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Abstract

We desire to generate monthly rainfall totals for a particular location in such a way
that the statistics for the simulated data match the statistics for the observed data. We
are especially interested in the accumulated rainfall totals over several months. We propose
two different ways to construct a joint rainfall probability distribution that matches the
observed grade correlation coefficients and preserves the known marginal distributions. Both
methods use multi–dimensional checkerboard copulas. In the first case we use the theory
of Fenchel duality to construct a copula of maximum entropy and in the second case we
use a copula derived from a multi–variate normal distribution. Finally we simulate monthly
rainfall totals at a particular location using each method and analyse the statistical behaviour
of the corresponding quarterly accumulations.

1 Modelling accumulated rainfall

It has been usual to model both short–term and long–term rainfall accumulations at a specific
location by a gamma distribution [16, 11, 3, 4]. Some authors [14, 5] have, however, observed
that simulations in which monthly rainfall totals are modelled as mutually independent gamma
random variables generate accumulated bi–monthly, quarterly and yearly totals with much lower
variance than the observed accumulations. It is reasonable to surmise that the variance of the
generated totals will be increased if the model includes an appropriate level of positive correlation
between individual monthly totals. We use a typical case study to show that this is indeed the
case. More generally, the problem we address is how to construct a joint probability distribution
which preserves the known marginal distributions and matches the observed grade correlation
coefficients. We propose two alternative ways in which this could be done. Both methods use
multi–dimensional copulas.

1.1 Multi–dimensional copulas

An m–dimensional copula where m ≥ 2, is a continuous, m–increasing cumulative probability
distribution C : [0, 1]m 7→ [0, 1] on the unit m–dimensional hyper–cube with uniform marginal
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probability distributions. If Fr : R 7→ [0, 1] is a prescribed continuous distribution for the real
valued random variable Xr for each r = 1, . . . ,m then the function G : Rm 7→ [0, 1] defined by

G(x) = C(F1(x1), . . . , Fm(xm))

where x = (x1, . . . , xm)T ∈ Rm is a joint probability distribution for the vector–valued random
variable X = (X1, . . . , Xm)T with the marginal distribution for Xr defined by Fr for each
r = 1, 2, . . . ,m. The joint density g : Rm 7→ [0,∞) is defined almost everywhere and is given by
the formula

g(x) = c(F1(x1), . . . , Fm(xm))f1(x1) · · · fm(xm)

where c : [0, 1]m 7→ [0,∞) is the density for the joint distribution defined by C and where fr :
R 7→ [0,∞) for each r = 1, 2, . . . ,m are the densities for the prescribed marginal distributions.
If related real valued random variables Ur = Fr(Xr) are defined for each r = 1, 2, . . . ,m then
each Ur is uniformly distributed on [0, 1] and the copula C describes the distribution of the
vector valued random variable U = (U1, . . . , Um)T . The grade correlation coefficients for X are
defined by

ρr,s =
E[(Fr(Xr)− 1/2)(Fs(Xs)− 1/2)]√

E[(Fr(Xr)− 1/2)2] · E[(Fs(Xs)− 1/2)2]

=
E[(Ur − 1/2)(Us − 1/2)]√

E[(Ur − 1/2)2] · E[(Us − 1/2)2]

= 12E[UrUs]− 3

for each 1 ≤ r < s ≤ m. Thus, the grade correlation coefficients forX are simply the correlations
for U . The entropy for the copula C with density c is defined by

J(C) = (−1)

∫
[0,1]m

c(u) loge c(u) du

where u = (u1, . . . , um)T ∈ [0, 1]m. The entropy J(C) of the copula measures the inherent
disorder of the distribution. The most disordered copula is the one with c(u) = 1 for all
u ∈ [0, 1]m for which J(C) = 0.
We introduce two special copulas which we will use to model monthly rainfall. For the first
method we use the checkerboard copula of maximum entropy proposed by Piantadosi et al.
[7, 9]. For the second method we use a copula defined by a multi–variate normal distribution.

1.2 Checkerboard copulas

An m–dimensional checkerboard copula is a distribution with a corresponding density defined
almost everywhere by a step function on an m–uniform subdivision of the hyper–cube [0, 1]m.
Any continuous copula can be uniformly approximated by a checkerboard copula. For each
fixed n ∈ N we will consider a subdivision of the interval [0, 1] into n equal length subintervals
and a corresponding m–uniform subdivision of the unit hyper–cube [0, 1]m into nm congruent
hyper–cubes. Consider an elementary checkerboard copula C = Ch with density c = ch in the
form of a step function defined by an m–dimensional hyper–matrix h such that the density takes
a constant non–negative value on each hyper–cube of the subdivision. If h is a non–negative
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m–dimensional hyper–matrix given by h = [hi] ∈ R` where i = (i1, . . . , im) ∈ {1, . . . , n}m and
` = nm then the grade correlation coefficients for Ch are given by

ρr,s = 12

 1

n3

∑
i ∈ {1,...,n}m

hi(ir − 1/2)(is − 1/2)

− 3 (1.1)

and the entropy of h is given by

J(h) = (−1)

 1

n

∑
i ∈ {1,...,n}m

hi loge hi + (m− 1) loge n

 . (1.2)

If n ∈ N is sufficiently large then Piantadosi et al. [7, 9] showed that h could be chosen in such
a way that the known grade correlations were imposed and the entropy of the hyper–matrix was
maximized. Since entropy is a measure of disorder the solution proposed by Piantadosi et al. for
ch can be interpreted as the most disordered or least prescriptive choice of step function for the
selected value of n that satisfies the required grade correlation constraints. The corresponding
checkerboard copula C = Ch is the most disordered such copula.

1.3 Multi–variate normal copulas

The m–dimensional normal distribution ϕ : Rm → [0,∞) for the vector–valued random variable
Z = (Z1, . . . , Zm)T ∈ Rm with unit normal marginal distributions is defined by the density

ϕ(z) =
1

(2π)m/2(det Σ)1/2
exp

[
− 1

2
zTΣ−1z

]
where z = (z1, . . . , zm)T ∈ Rm and where

Σ = E[ZZT ] = [cos θr,s] ∈ [−1, 1]m×m (1.3)

is the correlation matrix. The Hilbert space interpretation is that θr,s represents the angle
between the unit vectors representing the random variables Zr and Zs. Consequently there
are geometric restrictions on the permissible angles [9]. The marginal distributions for Zr are
standard unit normal distributions [13] given by

Φ(zr) =
1

(2π)1/2

∫ zr

−∞
exp

[
− ζ2

r

2

]
dζr.

If we define Ur = Φ(Zr) for each r = 1, 2, . . . ,m then the random variables Ur are uniformly
distributed on the interval [0, 1] and the joint density c : [0, 1]m → [0,∞) defined by

c(u) =
ϕ(Φ−1(u1), . . . ,Φ−1(um))

Φ′(Φ−1(u1)) · · ·Φ′(Φ−1(um))

is the density for the m–dimensional normal copula C : [0, 1]m → [0, 1] defined by

C(u) =

∫
[0,u1]×···×[0,um]

c(v)dv.
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We note from [13] that for any 1 ≤ r < s ≤ m the marginal distribution of (Zr, Zs)
T is a

bi–variate normal distribution with correlation matrix Σr,s given by

Σr,s =

[
1 cos θr,s

cos θr,s 1

]
(1.4)

and hence the grade correlation coefficients for the copula C can be calculated from the formula

ρr,s =
6

π sin θr,s

∫
R2

Φ(zr)Φ(zs) exp

[
− 1

2 sin2 θr,s

(
z2
r − 2 cos θr,szrzs + z2

s

)]
dzrdzs − 3. (1.5)

From [15] the entropy is given by

J(C) =
1

2
loge det Σ. (1.6)

Since det Σ represents the volume of an m–dimensional parallelepiped defined by unit vectors
representing the random variables Z1, . . . , Zm it follows that 0 < det Σ ≤ 1 and hence J(C) ≤ 0.
We will adjust the parameters θr,s in order to match the observed grade correlation coefficients.
Note also [15] in one dimension for two distributions with the same mean and variance that
entropy is maximized by the normal distribution. In our case, with a multi–variate normal
distribution and additional constraints on the correlation, it nevertheless seems intuitively rea-
sonable to expect that the normal copula may be close to the copula of maximum entropy.

2 Constructing a copula of maximum entropy

We now outline the method proposed by Piantadosi et al. [9] to find a copula of maximum
entropy. Let n ∈ N be a natural number and let h be a non–negative m–dimensional hyper–
matrix given by h = [hi] ∈ R` where ` = nm and i ∈ {1, . . . , n}m with hi ∈ [0, 1]. Define the
marginal sums σr : {1, . . . , n} 7→ R by the formulae

σr(ir) =
∑

j 6=r,ij∈ {1,2,...,n}

hi

for each r = 1, 2, . . . ,m. If σr(ir) = 1 for all ir ∈ {1, 2, . . . , n} and all r = 1, 2, . . . ,m then we say
that h is multiply stochastic. Define the partition 0 = a(1) < a(2) < · · · < a(n) < a(n+ 1) = 1
of the interval [0, 1] by setting a(k) = (k − 1)/n for each k = 1, . . . , n + 1 and define a step
function ch : [0, 1]m 7→ R almost everywhere by the formula

ch(u) = nm−1 · hi if u ∈ Ii = ×m
r=1 (a(ir), a(ir + 1))

for each i = (i1, . . . , im) ∈ {1, 2, . . . , n}m. Now it follows that the step function ch : [0, 1]m 7→
[0,∞) defines a corresponding copula Ch : [0, 1]m 7→ [0, 1] by the formula

Ch(u) =

∫
×n

i=1[0,ui]
ch(v)dv

for all u ∈ [0, 1]m. The formulae (1.1) and (1.2) can be established by direct integration. It is
also possible to show that

−1 +
1

n2
≤ ρr,s ≤ 1− 1

n2
. (2.7)

See [9] for more details. The checkerboard copula of maximum entropy is the checkerboard
copula Ch defined by the hyper–matrix h that solves the following problem.
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Problem 2.1 (The primal problem) Find the hyper–matrix h = [hi] ∈ R` to maximize the
entropy

J(h) = (−1)

 1

n

∑
i ∈ {1,...,n}m

hi loge hi + (m− 1) loge n

 (2.8)

subject to the constraints ∑
j 6=r, ij∈{1,...,n}

hi = 1 (2.9)

for all ir ∈ {1, . . . , n} and each r = 1, . . . ,m and

hi ≥ 0 (2.10)

for all i ∈ {1, . . . , n}m and the additional grade correlation coefficient constraints

12

 1

n3
·

∑
i ∈ {1,...,n}m

hi(ir − 1/2)(is − 1/2)

− 3 = ρr,s (2.11)

for 1 ≤ r < s ≤ m where ρr,s is known for all 1 ≤ r < s ≤ m.

Piantadosi et al. [9] noted that the problem is well posed. Nevertheless, it is not easy to compute
a numerical solution directly. In fact it is much easier to solve the problem using the theory of
Fenchel duality. To do this it is best to begin by writing the primal problem in standard form.
Define g : R` 7→ [0,∞) ∪ {+∞} by setting

g(h) =

{
(−1)J(h) if hj ≥ 0 for all j ∈ {1, 2, . . . ,m}n
+∞ otherwise

where we have used the convention that h loge h = 0 when h = 0 and where we allow functions
to take values in an extended set of real numbers. With appropriate definitions we can write
the constraints (2.9) and (2.11) in the form Ah = b where A ∈ Rk×` and b ∈ Rk and where k is
the collective rank of the coefficient matrix defining the two sets of linear constraints. We can
omit constraint (2.10) as it is enforced by the entropy. The primal problem can be restated in
standard mathematical form.

Problem 2.2 (Mathematical statement of the primal problem) Find

inf
h∈R`

{
g(h) | Ah = b

}
. (2.12)

The Fenchel conjugate function g∗ : R` 7→ R ∪ {−∞} is defined by

g∗(k) = sup
h∈R`

{
〈k,h〉 − g(h)

}
(2.13)

from which it follows by elementary calculus that

g∗(k) =
1

n

∑
i ∈ {1,...,n}m

exp [nki]− (m− 1) loge n.

If we denote the the adjoint matrix by A∗ ∈ R`×k then we can write down a standard mathe-
matical statement of the dual problem.
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Problem 2.3 (Mathematical statement of the dual problem) Find

sup
ϕ∈Rk

{
〈b,ϕ〉 − g∗(A∗ϕ)

}
. (2.14)

If we let

H(ϕ) =

k∑
j=1

bjϕj −
1

n

∑̀
i=1

exp

n · k∑
j=1

a∗ijϕj

+ (m− 1) loge n

then we can use elementary calculus once again to show that if the maximum of H(ϕ) occurs
when ϕ = ϕ then ∑̀

i=1

a∗ir exp

n · k∑
j=1

a∗ijϕj

 = br (2.15)

for all r = 1, 2, . . . , k.
Piantadosi et al. [9] showed that the dual problem is much easier to solve than the primal
problem and that the solution to the primal problem can be recovered from the solution to the
dual problem. Indeed, we can use a Newton iteration to solve the key equations (2.15). The key
equations take the form

q(ϕ) = 0

where

qr(ϕ) =
∑̀
i=1

a∗ir exp

n · k∑
j=1

a∗ijϕj

− br
for each r = 1, 2, . . . , k. Now the Newton iteration is given by

ϕ(j+1) = ϕ(j) − J−1[ϕ(j)]q[ϕ(j)]

where we use the Matlab inverse of the Jacobian matrix J ∈ Rk×k. In general there is a closed
form for the primal solution h. Let k = A∗ϕ and suppose kj > 0 for all j ∈ {1, 2, . . . ,m}n.
Then the unique solution to the primal problem (2.2) is given by

h = ∇g∗(A∗ϕ). (2.16)

The underlying analysis is described in the book by Borwein and Lewis [1]. See also the recent
survey paper by Borwein [2].

3 Constructing a multi–variate normal copula

We note from [15] that the entropy of the multi–variate normal distribution ϕ is given by

J(ϕ) =
m

2
loge 2π +

m

2
+

1

2
loge det Σ, (3.17)

where Σ is the correlation matrix (1.3). It follows that the entropy for the multi–variate normal
copula C with density

c(u) =
ϕ(Φ−1(u1), . . . ,Φ−1(um))

Φ′(Φ−1(u1)) · · ·Φ′(Φ−1(um))
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is given by

J(C) = −
∫

[0,1]m
c(u) loge c(u) du

= −
∫
Rm

ϕ(z)

Φ′(z1) · · ·Φ′(zm)

[
loge ϕ(z)−

m∑
r=1

loge Φ′(zr)

]
Φ′(z1) · · ·Φ′(zm) dz

= −
∫
Rm

ϕ(z) loge ϕ(z) dz +

m∑
r=1

∫
Rm

ϕ(z) loge Φ′(zr) dz

= J(ϕ)−
m∑
r=1

∫
Rm

ϕ(z)

(
1

2
loge 2π +

z2
i

2

)
dz

= J(ϕ)− m

2
loge 2π − m

2

=
1

2
loge det Σ.

To match the observed grade correlation coefficients we must find θ = θr,s by solving the equation
f(θ) = ρr,s where

f(θ) =
6

π sin θ

∫
R2

Φ(zr)Φ(zs) exp

[
− 1

2 sin2 θ

(
z2
r − 2 cos θzrzs + z2

s

)]
dzrdzs − 3

and where ρr,s is the desired grade correlation coefficient for each 1 ≤ r < s ≤ m.
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Figure 1: Comparison of f(θ) in blue circles and cos θ in red crosses.
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The graph in Figure 1 shows that f(θ) ≈ cos θ decreases on [0, π/2]. Since f(θ) is an odd function
about θ = π/2 we know f(θ) decreases throughout [0, π] and hence the equation f(θ) = ρr,s can
be solved using a simple midpoint iteration. Evaluation of f(θ) requires a suitable numerical
integration package. We have used the Matlab package dblquad. When θ is small the integration
becomes unstable but in this region the value of f(θ) is very close to cos θ.
For the purpose of simulation and to enable a direct comparison with the method of the previous
section, it is convenient to approximate the multi–variate normal copula by a checkerboard
copula of the same size. This copula is defined by a hyper–matrix h = [hi] ∈ R` determined
from the multi–variate normal copula by the formula

hi = n

∫
Ii

c(u)du

for each i ∈ {1, . . . , n}m. If the partition −∞ = b(1) < b(2) < · · · < b(n) < b(n + 1) = +∞
and the corresponding intervals Ji = ×m

r=1 (b(ir), b(ir + 1)) are defined by solving the equations
Φ(b(k)) = a(k) for each k = 1, . . . , n+ 1 then

hi = n

∫
Ji

ϕ(z)dz

for each i ∈ {1, . . . , n}m. This should mean, for instance, that standard Matlab functions can
be used for the numerical calculations1. Finally the step function ch : [0, 1]m 7→ R and the
corresponding copula Ch : [0, 1]m 7→ [0, 1] are defined in the manner explained earlier in Section
1.2. For convenience we will refer to this copula as a normal checkerboard copula. When using
this approximation we also use the formula (1.1) to calculate ρr,s for each 1 ≤ r < s ≤ m. Thus,
we choose θr,s so that the calculated values of the grade correlation coefficients ρr,s match the
observed values. The properties of the normal distribution mean that these calculations can be
done separately for each 1 ≤ r < s ≤ m using the relevant marginal bi–variate normal copula.

4 Monthly rainfall data for Sydney

We used official monthly rainfall records for the 150 year period 1859–2008 at station number
0662062, Observatory Hill, Sydney, NSW, Australia. These records are available on the Aus-
tralian Bureau of Meteorology website http://www.bom.gov.au/climate/data/. Table 1 shows
the monthly statistics. The rainfall is measured in millimetres (mm).

Table 1: Monthly means (m) and standard deviations (s) for Sydney

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

m 103 118 130 126 103 131 98 82 70 77 84 78

s 76 110 103 112 111 116 82 84 60 66 76 63

Table 2 shows the grade correlation coefficients for all monthly pairs. The distributions appear
to be weakly correlated. The correlation for (Oct,Nov) is significant at the 0.01 level (2–tailed)

1Evaluation of the relevant integrals in Matlab turned out to be more difficult than we had first imagined.
See later notes about the numerical calculations.
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and the correlations for (Jan,Feb), (Jan,Apr), (Jan,Oct), (Mar,Jun), (Apr,May), (Jun,Sep) are
significant at the 0.05 level (2–tailed). The significant correlations are shown in bold print.

Table 2: Grade correlation coefficients for all monthly pairs

Ja Fe Mr Ap Ma Jn Jl Au Se Oc No De

Ja .18 -.06 -.19 -.01 -.02 -.02 .13 .09 -.16 .05 -.04
Fe .18 -.03 -.08 -.09 .05 -.01 .10 .09 -.05 .08 -.07
Mr -.06 -.03 .11 .04 .19 -.14 -.15 -.12 .15 -.05 -.01
Ap -.19 -.08 .11 .18 .05 .13 .12 -.08 .11 .09 -.03
Ma -.01 -.09 .04 .18 .05 -.02 -.05 -.08 -.07 .05 -.06
Jn -.02 .05 .19 .05 .05 -.04 -.07 -.17 .02 .05 -.05
Jl -.02 -.01 -.14 .13 -.02 -.04 .11 .12 .08 -.08 -.02
Au .13 .10 -.15 .12 -.05 -.07 .11 .13 .13 .12 -.09
Se .09 .09 -.12 -.08 -.08 -.17 .12 .13 .04 .07 -.01
Oc -.16 -.05 .15 .11 -.07 .02 .08 .13 .04 .22 -.03
No .05 .08 -.05 .09 .05 .05 -.08 .12 .07 .22 .08
De -.04 -.07 -.01 -.03 -.06 -.05 -.02 -.09 -.01 -.03 .08

4.1 Modelling individual monthly rainfall totals

There are no observed zero rainfall totals and the distributions for individual months can be
modelled effectively using a gamma distribution [5, 8, 10, 11, 12, 16]. The gamma distribution
is defined on (0,∞) by the formula

F [α, β](x) =

∫ x

0

ξα−1

βαΓ(α)
exp(−ξ/β) dξ

where α > 0 and β > 0 are parameters. The parameters α = α[t] and β = β[t] for month t were
determined by the method of maximum likelihood. The calculated values are

α = (1.817, 1.359, 1.741, 1.333, 1.258, 1.338, 1.202, 1.051, 1.412, 1.468, 1.461, 1.777)

and

β = (56.40, 86.75, 74.60, 94.70, 95.97, 97.64, 81.56, 78.12, 49.33, 52.31, 57.29, 43.92).

4.2 Simulating individual monthly rainfall totals

Simulated data for the individual monthly totals can be generated in the following way. If
F (x) = P [0 < X ≤ x] is the fitted cumulative probability distribution for the monthly rainfall
total X ∈ (0,∞) then the random variable U = F (X) is uniformly distributed on the interval
[0, 1]. If we generate uniformly distributed pseudo–random numbers {ur} ∈ (0, 1) then we can
generate corresponding pseudo–random monthly rainfall totals {xr} ∈ (0,∞) with the desired
distribution by setting xr = F−1(ur).
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4.3 Rainfall in the Spring Quarter

For our particular case study we consider the Spring Quarter rainfall in Sydney. We begin by
modelling the total rainfall in the months of September, October and November using gamma
distributions with the parameter values

α = (1.4115, 1.4682, 1.4608) and β = (49.3327, 52.3126, 57.2866).

Figures 2, 3 and 4 show, respectively, histograms of the observed frequency versus the fitted
gamma probability density on the left and a histogram of the observed frequency versus a his-
togram of the pseudo–randomly generated rainfall on the right for each of the months September,
October and November.
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Figure 2: September: Observed rainfall with fitted distribution (left) and generated data (right).
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Figure 3: October: Observed rainfall with fitted distribution (left) and generated data (right).

A comparison of the means and variances for the observed, fitted and generated data is given in
Table 3. The Kolmogorov–Smirnov goodness–of–fit test was used to assess the fit between the
observed and fitted rainfall totals and between the observed and generated totals. The P–values
were greater than 0.05 and so we conclude that the null hypothesis, that the samples came from
the same distribution as the observations, should not be rejected at the 5% significance level.
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Figure 4: November: Observed rainfall with fitted distribution (left) and generated data (right).

Table 3: Key statistics for observed, fitted and generated data

Data Mean Variance

September October November September October November

Observed 69.633 76.805 83.684 3596.596 4411.235 5699.169

Fitted 69.633 76.805 83.684 3435.189 4017.888 4793.987

Generated 69.795 76.394 84.065 3418.217 4038.737 4760.255

The observed grade correlation coefficients are ρ12 ≈ 0.0305 for September and October, ρ13 ≈
0.0707 for September and November and ρ23 ≈ 0.2169 for October and November. The generally
positive correlation means that we should expect a higher variance in the overall total for the
Spring Quarter than would be the case if the monthly rainfall totals were independent. This
expectation was confirmed by simulating rainfall in the Spring Quarter using a model where the
monthly totals were treated as independent random variables. The Matlab histograms in Figure
5 for the total rainfall were selected from 10 successive simulations, each one spanning a period
of 150 years, using a model in which the monthly totals were treated as independent random
variables. The bins were defined by the Matlab instruction 0 : 50 : 1000. The sample mean
and variance for each simulation are shown under the histograms. Very large and very small
monthly totals are relatively infrequent and if the monthly totals are treated as independent
random variables then the probability of large totals in all three months or small totals in all
three months is extremely small. This probability will increase if the monthly rainfalls are
positively correlated. The variance will also increase. Hence, in our case, we expect that the
variance predicted by the independent model will be too small. This is indeed the case for all
except the sample INDS2 which is apparently a statistical outlier.
These observations strongly suggest we should seek a model using a correlated joint distribu-
tion. Suppose the random variable X = (X1, . . . , Xm)T is distributed according to the joint
probability density g : (0,∞)m → (0,∞) defined by

g(x1, . . . , xm) = nm−1 hi f1(x1) · · · fm(xm) when (F1(x1), . . . , Fm(xm)) ∈ Ii
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Figure 5: Spring rainfall in selected simulations using independent random variables

where i = (i1, . . . , im) and Ii is the usual uniform subdivision of the unit hyper–cube [0, 1]m

and h = [hi] ∈ R` where ` = nm is a multiply–stochastic hyper–matrix. Let S =
∑m

r=1Xr and
µ =

∑m
r=1 µr where µr = E[Xr] for each r = 1, . . . ,m and define the interval Ki as the inverse

image of Ii under the mapping F = (F1, . . . , Fm) : (0,∞)m → (0, 1)m. We have

E[(S − µ)2] =
∑

i∈{1,...,n}m
nm−1 hi

∫
Ki

(S − µ)2f1(x1) · · · fm(xm)dx1 · · · dxm

=
∑

i∈{1,...,n}m
nm−1 hi

∫
Ki

[
m∑
r=1

(xr − µr)2

+ 2
∑

1≤r<s≤m
(xr − µr)(xs − µs)

 f1(x1) · · · fm(xm)dx1 · · · dxm.

If we write Ki = (c1(i1), c1(i1 + 1)) × · · · × (cm(im), cm(im + 1)) for each i = (i1, . . . , im) then
we can show by direct integration that∫

Ki

m∑
r=1

(xr − µr)2f1(x1) · · · fm(xm)dx1 · · · dxm =

∑m
r=1 σr(ir)

2

nm−1

where

σr(k)2 =

∫ cr(k+1)

cr(k)
(xr − µr)2fr(xr)dxr

for each r = 1, . . . ,m and each k = 1, 2, . . . , n. We can also show that∫
Ki

∑
1≤r<s≤m

(xr − µr)(xs − µs)f1(x1) · · · fm(xm)dx1 · · · dxm =

∑
1≤r<s≤mmr(ir)ms(is)

nm−2

where

mr(k) =

∫ cr(k+1)

cr(k)
(xr − µr)fr(xr)dxr

for each r = 1, . . . ,m and each k = 1, 2, . . . , n. By noting that h is multiply–stochastic and
summing over the relevant terms it follows that

E[(S − µ)2] =

m∑
r=1

σ2
r + 2n

∑
i∈{1,...,n}m

hi

 ∑
1≤r<s≤m

mr(ir)ms(is)

 (4.18)
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where

σ2
r =

∫ ∞
0

(xr − µr)2fr(xr)dxr

for each r = 1, . . . ,m. In practice it may be easier to check the validity of the model by simply
computing the variance for a sufficiently large pseudo–random sample. We discuss generation
of pseudo–random samples in the next subsection.

4.4 Simulating rainfall in the Spring Quarter using a checkerboard copula

Suppose we have obtained a checkerboard copula Ch defined by a matrix h = [hi] ∈ R` where
` = n3 and i = (i, j, k) ∈ {1, . . . , n}3 on a uniform partition {Ii} of the unit cube (0, 1)3.
Simulated data for monthly rainfall triples may be generated as follows. Define an order for the
indices i = (i, j, k) by saying that (i, j, k) ≺ (i0, j0, k0) if i < i0 or if i = i0 and j < j0 or if
i = i0 and j = j0 and k < k0. For each pseudo–random number r ∈ (0, 1) select the interval
Ii0j0k0 = (a(i0), a(i0 + 1))× (a(j0), a(j0 + 1))× (a(k0), a(k0 + 1)) if

∑
(i,j,k)≺(i0,j0,k0)

hijk < nr <

 ∑
(i,j,k)≺(i0,j0,k0)

hijk

+ hi0j0k0 .

Once the interval Ii0j0k0 has been selected the precise position of the pseudo–random point
(ur, vr, wr) ∈ Ii0j0k0 is fixed by generating three more (independent) random numbers (qr, sr, tr) ∈
(0, 1)3 and setting

(ur, vr, wr) =

(
(i0 − 1) + qr

n
,
(j0 − 1) + sr

n
,
(k0 − 1) + tr

n

)
and the corresponding rainfall triple is defined by

(xr, yr, zr) =
(
F−1
x (ur), F

−1
y (vr), F

−1
z (wr)

)
where Fx, Fy and Fz are the given marginal distributions.

4.4.1 The fitted tri–variate checkerboard copula of maximum entropy

We set ρ12 = 0.0305, ρ13 = 0.0707 and ρ23 = 0.2169 and calculate

h1 ≈


0.1040 0.0751 0.0517 0.0339
0.0800 0.0701 0.0584 0.0463
0.0589 0.0625 0.0630 0.0606
0.0415 0.0532 0.0650 0.0757

 , h2 ≈


0.0940 0.0720 0.0525 0.0364
0.0733 0.0680 0.0600 0.0504
0.0547 0.0614 0.0656 0.0668
0.0390 0.0530 0.0686 0.0845

 ,

h3 ≈


0.0845 0.0686 0.0530 0.0390
0.0668 0.0656 0.0614 0.0547
0.0504 0.0600 0.0680 0.0733
0.0364 0.0525 0.0720 0.0940

 , h4 ≈


0.0757 0.0650 0.0532 0.0415
0.0606 0.0630 0.0625 0.0589
0.0463 0.0584 0.0701 0.0800
0.0339 0.0517 0.0751 0.1040

 ,
where hi = [hijk]. The entropy is given by J(h) ≈ −0.030252.
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4.4.2 The fitted tri–variate normal checkerboard copula

We set θ12 = 1.5328, θ13 = 1.4826 and θ23 = 1.2989 and calculate ρ12 ≈ 0.0305, ρ13 ≈ 0.0707,
ρ23 ≈ 0.2169 and also

h1 ≈


0.1072 0.0718 0.0531 0.0331
0.0777 0.0688 0.0604 0.0472
0.0605 0.0638 0.0633 0.0584
0.0408 0.0540 0.0635 0.0764

 , h2 ≈


0.0950 0.0690 0.0538 0.0360
0.0701 0.0671 0.0620 0.0520
0.0554 0.0629 0.0656 0.0652
0.0380 0.0540 0.0669 0.0871

 ,

h3 ≈


0.0871 0.0669 0.0540 0.0380
0.0652 0.0656 0.0629 0.0554
0.0520 0.0620 0.0671 0.0701
0.0360 0.0538 0.0690 0.0950

 , h4 ≈


0.0764 0.0635 0.0540 0.0408
0.0584 0.0633 0.0638 0.0605
0.0472 0.0604 0.0688 0.0777
0.0331 0.0531 0.0718 0.1072

 ,
where hi = [hijk]. The entropy is given by J(h) ≈ −0.030624.

4.5 Numerical calculations

We used Matlab for the numerical calculations. The subintervals Kijk are defined by

r cr(1) cr(2) cr(3) cr(4) cr(5)

1 0 26.962 54.054 95.635 ∞
2 0 30.586 60.243 105.292 ∞
3 0 33.207 65.553 114.750 ∞

and we calculate

r mr(1) mr(2) mr(3) mr(4) sum

1 −13.730 −7.431 0.779 20.381 0.000

2 −14.970 −8.004 0.931 22.042 0.000

3 −16.355 −8.747 1.005 24.077 0.000

for the corresponding moments about the mean and

r σr(1)2 σr(2)2 σr(3)2 σr(4)2 σr
2

1 767.330 236.020 37.637 2394.201 3435.189

2 913.258 274.367 44.796 2785.467 4017.888

3 1087.259 327.624 53.328 3325.776 4793.987

for the corresponding variances. Note that the row sums of the moments give the total first
moment about the mean for each of the three variables and the row sums of the variances give
the total variance for each of the three variables. These moments are used in conjunction with
the relevant hyper–matrices to calculate the theoretical variances for each of the two copulas
using the formula (4.18).
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4.6 Simulations using the fitted checkerboard copulas

Suppose that the joint probability is defined by a checkerboard copula on a uniform subdivision
Iijk of the unit cube (0, 1)3 by a triply–stochastic hyper–matrix h = [hijk]. The probability in
simulation that a rainfall triple (x1, x2, x3) will be selected from the interval Kijk = F−1(Iijk) is
given by pijk = 4hijk. Convergence of the simulations in probability is extremely slow in terms
of real time. Each realization represents one year of real time and 106 realizations were required
to obtain 3 decimal place accuracy for the hyper–matrices. The simulated values were

h1 ≈


0.1039 0.0752 0.0514 0.0331
0.0807 0.0710 0.0588 0.0466
0.0589 0.0623 0.0628 0.0607
0.0422 0.0535 0.0651 0.0760

 , h2 ≈


0.0938 0.0718 0.0517 0.0356
0.0732 0.0680 0.0603 0.0501
0.0547 0.0611 0.0659 0.0667
0.0392 0.0530 0.0682 0.0855

 ,

h3 ≈


0.0841 0.0690 0.0525 0.0386
0.0678 0.0664 0.0615 0.0544
0.0502 0.0594 0.0681 0.0729
0.0369 0.0525 0.0721 0.0943

 , h4 ≈


0.0755 0.0645 0.0532 0.0415
0.0610 0.0628 0.0628 0.0592
0.0453 0.0583 0.0697 0.0792
0.0342 0.0516 0.0744 0.1050

 ,
for the copula of maximum entropy and

h1 ≈


0.1070 0.0719 0.0533 0.0329
0.0768 0.0695 0.0596 0.0463
0.0605 0.0642 0.0630 0.0580
0.0408 0.0536 0.0629 0.0774

 , h2 ≈


0.0953 0.0685 0.0539 0.0356
0.0705 0.0671 0.0629 0.0531
0.0554 0.0625 0.0646 0.0655
0.0383 0.0546 0.0668 0.0862

 ,

h3 ≈


0.0870 0.0678 0.0545 0.0382
0.0648 0.0658 0.0619 0.0563
0.0527 0.0621 0.0667 0.0712
0.0353 0.0535 0.0686 0.0948

 , h4 ≈


0.0768 0.0642 0.0542 0.0411
0.0575 0.0625 0.0630 0.0603
0.0473 0.0614 0.0689 0.0775
0.0335 0.0534 0.0717 0.1070

 ,
for the normal copula. In this context one can see that simulation runs of 150 realisations are
really very small samples and as such we may expect them to produce quite variable results.
This logic can be turned around to speculate that, even without the effects of climate change,
rainfall in the Spring Quarter over the next period of 150 years could be quite different from the
observed rainfall thus far. One could also argue that such variability undermines our implicit
assumption that the observed data provides a representative basis for a model of the entire
population.
We began our investigation of the simulations by looking at detailed rainfall patterns in two
particular simulations. Each simulation covers a period of 150 years. Monthly rainfalls for
selected years from the two simulations are shown in Table 4 and Table 5.
The simulation in Table 4 using the copula of maximum entropy showed the wettest Spring
Quarter in year 72 with a total of 662. The driest quarter was in year 33 with a total of 22. The
simulation suggests that high quarterly totals may be associated with above average rainfall in
all three months, such as in years 78 and 135, or with one or two extreme totals as depicted
in years 42 and 69. Very dry quarters were infrequent but not unusual. There was no instance
of sustained severe drought but there were instances of successive predominantly below average
quarterly totals, such as those in years 116–121.
The simulation in Table 5 using the normal copula showed the wettest Spring Quarter in year
87 with a total of 732 and the driest in year 68 with a total of 33. Once again it is apparent

15



Table 4: Selected years from a typical simulation using the maximum entropy copula

Year September October November Total

13 0 139 24 163
33 6 8 8 22
42 36 7 246 289
45 8 25 16 49
69 285 203 1 489
70 91 93 184 368
71 21 38 8 67
72 303 19 340 662
73 148 107 128 383
78 192 215 118 525
87 7 26 4 37
116 4 5 42 51
117 69 59 36 164
118 65 30 95 190
119 83 105 81 269
120 24 2 12 38
121 28 68 45 141
127 288 10 29 327
134 8 37 17 62
135 284 101 250 635

that high quarterly totals may be associated with above average rainfall in all three months or
with one or two extreme monthly rainfalls. Very dry quarters may precede or follow very wet
quarters. See for instance years 68 and 69 and years 7 and 8. Successive below average totals
were generated in years 142–145.
The simulated totals compare favourably with the observed totals. The wettest observed quarter
was in 1961 where the total rainfall was 644 and the driest was 1968 when the total was 30.
Very wet quarters in 1917, 1950, 1959 and 1976 resulted from above average rainfall in all three
months while there were numerous instances, most notably in 1877, 1916, 1943, 1954, 1981, 1987
and 1995 where extreme rainfall was recorded in two of the three months. Successive quarters
with consistently below average totals were recorded in 1904–1908, 1936–1941 and 1944–1948.
We tested the intrinsic variability in Spring Quarter rainfall by considering repeated simulations
covering a period of 150 years. The first sequence was generated using the copula of maximum
entropy and the second using the normal copula. The histograms for selected simulations are
displayed in Figure 6. For the copula of maximum entropy the simulation MES8 is essentially an
archetypal simulation with a mean value of 231 and a variance of 14399; MES2 has the highest
mean of 242 and the highest variance of 20594; MES1 has the lowest mean of 218; and MES10
has the lowest variance of 11977. For the normal copula NS3 has a mean of 230 which is close
to the expected value but the variance of 12052 is smaller than expected; NS5 has the highest
mean of 244; NS8 has the highest variance of 16468; and NS2 has the lowest variance of 10786.
In Table 6 we have shown summary statistics for each sequence of 150–year simulations. The
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Table 5: Selected years from a typical simulation using the normal copula

Year September October November Total

6 53 37 17 107
7 169 152 119 440
8 1 21 55 77
9 4 7 67 78
13 51 9 220 280
14 64 104 311 479
33 209 33 323 565
68 2 25 6 33
69 43 131 304 478
72 18 0 47 65
87 162 64 506 732
91 54 21 17 92
92 148 243 15 406
118 32 16 15 63
119 63 22 19 104
120 3 13 31 47
142 73 87 10 170
143 7 40 78 125
144 22 132 13 167
145 52 53 65 170

summary statistics vary significantly with the mean lying in the range (211, 242) and the variance
lying in the range (10785, 20594). The error vector e is defined as the difference between the
theoretical probabilities defined for the intervals Kijk by the relevant triply–stochastic hyper–
matrix and the corresponding relative frequencies generated by the pseudo–random simulation.
The probability error e = ‖e‖ displayed in Table 6 is the Euclidean norm of this error vector.
We can analyse the error e more precisely in the following way. If there are N realizations and
if we renumber the intervals Kijk where (i, j, k) ∈ {1, 2, 3, 4}3 in the form K1,K2, . . . ,K` where
` = 43 then for each r = 1, . . . , ` we have

E[e2
r ] = E

[(
pr −

Nr

N

)2
]

=
∑

N1+···+N`=N

(
pr −

Nr

N

)2(
N

N1 · · ·N`

)
pN1

1 · · · p
N`
` =

pr(1− pr)
N

since p1 + · · ·+ p` = 1 and hence the expected square error is

E[e2] =
∑̀
r=1

E[e2
r ] =

1

N

∑̀
r=1

pr(1− pr) ≤
1

N
.

It follows that
√
E[e2] ≤ 1/

√
N . Note that 1/

√
150 ≈ 0.081650 and 1/

√
15000 ≈ 0.008165.

We tested stochastic convergence by considering simulations covering a period of 15000 years.
In Figure 7 we have displayed histograms from selected archetypal simulations, each covering
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Figure 6: Total rainfall for selected simulations using a checkerboard copula

a period of 15, 000 years, for the independent model and the two correlated models. Although
the histograms are visually stable for simulations with this number of realizations the sample
statistics still show some variation. Thus we have chosen to select simulations with sample mean
and variance that are close to the theoretical values. Although the histogram for the independent
simulation is slightly taller and narrower the the visual differences are minimal. Nevertheless
our numerical calculations show that the variance for the independent simulation is significantly
smaller. The histograms and associated summary statistics are shown in Figure 7.
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Figure 7: Comparison of three archetypal simulations–independent (left); maximum entropy
copula (centre); normal copula (right).

For the copula of maximum entropy and the normal copula we ran also repeated simulations
covering a period of 15, 000 years. The summary statistics are shown in Table 7. In moving
from simulations with 150 realizations shown in Table 6 to simulations with 15, 000 realizations
shown in Table 7 the probability errors are reduced by one order of magnitude.
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Table 6: Statistics and probability errors for typical simulations (150 years)

run me mean me var e n mean n var e

1 218.051 13740.47 0.081178 228.886 13751.66 0.077355
2 242.358 20593.60 0.083936 211.358 10785.57 0.080275
3 235.513 14223.73 0.080700 229.887 12051.58 0.079029
4 224.125 12190.76 0.079674 232.618 13684.20 0.068920
5 227.902 15024.04 0.086871 244.082 14326.78 0.092515
6 231.622 15137.70 0.089484 221.677 13538.77 0.080973
7 227.888 12985.29 0.074645 238.924 14163.22 0.087583
8 230.708 14399.34 0.096069 219.864 14468.45 0.081098
9 231.820 15105.23 0.081699 218.375 13739.63 0.079944
10 226.928 11977.45 0.092291 241.420 15304.71 0.085598

Table 7: Statistics and probability errors for typical simulations (15000 years)

run me mean me var e n mean n var e

1 231.451 14539.69 0.007605 229.735 14430.86 0.008110
2 230.754 14560.60 0.007935 229.370 14166.38 0.010244
3 230.372 14340.78 0.008827 228.909 14249.83 0.009168
4 228.611 14244.27 0.007842 230.913 14271.26 0.007875
5 229.524 14139.78 0.006840 230.635 14313.10 0.008829
6 229.238 14384.39 0.008706 230.539 14430.73 0.007616
7 230.030 14479.19 0.007641 230.329 14519.17 0.008243
8 229.788 14089.51 0.007622 229.806 14365.04 0.007749
9 229.322 14379.86 0.008251 231.063 14388.86 0.009063
10 229.997 14035.33 0.007016 230.757 14406.03 0.007634

In Table 8 the summary statistics for the observed sums for the Spring Quarter rainfall are
compared to the summary statistics for the generated sums from all three models. The simulation
statistics were obtained as averages over a period of 3× 106 years.
We emphasize that the variance of the synthetic rainfall totals generated by the independent
model is significantly less than that for the observed sums. The variance of the total generated
using either the copula of maximum entropy or the normal copula is much closer to the observed
value. If we propose a conventional null hypothesis that the two simulated Spring Quarter totals
come from the same population as the observed totals then the Kolmogorov–Smirnov goodness–
of–fit test shows that the hypothesis should not be rejected at the 5% significance level.

5 Conclusions

Our investigation shows that the variance of the generated quarterly rainfall totals can be
significantly changed by using a copula that allows us to incorporate the observed correlation.
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Table 8: Comparison of three models for Spring Quarter rainfall

mean variance

observed 230.123 14391.34

independent (theory) 230.123 12247.06

independent (simulation) 230.155 12236.11

maximum entropy copula (theory) 230.123 14318.11

maximum entropy copula (simulation) 230.085 14319.45

normal copula (theory) 230.123 14348.46

normal copula (simulation) 230.058 14347.05

We used two different copulas. The rationale for using a copula of maximum entropy was a desire
to avoid unwarranted assumptions about the unobserved statistics. Likewise, the corresponding
tri–variate distribution is the most disordered distribution that preserves the prescribed marginal
distributions and matches the observed grade correlation.
There are several reasons why we wished to compare the checkerboard copula of maximum
entropy with a normal checkerboard copula. In the first place the normal distribution contains a
specific parameter for the correlation. Thus, it seems sensible to investigate a copula derived from
the normal distribution. In the second place the normal distribution is a natural distribution
to describe the addition of unrelated random events. One could argue, at a microscopic level,
that rainfall is a process of this type. At a macroscopic level there are climatic processes that
cause systematic variations and dependencies that we may wish to describe. There are also
technical problems that must be overcome. Rainfall accumulations are non–negative and so
some transformation of the raw data is necessary.
More pedantically there is a difference between the correlation of the marginal normal distri-
butions, represented by the matrix Σ = [cos θr,s], and the grade correlation coefficients. Our
numerical calculation of the grade correlations shows that this difference is quite small. If one
used the normal copula directly it would be very easy and not unreasonable to ignore this differ-
ence. On the other hand, if one uses the checkerboard normal copula, as we have done, then the
correct values for Θ = [θr,s] must be computed numerically from the associated triply–stochastic
hyper–matrix h. This computation is quite straightforward in Matlab.
In comparing the two methods there is little to distinguish them. The normal checkerboard
copula turns out to be close to the maximum entropy checkerboard copula of the same size in
all of the examples we considered, irrespective of the number of subdivisions. In two dimensions
we found the numerical calculations for each method are of similar complexity and can be
implemented using standard Matlab packages. For higher dimensions, the recent paper by
Piantadosi et al. [9] shows that the calculations required for the maximum entropy checkerboard
copula are feasible. It would seem that the same should be true for the normal checkerboard
copula but our preliminary calculations for the case study considered in this paper with the
standard Matlab package triplequad did not given sufficiently accurate answers for the required
probability integrals. More work is still required to determine why this was so. Thus we used an
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alternative procedure to determine the probabilities for the normal checkerboard copula in our
three dimensional example. This procedure, which we now describe, is essentially a counting
procedure and it should be generally well suited to calculation in Matlab.
Select a large number of equally spaced points v ∈ [0, 1]m. Map these points into Rm using
the transformation w = Φ−1(v) ⇔ wr = Φ−1(vr). Choose the orthogonal matrix P such that
Λ = P TΣP ⇔ PΛP T = Σ where Λ is a positive diagonal matrix and rescale the points according
to the transformation y = Λ1/2w. Map the points y ∈ Rm onto points z = Py ∈ Rm. Then
return the points to [0, 1]m using the map u = Φ(z)⇔ ur = Φ(zr). Thus

u = Φ[P Λ1/2Φ−1(v)]⇔ v = Φ[Λ−1/2P TΦ−1(u)].

Now count the proportion pi of points in each of the intervals Ii where i ∈ {1, 2, . . . , n}m.
The multiply–stochastic hyper–matrix h is defined by hi = npi for all i ∈ {1, 2, . . . , n}m. The
rationale is that the points v are independently distributed but the points u are distributed
according to the correlation specified by ϕ. In mathematical terms we have

P [u ∈ Ii] =

∫
Ii

ϕ(Φ−1(u1), . . . ,Φ−1(um))

Φ ′(Φ−1(u1)) · · ·Φ ′(Φ−1(um))
du

=

∫
Φ−1(Ii)

ϕ(z)dz

=

∫
PT Φ−1(Ii)

ϕ(Py) dy (since detP = 1)

=

∫
Λ−1/2PT Φ−1(Ii)

ϕ(PΛ1/2w) det Λ1/2 dw

=

∫
Λ−1/2PT Φ−1(Ii)

1

(2π)m/2(det Σ)1/2
exp[−wTΛ1/2P TΣ−1PΛ1/2w/2] (det Λ)1/2 dw

=

∫
Λ−1/2PT Φ−1(Ii)

1

(2π)m/2
exp[−wTw/2] dw (since det Σ = det Λ)

=

∫
Λ−1/2PT Φ−1(Ii)

Φ ′(w1) · · ·Φ ′(wm) dw

=

∫
Φ[Λ−1/2PT Φ−1(Ii)]

dv

= V
(

Φ[Λ−1/2P TΦ−1(Ii)]
)
.

In order to calculate the required tri–variate normal copula with sufficient accuracy in the above
case study it was necessary to choose 2563 equally spaced points in the unit cube. We were
able to use an elementary Matlab program to make the calculations. For higher dimensional
examples the numerical calculations for the normal copula may be more challenging.
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