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1. Introduction

These research notes were written to complement the discussion of angular lattice
sums and their zeros in Chapter 3 of Borwein et al (2013). There it was men-
tioned that McPhedran et al (2013) had proved that the basic double lattice sum
C(0, 1; s) obeyed the Riemann hypothesis if and only if any of the angular lattice
sums C(1, 4m; s) obeyed the Riemann hypothesis. Professor Heath-Brown has re-
cently communicated to the author the fact that there is a gap in the graphical
proof of this result. This communication provided a stimulus towards the explo-
ration of algebraic methods of investigation of the distribution of the zeros of the
sums just mentioned. These methods have met with some success, chiefly through
the use of a proposition put forward in the paper of Lagarias and Suzuki (2006).

The research notes here presented are somewhat discursive, containing a range
of results which in some cases contrast with, and in others complement, the main
results: Theorems 4.5, 7.1 and 8.1. It is planned to publish in more concise form
the main results and the elements required to arrive at them, but it is felt that the
extra elements given here may be of some use in related investigations.

2. Formulae for Macdonald Function Sums

We recall the definition from McPhedran et al, 2008, hereafter referred to as (I), of
two sets of angular lattice sums for the square array:

C(n,m; s) =

′∑
p1,p2

cosn(mθp1,p2)

(p2
1 + p2

2)s
, S(n,m; s) =

′∑
p1,p2

sinn(mθp1,p2)

(p2
1 + p2

2)s
, (2.1)

where θp1,p2 = arg(p1 + ip2), the prime denotes the exclusion of the point at the
origin, and the complex number s is written in terms of real and imaginary parts
as s = σ + it. The sum independent of the angle θp1,p2 was evaluated by Lorenz
(1871) and Hardy(1920) in terms of the product of Dirichlet L functions:

C(0,m; s) = S(0,m; s) ≡ C(0, 1; s) ≡ C(1, 0; s) = 4L1(s)L−4(s) = 4ζ(s)L−4(s).
(2.2)

A useful account of the properties of Dirichlet L functions such as L−4(s) has been
given by Zucker & Robertson (1976).
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2 R.C. McPhedran

It is convenient to use a subset of the angular sums (2.1) as a basis for numerical
evaluations. We note that the sums C(n, 1; s) are zero if n is odd. We have for the
non-zero sums C(2n, 1; s):

∑
(p1,p2)

′ p2n
1

(p2
1 + p2

2)s+n
= C(2n, 1; s) =

2
√
πΓ(s+ n− 1/2)ζ(2s− 1)

Γ(s+ n)

+
8πs

Γ(s+ n)

∞∑
p1=1

∞∑
p2=1

(
p2

p1

)s−1/2

pn1p
n
2π

nKs+n−1/2(2πp1p2), (2.3)

where Kν(z) denotes the modified Bessel function of the second kind, or Macdonald
function, with order ν and argument z. The general form (2.3) may be derived
following Kober (1936), in the way described in McPhedran et al (2010), hereafter
referred to as II. A variant of (2.3) occurs for n = 0, when an extra term occurs,
arising from an axial term from p1 = 0:

C(0, 1; s) = 2ζ(2s) +
2
√
πΓ(s− 1/2)

Γ(s)
ζ(2s− 1)

+
8πs

Γ(s)

∞∑
p1=1

∞∑
p2=1

(
p2

p1

)s−1/2

Ks−1/2(2πp1p2). (2.4)

Hejhal (1987,1990) has analysed the distribution of zeros of Macdonald function
sums akin to those occurring in (2.3) and (2.4). He comments on the numerical
difficulties associated with their accurate evaluation when t is large. In general, the
double sums can be re-expressed as single sums over the variable l = p1p2, and the
value of 2πl must range up to around 1.5t for adequate accuracy in the production
of graphs and the evaluation of location of zeros. Note that this estimate of the
summation region required is based on the transition being completed from the
small argument form of the Macdonald function:

Kν(z) ∼ 1

2
Γ(ν)

(
2

z

)ν
, (2.5)

to the large argument form

Kν(z) ∼
√

π

2z
e−z. (2.6)

The evaluation of lattice sums can also be made more efficient using the standard
recurrence relations

Kν−1(z)−Kν+1(z) =
−2ν

z
Kν(z), Kν−1(z) +Kν+1(z) = −2K ′ν(z), (2.7)

to reduce the Madonald functions needed. We will use the abbreviated notations
for complex orders s− = s − 1/2 and s+ = s + 1/2. One of our goals is to derive
functional equations for angular lattice sums of the type (2.1), and to investigate
what these functional equations say about the location of zeros of the sums. We will
follow the approach in McPhedran et al (2007), and consider lattice sums grouped
into systems by their order.
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Lattice Sums and Variants on the Riemann Hypothesis 3

3. The Systems of Order 0,2

The system of order 0 contains the single element C0,1. The system of order 2 can
be constructed from that of order 0, since C(2, 1; s) = (1/2)C(0, 1; s) and from (2.3)

2C(2, 1; s) =
4
√
πΓ(s+)ζ(2s−)

Γ(s+ 1)
+

16πs

Γ(s+ 1)

∞∑
p1,p2=1

(
p2

p1

)s−
p1p2πKs+(2πp1p2).

(3.1)
We solve (2.4) and (3.1) for the first two Macdonald functions sums we consider.
Let us introduce a general notation for these sums:

K(n,m; s) =

∞∑
p1,p2=1

(
p2

p1

)s−
(p1p2π)nKm+s−(2πp1p2). (3.2)

By interchanging p2 and p1 and using the relation K−ν(z) = Kν(z), we see that
K(n, 0; s) is symmetric under the substitution s→ 1− s:

K(n, 0; 1− s) = K(n, 0; s), (3.3)

while K(n, 1; s) is not symmetric. Note that from (3.3) the sum K(n, 0; s) is real
on the critical line. The set of sums K(n, 0; s) is privileged numerically, since the
same set of Macdonald function evaluations is required for each. Using the divisor
function σa(n), the sum of the ath power of the divisors of n, we may write

K(n,m; s) =

∞∑
p=1

σ2s−(p)(pπ)nKm+s−(2πp). (3.4)

From the first of the relations (2.7), we find the following recurrence relation for
the sums K(n,m; s)

K(n,m; s) = (s− +m− 1)K(n− 1,m− 1; s) +K(n,m− 2; s). (3.5)

We have the following general symmetry property of the sums K(n,m; s):

K(n,m; 1− s) = K(n,−m; s), (3.6)

which is proved using the symmetry of the square lattice, employed using am in-
terchange of the summation indices p2 and p1, together with that of Kν(z) under
the change of sign of ν. The special form of (3.6) relating to the critical line is

K(n,m;
1

2
+ it) = K(n,−m;

1

2
+ it). (3.7)

The sum of the left and right-hand sides of (3.7) is thus real, and the difference
pure imaginary.

An interesting special case of (3.5) is obtained by putting m = 1:

K(n, 1; s) = s−K(n− 1, 0; s) +K(n,−1; s). (3.8)

From this and (3.6) we find

K(n− 1, 0; s) =
K(n, 1; s)−K(n, 1; 1− s)

s−
=
K(n, 1; s)−K(n,−1; s)

s−
. (3.9)
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Thus, the zeros of K(n − 1, 0; s) on the critical line are those of =K(n, 1; s). More
generally, all zeros of the even part of K(n, 1; s) with respect to the variable s−1/2
are also zeros of K(n− 1, 0; s).

The lowest symmetric sum is

K(0, 0; s) =
Γ(s)

8πs
C(0, 1; s)−

[
Γ(s)ζ(2s)

4πs
+

Γ(s−)ζ(2s−)

4πs−

]
. (3.10)

Each of the two terms on the right-hand side of (3.10) is unchanged by the sub-
stitution s → 1 − s. (That the first term is unchanged follows from the functional
equation for C(0, 1; s); that the second is unchanged then follows from the preced-
ing fact and the symmetry of K(0, 0; s).) They are therefore real on the critical line
σ = 1/2.

The lowest non-symmetric sum we consider is

K(1, 1; s) = s

[
Γ(s)

16πs
C(0, 1; s)

]
− s−

[
Γ(s−)ζ(2s−)

4πs−

]
. (3.11)

We now introduce two symmetrised functions, the first of which occurred in equa-
tion (3.10):

T+(s) =
Γ(s)ζ(2s)

4πs
+

Γ(s−)ζ(2s−)

4πs−
, (3.12)

so that

K(0, 0; s) =
Γ(s)

8πs
C(0, 1; s)− T+(s). (3.13)

Its antisymmetric counterpart is

T−(s) =
Γ(s)ζ(2s)

4πs
− Γ(s−)ζ(2s−)

4πs−
. (3.14)

This is equivalent to a function considered by P.R. Taylor (1945):

ξ1(s+ 1/2)− ξ1(s− 1/2), where ξ1(s) =
Γ(s/2)ζ(s)

π(s/2)
, (3.15)

after his variable s is replaced by our 2s−1/2. Taylor proved in fact that his function
obeys the Riemann hypothesis, as must then T−(s). We have:

ξ1(2s) = 2[T+(s) + T−(s)], ξ1(2s− 1) = 2[T+(s)− T−(s)]. (3.16)

We further define

V(s) =
T+(s)

T−(s)
=

1 + U(s)

1− U(s)
, U(s) =

ξ1(2s− 1)

ξ1(2s)
. (3.17)

It has since been proved (see Ki, 2006, Lagarias and Suzuki 2006, McPhedran
& Poulton, 2013) that T+(s) has all its zeros on the critical line. Furthermore, it is
real-valued and monotonic increasing there, while T−(s) is pure imaginary, and its
imaginary part is again monotonic increasing. The zeros of both functions are all
of first order, and alternate on the critical line.
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Lattice Sums and Variants on the Riemann Hypothesis 5

Now, from Titchmarsh (1987), the Riemann zeta function has its zeros confined
to the region 0 < σ < 1, from which we immediately see that T+(s) and T−(s)
cannot have coincident zeros. We can combine (3.10) and (3.11) to give

K(1, 1; s) =
Γ(s)

32πs
C(0, 1; s) +

s−
2
T−(s) +

s−
2
K(0, 0; s), (3.18)

or, with the parts of (3.18) with even and odd symmetry under s→ 1−s separated:

K(1, 1; s) =
Γ(s)

32πs
C(0, 1; s) +

1

2
(s− 1

2
)T−(s) +

1

2
(s− 1

2
)

[
Γ(s)

8πs
C(0, 1; s)− T+(s)

]
.

(3.19)
This may be written in the form of two functional equations for K(1, 1; s):

K(1, 1; s)−K(1, 1; 1− s) = s−K(0, 0; s). (3.20)

and

K(1, 1; s) +K(1, 1; 1− s) =
Γ(s)

16πs
C(0, 1; s) + s−T−(s). (3.21)

In Fig. 1 we show the variation along the critical line of the functions T+(s) , T−(s)
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Figure 1. Plots of the logarithmic modulus of the functions T+(s) (red), T−(s) (green)
and C(0, 1; s) ∗ Γ(s)/πs (blue) along the critical line.

and C(0, 1; s)∗Γ(s)/πs. Each has a similar number of zeros in the interval shown. In
Fig.2 (left) we further show the behaviour on the critical line of the modulus of the
functions K(0, 0; s) , K(1, 1; s) and C(0, 1; s) ∗ Γ(s)/πs. It can be seen that the first
of these has significantly fewer zeros on the critical line than the third, while the
second has none (for a related proposition, see Theorem 2.2 below). Weak minima
of |K(1, 1; s)| are correlated with the zeros of K(0, 0; s), in keeping with a remark
made after equation (3.9). Note that K(0, 0; s) has approximately the same number
of zeros (in complex conjugate pairs) off the critical line as on it (see Fig. 2 (right):
of the zeros shown, 38 are off the critical line, and 39 on it ).

Using the relations (2.7) we can obtain the value of K sums with m negative.
For example,

K(1,−1; s) =
−(s− 1)Γ(s)

16πs
C(0, 1; s) + s−

[
Γ(s)ζ(2s)

4πs

]
= K(1, 1; 1− s), (3.22)
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Figure 2. (Left) Plots of the logarithmic modulus of the functions K(0, 0; s) (red), K(1, 1; s)
(green) and C(0, 1; s) ∗ Γ(s)/πs (blue) along the critical line. Right: The lowest zeros of
K(0, 0; s) in the complex plane of s−.

using (3.6). We can also define a class of sums which involve the derivative of the
Macdonald function with respect to its argument

L(n,m; s) =

∞∑
p1,p2=1

(
p2

p1

)s−
(p1p2π)nK

′

m+s−(2πp1p2). (3.23)

Using (2.7) we obtain

L(n,m; s) = −1

2
[K(n,m+ 1; s) +K(n,m− 1; s)]. (3.24)

Using (3.18) and (3.22) we find

L(1, 0; s) = −1

2

[
Γ(s)

16πs
C(0, 1; s) + s−T−(s).

]
(3.25)

From their definitions and the symmetry of the square lattice,K(1, 1; s) andK(1,−1; s)
are conjugates of each other on the critical line, and L(1, 0; s) is real there. More
generally, using (3.6),

L(n, 0; s) = −1

2
[K(n, 1; s) +K(n, 1; 1− s)]. (3.26)

Thus, the zeros of L(n, 0; s) are those of the even part of K(n, 1; s) with respect to
the variable s−1/2. Combining this remark with one made after equation (3.9), we
see that zeros of K(n, 1; s) on the critical line require L(n, 0; s) and K(n − 1, 0; s)
to be zero simultaneously.

In Fig. 3 we show the distribution of the lowest zeros of K(1,−1; s). All the 71
zeros shown lie off the critical line. Apart from the first 3 zeros of K(1,−1; s), the
scatter of the plots in Fig. 3 and Fig. 2 do not seem to differ greatly.
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Figure 3. Plots of the lowest zeros of K(1,−1; s) in the complex plane of s−.

If we consider the zeros s0 of K(0, 0; s), we find that

Γ(s0)

πs0
C(0, 1; s) = T+(s), K(1, 1; s0) =

1

2

[
T+(s0) + 2(s0 −

1

2
)T−(s0)

]
. (3.27)

The expression for K(1, 1; s0) can only be zero on the critical line. Indeed, if we
assume in fact this term is zero, we obtain

ξ1(2s0) + ξ1(2s0 − 1) + (2s0 − 1) [ξ1(2s0)− ξ1(2s0 − 1)] = 0. (3.28)

Hence,

U(s0) =
ξ1(2s0 − 1)

ξ1(2s0)
=

s0

s0 − 1
=

σ0 + it0
σ0 − 1 + it0

. (3.29)

This yields a contradiction, since the modulus of the fourth expression in (3.29)
is larger than unity if σ0 > 1/2, and smaller than unity if σ0 < 1/2, whereas the
function U(s) has the opposite properties. This proposition was proved in Theorem
1 of Lagarias & Suzuki (2006).

On the critical line, we have from equations (3.12) and (3.14) that

T+(1/2+it) =
1

2
|ξ1(1+2it)| cos[arg[ξ1(1+2it)]], T−(1/2+it) =

i

2
|ξ1(1+2it)| sin[arg[ξ1(1+2it)]].

(3.30)
Hence, we see that

V(1/2+ it) = −i cot[arg ξ1(1+2it)], U(1/2+ it) = exp[−2i arg ξ1(1+2it)]. (3.31)

From equations (3.20) and (3.13),

2i=[K(1, 1; 1/2+it)] = it

[
Γ(1/2 + it)C(0, 1; 1/2 + it)

8π1/2+it
− 1

2
|ξ1(1 + 2it)| cos[arg[ξ1(1 + 2it)]]

]
.

(3.32)
Also, from equation (3.21),

2<[K(1, 1; 1/2+it)] =
Γ(1/2 + it)C(0, 1; 1/2 + it)

16π1/2+it
− t

2
|ξ1(1+2it)| sin[arg[ξ1(1+2it)]].

(3.33)
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We use quantities VK(1, 1; s) and UK(1, 1; s) defined by analogy to V(s), U(s) of
(3.17):

VK(1, 1; s) =
K(1, 1; s)−K(1, 1; 1− s)
K(1, 1; s) +K(1, 1; 1− s)

, UK(1, 1; s) =
K(1, 1; s)

K(1, 1; 1− s)
. (3.34)

Hence,

arg[UK(1, 1; 1/2 + it)] = arg

[
i

(
2Γ(1/2 + it)C(0, 1; 1/2 + it)

8π1/2+it|ξ1(1 + 2it)|
− cos[arg[ξ1(1 + 2it)]]

)
+(

Γ(1/2 + it)C(0, 1; 1/2 + it)

8π1/2+it|ξ1(1 + 2it)|t
− sin[arg[ξ1(1 + 2it)]]

)]
. (3.35)

Theorem 3.1. K(1, 1; s) and K(1, 1; 1− s) cannot be simultaneously zero for s off
the critical line.

Proof. We consider the situation where s0 lies off the critical line, and is such that
K(1, 1; s0) = 0 and K(1, 1; 1− s0) = 0. From the first of these and (3.11),

Γ(s0)C(0, 1; s0)

16πs0
=

(s0 − 1/2)

s0

Γ(s0 − 1/2)ζ(2s0 − 1)

4πs0−1/2
, (3.36)

while from the second and (3.22),

Γ(s0)C(0, 1; s0)

16πs0
=

(s0 − 1/2)

s0 − 1

Γ(s0)ζ(2s0)

4πs0
, (3.37)

If both these hold then C(0, 1; s0) cannot be zero, since ζ(2s0) and ζ(2s0−1) cannot
be zero simultaneously. Further, comparing (3.36) and (3.37),

U(s0) =
ξ1(2s0 − 1)

ξ1(2s0)
=

s0

s0 − 1
=

σ0 + it0
σ0 − 1 + it0

. (3.38)

We see from (3.38) that |U(s0)| > 1 if σ0 > 1/2, while |U(s0)| < 1 if σ0 < 1/2.
This in fact contradicts the known behaviour of |U(s0)|, given that its zeros lie in
σ0 > 1/2 and its poles in σ0 < 1/2.

Corollary 3.2. L(1, 0; s) and K(0, 0; s) cannot be simultaneously zero for s off the
critical line.

Proof. For any integer n, we can write

K(n, 1; s) = −L(n, 1; s) +
1

2

(
s− 1

2

)
K(n− 1, 0; s). (3.39)

If L(n, 1; s) and K(n−1, 0; s) are both zero, then L(n, 1; 1−s) and K(n−1, 0; 1−s)
are also both zero, the two functions being even. Thus, K(n, 1; s) and K(n, 1; 1− s)
are both zero. For n = 1, this cannot occur by the Theorem just proved, giving the
stated result.

Theorem 3.3. For σ0 ≤ 1/2, C(0, 1; s0) and K(1, 1; s0) cannot be simultaneously
zero.
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Proof. Let s0 be such that C(0, 1; s0) = 0. Consider first the case when s0 = 1/2 +
it0. Then if also K(1, 1; s0) = 0, its conjugate K(1, 1; 1 − s0) = 0. From equations
(3.20,3.21) this requires T+(s0) = 0 = T−(s0), a contradiction.

Consider next the case when s0 lies to the left of the critical line. Then from
(3.20,3.21) ,

K(1, 1; s0) = −1

2
(s0−

1

2
)[T+(s0)−T−(s0)] = −(s0−

1

2
)
Γ(s0 − 1

2 )ζ(2s0 − 1)

4πs0−1/2
, (3.40)

which is zero only for s0 to the right of the critical line, a contradiction.

Theorem 3.4. For any zero s0 of K(0, 0; s) off the critical line, C(0, 1; s0) is non-
zero, and vice versa.

Proof. If C(0, 1; s0) = 0 = K(0, 0; s0), then from equation (3.13), T+(s0) iz zero,
which requires s0 to lie on the critical line– a contradiction.

4. Alternative Symmetrization of K(1, 1; s)
The symmetrisation of K(1, 1; s) embodied in equations (3.20) and (3.21) can be
improved. A defect of the previous choice (3.20) is that the right-hand side has zeros
both off and on the critical line. The alternative symmetrisation we now investigate
is less obvious than its predecessor, but overcomes this deficiency. Let us define

K−(1, 1; s) = (1− s)K(1, 1; s)− sK(1, 1; 1− s) (4.1)

and
K+(1, 1; s) = (1− s)K(1, 1; s) + sK(1, 1; 1− s). (4.2)

Theorem 4.1. The symmetrised functions are given by

K−(1, 1; s) = − (s− 1/2)

2
[T+(s) + (2s− 1)T−(s)], (4.3)

and

K+(1, 1; s) =
s(1− s)

8πs
Γ(s)C(0, 1; s) +

(s− 1/2)

2
[(2s− 1)T+(s) + T−(s)]. (4.4)

The former has all its zeros on the critical line, as does K+(1, 1; s)−[s(1−s)/(8πs)]Γ(s)C(0, 1; s).
The distribution functions of the zeros are the same, and agree with those of T+(s)
and T−(s).

Proof. The equations (4.3) and (4.4) follow easily from equation (3.11). The as-
sertion that the zeros of the right-hand side of (4.3) all lie on the critical line has
already been proved above (see the discussion around equations (3.28) and (3.29)).
The proof that the zeros of [(2s− 1)T+(s) + T−(s)] lie on the critical line follows in
a similar fashion. Indeed,

(2s− 1)T+(s) + T−(s) ⇐⇒ 2sξ1(2s) + (2s− 2)ξ1(2s− 1) = 0 (4.5)

or
ξ1(2s− 1)

ξ1(2s)
= − s

s− 1
or U(s) = −

(
σ + it

σ − 1 + it

)
. (4.6)
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10 R.C. McPhedran

Given |U(s)| < 1 to the right of the critical line, and larger than it to the left, the
equation (4.6) can only hold on the critical line.

With regard to the location of those zeros on the critical line, using equation
(3.30) we find that these are given by

(2s− 1)T+(s) + T−(s) = 0 ⇐⇒ tan[arg ξ1(1 + 2it)] = −2t (4.7)

and

T+(s) + (2s− 1)T−(s)] = 0 ⇐⇒ tan[arg ξ1(1 + 2it)] =
1

2t
. (4.8)

Given arg ξ1(1 + 2it) is monotonic increasing with t beyond t ' 2.94, these zeros
alternate and have the same distribution function. As t increases, the zeros of (4.7)
tend towards the zeros of T+(s), and the zeros of (4.8) tend towards the zeros of
T−(s).

20 25 30 35 40
t

-60

-55

-50

-45

-40

-35

-30

Figure 4. Left: Plot of the logarithmic modulus of the functions T+(s) + (2s− 1)T−(s)
(red), (2s− 1)T+(s) + T−(s) (blue) and C(0, 1; s)Γ(s)/πs (green) along the critical line.

In Fig. 4 we show as an illustration of the results of Theorem 4.1 the variation
along the critical line of the logarithmic moduli of T+(s) + (2s − 1)T−(s), (2s −
1)T+(s) +T−(s) , and C(0, 1; s)Γ(s)/πs. It can be seen that all three functions have
similar exponential decay, and similar distributions of zeros, with for example the
numbers of zeros of each in the range of t from 0 to 100 being 79. The alternating
property of the zeros of the first two functions is also evident. In Fig. 5 we illustrate
the last remark in Theorem 4.1: the alignment of zeros between the pair T+(s) +
(2s− 1)T−(s), T−(s), and between the second pair (2s− 1)T+(s) + T−(s), T+(s) is
clear.
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92 94 96 98 100
t

-160

-155

-150

-145

-140

Figure 5. Left: Plot of the logarithmic modulus of the functions T+(s) + (2s − 1)T−(s)
(red), (2s−1)T+(s)+T−(s) (blue), T+(s) (green) and T−(s) (black) along the critical line.

Theorem 4.1 gives an example of a Macdonald function series, all of whose zeros
lie on the critical line:

(1−s)K(1, 1; s)−sK(1, 1; 1−s) =

∞∑
p1,p2=1

(
p2

p1

)s−1/2

(p1p2π)[(1−s)Ks+1/2(2πp1p2)−sK3/2−s(2πp1p2)].

(4.9)

Corollary 4.2. If VK(1, 1; s0) = −V(s0) then C(0, 1; s0)K−(1, 1; s0) = 0.

Proof. We start with equations (3.20, 3.21) and obtain two expressions for C(0, 1, s):

K(1, 1; s)−K(1, 1; 1− s)
s−T+(s)

=
Γ(s)C(0, 1; s)

8πsT+(s)
− 1, (4.10)

and
K(1, 1; s) +K(1, 1; 1− s)

s−T−(s)
=

Γ(s)C(0, 1; s)

16πss−T−(s)
+ 1. (4.11)

Dividing these,

VK(1, 1; s)
T−(s)

T+(s)
=

[
Γ(s)C(0,1;s)

8πsT+(s) − 1
]

[
Γ(s)C(0,1;s)

16πss−T−(s) + 1
] (4.12)

We now use the first element of equation (3.34) applying at s = s0, to give

−1

[
Γ(s0)C(0, 1; s0)

16πs0(s0 − 1/2)T−(s0)
+ 1

]
=

[
Γ(s0)C(0, 1; s0)

8πs0T+(s0)
− 1

]
(4.13)

This leads to

Γ(s0)C(0, 1; s0)

8πs0

[
T+(s0) + 2(s0 − 1/2)T−(s0)

2T+(s0)(s0 − 1/2)T−(s0)

]
= 0, (4.14)
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or C(0, 1; s0)K−(1, 1; s0) = 0 as asserted.

92 94 96 98 100

-4

-2

2

4

6

Figure 6. Left: Plot of the logarithmic modulus of the functions C(0, 1; s) (blue) and
[UK(1, 1; s) + U(s)]/[10−6 exp(πt/2)K−(1, 1; s)] (green) along the critical line.

We illustrate Corollary 4.2 in Fig. 6. Here we divide out a suitably scaled factor
of K−(1, 1; s) from UK(1, 1; s)+U(s) and compare with C(0, 1; s). The two functions
have clearly the same zeros, but differ between them.

Theorem 4.3. The Riemann Hypothesis for C(0, 1; s) holds if and only if VK(1, 1; s)
is pure imaginary at every zero.

Proof. From equation (3.11), if at a point s0 we have C(0, 1; s0) = 0, then

K(1, 1; s0) = − (s0 − 1/2)

4
ξ1(2s0 − 1) =

(s0 − 1/2)

2
[T−(s0)− T+(s0)], (4.15)

and, using the functional equation for ξ1,

K(1, 1; 1− s0) =
(s0 − 1/2)

4
ξ1(2s0) =

(s0 − 1/2)

2
[T−(s0) + T+(s0)]. (4.16)

Dividing (4.15) by (4.16) and using (3.34), we find

UK(1, 1; s0) = −ξ1(2s0 − 1)

ξ1(2s0)
= −U(s0), (4.17)

and its equivalent equation

VK(1, 1; s0) =
K(1, 1; s0)−K(1, 1; 1− s0)

K(1, 1; s0) +K(1, 1; 1− s0)
=
UK(1, 1; s0)− 1

UK(1, 1; s0) + 1
= −V(s0). (4.18)
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Suppose now the Riemann Hypothesis holds for C(0, 1; s). Then s0 lies on the
critical line, so that |U(s0)| = 1, and by (4.17), |UK(1, 1; s0)| = 1. Now,

UK(1, 1; s) =
1 + VK(1, 1; s)

1− VK(1, 1; s)
. (4.19)

Hence, |UK(1, 1; s0)| = 1 if and only if VK(1, 1; s)) is pure imaginary.
Conversely, if VK(1, 1; s0) is pure imaginary and C(0, 1; s0) = 0, |U(s0)| = 1 and

s0 must lie on the critical line.

For the alternative symmetrised K’s, we have at a zero s0 of C(0, 1, s),

K+(1, 1; s0) = (s0 − 1/2)2

[
T+(s0) +

T−(s0)

2(s0 − 1/2)

]
, (4.20)

and

K−(1, 1; s0) = −(s0 − 1/2)2

[
T−(s0) +

T+(s0)

2(s0 − 1/2)

]
. (4.21)

Hence,
K+(1, 1; s0)

K−(1, 1; s0)
= −

{
V(s0) + 1/[2(s0 − 1/2)]

1 + V(s0)/[2(s0 − 1/2)]

}
. (4.22)

We can strengthen Theorem 4.3 using results proved by Lagarias and Suzuki
(2006), in conjunction with equation (4.17). This relation applying when C(0, 1; s0) =
0 can be written

ξ1(2s0) + UK(1, 1; 1− s0)ξ1(2− 2s0) = 0. (4.23)

We express this in a more generic form:

ξ1(2s0) + F(s0)ξ1(2− 2s0) = 0, (4.24)

where F(s) is a function obeying the equation F(1 − s) = 1/F(s). Lagarias and
Suzuki (2006) prove that if (4.23) holds then s0 must lie on the critical line, for three
examples of F(s) : F(s) = (1 − s)/s (their Theorem 1), F(s) = (1 − s)T (1−2s)/s
with T ≥ 1 (their Theorem 2), and F(s) = −y(1−2s) with y ≥ 1 (their Theorem 3).
In the third case, two real zeros can exist off the critical line, if y > 7.055507+. The
real quantities T and y are parameters lending generality to the following result.

Theorem 4.4. If s0 is such that C(0, 1; s0) = 0, then s0 lies on the critical line if

1

2s0 − 1
log

[
(1− s0)UK(1, 1; s0)

s0

]
≥ 1, or

1

2s0 − 1
log [−UK(1, 1; s0)] ≥ 1. (4.25)

In the latter case, there can occur two exceptional zeros on the real line.

Proof. The proof follows immediately using equation (4.17) and Theorem 2 and 3
of Lagarias and Suzuki (2006). The first of (4.25) gives a quantity required to be
real, denoted T , while the second gives a quantity required to be real, denoted by
y. The result is only meaningful if s0 is such that the quantities are in fact real.
(This occurs on specific contours in the complex plane, but not in general.)
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While the Theorem 4.4 is of interest, in fact the conditions specified in equation
(4.25) only apply on specific arcs in the complex plane. Lagarias and Suzuki (2006)
also comment on an alternate method which gives information on the zeros of the
functions

H(y; s) = p(s)ξ1(2s)ys + p(1− s)ξ1(2− 2s)y1−s, (4.26)

for y ≥ 1, provided that p(s) is a polynomial with real coefficients. (Note that the
notation in equation (4.26) has been changed to conform with that of this work, and
a typographic error has been corrected.) The alternate method shows that all but
finitely many zeros of H(y; s) lie on the critical line, that the zeros off the critical
line are confined to a compact set independent of y ≥ 1 and that their number is
uniformly bounded for all y ≥ 1. The method is not presented in their paper, but
the wish to publish it elsewhere is expressed. The power and utility of this result is
made manifest in the following result.

Theorem 4.5. Assuming the result of Lagarias and Suzuki (2006) concerning
the zeros of the function (4.26), the Riemann Hypothesis holds for the function
C(0, 1; s), and so for the functions ζ(s) and L−4(s), possibly with a finite number
of exceptions lying in a compact set.

Proof. We have from the proofs of Corollary 4.2 and Theorem 4.3 that a zero s0 of
C(0, 1; s) can lie off the critical line if and only if U(s0) = −UK(1, 1; s0). From the
definition (3.17), this is equivalent to

ξ1(2s0 − 1) + UK(1, 1; s0)ξ1(2s0) = 0. (4.27)

We can apply the result of Lagarias and Suzuki (2006) then if we can establish that,
if, for any candidate zero s0 located (without loss of generality) to the right of the
critical line,

UK(1, 1; s0) =
pN (s0)

pN (1− s0)
y2s0−1, (4.28)

for some polynomial pN (s) of finite degree N with real coefficients, and for some
real y ≥ 1. Note that U(s0) is neither zero nor infinity, and its modulus is less than
unity.

For our purpose, it is sufficient to take the case N = 2, where we require two
real coefficients α and β to be determined, or equivalently one complex zero s1,
with the scaling parameter y also to be chosen. We suppress arguments to render
expressions more compact, and let

ŨK = UK(1, 1; s0)y1−2s0 , (4.29)

with the equation(4.28) becoming

ŨK =
[s2

0 + αs0 + β]

[(1− s0)2 + α(1− s0) + β]
=

(s0 − s1)(s0 − s̄1)

(1− s0 − s1)(1− s0 − s̄1)
. (4.30)

Let
LK = (1− ŨK)s2

0 + 2ŨKs0 − ŨK. (4.31)

Then (4.30) becomes

LK = α[ŨK(1− s0)− s0] + β[ŨK]. (4.32)
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We combine (4.32) with its conjugate

L̄K = α[ ¯̃UK(1− s̄0)− s̄0] + β[ ¯̃UK]. (4.33)

We solve the two linear equations (4.32) and (4.33) to obtain the real coefficients:

α =
<[LK]=[ŨK − 1]−=[LK]<[ŨK − 1]

<[ŨK(1− s0)− s0]=[ŨK − 1]−=[ŨK(1− s0)− s0]<[ŨK − 1]
, (4.34)

and

β =
LK − α[ŨK(1− s0)− s0]

ŨK − 1
. (4.35)

For ŨK << 1, it is easy to see that the denominators in (4.34) and (4.34) are non-
zero. The two zeros of the numerator in (4.30) are given by the complex conjugate
pair

s1 =
−α±

√
α2 − 4β

2
. (4.36)

The real factor y is required to be not less than unity. It serves to scale the
distance between s0 and s1: the bigger y, the closer s1 is to s0. For small |ŨK|, the
simple first-order estimate for s1 is s0 + (1 − 2σ0)ŨK. If we prescribe the value of
|ŨK|, then y is given by

y =

[
|ŨK|
|UK|

] 1
1−2σ0

(4.37)

As an illustration of the concluding remarks in Theorem 4.5, we show in Fig. 7
a plot of s− s1, for <(s0) = 0.51 and t varying between 90 and 100. The parameter
y has been chosen using (4.37) to keep |ŨK| fixed at the value 0.0108 as t varies.
The first order estimate for s0− s1 is then 0.02×0.0108 = 2.16×10−4 independent
of t0; the red circle shows the accurate values for s0 − s1 calculated from (4.35) lie
close to a circle of radius 2.170× 10−4, independent of t0.

5. The Sums Z

It is useful to introduce a new notation for certain lattice sums which involve
mixtures of powers of both sin and cos of the angle θp,p2 :

Z(2n, 2m; s) =

′∑
p1,p2

p2n
1 p2m

2

(p2
1 + p2

2)n+m+s
. (5.1)

Then from (2.3)

Z(2n, 0; s) = C(2n, 1; s) =
πs

Γ(s+ n)

[
2

Γ(s+ n− 1/2)

Γ(s− 1/2)
ξ1(2s− 1) + 8K(n, n; s)

]
,

(5.2)
or

Γ(s+ n)

πs
Z(2n, 0; s) = 2

Γ(s+ n− 1/2)

Γ(s− 1/2)
ξ1(2s− 1) + 8K(n, n; s). (5.3)
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Figure 7. Plot of s0 − s1, for σ0 = 0.51 and t0 ranging from 90 to 100 in steps of 0.2. The
red line is a circle of radius 2.170× 10−4.

The lattice sums Z(2n, 2m; s) obey the recurrence relation

Z(2n, 2m; s) = Z(2n+ 2, 2m; s) + Z(2n, 2m+ 2; s), (5.4)

or a more general form which expresses any Z(2n, 2m; s) in terms of Z(2l, 0; s):

Z(2n, 2m; s) =

m∑
l=0

mCl(−1)m−lZ(2n+ 2m− 2l, 0; s). (5.5)

We can start a recurrent solution for the sums Z(2n, 2m; s) using the starting values

Orders 0, 2 : Z(0, 0; s) = C(0, 1; s), Z(0, 2; s) = Z(2, 0; s) =
1

2
C(0, 1; s). (5.6)

The recurrent solution expresses each Z(2n, 2m; s) of order 2n+ 2m in terms of
sums Z(4l, 0; s) of equal or lower order. Its results of low order will now be given.

Order 4 : Z(2, 2; s) =
1

2
C(0, 1; s)−Z(4, 0; s). (5.7)

Order 6 : Z(2, 4; s) =
1

2
Z(2, 2; s) =

1

4
C(0, 1; s)− 1

2
Z(4, 0; s); (5.8)

Z(6, 0; s) =
3

2
Z(4, 0; s)− 1

4
C(0, 1; s). (5.9)

Order 8 : Z(2, 6; s) =
3

2
Z(4, 0; s)−Z(8, 0; s)− 1

4
C(0, 1; s); (5.10)

Z(4, 4; s) = −2Z(4, 0; s) + Z(8, 0; s) +
1

2
C(0, 1; s). (5.11)
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Order 10 : Z(10, 0; s) =
5

2
Z(8, 0; s)− 5

2
Z(4, 0; s) +

1

2
C(0, 1; s); (5.12)

Z(2, 8; s) = −3

2
Z(8, 0; s) +

5

2
Z(4, 0; s)− 1

2
C(0, 1; s); (5.13)

Z(4, 6; s) =
1

2
Z(8, 0; s)−Z(4, 0; s) +

1

4
C(0, 1; s).

(5.14)

These results are sufficient to establish the pattern of the Z(2n, 2m; s): a linear
combination of all Z(4m, 0; s) up to the order in question, followed by a term
proportional to C(0, 1; s). The Z(4m + 2, 0; s) can all be determined explicitly in
terms of Z(4m, 0; s) of lower order and C(0, 1; s).

6. The System of Order 4

We start with equation (2.3) for n = 2:

∑
(p1,p2)

′ p4
1

(p2
1 + p2

2)s+2
= C(4, 1; s) =

2
√
πΓ(s+ 3/2)ζ(2s− 1)

Γ(s+ 2)
+

8πs

Γ(s+ 2)
K(2, 2; s).

(6.1)
We use the first of the recurrence relations (2.7) to obtain

K(2, 2; s) = K(2, 0; s) + (s+ 1/2)K(1, 1; s), (6.2)

We use (3.11) in (7.8) and simplify to obtain

C(4, 1; s) =
(s+ 1/2)

2(s+ 1)
C(0, 1; s) +

8πs

Γ(s+ 2)
K(2, 0; s) = Z(4, 0; s). (6.3)

The other elements of the system of order 4 can be evaluated from results given
in McPhedran et al (2010). We have

C(2, 2; s) =

′∑
p1,p2

(p2
1 − p2

2)2

(p2
1 + p2

2)s+2
= 4C(4, 1; s)− C(0, 1; s), (6.4)

where in the primed sum p1 and p2 run over all integers, excluding the origin (0,0).
This gives

C(2, 2; s) =

(
s

s+ 1

)
C(0, 1; s) +

32πs

Γ(s+ 2)
K(2, 0; s). (6.5)

Also,

S(2, 2; s) =

′∑
p1,p2

4p2
1p

2
2

(p2
1 + p2

2)s+2
= −4C(4, 1; s) + 2C(0, 1; s), (6.6)

and

S(2, 2; s) =

(
1

s+ 1

)
C(0, 1; s)− 32πs

Γ(s+ 2)
K(2, 0; s) = 4Z(2, 2; s). (6.7)
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The most important member of the family is

C(1, 4; s) =

′∑
p1,p2

cos 4θp1,p2
(p2

1 + p2
2)s+2

= C(2, 2; s)− S(2, 2; s), (6.8)

where θp1,p2 = arg(p1 + ip2). This gives

C(1, 4; s) =

[
(s− 1)

s+ 1

]
C(0, 1; s) +

64πs

Γ(s+ 2)
K(2, 0; s). (6.9)

These sums may be re-expressed in terms of C(0, 1; s) and C(1, 4; s):

C(4, 1; s) =
3

8
C(0, 1; s) +

1

8
C(1, 4; s), (6.10)

C(2, 2; s) =
1

2
C(0, 1; s) +

1

2
C(1, 4; s), (6.11)

S(2, 2; s) =
1

2
C(0, 1; s)− 1

2
C(1, 4; s), (6.12)

and

64K(2, 0; s) = s(1− s)Γ(s)

πs
C(0, 1; s)− Γ(s+ 2)

πs
C(1, 4; s). (6.13)

The equation (6.13) reflects the symmetry of K(2, 0; s) under s→ 1− s.
Functional equations for these sums may be derived using this symmetry prop-

erty of K(2, 0; s). For example, from (7.16) we obtain

Γ(s+ 2)

πs
C(1, 4; s) = (s− 1)s

Γ(s)

πs
C(0, 1; s) + 64 K(2, 0; s). (6.14)

The right-hand side of (6.14) is unaltered if s is replaced by 1 − s, giving a new
derivation of the functional equation for C(1, 4; s).

The equations corresponding to (6.14) for the other sums of order four consist
of a coefficient of C(0, 1; s) which is neither even nor odd under s → 1 − s. These
are written below with the first two terms on the right-hand side being even, and
the third odd.

Γ(s+ 2)

πs
C(2, 2; s) = [(s−1/2)2+1/4]

[
Γ(s)C(0, 1; s)

πs

]
+32K(2, 0; s)+(s−1/2)

[
Γ(s)C(0, 1; s)

πs

]
.

(6.15)

Γ(s+ 2)

πs
S(2, 2; s) =

1

2

[
Γ(s)C(0, 1; s)

πs

]
− 32K(2, 0; s) + (s− 1

2
)

[
Γ(s)C(0, 1; s)

πs

]
.

(6.16)

Γ(s+ 2)

πs
C(4, 1; s) =

[(s− 1/2)2 + 1/2]

2

[
Γ(s)C(0, 1; s)

πs

]
+ 8K(2, 0; s) +

3(s− 1/2)

4

[
Γ(s)C(0, 1; s)

πs

]
=

Γ(s+ 2)

πs
Z(4, 0; s). (6.17)
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Theorem 6.1. The Riemann hypothesis for C(0, 1; s) is equivalent to the propo-
sition that, for arbitrary complex numbers α, β, γ subject only to the restriction
α+ β + 3γ/4 6= 0, and for all s not on the critical line,

Γ(s+ 2)

πs
[αC(2, 2; s)+βS(2, 2; s)+γC(4, 1; s)] 6= Γ(3− s)

π1−s [αC(2, 2; 1−s)+βS(2, 2; 1−s)+γC(4, 1; 1−s)].
(6.18)

Proof. We have

αC(2, 2; s)+βS(2, 2; s)+γC(4, 1; s) =

[
1

2
α+

1

2
β +

3

8
γ

]
C(0, 1; s)+

[
1

2
α− 1

2
β +

1

8
γ

]
C(1, 4; s).

(6.19)
We multiply this expression by Γ(s+2)/πs, giving a second term on the right-hand
side which is even under s→ 1− s, and so cancels out in (6.18). The first term has
both an even part and an odd part, with only the odd part contributing to (6.18).
We disregard the trivial cases s = 0, and s = −1, and deduce that, for the left-hand
and right-hand sides of (6.18) to be equal, it is necessary and sufficient that(

α+ β +
3

4
γ

)
Γ(s)

πs
C(0, 1; s) = 0, (6.20)

i.e, that C(0, 1; s) = 0.

Corollary 6.2. The Riemann hypothesis for C(0, 1; s) implies that for all s not on
the critical line, the following three inequalities hold:

Γ(s+ 2)

πs
C(2, 2; s) 6= Γ(3− s)

π1−s C(2, 2; 1− s), (6.21)

Γ(s+ 2)

πs
S(2, 2; s) 6= Γ(3− s)

π1−s S(2, 2; 1− s), (6.22)

and
Γ(s+ 2)

πs
C(4, 1; s) 6= Γ(3− s)

π1−s C(4, 1; 1− s). (6.23)

If any of the three inequalities fails, the Riemann hypothesis for C(0, 1; s) fails.

Proof. We recall the identities C(1, 4; s) = C(2, 2; s)−S(2, 2; s), C(0, 1; s) = C(2, 2; s)+
S(2, 2; s). From Theorem 4.5, if we let γ = 0 and α = −β+δ, and use the functional
equation (6.14) for C(1, 4; s), we obtain (6.21). Setting γ = 0 and β = −α + δ, we
obtain (6.22). Putting β = −α and using γ 6= 0, we obtain (6.23).

If any of the three inequalities is replaced by an equality, then from the vanishing
of the third term on the right-hand sides of one of equations (6.15-6.17), C(0, 1; s) =
0 for an s off the critical line.

As a trivial extension of Corollary 6.2, we have:

Corollary 6.3. The Riemann hypothesis for C(0, 1; s) implies that for s0 not on
the critical line:
if C(2, 2; s0) = 0, then C(2, 2; 1− s0) 6= 0;
if S(2, 2; s0) = 0, then S(2, 2; 1− s0) 6= 0;
if C(4, 1; s0) = 0, then C(4, 1; 1− s0) 6= 0.

If any of the three inequalities fails, the Riemann hypothesis for C(0, 1; s) fails.
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The previous Theorem and Corollaries have the following equivalents for C(1, 4; s):

Theorem 6.4. The Riemann hypothesis for C(1, 4; s) is equivalent to the proposi-
tion that, for arbitrary complex numbers α′, β′, γ′ subject only to the restriction
α′ − β′ + γ′/4 6= 0, and for all s not on the critical line,

Γ(s)

πs
[α′C(2, 2; s)+β′S(2, 2; s)+γ′C(4, 1; s)] 6= Γ(1− s)

π1−s [α′C(2, 2; 1−s)+β′S(2, 2; 1−s)+γ′C(4, 1; 1−s)].
(6.24)

Corollary 6.5. The Riemann hypothesis for C(1, 4; s) implies that for all s not on
the critical line, the following three inequalities hold:

Γ(s)

πs
C(2, 2; s) 6= Γ(1− s)

π1−s C(2, 2; 1− s), (6.25)

Γ(s)

πs
S(2, 2; s) 6= Γ(1− s)

π1−s S(2, 2; 1− s), (6.26)

and
Γ(s)

πs
C(4, 1; s) 6= Γ(1− s)

π1−s C(4, 1; 1− s). (6.27)

If any of the three inequalities fails, the Riemann hypothesis for C(1, 4; s) fails.

These are proved by multiplying (6.19) by Γ(s)/πs rather than by Γ(s+ 2)/πs.
This results in the cancellation of C(0, 1; s) rather than C(1, 4; s) when antisymmet-
ric combinations are formed.

Corollary 6.6. The Riemann hypothesis for C(1, 4; s) implies that for s0 not on
the critical line:
if C(2, 2; s0) = 0, then C(2, 2; 1− s0) 6= 0;
if S(2, 2; s0) = 0, then S(2, 2; 1− s0) 6= 0;
if C(4, 1; s0) = 0, then C(4, 1; 1− s0) 6= 0.

If any of the three inequalities fails, the Riemann hypothesis for C(1, 4; s) fails.

The Corollaries 6.3 and 6.6 when combined give

Theorem 6.7. If any of the lattice sums C(2, 2; s), S(2, 2; s), C(4, 1; s) is zero for
a non-trivial complex point s0 and in addition is zero for 1 − s0 , then all are
zero at both points, as are C(0, 1; s), K(2, 0; s), C(1, 4; s), and all Z(2n, 2m; s), with
2n+ 2m ≤ 6 .

In Fig. 8 we show plots of log |C(2, 2; s)| and log |C(0, 1; s)| in a region of the
critical line. Note the correspondence between zeros of C(0, 1; s) and near-zeros of
C(1, 4; s). We also show a contour plot of the argument of C(2, 2; s). In the region
shown there are zeros of C(2, 2; s) both to the left and the right of the critical line-
e.g, at s = 0.531596 + 12.43i and s = 0.467428 + 14.8151i.

Theorem 6.7 is in keeping with an argument given in Section 9 of McPhedran
et al (2008). Suppose one of the three sums is zero for s0 and 1 − s0. Then from
the previous Theorem, all are, as are all sums Z up to order 6. Thus, the general
sum with a sixth-order numerator is zero:

′∑
p1,p2

P6(p1, p2)

(p2
1 + p2

2)s0+2
= 0, (6.28)
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Figure 8. Left: Plot of the logarithmic modulus of the functions C(2, 2; s) (red), and
C(0, 1; s) (blue) along the critical line. Right: Contour plot of the argument of C(2, 2; s) as
a function of σ and t.

where, with c4,0, α4, β4 and γ4 being arbitrary real or complex quantities,

P6(p1, p2) = c6,0p
6
1+c4,2p

4
1p

2
2+c2,4p

2
1p

4
2+c0,6p

6
2 = c6,0(p2

1−α6p
2
2)(p2

1−β6p
2
2)(p2

1−γ6p
2
2).

(6.29)
Note that this sum is uniquely defined by the Macdonald function expansion of
Z(4, 0; s) and by that of Z(2, 0; s). We can choose the quantities α6, β6 and γ6 at
will to alter the contributions of any line running through the double array of points
(p1, p2) without altering the value of the sum, with the sums over such lines being
absolutely convergent for s to the right of the critical line. This argues against the
existence of a point s0 invalidating the Riemann hypotheses for both C(0, 1; s) and
C(1, 4; s).

7. The System of Order 6

From McPhedran et al (2010), we have

C(6, 1; s) = Z(6, 0; s) =
3

2
C(4, 1; s)− 1

4
C(0, 1; s). (7.1)

Using (6.17), we find

C(6, 1; s) =

[
(2s+ 1/2)

4(s+ 1)

]
C(0, 1; s) +

12πs

Γ(s+ 2)
K(2, 0; s). (7.2)

We can rewrite (7.2) in a symmetrized form suitable for constructing functional
equations

Γ(s+ 2)

πs
C(6, 1; s) =

[
4(s− 1/2)2 + 3/2

8

](
Γ(s)C(0, 1; s)

πs

)
+12K(2, 0; s)+

[
5(s− 1/2)

8

]
C(0, 1; s).

(7.3)
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The first two terms on the right-hand side of (7.3) are even under s→ 1− s, while
the third is odd.

From McPhedran et al (2010) we have

Z(4, 2; s) =
1

8
S(2, 2; s), C(2, 3; s) = S(2, 3; s) =

1

2
C(0, 1; s). (7.4)

The first of these gives

Γ(s+ 2)

πs
Z(4, 2; s) =

1

16

[
C(0, 1; s)Γ(s)

πs

]
− 4K(2, 0; s)

+
(s− 1/2)

8

[
C(0, 1; s)Γ(s)

πs

]
. (7.5)

Using the recurrence relation (2.7),

K(2, 2; s) = K(2, 0; s) +
1

4

[
T+(s) + (1 + 2s2

−)K(0, 0; s) + 2s−T−(s))
]

+
s−
4

[3K(0, 0; s) + T+(s) + 2s−T−(s)] . (7.6)

Theorem 7.1. Assuming the result of Lagarias and Suzuki (2006) concerning
the zeros of the function (4.26), the Riemann Hypothesis holds for the function
C(1, 4; s), possibly with a finite number of exceptions lying in a compact set.

Proof. The first step in the proof is to construct a function which can play the role
of K(1, 1; s) in Theorem 4.5. We do this by combining the various expressions for
C(4, 1; s) and C(6, 1; s) in such a way as to eliminate C(0, 1; s). Now,

C(4, 1; s) =
2
√
πΓ(s+ 3/2)

Γ(s+ 2)
ζ(2s−1)+

8πs

Γ(s+ 2)
K(2, 2; s) =

3

8
C(0, 1; s)+

1

8
C(1, 4; s).

(7.7)
and

C(6, 1; s) =
2
√
πΓ(s+ 5/2)

Γ(s+ 3)
ζ(2s−1)+

8πs

Γ(s+ 3)
K(3, 3; s) =

5

16
C(0, 1; s)+

3

16
C(1, 4; s).

(7.8)
Taking the appropriate combination of equations (7.7) and (7.8) to eliminate C(0, 1; s),
we obtain

Γ(s+ 2)

πs
C(1, 4; s) = 4ξ1(2s−1)

[
6(s+ 3/2)(s+ 1/2)(s− 1/2)

s+ 2
− 5(s+ 1/2)(s− 1/2)

]
+16K4,6(s),

(7.9)
or

Γ(s+ 2)

πs
C(1, 4; s) = 4ξ1(2s− 1)(s+ 1/2)(s− 1/2)

[
s− 1

s+ 2

]
+ 16K4,6(s), (7.10)

where

K4,6(s) =
6K(3, 3; s)

s+ 2
− 5K(2, 2; s). (7.11)
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Replacing s by 1 − s in (7.10), the left-hand side is unaltered, with the equation
becoming

Γ(s+ 2)

πs
C(1, 4; s) = 4ξ1(2s)(3/2− s)(1/2− s)

[
−s

3− s

]
+ 16K4,6(1− s). (7.12)

The second step is to note that the antisymmetric combination K4,6(s)−K4,6(1−
s) obeys an identity from (7.10) and (7.12):

K4,6(s)−K4,6(1−s) = −s(3/2− s)(1/2− s)
4(3− s)

ξ1(2s)− (s− 1)(s− 1/2)(s+ 1/2)

4(s+ 2)
ξ1(2s−1).

(7.13)
This antisymmetric combination will be zero when

ξ1(2s− 1)

ξ1(2s)

[
(s− 3)(s− 1)

(s+ 2)s

] [
(s+ 1/2)

(s− 3/2)

]
= 1. (7.14)

The numerator in equation (7.14) has all its zeros to the right of the critical line,
apart from the single zero at s = −1/2.The denominator has all its zeros to the left
of the critical line, apart from the single zero at s=3/2. From the treatments given in
Lagarias and Suzuki (2006) and McPhedran and Poulton (2013), the function on the
left-hand side has modulus unity everywhere on the critical line, with the modulus
being greater than unity to the left of the critical line, and smaller than unity to
its right, with the exception of a region with |t| small. In this case, the exceptional
region runs up to |t| ' 1.33634, where the imaginary part of this function has a
turning point on the critical line, with its modulus being around 0.68168. (Above
this modulus, all other turning points of the real or imaginary parts correspond to
the function reaching ±1.)

The third step is to consider the zeros of C(1, 4; s). If C(1, 4; s0) = 0, then from
equation (7.10),

ξ1(2s0 − 1)(s0 + 1/2)(s0 − 1/2)

[
s0 − 1

s0 + 2

]
= −4K4,6(s0), (7.15)

while from equation (7.12),

ξ1(2s0)(3/2− s0)(1/2− s0)

[
s0

3− s0

]
= 4K4,6(1− s0). (7.16)

Dividing (7.16) by (7.15) and rearranging gives

ξ1(2s0) +

[
K4,6(1− s0)(s0 + 1/2)(1− s0)(3− s0)

K4,6(s0)(3/2− s0)s0(s0 + 2)

]
ξ1(2s0 − 1) = 0. (7.17)

It may be verified that, if (7.17) holds, then we have, using equation (7.14),

[K4,6(s0)−K4,6(1− s0)]

[
K4,6(s0) +

ξ1(2s0 − 1)(s0 + 1/2)(s0 − 1/2)(s0 − 1)

4(s0 + 2)

]
= 0,

(7.18)
i.e., either K4,6(s0) = K4,6(1− s0) or C(1, 4; s0) = 0.
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The fourth step is to adapt the method of Theorem 4.5 to the equation (7.17).
We replace Ũ by

ŨK46 =
(3/2− s0)s0(s0 + 2)K46(s0)y1−2s0

(s0 + 1/2)(1− s0)(3− s0)K46(1− s0)
, (7.19)

and

LK46 = (1− ŨK46)s2
0 + 2ŨK46s0 − ŨK46. (7.20)

The equations (4.34-4.36) may then be used to determine the parameters α, β and
s1 of the quadratic polynomial quotient, and equation (4.37) the scale parameter
y. This enables the result of Lagarias and Suzuki (2006) to be applied, proving the
stated result.

The argument of the third step in Theorem is illustrated in Fig. 9: the zeros of
the function corresponding to the red line are the unions of the zeros corresponding
to K4,6(s0) − K4,6(1 − s0) (green line) or C(1, 4; s0) (blue line) . The argument of
the fourth step is illustrated in Fig. 10, the equivalent of Fig. 7, but adapted to
the different definition of ŨK occurring in equation (7.19). The two figures show
the same close correspondence between the first order estimate (the red circle) and
the accurate results (points), but it will be noticed that the points have a slightly
different distribution around the circle circumference in the two cases.
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Figure 9. Plot of the logarithmic modulus of the functions
C(1, 4; s) (blue), [K4,6(s) − K4,6(1 − s)] exp[πt/2]10−3] (green) and
K4,6(s)/K4,6(1 − s) + (ξ1(2s − 1)(s + 1/2)(1 − s)(3 − s)/(ξ1(2s)(3/2 − s)s(s + 2)))
(red) along the critical line.

Remark: Theorems 6.1, 6.4 and Corollaries 6.2, 6.3, 6.5, 6.6 apply to C(6, 1; s) =
Z(6, 0; s) and Z(4, 2; s), so that neither of these can be zero at both points s0 and
1− s0 without violating the Riemann hypotheses for C(0, 1; s) and C(1, 4; s).
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Figure 10. Plot of s0−s1 in the context of the discussion of Theorem 7 , for σ0 = 0.51 and
t0 ranging from 90 to 100 in steps of 0.2. The red line is a circle of radius 2.170× 10−4.

8. The System of Order Eight

The object of this section is restricted to obtaining the equivalent of Theorem 7 for
the function C(1, 8; s). The method used will be similar, so the exposition will be
as brief as possible.

Theorem 8.1. Assuming the result of Lagarias and Suzuki (2006) concerning
the zeros of the function (4.26), the Riemann Hypothesis holds for the function
C(1, 8; s), possibly with a finite number of exceptions lying in a compact set.

Proof. From the expansion of the Chebyshev polynomial of order eight, it follows
that

C(1, 8; s) = 128C(8, 1; s)− 224C(4, 1; s) + 49C(0, 1; s). (8.1)

We use equation (2.3) to expand (8.1), together with the relation C(0, 1; s) =
2C(2, 0; s), giving in symmetrised form

Γ(s+ 4)C(1, 8; s)

πs
= 4ξ1(2s− 1)[(s− 1)(s− 1/2)(s2 − 33s− 78)] + 8K8(s), (8.2)

where

K8(s) = 128K(4, 4; s)−224(s+ 3)(s+ 2)K(2, 2; s) + 98(s+ 3)(s+ 2)(s+ 1)K(1, 1; s).
(8.3)

Hence, if C(1, 8; s0) = 0,

ξ1(2s0 − 1)[(s0 − 1)(s0 − 1/2)(s2
0 − 33s0 − 78)] + 2K8(s0) = 0. (8.4)

Replacing s0 by 1− s0, we also require

ξ1(2s0)[s0(s0 − 1/2)(s2
0 + 31s0 − 110)] + 2K8(1− s0) = 0. (8.5)
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Dividing (8.4) by (8.5), we obtain

ξ1(2s0 − 1)[(1− s0)(s2
0 − 33s0 − 78)]

ξ1(2s0)[s0(s2
0 + 31s0 − 110)]

+
K8(s0)

K8(1− s0)
= 0. (8.6)

This leads to the definition

ŨK8 =
K8(s0)[s0(s2

0 + 31s0 − 110)]y1−2s0

K8(1− s0)(1− s0)(s2
0 − 33s0 − 78)]

. (8.7)

With ŨK8 replacing ŨK46, the proof is completed according to the argument of
Theorem 7.

The exceptional region for the discussion of Theorem 8.1 is shown in Fig. 11.
This region is located below the contour of unit modulus of the first function on
the left-hand side of equation (8.6), and as this line is crossed the region where
its modulus is larger than unity switches sides of the critical line. For large t zeros
are to the right of the critical line and poles to its left. The function has a zero at
around s = −2.21497, and a pole at around s = 3.21497 within the plot region;
outside it there are a zero at s ≈ 35.215 and a pole at s ≈ −34.215.
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Figure 11. A contour plot of the function
ξ1(2s− 1)[(1− s)(s2 − 33s− 78)/(ξ1(2s)s(s2 + 31s− 110)).
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