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We consider zeros of two-dimensional sums over rectangular lattices, and in particular

a sum first studied by Potter and Titchmarsh in 1935. They proved several properties

of the zeros of sums over the rectangular lattice, and commented on the fact that a

particular sum had zeros off the critical line. We investigate the behaviour of one

such zero as a function of the ratio of the periods of the rectangular lattice, and show

that it evolves continuously along a trajectory which approaches the critical line,

reaching it at a point which is a second-order zero of the rectangular lattice sum.
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I. INTRODUCTION

There has been considerable interest over around one hundred and fifty years in the

properties of sums of analytic functions over lattices generated by variation of two integers

over an infinite range. Many results connected with such sums have been collected in

the recent book Lattice Sums Then and Now1, hereafter denoted LSTN. These include

analytic results concerning their factorisation into terms involving products of two Dirichlet

L functions2, and also some results on the distribution of zeros on and off the critical line.

The latter are of particular interest in that they bear upon the question of whether the

Riemann hypothesis that the non-trivial zeros of ζ(s) = ζ(σ + it) are all located on the

critical line σ = 1/2 can be generalised to certain types of double sum. This proposition

reduces to the generalised Riemann hypothesis if the lattice sum can be expressed as a single

term involving the product of two Dirichlet L functions, possibly times a prefactor whose

zeros lie on the critical line. It is widely accepted that the generalised Riemann hypothesis

holds, with strong numerical evidence supporting this, but a proof has long remained elusive.

Epstein zeta functions take the form of a double sum

ζ(s,Q) =
∑

(p1,p2)6=(0,0)

Q(p1, p2)
−s, Q(p1, p2) = ap21 + bp1p2 + cp22 (1)

being a positive-definite quadratic form with integer coefficients a, b, c and a fundamental

discriminant d = b2 − 4ac. Potter and Titchmarsh3 proved that ζ(s,Q) has an infinity of

zeros on σ = 1/2 and exhibited a zero lying off the critical line for a particular choice of

ζ(s,Q). Davenport and Heilbronn4 proved that, if the class number h(d) is even, then ζ(s,Q)

has an infinity of zeros in σ > 1. The condition h(d) is even is satisfied unless d = −4,−8

or −p, p prime. They also proved5 that there are an infinity of zeros in σ > 1 for h(d) odd

and different from unity.

Numerical investigations of the distribution of zeros of Epstein zeta functions have been

discussed by Hejhal6, including the statistics of the separation of zeros. Bogomolny and

Leboeuf7 have also discussed the separation of zeros for the case a = c = 1, b = 0, finding

that the known analytic form of this basic sum resulted in a distribution of zeros with higher

probability of smaller gaps than for individual Dirichlet L functions.

McPhedran and coworkers8–10 considered a set of double sums incorporating a trigono-

metric function of p1 and p2 in the numerator, with the denominator (p21 + p22)
s. They
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presented some numerical evidence that a particular group of sums, varying trigonometri-

cally as cos(4θ), had all zeros on the critical line, with gaps between the zeros behaving in

the manner expected of Dirichlet L functions. An attempt10 to prove the equivalence of

these sums with that for the Epstein zeta function with a = c = 1, b = 0 contained an error,

as was pointed out to the author by Professor Heath-Brown in a private communication.

In this work, we consider the zero off the critical line identified by Potter and Ttichmarsh3

for the Epstein zeta function with a = 1, b = 0, c = 5. We replace the integer c by the real

λ2, so enabling the investigation of the movement of this zero as the ratio of the periods

of the rectangular unit cell λ varies continuously. We show that the zero follows a smooth

trajectory, with the trajectory to the right of the critical line mirrored by one to its left.

The two trajectories of off-axis zeros (i.e., zeros off the critical line) tend to a common point,

from which two zeros then migrate upwards and downwards on the critical line.

II. SOME PROPERTIES OF RECTANGULAR LATTICE SUMS

We consider the sum discussed in Section 1.7 of LSTN. This sum is:

S0(λ, s) =
′∑

p1,p2

1

(p21 + p22λ
2)s
, (2)

where the sum over the integers p1 and p2 runs over all integer pairs, apart from (0, 0), as

indicated by the superscript prime. The quantity λ corresponds to the period ratio of the

rectangular lattice, and s is an arbitrary complex number. For λ2 an integer, this is an

Epstein zeta function, but for λ2 non-integer we will refer to it as a lattice sum over the

rectangular lattice.

Connected to this sum is a general class of MacDonald function double sums for rectan-

gular lattices:

K(n,m; s;λ) = πn
∞∑

p1,p2=1

(
p
s−1/2+n
2

p
s−1/2−n
1

)
Ks−1/2+m(2πp1p2λ). (3)

For λ ≥ 1 and the (possibly complex) number s small in magnitude, such sums converge

rapidly, facilitating numerical evaluations. (The sum gives accurate answers as soon as the

argument of the MacDonald function exceeds the modulus of its order by a factor of 1.3 or

so.) The double sums satisfy the following symmetry relation, obtained by interchanging p1
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and p2 in the definition (3):

K(n,−m; s;λ) = K(n,m; 1− s;λ). (4)

The lowest order sum K(0, 0; s;λ) occurs in the representation of S0(λ, s) due to Kober12:

λs+1/2Γ(s)

8πs
S0(λ, s) =

1

4

ξ1(2s)

λs−1/2
+

1

4
λs−1/2ξ1(2s− 1) +K(0, 0; s;

1

λ
). (5)

Here ξ1(s) is the symmetrised zeta function. In terms of the Riemann zeta function, (5) is

S0(λ, s) =
2ζ(2s)

λ2s
+ 2
√
π

Γ(s− 1/2)ζ(2s− 1)

Γ(s)λ
+

8πs

Γ(s)λs+1/2
K(0, 0; s;

1

λ
). (6)

A fully symmetrised form of (5) is:

λs
Γ(s)

8πs
S0(λ, s) = T+(λ, s) +

1√
λ
K(0, 0; s;

1

λ
), (7)

where

T+(λ, s) =
1

4

[
ξ1(2s)

λs
+
ξ1(2s− 1)

λ1−s

]
. (8)

Note that T+(λ, 1 − s) = T+(λ, s) and K(0, 0; 1 − s;λ) = K(0, 0; s;λ), so that the left-hand

side of equation (7) must then be unchanged under replacement of s by 1 − s. The left-

hand side is also unchanged under replacement of λ by 1/λ, so the same is true for the sum

of the two terms on the right-hand side, although in general it will not be true for them

individually. The symmetry relations for S0(λ, s) then are

λs
Γ(s)

8πs
S0(λ, s) =

1

λs
Γ(s)

8πs
S0

(
1

λ
, s

)
= λ1−s

Γ(1− s)
8π(1−s) S0(λ, 1−s) =

1

λ1−s
Γ(1− s)
8π(1−s) S0

(
1

λ
, 1− s

)
.

(9)

From the equations (9), if s0 is a zero of S0(λ, s) then

S0(λ, s0) = 0 =⇒ S0(1/λ, s0) = 0 = S0(1/λ, 1− s0) = S0(λ, 1− s0). (10)

Another interesting deduction from (7) relates to the derivative of S0(λ, s0) with respect to

λ:

λsS0(λ, s) =
1

λs
S0

(
1

λ
, s

)
=⇒

sλs−1S0(λ, s) + λs
∂

∂λ
S0(λ, s) =

−s
λs+1

S0

(
1

λ
, s

)
− 1

λs+2

∂

∂λ
S0

(
1

λ
, s

)
, (11)

so that
∂

∂λ
S0(λ, s)

∣∣∣∣
λ=1

= −sS0(1, s). (12)
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Thus, trajectories of S0(λ, s) = 0 starting at a zero s0 for λ = 1 will leave the line λ = 1

at right angles to it as λ varies. One such will exist for λ increasing, and another for λ

decreasing.

Combining (7) and (9), we arrive at a general symmetry relationship for K(0, 0; s;λ):

T+(λ, s)− T+
(

1

λ
, s

)
=
√
λK(0, 0; s;λ)− 1√

λ
K
(

0, 0; s;
1

λ

)
, (13)

or

1

4

[
ξ1(2s)

(
1

λs
− λs

)
+ ξ1(2s− 1)

(
1

λ1−s
− λ1−s

)]
=

√
λK(0, 0; s;λ)− 1√

λ
K
(

0, 0; s;
1

λ

)
. (14)

This identity holds for all values of s and λ. One use of it is to expand about λ = 1,

which gives identities for the partial derivatives of K(0, 0; s;λ) with respect to λ, evaluated

at λ = 1. The first of these is

sξ1(2s) + (1− s)ξ1(2s− 1) = −2K(0, 0; s; 1)− 4
∂

∂λ
K(0, 0; s;λ)

∣∣∣∣
λ=1

. (15)

To go beyond first order with the identity (14), one needs to use the correct form for the

expansion variable- rather than use λ− 1, one should expand using

χ = λ− 1

λ
, λ =

χ

2
+

√
1 +

χ2

4
,

1

λ
= −χ

2
+

√
1 +

χ2

4
. (16)

S0(λ, s) has factorisations in terms of Dirichlet L functions for particular values of λ. We

take from Table 1.6 in Chapter 1 of LSTN the first seven of these:

S0(1, s) = 4ζ(s)L−4(s), S0(
√

2, s) = 2ζ(s)L−8(s), (17)

S0(
√

3, s) = 2(1− 21−2s)ζ(s)L−3(s), S0(
√

4, s) = 2(1− 2−s + 21−2s)ζ(s)L−4(s), (18)

S0(
√

5, s) = ζ(s)L−20(s) + L−4(s)L+5(s), S0(
√

6, s) = ζ(s)L−24(s) + L−3(s)L+8(s), (19)

S0(
√

7, s) = 2(1− 21−s + 21−2s)ζ(s)L−7(s). (20)

The expressions for S0(
√

3, s), S0(
√

4, s) and S0(
√

7, s) have prefactors whose zeros may be

determined analytically. These are, for arbitrary integers n,

S0(
√

3, s) : s =
1

2

(
1 +

(2n+ 1)πi

ln 2

)
, (21)

S0(
√

4, s) : s =
1

2
± i arctan

√
7

ln 2
+

2nπi

ln 2
, (22)
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and

S0(
√

7, s) : s =
1

2
+

iπ

4 ln 2
+

2nπi

ln 2
. (23)

There are no other factorisations in Table 1.6 of the form of S0(λ, s) containing only a single

term. These results then show that the generalised Riemann hypothesis applies to the seven

lattice sums of equations (17-20).

III. EXPANSIONS ABOUT λ = 1

We now expand the sum

S̃0(λ, s) = λs
Γ(s)

8πs
S0(λ, s) =

Γ(s)

8πs

′∑
p1,p2

1

(p21/λ+ p22λ)s
. (24)

This sum is symmetric under both operations λ→ 1/λ and s→ 1− s.

We use the expansion parameter χ of (16), but re-express it in trigonometric form:

χ

2
= tanφ,

√
1 +

χ2

4
= secφ, (25)

where we have taken cosφ > 0. We then have:

S̃0(λ, s) =
Γ(s)

8πs(1 + χ2/4)s/2

′∑
p1,p2

1

(p21 + p22)
s

[
1−

(
χ/2√

1 + χ2/4

)
cos 2θ1,2

]−s
, (26)

where cos θ1,2 = p1/
√
p21 + p22. We expand the last term in the double sum using the Binomial

Theorem, and re-express even powers of cos 2θ1,2 as combinations of cos 4mθ1,2. (Odd powers

of cos 2θ1,2 sum to zero over the square lattice.) The χ-dependent term multiplying the sum

in (26) is (cosφ)s, which is expanded as (1 − sin2 φ)s/2. The double sums over the square

lattice are then written8−10 in terms of

C̃(1, 4m; s) =
Γ(2m+ s)

8πs

′∑
p1,p2

cos 4mθ1,2
(p21 + p22)

s
, (27)

which form is symmetric under s→ 1− s. Note that C̃(1, 0; s) = C̃(0, 1; s).

The result of this procedure is an expression which may be written as:

S̃0(λ, s) = C̃(0, 1; s) +
∞∑
m=1

S2m(s) sin2m φ, (28)
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where the symmetry under λ→ 1/λ is manifest in the presence of only even powers of sinφ

on the right-hand side of (28). The symmetry under s→ 1− s is evident in the form of the

S2m(s), the first few of which are:

S2(s) = −1

4
s(1− s)C̃(0, 1; s) +

1

4
C̃(1, 4; s), (29)

S4(s) = − 1

64
s(1−s)(10−s(1−s))C̃(0, 1; s)+

1

48
(6−s(1−s))C̃(1, 4; s)+

1

192
C̃(1, 8; s), (30)

S6(s) = − 1

2304
s(1− s)(264− 46s(1− s) + s2(1− s)2)C̃(0, 1; s) +

1

1536
(120− 38s(1− s) + s2(1− s)2)C̃(1, 4; s) +

1

3840
(20− s(1− s))C̃(1, 8; s) +

1

23040
C̃(1, 12; s), (31)

and

S8(s) = − 1

147456
s(1− s)(13392− 3132s(1− s) + 124s2(1− s)2 − s3(1− s)3)C̃(0, 1; s) +

1

92160
(5040− 2292s(1− s) + 112s2(1− s)2 − s3(1− s)3)C̃(1, 4; s) +

1

184320
(12− s(1− s))(70− s(1− s))C̃(1, 8; s) +

1

654120
(42− s(1− s))C̃(1, 12; s) +

1

5160960
C̃(1, 16; s). (32)

Note that, apart from the numerical coefficients, each term in the expansions of the S2m(s)

has modulus for large |s| of order |s|2m times a sum of a trigonometric term weighting

1/(p21 + p22)
s.

The form established in equations (28-32) makes it easy to establish a useful result.

Theorem 1. A trajectory S̃0(λ, s) = 0 giving s as a function of λ which contains a point s0

on the critical line at which ∂S̃0(λ, s)/∂s 6= 0 must include an interval around s0 lying on

the critical line. Furthermore, if s∗ is a point on the critical line at which S̃0(λ, s) = 0 and

∂S̃0(λ, s)/∂s = 0, then a trajectory S̃0(λ, s) = 0 passing through s∗ runs along the critical

line along one side of t∗ and at right angles to it on the other side.

Proof. Let s0 be a point on the critical line for which S̃0(λ, s) = 0 and ∂S̃0(λ, s)/∂s 6= 0.

Let w = sin(φ). The differential equation for trajectories along which S̃0(λ, s) is constant is

described by the equation

dS̃0(λ, s) = 0 =
∂C̃(0, 1; s)

∂s
ds+

∞∑
m=1

w2m∂S2m(s)

∂s
ds+

∞∑
m=1

2mw2m−1S2m(s)dw. (33)
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We solve (33) for ds:

ds =

{
−[
∑∞

m=1 2mw2m−1S2m(s)]
∂C̃(0,1;s)

∂s
+
∑∞

m=1w
2m∂S2m(s)

∂s

}
s=s0

dw. (34)

Using this to construct the trajectory from the point s0 on the critical line, corresponding to

w0, each term in the numerator is real, while each term in the denominator is pure imaginary.

Thus, ds is pure imaginary, and the trajectory continues along the critical line in an interval

surrounding s0. The proof applies to S̃0(λ, s) taking any real constant value, including of

course zero. We can continue to enlarge the interval by considering successive points s0 until

we reach a point where ∂S̃0(λ, s)/∂s = 0.

For the second proposition, given that the first two terms in the Taylor series of S̃0(λ, s)

about s = s∗ are zero, then the trajectory S̃0(λ, s) = 0 is described by

ds2 =

{
−[
∑∞

m=1 4mw2m−1S2m(s)]
∂2C̃(0,1;s)

∂s2
+
∑∞

m=1w
2m∂2S2m(s)

∂s2

}
s=s∗

dw. (35)

If the constant in the curly brackets in (35) is positive, then ds2 = dσ2 if dw > 0, with

dσ ∝
√
dw then, while ds2 = −dt2 and dt ∝

√
−dw if dw < 0. If the constant in the curly

brackets in (35) is negative, then ds2 = dσ2 if dw < 0, and ds2 = −dt2 if dw > 0.

-2

-1

0

1

2

-2

-1

0

1

2

FIG. 1. Contours of log |S0(λ, 1/2 + it)| in the plane (λ, t). Black dots and red dots correspond to

zeros for which there is a factorization given the text, with the red dots being known analytically.

Figure 1 shows contours of log |S0(λ, 1/2+ it)| in the plane (λ, t), calculated using numer-

ical summation of the expression (5). Also indicated are positions of zeros of this function,

calculated from the factorised forms (17-20).
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The contours of zero amplitude of S0(λ, s) shown in Fig. 1 have a general trend of

decreasing as λ increases away from unity, but may have intervals in which they increase.

Some of the turning points in these curves are associated with prefactor and Dirichlet L

function zeros being in close proximity.

Theorem 1 does not imply that all zeros of the lattice sums S0(λ, s) lie on the critical line.

Indeed, it has been known since the work of Potter and Titchmarsh in 1935 that the sum

S0(
√

5, s) has zeros off the critical line. The first such is illustrated in Fig. 2. In the next

section, we will examine whether zeros off the critical line can be linked to factorised forms

of S0(λ, s), like those in (17-20). What is clear from Theorem 1 is that the turning points

of contours of zero amplitude of S0(λ, s) evident in Fig. 1, where ∂S0(λ, 1/2 + it)/∂t = 0,

should play an important role in any linkage between zeros off the critical line and those on

the critical line.

-2

-1

0

1

2

3

-3

-2

-1

0

1

FIG. 2. Contours of log |S0(
√

5, σ + it)| in the plane (σ, t). The first off-axis zeros of this sum are

illustrated, which lie near sPT = 0.9329 + 15.6682i and 1− sPT .

The equation (7) gives S̃0(λ, s) as the sum of T+(λ, s) and K(0, 0; s; 1
λ
)/
√
λ. We can

readily obtain the expansion of T+(λ, s) in powers of sinφ if in (8) we replace λ by (1 +

sinφ)/
√

1− sin2 φ. It is also useful to replace ξ1(2s) and ξ1(2s − 1) by superpositions of

functions which are even and odd with respect to the transformation s→ 1− s:

ξ1(2s) = 2[T+(1, s) + T−(1, s)], ξ1(2s− 1) = 2[T+(1, s)− T−(1, s)]. (36)
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We then obtain:

T+(λ, s) = T+(1, s){1 + 1/2(−1 + s)2 sin2(φ) +
1

24
[12 + s(−34 + s(32 + (−8 + s)s))] sin4(φ) +

1

720
[360 + s(−1212 + s(1504 + s(−750 + s(205 + (−18 + s)s))))] sin6(φ) + . . .}

+T−(1, s){−1

2
sin(φ) + [−1

2
+ s− 3s2

4
] sin3(φ) +

1

48
[−24 + s(68 + s(−76 + s(28− 5s)))] sin5(φ) +

1

1440
[(−720 + s(2424 + s(−3328 + s(1980 + s(−670 + s(96− 7s))))] sin7(φ) + . . .}.

(37)

This expression contains both odd and even powers in sin(φ), while the dependence of the

coefficients of powers of sin(φ) on s is of mixed parity under s → 1 − s. The functions

T+(1, s) and T−(1, s) are respectively even and odd under s → 1 − s, all their zeros lie on

the critical line and form distinct sets with the same distribution function, while all zeros

are simple13,14. From (8), the equation for zeros of T+(λ, s) is

ξ1(2s− 1)

ξ1(2s)
= λ1−2s. (38)

The left-hand side in (38) has modulus smaller than unity in σ > 1/2, and larger than unity

in σ < 1/2. The opposite is true for the right-hand side if λ < 1. All zeros of T+(λ, s) thus

lie on the critical line if λ < 1.

IV. THE TRAJECTORY OF AN OFF-AXIS ZERO

Fig. 3 shows the trajectory in the σ, t plane of numerically-determined zeros of S̃0(λ, s), as

λ varies. The trajectory curves upwards as λ decreases towards
√

4, and reaches the critical

line at a point sandwiched between a prefactor zero of S0(
√

4, s) at t ≈ 16.384603 and a

zero of L−4(s) at t ≈ 16.342539. The Potter-Titchmarsh zero is indicated by a point near

the rightmost extremity of the trajectory. The trajectory curves down and back towards the

critical line as λ increases towards 6.343472. This value of course does not correspond to a

known factorisation of S̃0(λ, s).

In the vicinity of the upper intersection point, we illustrate the behaviour of S̃0(λ, s) in

Figs. 4, 5. Fig 4 shows the endpoint chosen for a process of localising the λ value at which

zeros transition from positions off the critical line (curves with a single central minimum) to

10



Zeros of Lattice Sums

0.6 0.7 0.8 0.9
σ

15.0

15.2

15.4

15.6

15.8

16.0

16.2

16.4

t

FIG. 3. The trajectory of a zero off the critical line of S̃0(λ, s), as λ varies, plotted in the σ, t plane.

The red dots represent the zero off the critical line corresponding to λ =
√

5, and two zeros on the

critical line corresponding to λ =
√

4.

on the critical line (curves with two negative approximate singularities symmetrically located

about a local maximum). This transition value of λ is then between 4.0007109411 and

4.0007109410. Figure 5 shows the variation of the logarithmic modulus and the argument of

S̃0(λ, s) in the σ, t plane for a value of λ just before the transition value, where the locations

of two zeros to the left and right of the critical line are evident.

Similar figures for the lower intersection point are given in Figs. 6, 7. In this case, the

transition value of λ lies between 6.343471 and 6.343472, with off-axis zeros on the low side

of this value. This is clearly evident in the amplitude and argument plots of Fig. 7. The

argument plots in Figs. 5 and 7 are both clearly in support of the behaviour at the exact

transition value corresponding to a zero of multiplicity two on the critical line, although this

cannot be proved numerically.

The conclusion of this work is that zeros of S̃0(λ, s) off the critical line can lie on constant-

modulus trajectories reaching the critical line. Such trajectories behave in a way consistent

with the generalised Riemann hypothesis. The point where they reach the critical line cor-

responds to a second-order zero of S̃0(λ, s), and after reaching the critical line the trajectory

continues along the critical line for an interval. Further work on the properties of such

trajectories would be of interest and value.
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16.3629 16.3629 16.3630 16.3630 16.3631 16.3631
σ

-22

-20

-18

-16

t

FIG. 4. Plots of log |S̃0(λ, 1/2 + it)| as a function of t for λ ranging from 4.0007109415 to

4.0007109410 in equal decrements, for respective line colours: red, orange, black, blue, green,

purple.

0.498 0.499 0.500 0.501 0.502

16.361

16.362

16.363

16.364

16.365

16.366

σ

t

λ=Sqrt[4.000711]

-14

-13

-12

-11

-10

-9

0.498 0.499 0.500 0.501 0.502

16.361

16.362

16.363

16.364

16.365

16.366

σ

t

λ=Sqrt[4.000711]

-3

-1

1

3

FIG. 5. Contour plots of the logarithmic modulus (left) and the argument (right) of S̃0(λ, σ + it)

for λ = 4.000711.
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