
9781107039902c07 CUP/BOIN March 22, 2013 14:52 Page-226

7

Electron sums

In 1934 Wigner [17] introduced the concept of an electron gas bathed in a
compensating background of positive charge as a model for a metal. He sug-
gested that under certain circumstances the electrons would arrange themselves
in a lattice, and that the body-centred lattice would be the most stable of the three
common cubic structures. Fuchs [14] appears to have confirmed this in a calcu-
lation on copper relying on physical properties of copper. The evaluation of the
energy of the three cubic electron lattices under precise conditions was carried out
by Coldwell-Horsefall and Maradudin [10] and became the standard form for cal-
culating the energy of static electron lattices, U (lattice). In this model electrons
are assumed to be negative point charges located on their lattice sites and sur-
rounded by an equal amount of positive charge uniformly distributed over a cube
centered at the lattice point. First one calculates the interaction energy, U1, of a
single electron with all the other electrons on their lattice sites. Then one finds the
energy of interaction of an electron with the compensating positive background,
U2. Thus

U (lattice) = U1 − U2. (7.0.1)

The procedure is outlined here with the simple cubic lattice as its paradigm.
Essentially one attempts to evaluate (7.0.1), where

U1 = e2

a0

∑′ 1

(m2 + n2 + p2)1/2
, U2 = e2

a0

∫ ∞

0

∫ ∞

0

∫ ∞

0

dx dy dz

(x2 + y2 + z2)1/2
.

(7.0.2)

In (7.0.2) e is the charge on an electron, a0 is the side of the elementary cube of
the lattice, and �′ is the sum over all integers m, n, p from −∞ to ∞ excluding
the case when m, n, p are simultaneously zero. Now both U1 and U2 are divergent
quantities, so the approach is to find ways of evaluating them so that the infinities
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cancel. An outline of this procedure is given now; the common factor e2/a0 is
ignored. The energy U1 is first expressed as an integral; thus

U1 =
∑′ ∫ ∞

0
t−1/2 exp

[
−π(m2 + n2 + p2)t

]
dt.

Next, we break the range of integration into two parts, (0,1) and (1,∞), and define

U11 =
∑′ ∫ ∞

1
t−1/2 exp

[
−π(m2 + n2 + p2)t

]
dt,

U12 =
∑′ ∫ 1

0
t−1/2 exp

[
−π(m2 + n2 + p2)t

]
dt.

In terms of the auxiliary integrals φk , which are given by

φk(x) =
∫ ∞

1
tke−xt dt, (7.0.3)

U11 can be written as follows:

U11 =
∑′

φ−1/2

[
π(m2 + n2 + p2)

]
. (7.0.4)

For U12, remove the restriction on the sum by subtracting the m = n = p = 0
term, thus obtaining

U12 =
∫ 1

0

∑
t−1/2 exp

[
−π(m2 + n2 + p2)t

]
dt −

∫ 1

0
t−1/2 dt. (7.0.5)

In (7.0.5) use the Poisson transform

∞∑

−∞
exp(−πm2t) =

∞∑

−∞

1√
t

exp

(−πm2

t

)

and perform the second integral, to obtain

U12 =
∫ 1

0

∑
t−2 exp

[
−π

t
(m2 + n2 + p2)

]
dt − 2. (7.0.6)

In (7.0.6) restore the restriction on the sum by adding back the m = n = p = 0
term and, in the remaining integral, substitute t = 1/u to obtain

U12 =
∑′ ∫ ∞

1
exp

[
−πu(m2 + n2 + p2)

]
du − 2 +

∫ 1

0

dt

t2
. (7.0.7)

On adding U11 and U12 we get

U1 =
∑′

φ−1/2

[
π(m2 + n2 + p2)

]
+ φ0

[
π(m2 + n2 + p2)

]
− 2 +

∫ 1

0

1

t2
dt,

(7.0.8)
where, of course, the integral is divergent.
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In a similar fashion U2 can be expressed as the following four-fold integral:

U2 =
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
t−1/2 exp

[
−π(x2 + y2 + z2)t

]
dt dx dy dz. (7.0.9)

Changing to polar coordinates and performing the angular integrals leads to

U2 = 4π
∫ ∞

0

∫ ∞

0
t−1/2 exp(−π tr2)r2 dr dt =

∫ ∞

0

dt

t2
= 1 +

∫ 1

0

dt

t2
,

(7.0.10)
where the integral is again divergent. Subtract (7.0.10) from (7.0.8) and ‘cancel’
the identical divergent integrals; then we get, for the simple cubic lattice,

U (SC) =
∑′

φ−1/2

[
π(m2 + n2 + p2)

]
+φ0

[
π(m2 + n2 + p2)

]
−3. (7.0.11)

Tables of φk(x) were prepared by Born and Misra [4]. One only needs a few
terms of the series, since φk(x) rapidly becomes smaller as x increases. Thus
Coldwell-Horsfall and Maradudin [10] found that

U (SC) = −2.837297
e2

a0
.

However, if we look back to Section 1.3, where a(2s) = ∑′1/(m2 + n2 + p2)2s

was treated as the three-dimensional analogue of the Riemann zeta function, we
see that U1(SC) = a(1) and, by making use of the functional equation com-
ing from analytic continuation, a(1) may be evaluated and is given in Table 1.5.
To much surprise it was seen that U1(SC) found for a(1) by the simple method
described in Section 1.3 is equal to the expression U (SC) found by the rather
complex method given above. Results for electrons forming face-centred cubic
(FCC) and body-centred cubic (BCC) lattices are also found in [10]. It is simple
to show that for these lattices the interaction amongst the electrons alone is

U1(FCC) = a(1)+ d(1), U1(BCC) = 1
2 [a(1)+ 3c(1)] ,

and it is equally simple to evaluate them; once again they were found to be equal
to the values in [10]. That is,

U1(FCC) = U (FCC) = −4.584875
e2

a0
, U1(BCC) = U (BCC) = −3.639240

e2

a0
.

To find the most stable of these lattices the results have to be expressed in terms
of rs , the radius of a sphere of volume equal to the volume per electron; we have

a3
0 = 4

3πr2
s (SC), 1

4 a3
0 = 4

3πr2
s (FCC), 1

2 a3
0 = 4

3πr2
s (BCC),

and thus

U (SC) = −1.760119
e2

rs
, U (FCC) = −1.791753

e2

rs
,

U (BCC) = −1.791860
e2

rs
,
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in which the BCC lattice appears as the most stable.
Results obtained by Bonsall and Maradudin [3] by the traditional method for

two-dimensional electron lattices also agreed with closed-form results found by
direct evaluation of just the appropriate U1. Thus for the square and triangular
lattices (Bonsall and Maradudin call the latter the hexagonal lattice) we have

U1(sq) =
∑′

(m2 + n2)−1/2, U1(tri) =
∑′

(m2 + mn + n2)−1/2.

A standard decomposition of these double sums into products of single sums, to
be found in Zucker and Robertson [19] and Borwein and Borwein [8], gives

U1(sq) = 4ζ( 1
2 )L−4(

1
2 ) = −3.900 264 924,

U1(tri) = 6ζ( 1
2 )L−3(

1
2 ) = −4.213 422 363

in terms of a0, the side of the square or of the triangle, and it is very simple to
calculate these quantities. In terms of rs , the radius of a circle equal in area to the
area per electron, we have

a2
0 = πr2

s (sq),
√

3
2 a2

0 = πr2
s (tri),

so that

U (sq) = −2.200488843e2

rs
, U (tri) = −2.212205173e2

rs
.

There were two surprises here. First these numbers could be obtained without
going through the long process just described, in particular, avoiding subtracting
two infinite integrals. Secondly, why was the actual energy of the lattice given just
by the interaction of the electrons alone, calculated in this way? Since it is much
easier to evaluate the analytic continuations of the corresponding lattice sums
without bothering to subtract divergent integrals ‘in the right way’, the question
arises whether using this method is valid for all Coulomb lattices. An attempt to
justify this procedure was explored by Borwein et al. [6]. They started by observ-
ing that the previous manipulations were not arbitrary, but rather were stable since
any answer might be obtained by inappropriate processes. Some regular limiting
procedure must be undertaken to guarantee a robust answer. The following prin-
ciple is proposed: the rearrangements used should depend only on the geometry
of the underlying lattice and not on the power s in the law of interaction.

The consequence of this principle is that we look for an appropriate analytic
function for U (lattice : s) and take our answer the value of this function at
s = 1

2 . They argue that this forces the answer to be alat (1) where alat (2s) is the
d-dimensional sum over the lattice sites:

alat (2s) =
∑′

(l2
1 + l2

2 + · · · + l2
d)

−2s,

in which the sum represents alat (2s) for Re s > 1
2 d. This has an analytic contin-

uation for 0 < Re s < 1
2 d, which, for the d-dimensional simple cubic lattice, is
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obtained via the functional relation

π−s�(s)alat (2s) = π s−d/2�

(
1

2
d − s

)
alat (d − 2s).

Formally, U (lattice : s) = alat (2s)− U2(s), where

U2 = c
∫

...

(�)

∫
dx1 · · · dxd(

x2
1 + x2

2 . . .+ x2
d

)s ,

while c is a constant appropriate to the lattice and � is some volume in
d-dimensional space which gives electrical neutrality. Now split U2 into the
regions inside the unit sphere and outside the unit sphere thus:

U2(s) = U<
2 (s)+ U>

2 (s).

Adding on the finite integral U<
2 (s) when 0 < Re s < 1

2 d to both sides, we have

U (lattice : s)+ U<
2 (s) = alat (2s)− U>

2 (s). (7.0.12)

Now, U<
2 (s) may be integrated to give for Re s > 1

2 d

U<
2 (s) = C

d − 2s
with

C = � c 2πd/2

�( 1
2 d)

,

whereas for Re s > d/2 the other integral, U>
2 , is finite and, by direct computation

or by appealing to the central symmetry of the integral, has the value C/(2s − d).
Now we argue as follows. The left-hand side of (7.0.12), namely U (lattice : s)+
C/(d − 2s), is an analytic continuation of the right-hand side of (7.0.12) for Re
s < 1

2 d. Thus, by comparing the two we have

U (lattice : s) = alat (2s)

for Re s < 1
2 d and hence for s = 1

2 we have our result. By considering a
precise limiting process we shall demonstrate why a unique ‘answer’ is to be
obtained.

The following model in d dimensions will be considered. In this model point
charges are located at lattice sites and these are surrounded by an equal amount
of opposite charge uniformly distributed over hypercubes centered at the lat-
tice point and of side equal to the lattice spacing. This is illustrated there
after in two dimensions, where the shaded portion represents positive charge
of value equal to the point negative charge but uniformly distributed over a
square.
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We shall thus examine the precise limiting procedure

lim
N→∞ σN (s) = lim

N→∞

[ N∑

−N

· · ·
N ′∑

−N

(
l2
1 + l2

2 + · · · + l2
d

)−s

−
∫ N+1/2

−N+1/2
· · ·
∫ N+1/2

−N+1/2

(
x2

1 + x2
2 + · · · + x2

d

)−s
dx1 dx2 · · · dxd

]

= lim
N→∞ [αN (s)− βN (s)] ,

although a priori this limit need not exist. This procedure maintains electrical neu-
trality throughout the limiting process. Further the model has zero dipole moment
and, in three dimensions, zero quadrupole moment as well.

Consider first the multidimensional integral βN (s) . Writing x j = (N + 1
2 )X j ,

we have

βN (s)

(N + 1
2 )

d−2s
= I (s) =

∫ 1

−1
· · ·
∫ 1

−1

(
X2

1 + · · · + X2
d

)
d X1 · · · d Xd . (7.0.13)

Now, I (s) may be rewritten as follows:

I (s) = 2d
∫

· · ·
∫

Wd

d X1 · · · d Xd

(X2
1 + · · · + X2

d)
s
,

where Wd is the pyramidal region |Xi | ≤ Xd ≤ 1. Making the substitution Xi =
Xd xi , we have

I (s) = 2d
∫ 1

0
Xd−1−2s

d d Xd

∫ 1

−1
· · ·
∫ 1

−1

dx1 · · · dxd−1

(1 + x2
1 + · · · x2

d−1)
s

= 2d

d − 2s
C(s),

where

C(s) =
∫ 1

−1
· · ·
∫ 1

−1

dx1 · · · dxd−1

(1 + x2
1 + · · · x2

d−1)
s
,

and this integral clearly converges for Re s > 0. Thus

σN (s) = αN (s)− (N + 1
2 )

d−2s 2d

d − 2s
C(s), (7.0.14)

and the whole of the right-hand side of (7.0.14) is meromorphic for Re s > 0,
with a single simple pole at s = 1

2 d. Note that

β0(s) = 22s−d 2dC(s)

(d − 2s)
(7.0.15)

gives an analytic continuation of the integral inside the unit hypercube. For
Re s > 1

2 d, σN (s) is infinite since its defining integral is infinite. Then, for
Re s > 1

2 d,

lim
N→∞ σN (s)+ β0(s) = lim

N→∞αN (s)+ β0(s) = alat (2s)+ β0(s), (7.0.16)
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since βN (s) tends to zero. We can use (7.0.15) to see that alat (2s)+ β0(s) is ana-
lytic in Re s > 0. The principle of analytic continuation allows us to conclude that
(7.0.16) continues to hold in any half-plane in which the left-hand side exists and
is known to be analytic. However, for 0 < Re s < 1

2 d, β0(s) is a finite integral.
Thus, in the appropriate strip, limN→∞ σN (s) = a1at (2s) for the particular limit-
ing process we have undertaken – if it is, in fact, true that limN→∞ σN (s)+β0(s)
exists and is analytic in the appropriate half-plane (or at least for 1

2 < Re s < 1
2 d

with continuity at 1
2 ).

Now, for all lattices in two dimensions, σN (s) + β0(s) can be shown to tend
to an analytic limit in the right half-plane. This was proved for the square lattice
in Borwein et al. [6]. While it might seem reasonable to presume that it holds
generally, that is in fact false. Considerations similar to those given there show
that, for the simple cubic lattice in three dimensions, the limit is analytic for 1

2 <

Re s < 3
2 but is discontinuous at 1

2 . Indeed lims→1/2+ limN→∞ σN (s) = alat (2s),
the correct answer, but this differs by π/6 from limN→∞ σN (

1
2 ) (the rectangular

limit). This is discussed more fully in a further paper by Borwein et al. [5].
In addition, in two dimensions one can also show that the limit over expanding

circles, namely the limit as N → ∞ of

τN (s) =
∑

1≤(m2+n2)≤N

(m2 + n2)−s −
∫ ∫

1≤(m2+n2)≤N
(x2 + y2)−s dx dy

is analytic for Re s > 1
3 . As a consequence, when the integral inside the unit circle

is reintroduced, the corresponding limiting value at s = 1
2 is also 4ζ( 1

2 )L−4(
1
2 ).

Granted the general applicability of the previous meta-principle – which we
have illustrated already for SC, FCC, BCC, square, and triangular lamina lattices –
we can easily determine U (lattice) for many other lattices. Thus other three-
dimensional lattices were investigated; in particular, various types of hexagonal
lattice were considered. A simple hexagonal lattice is a structure formed by stack-
ing planes of two-dimensional triangular lattices directly above each other. The
direction of stacking is known as the c axis and the separation of planes in terms
of the nearest neighbour distance, R, in the triangular lattice is called the axial
ratio, c. If particles on such a lattice interact with an r−s potential, it is simple to
show that the appropriate lattice sums are given by

H(2s : c) =
∑′

(m2 +3n2 +c2 p2)−s +
∑[

(m − 1
2 )

2 + 3(n − 1
2 )

2 + c2 p2
]−s

.

Using our principle that the energy of a such a lattice of electrons in a compensat-
ing positive background is given in terms of e2/R by

H(hex) = H(1 : c),

methods of converting such sums into rapidly converging cosech sums have been
previously described in Section 1.3 and, after some detailed algebra, H(1 : c) can
be converted to rapidly converging sums and double sums of cosech functions:
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H(1 : c)

= −16 log 2

3c
−

√
3πc

18
+

√
3

3

[
2

∞∑

1

cosech(cπm)

m

+ 2
∞∑

1

√
3 cosech(cπm/

√
3)

m
+ 4

∞∑

1

∞∑

1

√
3 cosech cπ

√
m2 + n2/3√

3m2 + n2

]

+ 4
√

3

3c

[
2

∞∑

1

cosech(2πm/c)

2m/c
+ 4

∞∑

1

∞∑

1

4 cosechπ
√

4m2/3 + 4n2/c2
√

4m2/3 + 4n2/c2

]

+ 4
√

3

c

[
2

∞∑

1

cosech(
√

12πm/c)√
12m/c

+ 4
∞∑

1

∞∑

1

4 cosechπ
√

12m2/3 + 12n2/c2
√

12m2 + 12n2/c2

]

−
√

3

c

[
2

∞∑

1

(−1)m cosech(
√

3πm/c)√
3m/c

+ 4
∞∑

1

∞∑

1

(−1)m+n cosechπ
√
(3m2/3 + 3n2/c2)√

3m2 + 3n2/c2

]
. (7.0.17)

Evaluations of H(1 : c) for several values of c are given below. The only
corresponding results we know in the literature are those given by Hund [15,

16] for c = 2 and c =
√

8
3 . The latter value for c is the so-called ideal ratio.

Hund’s values were calculated by the traditional Ewald method and the numerical
accuracy was low. He gave

H

(
1 :
√

8
3

)
= −2.238, H(1 : 2) = −1.796.

As in the case of the three cubic lattices, we convert the values in terms of e2/R
into values in terms of e2/rs . For the simple hexagonal lattice the volume of a
unit cell is 3

√
3cR3/2, and with three electrons per cell the volume per electron

is
√

3cR3/2. Hence
√

3cR3/2 = 4πr3
s /3 and rs/R = (3

√
3c/8π)1/3.

Multiplying H(1 : c) by (3
√

3c/8π)1/3 yields U (hex) in terms of e2/rs , as in
Table 7.1. It is so simple to evaluate H(1 : c) via (7.0.17) that numerically the
minimum was located at c = 0.9284 with

U (hex)

e2/rs
= −1.774642655.

We have also evaluated U for the hexagonal close-packed (HCP) structure,
which may be regarded as two equal interpenetrating hexagonal crystals with ideal
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Table 7.1

c2 U (hex)/(e2/R) U (hex)/(e2/rs )

1
4 −3.263230504 −1.531505030
9
16 −3.253618321 −1.747971578
3
4 −3.143633242 −1.771826683

1 −2.995711953 −1.771389474
3
2 −2.730799747 −1.727636634

2 −2.502936140 −1.661251716
8
3 −2.238722127 −1.558866728

4 −1.795017494 −1.337291317

axial ratios, one lattice based at the origin (0, 0, 0) and the other at
(

1
2 ,

1
3 ,

1
2

)
. The

lattice sums for such a structure in terms of R may be written

HCP(2s) = H

(
2s :

√
8
3

)
+ H∗(2s),

where

H∗(2s) =
∑[

(m − 1
2 )

2 + 3(n − 1
3 )

2 + 8
3 (p − 1

2 )
2
]−s

+
∑[

m2 + 3(n − 1
6 )

2 + 8
3 (p − 1

2 )
2
]−s

.

For the HCP structure the volume of a hexagonal cell is 3
√

2R3, but there are
six electrons per cell. Hence we have

√
2R3/2 = 4πr3

s /3 and rs/R = (3
√

2/8π)1/3,

and we obtain

U (HCP) = −3.241858662e2/R = −1.791676267e2/rs .

Foldy [12] found by the traditional method that U (HCP) = −1.79167624e2/rs

and noted that if the axial ratio is 1.0016 times the ideal value then the last two
figures read 90 instead of 24, and he claims this is the real minimum.

As a final example, the result for the diamond lattice is given. The diamond
lattice may be considered as two equal interpenetrating FCC lattices, one based
on (0, 0, 0) and the other on ( 1

4 ,
1
4 ,

1
4 ). In terms of the cube side of an FCC lattice,

the diamond lattice sums are easily shown to be

di(2s) = FCC(2s)+ 22s−1 [BCC(2s)− SC(2s)] ,
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and again the principle gives U (di) = di(l) in terms of e2/a0. Using previous
results,

di(1) = 1

2
[a(1)+ 3c(1)+ 2d(1)] = −5.386789045.

For the diamond lattice, the volume of a cubic cell is U and this has eight electrons
per cell. Hence a3

0/8 = 4πr3
s /3 and rs/a0 = (3/32π)1/3, and we obtain

U (di) = −1.670851406e/rs ,

in complete agreement with Foldy’s 1978 value, obtained conventionally.
It should, however, be pointed out that in all the previous calculations the

structures were either Bravais lattices or contained a basis of energy equivalent
sites. With more complex lattices where this is not the case, ignoring this point
has led to incorrect results for the fluorite, perovskite, and spinel lattices – see
Zucker [18]. This was noted by Cockayne [9], who found the correct results
by the conventional Ewald approach. Baldereschi et al. [2] showed that by cor-
rectly superimposing the component Bravais lattices with the right weightings, the
method used here gives the correct values. Thus the perovskite lattice is a simple
cubic lattice with a five-fold basis, with the general formula AB X3. The A sites
are the corners of the cube, the B sites the centres of the cube and the X sites the
faces of the cube. The X sites, though energetically equivalent to each other, are
not equivalent to the A and B sites. One has to evaluate the interaction of each
site with the others and weight them accordingly. Thus the perovskite lattice may
be taken to be made up of the A lattice, an SC lattice based at the origin (0, 0, 0),
the B lattice, an SC lattice based on ( 1

2 ,
1
2 ,

1
2 ), and three X lattices, i.e. SC lattices

based on the equivalent sites (0, 1
2 ,

1
2 ), (

1
2 , 0, 1

2 ), and ( 1
2 ,

1
2 , 0). So, the interaction

of A with the other sites may be written, in the notation of Section 1.3, as

ψA = ψ(0, 0, 0)+ ψ( 1
2 ,

1
2 ,

1
2 )+ 3ψ(0, 1

2 ,
1
2 ) = a(1)+ 1

2 [3c(1)− a(1)] + d(1).

Similarly, we have

ψB = ψ(0, 0, 0)+ ψ( 1
2 ,

1
2 ,

1
2 )+ 3ψ(0, 0, 1

2 ) = a(1)+ 1
2 [3c(1)− a(1)]

+ 1

2
[3b(1)− d(1)],

and

ψX = ψ(0, 0, 0)+ 3ψ(0, 1
2 ,

1
2 )+ψ(0, 0, 1

2 ) = a(1)+ f (1)+ 1
6 [3b(1)− d(1)].

To obtain the correct electronic interaction we require to weight these terms
correctly:

UP = 1
5 (ψA + ψB + 3ψX ) = 1

5

[
7b(1)+ 7c(1)+ 1

3 13d(1)
]

= 4.671242310
e2

a0
.
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Since there are five electrons per cube, in terms of rs this becomes
1.694 648 083e2/rs , in complete agreement with Cockayne’s result. Similarly, for
the fluorite lattice AB2, A is an FCC lattice based on (0, 0, 0) and the two B lat-
tices are FCC lattices based on the equivalent sites ( 1

4 ,
1
4 ,

1
4 ) and ( 3

4 ,
3
4 ,

3
4 ). As

before,

ψA = ψFCC (0, 0, 0)+ 2ψFCC

(
1
4 ,

1
4 ,

1
4

)
= a(1)+ d(1)+ 3c(1)− a(1)

and

ψB = ψFCC (0, 0, 0)+ ψFCC

(
1
4 ,

1
4 ,

1
4

)
+ ψFCC

(
1
2 ,

1
2 ,

1
2

)

= a(1)+ d(1)+ 1

3
[3c(1)− a(1)] + a(1)− d(1).

Hence

UFluorite = 1

12
(4ψA + 8ψB) = 1

3
[3b(1)+ 9c(1)+ 2d(1)] = 6.380598623

e2

a0
.

Since there are 12 electrons per cube, in terms of rs this becomes
1.728906369e2/rs , again in complete agreement with Cockayne’s result. Of all
the three-dimensional structures considered, the BCC remains energetically the
most stable.

7.1 Commentary: Wigner sums as limits
We now describe an analysis from [5], as follows. The authors investigated the
limit as N → ∞ of the d-dimensional quantity

σN (s) := αN (s)− βN (s),

where

αN (s) =
N∑

−N

· · ·
N∑

−N

[
f (n1, n2, . . . , nd)

]s
, (7.1.1)

βN (s) =
∫ N+1/2

−(N+1/2
· · ·
∫ N+1/2

−(N+1/2

[
f (x1, x2, . . . , xd)

]s
dx1 · · · dxd

for various particular functions f . Two instances were studied in detail.

(1) First, the two-dimensional case where f is given by a positive definite
binary quadratic form Q(x, y) := ax2 + bxy + cy2 was analyzed in
[5, Theorem 1].

Namely, for any positive definite form Q, the quantity σ(s) :=
limN→∞ σN (s) exists in the strip 0 < Re s < 1 and coincides therein
with the analytic continuation of α(s).

Thus, the integral βN (s) plays no role in the final answer. This is very
tidy for two-dimensional lattices.
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(2) The authors of [5] then investigated the three-dimensional case for the sim-
ple cubic lattice, namely Q(x, y, z) := x2 + y2 + z2 and came to a similar
conclusion as before, for the strip 1

2 < Re s < 3
2 . However, at s = 1

2 , σ (s)
is discontinuous and

σ
(

1
2

)
= α

(
1
2

)
+ 1

6π. (7.1.2)

The physicist’s method of finding limN→∞ σN (
1
2 ) always alights on α( 1

2 );
why this so is not fully understood but some heuristic explanations –
regarding analytic continuations—are to be found in [6].

We leave an open question:

Can a similar analysis be done for the four-dimensional simple cubic lattice?
Presumably, there is a strip for which σ(s) = α(s) but will s = 1

2 lie within
this strip?

In four dimensions the closed form is known for α in the simple cubic case:

α(s) = −8
(

1 − 22−s
) (

1 − 21−s
)
ζ(s)ζ(s − 1);

see [8, (9.2.5)].

7.2 Commentary: Sums related to the Poisson equation
In a recent treatment of ‘natural’ Madelung constants [11], it is pointed out that
the Poisson equation for an n-dimensional point-charge source,

∇2
n(r) = −δ(r), (7.2.1)

gives rise to an electrostatic potential – we call it the bare-charge potential – of
the form


n(r) = �( n
2 − 1)

4πn/2

1

rn−2
=: Cn

rn−2
if n 	= 2, (7.2.2)


2(r) = − 1

2π
log r =: C2 log r, (7.2.3)

where r := |r|. Since this Poisson solution generally behaves as r2−n , [11] defines
a ‘natural’ Madelung constant Nn as (here, m := |m|):

Nn := Cn

′∑

m ∈ Zn

(−1)1·m

mn−2
if n 	= 2, (7.2.4)

N2 := C2

′∑

m ∈ Zn

(−1)1·m log m,
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where, in cases such as this log sum, one must infer an analytic continuation [11]
as the literal sum is quite non-convergent. This Nn coincides with the classical
Madelung constant

Mn :=
′∑

m ∈ Zn

(−1)1·m

m
(7.2.5)

only for n = 3 dimensions, in which case N3 = 1
4πM3. In all other dimensions

there is no obvious M,N relation.
A method for gleaning information about Nn is to contemplate the Poisson

equation with a crystal charge source, modelled on NaCl (salt) in the sense of
alternating lattice charges:

∇2φn(r) = −
∑

m ∈ Zn

(−1)1·mδ(m − r). (7.2.6)

Accordingly – on the basis of the Poisson equation (7.2.1) – solutions φn can be
written in terms of the respective bare-charge functions 
n as

φn(r) =
∑

m ∈ Zn

(−1)1·m
n(r − m). (7.2.7)

7.2.1 Madelung variants

We have defined the classical Madelung constants (7.2.5) and the ‘natural’
Madelung constants (7.2.4). Following [11] we define a Madelung potential, now
depending on a complex s and spatial point r ∈ Z

n :

Mn(s, r) :=
∑

p ∈ Zn

(−1)1·p

|p − r|s , (7.2.8)

We can write limit formulae for our Madelung variants, first the classical
Madelung constant,

Mn := lim
r → 0

[
Mn(1, r)− 1

r

]
(7.2.9)

=
′∑

p ∈ Zn

(−1)1·p

p
, (7.2.10)

and then the ‘natural’ Madelung constant,

Nn := lim
r → 0

[φ(r)−
(r)] (7.2.11)

= Cn

′∑

p ∈ Zn

(−1)1·p

pn−2
. (7.2.12)
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For small even n, this last sum is evaluable. For example, from [8, (9.2.5)] we have

′∑

p ∈ Z4

(−1)1·p

p2s
= (1 − 22−s)(1 − 21−s)ζ(s)ζ(s − 1), (7.2.13)

which with s = 1 yields

N4 = − 1

π2
log 2.

Similarly, from [8, Exercise 4b, p. 292] we have

′∑

p ∈ Z8

(−1)1·p

p2s
= −16(1 − 24−s)ζ(s)ζ(s − 3), (7.2.14)

which with s = 3 determines that

N8 = − 4

π4
ζ(3).

Generally, via the Mellin transform Msθ
2n
4 (q) (see below), values of N2n for

small n are similarly susceptible. For instance, if G denotes Catalan’s constant,
we have

N6 = − 1

24π
− 2G

π3
,

as in [11]. The more complex value N2 is presented in (7.2.21), below.

7.2.2 Relation between crystal solutions φn and Madelung potentials

From (7.2.2), (7.2.7), and (7.2.8) we have the general relation, for dimension
n 	= 2,

φn(r) = CnMn(n − 2, r). (7.2.15)

Note that, for the case n = 3, the solution φ3 coincides with the classical
Madelung potential M3(1, r) in the sense that

φ3(r) = 1

4π
M3(1, r),

because C3 = 1/(4π). Likewise, the ‘natural’ and classical Madelung constants
are related by 4π N3 = M3. The whole idea of introducing ‘natural’ Madelung
constants Nn is that this coincidence of radial powers for φ and M potentials
holds only in three dimensions. For example, in n = 5 dimensions, the summands
for φ5 and M5(1, ·) involve radial powers 1/r3, as in

φ5(r) = 1

8π2
M5(3, r).
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In [11] it is argued that a solution to (7.2.6) is

φn(r) = 1

π2

∑

m ∈ On

∏n
k=1 cos πmkrk

m2
, (7.2.16)

where O denotes the odd integers (including negative odds). These φn give the
potential within the appropriate n-dimensional crystal, in that φn vanishes on the
surface of the cube [− 1

2 ,
1
2 ]n , as is required via symmetry within an NaCl-type

crystal of any dimension. To render this representation more explicit and efficient,
we could write equivalently

φn(r) = 2n

π2

∑

m1,...,mn > 0, odd

cos πm1r1 · · · cos πmnrn

m2
1 + · · · + m2

n

.

It is also useful that – owing to the symmetry arising because the summation
indices are odd – we can replace in a cavalier way the cosine product in (7.2.16)
with a simple exponential:

φn(r) = 1

π2

∑

m ∈ On

eiπm·r

m2
. (7.2.17)

7.2.3 Fast series for φn

From previous work [11] we know a computational series

φn(r) = 1

2π

∑

R ∈ On−1

sinh[πR(1/2 − |r1|]∏n−1
k=1 cos πRkrk+1

R cosh(πR/2)
, (7.2.18)

suitable for any nonzero vector r ∈ [− 1
2 ,

1
2 ]n . The work [11] also gives an

improvement in the case of n = 2 dimensions, namely the following form (see
Fig. 7.1) for which the logarithmic singularity at the origin has been siphoned off:

φ2(x, y) = 1

4π
log

cosh πx + cos πy

cosh πx − cos πy
− 2

π

∑

m ∈ O+

cosh πmx cos πmy

m(1 + eπm)
.

(7.2.19)

These series, (7.2.18) and (7.2.19) are valid, respectively, for r1, x ∈ [−1, 1]. For
clarification, we give here the fast series for n = 3 dimensions:

φ3(x, y, z) = 2

π

∑

p,q > 0, odd

sinh
[
π
2

√
p2 + q2 (1 − 2|x |)

]
cos πpy cos πqz

√
p2 + q2 cosh

(
π
2

√
p2 + q2

) .

(7.2.20)
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7.2.4 Closed form for the ‘natural’ Madelung constant N2

The natural Madelung constant for n = 2 dimensions has also been found, on the
basis of (7.2.19) (see [11]), to take the value

N2 = 1

4π
log

4�3( 3
4 )

π3
. (7.2.21)

We remind ourselves that this closed form was achieved by contemplating the lim-
iting process r → 0 and hence by Coulomb-singularity removal. The derivation
of the above N2 form depends on the relation

4�3
(

3
4

)

π3
=

√
2

K3/2
(

1√
2

)
π3/4

.

We also record the following numerically effective Mellin transform for
n > 2:

Nn = − 1

4π

∫ ∞

0

[
1 − θn

4

(
e−πx)] xn/2−2 dx < 0, (7.2.22)

where the integral is positive since 0 < θ4(q) < 1 for 0 ≤ q ≤ 1. From this the
large-n behavior of Nn may be estimated as

Nn � −�(
1
2 n − 1)

πn/2
·
[

n

2
− n(n − 1)

2n/2
+ · · ·

]
, (7.2.23)

on making the approximations

θ4 (q) = 1 − 2q + O
(

q4
)

and

1 − xn = −n(x − 1)+ n(n − 1)

2
(x − 1)2 + O

(
(x − 1)3

)

and then integrating term by term. For instance, from (7.2.22) we compute

N100 = −8.6175767047403040779 . . .× 1037

while the asymptotic (7.2.23) gives

N100 � −8.6175767047403038 . . .× 1037.
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7.2.5 Closed forms for the φ2-potential

Theorem 7.1 It can be proved that

φ2(
1
3 ,

1
3 ) = 1

8π
log

(
1 + 2√

3

)
, (7.2.24)

φ2(
1
4 ,

1
4 ) = 1

4π
log(1 + √

2), (7.2.25)

φ2(
1
3 , 0) = 1

8π
log(3 + 2

√
3). (7.2.26)

Proof Consider, for s > 0,

V2(x, y; s) :=
∞∑

m,n=−∞

cos π(2m + 1)x cos π(2n + 1)y

[(2m + 1)2 + (2n + 1)2]s
. (7.2.27)

This V2-function is related to φ2 by V2(x, y; 1) = π2φ2(x, y). Treating it as a
general lattice sum [8], we derive (with a difficulty)

V2

(
1
3 ,

1
3 ; s

)
=2−1−s

[
−(1 − 2−s)(1 − 32−2s)L1(s)L−4(s)

+3(1 + 2−s)L−3(s)L12(s)
]
. (7.2.28)

The L-functions in (7.2.28) are various Dirichlet series; L1 is the Riemann
ζ -function. Note that 1 − 32−2s factors as (1 + 31−s)(1 − 31−s), that lims→1

(1 − 31−s)L1(s) = log 3, and that

L−4(1) = π

4
, L−3(1) =

√
3π

9
, L12(1) = 1√

3
log(2 + √

3). (7.2.29)

After gathering everything together we have

φ2(
1
3 ,

1
3 ) = 1

π2 V2(
1
3 ,

1
3 , 1) = 1

8π log
(

3+2
√

3
3

)
,

which is (7.2.24).
We find more easily that

V2(
1
4 ,

1
4 ; s) = 2

∑∞
m,n=−∞

(−1)m+n

[(4m−1)2+(4n−1)2]s = 21−s L−8(s)L8(s) (7.2.30)

is a familiar lattice sum [8]. So, with

L−8(1) = π

2
√

2
and L8(1) = 1√

2
log(1 + √

2), (7.2.31)

we derive

φ2(
1
4 ,

1
4 ) = 1

4π log(1 + √
2),

which is (7.2.25). Likewise

V2

(
1
3 , 0; s

)
=2−1−s

[
(1 − 2−s)(1 − 32−2s)L1(s)L−4(s)

+3(1 + 2−s)L−3(s)L12(s)
]
, (7.2.32)



9781107039902c07 CUP/BOIN March 22, 2013 14:52 Page-243

7.2 Commentary: Sums related to the Poisson equation 243

which yields

φ2

(
0, 1

3

)
= 1

16π
log

[
3(2 + √

3)2
]

= π

8
log(3 + 2

√
3),

which is (7.2.26).

Remark: The V2 lattice sum can be given as a fast series:

V2(x, y; s) :=
∑

m,n ∈ O

cos πmx cos πny

(m2 + n2)s
(7.2.33)

= 23/2−sπ s

�(s)

∑

n ∈ O+
u ∈ Z

(−1)u
( |u + x |

n

)s−1/2

K1/2−s(πn|u + x |) cos πny,

where Kν is a standard modified Bessel function. For s = 1 this series collapses
further into π2 times our series (7.2.19) for the Poisson potential φ2.

Using the integer relation method PSLQ [7] to hunt for results of the form

exp
[
πφ2(x, y)

] ?= α, (7.2.34)

for α algebraic, we may obtain and further simplify many results such as the
following.

Conjecture 7.1 Empirically,

φ2

(
1
4 , 0

)
?= 1

4π
logα where

α + 1/α

2
= √

2 + 1,

φ2

(
1
5 ,

1
5

)
?= 1

8π
log

(
3 + 2

√
5 + 2

√
5 + 2

√
5

)
,

φ2

(
1
6 ,

1
6

)
?= 1

4π
log γ where

γ + 1/γ

2
= √

3 + 1,

φ2

(
1
3 ,

1
6

)
?= 1

4π
log τ where

τ − 1/τ

2
= (2

√
3 − 3)1/4,

φ2

(
1
8 ,

1
8

)
?= 1

4π
log

(
1 +

√
2 − √

2
4
√

2 − 1

)
,

φ2

(
1
10 ,

1
10

)
?= 1

4π
logμ where

μ+ 1/μ

2
= 2 + √

5 +
√

5 + 2
√

5;

the notation
?= indicates that we have only experimental (i.e., extreme-precision

numerical) evidence of an equality.
Such hunts are made entirely practicable by (7.2.19). Note that for general x

and y we have φ2(y, x) = φ2(x, y) = −φ2(x, 1 − y), so we can restrict searches
to 1

2 > x ≥ y > 0, as illustrated in Figure 7.1. Indeed computations by Glasser
and Crandall given in [11] were precipitated from such experiments and led to the
following result.
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Figure 7.1 High-precision plot of the Monge surface z = φ2(x, y), via the fast series
(7.2.19), showing the logarithmic singularity at the origin (the plot is adapted from [11]).
In this plot, x, y range over the 2-cube [− 1

2 ,
1
2 ]2; from symmetry one need know the φ2

surface only over the octant 1
2 > x ≥ y > 0. We are able to establish closed forms for the

heights on this surface above certain rational pairs (x, y). As just one example,
φ2(

1
4 ,

1
4 ) = 1

4π log(1 + √
2) ≈ 0.0701.

Theorem 7.2 For z := π

2
(y + i x),

φ2(x, y) = 1

2π
log

∣∣∣∣
θ2(z, q)θ4(z, q)

θ1(z, q)θ3(z, q)

∣∣∣∣ = 1

4π
log

∣∣∣∣∣
1 − λ(z)/

√
2

1 − 1/[λ(z)√2]

∣∣∣∣∣ , (7.2.35)

where

λ(z) = θ2
4 (z, e−π )
θ2

3 (z, e−π )
=

∞∏

n=1

(1 − 2 cos 2z q2n−1 + q4n−2)2

(1 + 2 cos 2z q2n−1 + q4n−2)2
, (7.2.36)

with q := e−π .

Hence, the presumption that, for rational x, y, (7.2.34) is always algebraic is
equivalent to the provable conjecture that, for all z = π

2 (y+i x)with x, y rational,
λ(z) in (7.2.36) is algebraic, and this is proved in [1, Theorem 10]. How to provide
computationally assisted proofs of results such as those of Conjecture 7.1 is also
discussed in [1].
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7.2.6 Closed forms for n = 3, 4 dimensions

The only nontrivial closed-form evaluation of φ3 of which we are aware is that of
Forrester and Glasser [8, 13]. Namely,

4πφ3(1/6) = M3(1, 1/6) =
∑

m ∈ Z3

(−1)1·m

|m − 1/6| = √
3.
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