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Motivation, History

• In the late 17th century calculus had 
transformed mathematics and physics- where 
were its boundaries?

• Letter from Leibnitz to l’Hospital: Can the 
meaning of derivatives with integral order n be 
transformed to non-integral, even complex, 
orders?

• Difficulties arose: Leibnitz: Il y a de 
l’apparence qu’on tirera un jour des 
consequences bien utiles de ces paradoxes, 
car il n’y a gueres de paradoxes sans utilite



Motivation, History (2)

• Initial motivation: curiosity. Major contributions 
from Liouville, Riemann, Laplace, Heaviside, 
Weyl, etc

• Well established mathematical framework 
now finding applications

• Differentiation makes functions nastier; 
integration makes them better; fractional 
differentiation can make them “just right”. See 
the Physics Today article.



Scope of Fractional Calculus

• Differentiation with respect to arbitrary 
powers: they can be negative

• Negative differentiation is integration
• Integration needs two limits to have a precise 

meaning
• Fractional derivatives in general need a lower 

limit, and a variable indicated Dα
a,x

α- order of differentiation or integration

a lower limit; x variable



Fractional  Differentiation (1)

• This is the Riemann-Liouville derivative.
• Can be applied to functions represented 

by Taylor series
• n can be any real or complex number

dnxm

dxn = m!
(m−n)!x

m−n

dnxm

dxn = Γ(m+1)
Γ(m−n+1)x

m−n

m! = Γ(m+ 1)



Fractional  Differentiation (2)

• The result will be zero if 
m-n+1 is zero or a 
negative integer;

• Otherwise its non-zero

dnxm

dxn = Γ(m+1)
Γ(m−n+1)x

m−n

1
Γ(x)

x

m = 0 : dn1
dxn =

x−n

Γ(1−n)

e.g. d1/21
dx1/2

= 1√
πx



Factorial Function

Key equations for the gamma function are:
Γ(z + 1) = zΓ(z) = z! = z(z − 1)!, (1)
Γ(1) = 1, (2)
Γ(z) =

R∞
0
tz−1e−tdt, <(z) > 0, (3)

and
Γ(z)Γ(1− z) = π

sin(πz)
. (4)

From (4) one can prove other useful things-e.g.,
Γ(1/2) =

√
π (5)

and
Γ(−n+ δ) = (−1)n

n!δ . (6)



Fractional  Differentiation (3)

dnxm

dxn = Γ(m+1)
Γ(m−n+1)x

m−n

dp

dxp

¡
dnxm

dxn

¢
= Γ(m−n+1)
Γ(m−n−p+1)

Γ(m+1)
Γ(m−n+1)x

m−n−p

i.e. dp

dxp

¡
dnxm

dxn

¢
= Γ(m+1)
Γ(m−n−p+1)x

m−n−p

Example:
d1/2

dx1/2

³
d1/21
dx1/2

´
= Γ(1)
Γ(1−1/2−1/2)x

−1 = 0



A Fractional  Differentiation 
Conundrum 

We know for any integer n:
Dn(eax) = aneax

so we want for any α
Dα(eax) = aαeax.
Yet:
Dαex = Dα(

P∞
n=0

xn

n!
) =

P∞
n=0

xn−α

Γ(n−α+1)
These don’t match unless α is an integer!



Integration as Negative Differentiation 

t2

t1 t1

t2
x x

t2

t1

We consider the definite integrals:
D−1f(x) =

R x
0
f(t)dt, D−2f(x) =

R x
0

R t2
0
f(t1)dt1dt2.

In the second integral, we invert the order of integrations,
going from left to right diagrams above.
D−2f(x) =

R x
0

R x
t1
f(t1)dt2dt1 =

R x
0
f(t1)(x− t1)dt1

D−3f(x) = 1
2

R x
0
f(t1)(x− t1)2dt1

D−nf(x) = 1
(n−1)!

R x
0
f(t1)(x− t1)n−1dt1



Integration as NegativeDifferentiation(2) 

We generalize
D−nf(x) = 1

(n−1)!
R x
0
f(t1)(x− t1)n−1dt1

to give
D−αf(x) = 1

Γ(α)

R x
0
f(t1)(x− t1)α−1dt1

For the singularity at t1 → x to be integrable, we require
α > 0, confirming we are dealing with a negative order of
differentiation.

So we write our generalized differential operator with a
curly D, putting its order as the superscript,
and the lower limit and variable being differentiated
as subscripts. The two usual choices for lower
limits are 0 and −∞. Dα

a,x



Integration as NegativeDifferentiation(3) 

Being clear about implicit limits enables us to clear up the
previous difficulty:
D−1b,xeax =

R x
b
eaxdx = eax

a if b = −∞
D−1b,xxp =

R x
b
xpdx = xp+1

p+1 if b = 0

For any given physical problem, there will be a choice
to make about the best value of lower limits.
This choice will control the results of differentiations
to fractional powers.

Dα
0,x(x

p) = Γ(p+1)xp−α

Γ(p−α+1)
and
Dα
−∞,x(e

ax) = aαeax



Differentiation as Negative Integration

We can define fractional differentiation on the basis
of fractional integration

Dsa,x = ( d
n

dxn )D
−(n−s)
a,x f(x)

with n a positive integer, <(s) > 0, <(n− s) > 0.
We have then some familiar properties- linearity:
Dsa,x(αf(x) + βg(x)) = αDsa,xf(x) + βDsa,xg(x)
and composition
Dsa,xDpa,xf(x) = Ds+pa,x f(x),
with p < 0 and f(x) finite at x = a.
For p > 0, see Baumann.
For Leibnitz’s rule, we get an infinite series:

Dqa,x(f(x)g(x)) =
P∞

j=0

µ
q
j

¶
Dq−ja,x f(x)Dja,xg(x),

with the symbol in brackets being
Γ(q + 1)/(Γ(j + 1)Γ(q − j + 1)).



Lecture 2- Fourier methods

• Reprise from last lecture:

dpxq

dxp = D
p
0,x =

Γ(q+1)
Γ(q−p+1)x

q−p

the Riemann-Liouville derivative.
Differentiation to a negative power:
D−αa,xf(x) =

1
Γ(α)

R x
a
f(t1)(x− t1)α−1dt1

for α > 0.

Most discussions use fractional calculus in one 
variable. Let’s see how we can treat two dimensions, 
using Fourier transform ideas.



Adding up Harmonics

• Fourier series- sines and cosines adding up to 
give arbitrary waveforms: harmonics

• Fourier transforms- not just harmonics, but an 
integral over all frequencies

• In more than one dimension, add up plane 
waves

• In two dimensions, a plane wave is

Wave vector: 

exp i(kxx+ kyy)

(kx, ky) = k, momentum h̄k



The Fourier transform

• Represent a function in space as an integral 
over plane waves: inverse transform

A(x) = A(x, y) =
R dkxdky

(2π)2 e
i(kxx+kyy)Ã(kx, ky)

Function in 
space

Function in wave vector 
space; reciprocal space; 
momentum space

Direct transform:
Ã(kx, ky) =

R
dxdye−i(kxx+kyy)A(x, y)



Momentum space

• A lot of physics is based on momentum or 
wavevector space

• Conservation of momentum: 
• A mathematical reason: derivatives are 

replaced by algebraic operations

p = h̄k

A(x) = A(x, y) =
R dkxdky

(2π)2 e
i(kxx+kyy)Ã(kx, ky)

∂
∂xA(x) =

R dkxdky
(2π)2 e

i(kxx+kyy)ikxÃ(kx, ky)

∂
∂x Partial derivative with respect to x



The Laplacian

• A particularly important operator in physics is 
the Laplacian

• Take two derivatives with respect to x, two 
with respect to y and add

• Crops up in electrostatics, magnetostatics, 
complex variable theory

• Symbol: ∇2 = ∂2

∂x2 +
∂2

∂y2

∂2

∂y2 → −k2y∂2

∂x2 → −k2x
∇2 → −(k2x + k2y)



The Laplacian (2)

∇2 → −(k2x + k2y)Once:

n times:

p times ∇2p → eiπp(k2x + k
2
y)
p

since (−1)n = cos(nπ) + i sin(nπ) = eiπn

∇2n → (−1)n(k2x + k2y)n

∇2pA(x, y)→ eiπp(k2x + k
2
y)
pÃ(kx, ky)



The Dirac delta function

• Fourier transforms integrate over extended 
objects: plane waves

• Need a way of going from extended objects to 
point-like objects

• This is provided by the Dirac delta function: 
the Fourier transform of a constant

2πδ(ω) =
R∞
−∞ dte

iωt Delta function of angular 
frequency

(2π)2δ2(kx, ky) =
R∞
−∞ dxdye

i(kxx+kyy)

Delta function of wave 
vector (2D)



The Dirac delta function (2)

• The more spread out a function is, the tighter 
its Fourier transform concentrates around the 
origin

• A constant is spread out uniformly in space: 
its Fourier transform concentrates around the 
origin in reciprocal space

• Another way of thinking about the delta 
function is that it is a function concentrated 
around the origin, but having unit area under 
its curve



The Dirac delta function (3)

• One representation is based on Gaussian 
functions
fT (t) = e

−t2/T 2 →
δ(ω) = limT→∞ T

2
√
π
e−ω

2T 2/4

Function → constant

Transform→ delta

T = 10

fT (t) δT (ω)



Green’s functions

• A Green’s function for a problem in physics is 
a solution of the governing equation 
corresponding to a point source

• The point source is just a delta function
• So for example in electrostatics if we look for 

the Green’s function  for a point source at the 
origin, we want to solve

∇2G(x, y) = −δ2(x, y)
The minus sign is just a convention: other authors 
have a plus sign



Green’s functions (2)

• Once you have the Green’s function for a 
point source, you can get the solution for an 
arbitrary set of sources by summing the 
Green’s function multiplied by the strength of 
the source

• You know well the potential for a point 
electrostatic charge in 3D:

G(x, y, z) = 1
4πr , r =

p
x2 + y2 + z2



The Green’s function in 2D

We start with
(2π)2δ2(kx, ky) =

R∞
−∞ dxdye

i(kxx+kyy)

and
∇2
R∞
−∞ dxdye

i(kxx+kyy) =

−
R∞
−∞ dxdy(k

2
x + k

2
y)e

i(kxx+kyy)

Hence
G(x, y) = 1

4π2

R∞
−∞

R∞
−∞

ei(kxx+kyy)

(k2x+k
2
y)

The integral is done in polar coordinates:
kx = r cos(θ), ky = r sin(θ).



The Green’s function in 2D (2)

G(x, y) = 1
4π2

R∞
−∞

R∞
−∞

ei(kxx+kyy)

(k2x+k
2
y)

In polar coordinates, the angular integral is:R π
−π exp(ikr cos θ) = 2πJ0(kr).
Here J0(z) is theBessel function of order zero
(of the first kind).
This gives us

G(x) = G(r) = 1
2π

R∞
0
dk J0(kr)k .

If we require that G(r) vanish at r = a, we get

G(r) = 1
2π

R∞
0
dk J0(kr)−J0(ka)k .



The Green’s function in 2D (3)

G(r) = 1
2π

R∞
0
dk J0(kr)−J0(ka)k .

We evaluate this using Frullani’s integral

I(a, b) =
R∞
0
dx [f(ax)−f(bx)]x , a > 0, b > 0

and f(x) is continuous at x = 0. Then
I(a, b) = f(0) ln(b/a).
Hence
G(r) = 1

2π ln
¡
a
r

¢
.

This is the 2D Green’s function. It satisfies
∇2G(r) = −δ2(x), |x| = r.



Lecture 3- Green’s Functions for 
Fractional Operators

G(r) = 1
2π ln

¡
a
r

¢
.

This is the 2D Green’s function. It satisfies
∇2G(r) = −δ2(x), |x| = r.
The question we answer here is:
What does this Green’s function become if
we want to have the operator ∇2s,
s arbitrary real or complex?



A Neat Trick

We know the Green’s function for the Laplacian:
G2(r) = − 1

2π
ln(r)

gives
∇2G2(r) = −δ2(x, y)
We want to know what G2s is for which
∇2sG2s(r) = −δ2(x, y)
We write
∇2G2(r) = ∇2s(∇2−2sG2(r))
Then quite simply:
G2s(r) = ∇2−2sG2(r)
So all we need is to apply the Laplacian to an arbitrary
power to the log function!



Technical Details (1)

To carry out this calculation, we first need to know
∇2srβ . It is obvious that each second
derivative reduces the power of r by 2, so
∇2srβ = K(r, β)rβ−2s
for some K(s, β) which depends on β and s,
but not r.
To evaluate K(s, β) we need Weber’s integral:R∞
0
rsJ0(αr)dr =

Γ( 1+s2 )2s

Γ( 1−s2 )α1+s



Technical details (2)

We write down the Fourier transform of rβ :
rβ =

R∞
−∞

R∞
−∞

Γ(1+β/2)
Γ(−β/2)πβ+1kβ+2 e

2πi(kxx+kyy)dkxdky.

To check this expression, convert the double integral to
an integral over angle multiplied by an integral over kdk.
The integral over angle gives the Bessel function
2πJ0(2πkr). You then get
2Γ(1+β/2)
Γ(−β/2)πβ

R∞
0
k−1−βdkJ0(2πkr).

You then use Weber’s integral to verify the result.



Technical details (3)

We next apply ∇2s to the Fourier transform of rβ :

rβ =
R∞
−∞

R∞
−∞

Γ(1+β/2)
Γ(−β/2)πβ+1kβ+2 e

2πi(kxx+kyy)dkxdky.

The operator just gives (2πik)2s times the same integral.
This means that in essence the differential operator makes
the replacement
k−β−2 → k2s−β−2

We then do the integral in the same way:
convert to polar coordinates, integrate over angle,
and finally use Weber’s integral. We obtain:

∇2s(rβ) = i2s22s Γ(1+β/2)Γ(−β/2)
Γ(s−β/2)
Γ(1−s+β/2r

β−2s



Differentiation of the Logarithm

∇2s(rβ) = i2s22s Γ(1+β/2)Γ(−β/2)
Γ(s−β/2)
Γ(1−s+β/2)r

β−2s

Suppose we expand this taking β small:
rβ = eβ ln r ' 1 + β ln r.
Then this will tell us how ∇2s operates on a constant and ln r.
The only term which causes any problem is
1
Γ(z) ' z, for |z| << 1. So for β small,
∇2s(rβ) ' i2s22s(−β2 )

Γ(s)
Γ(1−s)r

−2s

This tells us that
∇2s(1) = 0: cf differentiation!
∇2s(ln r) ' −i2s22s−1 Γ(s)

Γ(1−s)r
−2s



The Final Answer

• So we have deduced:
G2s(r) =

−r2s−2
π(2i)2s

Γ(1−s)
Γ(s)

Only for s→ 1 will we get a logarithm!

We have also learned that Fourier transforms can be 
used as a way of evaluating fractional derivatives.

∇2s(ln r) ' −i2s22s−1 Γ(s)
Γ(1−s)r

−2s,
so that
∇2−2s(ln r) ' −i2−2s22−2s−1 Γ(1−s)Γ(s) r

−2+2s
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