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Intro Random walk Densities Expectations 3 and 4 steps

What is Experimental Mathematics?

The use of computers beyond routine simulations and calculations.

As defined by J. Borwein and D. Bailey:

1 Use graphics to suggest underlying principles; test conjectures;
confirm analytical results.

2 Gain intuition; discover patterns; suggest approaches for proof.

Computation as the third form of discovery, after theory and
experiment:

Algorithms of Celine, Gosper, Wilf-Zeilberger completely
automate binomial sums etc.

Find answer first, then reverse engineer.

tool < computer ≤ collaborator.

A journal since 1992.
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Intro Random walk Densities Expectations 3 and 4 steps

Examples of Experimental Mathematics

Area of parabola (weighing, c. 250BC, Archimedes)

AGM and elliptic integrals (1799, Gauss)

Feigenbaum constant (on HP calculator, 1975)

Four colour theorem (Appel and Haken, 1976)

Kepler conjecture (LP, Hales, 1992-8)

Independent computation of digits of π (BBP, 1995)

Solving checkers (Schaeffer, 2007)

Solving sudoku (Douglas-Rachford, convex optimization, 2010)
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Intro Random walk Densities Expectations 3 and 4 steps

My use of Experimental Mathematics (1)

Gaussian quadrature:

Traditionally used to approximate integrals by finite sums and
orthogonal polynomials.

Computational insight: use discrete version to approximate sums;
use orthogonal rational functions.

Surprisingly good for lattice sums, e.g. 1.4 digits per term for
Madelung constant ∑

m,n,p

′ (−1)m+n+p√
m2 + n2 + p2

.
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Intro Random walk Densities Expectations 3 and 4 steps

My use of Experimental Mathematics (2)

Elliptic integrals: K(x) =
∫ π/2
0

dt√
1−x2 sin2 t∫ 1

0
K(x)3 dx =

3Γ(1/4)8

1280π2
≈ 7.090227004846.

Reversed engineered using the Inverse Symbolic Calculator (PSLQ,
can certifies no closed form below a certain size exists).

RHS is the evaluation of a lattice sum, so proof found by bridging
two sides via θ functions.

Galilean experiment: either gives us confidence in the view we are
taking or rules out some possibilities.

5 / 21

http://isc.carma.newcastle.edu.au/
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My use of Experimental Mathematics (3)

Special functions:

Computer assisted discovery and automatic proof of the g.f.

(1− cxy)

{ ∞∑
n=0

unx
n

}{ ∞∑
n=0

uny
n

}

=

∞∑
n=0

unPn

(
(x+ y)(1 + cxy)− 2axy

(y − x)(1− cxy)

)(
y − x

1− cxy

)n

,

where (n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1.

Brings together special functions, Apéry-like sequences, and
Ramanujan-type series for 1/π.

∞∑
n=0

{ n∑
k=0

k∑
j=0

(
n

k

)(
−1

8

)k(
k

j

)3}
nPn

(
5

3
√

3

)(
4

3
√

3

)n

=
9
√

3

2π
.
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Intro Random walk Densities Expectations 3 and 4 steps

My use of Experimental Mathematics (4)

Random walks:

Very basic problem; sum of n random complex numbers.

Not much known computationally or analytically before 2009.

Application: Brownian motion, superposition of waves and
vibrations, quantum chemistry, migration, cryptography.

All our discoveries were experimental.

Hypergeometric series:

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣z) =

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
.
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Intro Random walk Densities Expectations 3 and 4 steps

Random walk integrals

Definition: For complex s,

Wn(s) :=

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx

Wn(1) is the expectation.

Definition:

The density pn is the (unique) function that satisfies

Wn(s) =

∫ n

0
pn(x)xsdx.

Dimension reduction: let x1 = 0.

8 / 21
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Intro Random walk Densities Expectations 3 and 4 steps

Computational challenge

W1(s) = 1, p1(x) = δ1(x).

Maple 13 and Mathematica 7 think W2 = 0.

p2(x) = 2
π
√
4−x2 , W2(s) =

(
s
s/2

)
, W2(1) = 4

π .

Tanh-sinh quadrature gives 175 digits for W3(1), but
everything fails for W4(1). 256 cores at LBNL:
W5(1) ≈ 2.0081618.
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Intro Random walk Densities Expectations 3 and 4 steps

Jan Cornelius Kluyver & John William Strutt

pn(t) =

∫ ∞
0

xtJ0(xt)J
n
0 (x) dx.

Probability of returning to the unit disk:∫ 1

0

pn(t)dt =

∫ ∞
0

J1(x)Jn
0 (x) dx =

[
−J0(x)n+1

n+ 1

]∞
0

=
1

n+ 1
.

Rayleigh (multivariate CLT): pn(x) ≈ 2x
n e
−x2/n.
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Intro Random walk Densities Expectations 3 and 4 steps

pn with approximations superimposed.
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Intro Random walk Densities Expectations 3 and 4 steps

Probability

We condition the distance z of an (n+m)-step walk on x (n
steps), followed by y (m steps).

Cosine rule, z2 = x2 + y2 + 2xy cos(θ).

\θx

zjjjjjjjjjjjjj

jjjjjjjjjjjjj y
�����

�����

So Wn+m(s) =
1

π

∫ n

0

∫ m

0

(∫ π

0
zsdθ

)
pn(x)pm(y) dxdy.

Change of variable:

Wn+m(s) =

∫ n+m

0
zs
{∫ n

0

∫ π

0

z

πy
pn(x)pm(y) dθdx

}
︸ ︷︷ ︸

pn+m(z)

dz.
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Intro Random walk Densities Expectations 3 and 4 steps

Recursion for pn

∴ pn is a single integral over pn−1. So

p3(x) =
2
√

3x

π(3 + x2)
2F1

( 1
3 ,

2
3

1

∣∣∣∣x2(9− x2)2

(3 + x2)3

)
.

(Found experimentally, proof by DE.)

Pearson posed the problem (1905), thought p5 had a straight
line. Disproved in 1963.

p4 hard to compute; we resort to moments and analytic
continuation.
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Intro Random walk Densities Expectations 3 and 4 steps

Combinatorics and analysis

Binomial expansion:

Wn(s) = ns
∑
m≥0

(−1)m

n2m

( s
2

m

)
In,m.

I3,m found experimentally on the OEIS, generalized to In,m
guessing, then proven combinatorially.

It follows that

Wn(2k) =
∑

a1+...+an=k

(
k

a1, ..., an

)2

.

Has a recursion ⇒ lifts to a functional equation ⇒ Wn(s) has
analytical continuation to C with poles at negative integers.

14 / 21
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Intro Random walk Densities Expectations 3 and 4 steps

Three steps

Recursion + subtle analysis ⇒ convolution formula for W4(s)
in terms of W3.

By playing around,

W3(k) = Re 3F2

(
1/2,−k/2,−k/2

1, 1

∣∣∣∣4).
Theorem (1), Borwein, Nuyens, Straub, W. (2009)

W3(1) =
16 3
√

4π2

Γ(13)6
+

3Γ(13)6

8 3
√

4π4
≈ 1.57459723755.

Proven using elementary manipulation of integrand and the
transform ReK(1/x) = xK(x).
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Intro Random walk Densities Expectations 3 and 4 steps

Four steps

Theorem (2), Borwein, Straub, W., Zudilin (2010)

W4(1) ≈ 1.79909248 is given by

3π

4
7F6

(
7
4 ,

3
2 ,

3
2 ,

3
2 ,

1
2 ,

1
2 ,

1
2

3
4 , 2, 2, 2, 1, 1

∣∣∣∣1
)
− 3π

8
7F6

(
7
4 ,

3
2 ,

3
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

3
4 , 2, 2, 2, 2, 1

∣∣∣∣1
)
.

Guessed using PSLQ (based on W4(−1)).

Meijer G-function: defined as a contour integral of ratios of
Γ’s. The mother of all special functions.

Important in CAS: many definite integrations are Meijer G
transformations.

W4(s) =
2s

π3

Γ(1 + s/2)

Γ(−s/2)
G2,4

4,4

(
1, (1− s)/2, 1, 1

1/2,−s/2,−s/2,−s/2

∣∣∣∣1) .

16 / 21
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Intro Random walk Densities Expectations 3 and 4 steps

Experimental proofs

Transform to G2,2
4,4.

Nesterenko’s theorem: ‘nice’ G2,2
4,4 =⇒ triple integral.

a := G2,2
4,4

(
0,1,1,1

− 1
2
, 1
2
,− 1

2
,− 1

2

∣∣1) = −2πW4(1) not nice.

c := −G2,2
4,4

(
0,1,1,1

1
2
, 1
2
,− 1

2
,− 1

2

∣∣1) is nice. Experimentally a = 4c.

Once found, easy to prove. Introduce parameter z as
argument in a ⇒ differentiation.

Split triple integral in 2, Zudilin’s theorem: =⇒ 7F6.
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Intro Random walk Densities Expectations 3 and 4 steps

Closed form for p3

p3(x) = 2x√
3π

∑∞
k=0W3(2k)

(
x
3

)2k
.

With care, for small α > 0,∫ α

0
p3(x)xsdx =

2αs+2

√
3π(s+ 2)

+
2αs+4

3
√

3π(s+ 4)
+ · · ·

Residues of W3(s) come from series coefficients.

Also explains the shape of p5.

If p4 admits a Taylor series around 0, this argument would
give simple poles for W4(s), but it has double poles. !?
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Intro Random walk Densities Expectations 3 and 4 steps

Series for p4

Plot p′4(x) for small x was best done from first principles.
Instead of using

lim
h→0

p4(x+ h)− p4(x)

h
,

I foolishly used

lim
h→0

p4(x+ h)− p4(h)

x
.

Amazingly, they produced almost the same plot, except mine
was translated up by r ≈ 0.14.

This means p4 almost satisfies the differential equation

f ′(x) + r =
f(x)

x
,

Solution: f(x) = (a− r log x)x, a ≈ 0.33, explaining the
double pole!

19 / 21
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Intro Random walk Densities Expectations 3 and 4 steps

Closed form for p4

To be consistent, we must have:

p4(x) =

∞∑
n=1

(
a4(n)− r4(n) log x

)
x2n−1,

a4(n): residues at −2n; r4(n): coefficients of the double pole.

Guessed that p4 satisfies a DE, shared by the g.f. for W4(2k)
(c.f. p3), and is a solution with a logarithmic singularity.

DE rigorously produced by Mellin transform, PDE regularity,
and a Gosper type algorithm.

More work on modular forms:

Theorem (3) Borwein, Straub, W., Zudilin (2010)

p4(x) =
2
√

16− x2
π2x

Re 3F2

( 1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣(16− x2)3

108x4

)
.
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“Science is what we understand well enough to explain to a
computer. Art is everything else we do.” – Donald Knuth

“Mathematics is much less formally complete and precise than
computer programs.” – William Thurston

Thank you!

J. M. Borwein, D. Nuyens, A. Straub, J. Wan
Some arithmetic properties of short random walk integrals.
Ramanujan Journal, 26, (2011), 109–132.

J. M. Borwein, A. Straub, J. Wan
Three-step and four-step random walk integrals. Experimental
Mathematics, 22, (2013), 1–14.

J. M. Borwein, A. Straub, J. Wan, W. Zudilin (& D. Zagier)
Densities of short uniform random walks. Canadian Journal of
Mathematics, 64, (2012), 961–990.
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