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This paper studies combinations of the Riemann zeta function, based on one defined
by P.R. Taylor, which was shown by him to have all its zeros on the critical line.
With a rescaled complex argument, this is denoted here by T−(s), and is considered
together with a counterpart function T+(s), symmetric rather than antisymmetric
about the critical line. We prove that T+(s) has all its zeros on the critical line, and
that the zeros of both functions are all of first order. We establish a link between the
zeros of T−(s) and of T+(s) with those of the zeros of the Riemann zeta function
ζ(2s − 1), which enables us to prove if the Riemann hypothesis holds then the
distribution function of the zeros of ζ(2s − 1) agrees with those for T−(s) and of
T+(s) in all terms which do not remain finite as t→∞.
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1. Introduction

The Riemann hypothesis is considered to be one of the most important unsolved
problems in mathematics, and a central issue in analytic number theory (Titch-
marsh and Heath-Brown, 1987), as, if proved, it would give more precise estimates
for the distribution of zeros of the Riemann zeta function ζ(s)of the complex ar-
gument s = σ + it, and in turn more precise information about the distribution of
prime numbers. The hypothesis itself is that all zeros of ζ(s) have σ = 1/2, and
its proof has resisted the efforts of many famous mathematicians. However, their
efforts have resulted in an impressive and extensive literature, dealing with many
properties of ζ(s) and closely related functions.

Among many results concerning the Riemann hypothesis which have been proved,
we cite the property that all zeros of ζ(s) lie in the critical strip 0 < σ < 1/2, and
that the number of zeros lying on the critical line is infinite (Titchmarsh and Heath-
Brown, 1987). The Bohr-Landau Theorem (Edwards, 1974) proves that all but an
infinitesimal fraction of zeros of ζ(s) lie arbitrarily close to the critical line. This
important result however does not constrain the proportion of zeros actually lying
on the critical line. Work on constraining this fraction has continued, with the re-
sults improving from 1/3 (Levinson, 1974) to 2/5 (Conrey, 1989) and latterly to
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41% (Bui, Conrey and Young, 2011). There of course have been numerical inves-
tigations as to the truth of the Riemann hypothesis for finite ranges of =(s) = t
(see for example Chapter 15 in Titchmarsh and Heath-Brown, 1987), with it being
established that the first 1.5 × 109 zeros of ζ(s) are simple and lie on the critical
line. (The fact that all zeros of ζ(s) are simple is an important property of ζ(s) yet
to be proved.)

Such a famous conjecture as the Riemann hypothesis has attracted the attention
of physicists, and indeed is of importance to them, since the zeta function occurs
in regularisation arguments in quantum field theories (Elizalde, 1995). An excellent
review of the links between physics and the Riemann hypothesis has been given
by Schumayer and Hutchinson (2011). The connections they mention are in classi-
cal mechanics, quantum mechanics, nuclear physics, condensed matter physics, and
statistical physics. The path the present authors and their colleagues followed lead-
ing to investigations into the hypothesis commenced with a paper by Lord Rayleigh
(1892), which has been applied in studies of photothermal solar absorbers (McPhe-
dran & McKenzie, 1978, Perrins, McKenzie & McPhedran, 1979), photonic crystals
and metamaterials (Nicorovici, McPhedran & Botten, 1995) . Its underlying math-
ematics involved the properties of conditionally-convergent double sums, and the
class of such sums used by Rayleigh has interesting connections with the Riemann
hypothesis.

To be more specific, in a recent paper (McPhedran et al 2011, hereafter referred
to as I) it was established that the Riemann hypothesis held for all of a particular
class of two-dimensional sums over the square lattice if and only if it held for the
lowest member of that class. That lowest member, denoted C(0, 1; s) was known
from the work of Lorenz (1871) and Hardy (1920) to be given by the product of the
Riemann zeta function ζ(s), and a particular Dirichlet L function, L−4(s). In I it
was also established that, if all zeros of C(0, 1; s) lie on σ = 1/2 by a generalisation
of the Riemann hypothesis, then the whole class of sums has the same distribution
function for zeros, as far as all terms tending to infinity with t are concerned.

Here we wish to link these results to an established result for a combination of
Riemann zeta functions given by P.R. Taylor, and published in a posthumous paper
in 1945 (Taylor, 1945). An editor’s note to this paper refers to Flight Lieutenant
P.R. Taylor as “missing, believed killed, on active service in November 1943”. It
also notes that Professor Titchmarsh revised and completed Taylor’s argument.
What Taylor proved inter alia was that ξ1(s+1/2)− ξ1(s−1/2) has all its zeros on
σ = 1/2, where ξ1(s) = Γ(s/2)ζ(s)/πs/2 is a symmetrised form of ζ(s). After this
proposition was stated, it was commented that it“may be a step towards the proof
of the Riemann hypothesis”. We will take this comment further here, in order to
establish that Taylor’s work does indeed furnish an only partially-explored way of
investigating the Riemann hypothesis, together with related questions.

Google Scholar lists ten citations of Taylor’s paper. Of the seven relevant to
our concerns here, two (Anderson, 1986 and Matsumoto & Tanigawa) use Taylor’s
method of proof. The other five have been published in the interval 2006-2010,
testifying to recent interest in the properties of functions closely associated with
the Riemann zeta function. The survey article of Balazard (2010) refers to Taylor’s
paper as a ”remarkable contribution to the theory of the ζ function”, and to his
proof as ”classical and elegant”. It is also commented that Velasquez Castañon
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(2010) extended Taylor’s method into a very general context, and showed that
numerous recent results flowed naturally from the approach.

The combination of zeta functions considered by Taylor is antisymmetric un-
der the replacement s → 1 − s. Here, we will complement Taylor’s function by a
symmetric combination, and replace the variable s by 2s− 1/2, in order to provide
a link with the two-dimensional sums studied in I. The resulting functions will be
denoted T−(s) and T+(s) respectively. We will give numerical evidence (and later
prove) that T−(s) and T+(s) both have the same distribution functions of zeros on
the critical line σ = 1/2, and that this is also the same as that of C(0, 1; s) and
ζ(2s− 1/2).

We give in Section 2 the definitions of relevant functions, which are T+(s), T−(s),
their ratio V(s), U(s) = (V(s)− 1)/(V(s) + 1) and C(0, 1; s), and provide numerical
evidence concerning their distributions of zeros on the critical line. The numerical
evidence shown motivated the proofs given in Sections 3 and 4, but of course does
not in itself constitute an essential element of those proofs. We discuss in Section 3
the morphologies of relevant functions in the regions around their zeros and poles.
This provides the basis for the proofs in Section 4 that T+(s), in addition to T−(s)
as proved by Taylor (1945), has all its zeros on the critical line, and that all zeros
of both functions are simple. In Section 4, we also make explicit the links between
the zeros and the distribution functions of zeros of T−(s), T+(s) and those of the
Riemann zeta function ζ(2s − 1). These links in fact enable us to put forward a
proof that all the zeros of ζ(2s− 1) have a number distribution function that must
agree with those for T−(s) and T+(s) in all terms which diverge as t → ∞ . An
important feature of Section 4 is that the proofs advanced of the mathematical
propositions are based on a property of an equivalent electrostatic problem which
would be regarded as self-evident by many physicists. We include two Appendices,
the first of which discusses the convergence of the logarithmic potential function
associated with U(s). The second illustrates modified functions U(s) which do not
obey the Riemann hypothesis, but from which may be constructed a function V(s)
having all the properties listed above (all zeros and poles on the critical line, all
these being of first order, no zeros of derivatives on the critical line).

The proofs in this paper are less formal than is expected for important results
in analytic number theory (while being of similar style to that of Speiser,1934),
but may have the desirable outcome of motivating the construction of more formal
proofs. At all events, their construction is such as to make them accessible and
interesting to mathematical physicists and applied mathematicians. They also es-
tablish that T−(s) and T+(s) are two functions which provably have the properties
which one would desire to be able to prove for ζ(s). It may be the case that the
comparative method used in I, or a related method, may be used to forge a link
between them and ζ(2s− 1/2), enabling the resolution of the Riemann hypothesis.

After the initial version of this article was completed, the authors became aware
of an important earlier paper by Lagarias and Suzuki (2006). There is significant
overlap between the 2006 paper and the content of Section 4: the 2006 paper con-
tains rigorous proofs of propositions for which more physically-based arguments
are given here. Lagarias and Suzuki also give more general forms for combinations
of the symmetrized zeta functions ξ1(2s) and ξ1(2s − 1) which obey the Riemann
hypothesis than those discussed in Section 4.

Article submitted to Royal Society



4 R.C. McPhedran & C.G. Poulton

2. Functions and Zero Distributions

We recall the definition from McPhedran et al (2011) of two sets of angular lattice
sums for the square array:

C(n,m; s) =

′∑
p1,p2

cosn(mθp1,p2)

(p21 + p22)s
, S(n,m; s) =

′∑
p1,p2

sinn(mθp1,p2)

(p21 + p22)s
, (2.1)

where θp1,p2 = arg(p1 + ip2), the prime denotes the exclusion of the point at the
origin, and the complex number s is written in terms of real and imaginary parts
as s = σ + it. The sum independent of the angle θp1,p2 was evaluated by Lorenz
(1871) and Hardy(1920) in terms of the product of Dirichlet L functions:

C(0,m; s) = S(0,m; s) ≡ C(0, 1; s) ≡ C(1, 0; s) = 4L1(s)L−4(s) = 4ζ(s)L−4(s).
(2.2)

A useful account of the properties of Dirichlet L functions such as L−4(s) has been
given by Zucker & Robertson (1976).

An expression for the lowest order sum was derived by Kober (1936),

C(0, 1; s) = 2ζ(2s) +
2
√
πΓ(s− 1/2)

Γ(s)
ζ(2s− 1)

+
8πs

Γ(s)

∞∑
p1=1

∞∑
p2=1

(
p2
p1

)s−1/2
Ks−1/2(2πp1p2), (2.3)

where Kν(z) denotes the modified Bessel function of the second kind, or Macdonald
function, with order ν and argument z. Let us introduce a general notation for
Macdonald function sums:

K(n,m; s) =

∞∑
p1,p2=1

(
p2
p1

)s−1/2
(p1p2π)nKm+s−1/2(2πp1p2). (2.4)

By interchanging p2 and p1 and using the relation K−ν(z) = Kν(z), we see that
K(n, 0; s) is symmetric under the substitution s→ 1− s:

K(n, 0; 1− s) = K(n, 0; s). (2.5)

The lowest symmetric sum is, if s− = s− 1/2,

K(0, 0; s) =
Γ(s)

8πs
C(0, 1; s)−

[
Γ(s)ζ(2s)

4πs
+

Γ(s−)ζ(2s−)

4πs−

]
. (2.6)

Each of the two terms on the right-hand side of (2.6) is unchanged by the substi-
tution s → 1 − s. (That the first term is unchanged follows from the functional
equation for C(0, 1; s)- see McPhedran et al (2011); that the second is unchanged
then follows from the preceding fact and the symmetry of K(0, 0; s).) They are
therefore real on the critical line σ = 1/2.

We now introduce two symmetrised functions, the first of which occurred in
equation (2.6):

T+(s) =
Γ(s)ζ(2s)

4πs
+

Γ(s−)ζ(2s−)

4πs−
,

=
1

4
[ξ1(2s) + ξ1(2s− 1)] , (2.7)
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so that

K(0, 0; s) =
Γ(s)

8πs
C(0, 1; s)− T+(s). (2.8)

Its antisymmetric counterpart is

T−(s) =
Γ(s)ζ(2s)

4πs
− Γ(s−)ζ(2s−)

4πs−

=
1

4
[ξ1(2s)− ξ1(2s− 1)] . (2.9)

This is equivalent to the function considered by P.R. Taylor (1945) after his variable
s is replaced by our 2s − 1/2. Taylor proved in fact that his function obeys the
Riemann hypothesis, as must then T−(s).

Now, from Titchmarsh & Heath-Brown (1987), the Riemann zeta function has
its zeros confined to the region 0 < σ < 1, from which we immediately see that T+(s)
and T−(s) cannot have coincident zeros. In Fig. 1 we show the variation along the
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Figure 1. Plots of the logarithmic modulus of the functions T+(s) (red), T−(s) (green)
and C(0, 1; s) ∗ Γ(s)/πs (blue) along the critical line.

critical line of the functions T+(s) , T−(s) and C(0, 1; s)∗Γ(s)/πs. Each has a similar
number of zeros in the interval shown. In Fig.2 we further show the behaviour on
the critical line of the functions K(0, 0; s) , K(1, 1; s) and C(0, 1; s) ∗Γ(s)/πs. It can
be seen that the first of these has significantly fewer zeros on the critical line than
the third, while the second appears to have none. In McPhedran et al (2004) it is
commented that K(0, 0; s) has approximately the same number of zeros (in complex
conjugate pairs) off the critical line as on it.

In McPhedran et al (2011) the distributions along the critical line σ = 1/2 of the
zeros of C(0, 1; s) were compared with those of the angular lattice sums C(1, 4; s),
C(1, 8; s) and C(1, 12; s). Data was presented for t in the range [1, 300] which sug-
gested that all four functions had the same distribution of zeros on this line, and
gave a proof that this was the case if C(0, 1; s) obeyed the Riemann hypothesis
(which implied that the three angular lattice sums obeyed it as well). As we have
remarked, P. R. Taylor (1945) proved that T−(s) obeyed the Riemann hypothesis,
and we have seen the connection between C(0, 1; s) and T+(s) in equation (2.8)
above. It is therefore of interest to examine the distributions of zeros along the crit-
ical line of T−(s) and T+(s), and to compare these with the distribution of C(0, 1; s).
We also compare these distributions of zeros with that of ζ(2s− 1/2).
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Figure 2. Plots of the logarithmic modulus of the functions K(0, 0; s) (red), K(1, 1; s)
(green) and C(0, 1; s) ∗ Γ(s)/πs (blue) along the critical line.

As a motivation for the subsequent analytic derivations, we first examine nu-
merically the distributions of zeros of these four functions. Table 1 gives the distri-
butions, with the data for C(0, 1; s) being taken from Table 1 of McPhedran et al
(2011). The comparison of the second, third and fourth columns of Table 1 clearly
suggests that in fact the distributions of zeros for T−(s) and T+(s) are the same as
those for C(0, 1; s), ζ(2s − 1/2) and C(1, 4; s), C(1, 8; s) and C(1, 12; s). Table 2 ex-
tends the comparison of zero distributions for these four functions to higher values
of t. To compile Table 2, a listing of the first ten thousand zeros of L−4(s) (Silva,
2007) has been used.

We recall from McPhedran et al (2011) the formulae for the distributions of
zeros of ζ(s) and C(0, 1; s) (assuming the Riemann hypothesis to hold for both):

Nζ(
1

2
, t) =

t

2π
log(t)− t

2π
(1 + log(2π)) + . . . , (2.10)

and

NC0,1(
1

2
, t) =

t

π
log(t)− t

π
(1 + log(π)) + . . . . (2.11)

It is an interesting fact that if t is replaced by 2t in (2.10) we obtain

Nζ(
1

2
, 2t) =

t

π
log(t)− t

π
(1 + log(π)) + . . . , (2.12)

in agreement with (2.11) (which combined the distributions of zeros for ζ(s) and
L−4(s)). Numerical exemplification of (2.11) and (2.12) is to be found in Tables 1
and 2, in the latter case extending over the first 17 thousand zeros.
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Table 1. Numbers of zeros of C(0, 1; 1/2 + it), T−(1/2 + it) , T+(1/2 + it) and ζ(1/2 + 2it)
in successive intervals of t.

t n(C) n(T−) n(T+) n(ζ(2s− 1/2))

0-10 1 1 1 1

10-20 5 5 5 5

20-30 7 7 7 7

30-40 7 7 8 8

40-50 10 9 8 8

50-60 8 9 9 9

60-70 10 9 10 10

70-80 10 11 10 10

80-90 11 10 11 11

90-100 10 11 10 10

0-100 79 79 79 79

100-110 11 11 11 11

110-120 12 11 12 12

120-130 12 12 12 12

130-140 12 12 12 12

140-150 11 12 12 12

150-160 13 13 12 12

160-170 13 12 13 13

170-180 14 13 13 13

180-190 13 13 13 13

190-200 12 13 13 13

0-200 202 201 202 202

200-210 14 13 13 13

210-220 13 14 14 14

220-230 14 14 13 13

230-240 14 14 14 14

240-250 14 13 13 13

250-260 14 14 15 14

260-270 14 14 14 14

270-280 14 15 14 15

280-290 14 14 14 14

290-300 14 14 15 15

0-300 342 340 341 341

3. Phase Distributions and Order of Zeros

In order to begin our analytic investigations of the zeros of T+(s) and T−(s), we
follow the method of McPhedran et al (2011), and consider the properties of the
quotient function

V(s) =
T+(s)

T−(s)
. (3.1)

Theorem 3.1. The analytic function V(s) is odd under s → 1 − s, it has a zero
at s = 1/2, is finite at s = 1, and has poles at s ≈ 3.9125, s ≈ −2.9125. It is pure
imaginary on the critical line. It can be evaluated by direct summation in σ > 1.
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Table 2. Numbers of zeros of C(0, 1; 1/2 + it) and ζ(1/2 + 2it) in successive intervals of t.

t n(C) n(ζ(2s− 1/2)) n(T−) n(T+) t n(C) n(ζ(2s− 1/2))

0-100 79 79 79 79 1000-2000 1958 1957

100-200 122 123 122 123 2000-3000 2124 2124

200-300 140 139 139 139 3000-4000 2231 2232

300-400 150 150 150 150 4000-5000 2313 2312

400-500 157 158 158 158 5000-6000 2376 2377

500-600 166 164 165 164 6000-7000 2431 2431

600-700 168 170 169 170 7000-8000 2474 2475

700-800 176 174 175 174 0-8000 17424 17425

800-900 178 178 178 178

900-1000 181 182 182 182

0-1000 1517 1517 1517 1517

V(s) has an argument which lies in the fourth quadrant for σ > 2 and t > 3, while
in σ < −1 and t > 3 it lies in the third quadrant.

Proof. Since T+(s) is even under s→ 1− s while T−(s) is odd, it follows that V(s)
is odd under s→ 1− s. This means that its real part is odd and its imaginary part
even under σ+ it→ (1−σ)+ it, a reflection in the critical line, so the first quadrant
maps onto the second quadrant and the third onto the fourth under the reflection.
The modulus of T−(s) is even under the reflection. From these remarks, it follows
that V(1/2 + it) is pure imaginary.

At particular points: V(1) = −1, V(0) = 1 and V(1/2+δ) = −1.95381δ+O(δ2).
The function V(s) has only one derivative zero on the critical line, near t = 2.94334
(see Fig. 3; the proof is given as Corollary 4.4).

We write

V(s) =
1 + U(s)

1− U(s)
, (3.2)

where

U(s) =
ξ1(2s− 1)

ξ1(2s)
=

Γ(s− 1/2)
√
πζ(2s− 1)

Γ(s)ζ(2s)
. (3.3)

We verify numerically the proposition that in σ > 1 V(s) has an argument which
lies in the fourth quadrant for t above 2.94334. When we reach the region t >> 1,
we can then use Stirling’s expansion for the Γ function and expand the ζ function
by direct summation in σ > 1:

U(s) =

√
π

s
(1 +

3

8s
+ . . .)(1 +

1

4s
+

2

9s
+ . . .). (3.4)

If σ > 2 (say), the second series in (3.4) converges rapidly in exponential fashion,
and the first series and its prefactor dominate, ensuring that U(s) and consequently
V(s) have arguments in the fourth quadrant. For σ < −1, the symmetry properties
of V(s) under reflection in the critical line ensure its argument lies in the third
quadrant.
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Figure 3. Plots of the phase of V(s) in the complex plane. The phase is denoted by colour
according to which quadrant it lies in: yellow-first quadrant, red- second, purple- third,
and light blue- fourth. The plot at right is in the vicinity of the 98th zero of ζ(2s), denoted
by a dot (together with its reflection in the critical line). The black contours through the
dots show lines along which |V(s)| = 1.

Theorem 3.2. The analytic function U(s) has a phase which is even under s →
1− s̄ (with the bar denoting complex conjugation) and a modulus which reciprocates.
It has a zero at s = 0, a pole at s = 1, and (apart from the influence of the pole)
decreases monotonically as s = σ goes along the real axis from minus infinity to
infinity. Apart from the possible exception of points that are poles of U(s), V ′(s) = 0
implies U ′(s) = 0. U(s) can be evaluated by direct summation in σ > 1. U(s) has
an argument which lies in the fourth quadrant for σ > 1 or σ < 0 and t > 0.5249.

Proof. The definition (3.3), together with the functional equation for the Riemann
zeta function (Titchmarsh & Heath-Brown, 1987), ensure that U(s) obeys the func-
tional equation

U(s)U(1− s) = 1. (3.5)

This, together with its analytic nature, ensures that its phase is symmetric under the
reflection s→ 1− s̄, while its modulus reciprocates (i.e. log[|U(s)|] is antisymetric
under reflection).

Its behaviour near s = 1 is governed by the singularity of the Riemann zeta
function, and we find

U(1 + δ) =
3

πδ
+O(δ0). (3.6)

Using (3.5) we then have

U(δ) = −πδ
3

+O(δ2). (3.7)
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The inverse of (3.2) is

U(s) =
V(s)− 1

V(s) + 1
. (3.8)

The fixed points (Knopp, 1952) of both U and V are ±i, so that the two functions
are also related in the form

F1(s) =

(
V(s)− i
V(s) + i

)
= i

(
U(s)− i
U(s) + i

)
. (3.9)

Note that from (3.8), lines of phase zero or π of V map onto lines of phase zero
or π of U , and vice versa. The exact correspondence is determined by the modulus
of the first-mentioned function. Also, the lines of |U| = 1 correspond to the lines
arg[V(s)] = ±π/2 where V(s) is pure imaginary, and vice versa. The relationship
between V(s) and U(s) is, from equations (3.8,3.9), a rotation through 90◦ in the
complex plane (Cohn, 1967).

The derivative of equation (3.8) is

U ′(s) =
2V ′(s)

[V(s) + 1]2
. (3.10)

This shows that, if V(s) 6= −1, V ′(s) = 0 implies U ′(s) = 0.
For t near zero, the phase of U(s) lies in the third quadrant in a region which

at t = 0 extends between the pole at s = 1 and the zero at s = 0. It terminates on
the critical line at the value t = 0.5249, determined numerically.

We have given the expansion of U(σ + it) for t >> 1 and σ > 1 in (3.4). From
this, it follows that as σ becomes large compared with t, |U(σ + it)| tends to zero
as
√
π/σ, and for σ tending to −∞ it diverges as

√
σ/π. In either case, |V(σ+ it)|

tends to unity.

We will show below that the function F1(s) provides a bridge from the properties
of V(s) to those of U(s). Hence, it is necessary to establish its key properties.

Theorem 3.3. The function F1(s) satisfies the functional equation

F1(1− s) =
1

F1(s)
. (3.11)

It is real on the critical line, has unit modulus on the real axis, has the special values
F1(0) = −i, F1(1/2) = −1, and in t >> σ >> 1 has the asymptotic expansion

F1(σ + it) = −i+ (1− i)
√

2π

t
+

2π

t
+ (1 + i)(π +

σ

2
)

√
2π

t3
+ . . . . (3.12)

Proof. The functional equation for F1(s) follows readily from that for U(s). It is
real on the critical line since V(s) is pure imaginary there. Again, since V(σ) is real,
the modulus of F1(σ) is unity. Its special values at zero and 1/2 are in keeping with
this, and with the functional equation in the latter case. The asymptotic expansion
for F1(σ + it) follows readily from equation (3.4), neglecting exponentially small
terms.
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Note that from (3.12), the phase of F1(s) will lie in the fourth quadrant in the
asymptotic region to the right of the critical line, and, using the functional equation
(3.11), in the first quadrant in the asymptotic region to the left of it. Note also that
on the critical line

F ′1(
1

2
+ it) =

2[=(V( 1
2 + it))]′

(1 + =(V( 1
2 + it)))2

. (3.13)

which is real.

Corollary 3.4. On the critical line, the functions U(s), V(s) and F1(s) are related
simply to the symmetrized zeta function in the following way:

U(
1

2
+ it) = exp[−2i arg[ξ1(1 + 2it)]], V( 1

2 + it) = i tan[arg[ξ1(1 + 2it)] + π
2 ],

F1(
1

2
+ it) = tan[arg(ξ1(1 + 2it)) +

π

4
]. (3.14)

Proof. We recall the definition (3.3) of U(s):

U(s) =
ξ1(2s− 1)

ξ1(2s)
. (3.15)

Putting s = 1/2 + it and using the symmetry of ξ(s) under s → 1 − s, equation
(3.15) yields

U(
1

2
+ it) =

ξ1(2it)

ξ1(1 + 2it))
=
ξ1(1 + 2it)

ξ1(1 + 2it)
. (3.16)

This is equivalent to the first of equations (3.14). The second and third of equations
(3.14) follow readily from the first.

It follows from equations (3.14) that, if t1 and t2 are any two values of t such
that arg[ξ1(1 + 2it2)] = arg[ξ1(1 + 2it1)] + nπ, for any integer n, then U( 1

2 + it2) =
U( 1

2 + it1), V( 1
2 + it2) = V( 1

2 + it1) and F1( 1
2 + it2) = F1( 1

2 + it1).
The properties of V(s) , U(s) and F1(s) proved in Theorems 3.1, 3.2 and 3.3 are

exemplified in Figs. 4 and 5. The former shows the behaviour of the distributions of
phase for the three functions around the 98th zero of ζ(2s− 1/2). It will be noted
that the three plots show the same lines bounding phase regions, but with differing
interpretations for each function. For example, the closed contour formed by the
segments of constant phase 0 and π in the first case (V(s)), are preserved in the
second case (U(s)), while the contour of constant amplitude |V(s)| = 1 has become
a contour composed of segments of constant phase (arg[U(s)] = ±π/2). The region
containing the pole and zero of F1(s) is more compact than the corresponding
regions for the other two functions.

Figure 5 shows the most extreme variation among the 1517 phase plots con-
structed in the range of values of t up to 1000. The phase plots around the 1444th
and 1445th zeros of ζ(2s− 1/2) have become linked, more strongly in the cases of
V(s) and U(s) than for F1(s). The two former functions have phase distributions
with inner and outer bounding lines, with the zeros and poles of U(s) occurring on
both boundaries.
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Figure 4. Plots of the phase of V(s) (top left), U(s) (top right) and F1(s) in the complex
plane, in the vicinity of the 98th zero of ζ(2s), denoted by a dot (together with its reflection
in the critical line). The phase is denoted by colour according to which quadrant it lies in:
yellow-first quadrant, red- second, purple- third, and light blue- fourth. The black contours
through the dots show lines along which |V(s)| = 1 (top two plots) and |F1(s)| = 1 (lower
plot). The coloured dots are: zero (green) and pole (brown) of V(s); pole (red) and zero
(magenta) of F1(s).

We give in Fig. 6 diagrams of contours of constant phase of U(s), showing the
regions around points where U ′(s) = 0. These points occur where lines of constant
phase running from a pole of U(s) to a zero separate from lines of constant phase
associated with the pole-zero pair lying above or below. In the typical case at left,
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Figure 5. Plots of the phase of V(s) (top left), U(s) (top right) and F1(s) in the complex
plane, in the vicinity of the 1444th and 1445th zeros of ζ(2s), denoted by dots (together
with their reflections in the critical line). . The phase is denoted by colour according to
which quadrant it lies in: yellow-first quadrant, red- second, purple- third, and light blue-
fourth. The black contours through the dots show lines along which |V(s)| = 1 (top two
plots) and |F1(s)| = 1 (lower plot). The coloured dots are: zero (green) and pole (brown)
of V(s); pole (red) and zero (magenta) of F1(s).

the point where U ′(s) = 0 corresponds to a phase in the fourth quadrant, while in
the rare case at right the phase value lies in the first quadrant.

Our study of the zeros and poles of the three functions V(s), U(s) and F1(s),
for t ranging up to 1000 suggest the following properties merit invesitgation:
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Figure 6. Plots showing lines of constant phase of U(s) in the vicinity of zeros of U ′(s),
corresponding to (left) Fig. 4 and (right) Fig. 5. In the former case, the derivative zero
occurs near 0.17+115.80 i, with argU(s) near -0.79, while in the latter case, it occurs near
0.15+959.84 i, with argU(s) near 0.036.

• =(V(1/2 + it) is a monotonic increasing function of t above t = 2.94334, with
its increasing intervals interrupted only by sign reversals at its poles, which
are of first order;

• |U(σ + it)| above t = 2.94334 is always larger than unity to the left of the
critical line, and smaller than unity to the right of the critical line;

• along the critical line, we find groups of zeros and poles always occurring in
the following order: pole of F1, zero of V, zero of F1, pole of V;

• if an upper limit on t is chosen to end at a point where such a group is wholly
included, the numbers of zeros and poles of F1 and V are exactly the same,
and furthermore agree with the number of zeros of ζ(2s − 1/2) if the upper
limit also includes the associated pole and zero of U(s);

• every pole (zero) of U(s) lies at the intersection of a contour |V(s)| = 1 with
a contour argV(s) = π (argV(s) = 0);

• every pole (zero) of U(s) lies at the intersection of a contour |F1(s)| = 1 with
a contour argF1(s) = π/2 (argF1(s) = −π/2).

Proofs of all of these properties are put forward in Section 4 and the Appendices.
The alignment between values of t for which U(s) has zeros and poles, and

between corresponding values for T+(s) and T−(s) is not subject to strict rules.
The zero of T−(s) lies below that of ζ(2s − 1/2) four times in the first 1517. The
zero of ζ(2s− 1/2) lies below that of T+(s) 235 times in the first 1517 occasions.

Since the number of zeros of ζ(2s− 1/2), T−(s) and T+(s) up to t = 1000 is the
same, then the mean gap between zeros for all three functions is the same (0.655).
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The square root of the variance, expressed as a fraction of the mean gap is smallest
for T−(s) (0.304), slightly larger for T+(s) (0.348), and more than twice as large for
ζ(2s− 1/2) (0.655). This no doubt is a consequence of the trend for ζ(2s− 1/2) to
vary more regularly with t as σ moves away from 1/2.

It is well known that the gaps between the zeros of the Riemann zeta function
are distributed according to the Wigner surmise, following the pattern expected for
the Gaussian unitary ensemble (Dietz & Zyczkowski 1991; Bogomolny & Leboeuf
1994). Since the standard deviations of the gaps between zeros of T−(s) and T+(s)
are distinctly smaller than that for ζ(2s − 1/2), even though the mean gaps are
the same, it is evident that the former two functions do not have gap distributions
between zeros obeying the Wigner surmise.

A simple example having some of the properties of T+(s) has been commented
on by Suzuki (2009). The analogue of T+(s) is 2 cos(i(s−1/2)); the natural analogue
of T−(s) is 2 sin(i(s − 1/2)), while that of V(s) is cot(i(s − 1/2)). This is real on
the critical line rather than imaginary, but has first order zeros strictly alternating
with first oder poles. The poles and zeros are however uniformly distributed along
the critical line.

4. Bounds on the Modulus of the Function log |U(s)|
We commence with the proposition enunciated above that the magnitude of the
analytic function U(s) is strictly larger than unity to the left of the critical line, and,
by the functional equation (3.5), strictly less than unity in the region to the right
of it, provided that t > 2.94334. We first present a proof for a related proposition,
using the language of electrostatics in two dimensions. This of course is relevant
to the case of analytic functions of a complex variable, given the correspondence
between the governing equations of the two fields (Morse and Feshbach,1981, Roos,
1969, Bremermann, 1965).

Theorem 4.1. Suppose u(x) is the logarithmic electrostatic potential for a two
dimensional problem in which all positive charges lie in x < 0 and all negative
charges are mirror images of the positive charges lying in x < 0, so that x = 0
is an equipotential line with u(0, y) = 0 for all y. Then u(x, y) > 0 if x < 0 and
u(x, y) < 0 if x > 0.

Proof. Given an (inhomogeneous) Laplace equation of the form

∇2u(x) = 2π
∑
p

mp[δ(x− xp)− δ(x + xp)] (4.1)

where x = (x, y), mp denotes a positive coefficient, and all the points xp lie in the
x > 0 half-plane, we write the solution as

u(x) =
∑
p

mp[V (|x− xp|)− V (|x + xp|)] (4.2)

where
V (R) = lnR = ln |x− xp| .

Now, V (R) is a monotonically increasing function (V (a) > V (b) for any a > b), so
for all points in the right half-plane (which is where |x + xp| < |x − xp|) we have
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16 R.C. McPhedran & C.G. Poulton

V (|x− xp|) < V (|x + xp|). So for all xp, x lying in the right half-plane we have

V (|x− xp|)− V (|x + xp|) < 0

and therefore

u(x) =
∑
p

mp[V (|x− xp|)− V (|x + xp|)] < 0 ∀x > 0 . (4.3)

This result is of course physically obvious: all the positive charges lie to the left of
an equipotential line, and the negative charges to its right. Therefore the potential
must increase as one moves to the left of the equipotential line and towards the
positive charges, and must always exceed the potential at the mirror point to the
right of the critical line.

The adaptation of this result to the case of log |U(s)| has to take into account
the exceptional pole and zero lying on the axis t = 0. These give rise to the atypical
region evident in Fig. 3 for V(s), which, using the discussion in Theorem 3.2, carries
over to V(s). We also note that the positive coefficients mp take into account the
possible existence of poles and zeros of multiplicity larger than unity (with how-
ever mp = 1 for all poles and zeros in the range of t which has been numerically
investigated).

Corollary 4.2. The function |U(s)| nowhere takes the value unity off the critical
line in the finite part of the complex plane of s, if t > 2.94334.

Proof. We apply the expansion of Theorem 4.1 to the logarithmic modulus of U(s),
taking into account its zero and pole on the axis =(t) = 0:

log |U(s)| = −<
[
log

(
s− 1

s

)]
−
∞∑
p=1

mp<
[
log

(
s− sp

s− 1/2− sp

)
+ log

(
s− s̄p

s− 1/2− s̄p

)]
(4.4)

Here the sp denotes the p th pole of U(s), located at the point s = σp + itp, where
σp = 1/4 and mp = 1 for all poles encountered numerically, and 2tp is the imaginary
part of the pth zero of ζ(s). Note that the zeros of U(s) in the upper half plane
and its zeros and poles in the lower half plane have been included explicitly in
equation (4.4). Note also that the representation (4.4) satisfies |U(1/2 + it)| = 0.
(An alternative route to the equation (4.4) is to use the product representations
incorporating the zeros of the numerator and denominator in the definition of U(s),
(3.3), and to take the logarithm of that quotient.)

We note that the result of Theorem 4.1 applies to the sum over p in equation
(4.4), or any subset of it. We pick out the term p = 1 to counterbalance the
exceptional term, and apply Theorem 4.1 to the sum over p from two to infinity.
We then examine the value of the first term in (4.4) combined with the term p = 1,
or the modulus of (

s− 1

s

)(
s− s1

s− 1/2− s1

)(
s− s̄1

s− 1/2− s̄1

)
. (4.5)
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The modulus of this expression is unity when

(1− 2σ)(1 + 16t21)(1− 16σ + 16σ2 − 48t2 + 16t21) = 0, (4.6)

which occurs when σ = 1/2 or

t =
1√
3

√
t21 −

3

16
+

(
σ − 1

2

)2

. (4.7)

Replacing t1 by its value of approximately 7.06736, this gives a value of 4.07268 for
σ = 1/2, which is a minimum with respect to variation of t from (4.7) with σ. (In
fact, the equation (4.7) gives a value for t which varies only from 4.0727 to 4.1134
as t ranges from -0.5 to 1.5.)

The simple analytic estimate of 4.07268 just obtained is replaced by the numer-
ical value 2.94334 when the terms p = 2, 3, . . . are taken into account in equation
(4.4).

The expansion (4.4) is absolutely convergent for any finite value of t. Indeed,
we divide the infinite sum into an infinite number of terms with tp >> t, and a
finite sum. The infinite series then converges as a sum over 1/t2p, given that σp lies
in the open interval (1/2, 1). Any density of zeros function less strong than the
first power of t will leave the expansion absolutely convergent. The accuracy of the
representation (4.4) can easily be verified numerically by direct summation, given
a table of zeros of ζ(s). (Further comments expanding these remarks may be found
in Appendix 1.)

Corollary 4.3. All zeros of T+(s) and T−(s) lie on the critical line, and are of
order unity.

Proof. From equation (3.2), all zeros or poles of V(s) must correspond to points
where U(s) = ±1, i.e. where |U(s)| = 1. From Corollary 4.2, such points can only
occur on the line σ = 1/2. This proves the first proposition, and extends the result
of Taylor (1945) from T−(s) to T+(s).

With regard to the order of the zeros or poles of V(s), we note that zeros or
poles of order greater than unity would require more than at least a second line of
constant phase emanating from them (in addition to the critical line) along which
V(s) is pure imaginary. Such lines would have to be lines of unit amplitude for U(s),
and so in fact are limited to the critical line by Corollary 4.2.

Corollary 4.4. U ′(s) and V ′(s) have no zeros on the critical line in t > 2.94334.

Proof. We use the method of Corollary 4.2, and the expansion (4.4) to evaluate the
partial derivative with respect to σ of log |U(s)|:

∂ log |U(s)|
∂σ

∣∣∣∣
σ=1/2

=
1

t2 + 1/4
+

∞∑
p=1

mp

8(2σp − 1)(4t2 + 4t2p + 4σp(σp − 1) + 1)

[(1− 2σp)2 + 4(t− tp)2][(1− 2σp)2 + 4(t+ tp)2]
.

(4.8)
The first term is exceptional, and gives a positive contribution, whereas all terms
from the sum over p give a negative contribution, since σp < 1/2. The negative
contributions outweigh the exceptional term as soon as t exceeds 2.94334: see Fig.
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7. From this value on, we have that the partial derivative of log |U(s)| with respect
to σ on the critical line is strictly negative. This guarantees that U ′(s) is never
zero in t > 2.94334, while the corresponding result for V ′(s) follows from equation
(3.10).

Corollary 4.5. F1(s) has all its zeros and poles on the critical line, and all these
are of first order, provided t > 2.94334.

Proof. The zeros and poles of F1(s) occur where U(s) = i,−i respectively- i.e., in
both cases |U(s)| = 1. Thus, both poles and zeros lie on σ = 1/2. From equation
(3.13) and Corollary 4.4, we see that F ′1(s) is never zero on the critical line if
t > 2.94334, so the poles and zeros are of order unity. (The statement concerning
the zeros of F1(s) being first order is obvious. The statement concerning poles relies
on the connection between F1(s) and V(s), and the knowledge that V(s) and its
derivative remain finite at the pole of F1(s).)
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Figure 7. Plots of the partial derivative of log |U(s)| with respect to σ on the critical line.
The plots of the numerically-differentiated function and the result from equation (4.8),
summed over p from 1 to 1000, coincide to graphical accuracy.

The derivative plots in Fig. 7 show a function which has negative peaks whenever
t passes through a value tp. The maximum value between the negative peaks is
always negative once t exceeds 2.94334, and decreases slowly as t increases.

Note that, from (3.14), we also have that F ′1(1/2 + it) and Ψ(t) = ∂ arg ξ1(1 +
2it)/∂t are never zero in t > 2.94334. From this, it follows that argU(1/2 + it)
decreases as t increases, while =V(1/2 + it) increases, as does <F1(1/2 + it).

Corollary 4.6. Zeros and poles of V(s) strictly alternate on the critical line, and
so T+(s) and T−(s) have the same distribution function for zeros.

Proof. Since V ′(s) 6= 0 on the critical line, log[|V(1/2+ it)|] is a monotonic function
of t. Starting at a pole with the value +∞, it decreases, passing through each real
value once before arriving at a zero, with the value −∞. Starting at a zero, it
increases monotonically until it reaches a pole. (Put in another way, after its zero
derivative point at (1/2, 2.94334), =[V(1/2 + it)] increases monotonically, except at
its first-order poles, where it changes discontinuously from +∞ to −∞.)
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Given this result, it follows that the distribution function N(T+) which gives the
number of zeros of T+(s) on the critical line up to the ordinate t must agree with the
corresponding function N(T−) for T−(s) in all terms which diverge as t→∞.

Corollary 4.7. The real function arg[ξ1(1 + 2it)] is monotonic increasing in t >
2.94334, apart from discontinuous drops from π to −π, which occur at the same
values of t as the poles of V(1/2 + it). The distribution function of the values where
arg[ξ1(1 + 2it)] = nπ for positive integers n is the same in all terms which go to
infinity with t as those of the zeros of T+(s) and T−(s).

Proof. From equation (3.14) the zeros of T+(s) occur when t satisfies arg[ξ1(1 +
2it)] = (n−1/2)π for integer n, while those of T−(s) occur when t satisfies arg[ξ1(1+
2it)] = nπ. These are first-order, and so the phase change of arg[ξ1(1 + 2it)] from
π to −π occurs at the poles of V(1/2 + it). The monotonicity of arg[ξ1(1 + 2it)] is
a consequence of that of =[V(1/2 + it)]- see Corollary 3.4.

This result is related to that in Theorem 11.1 in Titchmarsh& Heath-Brown
(1987), which is that ζ(s) takes every value, with one possible exception, an infinity
of times in any strip 1−δ < σ ≤ 1+δ. Here the function in question is arg[ξ1(1+2it)],
which takes all real values an infinity of times, with no exception. Note also that
the same comments apply to arg[ξ1(2it)], except that it is monotonic decreasing
rather than increasing.

Theorem 4.8. Consider an interval I on the critical line which begins with a pole
P1 of V(s), continues with a zero Z1 and terminates with a pole P2. This maps
onto a circle |U(s)| = 1, which contains a single zero of U(s), which corresponds to
a phase jump of π. This establishes a direct correspondence between zeros of U(s)
and intervals on the critical line between poles of V(s).

Proof. By the argument of Corollary 4.6 we know that =[V(s)] is negative for t
above P1. It will become less and less negative as t increases, and will continue to
increase until it reaches the next pole (P2). It will successively pass through the first
fixed point (F1, where V(s) = −i), the first-order zero (Z1), and the second fixed
point (F2, where V(s) = +i), before reaching P2. F1 and F2 are the only points
encountered where |V(s)| = 1.

Along this trajectory, V(s) has traced out the entire imaginary axis. From the
properties of the mapping (3.8), this shows that U(s) has simultaneously traced
out the boundary of the unit circle in its values, with its phase varying through a
range of 2π in monotonic fashion. This shows that the centre of the circle in the
U plane is a zero of U(s). The phase variation is consistent with a first-order zero,
or a second order zero shared between two Riemann sheets, or a zero of order n
shared between n Riemann sheets. (See Appendix 2 for a numerical example.)

The mapping between V(s) and U(s) is one-to-one, so each interval between
poles of V(s) on the critical line maps directly onto a zero of U(s) .

Comment 1. The mapping from intervals on the critical line between poles of V(s)
to zeros of U(s) is unique. As we shall see in Appendix 2, this does not necessarily
mean that each zero of U(s) is associated with only one such interval on the critical
line.
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We can also extend the discussion of Theorem 4.8 by constructing the contour
|V(s)| = 1. This is in the plane of complex V values a circle, with centre at Z1 and
with F1 and F2 lying on its boundary. In the complex s plane, it is a closed contour
around which the phase arg[V(s)] varies by 2π, in keeping with there being a single
zero enclosed by the contour (and no singularity). Along the contour, the phase
of U(s) is either +π/2 or −π/2, and the entire imaginary axis must be traced out
once. This means that on this contour we must encounter a first-order zero and a
pole. A contour of phase arg[U(s)] = π must pass through the zero and the pole;
this must be symmetric under reflection in the critical line. This is also a contour of
phase arg[V(s)] = π where |U(s)| > 1 (σ < 1/2) and arg[V(s)] = 0 where |U(s)| < 1
(σ > 1/2).

Corollary 4.9. If the Riemann hypothesis holds, then the distribution functions of
zeros of T+(s) and T−(s) must agree with that for ζ(2s − 1) in all terms which do
not remain finite as t→∞.

Proof. Given the assumption that the Riemann hypothesis holds, then all zeros
and poles of U(s) lie respectively on the lines σ = 3/4 and σ = 1/4. Each zero
and pole lies at the intersection of contours of constant phase argU(s) = π/2 and
argU(s) = −π/2, i.e., the contours of constant amplitude |V(s)| = 1. There are
two such contours surrounding each zero of V(s), so there is a one-to-one mapping
between zeros of U(s) and of V(s). We can similarly argue that each pole and zero
of U(s) are linked by a line of constant phase zero (which passes through the zero
of V(s)) and a line of constant phase π (which passes through the pole of V(s))– a
second one-to-one mapping.
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Castañon, O.V. 2010. Majoration du nombre de zéros d’une fonction méromorphe en
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Appendix 1: Convergence of the Logarithmic Potential
Expansion

We consider the convergence of the series for log |U(s)| in equation (4.4). We expand
the summand of the series for all terms in which tp >> t, with t >> 1. Expanding
the series with these assumptions, the pth term is to leading order

Tp(σ, t) = mp<
[

(1− 2σp)(1− 2σ − 2it)

t2p

]
+O

(
t2

t4p

)
= mp

[
(1− 2σp)(1− 2σ)

t2p

]
+O

(
t2

t4p

)
.

(4.1)
We may then apply the integral test to assure the convergence of the series in
equation (4.4). To do this, we use the result( Titchmarsh & Heath-Brown, 1987)
that the leading term in the density of zeros in the critical strip 0 < σ < 1 of ζ(s)
is log(t)/(2π), so that the convergence is evident.

To investigate numerically the representation of log |U(s)| in equation (4.4),
we consider the application of the Euler-Maclaurin formula (Apostol, 1999) to the
latter. The formula of order q is

∞∑
p=0

f(p) =

∫ ∞
0

f(x)dx−B1f(0)−
q∑

k=1

B2k

(2k)!
f (2k−1)(0) +R, (4.2)

where R denotes the remainder term of order q, the B2k are Bernoulli numbers,
and we have assumed the function f(x) and its derivatives up to order 2q− 1 tend
to zero as x → ∞. We apply this by summing directly in (4.4) up to p = L, and
using the Euler-Maclaurin formula to estimate the remaining infinite sum. This
application is not conceptually straightforward, since the zeros tp do not have a
known functional dependence on p, and they are not even spaced, as is implicit in
the derivation of the Euler-Maclaurin formula. We then write the integral as∫ ∞

L+1

Tp(σ, t)
log(tp/π)

π
dtp =

(1− 2σ)

2(L+ 1)π

[
1 + log

(
L+ 1

π

)]
, (4.3)

where we have used the assumptions mp = 1 and σp = 1/4, together with the
known terms of the density function for zeros of ζ(s) in the critical strip, in the
establishment of a functional form of the integrand. The derivative terms in equation
(4.2) need to be evaluated using the same density function for tp values.

As an example of the accuracy of the resulting numerical estimate, with L =
1000 and q = 0, so only the first two terms in the right-hand side of (4.2) are used,
the difference between the highly accurate value for logU(0.4+it) from Mathematica
and the numerical estimate from the Euler-Maclaurin formula is bounded from
above by 0.000078 for t in the range of t between zero and 100. The values of
logU(0.4 + it) are of order unity for t in this range.

Appendix 2: Remarks on the Connection between U(s) and
V(s)

Let us consider once more the connection between the three functions U(s), V(s)
and F1(s) embodied in equation (3.9). We can express both U(s) and V(s) in terms
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of F1(s):

U(s) =
i(i+ F1(s))

(i− F1(s)
, V(s) =

i(1 + F1(s))

(1− F1(s)
. (4.1)

We can thus connect U(s) and V(s) in an invariant way to F1(s) if we plot the first
two as a function of the real and imaginary parts of the third. The results of this
are shown in Fig. 8. They illustrate explicitly the result that constant amplitude
lines and constant phase lines of U(s) are obtained from those of V(s) by a rotation
through 90◦ in the complex F1 plane.

Theorem 4.10. If all zeros of U(s) are of first order, each corresponds to one
Riemann sheet of F1(s) and one Riemann sheet of V(s).

Proof. We have proved that in each interval on the critical line between successive
poles of V(s) there is one zero of V(s), and one pole of F1(s) followed by a zero of
F1(s). All the poles and zeros mentioned are first-order. The fact that F1(s) has
its poles and zeros on the critical line, where its values are real and it increases
monotonically, shows that in between successive poles (where s takes the values s1
and s2) it takes on values which map out the real axis. By analytic continuation,
its values will then fill the complex F1 plane for a set of values of s built around the
critical line element running from s1 to s2. The set of s values and corresponding
F1(s) values constitutes a Riemann sheet of F1(s) (Knopp, 1947). The correspond-
ing contours of amplitude and phase of V(s) and U(s) are shown in Fig. 8; in each
case they include precisely one first order zero of V(s) and U(s).

The set of zeros of U(s) so mapped out as s ranges over the entire critical
line constitutes the entire set of zeros of this analytic function. The corresponding
statement for poles follows from the functional equation (3.5) for U(s). If U(s) has
zeros off the line σ = 3/4, these will occur in pairs placed symmetrically about
σ = 3/4, each corresponding to a different sheet of F1(s) and of V(s), and thus to
a different interval of t on the critical line.

The arguments of Section 4 are quite general, and apply even if certain properties
of the function U(s) are altered. For example, we can choose a particular zero/pole
pair, say the Nth zero/pole in t = tN > 0 and artificially double their order in a
new function ŨN (s):

ŨN (s) = U(s)
[s− (3/4 + itN )][s− (3/4− itN )]

[s− (1/4 + itN )][s− (1/4− itN )]
, (4.2)

and define

ṼN (s) =
1 + ŨN (s)

1− ŨN (s)
. (4.3)

Alternatively, we can double the order of every zero and pole:

Ũ(s) = U2(s), Ṽ(s) =
1 + Ũ(s)

1− Ũ(s)
. (4.4)

The results of such a numerical experiment are shown in Fig. 9. On the left, we
see two Riemann sheets of Ṽ(s) meeting at the second-order pole and zero. On
the right, we see that =Ṽ(s) is still monotonic increasing on the critical line, with
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Figure 8. Plots of lines of constant amplitude (top left) and constant phase (top right) of
V(s) (blue lines) and of U(s) (red lines) as a function of the real and imaginary parts of
F1(s). Bottom:Plots of constant phase for |F1| < 1.

first-order zeros and poles occurring with twice the density as compared with the
case of V(s).

As a second example, we can take the Nth zero/pole in t = tN > 0 and artifi-
cially render them into a pair of zeros/poles symmetrically located around the lines
σ = 3/4, σ = 1/4 respectively:

Û(s) = U(s)
[s− (3/4− δ + itN )][s− (3/4 + δ − itN )]

[s− (1/4− δ + itN )][s− (1/4 + δ − itN )]

[s− (1/4 + itN )]

[s− (3/4 + itN )]
, (4.5)
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Figure 9. Left: plot of the phase of Ṽ(s) in the region near the 98th zero and pole, which,
with all other zeros and poles, have artificially been made second-order. Right: plot of
=Ṽ(s) in the region around t = t98.

and

V̂(s) =
1 + Û(s)

1− Û(s)
. (4.6)

Figure 10 shows that each of the split pairs corresponds to an interval on the

-0.5 0.0 0.5 1.0 1.5

115.6

115.8

116.0

116.2

116.4

116.6

116.8

Figure 10. Plot of the phase of V̂(s) in the region near the 98th zero and pole, which have
artificially been split into a pair of zeros and a pair of poles, denoted by the black dots.
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critical line, with the inner pole and zero linked with the first interval and the outer
pole and zero with the second.
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