Three Lectures on the Fractional Calculus

Ross McPhedran,

ross@physics.usyd.edu.au

CUDOS

An ARC Centre of Excellence
Centre for Ultrahigh bandwidth Devices for Optical Systems

Australian Government
Australian Research Council

The University of Sydney

- Motivation, history
- Fractional calculus of one variable
- Fourier transforms, Green's functions and distributions
- Laplacian in two dimensions to an arbitrary power

References

- A child's garden of fractional derivatives, Marcia Kleinz and Tom Osler
- Mathematica for theoretical physics, Gerd Baumann, Springer 2004, Chapter 7.
- Fractional kinetics, I.M .Solokov, J. Klafter and A. Blumen,Physics Today, November 2002, pp. 48-54
- Electromagnetic processes in dispersive media, D. B. Melrose and R.C. McPhedran, Cambridge University Press 2005, Chapters 4,5.

Motivation, History

- In the late $17^{\text {th }}$ century calculus had transformed mathematics and physics- where were its boundaries?
- Letter from Leibnitz to l'Hospital: Can the meaning of derivatives with integral order n be transformed to non-integral, even complex, orders?
- Difficulties arose: Leibnitz: Il y a de l'apparence qu'on tirera un jour des consequences bien utiles de ces paradoxes, car il n'y a gueres de paradoxes sans utilite

Motivation, History (2)

- Initial motivation: curiosity. Major contributions from Liouville, Riemann, Laplace, Heaviside, Weyl, etc
- Well established mathematical framework now finding applications
- Differentiation makes functions nastier; integration makes them better; fractional differentiation can make them "just right". See the Physics Today article.

Scope of Fractional Calculus

- Differentiation with respect to arbitrary powers: they can be negative
- Negative differentiation is integration
- Integration needs two limits to have a precise meaning
- Fractional derivatives in general need a lower limit, and a variable indicated \mathcal{D}^{α}
a, x
α - order of differentiation or integration
a lower limit; x variable

Fractional Differentiation (1)

$$
\begin{aligned}
& \frac{d^{n} x^{m}}{d x^{n}}=\frac{m!}{(m-n)!} x^{m-n} \\
& m!=\Gamma(m+1) \\
& \frac{d^{n} x^{m}}{d x^{n}}=\frac{\Gamma(m+1)}{\Gamma(m-n+1)} x^{m-n}
\end{aligned}
$$

- This is the Riemann-Liouville derivative.
- Can be applied to functions represented by Taylor series
- n can be any real or complex number

Fractional Differentiation (2)

$$
\frac{d^{n} x^{m}}{d x^{n}}=\frac{\Gamma(m+1)}{\Gamma(m-n+1)} x^{m-n}
$$

- The result will be zero if $m-n+1$ is zero or a negative integer;
- Otherwise its non-zero

$$
\begin{aligned}
& m=0: \quad \frac{d^{n} 1}{d x^{n}}=\frac{x^{-n}}{\Gamma(1-n)} \\
& \text { e.g. } \frac{d^{1 / 2} 1}{d x^{1 / 2}}=\frac{1}{\sqrt{\pi x}}
\end{aligned}
$$

Factorial Function

Key equations for the gamma function are:

$$
\begin{align*}
& \Gamma(z+1)=z \Gamma(z)=z!=z(z-1)! \\
& \Gamma(1)=1,(2) \\
& \Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t, \quad \Re(z)>0, \\
& \text { and } \\
& \Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin (\pi z)} \tag{4}
\end{align*}
$$

From (4) one can prove other useful things-e.g., $\Gamma(1 / 2)=\sqrt{\pi} \quad(5)$
and
$\Gamma(-n+\delta)=\frac{(-1)^{n}}{n!\delta}$.

Fractional Differentiation (3)

$$
\begin{gathered}
\frac{d^{n} x^{m}}{d x^{n}}=\frac{\Gamma(m+1)}{\Gamma(m-n+1)} x^{m-n} \\
\frac{d^{p}}{d x^{p}}\left(\frac{d^{n} x^{m}}{d x^{n}}\right)=\frac{\Gamma(m-n+1)}{\Gamma(m-n-p+1)} \frac{\Gamma(m+1)}{\Gamma(m-n+1)} x^{m-n-p} \\
\text { i.e. } \quad \frac{d^{p}}{d x^{p}}\left(\frac{d^{n} x^{m}}{d x^{n}}\right)=\frac{\Gamma(m+1)}{\Gamma(m-n-p+1)} x^{m-n-p}
\end{gathered}
$$

Example:

$$
\frac{d^{1 / 2}}{d x^{1 / 2}}\left(\frac{d^{1 / 2} 1}{d x^{1 / 2}}\right)=\frac{\Gamma(1)}{\Gamma(1-1 / 2-1 / 2)} x^{-1}=0
$$

We know for any integer n :
$D^{n}\left(e^{a x}\right)=a^{n} e^{a x}$
so we want for any α
$D^{\alpha}\left(e^{a x}\right)=a^{\alpha} e^{a x}$.
Yet:
$D^{\alpha} e^{x}=D^{\alpha}\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)=\sum_{n=0}^{\infty} \frac{x^{n-\alpha}}{\Gamma(n-\alpha+1)}$
These don't match unless α is an integer!

CUDOS Integration as Negative Differentiation

We consider the definite integrals:
$D^{-1} f(x)=\int_{0}^{x} f(t) d t, \quad D^{-2} f(x)=\int_{0}^{x} \int_{0}^{t_{2}} f\left(t_{1}\right) d t_{1} d t_{2}$.
In the second integral, we invert the order of integrations, going from left to right diagrams above.
$D^{-2} f(x)=\int_{0}^{x} \int_{t_{1}}^{x} f\left(t_{1}\right) d t_{2} d t_{1}=\int_{0}^{x} f\left(t_{1}\right)\left(x-t_{1}\right) d t_{1}$
$D^{-3} f(x)=\frac{1}{2} \int_{0}^{x} f\left(t_{1}\right)\left(x-t_{1}\right)^{2} d t_{1}$
$D^{-n} f(x)=\frac{1}{(n-1)!} \int_{0}^{x} f\left(t_{1}\right)\left(x-t_{1}\right)^{n-1} d t_{1}$

CUDOSintegration as NegativeDifferentiation(2)

We generalize
$D^{-n} f(x)=\frac{1}{(n-1)!} \int_{0}^{x} f\left(t_{1}\right)\left(x-t_{1}\right)^{n-1} d t_{1}$
to give
$D^{-\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x} f\left(t_{1}\right)\left(x-t_{1}\right)^{\alpha-1} d t_{1}$
For the singularity at $t_{1} \rightarrow x$ to be integrable, we require $\alpha>0$, confirming we are dealing with a negative order of differentiation.

So we write our generalized differential operator with a curly D, putting its order as the superscript, and the lower limit and variable being differentiated as subscripts. The two usual choices for lower limits are 0 and $-\infty$.

CUDOSIntegration as NegativeDifferentiation(3)

Being clear about implicit limits enables us to clear up the previous difficulty:

$$
\begin{aligned}
& \mathcal{D}_{b, x}^{-1} e^{a x}=\int_{b}^{x} e^{a x} d x=\frac{e^{a x}}{a} \text { if } b=-\infty \\
& \mathcal{D}_{b, x}^{-1} x^{p}=\int_{b}^{x} x^{p} d x=\frac{x^{p+1}}{p+1} \text { if } b=0
\end{aligned}
$$

For any given physical problem, there will be a choice to make about the best value of lower limits.
This choice will control the results of differentiations to fractional powers.
$\mathcal{D}_{0, x}^{\alpha}\left(x^{p}\right)=\frac{\Gamma(p+1) x^{p-\alpha}}{\Gamma(p-\alpha+1)}$
and
$\mathcal{D}_{-\infty, x}^{\alpha}\left(e^{a x}\right)=a^{\alpha} e^{a x}$

CUDOS Differentiation as Negative Integration

We can define fractional differentiation on the basis of fractional integration
$\mathcal{D}_{a, x}^{s}=\left(\frac{d^{n}}{d x^{n}}\right) \mathcal{D}_{a, x}^{-(n-s)} f(x)$
with n a positive integer, $\Re(s)>0, \Re(n-s)>0$.
We have then some familiar properties- linearity:
$\mathcal{D}_{a, x}^{s}(\alpha f(x)+\beta g(x))=\alpha \mathcal{D}_{a, x}^{s} f(x)+\beta \mathcal{D}_{a, x}^{s} g(x)$
and composition
$\mathcal{D}_{a, x}^{s} \mathcal{D}_{a, x}^{p} f(x)=\mathcal{D}_{a, x}^{s+p} f(x)$,
with $p<0$ and $f(x)$ finite at $x=a$.
For $p>0$, see Baumann.
For Leibnitz's rule, we get an infinite series:
$\mathcal{D}_{a, x}^{q}(f(x) g(x))=\sum_{j=0}^{\infty}\binom{q}{j} \mathcal{D}_{a, x}^{q-j} f(x) \mathcal{D}_{a, x}^{j} g(x)$,
with the symbol in brackets being
$\Gamma(q+1) /(\Gamma(j+1) \Gamma(q-j+1))$.

Lecture 2- Fourier methods

- Reprise from last lecture:

$$
\frac{d^{p} x^{q}}{d x^{p}}=D_{0, x}^{p}=\frac{\Gamma(q+1)}{\Gamma(q-p+1)} x^{q-p}
$$

the Riemann-Liouville derivative.
Differentiation to a negative power:
$D_{a, x}^{-\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x} f\left(t_{1}\right)\left(x-t_{1}\right)^{\alpha-1} d t_{1}$ for $\alpha>0$.

Most discussions use fractional calculus in one variable. Let's see how we can treat two dimensions, using Fourier transform ideas.

Adding up Harmonics

- Fourier series- sines and cosines adding up to give arbitrary waveforms: harmonics
- Fourier transforms- not just harmonics, but an integral over all frequencies
- In more than one dimension, add up plane waves
- In two dimensions, a plane wave is

$$
\exp i\left(k_{x} x+k_{y} y\right)
$$

Wave vector: $\left(k_{x}, k_{y}\right)=\mathbf{k}$, momentum $\hbar \mathbf{k}$

The Fourier transform

- Represent a function in space as an integral over plane waves: inverse transform

$$
A(\mathbf{x})=A(x, y)=\int \frac{d k_{x} d k_{y}}{(2 \pi)^{2}} e^{i\left(k_{x} x+k_{y} y\right)} \tilde{A}\left(k_{x}, k_{y}\right)
$$

Function in space

Function in wave vector space; reciprocal space; momentum space

Direct transform:

$$
\tilde{A}\left(k_{x}, k_{y}\right)=\int d x d y e^{-i\left(k_{x} x+k_{y} y\right)} A(x, y)
$$

Momentum space

- A lot of physics is based on momentum or wavevector space
- Conservation of momentum: $\mathbf{p}=\hbar \mathbf{k}$
- A mathematical reason: derivatives are replaced by algebraic operations

$$
\begin{aligned}
& A(\mathbf{x})=A(x, y)=\int \frac{d k_{x} d k_{y}}{(2 \pi)^{2}} e^{i\left(k_{x} x+k_{y} y\right)} \tilde{A}\left(k_{x}, k_{y}\right) \\
& \frac{\partial}{\partial x} A(\mathbf{x})=\int \frac{d k_{x} d k_{y}}{(2 \pi)^{2}} e^{i\left(k_{x} x+k_{y} y\right)} i k_{x} \tilde{A}\left(k_{x}, k_{y}\right) \\
& \frac{\partial}{\partial x} \quad \text { Partial derivative with respect to } \mathrm{x}
\end{aligned}
$$

- A particularly important operator in physics is the Laplacian
- Take two derivatives with respect to x, two with respect to y and add
- Crops up in electrostatics, magnetostatics, complex variable theory
- Symbol: $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$

$$
\frac{\partial^{2}}{\partial x^{2}} \rightarrow-k_{x}^{2}
$$

$$
\frac{\partial^{2}}{\partial y^{2}} \rightarrow-k_{y}^{2}
$$

$$
\nabla^{2} \rightarrow-\left(k_{x}^{2}+k_{y}^{2}\right)
$$

The Laplacian (2)

Once:

$$
\nabla^{2} \rightarrow-\left(k_{x}^{2}+k_{y}^{2}\right)
$$

n times:

$$
\nabla^{2 n} \rightarrow(-1)^{n}\left(k_{x}^{2}+k_{y}^{2}\right)^{n}
$$

p times

$$
\nabla^{2 p} \rightarrow e^{i \pi p}\left(k_{x}^{2}+k_{y}^{2}\right)^{p}
$$

since

$$
(-1)^{n}=\cos (n \pi)+i \sin (n \pi)=e^{i \pi n}
$$

$$
\nabla^{2 p} A(x, y) \rightarrow e^{i \pi p}\left(k_{x}^{2}+k_{y}^{2}\right)^{p} \tilde{A}\left(k_{x}, k_{y}\right)
$$

- Fourier transforms integrate over extended objects: plane waves
- Need a way of going from extended objects to point-like objects
- This is provided by the Dirac delta function: the Fourier transform of a constant

$$
2 \pi \delta(\omega)=\int_{-\infty}^{\infty} d t e^{i \omega t} \quad \begin{aligned}
& \text { Delta function of angular } \\
& \text { frequency }
\end{aligned}
$$

$$
(2 \pi)^{2} \delta^{2}\left(k_{x}, k_{y}\right)=\int_{-\infty}^{\infty} d x d y e^{i\left(k_{x} x+k_{y} y\right)}
$$

Delta function of wave vector (2D)

The Dirac delta function (2)

- The more spread out a function is, the tighter its Fourier transform concentrates around the origin
- A constant is spread out uniformly in space: its Fourier transform concentrates around the origin in reciprocal space
- Another way of thinking about the delta function is that it is a function concentrated around the origin, but having unit area under its curve

The Dirac delta function (3)

- One representation is based on Gaussian functions

$$
\begin{gathered}
f_{T}(t)=e^{-t^{2} / T^{2}} \rightarrow \\
\delta(\omega)=\lim _{T \rightarrow \infty} \frac{T}{2 \sqrt{\pi}} e^{-\omega^{2} T^{2} / 4}
\end{gathered}
$$

Function \rightarrow constant
Transform \rightarrow delta

$$
T=10
$$

Green's functions

- A Green's function for a problem in physics is a solution of the governing equation corresponding to a point source
- The point source is just a delta function
- So for example in electrostatics if we look for the Green's function for a point source at the origin, we want to solve

$$
\nabla^{2} G(x, y)=-\delta^{2}(x, y)
$$

The minus sign is just a convention: other authors have a plus sign

Green's functions (2)

- Once you have the Green's function for a point source, you can get the solution for an arbitrary set of sources by summing the Green's function multiplied by the strength of the source
- You know well the potential for a point electrostatic charge in 3D:
$G(x, y, z)=\frac{1}{4 \pi r}, r=\sqrt{x^{2}+y^{2}+z^{2}}$

The Green's function in 2D

We start with
$(2 \pi)^{2} \delta^{2}\left(k_{x}, k_{y}\right)=\int_{-\infty}^{\infty} d x d y e^{i\left(k_{x} x+k_{y} y\right)}$
and
$\nabla^{2} \int_{-\infty}^{\infty} d x d y e^{i\left(k_{x} x+k_{y} y\right)}=$
$-\int_{-\infty}^{\infty} d x d y\left(k_{x}^{2}+k_{y}^{2}\right) e^{i\left(k_{x} x+k_{y} y\right)}$
Hence
$G(x, y)=\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{i\left(k_{x} x+k_{y} y\right)}}{\left(k_{x}^{2}+k_{y}^{2}\right)}$
The integral is done in polar coordinates:
$k_{x}=r \cos (\theta), k_{y}=r \sin (\theta)$.

The Green's function in 2D (2)

$$
G(x, y)=\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{i\left(k_{x} x+k_{y} y\right)}}{\left(k_{x}^{2}+k_{y}^{2}\right)}
$$

In polar coordinates, the angular integral is: $\int_{-\pi}^{\pi} \exp (i k r \cos \theta)=2 \pi J_{0}(k r)$.
Here $J_{0}(z)$ is theBessel function of order zero (of the first kind).
This gives us
$G(\mathbf{x})=G(r)=\frac{1}{2 \pi} \int_{0}^{\infty} d k \frac{J_{0}(k r)}{k}$.
If we require that $G(r)$ vanish at $r=a$, we get
$G(r)=\frac{1}{2 \pi} \int_{0}^{\infty} d k \frac{J_{0}(k r)-J_{0}(k a)}{k}$.

The Green's function in 2D (3)

$$
G(r)=\frac{1}{2 \pi} \int_{0}^{\infty} d k \frac{J_{0}(k r)-J_{0}(k a)}{k}
$$

We evaluate this using Frullani's integral $I(a, b)=\int_{0}^{\infty} d x \frac{[f(a x)-f(b x)]}{x}, a>0, b>0$ and $f(x)$ is continuous at $x=0$. Then $I(a, b)=f(0) \ln (b / a)$.
Hence
$G(r)=\frac{1}{2 \pi} \ln \left(\frac{a}{r}\right)$.
This is the 2D Green's function. It satisfies
$\nabla^{2} G(r)=-\delta^{2}(\mathbf{x}),|\mathbf{x}|=r$.

Lecture 3- Green's Functions for

Fractional_Onerators.

$$
G(r)=\frac{1}{2 \pi} \ln \left(\frac{a}{r}\right) .
$$

This is the 2D Green's function. It satisfies $\nabla^{2} G(r)=-\delta^{2}(\mathbf{x}),|\mathbf{x}|=r$.
The question we answer here is:
What does this Green's function become if
we want to have the operator $\nabla^{2 s}$,
s arbitrary real or complex?

We know the Green's function for the Laplacian:
$G_{2}(r)=-\frac{1}{2 \pi} \ln (r)$ gives
$\nabla^{2} G_{2}(r)=-\delta^{2}(x, y)$
We want to know what $G_{2 s}$ is for which
$\nabla^{2 s} G_{2 s}(r)=-\delta^{2}(x, y)$
We write
$\nabla^{2} G_{2}(r)=\nabla^{2 s}\left(\nabla^{2-2 s} G_{2}(r)\right)$
Then quite simply:
$G_{2 s}(r)=\nabla^{2-2 s} G_{2}(r)$
So all we need is to apply the Laplacian to an arbitrary power to the \log function!

Technical Details (1)

To carry out this calculation, we first need to know $\nabla^{2 s} r^{\beta}$. It is obvious that each second derivative reduces the power of r by 2 , so $\nabla^{2 s} r^{\beta}=K(r, \beta) r^{\beta-2 s}$
for some $K(s, \beta)$ which depends on β and s, but not r.
To evaluate $K(s, \beta)$ we need Weber's integral:

$$
\int_{0}^{\infty} r^{s} J_{0}(\alpha r) d r=\frac{\Gamma\left(\frac{1+s}{2}\right) 2^{s}}{\Gamma\left(\frac{1-s}{2}\right) \alpha^{1+s}}
$$

Technical details (2)

We write down the Fourier transform of r^{β} :
$r^{\beta}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\Gamma(1+\beta / 2)}{\Gamma(-\beta / 2) \pi^{\beta+1} k^{\beta+2}} e^{2 \pi i\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y}$.
To check this expression, convert the double integral to an integral over angle multiplied by an integral over $k d k$. The integral over angle gives the Bessel function $2 \pi J_{0}(2 \pi k r)$. You then get $\frac{2 \Gamma(1+\beta / 2)}{\Gamma(-\beta / 2) \pi^{\beta}} \int_{0}^{\infty} k^{-1-\beta} d k J_{0}(2 \pi k r)$.
You then use Weber's integral to verify the result.

Technical details (3)

We next apply $\nabla^{2 s}$ to the Fourier transform of r^{β} :
$r^{\beta}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\Gamma(1+\beta / 2)}{\Gamma(-\beta / 2) \pi^{\beta+1} k^{\beta+2}} e^{2 \pi i\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y}$.
The operator just gives $(2 \pi i k)^{2 s}$ times the same integral. This means that in essence the differential operator makes the replacement
$k^{-\beta-2} \rightarrow k^{2 s-\beta-2}$
We then do the integral in the same way:
convert to polar coordinates, integrate over angle, and finally use Weber's integral. We obtain:
$\nabla^{2 s}\left(r^{\beta}\right)=i^{2 s} 2^{2 s} \frac{\Gamma(1+\beta / 2)}{\Gamma(-\beta / 2)} \frac{\Gamma(s-\beta / 2)}{\Gamma(1-s+\beta / 2} r^{\beta-2 s}$

CUDOS

Differentiation of the Logarithm

$$
\nabla^{2 s}\left(r^{\beta}\right)=i^{2 s} 2^{2 s} \frac{\Gamma(1+\beta / 2)}{\Gamma(-\beta / 2)} \frac{\Gamma(s-\beta / 2)}{\Gamma(1-s+\beta / 2)} r^{\beta-2 s}
$$

Suppose we expand this taking β small:
$r^{\beta}=e^{\beta \ln r} \simeq 1+\beta \ln r$.
Then this will tell us how $\nabla^{2 s}$ operates on a constant and $\ln r$.
The only term which causes any problem is
$\frac{1}{\Gamma(z)} \simeq z$, for $|z| \ll 1$. So for β small,
$\nabla^{2 s}\left(r^{\beta}\right) \simeq i^{2 s} 2^{2 s}\left(\frac{-\beta}{2}\right) \frac{\Gamma(s)}{\Gamma(1-s)} r^{-2 s}$
This tells us that
$\nabla^{2 s}(1)=0$: cf differentiation!
$\nabla^{2 s}(\ln r) \simeq-i^{2 s} 2^{2 s-1} \frac{\Gamma(s)}{\Gamma(1-s)} r^{-2 s}$

The Final Answer

$$
\nabla^{2 s}(\ln r) \simeq-i^{2 s} 2^{2 s-1} \frac{\Gamma(s)}{\Gamma(1-s)} r^{-2 s}
$$

$$
\begin{aligned}
& \text { so that } \\
& \nabla^{2-2 s}(\ln r) \simeq-i^{2-2 s} 2^{2-2 s-1} \frac{\Gamma(1-s)}{\Gamma(s)} r^{-2+2 s}
\end{aligned}
$$

- So we have deduced:

$$
G_{2 s}(r)=\frac{-r^{2 s-2}}{\pi(2 i)^{2 s}} \frac{\Gamma(1-s)}{\Gamma(s)}
$$

Only for $s \rightarrow 1$ will we get a logarithm!
We have also learned that Fourier transforms can be used as a way of evaluating fractional derivatives.

