similarly, for optical aberration cor-
rection.
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EXAMPLE 3: CRYSTALLOGRAPHY

• My Parisian collaborator Combettes is ex-

pert on optimization perspectives of cognates

to (NP) and related feasibility problems.

⋄ Most methods rely on a two-stage (easy con-

vex, hard non-convex) decoupling schema—

the following from Decarreau et al. (D). They

suggest solving

min {f(x) : Ax = y, ‖Bky‖ = bk, x ∈ X} ,

(NP ∗)

where ‖Bky‖ = bk, k ∈ K encodes the hard

modular constraints.

• They solve formal first-order Kuhn-Tucker

conditions for a relaxed form of (NP ∗). The

easy constraints are treated by Thm 1.

I am obscure, largely because the results were

largely negative:
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• They applied these ideas to a prostaglandin

molecule (25 atoms), with known structure,

using quasi-Newton (which could fail to find

a local min), truncated Newton (better) and

trust-region (best) numerical schemes.

⋄ They observe that the “reconstructions were

often mediocre” and highly dependent on the

amount of prior information – a small propor-

tion of unknown phases to be satisfactory.

“Conclusion: It is fair to say that the

entropy approach has limited efficiency,

in the sense that it requires a good

deal of information, especially concern-

ing the phases. Other methods are

wanted when this information is not

available.”

• Thus, I offer this part of my presentation

largely to illustrate the difficulties.
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EXAMPLE 4. HUBBLE TELESCOPE

The basic setup—more details follow.

• Electromagnetic field: u : R2 → C ∈ L2

• DATA: Field intensities for m = 1,2, . . . ,M :

ψm : R2 → R+ ∈ L1 ∩ L2 ∩ L∞

• MODEL: Functions Fm : L2 → L2, are mod-

ified Fourier Transforms, for which we can mea-

sure the modulus (intensity)

|Fm(u)| = ψm ∀m = 1,2, . . . ,M.

⊕
INVERSE PROBLEM: For the given trans-

forms Fm and measured field intensities ψm
(for m = 1, . . . ,M), find a robust estimate of

the underlying u.
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... AND SOME HOPE FROM HUBBLE

• The (human-ground) lens with a micro-asymmetry

was mounted upside-down. The perfect back-

up (computer-ground) lens stayed on earth!

⋄ NASA challenged ten teams to devise algo-

rithmic fixes.

• Optical aberration correction, using the

Misell algorithm, a method of alternating pro-

jections, works much better than it should—

given that it is being applied to find a member

of a version of

Ψ :=
⋂

k=1M

{x : Ax = b, ‖Mkx‖ = ck, x ∈ X} ,

(NCFP)

which is a non-convex feasibility problem as

on the next page.

Is there hidden convexity?

34



HUBBLE IS ALIVE AND KICKING

Hubble reveals most distant planets yet
Last Updated: Wednesday, October 4, 2006 | 7:21 PM ET
CBC News

Astronomers have discovered the farthest planets from Earth yet found, including one with a year as short as 10 hours — the

fastest known.

Using the Hubble space telescope to peer deeply into the centre of the galaxy, the scientists found as many as 16 planetary 

candidates, they said at a news conference in Washington, D.C., on Wednesday.

The findings were published in the journal Nature.

Looking into a part of the Milky Way known as the galactic bulge, 26,000 light years from Earth, Kailash Sahu and his team 

of astronomers confirmed they had found two planets, with at least seven more candidates that they said should be planets.

The bodies are about 10 times farther away from Earth than any planet previously detected.

A light year is the distance light travels in one year, or about 9.46 trillion kilometres.

Continue Article

• From Nature Oct 2006. Hubble has since

been reborn twice and exoplanets have become

quotidian. There were 228 exoplanets listed at

www.exoplanets.org in Sept 08 and March 09.
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5 Facts About Kepler (launch March 6)
-- Kepler is the world's first mission with the ability to find true Earth analogs -- planets that 
orbit stars like our sun in the "habitable zone." The habitable zone is the region around a star 
where the temperature is just right for water -- an essential ingredient for life as we know it -- to 
pool on a planet's surface. 

-- By the end of Kepler's three-and-one-half-year mission, it will give us a good 

idea of how common or rare other Earths are in our Milky Way galaxy. This will be

an important step in answering the age-old question: Are we alone? 

-- Kepler detects planets by looking for periodic dips in the brightness of stars. 

Some planets pass in front of their stars as seen from our point of view on Earth; 

when they do, they cause their stars to dim slightly, an event Kepler can see. 

-- Kepler has the largest camera ever launched into space, a 95-megapixel array

of charge-coupled devices, or CCDs, as in everyday digital cameras. 

-- Kepler's telescope is so powerful that, from its view up in space, it 

could see one person in a small town turning off a porch light at night. 

NASA 05.03.2009



TWO MAIN APPROACHES

I. Non-convex (in)feasibility problem: Given

ψm 6= 0, define Q0 ⊂ L2 convex, and

Qm :=
{

u ∈ L2 | |Fm(u)| = ψm a.e.
}

(nonconvex)

we wish to find u ∈
⋂M
m=0 Qm = ∅.

⊙
via an alternating projection method: e.g.,

for two sets A and B, repeatedly compute

x→ PB(x) =: y → PA(y) =: x.

II. Error reduction of a nonsmooth objec-

tive (‘entropy’) : for fixed βm > 0

⊙
we attempt to solve

minimize E(u) :=
M∑

m=0

βm

2
dist2(u,Qm)

over u ∈ L2.
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I: NON-CONVEX PROJECTION CAN FAIL

• If A∩B 6= ∅ and A,B are closed convex then

weak convergence (only 2002) is assured—von

Neumann (1933) for subspaces, Bregman (1965).

⊙
Consider the alternating projection method

to find the unique red point on the line-segment

A (convex) and the blue circle B (non-convex).

• The method is ‘myopic’.

A

B

• Starting on line-segment outside the

red circle, we converge to the unique

feasible solution.

• Starting inside the red circle leads to

a period-two locally ‘least-distance’ so-

lution.
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I: PROJECTION METHOD OF CHOICE

• For optical abberation correction this is the

alternating projection method:

x→ PA (PB(x))

x

PA(x)

RA(x)

A

• For crystallography it is better to use (HIO)

over-relax and average: reflect to RA(x) :=

2PA(x) − x and use

x→
x+RA (RB(x))

2

• Both parallelize neatly: A :=diag, B :=
∏

iCi.

• Both are nonexpansive in the convex case.
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APPROACH I: NAMES CHANGE . . .

• The optics community calls projection al-

gorithms “Iterative Transform Algorithms”.

Hubble used Misell’s Algorithm, which

is just averaged projections. The best

projection algorithm Luke∗ found was

cyclic projections (with no relaxation).

• For the crystallography problem the best

known method is called the Hybrid Input-Output

algorithm in the optical setting. Bauschke-

Combettes-Luke (JMAA, 2004) showed HIO,

Lions-Mercier (1979), Douglas-Rachford, Feinup,

and divide-and-concur coincide.

• When u(t) ≥ 0 is imposed, Feinup’s no longer

coincides, and LM (‘HPR’) is still better.

∗My former PDF, he was a Hubble Graduate student.
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ELSER, QUEENS and SUDOKU

2006 Veit Elser at Cornell has had huge suc-

cess (and press) using divide-and-concur on

protein folding, sphere-packing, 3SAT, Sudoku

(R2916), and more. Bauschke and Schaad like-

wise study Eight queens problem (R256) and

image-retrieval (Science News, 08).

Given a partially completed grid, fill it so that each
column, each row, and each of the nine 3× 3 regions
contains the digits from 1 to 9 only once.

• This success (a.e.?) is not seen with alter-

nating projections and cries out for explana-

tion.
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A SAMPLE RECONSTRUCTION (via II)

• The object and its spectrum

Top row: data

Middle: reconstruction

Bottom: truth and error
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EXAMPLE 5. INVERSE SCATTERING

• Central problem: determine the location

and shape of buried objects from measure-

ments of the scattered field after illuminating

a region with a known incident field.

• Recent techniques: determine if a point z is

inside or outside of the scatterer by determin-

ing solvability of the linear integral equation

Fgz
?
= ϕz

where F → X is a compact linear operator con-

structed from the observed data, and ϕz ∈ X

is a known function parameterized by z.

• F has dense range, but if z is on the exterior

of the scatterer, then ϕz /∈Range(F).

42



• Since F is compact, any numerical implemen-

tation to solve the above integral equation will

need some regularization scheme.

• If Tikhonov regularization is used—in a re-

stricted physical setting—the solution to the

regularized integral equation, gz,α, has the be-

haviour

||gz,α|| → ∞ as α→ 0

if and only if z is a point outside the scatterer.

• An important open problem is to deter-

mine the behavior of regularized solutions gz,α

under different regularization strategies.

In other words, when can these techniques fail?

(On going joint work with Russell Luke for a

2009 IMA Summer School: also in Experimen-

tal Math in Action, AKP, 2007).
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FINIS: REFLECTIONS IN THE CIRCLE

• Dynamics when B is the unit circle and A

is the blue horizontal line at height α ≥ 0 are

already fascinating. Steps are for

T :=
I +RA ◦RB

2
:

with θn the argument this becomes set

xn+1 := cos θn, yn+1 := yn + α− sin θn.

• α = 0: converge iff start off y-axis (‘chaos’):

• α > 1 ⇒ y → ∞, while α = 0.95 (0 < α < 1)

(unproven) and α = 1 respectively produce:
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DYNAMIC GEOMETRY

• I finish with a Cinderella demo developed

with Chris Maitland.

• Next week a proper introduction to the

package will be given by Ulli Kortenkamp

...
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The Surprise Examination or Unexpected Hang-
ing Paradox has long fascinated mathematicians
and philosophers, as the number of publications
devoted to it attests.

For an exhaustive bibliography on the
subject, the reader is referred to [1].

Herein, the optimization problems arising from
an information theoretic avoidance of the Para-
dox are examined and solved.

They provide a very satisfactory application of
both the Kuhn-Tucker theory and of various
classical inequalities and estimation techniques.

¤ Although the necessary convex analytic con-
cepts are recalled in the course of the presenta-
tion, some elementary knowledge of optimiza-
tion is assumed.

Those without this background may sim-
ply skip a couple of proofs and few tech-
nical details.
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INFORMATION MEASURE OF SURPRISE

Tim Chow’s [3] version of the Paradox:

A teacher announces in class that an

examination will be held on some day

during the following week, and more-

over that the examination will be a sur-

prise. The students argue that a sur-

prise exam cannot occur. For suppose

the exam were on the last day of the

week. Then on the previous night, the

students would be able to predict that

the exam would occur on the following

day, and the exam would not be a sur-

prise. So it is impossible for a surprise

exam to occur on the last day.
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But then a surprise exam cannot oc-

cur on the penultimate day, either, for

in that case the students, knowing that

the last day is an impossible day for a

surprise exam, would be able to predict

on the night before the exam that the

exam would occur on the following day.

Similarly, the students argue that a sur-

prise exam cannot occur on any other

day of the week either. Confident in

this conclusion, they are of course to-

tally surprised when the exam occurs (on

Wednesday, say). The announcement is

vindicated after all. Where did the stu-

dents’ reasoning go wrong?
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In this work, we study two optimization prob-

lems arising from an entropic approach to max-

imizing surprise. Such an approach was pro-

posed in outline by Karl Narveson [3, p. 49].

We do not discuss here the various approaches

to the logical resolution of the paradox itself;

one may consult [1,3].

¤ Rather we ask the question:

What should be the probability distrib-

ution of an event occurring once every

week so that it maximizes the surprise it

creates?

¤ This requires us to find a measure of surprise.
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¤ Let us start by posing an information theo-

retic counterpart of the paradox:

during a period of m days an event (such

as a test given by a teacher or a surprise

tax audit) occurs with probability pi on

day i = 1, . . . , m.

We wish to find a probability distribution that

maximizes the average surprise caused by the

event when it occurs.

¤ We consider a measure of surprise analogous

to the one used in the celebrated definition of

the Shannon entropy [2,4,6].
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¤ The surprise on day i is the negative of the

logarithm of the probability the event occurs on

day i given that it has not occurred so far.

¤ As in the classical definition, − log p is used to

measure the surprise associated with an event

of probability p, which is also a measure of how

much we learn if it occurs.

¤ The logarithm makes the measure additive:

the information associated with independent events

should sum up when they both occur.

¤ The use of conditional probabilities introduces

some causality: it accounts for what is already

known of the previous days.
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The event ‘test occurs on day i’ is simply de-

noted by i, and its probability is denoted by P (i)

or pi. The event ‘test does not occur on day i’

will be denoted by ∼i.

¤ Thus, we need to maximize:

−
m∑

i=1

P (i) logP
(
i | ∼1, . . . ,∼(i− 1)

)
. (1)

Using Bayes’ formula for conditional probabili-

ties, we obtain an explicit formula:

P
(
i | ∼1, . . . ,∼(i− 1)

)

=
P

(
∼1, . . . ,∼(i− 1)| i

)
P (i)

P
(
∼1, . . . ,∼(i− 1)

)

=
P (i)

1−
(
P (1) + · · ·+ P (i− 1)

)

=
P (i)

P (i) + · · ·+ P (m)
.
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¤ We are led to the next optimization problem:

(Pm) inf {Sm(p) | p ∈ Rm, 1 = 〈u , p〉} (2)

Here, u is the m−vector of 1’s and:

¤ Sm is the (m-dimensional) surprise function

Sm(p) :=
m∑

j=1

pj log
pj

1

m

∑

i≥j

pi

−
m∑

j=1

pj.

More precisely,

Sm(p) :=
m∑

j=1

h


pj,

1

m

m∑

i=j

pi


 , p ∈ Rm,

where h is defined on R2 by

h(x, y) :=





x log
x

y
− x if x > 0 and y > 0,

0 if x = 0 and y ≥ 0,

+∞ otherwise.
(3)
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¤ For all p satisfying the constraint in (2), Sm(p)

differs from the negative of the quantity in (1)

only by a constant.

The factor m−1 makes subsequent com-

putations more aesthetic and the limit

analysis more harmonious.

¤ Note that Sm(p) can be viewed as the Kullback-

Leibler information measure of p relative to its

(normalized) tail q:

q := (q1, . . . , qm) with

qj := 1
m

∑m
i=j pi, j = 1, . . . , m.

(4)
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The Kullback-Leibler information measure [2, 5]
is an extension of Boltzmann-Shannon entropy.
It is also called the relative information measure,
cross-entropy or I-divergence.

Given two probability measures P and
Q, the relative information of P with re-
spect to Q is

K(P ||Q) :=
∫ (

dP
dQ log dP

dQ − dP
dQ

)
dQ

=
∫ (

log dP
dQ − 1

)
dP

if P is absolutely continuous with re-
spect to Q, and K(P ||Q) := +∞ oth-
erwise, [5].

¤ For an extended discussion on the Maximum
Entropy Principle, one may consult [4] and ref-
erences therein.

¤ Also of interest is the following continuous
time formulation of the above problem.

11
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We suppose that the event occurs at some point t

in the time interval [0, T ], with probability den-

sity p(t).

¤ By analogy with the discrete case, we con-

sider the following optimization problem:

(P) inf
{
S(p)

∣∣∣ p ∈ L1

(
[0, T ]

)
, 1 = 〈u, p〉

}
(5)

in which the surprise function S is the functional

defined on L1

(
[0, T ]

)
by

S(p) :=
∫ T

0
h

(
p(t),

1

T

∫ T

t
p(s) ds

)
dt,

and u ≡ 1 [0, T ].

As above h is defined by

h(x, y) :=





x log
x

y
− x if x > 0 and y > 0,

0 if x = 0 and y ≥ 0,

+∞ otherwise.
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WHAT is

Boltzmann (1844-1906) Shannon (1916-2001)
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WHAT is ENTROPY?

Despite the narrative force that the concept of entropy

appears to evoke in everyday writing, in scientific writ-

ing entropy remains a thermodynamic quantity and a

mathematical formula that numerically quantifies dis-

order. When the American scientist Claude Shannon

found that the mathematical formula of Boltzmann de-

fined a useful quantity in information theory, he hesi-

tated to name this newly discovered quantity entropy

because of its philosophical baggage. The mathemati-

cian John Von Neumann encouraged Shannon to go

ahead with the name entropy, however, since “no one

knows what entropy is, so in a debate you will always

have the advantage.”

• 19C: Boltzmann—thermodynamic disorder

• 20C: Shannon—information uncertainty

• 21C: JMB—potentials with superlinear growth

9



SURPRISINGLY, SURPRISE IS CONCAVE

¤ We now establish the convexity of (the neg-

ative of) our measure of surprise. An extended

real-valued function on Rn is closed (convex) if

its epigraph (the set of points which are above

or on its graph) is closed (convex) in Rn+1.

¤ The domain of a convex function f is the

set of points where it is less than +∞, denoted

by dom f .

¤ If a convex function is not identically +∞
and is nowhere −∞ (such functions are proper),

then being closed is the same as being lower

semi-continuous.
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¤ Given any function f on Rn (convex or not),

the convex conjugate of f is the function

f?(ξ) := sup {〈x , ξ 〉 − f(x) | x ∈ Rn}

for ξ ∈ Rn.

It is easily shown that f? is always closed and

convex [2, 7]. Furthermore, if f is closed, proper,

and convex, then so is f? and the bi-conjugate

f?? := (f?)? is f itself [2, 7].

Even without this theoretical underpin-

ning, computation of f as a double-conjugate

provides an accessible way of establish-

ing both convexity and semi-continuity.
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Lemma 1 The function h defined in (3) is closed

and convex.

Proof. One may directly show that h is the

convex conjugate of the indicator function

δ ((ξ, η) | C ) :=

{
0 if (ξ, η) ∈ C,

+∞ otherwise,

where C is the convex set
{
(ξ, η) ∈ R2|η ≤ − exp ξ

}
.

This proves that h is closed and convex.

Convexity of h can also be derived from

the easy fact that, for any interval I, a

function

(x, y) 7→ y f(x y−1)

is convex on I× (0,∞) if and only if f is

convex on I. [A ‘bad’ way is to check the

Hessian matrix is positive semi-definite.]

15



¤ Figure 1 displays h.

Using Lemma 1, we deduce that Sm and S are

convex. Indeed, we have

Sm(p) =
∑m

i=1 h(pi, [Jp]i) and

S(p) =
∫ T
0 h

(
p(t), [J p](t)

)
dt,

in which J is the (m×m)-matrix whose entries

are m−1 on and above the diagonal and 0 else-

where, and J : L1([0, T ]) → C([0, T ]) is the linear

mapping defined by

[J p](t) :=
1

T

∫ T

t
p(s) ds. (6)

In passing, we recall that the composi-

tion of a convex function with an arbi-

trary linear mapping is convex.
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DISCRETE TIME ANALYSIS

Constrained optimization problems such as (2)

are traditionally approached using concepts from

duality theory, which flows from the theory of

Lagrange multipliers.

Roughly speaking, duality theory reduces

constrained optimization problems to sim-

pler or unconstrained ones.

¤ A modern version of duality theory is posed

in the language of Fenchel conjugation [2, 7].

We recall some additional basic facts. Let f

be a closed proper convex function on Rn, let A

be an (m× n)-matrix, and let y ∈ Rm.

18
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We consider the linearly constrained optimiza-

tion problem

(P) inf {f(x) | x ∈ Rn, y −Ax = 0} . (7)

¤ We denote the optimal value of (P) by V (P),

the feasible set by F (P) and the solution set

by S(P). Thus,

F (P) := {x|y −Ax = 0}
and

S(P) := {x ∈ F (P)|f(x) = V (P)} .

19



¤ The Lagrangian of (7) is the function

L(λ,x) := f(x) + 〈λ , y −Ax〉 ,

for λ ∈ Rm, x ∈ Rn. For a given λ, L(λ,x) can

be regarded as a “penalized” version of f .

Each component of λ fixes the price

(positive or negative) to be paid if the

corresponding constraint is violated.

¤ Under favourable circumstances, it is possi-

ble to find a particular value λ̄ of λ such that

minimizers of L(λ̄, ·) also solve (7). Such a λ̄ is

then called a Lagrange Multiplier or a shadow

price.
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¤ Now minimizing L(λ̄, ·) is an unconstrained

problem (save for any implicit constraints im-

posed by dom f .)

We can now state the Kuhn-Tucker Theorem

which provides necessary and sufficient condi-

tions (on λ and x) for x to be a solution of (7),

[7] or [2].

Theorem 1 (Kuhn-Tucker) Suppose V (P) 6=
−∞ and that

(CQ) F (P) ∩ int dom f 6= ∅.

Then, the following are equivalent:

(i) x ∈ S(P);

(ii) supL( · ,x) = L(λ̄,x) = inf L(λ̄, ·) for some

λ̄;

(iii) x ∈ F (P) and A?λ̄ ∈ ∂f(x) for some λ̄.
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¤ In condition (iii), A? is the matrix transpose

of A and ∂f(x) denotes the subdifferential of f

at x, i.e., the set of subgradients of f at x.

¤ Precisely, a vector ξ ∈ Rn is a subgradient

of f at x if the subgradient inequality

f(z) ≥ g(z) := f(x) + 〈ξ, z− x〉

holds for all z ∈ Rn.

If f is convex and differentiable at x, ∇f(x) is

the unique subgradient of f at x, and conversely.

• In the words of Rockafellar, the subgradient in-

equality says that “the graph of the affine func-

tion g is a non-vertical supporting hyperplane to

the epigraph of f at (x, f(x)).” [7].
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¤ Points (λ̄,x) satisfying condition (ii) are said

to be saddle points of L.

The requirements in (iii) are a form of the Kuhn-

Tucker conditions. Notice that, in condition (ii),

λ̄ appears as the maximizer of the (concave)

dual function

D(λ) := inf L(λ, ·).

· · ·
¤ We now return to the study of Problem (2).

The Lagrangian of (2) is

L(p, λ) := Sm(p) + λ(1− 〈u , p〉),
for p ∈ Rm, λ ∈ R.
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Theorem 1 tells us that p is a solution for (2)

if and only if:

(α) 0 = 1− 〈u,p〉;

(β) for some λ̄ ∈ R 0 ∈ ∂Sm(p)+λ̄ ∂
[
1−〈u, · 〉

]
(p).

Indeed, one can check that V (Pm) 6= −∞ and

that (Pm) has a feasible solution in

int domSm = {p ∈ Rm | p > 0} .

¤ Furthermore, Sm is differentiable in the inte-

rior of its domain, and we have

∂Sm

∂pk
(p) = logmµk −

∑

i≤k

µi,

where

µk := pk/
∑

j≥k

pj. (8)
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¤ Consequently, condition (β) becomes

0 = logmµk −
∑

i≤k

µi − λ, k = 1, . . . , m. (9)

Now, by definition, µm = 1, so setting k = m

in (9) gives

λ = logm−
∑

µi,

from which we obtain the recursion

µm = 1, µk = exp
(
−∑m

j=k+1 µj

)
, (10)

for k = m− 1, . . . ,1. Also

µk−1 = exp
(
−∑m

j=k µj

)

= exp(−µk) exp
(
−∑m

j=k+1 µj

)
.

Thus, the backward recursion (10) can be rewrit-

ten as

µm = 1, µk−1 = µk exp (−µk) , (11)

for k = m, . . . ,2.

¤ Values of µk are shown in Figure 2, while

Figure 3 shows optimal probability distributions.
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Fig. 3. Optimal distributions
m = 7 (left) and m = 50 (right).
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¤ Finally, from condition (α) and the values of

the µk’s, we see that the components of p must

obey the following forward recursion:

p1 = µ1, pk = µk ×
(
1−∑k−1

j=1 pj

)
,

k = 2, . . . , m.
(12)

The vector p defined in (12) satisfies

conditions (α) and (β), and therefore

uniquely solves Problem (Pm) in (2).

Most pleasingly, the iteration is easy to han-

dle both numerically and theoretically. For ex-

ample, its components form an increasing se-

quence. Indeed,

pk = µk (pk + · · ·+ pm)

and

pk−1 = µk−1 (pk−1 + · · ·+ pm).
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¤ From whence we deduce, using (11), that

pk

pk−1
=

µk (1− µk−1)

µk−1

= expµk ×
(
1− µk exp(−µk)

)

= expµk − µk > 1,

(13)

since µk > 0.

¤ We recapitulate the prior discussion as:

Algorithm 1 The unique probability distribution

pm maximizing surprise in Problem (Pm), given

in (2), is strictly increasing and is determined

as follows.

a. Compute for j = m, . . . ,2

µm = 1, µj−1 = µj exp
(
−µj

)
, (14)

and then

b. compute for k = 2, . . . , m

p1 = µ1, pk = µk ×

1−

k−1∑

i=1

pi


 . (15)
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Remark 1 As in [3, p. 50], the (optimal) condi-

tional probability that the event occurs on the

ith-to-the-last day, given that it has not oc-

curred thus far, is independent of m.

¤ This is immediate from (11) and the equality

P (m− i | ∼1, . . . ,∼(m− i− 1))

= pm−i




m∑

j=m−i

pj



−1

= µm−i.

Furthermore, as the µk’s are defined via a back-

ward recursion, pm−i/pm−i−1 is also independent

of m.

Remark 2 We may also obtain the solution to

Problem (Pm) of (2) via the optimization prob-

lem

inf
{
S′m(p,q)

∣∣∣ 1 = 〈1 , p〉 , q = Jp
}

,

where

S′m(p,q) :=
∑

h(pj, qj).
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¤ The needed Kuhn-Tucker conditions are

(α′) 0 = 1− 〈u,p〉 and 0 = q− Jp;

(β′) there exist λ ∈ R and λ = (λ1, . . . , λm) in Rm

such that

0 ∈ ∂S′m(p,q) + λ ∂f(p,q)
+λ1 ∂f1(p,q) + · · ·+ λm ∂fm(p,q)

with f and f = (f1, . . . , fm) defined by

f(p,q) := 1− 〈u,p〉
and

f(p,q) := q− Jp.

¤ It is then easy to check that the λj’s derived

from (α′) and (β′) coincide with the µj’s of the

previous discussion multiplied by m.
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HOW THE DISTRIBUTION BEHAVES?

Striking characteristics of the optimal distribu-

tion were already shown in Remark 1. We will

study asymptotic behaviour of Problem (Pm)

as m tends to infinity.

We now establish three key properties.

¤ First, we show that asymptotically the least

probability p
(m)
1 behaves like m−1.

The nub is an analysis of the rate of conver-

gence of the Picard-Banach iteration,

tn+1 = g(tn),

to the unique fixed point of a contractive self-

map, g, on [0,1].
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¤ But, when the fixed point, t, has |g′(t)| = 1,

and so is not strictly contractive. Recall that g

is contractive if

|g(t)− g(s)| < |t− s|
for all t 6= s in [0,1]. We use x 7→ x exp(−x).

Proposition 1 The quantity mp
(m)
1 tends to one

as m tends to ∞.

Proof. We define a sequence {tn} by setting

ti := µ
(m)
m+1−i

for i = 1, . . . , m, m = 1,2, . . . . Observe that

ti is independent of m, that tm = p
(m)
1 , and

satisfies the recursion

t1 = 1, tk+1 = tk exp(−tk),

for k ≥ 1.
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¤ We note that tk tends monotonically to a

limit ` which must necessarily be zero. Hence

t−1
k+1 − t−1

k = t−1
k (exp tk − 1),

which tends to exp′(0) = 1 as k tends to infin-

ity. Whence, since Cesàro averaging preserves

limits,

1

mtm
=

1

m

m−1∑

k=1

etk − 1

tk
+

1

mt1

also tends to 1.

¤ It is fun to perform a similar analysis for a

general g : [0,1] 7→ [0,1].

Next, we show that the ratio between

the last (biggest) and first (smallest)

components converges.
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Proposition 2

lim
m→∞

p
(m)
m

p
(m)
1

exists and is finite.

Proof. We have from (13) and the above def-

inition of {tn}, that

lim p
(m)
m

p
(m)
1

= limm→∞
∏m

j=2(e
µ
(m)
j − µ

(m)
j )

= limm→∞
∏m−1

j=1 (etj − tj)

' 2.132979 . . . .

The limit exists since

1 ≤ exp tj − tj ≤ 1 + t2j ,

while
∑

j t2j < ∞ by Proposition 1.

Finally recall that
∏

n(1 + |an|) and
∑

n |an| con-

verge together.
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Third – and more subtly - we establish that in

the limit our solution value approaches that of

the uniform solution of the next section.

Proposition 3 The optimal value of (Pm), V (Pm),

tends to zero as m tends to infinity.

Proof. To establish this, we show that

lim supV (Pm) ≤ 0,

and that

0 ≤ lim inf V (Pm).
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a. The first inequality is easily obtained from

identifying a Riemann sum:

V (Pm) ≤ Sm

(
1

m
, . . . ,

1

m

)

= logm− logm!

m
− 1

= − 1

m

m∑

k=1

log
k

m
− 1

→ −
∫ 1

0
log t dt− 1 = 0.

b. obtain the other inequality, consider

τm :=
m−1∑

i=1


p

(m)
i log

p
(m)
i

q
(m)
i+1

− p
(m)
i




and

σm :=
m−1∑

i=1


p

(m)
i log

p
(m)
i

q
(m)
i

− p
(m)
i


 .
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¤ We make two claims:

(i) τm − σm tends to 0 as m tends to infinity;

(ii) τm ≥ −p
(m)
m logm.

Proof of (i). We recall from (4) and (8) that

µ
(m)
i = p

(m)
i /(mq

(m)
i ) and so

τm − σm = −
m−1∑

i=1

p
(m)
i log(1− µ

(m)
i ),

whence, as p
(m)
i increases with i,

0 ≤ τm − σm = −∑m−1
i=1 p

(m)
m−i log(1− ti+1)

≤ −p
(m)
m

∑m−1
i=1 log(1− ti+1) → 0,

since ti → 0 and mp
(m)
m = O(1).
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The proof of (ii) is deferred to the next section

where it is a consequence of a general integral

inequality.

¤ Now, by design,

V (Pm) = σm + p
(m)
m logm− p

(m)
m .

It follows from (ii) that

V (Pm) ≥ σm − τm − p
(m)
m .

And so, since

p
(m)
m → 0,

(i) shows

lim inf V (Pm) ≥ 0

as needed.

¤ These techniques allow much more precise

assertions about the asymptotics of pm.
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CONTINUOUS TIME ANALYSIS

In the discrete case, the distribution is strictly

increasing, with a sharp increase at the tip of

the tail (see Figure ). In measure, this is washed

out in the limit.

¤ Indeed, the optimal continuous distribution is

flat, as the following theorem shows.

Theorem 2 For all p ∈ L1([0, T ]), we have
∫ T

0
p(t) log

p(t)
1

T

∫ T

t
p(s) ds

dt ≥
∫ T

0
p(t) dt

– equivalently S(p) ≥ 0 – with equality if and

only if p is constant on [0, T ].
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Proof. Without loss p is (a.e.) nonnegative,

else S(p) = ∞.

As in (6), set

q(t) := [J p](t) =
1

T

∫ T

t
p(s) ds.

On integrating by parts,

S(p) =
∫ T

0

(
p(t) log

p(t)

q(t)
− p(t)

)
dt

=
∫ T

0

(
p(t) log p(t)− p(t)

)
dt

+T
∫ T
0 q′(t) log q(t) dt

=
∫ T

0
p(t) log p(t) dt− Tq(0) log q(0),

¤ We shall be done once we show
∫ T

0
p(t) log p(t) dt ≥ Tq(0) log q(0). (16)

with equality if and only if p is constant.
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But, applying the integral version of Jensen’s

inequality to the strictly convex function g :=

x 7→ x logx− x yields

1

T

∫ T

0

(
p(t)

q(0)
log

p(t)

q(0)
− p(t)

q(0)

)
dt

≥ g(1) = −1,

from which (16) follows immediately.

¤ Theorem 2 shows that the (unique) solution

of Problem (P) given in (5) is the uniform prob-

ability density on [0, T ].

¤ A consequence of Theorem 2, which com-

pletes the considerations of the last Section,

follows:
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Corollary 1 As claimed in Section ,

τm ≥ −p
(m)
m logm.

Proof. Apply Theorem 2 with

T := 1 and p(t) := p
(m)
n

if

t ∈
(

n− 1

m
,

n

m

]
(n = 1, . . . , m).

For n−1
m < t ≤ n

m and n ≤ m− 1,

q(t) ≥
m∑

k=n+1

∫ k
m

k−1
m

p(t) dt

=
1

m

m∑

k=n+1

p
(m)
k = q

(m)
n+1,

and, for m−1
m < t ≤ 1,

q(t) = p
(m)
m (1− t).

42



Hence τm majorizes

m
m−1∑

n=1

∫ n
m

n−1
m

p(t)

{
log

(
p(t)

q(t)

)
− 1

}
dt

= m
∫ 1− 1

m

0
p(t)

{
log

(
p(t)

q(t)

)
− 1

}
dt

=
∫ 1

0
p(t)

{
log

(
p(t)

q(t)

)
− 1

}
dt

+ m
∫ 1

1− 1
m

p
(m)
m {log(1− t) + 1} dt

≥ 0− p
(m)
m logm,

on evaluating the second integral and applying

Theorem 2.

¤ This finishes the proof that the optimal value

of (Pm) tends to 0 ( =V (P)), as claimed above.
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A DUAL APPROACH TO LINEAR INVERSE PROBLEMS WITH
CONVEX CONSTRAINTS*

LEE C. POTTER AND K. S. ARUN
Abstract. A simple constraint qualification is developed and used to derive an explicit solution

to a constrained optimization problem in Hilbert space. A finite parameterization is obtained for
the minimum norm element in the intersection of a linear variety of finite co-dimension and a closed
convex constraint set. The result extends previous duality theorems for convex cone set constraints.
A fixed point iteration is presented for computing the parameters and yields a least-squares solution
when the variety and constraint set have empty intersection. Proofs rely on nearest-point projections
onto convex sets and the properties of monotone, firmly nonexpansive, and averaged mappings.

Key words, constrained optimization, semi-infinite convex program, constraint qualification,
successive approximations, nearest-point projection, monotone operator

AMS(MOS) subject classifications. 49A, 49B, 49D

1. Introduction. The recovery of a signal from linear measurements and prior
information is a central problem in signal analysis and remote sensing applications
ranging from tomographic imaging and radio astronomy to well logging and respira-
tory physiology. Simplicity and generality are sought in characterizing and computing
signals that successfully reflect available prior knowledge. To this end, the signal is
abstractly represented as an element of a Hilbert space, and each known property of
the signal is incorporated by restricting the reconstructed signal to lie in a specified
closed convex set. In addition, the requirement that the signal be consistent with a
finite number of linear measurements defines a linear variety of finite co-dimension.
The intersection of this variety and the convex constraint set is termed the feasible set
of signals. In this paper, the recovery task is formulated as the infinite-dimensional
programming problem of determining the feasible signal closest to a specified nominal
signal.

The desired signal is shown to admit a dual parameterization by exploiting the
properties of monotone operators and nearest-point mappings onto closed convex sets.
The parameter vector is seen to be a fixed point of a nonlinear, monotone, firmly
nonexpansive operator in a finite-dimensional space; these properties lead both to a
novel constraint qualification assuring the existence of the parameters and to iterative
computational schemes. Convergence to a least-squares fit of the linear measurements
is obtained when the feasible set is empty. The duality result does not require the
constraint sets to have interior and allows direct derivation of the optimal L2 solution
in [8]. In addition, more recent Lp optimization results [2], [9] that likewise eschew the
traditional Slater-type constraint qualification are extended, in Hilbert space, from
the special case of a convex cone to general convex set constraints.

2. Problem formulation. Let be a real Hilbert space with inner product
/’, "/. By the Riesz representation theorem, any N continuous, linear measurement
functionals on S may be expressed by inner products with measurement signals
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CONSTRAINED LINEAR INVERSE PROBLEMS VIA DUALITY 1081

gl,g2,-.., gN in S. Accordingly, define the mapping A from S into Euclidean N-
space N by

Ax [(x, gl), (x, gN)] t,

where [.] denotes vector transpose. For a given E NN, the set of all x satisfying
Ax 3 is a linear variety of co-dimension not exceeding N. The adjoint operator A*

N A*maps a vector 0 E g with kh entry 0k to the signal A*O k= kgk. Thus, 0
is very simply a linear combination of the N measurement signals, and the range of
A* is the finite-dimensional subspace G c S spanned by the measurement signals:
range(A*) -G--span{g,... ,gN}. Let H be the orthogonal projection onto G. The
orthogonal complement of G is the null space of A, denoted ker(A); the linear variety
{x: Ax =/} is a translate of ker(A) and is therefore a closed convex set.

Let ](l,](2,...,](:M be closed convex sets with nonempty intersection/E. The
set /(: is referred to as the constraint set; l may be infinite-dimensional and is not
assumed to have interior. For a fixed measurement vector the feasible set jz is
defined to be the intersection of the variety {x Ax } with the constraint set/(:.
That is, " is the closed and convex set {x /E Ax }. Finally, let denote the
extendible set in g defined to consist of all measurement vectors fl for which the
associated " is nonempty.

The recovery problem is to characterize and compute the signal in the feasible
set " closest to a specified nominal signal. Without loss of generality, the nominal
signal, Xnom, is the origin: for X,o, O, the data vector is replaced by - Axnom,
and the constraint set is translated by --Xnom. This constrained inverse problem is
concisely written

(P) min [[x[[ subject to Ax- .
xEK

The special case in which/ is a convex cone is considered in [2], [8], [9], and [25], and
subspace or linear variety constraints are considered in [3], [14]. Problem (P) is the
linear inverse problem Ax with the additional convex set constraint x K:.

Were the distinction between the closed convex data constraint Ax and
the set constraint /E to be abandoned, the minimum norm element of the feasible
set, ., would be trivially characterized by the projection of the origin onto closed
convex set ’. However, this conceptual approach is undesirable since the aim is to
explicitly determine solutions. First, to combine the data constraint with the set/E
forfeits the structural advantage afforded by the finite co-dimensionality of the linear
variety. Second, the nearest-point projection operator onto " may not be computable
in a tractable manner; the set/E, on the other hand, typically arises from physically
meaningful constraints that give rise to an easily implemented nearest-point projection
operator onto/(:. Third, the distinction between the data matching and set constraints
allows for the computation of a least-squares solution when measurement noise renders
the feasible set empty.

3. An optimality condition. In the absence of the constraints imposed by the
convex set K:, the projection theorem, e.g., [13] simply and elegantly characterizes
the minimum norm element of the variety {x Ax } as a linear combination
N-]k=l Okgk, where the parameters NN are determined by the normal equations.

In a similar manner, the constraints embodied by/ are incorporated, and a particu-
larly simple and geometrically appealing optimization result for (P) is obtained. The
following theorem establishes a parsimonious parameterization of the solution &.
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First, two basic facts are reviewed for closed convex sets in a Hilbert space.
LEMMA 1. Let tg denote any closed convex subset of a Hilbert space ,. Then

there exists a unique y e such that infze: IIx zll IIx YlI.
This correspondence is denoted by y Pro(x), where Ptc , - is said to be the
nearest-point projection operator, or simply the projection, of , onto the closed convex
set K. The operator P: is linear if and only if is a subspace.

LEMMA 2. Let be a closed convex subset of,. Then the following are equivalent:

(a) Pc(x) y
< zll

z < o
for all z E IC
for all z E .

THEOREM 1. If there exists 0 N such that APcA* (0), then & =PtcA* (t?)
is the unique solution to (P).

Proof [18], [20]. The feasible set " := K: {x: Ax -/} is closed and convex, and
the existence of a unique minimum norm element follows from Lemma 1, provided "is nonempty. Let y :-- A*0 where 0 is the parameter vector of the hypothesis. It must
be shown that

inf Ilxll-

From Lemma 2, it suffices to show that(Ptc(y),x- P:(y)) >_ 0 for all x ’. To this
end, let x denote an arbitrary element of ’. Now write P:(y) as y- (y- P:(y)) to
yield

x-

First, observe that (y,x-Ptc(y)) 0 since y G range(A*) and Ax AP:(y)
implies (x- Pc(y)) ker(A). Turning to the second term, observe from Lemma 2
that (y Pro(y), x Pro(y)) <_ 0 for all x E E. In particular, " is a subset of K:, so the
inequality holds for all x in ’. Hence, (P:(y),x- Pro(Y)) >_ 0 for all x in ’. [

The result in Theorem 1 is a nonlinear generalization of the classical projection
theorem, which follows as a simple corollary.

COROLLARY 1. For S and O, the solution & to (P) is given by A*O,
where satisfies the normal equations AA*0 .

Figure 1 provides an illustration of Theorem 1 in the Euclidean plane and, al-
though depicting the degenerate case of , 2, illuminates the similarities between
Theorem 1 and the projection theorem. The minimum norm element Xmn of the
variety {x Ax } is the orthogonal projection of the origin onto the variety.

NThus, Xmn -k=l Okgk, where the coefficients 0k are uniquely specified by the lin-
ear equations in Corollary 1. However, the minimum norm solution lies outside the
constraint set K, in general. Yet, the constrained minimum norm element & is found
in an analogous manner: is the nearest-point projection onto K: of an element
A* N-k--1 kgk in G, where the parameter vector is determined by the equations
in Theorem 1. Thus, in order to constrain the minimum norm solution to lie in the
constraint set K, the linear normal equations AA*O are replaced by the nonlinear
equations APtcA* () , and the solution Xmn A*O is replaced by & PtcA*().

4. A constraint qualification. The hypothesis of Theorem 1 requires the ex-
istence of a solution to a nonlinear system of equations, and the optimal signal is
then parameterized by this solution via P:A*(). For a nonempty feasible set,



CONSTRAINED LINEAR INVERSE PROBLEMS VIA DUALITY 1083

span[g1,..., gN]

Ax

FIG. 1. The minimum norm feasible signal is the projection onto the constraint set of an
element in the span of the measurement signals.

existence and uniqueness of a solution, &, to (P) follow from Lemma 1. Therefore, the
statement of the theorem immediately raises the questions: When does the represen-
tation of & by exist? Is the representation unique? How may it be computed? To
address the issues of existence and uniqueness requires an investigation of the ranges
of the nonlinear operator APcA* N

_
N and its set-valued inverse. That is,

there exists a solution to APcA*(O) if and only if/ is in the range of APcA*,
and the solution is unique if and only if (APtgA*)-I() is single valued. Pertinent
properties of these ranges are derived in this section by making use of their finite
dimensionality and utilizing results from the theory of monotone operators. These
properties are then used both to establish a novel constraint qualification (Cor. 2),
which gives a condition on the data vector to ensure the existence of a parameter-
ization and to characterize uniqueness. The third issue, computation, is deferred to
5, where the solution of APtgA*(O) is viewed as a nonlinear fixed point problem.

A set A/[ in the Cartesian product N X }N is said to be monotone, e.g., [27], if

A maximal monotone set is one not properly contained in another monotone set. A
(possibly set valued) mapping f )N

_
2N is called a monotone operator if its

graph {(x,x*)lx* E f(x)} is a monotone set in N g; the operator is said to
be maximal monotone if its graph is a maximal monotone set. The operator f- is
defined as the mapping which has as its graph the set {(x*,x)l(x,x* e graph of f}.
Since monotonicity is invariant under transposition of the domain and range of a
map, f and f- are simultaneously monotone or maximal monotone. In the sequel,
set-valued mappings will be viewed as multifunctions, and the notation f
will be employed.

The properties of maximal monotone operators in finite-dimensional spaces and
convex sets in N are combined to guarantee that for any data vector in the
relative interior of the extendible set $ there exists a parameter vector providing
the representation & PtcA*(). The requisite properties are established as two
brief lemmas; the resulting theorem gives the desired constraint qualification as an
immediate corollary.

LEMMA 3. The operators APcA* N N and HPtcH S - are maximal
monotone operators.
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Proof. From the linearity of A and the definition of the adjoint A*,it follows that

(APx:A*(x) APx:A*(y),x y) (PcA*(x) Px:A*(y),A*(x y))
(Px:(x*) Px:(y*),x* y*),

where x* A*x and y* A*y. Immediately, this inner product is nonnegative since
the projection Ptc is monotone [7]. Next, since APcA* is continuous and defined for
all x in N, it is maximal monotone [15]. The proof for HPtcH is identical. D

LEMMA 4 ([17]). The closure of the range of a maximal monotone operator is a
convex set.

As defined above, the set of all data vectors/9 that can be generated by measuring
some signal x from the constraint set/C is termed the extendible set. This set, E
{ 6 N. Ax, x 6/C}, is convex (immediately from the linearity of A) but not
necessarily closed. Lemmas 3 and 4 are used to establish that the extendible set and
the range of AP:A* are the same to within closure.

THEOREM 2. The closure of the extendible set is equal to the closure of the set
of all measurement vectors obtainable from parameterized signals of the form x
PtcA*(O), 8 e N; i.e., cl()"-- cl(Ax’x e IC} cl(range(APtcA*)).

Proof. [19] It must be shown that

inf IlAq- APtcA*(O)II 2 0 Vq e IC.

To this end, observe that ker(A) is orthogonal to range(A*) 6 and recall H is the
orthogonal projection onto G. Thus, it must be shown that

inf IlII(q- Pc(p))ll 0 Vq e K:.
pG

If G range(A*) 0, then II 0 and the claim is proven; so attention is restricted
to the case of ; nontrivial.

Proceeding by contradiction, assume there exists some q /C for which the infi-
mum is e > 0. The closure of range(HPtcH) is convex from Lemma 4. Let z denote
the nearest point in cl(range(HPx:H)) to Hq, with IIHq- zll 2 e. Then, there exists

Z) anda hyperplane 7-/in the finite dimensional subspace G containing h 5(Hq +
normal to (IIq- z). The hyperplane 7-/separates Hq from range(HPcH).

Next, a point Pt is constructed to provide a contradiction. Let pt Hq+t(Hq-z),
t > 0. For t sufficiently large, p is closer to q than to :H. In particular, let Q
I1(I- II)qll 2 and observe

I[pt qll IIIIq -t- t(Hq z) (Hq + (I II)q)ll 2 t2e + Q

On the other hand, the projection of Pt onto 7-/is h for all t > 0. Thus,

inf Ilpt yll
y7-t

Ilnq + t(nq z) -(IIq + z)ll t + e.

Hence, for (t + 1/4)e > Q, d(pt, q) < d(pt, TI), where d(., .) is adopted as a distance
notation. Now, let 7-/ G+/- and let if+ denote the halfspace in S containing
range(HPx:H). Then,

d(pt, 1C) < d(pt, q) < d(pt, Tl) d(pt, ,7) < d(pt, if+ f]
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implying Ptc (Pt) E -, whence IIPtc (Pt) - and HP:(Pt) range(HPtcH). But
Hpt Pt, providing a contradiction. Therefore, it must be the case that the infimum
is indeed zero.

The relative interior of a convex set ( C g, denoted ri(C), is defined as the
interior that results when C is regarded as a subset of the intersection of all closed
linear varieties containing C. Given convex sets C1 and C2 in N, c1((:1) c1(C2) if
and only if ri(C1) ri(C2) [23]. The desired existence result now follows immediately
from the theorem. This result can also be developed from convex duality theory [4].

COROLLARY 2 (CONSTRAINT QUALIFICATION). If ri(), then there exists 0
such that APtcA* (0) , i.e., Z range(APtcA*).

Proof. From Theorem 2, c1($) cl(range(APtcA*)). Hence, equivalence of the
relative interiors follows: ri($) ri(range(APtcA*)).

In an infinite-dimensional Hilbert space there exist closed convex sets K without
interior for which support points are only dense in the boundary and form only a set
of the first category, the complementary set being dense as well [10]. Yet, a simple
consequence of Corollary 2 is that for ri(), the solution to (P) is, in fact, a
support point of K and, moreover, some normal to E at

Two commonly employed but more restrictive constraint qualifications found in
the literature follow as corollaries to the result in Theorem 2.

COROLLARY 3 (SLATER CONSTRAINT). If ) has interior and the feasible set

" :- E{x Ax } contains points interior to , then there exists such that

APtcA* ) .
COROLLARY 4 ([2], [8]) Let S L2 and let be the closed convex cone of

nonnegative functions in n2. If int(), then there exists such that APtcA*()

Theorem 2 answers the question of existence of the parameterization & PcA* ().
The second issue, uniqueness of a parameter vector, is equivalent to the single-valued-
Hess of the operator f (APtcA*)-.

PROPOSITION 1. If has nonempty interior, then a parameter vector satisfying
APtcA*() is unique .for almost every .

Proof. The mapping (AP:A*)- is a monotone operator by Lemma 3. From [27,
Thm. 1], the set of points where a monotone operator on a finite-dimensional Hilbert
space is not single valued has zero Lebesgue measure.

Furthermore, the set of points in $ for which the representation is unique is a
subset of the relative interior of range(APtcA*) [22, Cor. 1.1]. For linearly depen-
dent measurement signals {g,...,gN} the extendible set $ c N is contained in a
subspace of dimension less than N and int($)

5. Iterative computation. From Theorems 1 and 2, the solution & to (P)
is parameterized by & P:A*(), where the vector solves the nonlinear system
APtcA*(O) . Equivalently, the parameter vector is a fixed point of the opera-
tor T N

_
N defined by T(0) + APtcA*(O). The operator T is not a

contraction, nor does it have a compact domain; therefore, the well-known Banach
and Brouwer fixed point results are not applicable. Nonetheless, the properties of
firmly nonexpansive and averaged mappings are exploited to show that the sequence
of Picard iterations

(1) o(n+l) 0(,)+ ,k[-APcA*(O(’))], ) e (0,2)
converges to a fixed point of T. Additionally, the sequence is shown to characterize a
least-squares solution to (P) when there exists no fixed point.
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Case 1. First, the sequence {0(n) } is considered for the case in which T has a fixed
point. Convergence is established by relying on three simple lemmas in Euclidean N-
space. A mapping f: N

_
N is said to be nonexpansive if Ill(x)- f(Y)ll <- IIx-Yll

for all x, y in N. Further, f is firmly nonexpansive if and only if 2f-I is nonexpansive

LEMMA 5. As defined above, let T be the operator given by T(O) 0 + 13-
APtcA*(O) If the measurement signals {gl, gN} satisfy N-k= Ilgkll 2 <-- 1, then T
is firmly nonexpansive.

Proof. To show that T is firmly nonexpansive, 2T-I is shown to be nonexpansive.
To this end, direct computation using the definitions of T and of the adjoint A* yields

11(2T-I)x-(2T-I)yll2 <_ IIx-yll 2 (P(x’)-P(y’),x’-y’) >_ IIA(P(x’)-P(y’))]I 2

where x’ A*x and y’ "= A*y. From Lemma 2,(P(x’)-P(y’),x’-y’)
P:(y’)ll 2. Furthermore, by hypothesis on the measurement signals and application of
the Cauchy-Bunyakovskii-Schwarz inequality, A is nonexpansive:

N N

IIAwll2 E((gk’ w))2 -< E Ilgkll211wll2 <- Ilwl12 Vw e S.
k--1 k----1

Hence,

I]Ptc(x’)-.P:(y’)I] 2 _> I]A(Pc(x’)- P:(y’))ll 2,

and T is firmly nonexpansive, v]

LEMMA 6 ([7]). Let f" N _, N be a nonexpansive operator with a fixed point.
Then, {fn (x) } converges to a fixed point off if and only iff is asymptotically regular,
i.e.,

lim fn(x) fEW1 (X) 0 for all x e g.
n

As an example of a nonexpansive operator to with a fixed point and not asymp-
totically regular, consider f(x) -x- 1. Although a nonexpansive operator f may
not be asymptotically regular, the averaged mapping f := /kf + (1 A)I, where
0 < A < 1, shares the same fixed point set and has desirable asymptotic properties.

LEMMA 7 ([5]). Let f be a nonexpansive operator in N. Although the operator
f itself may not be asymptotically regular, if f has a fixed point, then the averaged
mapping f is asymptotically regular.
The result now follows directly.

THEOREM 3. Assume T has a fixed point. For A E (0, 2) let f N H N be
defined by

f(O) + [- APA*(O)]

If the measurement signals {gl,..., gN} satisfy ’kN= I1  11 1, then the sequence of
Picard iterates {fn(0)} converges to a fixed point of T for any 0 N.

Proof. From Lemma 5, T is firmly nonexpansive, so 2T- I is nonexpansive and
has the same fixed point set as T. Simply note that for 0 < 5 < 1, f is the averaged
mapping f 5(2T I) + (1 5)I 25T+ (1 25)I. By Lemma 7, f is asymptotically
regular. Application of Lemma 6 then yields Picard iterates {fn(0)} converging to a
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fixed point of 2T- I. Thus, the limit is a fixed point of T and, therefore, satisfies
AP:A ft.

For all fl in the relative interior of the extendible set , T has a fixed point
by Corollary 2, and the Picard iteration {fn(O)} yields the solution to (P). The
hypothesis that the measurement signals have square sum not exceeding one can
always be satisfied by simple scaling.

Case 2. Next, the behavior of the sequence {fn(O)} is considered for the general
case in which T may be fixed point free. First, T is trivially fixed point free when
the measurement vector fl is not extendible, i.e., when there exists no signal x in the
constraint set/C for which Ax fl, and hence, no solution to (P). In application, such
a nonextendible vector fl may result from either measurement noise or from failure
of the constraint set K: to reflect physical reality. In addition, T may have no fixed
point for fl in the relative boundary of g.

The objective of determining a feasible signal x , satisfying both x K: and
Ax fl is unobtainable when fl fails to lie in the extendible set. A well-motivated
and popular recourse is to find a signal in the constraint set that best matches
the measurement vector fl in the least-squares sense: inf: IIAx fill. (This choice
implicitly supposes greater confidence in the knowledge expressed by the constraint set
K: than in the noisy measurement ft.) If more than one signal achieves this infimum,
then the unique infimizer of minimum norm is termed the minimum norm least-squares
solution and solves

(P’) min Ilxll subject to IIAx fill inf IIAy 11.xEK; yEK;

A weighted least-squares formulation is easily adopted with corresponding change in
the definition of the adjoint, A*. For a closed convex constraint set K: and a linear
measurement operator A, the extendible set A(K:) c N, though not necessarily
closed, is convex. Hence, for a measurement vector fl g, there exists a unique closest
vector in the closure of g, namely, the projection of fl onto cl(), Pg(fl).

PROPOSITION 2. The infimum in (P) is achieved if and only if P$(fl) is in .
Proof. With Pg as above, infyEtc IIAy fill IIPg(fl) fill. D
Therefore, for Pg(fl) e , problem (P’) is equivalent to (P) with measurement

vector Pg(fl).
The asymptotic behavior of averaged mappings provides the solution to (P), as

readily demonstrated using the following asymptotic property of nonexpansive maps.
LEMMA 8 ([1]). Let h N N be nonexpansive and define the averaged

mapping hA ;h + (1 ,k)I, ,k E (0, 1). Then for all in N

(a) lim,__, (0) -v

(b) limn--.oo[h(O)- h+l(0)] ,
where u is the unique point of least norm in cl(range(I- hA)). Additionally, h has no

fixed point if and only if limn__, IIh(O)ll oo for all 0 in N.
In relation to the asymptotic regularity condition of Lemma 6, observe that ha(o)

is a Cauchy sequence if and only if h has a fixed point and is the zero vector.
THEOREM 4. Let fl N be an observed measurement vector, and let f

N N be defined by f(O) 0 + ;k[fl- APtcA*(O)] .for e (0,2). Also, assume

Ilgkll 2 < 1 Let {0(n) } denote the sequence of Picard iterates 0(n) fn(O())
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with initial iterate 0(). Then, for any 0() E N, the sequence {APt:A*(O(n))} con-
verges to Pg(), the projection of onto the closure of the extendible set.

Proof. [19] By Theorem 2, cl(range(APtcA*)) cl(8). Therefore, the closure of
the range of (I- f) is simply a scaled translate of the closure of the extendible set:

cl(range(I- f)) cl{7:7 (AP:A*(O) ),0 e N} {c1($) }.
Then, the minimum norm element of cl(range(I- f)) is Ag, where 9 is the minimum
norm element of cl(g’) ft. Hence, the projection of/ onto cl() is given by the sum
Pg() + 9. By Lemma 8, given e > 0, there exists some integer M such that for
all n exceeding Me -0()+ O() + [- APA*(O())]]]

]]P()- APA*(O())].
Hence, APA*(O())

COROLLARY 5. If, in addition to the hypotheses of Theorem 4, Pg() is con-
tained in the extendible set
x() := PA*(O()), is bounded, and there exists a subsequence (x(n) } that converges
weakly to &, the solution to (P).

Proof. om Proposition 2, there exists a solution, &, to (P). By Theorem 4,
en := ]H(&- x(n))]] O. Then, employ Lemma 2, a direct sum decomposition with
G, and the Cauchy-Bunyakovskii-Schwarz inequality to learn

0

I1(- )()11- I1(- )(PA*O())II + .
Therefore, x() PA*O() is a bounded sequence in , and consequently there exists
some subsequence {x()} that converges weakly. Let y be the weak limit. Now,
y , Hy
Covesey, I1(- )(y)ll I1(- )()11 fom above, whence IlYll I111. Sine, fom
Lemma 1, & is the unique element of minimum norm in for which A& Pg(), it
follows that y

A practical criterion for convergence in computer implementation of Theorem 4
is to test the sequence of differences in successive iterations for convergence to
within a given tolerance. However, the vector u is not known a priori and is zero if
and only if is an observation vector in the closure of the extendible set. Nonetheless,
{0() -0(+1) } is indeed a Cauchy sequence in N by Lemma 8. Therefore, observing
that

0(n) 0(n/1) 0(n) f(o(n)) A[p:A* (0()) ]
is simply the residual error scaled by A, the iterations may be terminated when the
change in the residual error from iterate n to n + 1 is less than some prescribed value.
Moreover, this sequence of residual errors is monotonically nonincreasing in norm due
to the nonexpansiveness of f. Although {O(n)} is divergent, it grows only linearly as
nag. Therefore, the divergence presents no practical computational overflow prob-
lems, even for a large number of iterations, since 119112 is bounded by the noise power
in the measurement .
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X2

$ = [-1, 1] APA*(O())
FIG. 2. An example in the plane.

A*0(,)
Xl

6. Example. The results of 3, 4, and 5 are illustrated by a simple exam-
ple in the Euclidean plane. Although analytical nuances are lost from the infinite-
dimensional case, the relationships among the relative interior of the extendible set,
fixed points, and Picard iterations are clearly illuminated. (An example application
to an infinite-dimensional problem is found in [21].) In the Hilbert space S 2 let
the constraint set K: be the. closed convex set depicted in Fig. 2, Let the measurement
fl be simply the first coordinate of a vector in 2. Accordingly, the single measure-
ment signal is gl [1 0] t, yielding A 2

_
given by [1 0] and A* gl. The

extendible set :- A(K:) is the closed interval [-1, 1]. That is closed is implied by
the boundedness of K:. For a given , the feasible set " is the intersection of K: with
the line x .

By Corollary 2, if the measurement is in the open interval ri() (-1, 1), then
there exists some scalar 0 such that &, PcA*(O) is the solution to (P). For the
measurement 1 on the boundary of , no finite provides a parameterization;
the measurement fl -1 is likewise on the boundary of , yet 0 -2 provides the
solution to (P). The dense uniqueness in Proposition 1 is illustrated by the infinitely
many parameterizations, 0 E (cx, -2], for -1. (A translation of by [0 1]
provides an example of nonunique parameterization for in the interior of .)

The iterative procedure of Theorems 3 and 4 is given by

fn+(O()) 0(n+l) 0(n) -- )[- AP,zA*(O(n))], A e (0,2).

The action of APcA* H is depicted in Fig. 2 and is given by

--1
APcA* (O)

( +1)-1/2

0<-2
-2<0<0
0>0.

The existence of a parameterization is equivalent to the existence of a fixed point
for f. For [-1, 1), there exists a fixed point for f, and by Theorem 3, the
sequence (()} converges to a parameter yielding &, the minimum norm element of
the feasible set. For > 1, f has no fixed point and (1()1} diverges as Any, where
v - 1 is the distance of from the extendible set. Yet, by Theorem 4, the
sequence (APcA*(O())} converges to Pg, and by Corollary 5, a subsequence of the
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approximate reconstructions {PtcA*(O(’))} converges to the minimum norm, least-
squares solution to (P), & [1 1] t. Finally, the parameter vector is unique for every

in t except -1, where the solution to (P) is not a regular point of

7. Discussion. The method of successive projections is an alternative scheme
for computing an element in the feasible set [26]. Treating the variety Ax -/ as an
additional closed convex constraint set (M+I, the iteration

(2) x(n+l) (PCM+IPcMPtCM_I ...Pcl)x(’)

converges weakly in ,.q to an element of the feasible set, provided one exists. The
method is attractive in that any number of convex constraint sets may be incorporated
without requiring synthesis of the projection onto the intersection
However, the technique does not allow the preferential selection of one feasible signal
over others, as provided by the optimality criterion in (P). In general, the limit
point of Eq. (2) depends on both the initial estimate x() and the ordering of the
composition of projection operators. Moreover, the iterations are performed in the
(perhaps infinite-dimensional) signal space S rather than in N and typically suffer
from slow convergence rates and high computational cost per iteration [11], [24]. In
addition, successive projections do not in general provide a least-squares solution when
no feasible signal exists.

In contrast, the signal recovery algorithm established in Theorems 1-4 provides
a finite-dimensional parameterization for a signal reconstruction. The iterative al-
gorithm is performed in the parameter space to preferentially produce the unique
least-squares solution consistent with the constraints and closest to a specified nomi-
nal signal. Moreover, Newton-Raphson iterations may typically be applied in )N for
quadratically convergent iterative computation; the requisite derivatives are guaran-
teed to exist almost everywhere since APtcA* is Lipschitz. A potential difficulty in
implementing the iterative scheme in Eq. (1) is the need to construct APtcA*, which
may require numerical approximation of the projection onto/E, the intersection of con-
straint sets. Yet, in application,/E is physically motivated and, as such, typically gives
rise to an intuitive and tractable projection operator. Furthermore, sensitivity of the
solution 2 to errors in the parameters is low since PtcA* is nonexpansive. Although
the constraint set must be convex and the signal space is Hilbertian, the formulation
admits a large and relevant class of sets for incorporating prior information.

Many well-known linear reconstruction results follow immediately from Theorem
1 for the special case of constraint sets/ that are subspaces, e.g., [3], [6], [12], [16].
Likewise, Theorems 1 and 2 extend, in Hilbert space, the optimization results in [2],
[8], and [9] from closed convex cones to arbitrary closed convex constraint sets. For
example, the minimum energy correlation extension presented in [8] and [25] may be
directly obtained with q L2 and/C the convex cone of nonnegative spectral esti-
mates. Kuhn-Tucker, Lagrange multiplier, and Fenchel duality theorems, e.g., [13] are
similar dual optimization results that have been applied to signal recovery problems
and, in addition, admit cost functions more general than the weighted norm. How-
ever, the hypotheses of these classical results require nonempty interior and regularity
conditions that are absent in Theorems 1-4. These seemingly technical restrictions
are, in fact, of great importance to application in many practical reconstruction tasks
since, for example, the set of nonnegative signals in L2 is without interior.

8. Conclusion. Motivated by practical reconstruction, estimation, and interpo-
lation problems, an explicit solution to a constrained minimization problem has been
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derived. The finite parameterization led to a simple and computationally attractive
iterative algorithm. The constraint qualification for the infinite-dimensional program
with linear equality constraints and a convex set cons,raint extended previous results
for a convex cone set constraint.
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5.1.4 Continuity of Multifunctions

The basic definition is given below.

Definition 5.1.15 (Continuity of Multifunction) Let X and Y be two Haus-
dorff topological spaces and let F : X → 2Y be a multifunction. We say that
F is upper (lower) semicontinuous at x̄ ∈ X provided that for any open set U
in Y with F (x̄) ⊂ U , (F (x̄) ∩ U 6= ∅),

{x ∈ X | F (x) ⊂ U} ({x ∈ X | F (x) ∩ U 6= ∅})

is an open set in X. We say that F is continuous at x̄ if it is both upper
and lower semicontinuous at x̄. We say that F is upper (lower) continuous
on S ⊂ X if it is upper (lower) continuous at every x ∈ S. We omit S when
it coincides with the domain of F .

We will also need a sequential approach to limits and continuity of multi-
functions. This is mainly for applications in the subdifferential theory because
the corresponding topological approach often yields objects that are too big.

Definition 5.1.16 (Sequential Lower and Upper Limits) Let X and Y be
two Hausdorff topological spaces and let F : X → 2Y be a multifunction. We
define the sequential lower and upper limit of F at x̄ ∈ X by

s-lim inf
x→x̄

F (x) :=
⋂
{lim inf

i→∞
F (xi) | xi → x̄}

and
s-lim sup

x→x̄
F (x) :=

⋃
{lim sup

i→∞
F (xi) | xi → x̄}.

When
s-lim inf

x→x̄
F (x) = s-lim sup

x→x̄
F (x)

we call the common set the sequential limit of F at x̄ and denote it by
s-limx→x̄ F (x).

Definition 5.1.17 (Semicontinuity and Continuity) Let X and Y be two
Hausdorff topological spaces and let F : X → 2Y be a multifunction. We say
that F is sequentially lower (upper) semicontinuous at x̄ ∈ X provided that

F (x̄) ⊂ s-lim inf
x→x̄

F (x) (s-lim sup
x→x̄

F (x) ⊂ F (x̄)).

When F is both upper and lower semicontinuous at x̄ we say it is continuous
at x̄. In the notation introduced above,

F (x̄) = s-lim
x→x̄

F (x).
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Clearly, when Y is a metric space the sequential and the topological (semi)
continuity coincide.

The following example illustrates how the semicontinuity and continuity
of multifunctions relate to that of functions.

Example 5.1.18 (Profile Mappings) Let X be a Banach space and let
f : X → R ∪ {+∞} be a function. Then the epigraphic profile of f , Ef is
upper (lower) semicontinuous at x̄ if and only if f is lower (upper) semicon-
tinuous at x̄. Consequently, Ef is continuous at x̄ if and only if f is continuous.

Example 5.1.19 (Sublevel Set Mappings) Let X be a Banach space and
let f : X → R ∪ {+∞} be a lsc function. Then the sublevel set mapping
S(a) = f−1((−∞, a]) is upper semicontinuous.

When X and Y are metric spaces we have the following characterizations
of the sequential lower and upper limit.

Theorem 5.1.20 (Continuity and Distance Functions) Let X and Y be two
metric spaces and let F : X → 2Y be a multifunction. Then F is sequentially
lower (upper) semicontinuous at x̄ ∈ X if and only if for every y ∈ Y , the
distance function x → d(F (x); y) is upper (lower) semicontinuous. Conse-
quently, F is continuous at x̄ if and only if for every y ∈ Y , the distance
function x → d(F (x); y) is continuous.

Proof. This follows from Lemma 5.1.11. Details are left as Exercise 5.1.15.•

5.1.5 Uscos and Cuscos

The acronym usco (cusco) stands for a (convex) upper semicontinuous non-
empty valued compact multifunction. Such multifunctions are interesting be-
cause they describe common features of the maximal monotone operators, of
the convex subdifferential and of the Clarke generalized gradient.

Definition 5.1.21 Let X be a Banach space and let Y be a Hausdorff topo-
logical vector space. We say F : X → 2Y is an usco ( cusco) provided that F is
a nonempty (convex) compact valued upper semicontinuous multifunction. An
usco (cusco) is minimal if it does not properly contain any other usco (cusco).

A particularly useful case is when Y = X∗ with its weak-star topology. In this
case we use the terminology weak∗-usco (-cusco).

Closed multifunctions and uscos have an intimate relationship.

Proposition 5.1.22 Let X and Y be two Hausdorff topological spaces and
let F : X → 2Y be a multifunction. Suppose that F is an usco. Then it is
closed. If in addition, range F is compact, then F is an usco if and only if F
is closed.
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Proof. It is easy to check that if F : X → 2Y is an usco, then its graph
is closed (Exercise 5.1.16). Now suppose F is closed and range F is compact.
Then clearly F is compact valued. We show it is upper semicontinuous. Sup-
pose on the contrary that F is not upper semicontinuous at x̄ ∈ X. Then
there exists an open set U ⊂ Y containing F (x̄) and a net xα → x̄ and
yα ∈ F (xα)\U for each α. Since range F is compact, we can take subnet
(xβ , yβ) of (xα, yα) such that xβ → x̄ and yβ → ȳ 6∈ U . On the other hand it
follows from F is closed that ȳ ∈ F (x̄) ⊂ U , a contradiction. •

An important feature of an usco (cusco) is that it always contains a mini-
mal one.

Proposition 5.1.23 (Existence of Minimal usco) Let X and Y be two Haus-
dorff topological spaces and let F : X → 2Y be an usco (cusco). Then there
exists a minimal usco (cusco) contained in F .

Proof. By virtue of of Zorn’s lemma we need only show that any decreasing
chain (Fα) of usco (cusco) maps contained in F in terms of set inclusion
has a minimal element. For x ∈ X define F0(x) =

⋂
Fα(x). Since Fα(x) are

compact, F0(x) is nonempty, (convex) and compact. It remains to show that
F0 is upper semicontinuous. Suppose that x ∈ X, U is open in Y and F0(x) ⊂
U . Then Fα(x) ⊂ U for some α. Indeed, if each Fα(x)\U were nonempty then
the intersection of these compact nested sets would be a nonempty subset of
F0(x)\U , a contradiction. By upper semicontinuity of Fα, there exists an open
set V containing x such that F0(V ) ⊂ Fα(V ) ⊂ U . •

When Y = R the proposition below provides a procedure of constructing
a minimal usco contained in a given usco.

Proposition 5.1.24 Let X be a Hausdorff topological space and F : X → 2R

an usco. For each x ∈ X, put f(x) := min{r | r ∈ F (x)}. Let G : X → 2R be
the closure of f (i.e., the set-valued mapping whose graph is the closure of the
graph of f). Now put g(x) := max{r | r ∈ G(x)} for each x ∈ X. Finally let
H : X → 2R be the closure of g. Then H is a minimal usco contained in F .

Proof. Since the graph of F is closed, G is contained in F , and G is an usco
as G is closed and F is an usco. For the same reason H is an usco contained
in G.

To show that H is minimal, consider open sets U ⊂ X and W ⊂ R, such
that there is some w ∈ H(U) ∩ W . It is sufficient to find a nonempty open
subset of U , whose image under H is entirely contained in W .

Fix some ε < d(R\W ; w). Since w ∈ H(U), there is some x ∈ U such that
g(x) ∈ (w − ε; w + ε). This means that G(x) ⊂ (−∞; w + ε) and by upper
semi-continuity of G there is an open V ⊂ U , V 3 x, such that G(V ) ⊂ (−∞ ;
w + ε).
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As g(x) ∈ (w− ε, w + ε), there is some x′ ∈ V with f(x′) ∈ (w− ε, w + ε).
This means that F (x′) ⊂ (w − ε, +∞) and by upper semi-continuity of F
there is an open V ′ ⊂ V , V ′ 3 x′, such that F (V ′) ⊂ (w − ε, +∞).

Now H(V ′) ⊂ F (V ′) ∩G(V ) ⊂ (w − ε, w + ε) ⊂ W . Thus H is a minimal
usco. •

Maximal monotone operators, in particular, subdifferentials of convex
functions provide interesting examples of w∗-cuscos. We leave the verification
of the following example as a guided exercise (Exercise 5.1.17).

Example 5.1.25 Let X be a Banach space, let F : X → 2X∗
be a maximal

monotone multifunction and let S be an open subset of dom F . Then the
restriction of F to S is a w∗-cusco.

To further explore the relationship of maximal monotone multifunctions
and cuscos we need to extend the notion of maximal monotone multifunctions
to arbitrary set.

Definition 5.1.26 (Maximal Monotone on a Set) Let X be a Banach space,
let F : X → 2X∗

be a monotone multifunction and let S be a subset of X. We
say that F is maximal monotone in S provided the monotone set

graph F ∩ (S ×X∗) := {(x, x∗) ∈ S ×X∗ | x ∈ S and x∗ ∈ F (x)}

is maximal under the set inclusion in the family of all monotone sets contained
in S ×X∗.

It turns out that a monotone cusco on an open set is maximal.

Lemma 5.1.27 Let X be a Banach space, let F : X → 2X∗
be a monotone

multifunction and let S be an open subset of X. Suppose that S ⊂ domF and
F is a w∗-cusco on S. Then F is maximal monotone in S.

Proof. We need only show that if (y, y∗) ∈ S ×X∗ satisfies

〈y∗ − x∗, y − x〉 ≥ 0 for all x ∈ S, x∗ ∈ F (x), (5.1.15)

then y∗ ∈ F (y). If not, by the separation theorem there exists z ∈ X\{0} such
that F (y) ⊂ {z∗ ∈ X∗ | 〈z∗, z〉 < 〈y∗, z〉} = W . Since W is weak∗ open and F
is w∗-upper semicontinuous on S, there exists an h > 0 with Bh(y) ⊂ S such
that F (Bh(y)) ⊂ W . Now, for t ∈ (0, h/‖z‖), we have y + tz ∈ Bh(y), and
therefore F (y + tz) ⊂ W . Applying (5.1.15) to any u∗ ∈ F (y + tz) we get

0 ≤ 〈y∗ − u∗, y − (y + tz)〉 = −t〈y∗ − u∗, z〉,

which implies 〈u∗, z〉 ≥ 〈y∗, z〉, that is u∗ 6∈ W , a contradiction. •
As a corollary we have
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Corollary 5.1.28 Let X be a Banach space, let F : X → 2X∗
be a maximal

monotone multifunction and let S be an open subset of X. Suppose that S ⊂
domF . Then F is maximal monotone in S.

Proof. By Example 5.1.25 the maximal monotonicity of F implies that F is
a w∗-cusco on S, so the result follows from Lemma 5.1.27. •

Now we can prove the interesting relation that a maximal monotone mul-
tifunction on an open set is a minimal cusco.

Theorem 5.1.29 (Maximal Monotonicity and Minimal cusco) Let X be a
Banach space, let S be an open subset of X and let F be a maximal monotone
multifunction in S. Then F is a minimal w∗-cusco.

Proof. We know by Example 5.1.25 that F is a w∗-cusco. Suppose that
G : S → 2X∗

is a w∗-cusco and graph G ⊂ graphF . By Lemma 5.1.27, G is
maximal monotone, and therefore G = F . •

Note that a maximal monotone multifunction need not be a minimal usco.
The following example clarifies the difference whose easy proof is left as Ex-
ercise 5.1.18.

Example 5.1.30 Define monotone multifunctions F0, F1 and F2 from R →
2R by

F0(x) = F1(x) = F2(x) = sgn x if x 6= 0,

while
F0(0) = {−1}, F1(0) = {−1, 1} and F2(0) = [−1, 1].

Then graph F0 ⊂ graph F1 ⊂ graph F2, and they are all distinct. The multi-
function F2 is maximal monotone and minimal cusco, F1 is minimal usco and
F0 does not have a closed graph.

5.1.6 Monotone Operators and the Fitzpatrick Function

Throughout this subsection, (X, ‖ · ‖) is a reflexive Banach space with dual
X∗ and T : X → 2X∗

is maximal monotone. The Fitzpatrick function FT ,
associated with T , is the proper closed convex function defined on X×X∗ by

FT (x, x∗) := sup
y∗∈Ty

[〈y∗, x〉+ 〈x∗, y〉 − 〈y∗, y〉]

= 〈x∗, x〉+ sup
y∗∈Ty

〈x∗ − y∗, y − x〉.

Since T is maximal monotone

sup
y∗∈Ty

〈x∗ − y∗, y − x〉 ≥ 0
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and the equality holds if and only if x∗ ∈ Tx, it follows that

FT (x, x∗) ≥ 〈x∗, x〉 (5.1.16)

with equality holding if and only if x∗ ∈ Tx. Thus, we capture much of a
maximal monotone multifunction via an associated convex function.

Using only the Fitzpatrick function and the decoupling lemma we can
prove the following fundamental result remarkably easily.

Theorem 5.1.31 (Rockafellar) Let X be a reflexive Banach space and let
T : X → 2X∗

be a maximal monotone operator. Then range(T + J) = X∗.
Here J is the duality map defined by J(x) := ∂‖x‖2/2.

Proof. The Cauchy inequality and (5.1.16) implies that for all x, x∗,

FT (x, x∗) +
‖x‖2 + ‖x∗‖2

2
≥ 0. (5.1.17)

Applying the decoupling result of Lemma 4.3.1 to (5.1.17) we conclude that
there exists a point (w∗, w) ∈ X∗ ×X such that

0 ≤ FT (x, x∗)− 〈w∗, x〉 − 〈x∗, w〉

+
‖y‖2 + ‖y∗‖2

2
+ 〈w∗, y〉+ 〈y∗, w〉 (5.1.18)

Choosing y ∈ −Jw∗ and y∗ ∈ −Jw in inequality (5.1.18) we have

FT (x, x∗)− 〈w∗, x〉 − 〈x∗, w〉 ≥ ‖w‖2 + ‖w∗‖2
2

. (5.1.19)

For any x∗ ∈ Tx, adding 〈w∗, w〉 to both sides of the above inequality and
noticing FT (x, x∗) = 〈x∗, x〉 we obtain

〈x∗ − w∗, x− w〉 ≥ ‖w‖2 + ‖w∗‖2
2

+ 〈w∗, w〉 ≥ 0. (5.1.20)

Since (5.1.20) holds for all x∗ ∈ Tx and T is maximal we must have w∗ ∈ Tw.
Now setting x∗ = w∗ and x = w in (5.1.20) yields

‖w‖2 + ‖w∗‖2
2

+ 〈w∗, w〉 = 0,

which implies −w∗ ∈ Jw. Thus, 0 ∈ (T + J)w. Since the argument applies
equally well to all translations of T , we have range(T + J) = X∗ as required.•

There is a tight relationship between nonexpansive mappings and monotone
operators in Hilbert spaces, as stated in the next lemma.



5.1 Multifunctions 179

Lemma 5.1.32 Let H be a Hilbert space. Suppose that P and T are two
multifunctions from subsets of H to 2H whose graphs are related by the con-
dition (x, y) ∈ graph P if and only if (v, w) ∈ graph T where x = w + v and
y = w − v. Then

(i) P is nonexpansive (and single-valued) if and only if T is monotone.
(ii) domP = range(T + I).

Proof. Exercise 5.1.29. •
This very easily leads to the Kirszbraun–Valentine theorem [161, 254] on

the existence of nonexpansive extensions to all of Hilbert space of nonex-
pansive mappings on subsets of Hilbert space. The proof is left as a guided
exercise.

Theorem 5.1.33 (Kirszbraun–Valentine) Let H be a Hilbert space and let
D be a non-empty subset of H. Suppose that P : D → H is a nonexpansive
mapping. Then there exists a nonexpansive mapping P̂ : H → H defined on
all of H such that P̂ |D = P .

Proof. Exercise 5.1.30. •
Alternatively [226], one may directly associate a convex Fitzpatrick func-

tion FP with a non-expansive mapping P , and thereby derive the Kirszbraun–
Valentine theorem, see Exercise 5.1.31.

5.1.7 Commentary and Exercises

Multifunctions or set-valued functions have wide applications and have been
the subject of intensive research in the past several decades. Our purpose
in this short section is merely to provide minimal preliminaries and some
interesting examples. Aubin and Frankowska’s monograph [8] and Klein and
Thompson’s book [162] are excellent references for readers who are interested
in this subject.

The subdifferential for convex functions is the first generalized differential
concept that leads to a multifunction. It has many nice properties later gen-
eralized to the classes of usco and cusco multifunctions. The usco and cusco
also relate to other concepts of generalized derivative such as the Clarke gen-
eralized gradient. Our discussion on usco and cusco here largely follows those
in [56, 69, 221].

Maximal monotone operators are generalizations of the convex subdif-
ferential—though they first flourished in partial differential equation theory.
Rockafellar’s result in Theorem 5.1.31 is in [230]. The original proofs were
very extended and quite sophisticated—they used tools such as Brouwer’s
fixed point theorem and Banach space renorming theory. As with the proof
of the local boundedness of Theorem 5.1.8, ultimately the result is reduced to





























































































































Notes on non-convex Lions-Mercier iterations

Jonathan M. Borwein∗

June 27, 2009

1 Introduction

Let RA(x) := 2 PA(x) − x,RB(x) := 2 PB(x) − x, where PA, PB denote the
Euclidean metric projections, or nearest point maps, on closed sets A and B. In
our setting, the Lions-Mercier (LM) iteration (which can be given many other
names [?] such as Douglas-Rachford or Feinup’s algorithm) is the procedure:
reflect, reflect and average:

x 7→ T (x) :=
x + RA (RB(x))

2
. (1)

Note that a fixed point z of T produces precisely a point w such that w :=
PB(z) = PA (RB(z)) is an element of A ∩ B. Moreover, if one shows that
‖T (zn)−zn‖ → 0 (known as asymptotic regularity of zn+1 := T (zn)) then every
cluster point of the corresponding orbit produces a fixed point z.

The consequent theory of this and related iterations is well understood in the
convex case [?, ?, ?]. In the non-convex case the iteration, also called “divide-
and-concur” [?], has been very successful in a variety of reconstruction problems
[?, ?] but the theory to explain why is largely absent.

In this note we look at a simple but illustrative special case. The subtlety of
this prototype indicates a good deal about the behaviour of the general iteration.
Since (LM) has performed much better than other projection iterations on a
variety of hard problems [?, ?] we focus on its behaviour.1

∗School of Mathematical and Physical Sciences, University of Newcastle, NSW, 2308, Aus-
tralia and Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 2W5, Canada,
jborwein@cs.dal.ca, jonathan.borwein@newcastle.edu.au. Supported in part by NSERC
and the Canada Research Chair Programme.

1In optical abberation correction as required on the Hubble telescope, however, cyclic
projection and its variants have worked well.
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Figure 1: Two steps showing the construction.

2 Dynamics with the circle

In the simplest non-convex case where B is the unit circle and A is a horizontal
line of height α the recursion becomes x0 := x, y0 := y and

xn+1 :=
xn

rn
= cos θn, (2)

yn+1 := = yn + α− yn

rn
= yn + α− sin θn, (3)

where θn := arctan(yn/xn) and rn =
√

x2
n + y2

n.
Figure ?? shows two steps of the underlying geometric construction. All

figures were constructed in Cinderella (www.cinderella.de). A web applet
version of the underlying Cinderella construction is available at
http://kortenkamps.net/material/IterationBorwein.html. Indeed, many
of the insights for the proofs below came from examining the constructions (the
number of iterations N , the height of the line, and the the initial point are all
dynamic—changing one changes the entire visible trajectory).

Let zn := (xn, yn). By symmetry we restrict to α ≥ 0. It is easy to see that
if x0 = 0 then the iteration remains on the vertical axis. We leave this case for
the next section.

Thus, we assume that x0 > 0 and it follows from equation (??) that we have
0 < xn < 1 for all n ≥ 1.

We distinguish four cases:

1. α = 0. In this case we prove in Theorem ?? below that zn → (1, 0). (See
Figure ??.)

2. 0 < α < 1. In this case we conjecture that zn → (
√

1− α2, α). (See Figure
??.)
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Figure 2: Case with α = 0.

3. α = 1. In this case we prove in Theorem ?? below that zn → (0, y) for
some finite y > 1. (See Figure ??.)

4. α > 1. In this infeasible case we prove in Theorem ?? below that yn →∞
at linear rate and xn → 0.

Theorem 1 (Infeasible case) If α > 1 then yn →∞ at linear rate as n →∞,
and xn → 0.

Proof. An easy estimate from equation (??) is yn+1 − yn ≥ α − 1 > 0. The
assertion about yn follows and the behaviour of xn is left as an exercise. ¥

For the remaining feasible cases the following preliminary computation is
useful. We write

r2
n+1 =

x2
n

r2
n

+
y2

n

r2
n

+ (yn + α)2 − 2
yn

rn
(yn + α)

= 1 + α2 + y2
n

(
1− 2

rn

)
+ 2αyn

(
1− 1

rn

)
.

Thus,

r2
n+1 − 1 = α2 + y2

n

(
1− 2

rn

)
+ 2αyn

(
1− 1

rn

)
. (4)

Proposition 1 Suppose that α = 0 and that n > 0 and rn > 1. Then rn+1 <
rn.
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Figure 3: Case with α = 0.9.

Figure 4: Case with α = 1.
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Proof. Equation (??) becomes

r2
n+1 − 1 =

y2
n

r2
n

(
r2
n − 2 rn + 1

)− y2
n

r2
n

≤ (rn − 1)2 .

Hence r2
n+1 − 1 ≤ (rn − 1)2 . Thus, either rn+1 < 1 or 0 < rn+1 − 1 ≤ rn − 1.

In either case we are done. ¥

Proposition 2 Suppose that α = 0 and that n > 0 and rn < 1. Then rn+1 < 1.

Proof. This time we use Equation (??) in the form

1− r2
n+1 =

y2
n

rn
(2− rn) > 0,

since rn < 1. ¥

Proposition 3 Suppose that α = 1 and that n > 0 and rn > 2. Then rn+1 <
rn.

Proof. Equation (??) rewrites as

r2
n+1 − 1 = 1 +

y2
n

r2
n

(
r2
n − 2 rn

)
+ 2

yn

rn
(rn − 1) .

Hence r2
n+1 − 1 < 1 +

(
r2
n − 2 rn

)
+ 2 (rn − 1) = r2

n − 1, and rn+1 < rn as
required. ¥

Theorem 2 (Equatorial case) If α = 0 then zn → (1, 0).

Proof. By Proposition ?? either (a) rn strictly decreases to r ≥ 1, which is
easily seen to be impossible, or (b) in finitely many steps rn < 1. We appeal to
Proposition ?? to conclude that rm < 1 for all m < n.

We note that

| tan(θn+1)| = |1− rn| | tan(θn)| < | tan(θn)|, (5)

and so tan(θn) is decreasing in modulus. It follows, on taking limits in formula
(??) that (a) rn → 1 or (b) θn → 0. In case (a) we see from equation (??) that
yn → 0 and from (??) that xn → 1.

Thus, we are left only with the case that θn → 0. But now xn+1 =
cos(thetan) → 1 and asyn+1/xn+1 → 0, the proof is complete. ¥

Theorem 3 (Tangent case) If α = 1 then then zn → z := (0, y) for some
finite y > 1 (and the projection on the sphere of z is the intersection point of
the two sets).
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Proof. An easy estimate from equation (??) is yn+1 − yn ≥ 0. Thence yn is
nondecreasing with possibly infinite limit y. If y is finite then taking limits in
(??) shows limn→∞ rn = limn→∞ yn, which completes the proof—as r ≤ 1 is
easy to rule out.

In the remaining case, by relabeling, we may assume that rn > yn > 2 for
all n. Thence Proposition ?? inductively shows that rn decreases to some finite
r > y. This contradiction concludes the proof. ¥

It remains to consider 0 < α < 1 and it seems probable that similar but
more careful arguments using Equation (??) are key to showing the ubiquitous
behaviour shown in Figure ??.

3 Behaviour on the vertical axis

It is clear both geometrically and analytically that the vertical axis is left invari-
ant by the iteration (??,??). Even so, starting with x0 = 0 leads to quite varied
behaviour. We note that PB(0) is the entire unit disk, and so the mapping is
intrinsically multivalued at zero.

Again we distinguish four cases:

1. α = 0. In this case the mapping has period two for y in [−1, 1]. For
|y| > 1, however T (2)([0, y]) = [0, y − 2 sign(y)].

2. 0 < α < 1. In this case, the behaviour of the map is quite subtle and
depends on the the starting point and α. It exhibits periodicity of varied
orders when both are rational.

3. α = 1. In this case T ([0, y]) = [0, y] for y > 0 and T ([0, y]) = [0, y + 2] for
y < 0. Hence after a finite number of iterations the iteration terminates.

4. α > 1. In this infeasible case we again see simpler translational behaviour
of T .

4 Extensions

Several natural extensions to study (graphically and analytically) take B as the
sphere in n-dimensional space E and consider:

• A as an affine subspace in E of dimension 2 < m < n;

• A as a polyhedron (or polyhedral cone) with n = 2 or n = 3.

Remark 1 Note, even in two dimensions, alternating projections, alternating
reflections, project-project and average, and reflect-reflect and average will all
often converge to (locally nearest) infeasible points even when A is simply the
ray R := {[x, 0] : x ≥ −1/2} and B is the circle as before. They can also behave
quite ‘chaotically’. (See Figure ?? for a periodic illustration in Maple.) So the
affine nature of the convex set seems quite important.
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Figure 5: Iterated reflection on the ray R.

Remark 2 (Nearest point to an ellipse) Consider the ellipse

E :=
{

(x, y) :
x2

a2
+

y2

b2
= 1

}

in standard form. The best approximation PE(u, v) =
(

a2u
a2−t ,

b2v
b2−t

)
where t

solves a2u2

(a2−t)2
+ b2v2

(b2−t)2
= 1. This generalizes neatly to a hyperbola (one solves

the general quartic x4 − ux3 + vx− 1 = 0 and [x, 1/x] is the nearest point.)

Remark 3 (Nearest point to the p-sphere) For 0 < p < ∞, consider the
p-sphere in two dimensions

Sp := {(x, y) : |x|p + |y|p = 1} .

Let z∗ := (1 − zp)1/p. For uv 6= 0, the best approximation PSp
(u, v) =

(sign(u)z, sign(v)z∗) where either z = 0, 1 or 0 < z < 1 solves

z∗p−1(z − |u|)− zp−1(z∗ − |v|) = 0.

[Then one computes the two or three distances and select the point yielding the
least value. It is instructive to make a plot, say for p = 1/2.] This extends to
the case where uv = 0. Note that this also yields the nearest point formula for
the p-ball.
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It should be possible to consider local convergence by linearization of T from
Equation (??). This makes it important to understand approximate solution of
a point in the intersection of two hyperplanes.

For the hyperplane Ha := {x : 〈a, x〉 = b} the projection is

x 7→ x + {〈a, x〉 − b} a

‖a‖2 .

The consequent averaged-reflection version of the Douglas-Rachford or Lions-
Mercier recursion for a point in the intersection of N distinct hyperplanes is:

x 7→ x +
2
N

N∑

k=1

{〈ak, x〉 − bk} ak

‖ak‖2 . (6)

The corresponding-averaged projection algorithm is:

x 7→ x +
1
N

N∑

k=1

{〈ak, x〉 − bk} ak

‖ak‖2 (7)
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