
INTEGRALS OF K AND E FROM LATTICE SUMS

J. G. WAN AND I. J. ZUCKER

Abstract. We give closed form evaluations for many families of integrals, whose
integrands contain algebraic functions of the complete elliptic integrals K and
E. Our methods exploit the rich structures connecting complete elliptic integrals,
Jacobi theta functions, lattice sums, and Eisenstein series. Various examples are
given, and along the way new (including 10-dimensional) lattice sum evaluations
are produced.

1. Introduction

The complete elliptic integrals of the first and second kind, K and E respectively,
are defined by

K(k) =

∫ 1

0

dx√
(1− x2)(1− k2x2)

=
π

2
2F1

(
1

2
,
1

2
; 1; k2

)
,

E(k) =

∫ 1

0

√
1− k2x2

1− x2
dx =

π

2
2F1

(
−1

2
,
1

2
; 1; k2

)
. (1)

As usual, pFq denotes the generalized hypergeometric function [1, Ch. 2]. In equation
(1), k is known as the modulus; the complimentary functions K ′ and E ′ are the same
functions with argument k′ =

√
1− k2. The derivatives of K and E can be expressed

as follows:
dK(k)

dk
=
E(k)− k′2K(k)

kk′2
,

dE(k)

dk
=
E(k)−K(k)

k
. (2)

In recent years, integrals of the form∫ 1

0

f(k)KmK ′nEpE ′rdk (3)

have appeared in the context of multi-loop Feynman diagrams, Ising-type integrals
[2], random walks [5], Mahler measures, and non-critical L-values of modular forms
[8, 9]. More intricate integrals containing K also appear in connection with lattice
Green’s functions [4, 14]. It is thus our aim to evaluate the integrals (3) whenever
possible.
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This is in general challenging. For instance, it was experimentally discovered in
[11] that ∫ 1

0

K ′(k)3dk = 5

∫ 1

0

kK ′(k)3dk =
Γ8
(

1
4

)
128π2

. (4)

Despite its simplicity in form, (4) was only proved in [10] and [15]; for the latter
proof, Zhou developed, among other things, a generalization of the classical Clebsch-
Gordan coefficients.

In this paper, we show how infinite families of such integrals may be found in
closed forms when certain multiple (lattice) sums are expressed as Mellin transforms
of products of Jacobi θ functions. To this end, we draw upon the deep connections
between θ functions and complete elliptic integrals [3, Ch. 2]. The Jacobi θ functions
are

θ2(q) =
∞∑

n=−∞

q(n−1/2)2 =

√
2kK(k)

π
,

θ3(q) =
∞∑

n=−∞

qn
2

=

√
2K(k)

π
,

θ4(q) =
∞∑

n=−∞

(−1)nqn
2

=

√
2k′K(k)

π
, (5)

where q = e−πK
′(k)/K(k), and

dq

dk
=

π2q

2kk′2K(k)2
. (6)

Said multiple sums can be expressed as products of Dirichlet L-series with real
characters [4, Ch. 4]. Explicitly, the series that occur here are

ζ(s) = 1 + 2−s + 3−s + 4−s + · · · , β(s) = 1− 3−s + 5−s − 7−s + · · · ,
λ(s) = (1− 2−s)ζ(s), η(s) = (1− 21−s)ζ(s),

L−3(s) = 1− 2−s + 4−s − 5−s + · · · ,
L−8(s) = 1 + 3−s − 5−s − 7−s + · · · , L8(s) = 1− 3−s − 5−s + 7−s + · · · ,
L12(s) = 1− 5−s − 7−s + 11−s + · · · ,
L−24(s) = 1 + 5−s + 7−s + 11−s − 13−3 − 17−s − 19−s − 23−s + · · · ,
L24(s) = 1 + 5−s − 7−s − 11−s − 13−3 − 17−s + 19−s + 23−s + · · · . (7)

The first four are respective the Riemann zeta, Dirichlet beta, Dirichlet lambda, and
Dirichlet eta functions; β(2) is Catalan’s constant and is denoted by G.

In the next section, we utilize the connecting formulae (5) and (6) and known
lattice sum evaluations to produce new K integrals. In sections 3 and 4, we evaluate
more K integrals using Eisenstein series and some theory of modular forms; these
original results are summarized in Theorems 1 and 2. In the final section, we also
look at integrals containing E.
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2. Transformation into lattice sums

We begin with an example of converting a multiple sum into an equation of the
form (3).

Example 1. Consider the double sum∑
m1,m2

(−1)m2

[(m1 − 1/2)2 +m2
2]
s , (8)

where the summation is performed over all values of the indices from −∞ to ∞.
The normalized Mellin transform operator is

Ms[f(t)] =
1

Γ(s)

∫ ∞
0

f(t)ts−1dt, (9)

in particular, Ms[e
−Nt] = N−s. Accordingly, equation (8) may be written as∑

m1,m2

(−1)m2

[(m1 − 1/2)2 +m2
2]
s = Ms

[ ∑
m1,m2

e−(m1−1/2)2t(−1)m2e−m
2
2t
]

=
1

Γ(s)

∫ ∞
0

θ2(e−t)θ4(e−t)ts−1dt. (10)

In (10), let t = πK ′(k)/K(k), and substitute in the expressions in (5) and (6). We
obtain∑

m1,m2

(−1)m2

[(m1 − 1/2)2 +m2
2]
s =

πs

Γ(s)

∫ 1

0

1

k1/2k′3/2K(k)

(
K ′(k)

K(k)

)s−1

dk. (11)

Now it has been shown in [13] that∑
m1,m2

(−1)m2

[(m1 − 1/2)2 +m2
2]
s = 22s+1L−8(s)L8(s), (12)

which is equivalent to the Mellin transform of the identity

θ2(q)θ4(q) = 2q1/4

∞∑
n=0

(−1)n
[

qn

1 + q4n+1
− q3n+2

1 + q4n+3

]
.

Thus, (11) simplifies to∫ 1

0

1

k1/2k′3/2K(k)

(
K ′

K

)s−1

dk = π−sΓ(s)22s+1L−8(s)L8(s). (13)

For instance, when s = 1, L−8(1) = π/
√

8 and L8(1) = log(1 +
√

2)/
√

2; so we have∫ 1

0

dk

k1/2k′3/2K(k)
= 2 log(1 +

√
2). (14)

As results such as (12) are readily available in [13], many expressions such as (13)
may be found. ♦
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A more general analysis is now given. Suppose a multiple sum L(m,n, p; s) can
be written in terms of a Mellin transform of products of θ functions thus:

L(m,n, p; s) =
1

Γ(s)

∫ ∞
0

θm2 (e−t)θn3 (e−t)θp4(e−t)ts−1dt. (15)

As we have seen in Example 1, θ2 corresponds to a component in the multiple sum
of the form 1/(N−1/2)2, θ3 corresponds to 1/N2, and θ4 corresponds to (−1)N/N2.
Transforming the integral for L(m,n, p; s) using (5) and (6) as in Example 1, we
obtain the following general result.

Proposition 1. When the integral on the right converges, the following equation
holds, and provides an analytic continuation for the sum L(m,n, p; s). (The argu-
ment of K or K ′ is omitted when it is clear from the context.)

L(m,n, p; s) =
πs

Γ(s)

(
2

π

)m+n+p−2
2

∫ 1

0

k
m−2

2 k′
p−4

2 K
m+n+p−2s−2

2 K ′s−1dk. (16)

As a consequence of the fact that the Poisson transform of θm2 (e−t)θn3 (e−t)θp4(e−t) is
θp2(e−t)θn3 (e−t)θm4 (e−t), we also have

L(m,n, p; s) =
πs

Γ(s)

(
2

π

)m+n+p−2
2

∫ 1

0

k
p−2

2 k′
m−4

2 K ′
m+n+p−2s−2

2 Ks−1dk. (17)

Equating the two results in Proposition 1 gives

π(m+n+p−4s)/2L(m,n, p; s) = L(p, n,m; (m+ n+ p− 2s)/2). (18)

Moreover, writing k′N as k′N−2 − k2k′N−2 and applying (16) to each term, we get
the beautiful equation

L(m,n, p+ 4; s)− L(m,n+ 4, c; s) + L(m+ 4, n, p; s) = 0,

which is Jacobi’s celebrated result θ4
3 = θ4

2 + θ4
4 in disguise.

In Table 1, results obtained using Proposition 1 and sums of up to dimension 8
are given; the lattice sum evaluations come from θ function identities recorded in
[3, 13], and [4, Ch. 1 and 6]. A selection of some interesting formulae which emerge
are shown below.

Example 2. Taking s = m = p = 2, n = 0 in Proposition 1, we obtain∫ 1

0

K ′

K

dk

k′
= 2G.

The lattice sum involved is
∑

mi
(−1)m3+m4 [(m1− 1/2)2 + (m2− 1/2)2 +m2

3 +m2
4]−2

and the final evaluation comes from [13].
Taking m = 2, n = 0, p = 4 and s = 3/2 in Proposition 1, we obtain∫ 1

0

√
KK ′dk =

√
2 β
(3

2

)
λ
(3

2

)
,

with [13] again giving the final evaluation. ♦
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Example 3. From the 8-fold sum [13] L(4, 0, 4; s) =∑
mi

(−1)(m5+m6+m7+m8)[
(m1 − 1

2
)2 + (m2 − 1

2
)2 + (m3 − 1

2
)2 + (m4 − 1

2
)2 +m2

5 +m2
6 +m2

7 +m2
8

]s
= 16η(s− 3)λ(s),

we derive ∫ 1

0

kK2

(
K ′

K

)s−1

dk = 2π3−sΓ(s)η(s− 3)λ(s), (19)

which yields∫ 1

0

kK2dk =
7

4
ζ(3),

∫ 1

0

kKK ′dk =
π3

16
,

∫ 1

0

kK ′2dk =
7

4
ζ(3),

∫ 1

0

k
K ′3

K
dk =

π3 log 2

8
.

It is interesting that [11] gives the first three results above by entirely different
methods. ♦

Remark 1. In Proposition 1, if m = 0, then for convergence reasons we could replace
the integrand in (15) by (θn3 (e−t)θp4(e−t)− 1)ts−1. The same steps could be used to
convert this into a K integral, though the final result is not as elegant. As an
example, when n = s = 2 and m = p = 0,∫ 1

0

K(2K ′ − π)

kk′2K ′3
dk =

2

π2

∑
(m1,m2)6=0

1

(m2
1 +m2

2)2
=

4G

3
,

the second equality being a special case of the Hardy-Lorenz sum.
Instead of subtracting by 1 as above, we could alternatively subtract two sums,

in both of which m = 0. An example of this can be found in Table 1, see the entry
θ6

4 − θ2
3θ

4
4. ♦

The next example uses known K integrals to provide a new lattice sum evalua-
tions; this idea is further explored subsequently.

Example 4. Proposition 1 equates the value of the multiple sum L(2, 0, 6; 3) to the
integral of k′K ′2, which can be found using the Fourier series method in [11, Sec. 6].
We thereby obtain the 8-dimensional sum evaluation∑
mi

(−1)m3+m4+···+m8[
(m1 − 1

2
)2 + (m2 − 1

2
)2 +m2

3 +m2
4 + · · ·+m2

8

]3 =
π3

4

[
1+2 4F3

(
1
2
, 1

2
, 1

2
, 1

2

1, 1, 1
; 1

)]
.

As a more involved example, it is possible to show that

1

4
L
(5

2
, 0,

7

2
; 2
)

=

∫ 1

0

( k
k′

)3/4

Kdk =
π2

12

√
5 +

1√
2
.

This leads to the lattice sum∑
mi

(−1)m3+m4+m5+m6[
(m1 − 1

2
)2 + (m2 − 1

2
)2 + 2(m3 − 1

4
)2 +m2

4 +m2
5 +m2

6

]2 =
π2

6

√
10 +

√
2,

where we have applied the θ function identities [4, equation (1.3.8)]. ♦
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2.1. Relationships between lattice sums. Proposition 1 leads to various non-
trivial relations among lattice sums, the next result being one useful example.

Proposition 2. The following relationships hold, when L is viewed as an analytic
continuation (if necessary) provided by Proposition 1:

L(2m,n, n; s) = 2m−s L(m,m, 2n; s) (20)

= π2s−m−nL(n, n, 2m;m+ n− s). (21)

Proof. Starting with (17),

L(2m,n, n; s) =
πs

Γ(s)

(
2

π

)m+n−1 ∫ 1

0

k
n−2

2 k′m−2K ′m+n−1−sKs−1dk,

we make the change of variable k 7→ (1 − k)/(1 + k). The new integrand can be
simplified using the quadratic transformations [3, Ch. 1]

K ′(k) =
2

1 + k
K

(
1− k
1 + k

)
, K(k) =

1

1 + k
K

(
2
√
k

1 + k

)
. (22)

The simplified integral is identified as 2m−s L(m,m, 2n; s), using (16), thus the equal-
ity (20) is obtained. Equation (21) then follows using (18). �

Example 5 (New lattice sum evaluations). Proposition 2 shows that

2L(2, 2, 2; 2) = L(1, 1, 4; 2).

The value of the left hand side is given in [10, Example 2], and thus, writing out the
right hand side as a convergent 6-dimensional lattice sum, we obtain the apparently
new evaluation∑

mi

(−1)m3+m4+m5+m6[
(m1 − 1

2
)2 +m2

2 +m2
3 +m2

4 +m2
5 +m2

6

]2 =
Γ4(1

4
)

2π
. (23)

A special case of Jacobi’s triple product identity states that

θ2θ3θ4 = θ′1 =
∑
n

2n(−1)nq(n+1/2)2 , (24)

so the above evaluation of L(1, 1, 4; 2) may be rewritten as∑
mi

m1 (−1)m1+m2+m3+m4[
(m1 + 1

2
)2 +m2

2 +m2
3 +m2

4

]2 =
Γ4(1

4
)

4π
.

Similarly, Proposition 2 gives 2L(4, 2, 2; 3) = L(2, 2, 4; 3). The evaluation of the
left hand side is given in [11, Proposition 1], and therefore we obtain an evaluation
for the right hand side sum:∑

mi

(−1)m5+m6+m7+m8[
(m1 − 1

2
)2 + (m2 − 1

2
)2 +m2

3 +m2
4 +m2

5 +m2
6 +m2

7 +m2
8

]3
=
π4

4
7F6

( 5
4
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
1
4
, 1, 1, 1, 1, 1

; 1

)
. (25)

♦
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Remark 2. We can evaluate L(1, 1, 1; s) by applying the Mellin transform (9) to
both sides of (24). Similarly, L(1/3, 1/3, 1/3; s) can be found using the following
version of Euler’s pentagonal number theorem,[1

2
θ2θ3θ4

]1/3

= q1/12

∞∏
n=1

(1− q2n) =
∑
n

(−1)nq(6n−1)2/12.

Both evaluations are recorded in Table 1.
For L(2, 2, 2; s), we may use the following series due to Hirschhorn [6],

2(θ2θ3θ4)2 =
∑
m,n

(−1)m+n Re
[
(10m+ 3 + i(10n+ 1))2

]
q((10m+3)2+(10n+1)2)/20,

resulting in the evaluation

Re
∑
m,n

(−1)m+n[
10m+ 3 + i(10n+ 1)

]2 =
1

50

∫ 1

0

K

k′
dk =

Γ(1
4
)4

800π
.

♦

Remark 3. Proposition 2 also leads to a number of functional equations for specific
sums, for instance

(2π)2m−2sL(m,m, 2m; s) = L(m,m, 2m; 2m− s),
(2π)3m−2sL(m,m, 4m; s) = L(m,m, 4m; 3m− s).

Following a similar proof procedure for Proposition 2, we may obtain many linear
relations among sums, one example being

2s−mL(2m,n, n+ 2; s) = L(m,m+ 2, 2n; s)− L(m+ 2,m, 2n; s).

♦

Example 6. In [8, proof of Theorem 1.1], it is shown that for the function f(τ) =
η4(2τ)η4(4τ) (here η stands for the Dedekind eta function), an L-value yields the
closed form

L(f, 4) =
π4

192

[
5F4

( 1
2
, 1

2
, 1

2
, 1

2
, 1

2

1, 1, 1, 3
2

; 1

)
+

7ζ(3)

π2

]
. (26)

In our notation, L(f, 4) = 1
16
L(4, 2, 2; 4). Proposition 2 gives L(4, 2, 2; 4) = 1

4
L(2, 2, 4; 4),

so we produce the following new 8-dimensional sum evaluation,∑
mi

(−1)m5+m6+m7+m8[
(m1 − 1/2)2 + (m2 − 1/2)2 +m2

3 +m2
4 + · · ·+m2

8

]4 = 64L(f, 4).

The corresponding K integrals are∫ 1

0

K ′3

K
dk = 4

∫ 1

0

K3

K ′
dk =

48

π
L(f, 4),

where L(f, 4) is given by (26). ♦
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2.2. 10-dimensional sums. Prior to this work, it seems that closed-form evalu-
ations of lattice sums have been limited to dimensions 8 or less. In this section
we give some 10-dimensional evaluations, namely equations (27) and (29). Later,
Remark 5 provides another example.

One of the key results in [10] is the evaluation (4). When translated into multiple
sums using Proposition 1, it gives

Γ8
(

1
4

)
48π2

= 5L(4, 2, 4; 4) = L(2, 4, 4; 4) =
1

8
L(1, 1, 8; 4),

where we have used Proposition 2 for the last inequality. As all three sums involved
converge, we obtain the following 10-dimensional evaluations:

5
∑
mi

(−1)m7+m8+m9+m10[
(m1 − 1

2
)2 + (m2 − 1

2
)2 + (m3 − 1

2
)2 + (m4 − 1

2
)2 +m2

5 +m2
6 + · · ·+m2

10

]4 ,
=
∑
mi

(−1)m7+m8+m9+m10[
(m1 − 1

2
)2 + (m2 − 1

2
)2 +m2

3 +m2
4 + · · ·+m2

10

]4
=

1

8

∑
mi

(−1)m3+m4+···+m10[
(m1 − 1

2
)2 +m2

2 +m2
3 + · · ·+m2

10

]4 =
Γ8(1

4
)

48π2
. (27)

Another way to produce 10-dimensional sum evaluations is via θ10
4 . It was essen-

tially known to Liouville [7] that

θ4(q)10−1 =
4

5

[
16
∑
k>0

k4(−q)k

1 + q2k
+
∑
k>0

(−1)k(2k − 1)4q2k−1

1 + q2k−1
+2
∑
m,n

(m−ni)4(−q)m2+n2

]
.

Taking the Mellin transform (9) to both sides, we find that

∑
mi

′ (−1)m1+···+m10

(m2
1 + · · ·+m2

10)s
= −4

5

[
β(s−4)η(s)+16β(s)η(s−4)−2

∑
m,n

′ (−1)m+n(m− ni)4

(m2 + n2)s

]
,

(28)
where the notation

∑′ means the sum is taken over all values of the indices from
−∞ to ∞, omitting the single term when all the indices are simultaneously 0.

When s = 3 or 4, the double sum in (28) can be evaluated in terms of the
Eisenstein series E4, see [10, proof of Theorem 3 and Example 4] and also Section
3. Consequently, we have the evaluations

∑
mi

′ (−1)m1+···+m10

(m2
1 + · · ·+m2

10)3
= −π

3

10
−

Γ8(1
4
)

120π3
,

∑
mi

′ (−1)m1+···+m10

(m2
1 + · · ·+m2

10)4
= − 7π4

1800
− 32β(4)

5
−

Γ8(1
4
)

400π2
. (29)
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3. Eisenstein series

The Eisenstein series of weight 2n, E2n(q), is defined by the sum

E2n(q) =
1

2ζ(2n)

∑
m1,m2

′ 1

(m1 +m2τ)2n
, where q = e2πiτ . (30)

(Here, the notation
∑′ again means the indices m1 = m2 = 0 is omitted.) E2n also

admits the Lambert series

E2n(q) = 1− 4n

B2n

∞∑
m=1

m2n−1qm

1− qm
, (31)

where q relates to k via (6) as usual, and Bi denotes the ith Bernoulli number.
We state some standards facts about E2n. Firstly, it is well-known that

E4(q2) =
16

π4
(1− k2 + k4)K4, E6(q2) =

32

π6
(1 + k2)(1− 2k2)(2− k2)K6. (32)

(One way to prove this is by noting that both sides are modular forms of the same
weight, and their q-expansions agree to sufficiently many terms.) Moreover, for
any integer n > 1, E2n can be written as a rational, homogeneous polynomial
Pn(E4, E6), where each term of the polynomial has weight 2n. These connections
between Eisenstein series and K are exploited in the following theorem.

Theorem 1. For any integer n > 1, there exists a closed form evaluation of the
type ∫ 1

0

k pn(k)K2n−1−sK ′s−1dk = π2n−1−s Γ(s)ζ(s+ 1− 2n)ζ(s), (33)

where pn is a computable, rational and even polynomial of degree no more than
2n− 4, satisfying pn(k) = pn(k′).

Proof. We give an effective way to find pn. Our first aim is to cancel out the leading
‘1’ in the Lambert series (31).

Since E2n can be written in terms of E4 and E6, by (32), there exists a rational
(computable) polynomial Pn such that

E2n(q2) = Pn

(16

π4
(1− k2 + k4)K4,

32

π6
(1 + k2)(1− 2k2)(2− k2)K6

)
. (34)

Using (5), we can view k as a function of q, namely k(q) = θ2
2(q)/θ2

3(q). It follows
by standard θ function identities that

k(q1/2) =
2
√
k(q)

1 + k(q)
. (35)

(This is also the degree 2 modular equation, c. f. (22).) Substituting q 7→ q1/2 in
(34), applying (35) and simplifying the results using (22), we obtain

E2n(q) = Pn

(16

π4
(1 + 14k2 + k4)K4,

64

π6
(1 + k2)(1− 34k2 + k4)K6

)
. (36)
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Similarly, k(−q) = ik(q)/k′(q), and combined with Euler’s hypergeometric transfor-
mation [1, Theorem 2.2.5], we have

K(k) =
1

k′
K

(
ik

k′

)
.

Therefore, equation (36) leads to

E2n(−q) = Pn

(16

π4
(1− 16k2 + 16k4)K4,

64

π6
(1− 2k2)(1 + 32k2 − 32k4)K6

)
. (37)

Now subtract (37) from (34) and appeal to (31), the ‘1’ cancel out and we get

E2n(q2)− E2n(−q) =
4n

B2n

∞∑
j=1

j2n−1(−q)j

1− q2j
= π−2nQn(k)K2n, (38)

where Qn is a degree 2n rational polynomial completely determined by Pn.
Setting q = e−t in the second term of (38), we apply the Mellin transform (9) to

it. Interchanging the order of integration and summation gives

− 4n

B2n

(1− 2−s)(1− 22n−s)ζ(s+ 1− 2n)ζ(s).

The corresponding transform of the rightmost term in (38) can be found with help
from (6). Equation (33) now follows after some simplifications; note that pn is
determined by Qn, and in turn by Pn.

The other claims in the theorem can be proven as follows. We first show that
pn is a polynomial, which amounts to checking that after multiplying by dq/dk,
the rightmost term in (38) remains a polynomial. Thus, we want to prove the
claim that Qn(k)/(kk′2) is a polynomial. Referring to the definition of Qn as a
difference of two polynomials, we see that the claim is true since at k = 0 and ±1,
(1− 16k2 + 16k4) agrees with (1− k2 + k4) and 2(1− 2k2)(1 + 32k2 − 32k4) agrees
with (1 + k2)(1− 2k2)(2− k2). The result can be written as k pn(k) since Qn is even
in k, so another copy of k can be factored out. The equality pn(k) = pn(k′) can be
verified as the polynomials involved in (34) and (37) are all invariant under k 7→ k′.
Finally, the bound for the degree of pn holds because Pn preserves weights. �

Note that there are many other ways to cancel out the ‘1’ in (31); Theorem 1
simply provides clean results which directly give integrals for even powers of K.

Using the functional equation for the ζ function and letting s→ 1 in Theorem 1,
we find that ∫ 1

0

k pn(k)K2n−2dk = rn ζ(2n− 1) (39)

for some rational constant rn, while for s = 3, 5, . . . , 2n−3, the integral in Theorem
1 vanishes.

Example 7. With n = 2 in Theorem 1, we have E4 = P2(E4, E6) so (obvious)
P2(x, y) = x, and Q2(k) = 240k2k′2. Therefore, (38) takes the form

8

B4

∞∑
j=1

j3(−q)j

1− q2j
= 240k2k′2 π−4K4. (40)
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After applying the Mellin transform to both sides, we recover (19).
Using E6 in Theorem 1 and P3(x, y) = y, we get∫ 1

0

k(1− 2k2)K5−sK ′s−1dk =
π5−s

2
Γ(s)η(s− 5)λ(s), (41)

where we have rewritten ζ in terms of η and λ according to (7). In the notation of
(15), this is an evaluation of L(4, 4, 4; s)− 2L(8, 4, 0; s).

When s = −2, −1, 0, 1 or 2 in (41), we obtain∫ 1

0

k(2k2 − 1)
K7

K ′3
dk =

51

256
ζ(3)π5,

∫ 1

0

k(2k2 − 1)
K6

K ′2
dk =

1905

64
ζ(7),∫ 1

0

k(2k2 − 1)
K5

K ′
dk =

log 2

16
π5,∫ 1

0

k(2k2 − 1)K4dk =
93

16
ζ(5),

∫ 1

0

k(2k2 − 1)K3K ′dk =
π5

128
. (42)

The last two integrals in (42) are particularly interesting; they were also found by
Zhou via very different methods – see [15, equation (63) and last equation]. ♦

Example 8. Because E8 = E2
4 , we have P4(x, y) = x2 in the notation of the proof

above. Theorem 1 then gives∫ 1

0

k(2− 17k2 + 17k4)K7−sK ′s−1dk =
π7−s

4
Γ(s)η(s− 7)λ(s). (43)

In particular, when s = 1,∫ 1

0

k(2− 17k2 + 17k4)K6dk =
5715

64
ζ(7).

Since E10 = E4E6 (so P5(x, y) = xy), we get from Theorem 1∫ 1

0

k(1− 2k2)(1− 31k2 + 31k4)K9−sK ′s−1dk =
π9−s

32
Γ(s)η(s− 9)λ(s). (44)

As another example, the identity 691E12 = 441E3
4 + 250E2

6 gives P6, and leads to∫ 1

0

k(2− 259k2 + 1641k4 − 2764k6 + 1382k8)K11−sK ′s−1dk

=
π11−s

64
Γ(s)η(s− 11)λ(s). (45)

♦
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4. Modular forms

Equation (4) was the first closed form evaluation of the integral of a cubic in K
[10, 11, 15] (see also [16]). The proof given in [10] relies on the fact that the function

f4(q) =
∑
m,n

(m− in)4qm
2+n2

is a modular form. We now extend this idea to find closed form evaluations for
integrals of odd powers of K; this complements Theorem 1 which deals with even
powers.

Theorem 2. For each integer p ≥ 1, there exists a closed form evaluation of the
type ∫ 1

0

gp(k)K ′4p−1dk =
Γ(1

4
)8p

π2p
, (46)

where gp is an effectively computable algebraic function.

Proof. Consider the function

f4p(q) :=
∑
m,n

(m− in)4pqm
2+n2

. (47)

Note that f4p is real, as the imaginary part vanishes upon summation by symmetry.
Because (m − in)4p is harmonic – its Laplacian with respect to m and n is 0, it

follows from [12, Part 1C] that f4p is a modular (in fact, cusp) form of weight 4p+1,
with non-trivial character, on the congruence subgroup Γ0(4).

Since 2
π
K = θ2

3 is a weight 1 modular form, it follows that f4p/K
4p+1 has weight 0,

which ensures that it is an algebraic function of 16k−2, the Hauptmodul for Γ0(4).
To summarize, for an algebraic function Gp,

f4p(q) = Gp(k)K4p+1. (48)

It remains to compute Gp. To do so we expand the real part of the summand of
f4p binomially,

f4p(q) =

2p∑
b=0

(
4p

2b

)
(−1)b

{∑
m

m4p−2bqm
2

}{∑
n

n2bqn
2

}
. (49)

Thus, it suffices for us to find an expression for
∑

n n
2bqn

2
, since all terms in the

braces are of this form. But
∑

n n
2bqn

2
can be calculated by applying the operator

q d
dq

to θ3(q) a total of b times. To write this in terms of elliptic integrals, we use

θ3 =
√

2
π
K, q d

dq
= q dk

dq
d
dk

, and formulae (6) and (2).

This (tedious) computation for
∑

n n
2bqn

2
produces algebraic functions of k, K

and E, where E appears in the derivatives of K and E by (2). However, when
combined using (49) to yield the final expression for f4p, all the E’s are guaranteed
to cancel out due to (48), and this combination gives us Gp.
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We now take the Mellin transform of both sides of (48), with q = e−t and s = 4p.
The left hand side simplifies to an Eisenstein series E4p with τ = i, which is a
(computable) rational constant times a power of

E4

∣∣∣
k=1/

√
2

=
3Γ8(1

4
)

64π6
,

as E6|k=1/
√

2 = 0 (see (32) and surrounding discussion for these connections). The
theorem now follows after some algebraic manipulations. �

Example 9. In Theorem 2, taking p = 1 leads to (4). For p = 2, following the steps
in the proof of the theorem, we have

f8(q) =
32k2k′2(4 + k2 − k4)

π9
K9,

from which we obtain ∫ 1

0

k(4 + k2 − k4)K ′7dk =
3 Γ16(1

4
)

212 5 π4
. (50)

Similarly, for p = 3,∫ 1

0

k(16− 92k2 + 93k4 − 2k6 + k8)K ′11dk =
189 Γ24(1

4
)

215 65π6
, (51)

and for p = 4,∫ 1

0

k(64+848k2−2136k4+2577k6−1291k8+3k10−k12)K ′15dk =
43659 Γ32(1

4
)

221 85π8
. (52)

It seems that in all cases, gp is actually an odd polynomial. ♦

Remark 4. We can exploit equation (32) in many more ways to produce K integrals.
As one example, starting with

g(q) =
∑
m,n

(
n−
√

2im
)4
qn

2+2m2

=
∑
m,n

(n4 − 12m2n2 + 4m4)qn
2+2m2

,

we use the procedure (repeated applications of q d
dq

) outlined in the proof of Theorem

2 to write this as

g(q) =

√
2

π5

k2k′[k2(k′ − 2) + 4(k′ + 1)]K5

(k′ + 1)3/2
,

where we have used
∑

m q
2m2

= θ3(q2) =
√

1+k′

π
K. We now let q = e−t and apply

the Mellin transform (9) with s = 4 to both expressions. The resulting double sum,∑
m,n

′ 1

(n+
√

2 im)4
,
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can be evaluated using (32) and a singular value of K (see [3, Ch. 4]), namely the
closed forms

k(e−
√

2π) =
√

2− 1, K
(
k(e−

√
2π)
)

=

√
2 +
√

2

128π
Γ
(1

8

)
Γ
(3

8

)
. (53)

After simplification, we produce the integral evaluation∫ 1

0

2 + 3k − k2

√
1 + k

K3dk =
Γ4(1

8
)Γ4(3

8
)

384
√

2π2
.

Exactly the same procedure may be used to relate∑
m,n

′ 1

(n+
√

2im)2p
, p = 2, 3, 4, . . .

which has a closed form (by (32), subsequent discussion, and (53)), to an integral
involving K2p−1. For instance, when p = 3, we have∫ 1

0

4− 6k + 5k2 + 12k3 + k4

√
1 + k

K5dk =
Γ6(1

8
)Γ6(3

8
)

2304
√

2π3
. (54)

Indeed, we may obtain closed form evaluations for integrals containing K4p+1 for all
p ∈ N this way, with (54) being the first known example; this is a counterpart to
Theorem 2, which deals with K4p−1.

Here, we record a few more integrals obtained using variations of this method:∫ 1

0

1 + 14k2 + k4

√
k

K ′5dk = 32

∫ 1

0

1 + 14k2 + k4

√
k

K5dk =
3Γ12(1

4
)

32π3
,∫ 1

0

(1− k2 − 4k4)K ′7dk = −120

7

∫ 1

0

(1− k2 − 4k4)K7dk =
9Γ16(1

4
)

4096π4
,∫ 1

0

(1 + 14k2 + k4)2

√
k

K ′9dk = 512

∫ 1

0

(1 + 14k2 + k4)2

√
k

K9dk =
189Γ20(1

4
)

128π5
. (55)

♦

Remark 5. Though the details are omitted here, we should mention that it is fruitful
to consider more general Eisenstein series than the definition (30); for instance, one
generalization involves twisting the numerator 1 in (30) by χa(m1)χb(m2), where
χa, χb are Dirichlet characters. At suitable τ , modular theory tells us that the ratio
of such a construction over E2n is algebraic (and computable). As one example,
using χ−4(m1)χ−8(m2) (whose values are implicitly given by L−4 and L−8 in (7)),
we can use the procedure in the proof of Theorem 2 to ultimately deduce∫ 1

0

k1/4k′1/2K3dk =
(
√

2− 1)3/2

128
√

2π2
Γ8
(1

4

)
, (56)
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which, by (17) and [4, equation (1.3.8)], can be converted into the 10-dimensional
sum∑

mi,ni

(−1)m1+···+m5[
2m2

1 + · · ·+ 2m2
5 + (n1 − 1

2
)2 + · · ·+ (n5 − 1

2
)2
]4 =

(
√

2− 1)3/2

48
√

2π2
Γ8
(1

4

)
.

♦

5. Examples involving E

Integrals involving E can be obtained by differentiating q-identities involving K.
We give one worked example here.

As usual, with k = θ2
2(q)/θ2

3(q), we differentiate both sides of (40) with respect to
q. With the help of equations (2) and (6), we obtain

∞∑
j=1

j4(1 + q2j)(−q)j

(1− q2j)2
= −4k2k′2

π6
K(k)5(2E(k)−K(k)).

Next, with q = e−t, we compute the Mellin transform (9) of both sides above. The
result is ∫ 1

0

kK ′sK3−s(2E −K)dk =
π4−s

2
Γ(s+ 1)η(s− 3)λ(s), (57)

which, after applying Legendre’s relation EK ′ + E ′K − KK ′ = π
2
, generalizes an

identity in [15, Remark after proof of Prop. 5.1].
It is clear that this procedure can be applied to every K integral in this paper.

We remark that there are many other ways to construct E integrals, relying on for
instance Legendre’s relation, though we do not pursue such paths here; instead, only
some aesthetically pleasing examples are mentioned below.

Example 10. It is known (see e. g. [13]) that

4

π2
k2K2 = θ4

2(q) = 16
∞∑
n=0

(2n+ 1)q2n+1

1− q4n+2
,

so we can differentiate both sides with respect to q and take the Mellin transform,
ending up with ∫ 1

0

E ′

k

Ks

K ′s−1
dk = 2π2−sΓ(s+ 1)λ(s− 1)λ(s).

Similarly, starting from the q-series for θ2
2θ

4
4 [13], we get∫ 1

0

K2−sK ′s(3E − 2K)dk =
π3−s

2
(2s − 1)Γ(s+ 1)β(s− 2)ζ(s),

which, when combined with (4), has the special evaluation at s = 3:∫ 1

0

EK ′3

K
dk =

Γ8(1
4
)

192π2
+

7π

4
ζ(3).
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Starting from the q-series for θ3
2θ

3
4 [13], we can obtain∫ 1

0

√
k

k′
K ′2(2E −K)dk =

π3

6
√

2
.

Our final example involves double differentiation. We apply the operator q d
dq

twice

to the identity
2

π
kK = θ2

2(q) = 4q1/2

∞∑
n=0

qn

1 + q2n+1
,

followed by taking the Mellin transform. After simplification, we have∫ 1

0

2E ′2 − k2K ′2

kk′
KsK ′1−sdk = 2s−1π3−sΓ(s+ 1)λ(s− 1)β(s− 1). (58)

At s = 3, aided by (4) we deduce∫ 1

0

E ′2K3

kk′K ′2
dk =

3

2
π2G+

Γ8(1
4
)

256π2
.

♦

6. Conclusion

We have only scratched the surface of the many rich identities that can be found.
Even though our methods do not simplify all integrals of the form (3), we have
reduced many sets of them into known multiple sum evaluations, and hence results
such as (4) no longer seem mysterious or isolated. Conversely, we have produce new
lattice sums evaluations from K integrals, for instance in Example 5 and Section
2.2.

Among the new K integrals produced, we have shown that for each n ∈ N, there
is at least one computable algebraic function rn such that∫ 1

0

rn(k)K(k)ndk

can be evaluated in closed form; the proof of this general result is achieve through
Theorem 1, Theorem 2, and Remark 4.

Acknowledgements. We would like to thank Jon Borwein, Heng Huat Chan and
Armin Straub for useful discussions.
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Source Lattice sum Integral

θ2 22s+1λ(2s) πs+1/2

Γ(s)

∫ 1

0
1√

2kk′2K3/2

(
K′

K

)s−1
dk

(θ2θ4)1/2 23s+1/2L8(2s) πs+1/2
√

2Γ(s)

∫ 1

0
1

k3/4k′7/4K3/2

(
K′

K

)s−1
dk

(θ2θ3θ4)1/3 21/312sL12(2s) πs+1/2
√

2Γ(s)

∫ 1

0
1

k5/6k′11/6K3/2

(
K′

K

)s−1
dk

θ
1/2
3 (θ2θ3θ4)1/6 21/624sL24(2s) πs+1/2

√
2Γ(s)

∫ 1

0
1

k11/12k′23/12K3/2

(
K′

K

)s−1
dk

θ2
2 2s+2λ(s)β(s) πs

Γ(s)

∫ 1

0
1

k′2K

(
K′

K

)s−1
dk

θ2θ3 22s+1λ(s)β(s) πs

Γ(s)

∫ 1

0
1√

kk′2K

(
K′

K

)s−1
dk

θ2θ4 22s+1L8(s)L−8(s) πs

Γ(s)

∫ 1

0

√
kk′

kk′2K

(
K′

K

)s−1
dk

θ2(q2)θ3 2s+1λ(s)L−8(s) πs

Γ(s)

∫ 1

0

√
(1−k′)/2
kk′2K

(
K′

K

)s−1
dk

θ2(q2)θ4 2s+1β(s)L8(s) πs

Γ(s)

∫ 1

0

√
(1−k′)/2
kk′3/2K

(
K′

K

)s−1
dk

θ2
3 − θ3θ3(q2) 2ζ(s)(2β(s)− L−8(s)) πs

Γ(s)

∫ 1

0

1−
√

(1+k′)/2

kk′2K

(
K′

K

)s−1
dk

θ2
3 − θ2

4 8λ(s)β(s) πs

Γ(s)

∫ 1

0
1−k′
kk′2K

(
K′

K

)s−1
dk

θ2θ3θ4 22s+1β(2s− 1)
√

2πs−1/2

Γ(s)

∫ 1

0
1√

kk′3K

(
K′

K

)s−1
dk

θ2θ3(θ2θ3θ4)1/3 3s(1 + 22−2s)L−3(2s− 1) πs−1/2

25/6Γ(s)

∫ 1

0
1

k1/3k′11/6
√
K

(
K′

K

)s−1
dk

θ2θ4(θ2θ3θ4)1/3 3sL−3(2s− 1) πs−1/2

25/6Γ(s)

∫ 1

0
1

k1/3k′4/3
√
K

(
K′

K

)s−1
dk

θ2
3(θ2θ4)1/2 8sL−8(2s− 1) πs−1/2

Γ(s)

∫ 1

0
1

k3/4k′7/4
√
K

(
K′

K

)s−1
dk

θ
5/2
3 (θ2θ3θ4)1/6 24sL−24(2s− 1) πs−1/2

Γ(s)

∫ 1

0
21/3

k11/12k′23/12
√
K

(
K′

K

)s−1
dk

θ
5/2
4 (θ2θ3θ4)1/6 24s(1 + 21−2s)L−3(2s− 1) πs−1/2

Γ(s)

∫ 1

0
21/3

k11/12k′2/3
√
K

(
K′

K

)s−1
dk

θ4
2 16λ(s)λ(s− 1) 2πs−1

Γ(s)

∫ 1

0
k
k′2

(
K′

K

)s−1
dk

θ3
2θ3 4s [λ(s)λ(s− 1)− β(s)β(s− 1)] 2πs−1

Γ(s)

∫ 1

0

√
k

k′2

(
K′

K

)s−1
dk

θ2
2θ

2
3 2s+2λ(s)λ(s− 1) 2πs−1

Γ(s)

∫ 1

0
1
k′2

(
K′

K

)s−1
dk

θ2θ
3
3 4s [λ(s)λ(s− 1) + β(s)β(s− 1)] 2πs−1

Γ(s)

∫ 1

0

√
k

kk′2

(
K′

K

)s−1
dk

θ3
2θ4 4s [L−8(s)L−8(s− 1)− L8(s)L8(s− 1)] 2πs−1

Γ(s)

∫ 1

0

√
k
k′3

(
K′

K

)s−1
dk

θ2
2θ

2
4 2s+2β(s)β(s− 1) 2πs−1

Γ(s)

∫ 1

0
1
k′

(
K′

K

)s−1
dk
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θ2θ
3
4 4s [L−8(s)L−8(s− 1) + L8(s)L8(s− 1)] 2πs−1

Γ(s)

∫ 1

0
1√
kk′

(
K′

K

)s−1
dk

θ4
3 − θ2

3θ
2
4 8(1 + 22−s)λ(s)λ(s− 1) 2πs−1

Γ(s)

∫ 1

0
k

k′2(1+k′)

(
K′

K

)s−1
dk

θ6
2 2s+2 [λ(s− 2)β(s)− β(s− 2)λ(s)] 4πs−2

Γ(s)

∫ 1

0
k2K
k′2

(
K′

K

)s−1
dk

θ4
2θ

2
3 16ζ(s− 2)β(s) 4πs−2

Γ(s)

∫ 1

0
kK
k′2

(
K′

K

)s−1
dk

θ3
2θ

3
3 22s−1

[
λ(s− 2)β(s)− β(s− 2)λ(s)

]
4πs−2

Γ(s)

∫ 1

0

√
kK
k′2

(
K′

K

)s−1
dk

θ2
2θ

4
3 2s+2β(s)λ(s− 2) 4πs−2

Γ(s)

∫ 1

0
K
k′2

(
K′

K

)s−1
dk

θ4
2θ

2
4 16η(s− 2)β(s) 4πs−2

Γ(s)

∫ 1

0
kK
k′

(
K′

K

)s−1
dk

θ3
2θ

3
4 22s−1

[
L8(s)L−8(s− 2)− L8(s− 2)L−8(s)

]
4πs−2

Γ(s)

∫ 1

0

√
k
k′
K
(
K′

K

)s−1
dk

θ2
2θ

4
4 2s+2β(s− 2)λ(s) 4πs−2

Γ(s)

∫ 1

0
K
(
K′

K

)s−1
dk

θ6
3 − θ6

4 32β(s)λ(s− 2)− 8β(s− 2)λ(s) 4πs−2

Γ(s)

∫ 1

0
(1−k′3)K
kk′2

(
K′

K

)s−1
dk

θ6
4 − θ2

3θ
4
4 8λ(s)β(s− 2)− 16η(s− 2)β(s) 4πs−2

Γ(s)

∫ 1

0
k′−1
k
K
(
K′

K

)s−1
dk

θ8
2 28−sζ(s− 3)λ(s) 8πs−3

Γ(s)

∫ 1

0
k3

k′2
K2
(
K′

K

)s−1
dk

θ4
2θ

4
3 16ζ(s− 3)λ(s) 8πs−3

Γ(s)

∫ 1

0
k
k′2
K2
(
K′

K

)s−1
dk

θ4
2θ

4
4 16η(s− 3)λ(s) 8πs−3

Γ(s)

∫ 1

0
kK2

(
K′

K

)s−1
dk

θ8
3 − θ8

4 32λ(s)λ(s− 3) 8πs−3

Γ(s)

∫ 1

0
k(2−k2)K2

k′2

(
K′

K

)s−1
dk

Table 1: Integrals of K from various θ products.
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