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LATTICE SUMS THEN AND NOW

The study of lattice sums began when early investigators wanted to go from
mechanical properties of crystals to the properties of the atoms and ions from
which they were built (the literature of Madelung’s constant). A parallel
literature was built around the optical properties of regular lattices of atoms
(initiated by Lord Rayleigh, Lorentz and Lorenz). For over a century many
famous scientists and mathematicians have delved into the properties of lattices,
sometimes unwittingly duplicating the work of their predecessors.

Here, at last, is a comprehensive overview of the substantial body of
knowledge that exists on lattice sums and their applications. The authors also
provide commentaries on open questions, and explain modern techniques which
simplify the task of finding new results in this fascinating and ongoing field.
Lattice sums in one, two, three, four and higher dimensions are covered.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application
in mathematics or mathematical science and for which a detailed development of
the abstract theory is less important than a thorough and concrete exploration of
the implications and applications.

Books in the Encyclopedia of Mathematics and Its Applications cover their
subjects comprehensively. Less important results may be summarized as
exercises at the ends of chapters. For technicalities, readers can be referred to the
bibliography, which is expected to be comprehensive. As a result, volumes are
encyclopedic references or manageable guides to major subjects.
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Knowledge of lattice sums has been built by many generations of

researchers, commencing with Appell, Rayleigh, and Born. Two of the

present authorship (MLG and IJZ) attempted the first comprehensive review

of the subject 30 years ago. This inspired two more (JMB and RCM) to enter

the field, and they have been joined by a member (JGW) of a new generation

of enthusiasts in completing this second and greatly expanded compendium.

All five authors are certain that lattice sums will continue to be a topic of

interest to coming generations of researchers, and that our successors will

surely add to and improve on the results here.
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Foreword by Helaman and Claire Ferguson

The Borwein Award: Salt, the Sculpture, created in 2004
As sculptor, and also the inventor of the PSLQ integer relations algorithm, I
described to the Canadian Mathematical Society the sculpture expressing the
Madelung constant μ as follows:

μ :=
∑

n,m,p

′ (−1)n+m+p

√
n2 + m2 + p2

This polished solid silicon bronze sculpture is inspired by the work of David Borwein, his
sons and colleagues, on the conditional series above for salt, Madelung’s constant. This
series can be summed to give uncountably many constants; one is Madelung’s constant for
sodium chloride.

This constant is a period of an elliptic curve, a real surface in four dimensions. There
are uncountably many ways to imagine that surface in three dimensions; one has negative
Gaussian curvature and is the tangible form of this sculpture.

I will now explain some of the creative processes which led to this sculpture.
Actually, the inscription on the sculpture reads ‘created in 2004’ but, in the

spirit of this book Lattice Sums Then and Now, the creation started much earlier.
There are a couple of questions. First: why would a sculptor create a sculpture
about NaCl, as in ‘please pass the “nakkle” ’, sodium chloride or salt, a life-
essential mineral? Second: why would a sculptor be interested in Madelung’s
constant, a conditionally convergent series, subject to special summability, giv-
ing the electrostatic potential of the interpenetrating lattices of sodium (Na+) and
chlorine (Cl−) ions,

The equals is sign in the above equation is misleading at this stage because
the right-hand side is not defined as it stands. In fact, the right-hand side is a
conditional series of infinitely many positive and negative terms which can be
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rearranged to give any real number whatsoever (!); the commutative law holds for
finitely many summands but does not hold for infinitely many summands.

I will answer these two questions raised above in order. First answer: I was born
in the Humbolt Basin in the Rocky Mountains and spent the first five years of my
life there. This basin contains the Great Salt Lake and huge areas of evaporated
deposits of salt minerals. At age three I saw my natural mother killed by lightning
and my natural father drafted into the Pacific theatre of World War II. Between
ages three and five I was the ‘guest’ of a large extended family of aunts and uncles.
After age five I was adopted by a carpenter and stone mason who lived in upstate
New York. There I learned to work with my hands. I was a strange little grass
orphan. The aunts wanted to mother me but the uncles had the pragmatic upper
hand. How strange was I? One aunt, in particular, recalled that she came in the
kitchen and found me at the kitchen table intent on sorting grains of salt. I had at
that age some sort of microscopic vision; some of my own children told me they
went through a sort of microscopic vision stage and later lost it, as did I. Those
little cubettes of salt had a great fascination for me, a fascination not shared by
sensible uncles. It was only much later that I learned to call the stuff Na+Cl−
and that there was an interpenetrating pair of ion lattices underlying their cubical
structure which I certainly could not see. Even so it was interesting to stack those
grains of salt, the pre-Lego natural material I had to play with.

Second answer: I was an undergraduate at Hamilton College. My high school
mathematics teacher Florence Deci, who appreciated my art as well as my

Figure 1 The David Borwein Distinguished Career Award of the Canadian Mathematical
Society, created in 2004, is a bronze sculpture based on Benson’s formula for the
Madelungs constant. An exact copy is given to each award winner. Photograph by

permission of the sculptor.
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maths, had advised me to choose a liberal arts school so I could do both art
and science. As a maths undergraduate I was fascinated by summability and
conditionally convergent series. From my Hamilton chemistry professor Leland
‘Bud’ Cratty, I first heard about salt and its curious connection with a math-
ematical sum, Madelung’s constant. The non-commutativity of infinitely many
summands was observed by Riemann in relation to the conditionally convergent
series

∑
k≥1 (−1)k−1/k, which is supposed to be a representation of log 2 =

0.69314718 . . .; this value obtains by adding the terms in increasing k order, as is
implicit in the convention of summation notation. Even worse in some respects,
for Madelung’s series adding terms in increasing cubes gives a different answer
than adding terms in increasing balls. So what is the true value, the value with
which physicists like Born, Madelung, and Benson and mathematicians like the
Borweins would be satisfied? Benson answered this most remarkably with

μ = 12π
∑

m≥0

∑

n≥0

1

cosh2(π2

√
(2m + 1)2 + (2n + 1)2)

,

which is an absolutely convergent series with all positive terms very rapidly
decreasing, affording its evaluation to many decimal places:

μ = 1.7475645946331821906362120355443974034851614366

2474175815282535076504 . . . ,

enough decimals to satisfy this sculptor. Subsequently, Borwein Crandall [2] and
others have learned more and give an almost closed form for μ.

When the Borwein family asked me to do a sculpture about summability to
celebrate the mathematics of David Borwein and his sons, particularly its appli-
cation to Madelung’s constant, you can see that my art and science pump had
been primed long ago in the deserts of the Rocky Mountains and the forests
of the Finger Lakes of upstate New York. It is true that when the Borweins
approached me about doing this sculpture, I had been celebrating mathematics
with sculpture for decades. However, they approached me while I was in my
negative-Gaussian-curvature phase and was carving granite, not salt, and would
my geometric negative Gaussian curvature phase be inhospitable to the hard
analysis about conditional triple sums over three-dimensional lattices?

It happened that I had developed a series of sculptures which involved two-
dimensional lattice sums, specifically having to do with the planets and Kepler’s
third law, i.e., that the squares of the orbital periods of the planets are propor-
tional to the cubes of their radii, when this law is viewed in terms of elliptic
complex curves or real tori in four and three real dimensions. For example, the
planet Jupiter takes about y = 11 earth–sun years to elliptically orbit the sun at
x = 5 earth–sun distances, and 112 = y2 = x3 − x + 1 = 53 − 5 + 1 is a per-
fectly respectable Z-rank-2 elliptic curve in the two complex dimensions of x and
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y, which corresponds to four real dimensions. To get the planet Jupiter’s elliptic
curve into three real dimensions where I could expect to do sculpture required
negative-Gaussian-curvature forms and lattice sums!

Some mathematical details behind my negative-Gaussian-curvature phase
appeared in ‘Sculpture inspired by work with Alfred Gray: Kepler elliptic curves
and minimal surface sculptures of the planets’ [3],2 reflecting a keynote address by
Helaman and Claire Ferguson for the Alfred Gray Memorial Congress on Homo-
geneous Spaces, Riemannian Geometry, Special Metrics, Symplectic Manifolds
and Topology, held in September 2000 in Bilbao, Spain. This work actually made
copious use of and reference to the Borwein brothers’ Pi and the AGM [1],2 an
important resource for this negative-curvature phase of my sculpture.

What could be more natural than the conditional sum of a three-dimensional lat-
tice as a period of a two-dimensional lattice to create a Madelung triply punctured
torus immersed with negative Gaussian curvature in three-dimensional space?
The Borwein Award sculpture emerged after considerable computational and
sculptural work, which I will sketch next.

I had some number theoretical issues, which I discussed in detail with Jon Bor-
wein. These involved the exponent in the denominator of the lattice sum, s = 1

2
for the square root. As a function of the complex variable s, ought not the series
LNaCl(s) have an analytic continuation to the whole plane, Riemann hypothesis,
and even a functional equation? I thought it important to immerse the matter of
salt symbolized by Madelung’s constant as LNaCl(

1
2 ) in this larger world. Did it

have an Euler product? The answers to these two questions are yes, no, yes, and
no and appear in the writings of Jon Borwein and others elsewhere.

After much computation of LNaCl(s) for various values of s, I settled on μ =
LNaCl(

1
2 ) and an elliptic curve,

y2 = 4x3 − (32.6024622677216 . . .)x − (70.6022720835820 . . .)

where the decimals correspond to two-dimensional lattice sums for a lattice
involving μ, with discriminant −99932.555 . . . The complex variables x, y are
complex numbers in four real dimensions and the complex curve equation
amounts to two real equations, so that the complex curve is really a surface in
four dimensions. There is a dimension embargo (the Planck length is even harder
to see than salt lattices!) on sculpture. Sculpture physically resides in spatial three
dimensions, hence I enjoy the use of negative curvature to get the geometric sur-
face in four dimensions into the spatial three dimensions where I have much
experience.

While my aesthetic choice is to carve stone, my award sculptures are in pol-
ished silicon bronze. Silicon bronze is an alloy of copper with silicon and a few
other things to improve flow and polishing. A typical recipe for silicon bronze
is the ‘molecule’ 9438Cu + 430Si + 126Mn + 4Fe + Zn + Pb. I think of the
430Si + 126Mn + 4Fe + Zn + Pb piece as being the ‘stone’ part. I wonder, is
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there a Madelung constant for this molecule, there being many loose ions in this
polycrystalline soup?

There are many steps in the casting of silicon bronze, but even before getting
to those, I had much computation to do in placing the complex curve into three
dimensions as a triply punctured torus. In the course of a computation and devel-
oping the computer graphics there are many choices to be made. My decision
process is informed by my studio experience in the same way that looking at
two-dimensional underwater video material is not at all the same after learning
to scuba dive in a three-dimensional environment. This is not the place to dis-
cuss all these transitions; there are many. In Figure 2 some of them are shown:
computer graphics, wire frame, clay, plaster. There are truly messy in between
parts, especially making of the mould, the wax positive image, the ceramic shells
to form a negative flask, and a hot dry throat embedded in sand in which to pour
molten bronze; there is the high drama of the pouring of the bronze, the violence
of smashing the ceramic flask to release the imprisoned bronze, then the hacking-
off of air escape sprues, chasing away all evidence of what violence the bronze
has experienced, grinding and sanding the bronze smooth enough to reveal the
inevitable natural errors, which must be excavated and welded in kind to prepare
for polishing. While the intermediate result is a beautiful polished bronze, shown
in Figure 3, this is not the end.

I am carving into this silicon bronze the name of each recipient of this elegant
CMS–SMC David Borwein Award, the provenance of the sculpture, and also in
Figure 1 something about the sculpture relating to salt and summability. This is
what is shown for the first recipient.

Art is always a social event in the end. In the case of this Borwein Award,
the truly priceless part is the awarding of a silicon bronze to celebrate the distin-
guished careers of gifted people who have given substantial parts of their lives to
creating new mathematics and even new mathematicians, as has David Borwein.
So far these people have included:

2010: Nassif Ghoussoub
2008: Hermann Brunner
2006: Richard Kane

Figure 2 Stages in the design of ‘Salt’.
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Figure 3 The David Borwein Distinguished Career Award of the Canadian Mathematical
Society. Photograph by permission of the sculptor.

I am honored that my mathematical sculpture is part of recognizing and celebrat-
ing mathematical lives.

References
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Preface

. . . Born decided to investigate the simple ionic crystal – rock salt (sodium chloride) – using
a ring model. He asked Landé to collaborate with him in calculating the forces between the
lattice points that would determine the structure and stability of the crystal. Try as they
might, the mathematical expression that Born and Landé derived contained a summation
of terms that would not converge. Sitting across from Born and watching his frustration,
Madelung offered a solution. His interest in the problem stemmed from his own research in
Goettingen on lattice energies that, six years earlier, had been a catalyst for Born and von
Karman’s article on specific heat. The new mathematical method he provided for conver-
gence allowed Born and Landé to calculate the electrostatic energy between neighboring
atoms (a value now known as the Madelung constant).1 Their result for lattice constants of
ionic solids made up of light metal halides (such as sodium and potassium chloride), and
the compressibility of these crystals agreed with experimental results.2

The study of lattice sums is an important topic in mathematics, physics, and other
areas of science. It is not a new field, dating back at least to the work of Appell in
1884, and has attracted contributions from some of the most eminent practitioners
of science (Born and Landé [1], Rayleigh, Bethe, Hardy, . . . ). Despite this, it has
not been widely recognised as an area with its own important tradition, results, and
techniques. This has led to independent discoveries and rediscoveries of important
formulae and methods and has impeded progress in some topics owing to the lack
of knowledge of key results.

In order to solve this problem, Larry Glasser and John Zucker published in
1981 a seminal paper, the first comprehensive review of what was then known
about the analytic aspects of lattice sums. This work was immensely valuable to
many researchers, including the other authors of the present monograph, but now

1 More exactly, this energy can be obtained from the Madelung constant.
2 From [5], pp. 79–80. Max Born was the maternal grandfather of the singer and actress Olivia

Newton-John. Actually, soon after this they discovered that they had forgotten to divide by 2 in
the compressibility analysis. This ultimately led to the abandonment of the Bohr–Sommerfeld
planar model of the atom.
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is out of date and lacks the immediate electronic accessibility expected by today’s
researchers.

Hence, we have the genesis of the present project, the composition of this
monograph. It contains a slightly corrected version of the 1981 paper of Glasser
and Zucker as well as additions reflecting the progress of the subject since 1981.
The authors hope it is sufficiently comprehensive in flavour to be of value to
both experienced practitioners and those new to the field. However, as the study
of lattice sums has applications in many diverse areas, the authors are well
aware that important contributions may have been overlooked. They would thus
welcome comments from readers regarding such omissions and hope that inter-
net technology can make this a living and growing project rather than a static
compendium.

The emphasis of the results collected here is on analytic techniques for evaluat-
ing lattice sums and results obtained using them. We will nevertheless touch upon
numerical methods for evaluating sums and how these may be used in the spirit of
experimental mathematics to discover new formulae for sums. Those interested
primarily in numerical evaluation would do well to consult the relatively recent
reviews of Moroz [7] and Linton [6].

Several chapters in this monograph are based on published material and, as
such, we have tried to retain their original styles. In particular, we have not
attempted to iron out the differences in notation. (we considered this option but
decided it would be very likely to introduce more errors and difficulties than it
removed). In particular, we alert the reader that several conventions of the sum-
mation notation are used liberally throughout the monograph: the symbol

∑
may

indicate either a single or a multiple sum and the variable(s) and range(s) of
summation may be omitted when they are clear from the context. The reader is
therefore advised to exercise caution when moving from chapter to chapter and to
note that various notations are listed at the beginning of the index. The index uses
bold font to indicate entries which are definitions and includes page numbers for
the various tables.

We have made a full-hearted attempt to correct misprints in the original mate-
rial. The end-of-chapter commentaries also direct the reader to more recent
material and discussions of the source material. In the same spirit, each chap-
ter has its own reference list while a complete bibliography is also provided at the
end of the book.

Chapter 1 originally appeared as [4]. Chapter 2 originally appeared as [3] and
is reprinted with permission from the American Institute of Physics. Chapter 8
originally appeared as [2]: it was published in the Transactions of the American
Mathematical Society, in vol. 350 (1998), c© the American Mathematical Soci-
ety 1998. Chapter 9 originally appeared as [8]: it was published in the Journal
of Statistical Physics, in vol. 134 (2011), c© Springer-Verlag 2011 with kind
permission from Springer Science+Business Media.
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Gauss circle problem, 90, 113, 262
Gaussian curvature, x, xii
Gaussian quadrature, 181

generating function, 67, 181, 320
Glasser, M. L., xvii, 30, 33, 47, 50, 59, 65–67,

72, 77, 131, 134, 259, 304, 305
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Green’s functions, 53, 70, 73, 130, 131, 133,

135, 137, 141, 164, 299, 311, 316
Guttmann, A. J., 74, 313

Hankel, Hermann, 43, 140, 141
Hardy, G. H., 28, 90, 113, 116, 146, 183, 251,

296
Helmholtz equation, 140
hexagonal close-packed (HCP) lattice, 234, 235
hexagonal lattice, 56, 72, 109, 230, 233, 234,

260
Hobson’s integral, 27, 132, 149, 222, 223
Hund, F., 15, 16, 19, 21, 27, 34–36, 39, 42, 234

Hund potential, table, 34
Hurwitz, Adolf, 4

Hurwitz zeta function, 159, 162, 176, 291
hyperbolic function, 29, 44, 46, 47, 49, 63, 64,

128, 216–218, 224, 233, 241
hypercube, 231, 232, 261, 314, 316
hypergeometric function, 68, 70, 73, 77, 136,

178, 216, 218, 219, 297, 304, 317, 320
Appell hypergeometric function, 302
transformation, 200, 307, 308, 312

inequality, 91, 96
triangle inequality, 112

integer relation program, see PSLQ
integration by parts, 18, 77, 273, 292, 317
invariant cubic lattice complexes(ICLCs), 32
Iwata, G., 300, 302–304, 309, 311, 314

Jacobi, Carl, 3, 22, 27, 31, 32, 56, 114, 130, 132,
134, 158, 160, 171, 187, 203–205, 209,
210, 212, 216, 218, 297, 312

Jacobi symbol, see Kronecker symbol
Jacobi theta function, see theta function
Jacobi’s products Qi , 31, 204

triple product, 209
jellium, 137
Joyce, G. S., 67, 68, 70, 73, 300, 304, 306, 311,

314

Kepler, Johannes, xiii
Klein, Felix, 77
Kronecker, Leopold, 4, 66, 138, 181

Kronecker symbol, 56, 76, 158, 187, 197, 258

Lambert, Johann Heinrich
Lambert series, 160, 186, 189, 192, 197, 200,

209, 210
Landé, Alfred, xvi, 9
Landau, E., 17, 18, 252, 253, 268, 270
Laplace, Pierre-Simon

Laplace equation, 2, 6, 7, 126, 133, 135
Laplace transform, 26, 113, 216
Laplacian, 131, 299

lattice constants, xvi, 20, 72
lattice sum

definition of, 2, 249
table of exponential and hyperbolicforms, 45

table of numerical values, 48
table of sums, involving indefinite quadratic

forms, 162
Legendre, Adrien-Marie, 56, 190, 305

Legendre symbol, see Kronecker symbol
Liouville, Joseph, 153, 224
Lord Rayleigh, 125–127, 130, 134, 144
Lorentz H. A., 125
Lorenz, L., 20, 26, 28, 33, 113, 125, 146, 175,

183

Macdonald functions, see modified Bessel
functions

Madelung, E., xvi, 4, 7, 8, 12, 20, 28–30, 43,
117, 239

Madelung constant, x, x, 12, 15, 16, 36, 72,
87, 88, 93–95, 100, 101, 104, 104, 109,
111, 114, 116, 184, 217, 238, 248, 260,
261, 291

table of Madelung constants for ionic
crystals, 36

magnetism, 9, 68, 296
Mahler, K.

Mahler measure, 73, 78, 219, 315
Maple, 125, 130, 179, 199, 320
Maradudin, A. A., 29, 227, 230, 296
Mathematica, 76, 125, 130, 169
McPhedran, R. C., 138, 140, 148, 164,

168, 170
mean value theorem, 91
Mellin, H.

Mellin transform, 30, 32, 36, 65, 78, 101, 102,
110, 132, 149, 151, 152, 160, 164, 184,
186, 189, 190, 192–194, 206, 207,
209–211, 216, 222, 224, 240,
286, 291

table, 196
method of expanding geometric shapes, xii, 79,

89, 94, 95, 106, 109, 250, 260, 262, 264
modular equation, 186, 186, 193–195, 197, 199,

211, 306, 326–330
tables for order 3, 307, 308
tables for order 5, 309
tables for order 7, 309
modular equation, order 3, 110, 188,

190–193, 211
modular form, 55, 74, 78, 197, 217, 219, 274
monotoneicity, 91, 93, 95, 96, 98, 269, 290
Movchan, A. B., 138
multipole sums, 16, 25, 26, 126–128

Naor potentials, table, 34
Newton, Isaac, 183
Newton-John, Olivia, xvi
Nicorovici, N. A., 138
Nijboer, B. R. A., 25, 26, 30, 52
numerical methods, xvii, 4, 16, 20, 29, 30, 39,

42, 51, 54, 65, 72, 128, 142, 146, 148–151,
175, 178, 179, 181, 220, 234, 242, 248,
298, 314, 316, 321
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optical properties, 26, 125
orthogonal polynomials, 181
orthonormalization, 183
orthorhombic lattice, 50, 311

Parseval’s theorem, 25
partial fractions, 178, 291
Pathria, R. K., 30, 43, 47, 50, 52
perovskite, 72, 236
phase-modulated sums, 131, 164
Pochhammer, L. A.

Pochhammer symbol, 73, 139, 178, 292, 312
Poisson, Siméon Denis, 182

Poisson equation, 6, 8, 238, 316
Poisson summation formula or transform, 7,

29, 30, 43, 44, 45, 50, 132, 140, 142,
149, 164, 190–192, 205, 207, 211, 215,
222, 228

table, 196
pole, simple, 4, 39, 45, 63, 142, 145, 147
power series, 128, 176, 181, 303
prime number, 54, 56, 118, 153, 157, 160, 161,

187, 218
probability, 151, 297
PSLQ, x, 179, 199, 244, 321

quadratic form, 2, 18, 55, 56, 58, 113, 159, 166,
175, 177, 186, 193, 216, 237, 249–251,
253, 255, 257, 259, 265, 284

discriminant, 55, 56, 58, 59, 76, 116, 159,
175, 177, 259

genus, 58, 59, 177, 194, 259
indefinite, 175

quadratic residue, see Kronecker symbol

Ramanujan, S., 73, 78, 116, 171, 178, 186, 189,
193, 199, 200, 208, 211, 212, 305, 350

Ramanujan notation, 173
random walk, 67, 68, 78, 152, 295, 297, 303,

307
reciprocal lattice, 3, 9, 10, 13, 23, 42, 131, 134,

135, 139–141, 144
Brillouin zone, 67, 146–148

rectangular lattice, 7, 131, 151
recurrence, 23, 129, 137–139, 151, 180, 182,

292, 304, 308, 320
recursion, see recurrence
restricted sums, 112
rhombohedral lattice, 29
Riemann, Bernhard, xii, 3, 9

generalized Riemann hypothesis, 148
Riemann hypothesis, 116, 147, 148, 151, 153,

179
Riemann zeta function, 2, 45, 54, 110, 125,

152, 159, 180, 183, 188, 221, 224, 229,
243, 291

Robertson, M. M., 34, 54, 59, 157, 158, 161
Rogers, Mathew, 74, 78, 178, 218, 219, 316

Sakamoto, Y., 39, 42
Selberg, A., 66, 75

series, slowly convergent, 7, 10, 25, 50
sign transform, 186, 190, 192, 204, 207, 211,

212
simple cubic (SC) lattice, 14, 15, 21, 22, 40, 67,

70, 74, 126, 227, 229, 235, 236, 238, 296,
303, 307, 311, 314, 316

singular value, 68, 70, 75, 305, 318, 319
k210, 116
table of singular values, 311

spanning tree, 72, 315
spinel, 72, 236
square lattice, 72, 114, 127, 129, 134, 135, 138,

140, 144–146, 164, 233, 317
Stirling, James

Stirling numbers, 292
symmetry, mathematical, 5, 15, 21, 26, 28

tables
L-series solutions of 2D sums, 60
2D Bessel sums, 44
3D sums in terms of a single Dirichlet

L-series, 213
character table, 331
exponential and hyperbolic forms for lattice

sums, 49
expressions in Eulerian and Jacobian forms,

208, 210
lattice sums involving indefinite quadratic

forms, 176
Madelung constants for ionic crystals, 41
modular equations of order 3, 326–328
modular equations of order 5, 329
modular equations of order 7, 330
Naor and Hund potentials, 37
numerical values of lattice sums, 51
Poisson and Mellin transforms, 209
singular values, 332

Taylor series, 130, 131, 145, 151, 182, 198, 199,
296

term-by-term integration, 242, 263, 307, 309
test

alternating series, 290
comparison, 101
Weierstrass M-test, see Weierstrass M-test

tetragonal lattice, 50, 307
theta functions, 22, 30, 87, 110, 113, 114, 130,

132, 134, 147, 160, 165, 178, 184, 186,
200, 203, 216, 242

conical, 116
multiplicative relations, 32
table of Eulerian and Jacobian forms, 195,

197
θ1, 66, 134
θ ′

1, 31, 39, 66, 134, 212
θ2, 34, 36, 39, 45, 46, 78, 103, 104, 189, 211,

224
θ3, 32, 34, 36, 39, 45, 46, 78, 189, 193, 195,

210, 211
θ3 functional equation, see Poisson

summation formula
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θ4, 32, 34, 39, 45, 46, 78, 101, 112, 189, 192,
211

θ5, 31, 34, 45, 186, 189, 203
θ ′

6, 31
three-dimensional sums, 34, 39, 52, 94, 184,

202, 215, 222, 233, 241, 257, 293
Tosi, M. P., 1, 16, 21, 29, 40
tree, see spanning tree
triangular lattice, see hexagonal lattice
two-dimensional lattice sum, 55, 57, 59, 60, 89,

105, 109, 160, 177, 178, 184, 193, 257, 293

Vandermonde, A., 183

Wan, J. G., 78, 184
Watson, G. N., 31, 43, 52, 67, 271, 295, 299,

302, 303, 305

Watson integrals, 53, 67–70, 73, 295
wave, 140–142
Weber’s integral, 143
Weierstrass, Karl, 130

Weierstrass elliptic function, 54, 130, 180
Weierstrass M-test, 108, 264, 266

WIS see Watson integrals
Wigner, E. P., 150, 227, 237
Wiles, Andrew, 217, 219, 220
Wu, F. Y., 72

Zeilberger, D., 320
Zucker, I. J., xvii, 32, 33, 45, 47, 50, 52, 54, 59,

64–68, 75, 78, 147, 157, 158, 161, 170,
194, 212, 222, 230, 236, 259, 289, 305, 314

Zudilin, W., 218, 219
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