Uniform Random Walks on the Plane

A case study in experimental mathematics

James Wan

14 January, 2013

What is Experimental Mathematics?

The use of computers beyond routine simulations and calculations.

What is Experimental Mathematics?

The use of computers beyond routine simulations and calculations.
As defined by J. Borwein and D. Bailey:
(1) Use graphics to suggest underlying principles; test conjectures; confirm analytical results.

What is Experimental Mathematics?

The use of computers beyond routine simulations and calculations.
As defined by J. Borwein and D. Bailey:
(1) Use graphics to suggest underlying principles; test conjectures; confirm analytical results.
(2) Gain intuition; discover patterns; suggest approaches for proof.

What is Experimental Mathematics?

The use of computers beyond routine simulations and calculations.
As defined by J. Borwein and D. Bailey:
(1) Use graphics to suggest underlying principles; test conjectures; confirm analytical results.
(2) Gain intuition; discover patterns; suggest approaches for proof.

Computation as the third form of discovery, after theory and experiment:

What is Experimental Mathematics?

The use of computers beyond routine simulations and calculations.
As defined by J. Borwein and D. Bailey:
(1) Use graphics to suggest underlying principles; test conjectures; confirm analytical results.
(2) Gain intuition; discover patterns; suggest approaches for proof.

Computation as the third form of discovery, after theory and experiment:

- Algorithms of Celine, Gosper, Wilf-Zeilberger completely automate binomial sums etc.

What is Experimental Mathematics?

The use of computers beyond routine simulations and calculations.
As defined by J. Borwein and D. Bailey:
(1) Use graphics to suggest underlying principles; test conjectures; confirm analytical results.
(2) Gain intuition; discover patterns; suggest approaches for proof.

Computation as the third form of discovery, after theory and experiment:

- Algorithms of Celine, Gosper, Wilf-Zeilberger completely automate binomial sums etc.
- Find answer first, then reverse engineer.

What is Experimental Mathematics?

The use of computers beyond routine simulations and calculations.
As defined by J. Borwein and D. Bailey:
(1) Use graphics to suggest underlying principles; test conjectures; confirm analytical results.
(2) Gain intuition; discover patterns; suggest approaches for proof.

Computation as the third form of discovery, after theory and experiment:

- Algorithms of Celine, Gosper, Wilf-Zeilberger completely automate binomial sums etc.
- Find answer first, then reverse engineer.
tool $<$ computer \leq collaborator .

What is Experimental Mathematics?

The use of computers beyond routine simulations and calculations.
As defined by J. Borwein and D. Bailey:
(1) Use graphics to suggest underlying principles; test conjectures; confirm analytical results.
(2) Gain intuition; discover patterns; suggest approaches for proof.

Computation as the third form of discovery, after theory and experiment:

- Algorithms of Celine, Gosper, Wilf-Zeilberger completely automate binomial sums etc.
- Find answer first, then reverse engineer.
tool $<$ computer \leq collaborator .
A journal since 1992.

Examples of Experimental Mathematics

Area of parabola (weighing, c. 250BC, Archimedes)

Examples of Experimental Mathematics

Area of parabola (weighing, c. 250BC, Archimedes)
AGM and elliptic integrals (1799, Gauss)

Examples of Experimental Mathematics

Area of parabola (weighing, c. 250BC, Archimedes)
AGM and elliptic integrals (1799, Gauss)
Feigenbaum constant (on HP calculator, 1975)

Examples of Experimental Mathematics

Area of parabola (weighing, c. 250BC, Archimedes)
AGM and elliptic integrals (1799, Gauss)
Feigenbaum constant (on HP calculator, 1975)

Four colour theorem (Appel and Haken, 1976)

Examples of Experimental Mathematics

Area of parabola (weighing, c. 250BC, Archimedes)
AGM and elliptic integrals (1799, Gauss)
Feigenbaum constant (on HP calculator, 1975)
Four colour theorem (Appel and Haken, 1976)
Kepler conjecture (LP, Hales, 1992-8)

Examples of Experimental Mathematics

Area of parabola (weighing, c. 250BC, Archimedes)
AGM and elliptic integrals (1799, Gauss)
Feigenbaum constant (on HP calculator, 1975)
Four colour theorem (Appel and Haken, 1976)
Kepler conjecture (LP, Hales, 1992-8)
Independent computation of digits of π (BBP, 1995)

Examples of Experimental Mathematics

Area of parabola (weighing, c. 250BC, Archimedes)
AGM and elliptic integrals (1799, Gauss)
Feigenbaum constant (on HP calculator, 1975)
Four colour theorem (Appel and Haken, 1976)
Kepler conjecture (LP, Hales, 1992-8)
Independent computation of digits of π (BBP, 1995)
Solving checkers (Schaeffer, 2007)

Examples of Experimental Mathematics

Area of parabola (weighing, c. 250BC, Archimedes)
AGM and elliptic integrals (1799, Gauss)
Feigenbaum constant (on HP calculator, 1975)

Four colour theorem (Appel and Haken, 1976)

Kepler conjecture (LP, Hales, 1992-8)
Independent computation of digits of π (BBP, 1995)
Solving checkers (Schaeffer, 2007)
Solving sudoku (Douglas-Rachford, convex optimization, 2010)

My use of Experimental Mathematics (1)

Gaussian quadrature:
Traditionally used to approximate integrals by finite sums and orthogonal polynomials.

My use of Experimental Mathematics (1)

Gaussian quadrature:

Traditionally used to approximate integrals by finite sums and orthogonal polynomials.

Computational insight: use discrete version to approximate sums; use orthogonal rational functions.

My use of Experimental Mathematics (1)

Gaussian quadrature:

Traditionally used to approximate integrals by finite sums and orthogonal polynomials.

Computational insight: use discrete version to approximate sums; use orthogonal rational functions.

Surprisingly good for lattice sums, e.g. 1.4 digits per term for Madelung constant

$$
\sum_{m, n, p}^{\prime} \frac{(-1)^{m+n+p}}{\sqrt{m^{2}+n^{2}+p^{2}}}
$$

My use of Experimental Mathematics (2)

Elliptic integrals: $K(x)=\int_{0}^{\pi / 2} \frac{\mathrm{~d} t}{\sqrt{1-x^{2} \sin ^{2} t}}$

$$
\int_{0}^{1} K(x)^{3} \mathrm{~d} x=\frac{3 \Gamma(1 / 4)^{8}}{1280 \pi^{2}} \approx 7.090227004846 .
$$

My use of Experimental Mathematics (2)

Elliptic integrals: $K(x)=\int_{0}^{\pi / 2} \frac{\mathrm{~d} t}{\sqrt{1-x^{2} \sin ^{2} t}}$

$$
\int_{0}^{1} K(x)^{3} \mathrm{~d} x=\frac{3 \Gamma(1 / 4)^{8}}{1280 \pi^{2}} \approx 7.090227004846 .
$$

Reversed engineered using the Inverse Symbolic Calculator (PSLQ, can certifies no closed form below a certain size exists).

My use of Experimental Mathematics (2)

Elliptic integrals: $K(x)=\int_{0}^{\pi / 2} \frac{\mathrm{~d} t}{\sqrt{1-x^{2} \sin ^{2} t}}$

$$
\int_{0}^{1} K(x)^{3} \mathrm{~d} x=\frac{3 \Gamma(1 / 4)^{8}}{1280 \pi^{2}} \approx 7.090227004846
$$

Reversed engineered using the Inverse Symbolic Calculator (PSLQ, can certifies no closed form below a certain size exists).

RHS is the evaluation of a lattice sum, so proof found by bridging two sides via θ functions.

My use of Experimental Mathematics (2)

Elliptic integrals: $K(x)=\int_{0}^{\pi / 2} \frac{\mathrm{~d} t}{\sqrt{1-x^{2} \sin ^{2} t}}$

$$
\int_{0}^{1} K(x)^{3} \mathrm{~d} x=\frac{3 \Gamma(1 / 4)^{8}}{1280 \pi^{2}} \approx 7.090227004846 .
$$

Reversed engineered using the Inverse Symbolic Calculator (PSLQ, can certifies no closed form below a certain size exists).

RHS is the evaluation of a lattice sum, so proof found by bridging two sides via θ functions.

Galilean experiment: either gives us confidence in the view we are taking or rules out some possibilities.

My use of Experimental Mathematics (3)

Special functions:
Computer assisted discovery and automatic proof of the g.f.

$$
\begin{aligned}
(1 & -c x y)\left\{\sum_{n=0}^{\infty} u_{n} x^{n}\right\}\left\{\sum_{n=0}^{\infty} u_{n} y^{n}\right\} \\
& =\sum_{n=0}^{\infty} u_{n} P_{n}\left(\frac{(x+y)(1+c x y)-2 a x y}{(y-x)(1-c x y)}\right)\left(\frac{y-x}{1-c x y}\right)^{n}
\end{aligned}
$$

where $(n+1)^{2} u_{n+1}=\left(a n^{2}+a n+b\right) u_{n}-c n^{2} u_{n-1}$.

My use of Experimental Mathematics (3)

Special functions:
Computer assisted discovery and automatic proof of the g.f.

$$
\begin{aligned}
(1 & -c x y)\left\{\sum_{n=0}^{\infty} u_{n} x^{n}\right\}\left\{\sum_{n=0}^{\infty} u_{n} y^{n}\right\} \\
& =\sum_{n=0}^{\infty} u_{n} P_{n}\left(\frac{(x+y)(1+c x y)-2 a x y}{(y-x)(1-c x y)}\right)\left(\frac{y-x}{1-c x y}\right)^{n}
\end{aligned}
$$

where $(n+1)^{2} u_{n+1}=\left(a n^{2}+a n+b\right) u_{n}-c n^{2} u_{n-1}$.
Brings together special functions, Apéry-like sequences, and Ramanujan-type series for $1 / \pi$.

My use of Experimental Mathematics (3)

Special functions:
Computer assisted discovery and automatic proof of the g.f.

$$
\begin{aligned}
(1 & -c x y)\left\{\sum_{n=0}^{\infty} u_{n} x^{n}\right\}\left\{\sum_{n=0}^{\infty} u_{n} y^{n}\right\} \\
& =\sum_{n=0}^{\infty} u_{n} P_{n}\left(\frac{(x+y)(1+c x y)-2 a x y}{(y-x)(1-c x y)}\right)\left(\frac{y-x}{1-c x y}\right)^{n}
\end{aligned}
$$

where $(n+1)^{2} u_{n+1}=\left(a n^{2}+a n+b\right) u_{n}-c n^{2} u_{n-1}$.
Brings together special functions, Apéry-like sequences, and Ramanujan-type series for $1 / \pi$.

$$
\sum_{n=0}^{\infty}\left\{\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n}{k}\left(\frac{-1}{8}\right)^{k}\binom{k}{j}^{3}\right\} n P_{n}\left(\frac{5}{3 \sqrt{3}}\right)\left(\frac{4}{3 \sqrt{3}}\right)^{n}=\frac{9 \sqrt{3}}{2 \pi}
$$

My use of Experimental Mathematics (4)

Random walks:

Very basic problem; sum of n random complex numbers.
Not much known computationally or analytically before 2009.

My use of Experimental Mathematics (4)

Random walks:

Very basic problem; sum of n random complex numbers.
Not much known computationally or analytically before 2009.

Application: Brownian motion, superposition of waves and vibrations, quantum chemistry, migration, cryptography.

My use of Experimental Mathematics (4)

Random walks:

Very basic problem; sum of n random complex numbers.
Not much known computationally or analytically before 2009.

Application: Brownian motion, superposition of waves and vibrations, quantum chemistry, migration, cryptography.

All our discoveries were experimental.
Hypergeometric series:

$$
{ }_{p} F_{q}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} \right\rvert\, z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n}} \frac{z^{n}}{n!}
$$

Random walk integrals

Definition: For complex s,

$$
W_{n}(s):=\int_{[0,1]^{n}}\left|\sum_{k=1}^{n} e^{2 \pi x_{k} i}\right|^{s} \mathrm{~d} \boldsymbol{x}
$$

$W_{n}(1)$ is the expectation.

Random walk integrals

Definition: For complex s,

$$
W_{n}(s):=\int_{[0,1]^{n}}\left|\sum_{k=1}^{n} e^{2 \pi x_{k} i}\right|^{s} \mathrm{~d} \boldsymbol{x}
$$

$W_{n}(1)$ is the expectation.

Definition:
The density p_{n} is the (unique) function that satisfies

$$
W_{n}(s)=\int_{0}^{n} p_{n}(x) x^{s} \mathrm{~d} x
$$

Random walk integrals

Definition: For complex s,

$$
W_{n}(s):=\int_{[0,1]^{n}}\left|\sum_{k=1}^{n} e^{2 \pi x_{k} i}\right|^{s} \mathrm{~d} \boldsymbol{x}
$$

$W_{n}(1)$ is the expectation.

Definition:
The density p_{n} is the (unique) function that satisfies

$$
W_{n}(s)=\int_{0}^{n} p_{n}(x) x^{s} \mathrm{~d} x
$$

Dimension reduction: let $x_{1}=0$.

Computational challenge

- $W_{1}(s)=1, p_{1}(x)=\delta_{1}(x)$.

Computational challenge

- $W_{1}(s)=1, p_{1}(x)=\delta_{1}(x)$.
- Maple 13 and Mathematica 7 think $W_{2}=0$.

Computational challenge

- $W_{1}(s)=1, p_{1}(x)=\delta_{1}(x)$.
- Maple 13 and Mathematica 7 think $W_{2}=0$.
- $p_{2}(x)=\frac{2}{\pi \sqrt{4-x^{2}}}, W_{2}(s)=\binom{s}{s / 2}, W_{2}(1)=\frac{4}{\pi}$.

Computational challenge

- $W_{1}(s)=1, p_{1}(x)=\delta_{1}(x)$.
- Maple 13 and Mathematica 7 think $W_{2}=0$.
- $p_{2}(x)=\frac{2}{\pi \sqrt{4-x^{2}}}, W_{2}(s)=\binom{s}{s / 2}, W_{2}(1)=\frac{4}{\pi}$.
- Tanh-sinh quadrature gives 175 digits for $W_{3}(1)$, but everything fails for $W_{4}(1) .256$ cores at LBNL: $W_{5}(1) \approx 2.0081618$.

Jan Cornelius Kluyver \& John William Strutt

- $p_{n}(t)=\int_{0}^{\infty} x t J_{0}(x t) J_{0}^{n}(x) \mathrm{d} x$.

Jan Cornelius Kluyver \& John William Strutt

- $p_{n}(t)=\int_{0}^{\infty} x t J_{0}(x t) J_{0}^{n}(x) \mathrm{d} x$.
- Probability of returning to the unit disk:

$$
\int_{0}^{1} p_{n}(t) \mathrm{d} t=\int_{0}^{\infty} J_{1}(x) J_{0}^{n}(x) \mathrm{d} x=\left[\frac{-J_{0}(x)^{n+1}}{n+1}\right]_{0}^{\infty}=\frac{1}{n+1}
$$

Jan Cornelius Kluyver \& John William Strutt

- $p_{n}(t)=\int_{0}^{\infty} x t J_{0}(x t) J_{0}^{n}(x) \mathrm{d} x$.
- Probability of returning to the unit disk:

$$
\int_{0}^{1} p_{n}(t) \mathrm{d} t=\int_{0}^{\infty} J_{1}(x) J_{0}^{n}(x) \mathrm{d} x=\left[\frac{-J_{0}(x)^{n+1}}{n+1}\right]_{0}^{\infty}=\frac{1}{n+1}
$$

- Rayleigh (multivariate CLT): $p_{n}(x) \approx \frac{2 x}{n} e^{-x^{2} / n}$.
p_{n} with approximations superimposed.

Probability

- We condition the distance z of an $(n+m)$-step walk on x (n steps), followed by y (m steps).

Probability

- We condition the distance z of an $(n+m)$-step walk on x (n steps), followed by y (m steps).
- Cosine rule, $z^{2}=x^{2}+y^{2}+2 x y \cos (\theta)$.

Probability

- We condition the distance z of an $(n+m)$-step walk on x (n steps), followed by y (m steps).
- Cosine rule, $z^{2}=x^{2}+y^{2}+2 x y \cos (\theta)$.

- So $W_{n+m}(s)=\frac{1}{\pi} \int_{0}^{n} \int_{0}^{m}\left(\int_{0}^{\pi} z^{s} \mathrm{~d} \theta\right) p_{n}(x) p_{m}(y) \mathrm{d} x \mathrm{~d} y$.

Probability

- We condition the distance z of an $(n+m)$-step walk on x (n steps), followed by y (m steps).
- Cosine rule, $z^{2}=x^{2}+y^{2}+2 x y \cos (\theta)$.

- So $W_{n+m}(s)=\frac{1}{\pi} \int_{0}^{n} \int_{0}^{m}\left(\int_{0}^{\pi} z^{s} \mathrm{~d} \theta\right) p_{n}(x) p_{m}(y) \mathrm{d} x \mathrm{~d} y$.
- Change of variable:

$$
W_{n+m}(s)=\int_{0}^{n+m} z^{s} \underbrace{\left\{\int_{0}^{n} \int_{0}^{\pi} \frac{z}{\pi y} p_{n}(x) p_{m}(y) \mathrm{d} \theta \mathrm{~d} x\right\}}_{p_{n+m}(z)} \mathrm{d} z .
$$

Recursion for p_{n}

- $\therefore p_{n}$ is a single integral over p_{n-1}. So

$$
p_{3}(x)=\frac{2 \sqrt{3} x}{\pi\left(3+x^{2}\right)}{ }_{2} F_{1}\left(\begin{array}{c|c}
\frac{1}{3}, \frac{2}{3} \\
1 & \frac{x^{2}\left(9-x^{2}\right)^{2}}{\left(3+x^{2}\right)^{3}}
\end{array}\right) .
$$

(Found experimentally, proof by DE.)

Recursion for p_{n}

- $\therefore p_{n}$ is a single integral over p_{n-1}. So

$$
p_{3}(x)=\frac{2 \sqrt{3} x}{\pi\left(3+x^{2}\right)}{ }_{2} F_{1}\left(\left.\begin{array}{c}
\frac{1}{3}, \frac{2}{3} \\
1
\end{array} \right\rvert\, \frac{x^{2}\left(9-x^{2}\right)^{2}}{\left(3+x^{2}\right)^{3}}\right) .
$$

(Found experimentally, proof by DE.)

- Pearson posed the problem (1905), thought p_{5} had a straight line. Disproved in 1963.

Recursion for p_{n}

- $\therefore p_{n}$ is a single integral over p_{n-1}. So

$$
p_{3}(x)=\frac{2 \sqrt{3} x}{\pi\left(3+x^{2}\right)}{ }_{2} F_{1}\left(\begin{array}{c|c}
\frac{1}{3}, \frac{2}{3} \\
1 & \frac{x^{2}\left(9-x^{2}\right)^{2}}{\left(3+x^{2}\right)^{3}}
\end{array}\right) .
$$

(Found experimentally, proof by DE.)

- Pearson posed the problem (1905), thought p_{5} had a straight line. Disproved in 1963.
- p_{4} hard to compute; we resort to moments and analytic continuation.

Combinatorics and analysis

- Binomial expansion:

$$
W_{n}(s)=n^{s} \sum_{m \geq 0} \frac{(-1)^{m}}{n^{2 m}}\binom{\frac{s}{2}}{m} I_{n, m}
$$

Combinatorics and analysis

- Binomial expansion:

$$
W_{n}(s)=n^{s} \sum_{m \geq 0} \frac{(-1)^{m}}{n^{2 m}}\binom{\frac{s}{2}}{m} I_{n, m}
$$

- $I_{3, m}$ found experimentally on the OEIS, generalized to $I_{n, m}$ guessing, then proven combinatorially.

Combinatorics and analysis

- Binomial expansion:

$$
W_{n}(s)=n^{s} \sum_{m \geq 0} \frac{(-1)^{m}}{n^{2 m}}\binom{\frac{s}{2}}{m} I_{n, m}
$$

- $I_{3, m}$ found experimentally on the OEIS, generalized to $I_{n, m}$ guessing, then proven combinatorially.
- It follows that

$$
W_{n}(2 k)=\sum_{a_{1}+\ldots+a_{n}=k}\binom{k}{a_{1}, \ldots, a_{n}}^{2} .
$$

Combinatorics and analysis

- Binomial expansion:

$$
W_{n}(s)=n^{s} \sum_{m \geq 0} \frac{(-1)^{m}}{n^{2 m}}\binom{\frac{s}{2}}{m} I_{n, m}
$$

- $I_{3, m}$ found experimentally on the OEIS, generalized to $I_{n, m}$ guessing, then proven combinatorially.
- It follows that

$$
W_{n}(2 k)=\sum_{a_{1}+\ldots+a_{n}=k}\binom{k}{a_{1}, \ldots, a_{n}}^{2} .
$$

- Has a recursion \Rightarrow lifts to a functional equation $\Rightarrow W_{n}(s)$ has analytical continuation to \mathbb{C} with poles at negative integers.

Three steps

- Recursion + subtle analysis \Rightarrow convolution formula for $W_{4}(s)$ in terms of W_{3}.

Three steps

- Recursion + subtle analysis \Rightarrow convolution formula for $W_{4}(s)$ in terms of W_{3}.
- By playing around,

$$
W_{3}(k)=\operatorname{Re}_{3} F_{2}\left(\left.\begin{array}{c}
1 / 2,-k / 2,-k / 2 \\
1,1
\end{array} \right\rvert\, 4\right) .
$$

Three steps

- Recursion + subtle analysis \Rightarrow convolution formula for $W_{4}(s)$ in terms of W_{3}.
- By playing around,

$$
W_{3}(k)=\operatorname{Re}_{3} F_{2}\left(\left.\begin{array}{c}
1 / 2,-k / 2,-k / 2 \\
1,1
\end{array} \right\rvert\, 4\right) .
$$

Theorem (1), Borwein, Nuyens, Straub, W. (2009)

$$
W_{3}(1)=\frac{16 \sqrt[3]{4} \pi^{2}}{\Gamma\left(\frac{1}{3}\right)^{6}}+\frac{3 \Gamma\left(\frac{1}{3}\right)^{6}}{8 \sqrt[3]{4} \pi^{4}} \approx 1.57459723755
$$

Three steps

- Recursion + subtle analysis \Rightarrow convolution formula for $W_{4}(s)$ in terms of W_{3}.
- By playing around,

$$
W_{3}(k)=\operatorname{Re}_{3} F_{2}\left(\left.\begin{array}{c}
1 / 2,-k / 2,-k / 2 \\
1,1
\end{array} \right\rvert\, 4\right) .
$$

Theorem (1), Borwein, Nuyens, Straub, W. (2009)

$$
W_{3}(1)=\frac{16 \sqrt[3]{4} \pi^{2}}{\Gamma\left(\frac{1}{3}\right)^{6}}+\frac{3 \Gamma\left(\frac{1}{3}\right)^{6}}{8 \sqrt[3]{4} \pi^{4}} \approx 1.57459723755
$$

Proven using elementary manipulation of integrand and the transform $\operatorname{Re} K(1 / x)=x K(x)$.

Four steps

Theorem (2), Borwein, Straub, W., Zudilin (2010)
$W_{4}(1) \approx 1.79909248$ is given by

$$
\frac{3 \pi}{4}{ }_{7} F_{6}\left(\left.\begin{array}{c}
\frac{7}{4}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
\frac{3}{4}, 2,2,2,1,1
\end{array} \right\rvert\, 1\right)-\frac{3 \pi}{8}{ }_{7} F_{6}\left(\left.\begin{array}{c}
\frac{7}{4}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \left.\frac{1}{2} \right\rvert\, \\
\frac{3}{4}, 2,2,2,2,1
\end{array} \right\rvert\, 1\right) .
$$

Guessed using PSLQ (based on $W_{4}(-1)$).

Four steps

Theorem (2), Borwein, Straub, W., Zudilin (2010)
$W_{4}(1) \approx 1.79909248$ is given by

$$
\frac{3 \pi}{4}{ }_{7} F_{6}\left(\left.\begin{array}{c}
\frac{7}{4}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
\frac{3}{4}, 2,2,2,1,1
\end{array} \right\rvert\, 1\right)-\frac{3 \pi}{8}{ }_{7} F_{6}\left(\left.\begin{array}{c}
\frac{7}{4}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \left.\frac{1}{2} \right\rvert\, \\
\frac{3}{4}, 2,2,2,2,1
\end{array} \right\rvert\, 1\right) .
$$

Guessed using PSLQ (based on $W_{4}(-1)$).

- Meijer G-function: defined as a contour integral of ratios of Γ 's. The mother of all special functions.

Four steps

Theorem (2), Borwein, Straub, W., Zudilin (2010)

$W_{4}(1) \approx 1.79909248$ is given by

$$
\frac{3 \pi}{4}{ }_{7} F_{6}\left(\left.\begin{array}{c}
\frac{7}{4}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
\frac{3}{4}, 2,2,2,1,1
\end{array} \right\rvert\, 1\right)-\frac{3 \pi}{8}{ }_{7} F_{6}\left(\left.\begin{array}{c}
\frac{7}{4}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \left.\frac{1}{2} \right\rvert\, \\
\frac{3}{4}, 2,2,2,2,1
\end{array} \right\rvert\, 1\right) .
$$

Guessed using PSLQ (based on $W_{4}(-1)$).

- Meijer G-function: defined as a contour integral of ratios of Γ 's. The mother of all special functions.
- Important in CAS: many definite integrations are Meijer G transformations.

Four steps

Theorem (2), Borwein, Straub, W., Zudilin (2010)

$W_{4}(1) \approx 1.79909248$ is given by

$$
\frac{3 \pi}{4}{ }_{7} F_{6}\left(\left.\begin{array}{c}
\frac{7}{4}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
\frac{3}{4}, 2,2,2,1,1
\end{array} \right\rvert\, 1\right)-\frac{3 \pi}{8}{ }_{7} F_{6}\left(\left.\begin{array}{c}
\frac{7}{4}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \left.\frac{1}{2} \right\rvert\, \\
\frac{3}{4}, 2,2,2,2,1
\end{array} \right\rvert\,\right) .
$$

Guessed using PSLQ (based on $W_{4}(-1)$).

- Meijer G-function: defined as a contour integral of ratios of Γ 's. The mother of all special functions.
- Important in CAS: many definite integrations are Meijer G transformations.

$$
W_{4}(s)=\frac{2^{s}}{\pi^{3}} \frac{\Gamma(1+s / 2)}{\Gamma(-s / 2)} G_{4,4}^{2,4}\left(\left.\begin{array}{c}
1,(1-s) / 2,1,1 \\
1 / 2,-s / 2,-s / 2,-s / 2
\end{array} \right\rvert\, 1\right) .
$$

Experimental proofs

- Transform to $G_{4,4}^{2,2}$.

Experimental proofs

- Transform to $G_{4,4}^{2,2}$.
- Nesterenko's theorem: 'nice' $G_{4,4}^{2,2} \Longrightarrow$ triple integral.

Experimental proofs

- Transform to $G_{4,4}^{2,2}$.
- Nesterenko's theorem: 'nice' $G_{4,4}^{2,2} \Longrightarrow$ triple integral.
- $a:=G_{4,4}^{2,2}\left(\left.\underset{-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}}{0,1,1} \right\rvert\, 1\right)=-2 \pi W_{4}(1)$ not nice.

Experimental proofs

- Transform to $G_{4,4}^{2,2}$.
- Nesterenko's theorem: 'nice' $G_{4,4}^{2,2} \Longrightarrow$ triple integral.
- $a:=G_{4,4}^{2,2}\left(\left.\begin{array}{c}0,1,1,1 \\ -\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\end{array} \right\rvert\, 1\right)=-2 \pi W_{4}(1)$ not nice.
- $c:=-G_{4,4}^{2,2}\left(\left.\underset{\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}}{0,1,1} \right\rvert\, 1\right)$ is nice. Experimentally $a=4 c$.

Experimental proofs

- Transform to $G_{4,4}^{2,2}$.
- Nesterenko's theorem: 'nice' $G_{4,4}^{2,2} \Longrightarrow$ triple integral.
- $a:=G_{4,4}^{2,2}\left(\left.\begin{array}{c}0,1,1,1 \\ -\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\end{array} \right\rvert\, 1\right)=-2 \pi W_{4}(1)$ not nice.
- $c:=-G_{4,4}^{2,2}\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \left.-\frac{1}{2} \right\rvert\, 1\right)$ is nice. Experimentally $a=4 c$.
- Once found, easy to prove. Introduce parameter z as argument in $a \Rightarrow$ differentiation.

Experimental proofs

- Transform to $G_{4,4}^{2,2}$.
- Nesterenko's theorem: 'nice' $G_{4,4}^{2,2} \Longrightarrow$ triple integral.
- $a:=G_{4,4}^{2,2}\left(\left.\begin{array}{c}0,1,1,1 \\ -\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\end{array} \right\rvert\, 1\right)=-2 \pi W_{4}(1)$ not nice.
- $c:=-G_{4,4}^{2,2}\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \left.-\frac{1}{2} \right\rvert\, 1\right)$ is nice. Experimentally $a=4 c$.
- Once found, easy to prove. Introduce parameter z as argument in $a \Rightarrow$ differentiation.
- Split triple integral in 2, Zudilin's theorem: $\Longrightarrow{ }_{7} F_{6}$.

Closed form for p_{3}

- $p_{3}(x)=\frac{2 x}{\sqrt{3} \pi} \sum_{k=0}^{\infty} W_{3}(2 k)\left(\frac{x}{3}\right)^{2 k}$.

Closed form for p_{3}

- $p_{3}(x)=\frac{2 x}{\sqrt{3} \pi} \sum_{k=0}^{\infty} W_{3}(2 k)\left(\frac{x}{3}\right)^{2 k}$.
- With care, for small $\alpha>0$,

$$
\int_{0}^{\alpha} p_{3}(x) x^{s} \mathrm{~d} x=\frac{2 \alpha^{s+2}}{\sqrt{3} \pi(s+2)}+\frac{2 \alpha^{s+4}}{3 \sqrt{3} \pi(s+4)}+\cdots
$$

Closed form for p_{3}

- $p_{3}(x)=\frac{2 x}{\sqrt{3} \pi} \sum_{k=0}^{\infty} W_{3}(2 k)\left(\frac{x}{3}\right)^{2 k}$.
- With care, for small $\alpha>0$,

$$
\int_{0}^{\alpha} p_{3}(x) x^{s} \mathrm{~d} x=\frac{2 \alpha^{s+2}}{\sqrt{3} \pi(s+2)}+\frac{2 \alpha^{s+4}}{3 \sqrt{3} \pi(s+4)}+\cdots
$$

- Residues of $W_{3}(s)$ come from series coefficients.

Closed form for p_{3}

- $p_{3}(x)=\frac{2 x}{\sqrt{3} \pi} \sum_{k=0}^{\infty} W_{3}(2 k)\left(\frac{x}{3}\right)^{2 k}$.
- With care, for small $\alpha>0$,

$$
\int_{0}^{\alpha} p_{3}(x) x^{s} \mathrm{~d} x=\frac{2 \alpha^{s+2}}{\sqrt{3} \pi(s+2)}+\frac{2 \alpha^{s+4}}{3 \sqrt{3} \pi(s+4)}+\cdots
$$

- Residues of $W_{3}(s)$ come from series coefficients.
- Also explains the shape of p_{5}.

Closed form for p_{3}

- $p_{3}(x)=\frac{2 x}{\sqrt{3} \pi} \sum_{k=0}^{\infty} W_{3}(2 k)\left(\frac{x}{3}\right)^{2 k}$.
- With care, for small $\alpha>0$,

$$
\int_{0}^{\alpha} p_{3}(x) x^{s} \mathrm{~d} x=\frac{2 \alpha^{s+2}}{\sqrt{3} \pi(s+2)}+\frac{2 \alpha^{s+4}}{3 \sqrt{3} \pi(s+4)}+\cdots
$$

- Residues of $W_{3}(s)$ come from series coefficients.
- Also explains the shape of p_{5}.
- If p_{4} admits a Taylor series around 0 , this argument would give simple poles for $W_{4}(s)$, but it has double poles. !?

Series for p_{4}

- Plot $p_{4}^{\prime}(x)$ for small x was best done from first principles. Instead of using

$$
\lim _{h \rightarrow 0} \frac{p_{4}(x+h)-p_{4}(x)}{h},
$$

Series for p_{4}

- Plot $p_{4}^{\prime}(x)$ for small x was best done from first principles. Instead of using

$$
\lim _{h \rightarrow 0} \frac{p_{4}(x+h)-p_{4}(x)}{h},
$$

- I foolishly used

$$
\lim _{h \rightarrow 0} \frac{p_{4}(x+h)-p_{4}(h)}{x}
$$

Series for p_{4}

- Plot $p_{4}^{\prime}(x)$ for small x was best done from first principles. Instead of using

$$
\lim _{h \rightarrow 0} \frac{p_{4}(x+h)-p_{4}(x)}{h},
$$

- I foolishly used

$$
\lim _{h \rightarrow 0} \frac{p_{4}(x+h)-p_{4}(h)}{x} .
$$

- Amazingly, they produced almost the same plot, except mine was translated up by $r \approx 0.14$.

Series for p_{4}

- Plot $p_{4}^{\prime}(x)$ for small x was best done from first principles. Instead of using

$$
\lim _{h \rightarrow 0} \frac{p_{4}(x+h)-p_{4}(x)}{h},
$$

- I foolishly used

$$
\lim _{h \rightarrow 0} \frac{p_{4}(x+h)-p_{4}(h)}{x} .
$$

- Amazingly, they produced almost the same plot, except mine was translated up by $r \approx 0.14$.
- This means p_{4} almost satisfies the differential equation

$$
f^{\prime}(x)+r=\frac{f(x)}{x}
$$

Series for p_{4}

- Plot $p_{4}^{\prime}(x)$ for small x was best done from first principles. Instead of using

$$
\lim _{h \rightarrow 0} \frac{p_{4}(x+h)-p_{4}(x)}{h},
$$

- I foolishly used

$$
\lim _{h \rightarrow 0} \frac{p_{4}(x+h)-p_{4}(h)}{x}
$$

- Amazingly, they produced almost the same plot, except mine was translated up by $r \approx 0.14$.
- This means p_{4} almost satisfies the differential equation

$$
f^{\prime}(x)+r=\frac{f(x)}{x}
$$

- Solution: $f(x)=(a-r \log x) x, a \approx 0.33$, explaining the double pole!

Closed form for p_{4}

- To be consistent, we must have:

$$
p_{4}(x)=\sum_{n=1}^{\infty}\left(a_{4}(n)-r_{4}(n) \log x\right) x^{2 n-1}
$$

$a_{4}(n)$: residues at $-2 n ; r_{4}(n)$: coefficients of the double pole.

Closed form for p_{4}

- To be consistent, we must have:

$$
p_{4}(x)=\sum_{n=1}^{\infty}\left(a_{4}(n)-r_{4}(n) \log x\right) x^{2 n-1},
$$

$a_{4}(n)$: residues at $-2 n ; r_{4}(n)$: coefficients of the double pole.

- Guessed that p_{4} satisfies a DE, shared by the g.f. for $W_{4}(2 k)$ (c.f. p_{3}), and is a solution with a logarithmic singularity.

Closed form for p_{4}

- To be consistent, we must have:

$$
p_{4}(x)=\sum_{n=1}^{\infty}\left(a_{4}(n)-r_{4}(n) \log x\right) x^{2 n-1},
$$

$a_{4}(n)$: residues at $-2 n ; r_{4}(n)$: coefficients of the double pole.

- Guessed that p_{4} satisfies a DE, shared by the g.f. for $W_{4}(2 k)$ (c.f. p_{3}), and is a solution with a logarithmic singularity.
- DE rigorously produced by Mellin transform, PDE regularity, and a Gosper type algorithm.

Closed form for p_{4}

- To be consistent, we must have:

$$
p_{4}(x)=\sum_{n=1}^{\infty}\left(a_{4}(n)-r_{4}(n) \log x\right) x^{2 n-1},
$$

$a_{4}(n)$: residues at $-2 n ; r_{4}(n)$: coefficients of the double pole.

- Guessed that p_{4} satisfies a DE, shared by the g.f. for $W_{4}(2 k)$ (c.f. p_{3}), and is a solution with a logarithmic singularity.
- DE rigorously produced by Mellin transform, PDE regularity, and a Gosper type algorithm.
- More work on modular forms:

Theorem (3) Borwein, Straub, W., Zudilin (2010)

$$
p_{4}(x)=\frac{2 \sqrt{16-x^{2}}}{\pi^{2} x} \operatorname{Re}_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
\frac{5}{6}, \frac{7}{6}
\end{array} \right\rvert\, \frac{\left(16-x^{2}\right)^{3}}{108 x^{4}}\right) .
$$

"Science is what we understand well enough to explain to a computer. Art is everything else we do." - Donald Knuth
"Mathematics is much less formally complete and precise than computer programs." - William Thurston
＂Science is what we understand well enough to explain to a computer．Art is everything else we do．＂－Donald Knuth
＂Mathematics is much less formally complete and precise than computer programs．＂－William Thurston

Thank you！

囯 J．M．Borwein，D．Nuyens，A．Straub，J．Wan
Some arithmetic properties of short random walk integrals．
Ramanujan Journal，26，（2011），109－132．
嗇 J．M．Borwein，A．Straub，J．Wan
Three－step and four－step random walk integrals．Experimental Mathematics，22，（2013），1－14．

雷 J．M．Borwein，A．Straub，J．Wan，W．Zudilin（\＆D．Zagier） Densities of short uniform random walks．Canadian Journal of Mathematics，64，（2012），961－990．

