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Amer. Math. Monthly, 56(1949) 347–348.

Summation, Binomial coefficients

4276 [1947,601]. Proposed by P. A. Pizá, San Juan, P.R.

Let the integers nKc be defined by the relations

nK1 = 1; nKm = 0, m > n; n+1Kc = c( nKc + nKc−1), c > 1

Prove the following summations

(A) xn =
n∑

j=1

nKj

(
x

j

)

(B)
x−1∑
a=1

=
n∑

j=1

nKj

(
x

j + 1

)
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Solution by M. S. Klamkin, Brooklyn Polytechnic Institute, Brooklyn, N.Y.

On the assumption that (A) is true, we have

xn+1 =
n∑

j=1

nKj

(
x

j

)
x =

n∑
j=1

nKj

[
(j + 1)

(
x

j + 1

)
+ j

(
x

j

)]

= nK1x+
n∑

j=2

(
x

j

)
[j · nKj + j · nKj−1] + (n+ 1) nKn

(
x

n+ 1

)

= n+1K1x+
n∑

j=2

n+1Kj

(
x

j

)
+ n+1Kn+1

(
x

n+ 1

)
=

n+1∑
j=1

n+1Kj

(
x

j

)
Since (A) is evidently true for n = 1, it is true for all n by induction.

(B) follows immediately from (A) by use of the familiar relation

x−1∑
a=j

(
a

j

)
=

(
x

j + 1

)
Thus

x−1∑
a=1

an =
x−1∑
a=1

n∑
j=1

nKj

(
a

j

)
=

n∑
j=1

nKj

x−1∑
a=1

(
a

j

)
=

n∑
j=1

nKj

(
x

j + 1

)

Solved also by [6 others, including] E. T. Frankel and Yu-shu Luan.

Frankel points out that (A) and (B) are special cases of general formulas in the calculus
of finite differences which express the general term and the sum of a given number of
terms of a rational integral function by meansof its leading differences and binomial
coefficients. (See Whittaker and Robinson, The Calculus of Observations, London,
1924, p.7.) The integers nK1, nK2, . . ., nKc are the leading differences of the n th
powers of the natural nombers 0n, 1n, 2n, . . ., cn.

In consequence, as noted by Yu-shu Luan, we have the following explicit expression for

nKc

nKc =
n∑

j=1

(−1)j

(
c

j

)
(c− j)n
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Amer. Math. Monthly, 56(1949) 474–475.

The Sum of a Series

E 844 [1949, 31]. Proposed by Orrin Frink, Pennsylvania State College

Sum the series

1 + 1/5! + 1/10! + 1/15! + · · ·+ 1/(5n− 5)! + · · ·

II. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. Since the sum of the
m th powers of the k k th roots of unity is zero unless m is a multiple of k, in which
case the sum is unity, we have, from the Maclaurin expansion of ez

k∑
j=1

exp(wj
kx) = k

∞∑
n=0

xkn/(kn)!

where wk is a primitive k the root of unity. The required sum, obtained by taking
x = 1, k = 5, is then

S = (1/5)
5∑

j=1

expwj
5

Also solved by [21 others]

Several solvers easily reduced the above sum to

S = (1/5)[e+ 2ecos 72◦ cos(sin 72◦) + 2e− cos 36◦ cos(sin 36◦)]

If we are merely interested in obtaining a numerical result, however, there is little point
of transforming the original series, which converges very rapidly. Thus four terms of
the series gives S = 1.00833360890

[F. C. ]Smith picked up, as a by-product, the pretty summations

∞∑
n=0

(xn cosnθ)/n! = ex cos θ cos(sin θ)

∞∑
n=0

(xn sinnθ)/n! = ex cos θ sin(sin θ)

[[RKG notes that the above numerical value is given by three terms. Four terms give
1.008333608907290289 and five terms give 1.0083336089072902899764536]]
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Amer. Math. Monthly, 56(1949) 634.

A series for π

E 854 [1949, 104]. Proposed by Jerome C. R. Li, Oregon State College

Show that π =
∑∞

n=0(n!)22n+1/(2n+ 1)!

[[Five solutions were published, one by Ragnar Dybvik using the beta function, the
second by Paul Carnahan using Wallis’s formula, the third by Murray below, the
fourth by N. J. Fine using a differential equation, and the fifth by D. H. Browne using
Euler’s transfomation of series.]]

III. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. (Using the Legendre
polynomials). We have

an = (n!)22n+1/(2n+ 1)! =

∫ 1

−1

znPn(z) dz

where Pn(z) is the Legendre polynomial of degree n. Therefore

∞∑
n=0

an =

∫ 1

−1

∞∑
n=0

znPn(z) dz =

∫ 1

−1

(1− z2)−1/2 dz = π
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Amer. Math. Monthly, 57(1950) 39.

Equivalent Concurrent Sections of a Tetrahedron

E 865 [1949, 263]. Proposed by Victor Thébault, Tennie, Sarthe, France

Find a point such that the planes drawn through this point parallel to the faces of
a tetrahedrn cut the opposite trihedrals in equivalent triangles. Express the common
area of these triangles in terms of the areas of the faces of the tetrahedron.

Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. Denote the areas of the
faces of the tetrahedron by Ai (i = 1, 2, 3, 4), the corresponding altitudes by Hi and
the perpendicular distances from the corresponding vertices to the corresponding plane
sections by hi. Let V be the volume of the tetrahedron and A the common area of the
parallel sections. Then∑

(Hi − hi)Ai = 3V +HiAi h2
i /H

2
i = A/Ai

Therefore
3V =

∑{
HiAi −Hi(AAi)

1/2
}

= 12V −
∑

Hi(AAi)
1/2

or
A1/2 = 9V/

∑
HiA

1/2
i = 3

/∑
A
−1/2
i

Also
hi = 3HiA

−1/2
i

/∑
A
−1/2
i

The analogous problem for the plane was proposed by J. Neuberg as Question 30,
Mathesis, 1881, p.148. For this case we have

2/k = 1/a+ 1/b+ 1/c

where a, b, c are the sides of the triangle and k is the common length of the concurrent
lines which are drawn parallel to the sides of the triangle. This, and the result of
the given problem, suggested to [N. D. ]Lane for the corresponding problem of an
n-dimensional simplex the formula

n/k =
∑

1/a

where kn−1 is the common content of the (n − 1)-dimensional cells parallel to the
(n− 1)-dimensional cell “faces” of the simplex, and an−1 is the content of a “face”.

[[I pause to note that Murray does not appear in the Author Index in Amer. Math.
Monthly, 57 No.7, part 2: index of Vols. 1 to 56, Aug-Sep 1950.]]
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Amer. Math. Monthly, 58(1951) 195.

4431. Proposed by M. S. Klamkin, Brooklyn Polytechnic Institute, New York

If Sn =
∑n

1 1/r, prove

∞∑
n=1

Sn

n2
= 2

∞∑
n=1

1

n3
= 2

∞∑
n=1

Sn

(n+ 1)2

Amer. Math. Monthly, 59(1952) 471–472.

A Summation Problem

Solution by Robert Steinberg, University of California, Los Angeles. It suffices to prove
the first and third expressions equal since the obvious identity

∞∑
n=1

Sn

n2
=

∞∑
n=1

1

n3
+

∞∑
n=1

Sn

(n+ 1)2

implies the second. Now we have

∞∑
n=1

Sn

n2
=

∞∑
n=1

1

n2

n∑
r=1

1

r
=

∞∑
n=1

1

n2

∞∑
r=1

(
1

r
− 1

n+ r

)
=

∞∑
n=1

∞∑
r=1

(
1

r(n+ r)2
+

1

n(n+ r)2

)
= 2

∞∑
n=1

∞∑
r=1

1

r(n+ r)2

by symmetry. Upon setting r = R and r + n = N + 1, with appropriate changes in
the limits of summation, this last form becomes 2

∑∞
1 SN/(N + 1)2 and the proof is

complete.

An interesting corollary may be obtained as follows. We have

∞∑
n=1

Sn

n2
=

∞∑
n=1

n∑
r=1

1

n2r

If the indicated summation in the (n, r)-plane is carried out along rational rays through
the origin, the first integral point on such a ray is a point (R,N) such that R and N
are relatively prime and all other points on this ray are the integral multiples of (R,N).
Thus the contribution of this ray to the sum is

1

N2R

∞∑
n=1

1

n3

The contribution of all rational rays with 0 < R ≤ N is thus

∞∑
n=1

1

n3

′∑ 1

N2R
(1)
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where the inner summation is made over all pairs of integers R and N such that
0 < R ≤ N and R and N are relatively prime. Since the expression (1) is equal to
2
∑∞

1 1/n3 we get the desired result:

′∑ 1

N2R
= 2.

[[Also solved by [5 others and] the proposer.]]

Editorial Note. [J. ]Vales and [A. ]Petracca obtain the following generalizations. Put

S(r, n) =
n∑

i=1

1

ir
K(r, n) =

1

n+ r − 1

n∑
i=i

K(r − 1, i)

with K(1, n) = 1/n. Then

∞∑
n=1

1

nh+2
=

∞∑
n=1

h∑
i=1

S(i, n)

(n+ 1)h+2−i

∞∑
n=1

1

nh+1
=

∞∑
n=1

K(h, n)

h+ n− 1

[D. H. ]Browne finds

∞∑
n=1

Sn

n3
=

∞∑
n=1

1

n4
+

∞∑
n=1

Sn

(n+ 1)2
= 5

∞∑
n=1

Sn

(n+ 1)3

but further extensions do not assume so neat a form.
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Amer. Math. Monthly, 58(1951) 260.

E 963. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

It had started snowing before noon and three snow plows set out at noon, 1 o’clock
and 2 o’clock, respectively, along the same path. If at some later time they all came
together simultaneously, find the time of meeting and also the time it started snowing.

Amer. Math. Monthly, 59(1952) 42.

A Variation of the Snow Plow Problem

Solution by L. A. Ringenberg, Eastern Illinois State College. Let n denote thenumber
of hours before noon that it started to snow and let x, y, z denote the distances that
the first, second and third snow plow travelled by t hours past noon. Assume that it
snows at a constant rate. Then, if the length units are properly chosen, we have

dt/dx = t+ n, x = 0 when t = 0

with solution
t = exn− n (1)

Also
dt/dy = t− (eyn− n), y = 0 when t = 1

with solution
t = ey(n+ 1− ny)− n (2)

Also
dt/dz = t− [ez(n+ 1− nz)− n] z = 0 when t = 2

with solution
t = ez(n+ 2− nz − z + nz2/2)− n (3)

Let d denote the common value of x, y and z when the plows meet and let T denote
the value of t when the meeting occurs. It follows from (1), (2) and (3) that

(T + n)/ed = n = n+ 1− nd = n+ 2− nd− d+ nd2/2

Solving we get n = 1/2 and T = 3.195. Therefore it began to snow at 11:30 and the
plows met at about 3:12.

[[Solved by [5 others and] the proposer.]]
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Amer. Math. Monthly, 58(1951) 261.

Tetrahedron and Concurrent Cevians

E 928 [1950, 483]. Proposed by Victor Thébault, Tennie, Sarthe, France

Given a tetrahedron ABCD and a point O. Denote by A′, B′, C ′, D′ the intersections
of AO, BO, CO, DO with the corresponding faces of the tetrahedron, and set x =
AO/A′O, y = BO/B′O, z = CO/C ′O, t = DO/D′O. Show that

xyzt = 3− 2(x+ y + z + t) + (xy + xz + xt+ yz + yt+ zt).

Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. The altitude of OBCD
from O is easily shown to be hA/(1 − x), where hAis the altitudeof ABCD from A.
Therefore, if V is the volume of ABCD and bA is the area of the face opposite A,

V =
∑

(hAbA)/3(1− x) =
∑

V/(1− x)

That is
1 = 1/(1− x) + 1/(1− y) + 1/(1− z) + 1/(1− t)

or
xyzt = 3− 2(x+ y + z + t) + (xy + xz + xt+ yz + yt+ zt).
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Amer. Math. Monthly, 58(1951) 268–269.

Two summations

4356 [1949, 479]. Proposed by P. A. Piza, San Juan, Peurto Rico

Prove the relations

(a) x2n+1 − (x− 1)2n+1 =
n∑

a=0

[(
n+ a

2a+ 1

)
+

(
n+ 1 + a

2a+ 1

)]
(x2 − x)n−a

(b) x2n+2 − (x− 1)2n+2 = (2n− 1)
n∑

a=0

(
n+ a

2a+ 1

)
(x2 − x)n−a

[[The last binomial is misprinted
(

n+1
2a+1

)
in the original. — R.]]

II. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn, New York. Assume
(b) is true for n = k. Then by integrating between 1 and x we obtain

x2n+1 − (x− 1)2n+1 = 1 +
k∑

a=0

2k + 3

k + 1− a

(
k + 1 + a

2a+ 1

)
(x2 − x)k+1−a

which is easily shown to be equivalent to (a) for n = k+ 1. Further, upon multiplying
(a) for n = k + 1 by 2x+ 1, multiplying (b) for n = k by x2 − x, and subtracting, we
get exactly (b) for n = k+ 1. Since (a) and (b) are obviously true for n = 0, it follows
by induction that they are true for all integral n.
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Amer. Math. Monthly, 58(1951) 569.

4455. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

[
f(x)

g(x)

]′
=
f ′(x)

g′(x)

solve for f(x) in terms of g(x) and for g(x) in terms of f(x). (This is an extension of
one of the problems proposed for th 1951 William Lowell Putnam Prize Competition.)

Amer. Math. Monthly, 59(1952) 707.

Functions such that the Derivative of the Quotient is the Quotient of the Derivatives

Solution by E. J. Scott, University of Illinois. Using the abbreviations f , g, f ′, g′ for
f(x), g(x), etc., we have

(gf ′ − fg′/g2 = f ′/g′) (1)

from which
f ′/f − g′/g = [1− g/g′]−1

Integrating, we have

ln f/g =

∫
[1− g/g′]−1 dx

whence

f = g exp

{∫
[1− g/g′]−1 dx

}
Similarly, from (1) we obtain

(g′/g)2 − (f ′/f)(g′/g) + f ′/f = 0

whence

(g′/g)2 =
1

2

[
f ′/f ±

√
(f ′/f)2 − 4(f ′/f)

]
Integrating and solving for g, we get

g =
√
f exp

[
±1

2

∫ √
(f ′/f)2 − 4(f ′/f) dx

]

Also solved by [7 others] and the Proposer.
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Amer. Math. Monthly, 59(1952) 408.

A Slow Ship Intercepting a Fast Ship

E 991 [1951, 699]. Proposed by C. S. Ogilvy, Syracuse University

Two ships leave different points at the same time and steam on straight courses at
constant but unequal speeds. Find the condition under which the slower ship can
intercept (catch) the faster.

Solution by M. S. Klamkin, Brooklyn Polytechnic Institute. If the slower ship intercepts
the faster ship then the ratio of the distances traversed is VS/VF , where VS is the
velocity of the slow ship and VF is the velocity of the fast ship. But the locus of a
point such that the ratios of its distances from two fixed points is constant, is a circle.
Thus if the path of the faster ship intersects this circle it can be intercepted by the
slower one.

Editorial Note. The circle is a circle of Apollonius of the two starting points. If θ is
the angle between the faster ship’s course and the line joining the two starting points,
then it is easily shown that the slower ship can set a course to intercept the faster ship
if and only if

θ ≤ arcsin(VS/VF ).

If we have inequality here, then there are two courses that the slower ship may set. The
problem become more interesting if the sphericity of the earth is taken into account.

Amer. Math. Monthly, 59(1952) 636.

An Approximation for n
√
a

E 1004 [1952, 105]. Proposed by L. R. White, Washington, D.C.

(1) The approximation n
√
a = 1 + (a− 1)/n for large n and a close to 1 is well known

and frequently used. Show that for large n and all a

n
√
a = 1 + (ln a)/n

is a good approximation.

(2) Find
lim

n→∞

{
(k − 1 + n

√
a)/k

}n

Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. (1) For all a > 0

n
√
a = e(ln a)/n = 1 + (ln a)/n+O(1/n2)

(2) Using the preseding result we find

lim
n→∞

{
(k − 1 + n

√
a)/k

}n
= lim

n→∞

{
1 + (ln a)/kn+O(1/n2)

}n

= e(ln a)/k = a1/k
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Amer. Math. Monthly, 59(1952) 637.

An Application of the Newton-Raphson Method

E 1005 [1952, 105]. Proposed by D. W. Dubois, University of Oklahoma

Let x0 6= 0 and a > 0 be two real numbers. Define

xn+1 = xn/2 + a/2xn n = 0, 1, 2, . . . .

Find all values of x0 and a for which the sequence {xn} converges, and find the limits.

II. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. If we plot y =
x/2 + a/2x and y = x we get a geometric insight into the convergence process. The
curve is a hyperbola with x = 0 and y = x/s as the asymptotes. The intersections
are (

√
a,
√
a) and (−

√
a,−

√
a). Also, the points of intersection are the maximum and

minimum points of the hyperbola. From the plot it follows that the sequence converges
for all values of a > 0 and x0 6= 0. If x0 > 0, then xn →

√
a; if x0 < 0, then xn → −

√
a.

[[ [R. E. ]Greenwood called attention to Whittaker and Robinson, The Calculus of
Observations, pp.79–81.]]
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Amer. Math. Monthly, 59(1952) 640.

4508. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn, New York

Find a polynomial F (x) of lowest degree such that F (x)+ωs is divisible by (x−ωs)r for
s = 0, 1, 2, . . . , p− 1, where ω is a primitive p th root of unity and r is a given positive
integer. (This generalizes a problem in Goursat-Hedrick, A Course in Mathematical
Analysis, v.1, p.32.)

Amer. Math. Monthly, 61(1954) 127–128.

Solution by Chih-Yi Wang, University of Minnesota. Since F ′(x) is divisible by
(xp− 1)r−1, and the binomials x− ωs are relatively prime to one another, it is evident
that the degree of the polynomial F ′(x) cannot be lower than p(r − 1) + 1. Let

F ′(x) = a(xp − 1)r−1

where a (6= 0) is some constant which has to be determined. By integrating from 0 to
x we get

F (x)− F (0) = a

∫ x

0

(tp − 1)r−1 dt

But F (ωs) + ωs = 0 for s = 0.1. . . . , p− 1, so that

−ωs − F (0) =

∫ ωs

0

a(tp − 1)r−1 dt

= ωs

{
a

r−1∑
k=0

(−1)k

(
r − 1

k

)
1

p[(r − 1)− k] + 1

}

= ωs

{
a

∫ 1

0

(tp − 1)r−1 dt

}
s = 0, 1, . . . , p− 1.

These p equations are satisfied if and only if

F (0) = 0, a = −1

/∫ 1

0

(tp − 1)r−1 dt

Hence the required polynomial is

F (x) = −
∫ x

0

(tp − 1)r−1 dt

/∫ 1

0

(tp − 1)r−1 dt

[[Also solved by X, Y, M. S. Klamkin, Z, and the Proposer — who was Murray
Klamkin!!]]
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Amer. Math. Monthly, 59(1952) 643

Polynomials with Positive Coefficients

4411 [1951, 343]. Proposed by R. M. Cohn, Rutgers University

If a polynomial equation f(x) = 0, with integral coefficients has no positive roots,
there exists a polynomial g(x) with integral coefficients such that all coefficients of
f(x) · g(x) are positive.

Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. It will suffice to prove
the theorem for q(x) = x2 − ax+ b, (a, b > o, a2 < 4b). Let p(x) = (1 + x)k. Then all
the coefficients of q(x) · p(x) will be positive if(

k

r

)
− a

(
k

r − 1

)
+ b

(
k

r − 2

)
> 0 (1)

for r = 1, 2, . . . , k + 1. This is always possible for k sufficiently large.

f(x) can be factored into linear factors like x + c, c ≥ 0, and quadratic factors like
q(x). We may then take g(x) to be (1 + x)K where K is the sum of the k s determined
as above for the individual quadratic factors of f(x). Since the coefficients of f(x) are
integers, the coefficients of f(x) · g(x) will be positive integers.

Also solved by [5 others and] the Proposer

Editorial Note. The existence of suitable k may be seen as follows. (1) reduces to

(k − r + 2)(k − r + 1)− ar(k − r + 2) + br(r − 1) > 0

which is true if

2k > (2 + a)r − 3 +
√

1 + (2a+ 4b)r − (4b− a2)r2 (2)

and the radical is real; if the radical is imaginary (1) is true for all k. Evidently the
right member of (2) has a maximum value and we need only choose k greater than this
maximum.

[L. J. ]Paige and George ]Piranian refer to a proof by E. Meissner (Math. Annalen,
v.70(1911) p.223) and to the following generalization by D. R. Curtiss (Math. Annalen,
v.73(1913) p.424): If f(x) is any polynomial with all its coefficients real, there exists
polynomials f1(x) such that when the product f2(x) = f1(x) ·f(x) is arranged according
to ascending or descending powers of x, the number of variations of sign presented by
its coefficients is exactly equal to the number of positive roots of f(x). See also Pólya
and Szegö, Aufgaben und Lehrsatze, v.II, problem 190, section 5.
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Amer. Math. Monthly, 59(1952) 648–649.

A Diophantine Equation

4448 [1951, 343]. Proposed by Jekuthiel Ginsburg, Yeshiva College, New York City

Solve in positive integers

z4 =
ax2 + by2

a+ b

where a and b are given integers.

I. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn, New York. The given
equation will be satisfied if

an(z2 + x) = m(y − z2) m(z2 − x) = bn(y + z2)

m and n being arbitrary integers. Therefore

x : y : z2 = |m2 − 2bmn− abn2| : |m2 + 2amn− abn2| : (m2 + abn2)

is a solution provided the constant of proportionality, k, is so chosen that k(m2 +abn2)
is a perfect square.

Other solutions may be obtained by solving z2 = m2+abn2. See L. E. Dickson, History
of the Theory of Numbers, v.2, p.425. One form of the solution is

m : n : z = |p2 − abq2| : 2pq : (p2 + abq2)
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Amer. Math. Monthly, 59(1952) 702.

4514. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

ψ(t) = constant and ψ(t) = |t| are solutions of the integral equation

2ψ(t) =

∫ 1

−1

ψ(2tx) dx

as is easily verified. Are there any other solutions?

Amer. Math. Monthly, 61(1954) 203.

Solution by J. E. Wilkins, Jr., Nuclear Development Associates, Inc., White Plains,
N.Y. There are others. To find additional solutions, substitute |t|a for ψ(t). This
function will satisfy the integral equation if and only if 2a = a+1. This transcendental
equation has exactly two real roots, namely 0 and 1, and has infinitely many complex
roots

αn ± iβn(log 2)−1

such that
αn = −1 + βn(log 2)−1 cot βn

2βn(log 2)−1 exp(−βn cot βn) = sin βn

2nπ < βn < (4n+ 1)π/2

(n = 1, 2, . . .). For example, β1 = 7.454087, α1 = 3.545368± 10.75397i.

Also solved by [7 others and] the Proposer.

Editorial Note. As shown also by the other solvers, there exist no real solutions of the
integral equation, under the assumption that ψ(x) is of class C1 on [0,1], other than
linear combinations of the solutions cited by the Proposer.
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Amer. Math. Monthly, 60(1953) 40.

E 1049. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

If a uniform thin rod of length L is perpendicular to and touching the earth’s surface
at one end, find the distance between the centre of gravity and the centre of mass of
the rod.

Centre of Gravity of a Vertical Rod

Solution by M. Morduchow, Polytechnic Institute of Brooklyn

Let x be distance measured along the rod from the earth’s surface. Also, let R be
the radius and M the mass of the earth, while ρ is the mass per unit length of the
rod. Then, by Newton’s inverse-square law, the total force (directed towrds the earth’s
centre) acting on the rod will be

F =

∫ L

0

GMρ(R + x)−2 dx = GMm/R(R + L)

where G is the gravitational constant, and m = ρL is the mass of the rod. If the
centre of gravity is at x = xg, then by definition we require that F = GMm/(R+xg)

2.
Therefore (R + xg)

2 = R(R + L), whence

xg =
√
R(R + L)−R

Since the centre of mass is at x = xm = L/2, the centre of gravity will be below the
centre of mass, abd the distance between the two centres will be

xm − xg = L/2−R[(1 + L/R)1/2 − 1]

If L/R� 1, then expansion by the binomial theorem to second powers of L/R yields
the approximate result

xm − xg ≈ (1/8)(L/R)L.

Also solved by [13 others and] the Proposer.

All of these solutions were not the same. [Julian ]Braun, [A. R. ]Hyde, [L. V. ]Mead,
[J. V. ]Whittaker and the proposer took the distance xg to be

xg =

∫ L

0
x(R + x)−2 dx∫ L

0
(R + x)−2 dx

= (R/L)(R + L) ln(1 + L/R)−R.

[Azriel ]Rosenfeld took the centre of gravity of the rod as that point for which the
weight of the portion of the rod above the point is equal to the weight of the portion
of the rod below the point. He found

xg = 2RL/(4R + L).

18



All other solutions werelike Murduchow’s. Here, for a rod a mile long, the distance
between the centres is about 2 inches.

[H. W. ]Smith called attention to Kellogg, Foundations of Potential Theory, p.4.

Amer. Math. Monthly, 60(1953) 186–187.

[[There’s a Classroom Note, D. E. Whitford and M. S. Klamkin, On an elementary
derivation of Cramer’s rule.]]

Amer. Math. Monthly, 60(1953) 188.

E 1057. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Find the sum of the first n terms of the series

sec θ + (sec θ sec 2θ)/2 + (sec θ sec 2θ sec 4θ)/4 + · · · .

Amer. Math. Monthly, 60(1953) 628.

Solution by J. R. Hatcher, Fisk University. Using the identities secα = 2 sinα/ sin 2α
and cscα = cotα/2− cotα, we conclude that the sum Sn(θ) of the first n terms is

Sn(θ) = 2 sin θ(csc 2θ + csc 4θ + · · · csc 2nθ)

= s sin θ(cot θ − cot 2nθ)

= [2 sin(2n − 1)θ]/[sin 2nθ].

[F. ]Underwood pointed out that the problem is essentially Ex.10, p.125 of Plane
Trigonometry, Part II, by S. L. Loney (1908).
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Amer. Math. Monthly, 60(1953) 423.

4546. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn, New York

Evaluate

I =

∫ ∞

0

sin mx
2

sin nx
2

sin m+1
2
x sinn+ 12x

x2 sin2 x
2

dx

where m and n are integers and m ≥ n.

Amer. Math. Monthly, 61(1954) 649.

Solution by J. V. Whittaker, University of California, Los Angeles. This integral is
merely ∫ ∞

0

1

x2

m∑
r=1

n∑
s=1

sin rx sin sx dx

Integrating by partsand applying the sum and difference formulas, we obtain a known
form: ∫ ∞

0

sin rx sin sx

x2
dx =

∫ ∞

0

r cos rx sin sx+ s sin rx cos sx

x
dx

= πs/2 (r ≥ s)

Summing over r and s, we find the value of I to be (π/12)n(n+ 1)(3m− n+ 1).

Also solved by [6 others and] the Proposer.
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Amer. Math. Monthly, 60(1953) 632.

4561. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn, New York

Prove

S2,p +
r∑

n=1

[
n2

(
n+ p

p

)]−1

= S2,r +

p∑
n=1

[
n2

(
n+ r

r

)]−1

where S2,p =
∑p

n=1 1/n2.

Amer. Math. Monthly, 62(1955) 49.

Solution by Leonard Carlitz, Duke University. Let p be an arbitary, fixed integer. For
r = 1, the proposed relation reduces to

S2,p +
1

p+ 1
= 1 +

p∑
n=1

1

n2(n+ 1)

which is evidently true since

p∑
n=1

1

n2
−

p∑
n=1

1

n2(n+ 1)
=

p∑
n=1

1

n(n+ 1)
=

p∑(
1

n
− 1

n+ 1

)
= 1− 1

p+ 1

Assuming now that the stated result holds for r − 1, we have

S2,r +

p∑
n=1

[
n2

(
n+ r

r

)]−1

− S2,r−1 −
p∑

n=1

[
n2

(
n+ r − 1

r − 1

)]−1

=
1

r2
−

p∑
n=1

(r − 1)!n!

n2

n

(n+ r)!
=

1

r2
−

p∑
n=1

(r − 1)!

n(n+ 1) · (n+ r)

=
1

r2
− (r − 1)!

r

{
1

r!
− 1

(p+ 1) · · · (p+ r)

}
=

(r − 1)!

r(p+ 1) · · · (p+ r)
=

[
r2

(
r + p

p

)]−1

This evidently completes the induction proof.

Also solved by [5 others and] the Proposer.
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Amer. Math. Monthly, 60(1953) 843.

4552. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn, New York

What derangement of terms of
∞∑

n=1

(−1)n+1

n

will produce a sum which is rational?

Amer. Math. Monthly, 61(1954) 719.

Solution by V. C. Harris, San Diego State College, California. If neither the order
in which the positive terms occur nor the order in which the negative terms occur
is changed, but if the terms are rearranged so that k is the limit of the ratio of the
number of positive terms to the number of negative terms in the first n terms, then the
alteration L in the sum of the series is L = 1

2
log k. (This result is due to Pringsheim; see

Bromwich, An Introduction to the Theory of Infinite Series, Second Edition, Revised,
p.76.) Since the sum of the given series is log 2, the sum after alteration is log 2+ 1

2
log k.

Setting k = K2/4, the sum becomes logK. If this is rational, say m/n, then
k = K2/4 = (1/4) exp(2m/n). To effect the derangement, set up any sequence of
rationals which has limit (1/4) exp(2m/n), e.g., convergents of its continued fraction
expansion, and take a number of positive terms equal to the denominator, of the
successive terms of the sequence. In particular, for k = 1/4, we have

0 = 1− 1

2
− 1

4
− 1

6
− 1

8
+

1

3
− 1

10
− 1

12
− 1

14
− 1

16
+ · · · .

Also solved by [5 others and] the Proposer.
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Amer. Math. Monthly, 60(1953) 484–485.3

A Summation

4489 [1952, 332]. Proposed by D. J. Newman, Harvard University

Sum the series
∞∑

n=1

(n/e)n−1

n!

III. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. If we expand eaz in
powers of w where z = webz we obtain

eaz − 1

aw
=

∞∑
n=1

[(a+ nb)w]n−1

n!

(See Bromwich, Infinite Series, p.160, ex.4.) Letting z = 1, and then w = e−b, there
results

ea − 1

ae−b
=

∞∑
n=1

[
a+ nb

eb

]n−1
1

n!

The proposed problem is a special case of this where we let b = 1 and a→ 0.

Amer. Math. Monthly, 60(1953) 551–552.

N Objects in B Boxes

E 1051 [1953, 114]. Proposed by S. W. Golomb, Harvard University

Given N objects in B boxes, what is a necessary and sufficient condition for at least
two boxes to contain the same number of objects?

Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. If no two of the boxes
contain the same number ofobjects, then the total number of objects is

0 + 1 + 2 + · · ·+ (B − 1) = B(B − 1)/2

or any greater integer. Therefore a necessary and sufficient condition for at least two
boxes to contain the same number of objects is that N < B(B − 1)/2.
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Amer. Math. Monthly, 60(1953) 716.

4564. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Prove
∞∑

n=1

Sn

n3
=
π4

72
where Sn =

n∑
r=1

1

r

Amer. Math. Monthly, 62(1955) 129–130.

Solution by J. V. Whittaker, University of California, Los Angeles. We have, after
rearrangement of the terms of the series,

S =
∞∑

m=1

∞∑
n=1

1

nm3
=

∞∑
m=0

∞∑
n=1

1

n(m+ n)3

We first notice that

S =
∞∑

m=1

∞∑
n=1

1

m2(m+ n)2
=

∞∑
m=1

∞∑
n=1

1

m2n2
−

∞∑
m=1

∞∑
n=1

1

m2n2
=

π4

120

Then
∞∑

n=1

1

n(m+ n)3
=

∞∑
n=1

{
1

m3n
− 1

m3(m+ n)
− 1

m2(m+ n)2
− 1

m(m+ n)3

}
=

∞∑
n=1

1

m3n
−

∞∑
n=1

{
1

m2(m+ n)2
+

1

m(m+ n)3

}
Finally, summing over m from 1 to ∞, we find(

S − π4

90

)
= S − π4

120
−
(
S − π4

90

)
or S = π4/72.

II. Solution by the Proposer. This result is a special case of a theorem due to
G. T. Williams (this Monthly, 1953, p.25) which may be put in the form

2
∞∑

n=1

Sn

np
= (p+ 2)ζ(p+ 1)−

p−2∑
j=1

ζ(j + 1)ζ(p− j)

For p = 3 we have
∞∑

n=1

Sn

n3
=

1

2

{
5ζ(4)− ζ2(2)

}
=
π4

72

It may be obtained as easily from a result due to D. H. Browne in connection with
Problem no.4431 [1952, 472].
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Amer. Math. Monthly, 61(1954) 199.

4582. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Show that

(a)

p∑
n=1

S2
1,n

n
∼ 5

3

∞∑
n=1

1

n2
+

1

3
(γ + log p)2

(b)

p∑
n=1

S2,n

n
∼ π2

6
(γ + log p)−

∞∑
n=1

1

n3

where γ is Euler’s constant and

Sm,n =
n∑

r=1

1

rm
.

Amer. Math. Monthly, 62(1955) 447–450.

Solution by Leonard Carlitz, Duke University. We shall show that

A =
k∑

n=1

1

n
S2,n =

π2

6
(γ + log k)−

∞∑
n=1

1

n3
+O

(
log k

k

)
(1)

B =
k∑

n=1

1

n
S2

1,n =
5

3

∞∑
n=1

1

n3
+

1

3
(γ + log k)3 +O

(
log k

k

)
(2)

where Sm,n =
∑k

n=1 n
−m.

We recall that

S1,k = log k + γ +O

(
1

k

)
S2,k =

π2

6
+O

(
1

k

)
(3)

We have
S1,kS2,k = A+ C (4)

where

C =
k∑

n=1

1

n

k∑
r=n+1

1

r2

r−1∑
n=1

1

n
=

k∑
r=2

1

r2

r−1∑
n=1

1

r − n

Thus

2C =
k∑

r=2

1

r2
∑r−1

n=1

(
1

n
+

1

r − n

)
=

k∑
r=2

1

r

r−1∑
n=1

1

n(r − n)
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2C +
k∑

r=2

1

r

r−1∑
n=1

1

n2
=

k∑
r=2

r−1∑
n=1

1

n2(r − n)
=

k−1∑
n=1

1

n2

k∑
r=n+1

1

r − n
=

k−1∑
n=1

1

n2

k−n∑
r=1

1

r

=
k−1∑
r=1

1

r

k−r∑
n=1

1

n2
=

k−1∑
r=1

1

r

{
π2

6
+O

(
1

k − r

)}

=
π2

6
S1,k−1 +

(
k−1∑
r=1

1

r(k − r)

)

But
k−1∑
r=1

1

r(k − r)
=

1

k

k−1∑
r=1

(
1

r
+

1

k − r

)
=

2

k
S1,k−1 = O

(
log k

k

)
so that

2C + A =
π2

6
S1,k + S2,k +O

(
log k

k

)
Thus (4) becomes

2S1,kS2,k = 2A+ 2C = A+
π2

6
S1,k + S2,k +O

(
log k

k

)
Using (3) and

S2,k =
∞∑

n=1

1

n2
+O

(
1

k2

)
we get

2

{
log k + γ +O

(
1

k

)}{
π2

6
+O

(
1

k

)}
= A+

π2

6

{
log k + γ +O

(
1

k

)}
+

∞∑
n=1

1

n3
+O

(
log k

k

)
which reduces to (1).

In the next place
S3

1,k = B +DS1,k + E (5)

where

D =
k∑

n=1

1

n

k∑
s=n+1

1

s
E =

k∑
n=1

1

n

n∑
r=1

1

r

k∑
s=n+1

1

s

Now
S2

1,k = 2D + S2,k (6)
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As for E, we have

E =
k∑

s=2

1

s

s−1∑
n=1

1

n

n∑
r=1

1

r

=
k∑

s=1

1

s

s∑
n=1

1

n

n∑
r=1

1

r
−

k∑
s=1

1

s2

s∑
r=1

1

r

=
k∑

s=1

1

s

s∑
r=1

1

r

s∑
n=r

1

n
−

k∑
s=1

1

s2

s∑
r=1

1

r

so that

2E =
k∑

s=1

1

s

(
s∑

r=1

1

r

)2

+
k∑

s=1

1

s

s∑
r=1

1

r2
− 2

k∑
r=1

1

r

k∑
s=r

1

s2

= B − 2S1,kS2,k + 3A− 2S3,k (7)

Thus using (5), (6), (7) we get

S3
1,k =

3

2
B +

1

2
(S2

1,k − S2,k)S1,k − S1,kS2,k +
3

2
A− S3,k

which reduces to

S3
1,k = 3B − 3S2,kS1,k + 3A− 2S3,k

= 3B − 3(S2,kS1,k − A− S3,k) + 5S3,k

Now using (1) and (3) we immediately get (2).

Also solved by the Proposer.
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Amer. Math. Monthly, 61(1954) 263.

4583. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

For an = 1, n = 1, 2, . . . ,

S =
∞∑

r=1

[r!]−ar

is transcendental. Find other non-decreasing squences {an} such that S is transcen-
dental.

Amer. Math. Monthly, 62(1955) 450–451.

Solution by the Proposer. Let
n∑

r=1

[r!]−ar

be an approximation to S. If S is algebraic, then by the theorem of Liouville on
algebraic numbers

∞∑
r=n+1

[r!]−ar ≥ [n!]−man (1)

must hold for m > 2 and n sufficiently large. If we take aj+1 > 1 + aj, (1) implies

[(n+ 1)!]−an+1

1− 1
(n+1)!

≥ [n!]−man

which, in turn, implies that

2[n!]man ≥ [(n+ 1)!]an+1 (2)

But (2) will nothold if we choose an of sufficiently high order in n. In fact, since
2[n!]m < [(n+ 1)!]n+1 for n > m, we have

2n![n!]mn! < [(n+ 1)!](n+1)!

which contradicts (2) with an = n! and hence also contradicts (1). Thus S is transcen-
dental for an = n! and also for any an of equivalent or higher order, such as (n!)p, nn,
etc.
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Amer. Math. Monthly, 61(1954) 350.

4592. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn, N.Y.

Find the sum
∞∑

r=1

(−1)r+1 log r

r

Amer. Math. Monthly, 62(1955) 558–560.

Dirichlet Series

I. Solution by H. F. Sandham, Dublin Institute for Advanced Studies, Ireland. Write

f(n) =
n∑

r=1

log r

r
− 1

2
log2 n

then from Cauchy’s integral test it follows that f(n) tends to a limit as n→∞; hence

f(2n)− f(n) → 0 n→∞

Now, since log 2r = log 2 + log r,

n∑
r=1

log r

r
= 2

n∑
r=1

log 2r

2r
− log 2

n∑
r=1

1

r

hence

f(2n)− f(n) =
2n∑

r=1

(−1)r+1 log r

r
+ log 2

(
n∑

r=1

1

r
− log n

)
− 1

2
log2 2

Thus, letting n tend to infinity, we have

∞∑
r=1

(−1)r+1 log r

r
=

1

2
log2 2− γ log 2

where γ denotes Euler’s constant.

II. Solution by M. R. Spiegel, Rensselaer Polytechnic Institute. Choose a > 0 and
consider∫ ∞

0

log x

eax + 1
dx =

∞∑
r=1

(−1)r+1

∫ ∞

0

e−rax log x dx

=
∞∑

r=1

(−1)r+1

ra

∫ ∞

0

e−u log(u/ra) du

=

{∫ ∞

0

e−u log u du

}{ ∞∑
r=1

(−1)r+1

ra

}
−

∞∑
r=1

(−1)r+1 log ra

ra
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Since ∫ ∞

0

e−u log u du = Γ′(1) = −γ
∞∑

r=1

(−1)r+1

ra
=

log 2

a∫ ∞

0

log x

eax + 1
dx = − 1

2a
log 2 log 2a2

(see solution to problem 4394 [1951, 705]) we obtain

∞∑
r=1

(−1)r+1 log ra

ra
=

1

2a
log 2 log 2a2 − γ log 2

a

The present problem is the special case a = 1.

Editorial Note. In a note on The Power Series Coefficients of ζ(s), Briggs and Chowla
obtain, among other results, formulas for the coefficients An in the expansion

ζ(s) =
1

s− 1
+

∞∑
n=0

An(s− 1)n

See this Monthly, May 1955, pp.323–325.
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Amer. Math. Monthly, 61(1954) 423.

E 1123. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Given a square N ×N point lattice, show that it is possible to draw a polygonal path
passing through all the N2 lattice points and consisting of 2N − 2 segments. Can it
be done with less than 2N − 2 segments?

Amer. Math. Monthly, 62(1955) 124.

Solution by the Proposer. Assume that it can be done for N = K in such a fashion
that we end up in position E as shown in Figure 1. Then, as shown in Figure 2, by

E E

E

K K

K+1

- -

-

� �

�

<1>

<1>

- - -

�

Fig. 1 Fig. 2 Fig. 3

drawing two more lines it can be done in the same fashion for N = K + 1. Figure 3
shows that it can be done in this fashion for N = 3. Thus, by induction, it can be
done for all N ≥ 3.

No one successfully answered the question at the end of the problem.

Amer. Math. Monthly, 62(1955) 443.

II. Addendum by John Selfridge, U.C.L.A. We answer the question at the end of the
problem in the negative.

Let there be R rows and S columns which have none of the given segments lying on
them. The R×S lattice formed by these has 2R+ 2S− 4 boundary points if R and S
are each greater than 1. Each oblique line covers at most 2 of these boundary points.
Thus in the polygonal covering there are at least R + S − 2 oblique segments, N − R
horizontal segments and N − S vertical segments, or at least 2N − 2 segments in all.

If R or S is 0 or 1 there are at least 2N − 1 segments.
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Amer. Math. Monthly, 61(1954) 427–428.

4595. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn, New York

If

[xD]n =
n∑

r=1

Arnx
n−r+1Dn−r+1

where D is the differential operator, determine Arn.

Amer. Math. Monthly, 62(1955) 660–661.

Stirling Numbers of the Second Kind

Solution by A. S.Hendler, Rensselaer Polytechnic Institute, Troy N.Y. On writing
[xD]n = x ·D[xD]n−1, we see that the Ar,n must satisfy the equation of partial differ-
ences

Ar,n = Ar,n−1 + (n− r + 1)Ar−1,n−1

and the initial conditions are A1,n = An,n = 1. Thus the Ar,n are completely deter-
mined.

However, if we take An−k+1,n = Bk,n (k = 1, 2, . . . , n) the equation of partial differences
may be written

Bk,n = Bk−1,n−1 + kBk,n−1

with the initial conditions Bn,n = B1,n = 1, But S1
n = Sn

n = 1, where Sk
n are the

Stirling numbers of the second kind defined by

Sk
n =

1

k!

k∑
i=1

(−1)k−i
kCii

n

Also, an easy calculation will verify that

Sk−1
n−1 + kSk

n−1 = Sk
n

Hence Bk,n = Sk
n and

Ar,n = Sn−2+1
n =

1

(n− r + 1)!

n−r+1∑
i=1

n−r+1∑
i=1

(−1)n−r+1−i
n−r+1Cii

n

Editorial Note. The problem has been treated in a number of places and the following
references were cited by our correspondents: Jordan, Calculus of Finite Differences,
pp.195–196, (See also pp.168–170 for the Stirling numbers.), Schwatt, Introduction of
Operations with Series (1924) pp.86ff., and an article by L. Carlitz, On a class of finite
sums, this Monthly 37(1930) 473–479.
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Amer. Math. Monthly, 61(1954) 470.

E 1129. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Find an integral arithmetic progression with an arbitrarily large number of terms such
that no term is a perfect r th power for r = 2, 3, . . . , N . Is this still possible if N = ∞ ?
bigskip

Amer. Math. Monthly, 62(1955) 185.

Solution by Azriel Rosenfeld, Columbia University. The progression 2, 6, 10, . . ., 4k+2,
. . . can contain no perfect powers whatsoever. For, a power of an odd integer is odd,
and a power of an even integer must be divisible by 4..

An obvious solution, poinyed out by [A. R. ]Hyde, is any arithmetic progression with
common difference d = 0 and with the (invariant) term chosen so asnot to be anintegral
power of an integer, for example the progression 3, 3, 3, . . . . Hyde, Leo Moser and
[R. E. ]Shafer offered deeper solutions to the problem.

Amer. Math. Monthly, 61(1954) 705–707

Classroom Note: M. S. Klamkin, On the vector triple product..
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Amer. Math. Monthly, 61(1954) 711.

E 1142. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn, N.Y.

Find the semi-vertical angle of a right circular cone if three generating lines make
angles of 2α, 2β, 2γ with each other.

Amer. Math. Monthly, 62(1955) 444–445.

Solution by Leon Bankoff, Los Angeles, Calif. The sides of the base of the triangular
pyramid determined by the three generating lines are a = 2y sinα, b = 2y sin β,
c = 2y sin γ, where y is the slant height of the cone. The radius of the base of the cone
is given by

R = abc/4
√
s(s− a)(s− b)(s− c)

where s is the semi-perimeter of the base of the pyramid.. Since the semi-vertical angle
φ is equal to arcsinR/y, we obtain

φ = arcsin
2 sinα sin β sin γ√

(sin2 α+ sin2 β + sin2 γ)2 − 2(sin4 α+ sin4 β + sin4 γ)

[Hüseyin ]Demir gave the equivalent answer

sin2 φ = − 16 sin2 α sin2 β sin2 γ∣∣∣∣∣∣∣∣
0 sinα sin β sin γ

sinα 0 sin γ sin β
sin β sin γ 0 sinα
sin γ sin β sinα 0

∣∣∣∣∣∣∣∣
[R. L. ]Helmbold considered the analogous problem in an n-dimensional vector space.
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Amer. Math. Monthly, 62(1955) 122.

E 1153. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

For any angle θ, show that arbitarily small constructible angles φ exist such that (θ−φ)
can be trisected.

Amer. Math. Monthly, 62(1955) 584.

Trisection of Angles Arbitrarily Close to a Given Angle

Solution by C. S. Ogilvy, Hamilton College. Let φn = θ/4n, n = 1, 2, . . . . For all n, φn

is certainly constructible. Obviously n can be selected so that φn < ε for any ε. But

(θ − φn)/3 = φ1 + φ2 + · · ·+ φn

Also solved by [5 others and] the proposer.

Amer. Math. Monthly, 62(1955) 123.(127?)

4627. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn, New York

In Chrystal, Textbook of Algebra, vol.2, p.225, there is the following theorem on the
representation of an irrational number:

The number represented by the series

∞∑
n=1

pn

r1r2 · · · rn

is irrational provided that

(1) rn and pn are integers such that 0 < pn < rn

(2) rn+1 > rn > 1

(3) the sequence {r1r2 · · · rn} includes all powers of the primes.

(A) Construct a counter-example, i.e., a number of the stated form which is rational
even though conditions (1), (2) and (3) are satisfied.

(B) Complete the list of conditions (1), (2) and (3) so that the theorem is indeed valid.

Amer. Math. Monthly, 63(1956) 263.

Solution by Ivan Niven, University of Oregon. (A) The following number is of the
required form and is rayional:

∞∑
n=1

n

(n+ 1)!
=

∞∑
n=1

1

n!
−

∞∑
n=1

1

(n+ 1)!
= 1

(B) The theorem is valid if the following condition is also satisfied:
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(4) pn < rn − 1 for infinitely many values of n.

For if the series converged to a rational number, a/b, then by condition (3) we could
choose an integer m so that b is a divisor of r1r2 · · · rm. When we multiply the equation

a

b
=

∞∑
n=1

pn

r1r2 · · · rn

by r1r2 · · · rm, and rearrange the terms to get

a
r1r2 · · · rm

b
−

m∑
n=1

pnr1r2 · · · rm

r1r2 · · · rn

=
∞∑
i=1

pm+i

rm+1rm+2 · · · rm+i

we note that the left side is an integer. We get a contradiction by establishing that
the series on the right converges to a value between 0 and 1. Indeed the series on the
right is positive because of condition (1), and by condition (4) the series is less than

∞∑
i=1

rm+i − 1

rm+1rm+2 · · · rm+i

but this series converges to the value 1 because the sum of the first k terms has the
value

1− 1

rm+1rm+2 · · · rm+k

Thus the proof is complete and we make the following comment. Condition (2) may be
replaced by the weaker condition rn > 1, and the theorem remains valid by the same
proof.

Also solved by [3 others and] the Proposer.
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Amer. Math. Monthly, 62(1955) 493.

E 1180. Proposed by M. S. Klamkin and Alex Kraus, Polytechnic Institute of Brooklyn

Determine the 2319th digit in the expansion of 1000!

Amer. Math. Monthly, 63(1956) 190.

Solution by J. B. Muskat, Cambridge, Mass. By Stirling’s formula we find that the
expansion of 1000! has 2568 digits. Since 5 divides 1000! 249 times, and 2 divides
1000! more than 500 times, the expansion of 1000! terminates in a string of 249 zeros.
Further, since 2568 − 249 = 2319, the digit we seek is the last non-zero digit in the
expansion. Clearly this digit is even, and depends upon the last digits of the factors 1,
2, 3, . . ., 1000 of 1000! after removal of allfactors 5. Taking the factors successively in
sets of ten and removing the multiples of 5 we have, for the product of the remaining
factors in each set,

1 · 2 · 3 · 4 · 6 · 7 · 8 · 9 ≡ 6 (mod 10) (1)

There are 100 of these products, leaving 200 numbers which are divisible by 5, and
if 5 is factored out of each,200! remains. We then have 20 more products like (1),
leaving 40 numbers which are divisible by 5, and if 5 is factored out of each of these,
40! remains. We get 4 more products like (1), leaving 8 numbers which are divisible
by 5, and if 5 is factored out of each of these, 8! remains. Dividing out 5 once more,
we have left

1 · 2 · 3 · 4 · 6 · 7 · 8 ≡ 4 (mod 10)

Now 4 · 6124 ≡ 4 (mod 10), whence 4 is the last digit in (1000!)/5249. But 2249 must
also be divided out to complement the 5249. Since 2249 ≡ 2 (mod 10), it now follows
that the last digit in (1000!)/10249, which is the digit we are seeking, is 2.

Amer. Math. Monthly, 63(1956) 492.

Editorial Note. H. S.Uhler has calculated the exact value of 1000!. See his article,
Exact values of 996! and 1000! with skeleton tables of antecedent constants, Scripta
Math., XXI 261–268. The 2319th digit in the expansion of 1000! appears as 2, as was
shown in [1956. 189].
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Amer. Math. Monthly, 62(1955) 494.

E 1147. Proposed by E. P. Starke, Rutgers University

If cosα is rational (0 < α < π), prove there are infinitely many triangles with integer
sides having α as one angle. In particular, given cosα = r/s, find a three-parameter
solution for the sides a, b, c.

Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. By the law of cosines

s(c+ a)(c− a) = b(2cr − bs)

This will be satisfied if

ms(c+ a) = n(2cr − bs) and n(c− a) = mb

or if
na+mb− nc = 0 and msa+ nsb+ (ms− 2nr)c = 0

It follows that

a = ts(m2 + n2)− 2tmnr b = 2tn(nr −ms) c = ts(n2 −m2)

This problem has been solved previously by Züge, Archiv Math. Phys.(2) 17(1900)
354. See Dickson, History of the Theory of Numbers, Vol.II, p.215.

Amer. Math. Monthly, 62(1955) 734.

4664. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Are there any other laws of attraction beside the inverse square law such that the time
of descent (from rest) through any striaght tunnel through a uniform spherical planet
is independent of the path?

Amer. Math. Monthly, 75(1968) 415.

Editorial Note. The solution of this problem appears as a Scientific Laboratory of
the Ford Motor Company publication, preprint of a paper by M. S. Klamkin and
D. J. Newman, On some inverse problems in dynamics, to appear in the Quarterly of
Applied Mathematics. The abstract of the paper follows.

It is known that the time of traverse of a freely falling body through a straight tunnel
connecting any two points of the surface of a uniform spherical planet is isochronous.
We show here that if the isochronous property is to hold for any planet with a spherical
symmetric density, then the density must be constant. Also it is shown that if the
isochronous property is to hold for any uniform spherical planet subject to a central
force law, then the force law must be inverse square. However, the isochronous property
can hold for one uniform spherical planet with a different force law of attraction.
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Amer. Math. Monthly, 63(1956) 39.

E 1199. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

A flexible chain of length L is suspended from its endpoints. Determine themaximum
area between the chord joining the endpoints and the hanging curve.

Amer. Math. Monthly, 63(1956) 495–496.

Maximum Area Between a Hanging Chain and its Chord

Solution by C. M. Sandwick, Sr., Easton High School, Easton, Pa. Let −x + w and
x+w be the abscissas of two points on the curve having the equation y = cosh x, such
that the figure formed by the arc and the chord joining the two points is similar to the
chain of length L and the chord joining its points of suspension. Let A be the plane
area bounded by the chain and its chord, and let z be the length of the chord. Then

z = L(x2 + sinh2w sinh2 x)1/2/ coshw sinh x

A = L2(x coshx− sinh x)/2 coshw sinh2 x

If w is held constant, dA/dz = 0 when

x = 2(sinhx coshx)/(1 + cosh2 x) = 1.6062, approximately.

For any x, A is a maximum when w = 0, which occurs when and only when the chord
is horizontal. Then

A = L2(x coshx− sinh x)/2 sinh2 x and z = Lx/ sinh x

so the maximum area is approximately 0.1549L2, the points of suspension being joined
by a horizontal chord whose length is approximately 0.6716L.

Editorial Note. Eliminating x from

A = L2(x coshx− sinh x)/2 sinh2 x and L = 2 sinhx

we find
Amax = (L2 + 4)1/2 sinh−1(L/2)− L
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Amer. Math. Monthly, 63(1956) 126.

4677. Proposed by M. S. Klamkin, AVCO Research Division, Lawrence, Mass.

For what values of θ does the following series converge:

∞∑
n=1

1

n sin 2nθ
?

Amer. Math. Monthly, 64(1957) 124-125.

Solution by Leonard Carlitz, Duke University. Put θ = απ, where we may assume
that 0 < α < 2. Also put α = 2−n1 + 2−n2 + 2−n3 + · · · (0 ≤ n1 < n2 < · · · ) and
kr = nr+1 − nr (r = 1, 2, . . .).

Clearly we may assume that α 6= m/2t where m is an integer. We shall prove that the
series

∞∑
n=1

1

n sin 2nαπ
(1)

converges if and only if, as r →∞,

(a) 2kr/nr → 0

and the following series converges

(b)
∞∑

r=1

2kr/n2
r

Proof. The necessity of (a) is obvious, for otherwise the nr th term of (1) does not
approach zero. In the next place it follows from the identity

1

sin 2x
+

1

sin 4x
+ · · ·+ 1

sin 2nx
= cotx− cot 2nx

that

N∑
n=1

1

n sin 2nαπ
=

N∑
n=1

1

n
(cot 2n−1απ − cot 2nαπ)

= cotαπ −
N−1∑
n=1

cot 2nαπ

n(n+ 1)
− 1

N
cot 2Nαπ (2)

It follows from (a) that as N →∞, (cot 2Nαπ)/N → 0. As for

N−1∑
n=1

cot 2nαπ

n(n+ 1)
(3)
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note first that the only negative terms are those for which n = nr − 1; since the series
∞∑

n=1

cot 2nr−1απ

nr(nr − 1)

is evidently convergent, we may ignore such terms in (3). In other words, if
∞∑

n=1

cot 2nαπ

n(n+ 1)
(4)

converges, it converges absolutely. Consequently the convergence of (4) implies the
convergence of

∞∑
n=1

cot 2nrαπ

nr(nr + 1)
(5)

Since the fractional part of 2nrα is equal to α = 2nr−nr+1 + 2nr−nr+2 + · · · , it is clear
that (5) converges if and only if

∞∑
r=1

2kr

nr(nr + 1)

converges; this is equivalent to (b).

Conversely when (a) and (b) hold, it is clear from (2) that it is only necessary to prove
the convergence of (4). But∣∣∣∣∣

N∑
n=1

cot 2Nαπ

n(n+ 1)

∣∣∣∣∣ ≤
N∑

n=1

| csc 2nαπ|
n(n+ 1)

and sin 2nαπ is negative only for n = nr. Then the convergence of
∞∑

n=1

csc 2nαπ

n(n+ 1)

is a consequence of (b), while the convergence of
∞∑

n=1

1

n(n+ 1) csc 2nαπ

is easily proved by sumation by parts as in (2), This completes the proof.

Remark. The series (1) is certainly convergent if the differences kr are bounded; in particular, (1)
converges for rational α (except m/2t). An example of divergence is furnished by

∑
2−r2

; the condition
(a) is not satisfied.

For nr = [r log2 r] both (a) and (b) are satisfied; for

nr = [r(log2 r + log2 log2 r)]

neither (a) nor (b) holds; while (a) is satified but (b) is not if

nr = [r(log2 r + log2 log2 r − log2 log2 log2 r)].
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Amer. Math. Monthly, 63(1956) 191.

4680. Proposed by M. S. Klamkin, AVCO Research Division, Lawrence, Mass.

Solve the folowing generalization of Clairaut’s differential equation

y − xy′ +
x2y′′

2!
+ · · ·+ (−1)n−1x

n−1y(n−1)

(n− 1)!
+ (−1)nx

nF (y(n))

n!
= G(y(n))

Amer. Math. Monthly, 64(1957) 204.

Solution by the proposer. After differentiating the given equation and replacing y(n) by
r, we can rewrite it as

dxn/dr − xnF ′(r)H(r) = (−1)n−1G′(r)n!H(r) where H(r) = (r − F (r))−1

The standard solution of this first order linear equation is

xn = exp

{∫
F ′(r)H(r) dr

}∫
(−1)n−1G′(r)n!H(r) exp

{
−
∫
F ′(r)H(r) dr

}
dr

or x = φ(r). Now (dny)/(dxn) = r, whence

y =

∫
· · ·
∫
r (dx)n =

∫
φ′(r)

∫
φ′(r) · · ·

∫
rφ′(r) (dr)n

This last equation and the equation x = φ(r) constitute the parametric form of the
solution.

It is to be noted that there is no singular solution unless r = F (r) in which case the equation reduces to
that treated by Witty, this Monthly, 1952, pp.100–102. See also the proposer’s note, this Monthly,
1953, pp.97–99.
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Amer. Math. Monthly, 63(1956) 425–426.

A Conditional Inequality

E 1195 1955, 728. Proposed by G. E. Bardwell, University of Denver

If n = 2, 3, 4, . . ., and m is fixed and positive, for what values of p less thn 1 is
lnn < mnp ?

Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. If mnp > lnn, then

p > ln (lnn)/m/ lnn = (ln x− lnm)/x

where x = lnn. Now the maximum value of (lnx− lnm)/x occurs when x = em and
is equal to 1/em. Thus

1 > p > 1/em provided m > 1/e.

Amer. Math. Monthly, 63(1956) 665.

E 1238. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Determine integral values of n > 0 such that 3n, 3n+1, 3n+2 all have the same number
of digits in their denary expansions.

Amer. Math. Monthly, 64(1957) 367.

Solution by Joe Lipman, University of Toronto. If n is an integer such that 3n, 3n+1,
3n+2 all have the same number of digits in their denary expansions. then

10000 . . .︸ ︷︷ ︸
k digits

< 3n < 11111 . . .︸ ︷︷ ︸
k digits

Now the mantissa of log 11111 . . . is 0.04575749056 . . .. If the inequality is satisfied,
n log 3 = an integer + a decimal fraction between zero and 0.04575749056. But
log 3 = 0.47712125472, which is just slightly greater than 10/21. [[misprinted as 1/21]]
Therefore we can expect the n s to recur at intervals of 21 or 23. Thus we have

n n log 3

21 10.019546349
42 20.039092698
65 31.012881557
86 41.032427906

109 52.006216764
130 62.025763114
151 72.045309463
174 83.019098321
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[[We interrupt the program to observe that we’ve corrected the arithmetic in the above
table and in the following paragraph (and the preceding one!) The sequence of values
of n is A001682 in Sloane’s OEIS, where the following values are given:

21,42,65,86,109,130,151,174,195,218,239,262,283, 304,327,348,371,392,415,436,457,
480,501,524,545, 568,589,610,633,654,677,698,721,742,763 ]]

A comparison of 174 and 21 shows that the corresponding mantissae differ by only
0.00044802789. This is because 153 log 3 = 72.999551972108. Thus any number of
the form 21 + 153k, where k < 0.019546349/0.00044802789 = 43.6275 . . . will be one
of the required n. For k = 44 the resulting mantissa is 0.99983312188. Subtracting
0.954242509 = 2 log 3 we get the mantissa 0.04559061244. So instead of 21 + 153(44),
use 21 + 153(44) − 2 = 6751. Now using the sequence 6741 + 153k1, where k1 <
0.04559061244/0.00044802789 = 101.758, repeat the above process and get more n s.
Then derive the new sequence 22194 + 153k2, and so on. In this way arbirarily large
n s can be determined as long as tables of sufficient accuracy are available.

Also solved by [15 others and] the proposer.

Amer. Math. Monthly, 63(1956) 667.

E 1209 [1956, 186]. Proposed by Hüseyin Demir, Zonguldak, Turkey

Let ABC be any triangle and (I) its incircle. Let (I) touch BC, CA, AB at D. E, F
and intersect the cevians BE, CF at E ′, F ′ respectively. Show that the anharmonic
ratio D(E,F,E ′, F ′) is the same for all triangles ABC.

II. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. By a central pro-
jection, triangle ABC and its incircle (I) can be transformed into an equilateral tri-
angle and its incircle. The anharmonic ratio D(E,F,E ′, F ′) is invariant under this
transformation and consequently is constant for all triangles. It is easy to show that
D(E,F,E ′, F ′) = 4.
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Amer. Math. Monthly, 63(1956) 724.

E 1245. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

If

bn+1 =

∫ 1

0

min(x, an) dx an+1 =

∫ 1

0

max(x, bn) dx

prove that the sequences {an} and {bn} both converge and find their limits.

Amer. Math. Monthly, 64(1957) 436.

Soution by N. J. Fine, University of Pennsylvania. For any a0, b0, it is easy to see
that an and bn both lie between 0 and 1 for all n ≥ 2. The recurrence formulas then
become (for n ≥ 2)

an+1 = (1 + b2n)/2 bn+1 = an − a2
n/2

If we assume that lim an = a, lim bn = b, they must satisfy

a = (1 + b2)/2 b = a− a2/2

from which we get
a+ b− 1 = (a+ b− 1)(b− a+ 1)/2

Since the factor (b − a + 1)/2 6= 1, we have a + b = 1, and this yields a = 2 −
√

2,
b =

√
2 − 1. To show that an → a, bn → b, we write an = a + δn, bn = b + εn. The

recurrence formulas become, after an easy reduction,

δn+1 = (b+ εn/2)εn εn+1 = (b− δn/2)δn

Now |εn| = |bn− b| ≤ max(b, 1− b) = a and |δn| = |an− a| ≤ max(a, 1− a) = a. Hence
|b+ εn/2| ≤ b+ a/2 = 1/

√
2, |b− δn/2| ≤ b+ a/2 = 1/

√
2. Therefore |δn+1| ≤ |εn|/

√
2

and |εn+1| ≤ |δn|/
√

2. This shows that δn → 0, εn → 0 and the proof is complete.

Also solved by [9 others and] the proposer.
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Amer. Math. Monthly, 63(1956) 725–726.

A Trigonometric Inequality

E 1212. Proposed by H. A. Osborn, University of California, Berkeley

Show that t > 0 implies (2 + cos t)t > 3 sin t.

Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. This problem and a
generalization both appear in Durell and Robson, Advanced Trigonometry, p.83 and
p.100. We will prove the generalization: If a ≥ 2b > 0 and π ≥ t > 0, then

(a+ b cos t)t > (a+ b) sin t

If the inequality is true for the range π ≥ t > 0, it follows immediately that it will be
true for for all t > 0. Since the two sides of the inequality are equal for t = 0, the
inequality will follow if we can show that the derivative of the left hand side is greater
than the derivative of the right hand side, that is, if

a+ b cos t− bt sin t > (a+ b) cos t

or
tan t/2 > bt/a

which is true if a ≥ 2b.

Setting a = 2, b = 1, we get (2 + cos t)t > 3 sin t.

The similar inequality, (2 + cosh t)t > 3 sinh t, t > 0, is given on p.115.

Amer. Math. Monthly, 63(1956) 729.

4716. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Determine the equation of motion if V̄s = λV̄t where V̄s and V̄t are the averages of
velocity with respect to distance and time, respectively, in any time interval starting
at t = 0. What is the minimum eigenvalue λ ?

Solution by N. J. Fine, University of Pennsylvania. Assuming that s(0) = 0, we see
that V̄t = s/t, and so

1

s

∫ s

0

v ds = λ
s

t

Multiply by s and differentiate, to get

v = λ

(
2
s

t
− 1

v

s2

t2

)
and v = µ

s

t

where µ = λ ±
√
λ2 − λ. Hence s = ctµ. Except for the trivial case µ = λ = 0, we

must have µ > 1/2 to ensure finiteness of V̄s and λ = µ2/(2µ−1) ≥ 1. Therefore every
λ ≥ 1 is an eigenvalue, with the solution s = ctµ, µ = λ±

√
λ2 − λ.

Also solved by [2 others and] the proposer
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Amer. Math. Monthly, 64(1957) 204–205.

A Summation Problem

4682 [1956, 191]. Proposed by R. C. Lyness, Preston, England

(a) Prove that when the series

1 +
∞∑

r=1

(
rα

r − 1

)
xr

r

is convergent, its sum, y, satisfies y = 1 + xyα.

(b) Prove also that
∞∑

r=1

(
rα + β − 1

r − 1

)
xr

r
=
yβ − 1

β

I. Solution by M. S. Klamkin, AVCO Research Division, Lawrence, Mass. Case (a) is
a special case of (b) which, in turn, is an application of Lagrange’s reversion formula
(See Bromwich, Infinite Series, p.158): If y = xf(y), then g(y) =

∑∞
0 pny

n where npn

is the coefficient of y−1 in the expansion of g′(y)/xn.

Here g(y) = (yβ − 1)/β, and f(y) = yα+1/(y− 1). It follows that the coefficient of y−1

in the expansion of yβ−1yαn(y − 1)−n is

(−1)n

(
n− 1− αn− β

n− 1

)
=

(
nα+ β − 1

n− 1

)
by the binomial theorem. Thus

yβ − 1

β
=

∞∑
n=1

(
nα + β − 1

n− 1

)
xn

n
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Amer. Math. Monthly, 64(1957) 428–431.

[[There’s a Murray Klamkin Classroom Note:

On a Graphical Solution of Linear Differential Equations]]

Amer. Math. Monthly, 64(1957) 504.

E 1275. Proposed by M. S. Klamkin, AVCO Research Division, Lawrence, Mass.

Solve for x: ∫ x

0

s8/3(1− s)4/3 ds =

∫ 1

0

t8/3/(1 + t)−6 dt

Amer. Math. Monthly, 65(1958) 124.

Solution by Calvin Foreman, Baker University. Set t = s/(1− s) to obtain∫ x

0

s8/3(1− s)4/3 ds =

∫ 1/2

0

s8/3(1− s)4/3 ds

Since the integral on the left is a monotonically increasing function of x, the only
solution is x = 1/2.

Also solved by [19 others and] the proposer.

Amer. Math. Monthly, 64(1957) 437.

4744. Proposed by M. S. Klamkin, AVCO Research Division, Lawrence, Mass.

Three congruent ellipses are mutually tangent. Determine the maximum of the area
bounded by the three ellipses.

Amer. Math. Monthly, 73(1966) 89–90.

Solution by Michael Goldberg, Washington, D.C. The extremal positions can be found
as equilibrium states of the following hydromechanical analogy. The minimum enclosed
area is obtained by uniform external pressure on the ellipses while the maximum en-
closed area is produced by a pressure within the enclosed area. In either case, the
resultant force due to the pressure on an ellipse is directed along the perpendicular
bisector of the chord joining the points of contact. To obtain equilibrium, the ellipse
will turn until these forces are concurrent. But this can occur only when the chord is
parallel to an axis of the ellipse, and this applies to each of the ellipses. Hence, the
maximum enclosed area is attained when the arcs of least curvature bound the area:
that is, when the chords are parallel to the major axes and form an equilateral triangle.
The least area is attained when the chords are parallel to the minor axes and form an
equilateral triangle.

The enclosed areas can be derived as follows. Begin with a circle of radius a and
two tangents while make an included angle of 2A. The the area between the circle
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and the tangents is a2(cotA + A − π/2). If the figure is rotated about the bisector
of the angle 2A so that the circle projects into an ellipse of minor semi-axis b, then
the included area becomes ab(cotA + A − π/2), but the angle between the tangents
becomes 2B, where a tanB = b tanA. Thus the minimum area for the given problem
is obtained when B = π/3, tanB =

√
3, tanA = 31/2a/b, and the total enclosed area

is 3ab(b/a
√

3− tan−1(b/a
√

3)).

If the figure is rotated about the normal to the bisector of angle 2A so that the circle
projects into an ellipse of minor semi-axis b, then the new included area again becomes
ab(cotA + A − π/2) but the new angle between the tangents becomes 2B, where
b tanB = a tanA. For the maximum area of the given problem, B = π/3, tanB =

√
3,

tanA = b
√

3/a, and the total enclosed area is 3ab(a/b
√

3− tan−1(a/b
√

3)).

The foregoing procedures can be used when the three ellipses are not congruent, even
when other curves are used. The following theorem may be stated: A necessary condi-
tion for an extremum for the area enclosed by three (or more) mutually tangent curves
is the equilibrium condition that the normals at the points of contact of each curve
make equal angles with the respective chords joining these points of contact.

The adjoining figure is an example of the maximum area enclosed by three unequal
ellipses.

[[The figure taxes my present capabilities, but is well worth including. Will see what
I can do. Note how long it took for a solution to Murray’s problem to appear. Later:
in endeavoring to simplify the situation, one of the ellipses has turned into a circle!
Perhaps someone can do better?]]

49



Amer. Math. Monthly, 64(1957) 510.

4752. Proposed by M. S. Klamkin, AVCO Research Division, Lawrence, Mass.

Determine a set of n distinct, nonzero terms such that their geometric mean is the
geometric mean of their arithmetic and harmonic means.

Amer. Math. Monthly, 65(1958) 455–456.

Solution by Emil Grosswald, University of Pennsylvania. Let Sj be the j th fundamen-
tal symetric function of the n terms a1, . . . , an. Then their harmonic, geometric and
arithmetic means are

H = nSn/Sn−1 G = S1/n
n A = S1/n

respectively, and the condition G2 = HA of the problem becomes

n−1 = S1S
1−2/n
n (1)

It is therefore sufficient to take as a1, . . . , an the roots of

xn − S1x
n−1 + · · ·+ (−1)n−1Sn−1x+ (−1)nSn = 0 (2)

with arbitrary S2, S3, . . ., Sn−2 and any S1, Sn−1, Sn which satisfy (1). In order to
have all terms different from zero it is sufficient to take Sn 6= 0; and ai 6= aj for i 6= j
is assured if the coefficients of (2) are chosen so that its discriminant does not vanish.

Editorial Note. Several explicit sets were proposed. The simplest are: (i) n successive terms of any
geometric progression, (ii) [n/2] distinct pairs of reciprocals, with the addition of the element 1 in
case n is odd.

Amer. Math. Monthly, 64(1957) 661–663.

[[There’s a Murray Klamkin Mathematical Note:

An Application of the Gauss Multiplication Theorem]]

Amer. Math. Monthly, 64(1957) 710–715.

[[There’s a Murray Klamkin Article:

A Moving Boundary Filtration Problem or “The Cigarette Problem”]]
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Amer. Math. Monthly, 64(1957) 742.

E 1295. Proposed by M. S. Klamkin and D. J. Newman, AVCO Research and Devel-
opment, Lawrence, Mass.

Show that all the roots of tan z = z/(1 +m2z2), where m is real, are real.

Amer. Math. Monthly, 65(1958) 450.

I. Solution by J. W. Haake. Armour Research Foundation, Tucson, Arizona. We note
that if z is a root of the given equation, then so are z̄ and −z. Hence, in discussing
imaginary roots z = a+ ib, b 6= 0, we may, for convenience, assume a ≥ 0, b > 0. Now
in the given equation, set z = a + ib ()b 6= 0, tan z = (sin z)/(cos z), sinib = i sinh b,
cos ib = cosh b, and then multiply each side of the reulting equation by the conjugate
of the denominator of that side. We obtain

(sin 2a)/2 + (i sinh 2b)/2

cos2 a cosh2 b+ sin2 a sinh2 b
=
a[1 +m2(a2 + b2)] + ib[1−m2(a2 + b2)]

[1 +m2(a2 + b2)]2 + 4m4a2b2

Since real and imaginary parts must be equal, we obtain, by taking the ratio of real
part to imaginary part on each side,

sin 2a

sinh 2b
=
a

b

[
1 +m2(a2 + b2)

1−m2(a2 + b2)

]
For real m, this implies the impossible inequality

(sin r)/(sinh s) ≥ r/s r ≥ 0, s > 0

It follows that we cannot have b 6= 0, and z must be real.

Also solved by [6 others and] the proposers.
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Amer. Math. Monthly, 64(1957) 742.

The Steensholt Inequality for a Tetrahedron

E 1264 [1957, 272]. Proposed by Victor Thébault, Tennie, Sarthe, France

If an interior point P of a tetrahedron ABCD is projected orthogonally into A′, B′,
C ′, D′ on the planes of the faces BCD, CDA, DAB, ABC and if the areas of the
faces are denoted by A, B, C, D, show that

A(PA) +B(PB) + C(PC) +D(PD) ≥ 3[A(PA′) +B(PB′) + C(PC ′) +D(PD′)]

I. Solution by M. S. Klamkin, AVCO Research and Development, Lawrence, Mass.
Represent the volume of the volume of the tetrahedron by V . Then V = (1/3)

∑
A(PA′).

Also, V = (1/3)hAA and hA ≤ PA+ PA′. Hence (1/3)
∑
A(PA′) = (1/12)

∑
hAA ≤

(1/12)
∑

(PA+ PA′)A or
∑
A(PA) ≥ 3

∑
A(PA′).

Editorial Note. This problem extends to the tetrahedron a property of the triangle given by Gunnar
Steensholt, this Monthly [1956, 571]. If the tetrahedron is isosceles (thatis, equifacial), the inequality
reduces to

PA + PB + PC + PD ≥ 3(PA′ + PB′ + PC ′ + PD′)

which establishes the Erdős-Mordell inequality for the tetrahedron (2
√

2 in place of 3) for this special
type of tetrahedron.
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Amer. Math. Monthly, 65(1958) 47.

4772. Proposed by M. S. Klamkin, AVCO Research and Development, Lawrence, Mass.

It is easy to show that there exist consecutive prime pairs such that their difference is
arbitrarily large. Do there exist prime triplets P1, P2, P3 such that min(P2−P1, P3−P2)
is arbitrarily large?

Amer. Math. Monthly, 65(1958) 781.

Solution by P. T. Bateman, University of Illinois. The question of the problem was
answered affirmatively by Sierpiński [Colloq. Math., 1(1948) 193–194]. The following
stronger results have since been obtained. Erdős [Pub. Math. Debrecen, 1(1949) 33–37]
proved that for any positive number C there exist consecutive prime triples such that
min(P2−P1, P3−P2) > C logP3. Walfisz [Doklady Akad. Nauk SSSR (N.S.) 90(1953)
711–713] proved that for almost all primes p the distance of the closet prime on either
side is greater thaan (log p)/(log log log p)2. Prachar [Monats. Math., 58(1954) 114–
116] showed that Walfisz’s result is still true if (log log log p)2 is replaced by any function
of p which tends to infinity with p.

The following proof is similar to Sierpiński’s but differs somewhat in detail. Let q
be any prime greater than 2. Then (q − 1)! − 1 and q! are relatively prime. In fact,
the prime factors of q! are the primes not exceeding q. Clearly (q − 1)! − 1 is not
divisible by any of the primes less than q, while (q−1)!−1 ≡ −2 (mod q) by Wilson’s
theorem. Since (q− 1)!− 1 and q! are relatively prime, Dirichlet’s theorem guarantees
the existence of a prime such that

p ≡ (q − 1)!− 1 (mod q!)

Now the q integers following p and the q − 2 integers preceding p are composite since

p± k + 1 ≡ p+ 1 ≡ (q − 1)! ≡ 0 (mod k)

if 2 ≤ k ≤ q − 1, and since p + 2 ≡ (q − 1)! + 1 ≡ 0 (mod q). But q may be taken as
large as desired and so the assertion of Sierpiński is established.

Amer. Math. Monthly, 65(1958) 122.

E 1302. Proposed by M. S. Klamkin, AVCO Research and Development, Lawrence,
Mass.

A square is divided into two parts by an arbitray diameter through its centre. Deter-
mine the locus of the centroid of one of the equal areas.

Amer. Math. Monthly, 65(1958) 629.

Solution by B. H. Bissinger, Lebanon Valley College. Consider the square with vertices
at (±1,±1). Taking moments about the coordinate axes we find the centroid of the
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region below the diameter of slope m, |m| ≤ 1. has coordinates x = m/3,
y = −1/2 +m2/6. Considerations of symmetry prove the closed path of the centroid
for one complete revolution of the diameter consists of four parabolic sections whose
equations are

4y2 = (3x2 − 1)2 x2 ≤ 1/9
4x2 = (3y2 − 1)2 1/9 ≤ x2 ≤ 1/4

It is interesting to note that the direction of the path of the centroid is parallel to the
parametric diameter and that therefore that the derivative exists at the four points
(±1/3,±1/3) where the parabolas are pieced together.

[M. J. ]Pascual considered the analogous problem in three space, where the square is replaced by a
cube and the diametral line by a diametral plane. [C. S. ]Ogilvy proposed the allied problem: What
is the locus of the centroid if the arbitrary diameter is fixed and the square is rotated?
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Amer. Math. Monthly, 65(1958) 124.

Divergent Integrals

4728 [1957, 201]. Proposed by R. P. Boas, Jr., Northwestern University

A. M. Rudov has propounded a proof that if f(x) is continuous and the first of the
following integrals converges, then the second diverges∫ ∞

1

f(x) dx

∫ ∞

1

x−2{f(x)}−1 dx.

(a) Construct a counter-example. (b) More generally, show that if g(x) and φ(x) are
positive and

∫∞
1
φ(x) dx diverges, then at least one of∫ ∞

1

φ(x)g(x) dx and

∫ ∞

1

{φ(x)/g(x)} dx

diverges.

I. Solution by M. S. Klamkin, AVCO Research and Development, Lawrence, Mass. (a)
With f(x) = (−1)n/x, n = [

√
x], both integrals are easily seen to be convergent.

(b) By the Schwartz inequality,∫ ∞

1

φ(x)g(x) dx ·
∫ ∞

1

φ(x)/g(x) dx ≥
[∫ ∞

1

φ(x) dx

]2

When
∫∞

1
φ(x) dx diverges, then at least one of the two integrals on the left must

diverge.
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Amer. Math. Monthly, 65(1958) 212.

E 1295. Proposed by M. S. Klamkin and D. J. Newman, AVCO Research and Devel-
opment, Lawrence, Mass.

An equiproduct point of a curve is defined to be a point such that the product of the
two segments of any chord through the point is constant. (1) Show that if every point
inside a curve is equiproduct, the curve must be a circle. (2) What is the maximum
number of equiproduct points a noncircular oval can have?

Amer. Math. Monthly, 66(1959) 69

Equiproduct Points

Editorial Note. The problem is not new. For solution and discussion see problem E 705 [1946, 395]
and [1947, 164]. In the latter reference will be found a discussion of a paper by K. Yanagihara in
Tôhôku Math. J.(1917) touching on the same problem, together with analogous theorems for three
dimensional space. The principal result is the theorem: A convex closed curve having two distinct
interior equiproduct points is a circle.

Amer. Math. Monthly, 65(1958) 285.

An Insolvable Diophantine Equation

E 1281 [1957, 592]. Proposed by D. J. Newman, AVCO Research and Development,
Lawrence, Mass.

Prove that no perfect square is 7 more than a perfect cube.

Solution by M. S. Klamkin, AVCO Research and Development, Lawrence, Mass. This
is a problem due to V. A. Lebesgue in 1869. A reference to this and the following proof
are given in H. Davenport, The Higher Arithmetic, (1952) p.160.

If y2 = x3 + 7, then x must be odd, since a number of the form 8k + 7 cannot be a
square. Now

y2 + 1 = (x+ 2)(x2 − 2x+ 4) = (x+ 2)[(x− 1)2]

and the final factor is of the form 4n + 3, and hence must have a prime factor of this
same form. But it kis well known that y2 + 1 cannot have a prime factor of this form.

L. E. Dickson, History of the Theory of Numbers, vol.2, p.534, gives the Lebesgue reference.
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Amer. Math. Monthly, 65(1958) 289.

4787. Proposed by M. S. Klamkin, AVCO Research Division, Lawrence, Mass.

Express as a single definite integral

∞∑
m=0

∞∑
n=0

∞∑
r=0

(m+ n+ r)!mnnr

m!n!r!(r + 1)m+n+r+1

Amer. Math. Monthly, 66(1959) 66.

An Incorrect Proposal

Editorial Note. As several readers were quick to point out, the stated series is divergent. Attempts
to rework the original idea into a well-posed problem have not been satisfactory. The editor and the
proposer apologize for a careless oversight.

Amer. Math. Monthly, 65(1958) 370.

4792. Proposed by M. S. Klamkin and D. J. Newman, AVCO Research Division,
Lawrence, Mass.

Show that the following operators are reducible:

(1) xnD2n (2) x2nDn

and thus solve the differential equations

(1a) [xnD2n − λ]y = 0 (2a) [x2nDn − λ]y = 0.

[[Was a solution published? Have I missed it?]]

Amer. Math. Monthly, 65(1958) 779.

4816. Proposed by M. S. Klamkin, AVCO Research and Development, Wilmington,
Mass.

Solve the integral equation∫ ∞

0

t3φ(x− t) dt = a

{∫ ∞

0

t2φ(x− t) dt

}b

where a and b are independent of x.
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Amer. Math. Monthly, 66(1959) 731–732.

Solution by Robert Weinstock, University of Notre Dame. Introducing the change of
variable u = t− x and defining F by

F (x) =

∫ ∞

0

t2φ(x− t) dt =

∫ ∞

−x

(u+ x)2φ(−u) du (1)

we may differentiate the integral equation and obtain

3

∫ ∞

−x

(u+ x)2φ(−u) du = ab

{∫ ∞

−x

(u+ x)2φ(−u) du
}b−1

· 2
∫ ∞

−x

(u+ x)φ(−u) du

that is
3 = ab[F (x)]b−2F ′(x) = ab(d/dx){(b− 1)−1[F (x)]b−1}

provided b 6= 1; the case b = 1 is handled separately below. We introduce m = b/(1−b)
and integrate to obtain

F (x) = [c− (3/am)x]−m−1 (2)

where c is an arbitrary constant.

Differentiating (1) three times and using (2) we obtain

φ(x) =
1

2
F ′′′(x) =

1

2
(3/am)3(m+ 1)(m+ 2)(m+ 3)[c− (3/am)x]−m−4

For the existence of the integrals involved we must have m > 0 (whence 0 < b < 1),
a > 0 and x < amc/3. In case b = 1, the differential equation for F reads
F ′(x) = (3/a)F (x), whence F (x) = 2(a/3)3Be3x/a where B is an arbitrary constant.
We then have φ(x) = 1

2
F ′′′(x) = Be3x/a which satisfies the integral equation for b = 1,

provided a > 0, for all x.

If a = 0, there is clearly only the trivial solution φ(x) = 0.

Also solved by [3 others and] the proposer.
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Amer. Math. Monthly, 66(1959) 66.

4826. Proposed by M. S. Klamkin and L. A. Shepp, AVCO Research and Development,
Wilmington, Mass.

If φ(x) = x/12− x3/32 + x5/52− x7/72 + · · · , express φ(1) in terms of φ(2−
√

3), thus
obtaining a more rapidly converging expansion.

Amer. Math. Monthly, 66(1959) 819–820.

A Result of Ramanujan

Note by Emil Grosswald, University of Pennsylvania. In Ramanujan’s paper, On the
integral

∫ x

0
t−1 tan−1 t dt, he obtains the result

2φ(1) = 3φ(2−
√

3) +
1

4
π log(2 +

√
3)

(See J. Indian Math. Soc., VII(1915) 93–96; also Collected Papers, pp.40–43.) Ra-
manujan’s treatment, with some details filled in, follows.

One observes that

φ(x) =

∫ x

0

arctan t

t
dt (1)

Next one shows that, for 0 < x < π/2,

sin 2x

12
+

sin 6x

32
+

sin 10x

52
+ · · · = φ(tanx)− x log(tanx) (2)

holds. Since both sides of (2) approach zero as x→ 0, it is sufficient to show that their
derivatives are equal, i.e., using (1), that

2 cos 2x

1
+

2cos6x

3
+

2 cos 10x

5
+ · · · = − log(tanx) 0 < x < π/2 (3)

Since (3) is a known cosine Fourier expansion, (2) is proved. With x = π/12,
tan x = 2−

√
3, (2) becomes:

1

2

{
1

12
+

2

32
+

1

52
− 1

72
− 2

92
− 1

112
+

1

132
+

2

152
+ · · ·

}
= φ(2−

√
3)− π

12
log(2−

√
3)

The left member is 2φ(1)/3 as is shown by rewriting it as

1

2

{
1

12
− 1

32
+

1

52
− 1

72
+ · · ·

}
+

3

2

{
1

32
− 1

92
+

1

152
+ · · ·

}
The desired result now follows immediately.
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Amer. Math. Monthly, 66(1959) 62.

E 1348. Proposed by M. S. Klamkin and Raphael Miller, AVCO Research and Devel-
opment, Wilmington, Mass.

Find the locus of the centroids of all equilateral triangles inscribed in an ellipse.

Solution by Sister Mary Stephanie, Georgian Court College, Lakewood, New Jersey.
The problem is not new; it appears on p.170 of C. Smith, Conic Sections, Macmillan
(1937). The solution given there is essentially as follows. Let the ellipse be
x2/a2 + y2/b2 = 1. If the eccentric angles of the vertices of an inscribed triangle are A,
B, C, the centroid of the triangle is given by

x = a(cosA+ cosB + cosC)/3

y = b(sinA+ sinB + sinC)/3

The circumcentre of the triangle is given by

x = (a2 − b2){cosA+ cosB + cosC + cos(A+B + C)}/4a
y = (b2 − a2){sinA+ sinB + sinC − sin(A+B + C)}/4b

Since in an equilateral triangle the centroid coincides with the circumcentre, in this
case we have

4ax/(a2 − b2)− 3x/a = cos(A+B + C)

4by/(b2 − a2)− 3y/b = − sin(A+B + C)

Squaring and adding we obtain the ellipse

(a2 + 3b2)2x2/a2 + b2 + 3a2(2y2/b2 = (a2 − b2)2)

as the required locus.
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Amer. Math. Monthly, 66(1959) 146–147.

4828. Proposed by M. S. Klamkin, AVCO Research and Development, Wilmington,
Mass.

Do the sequences {an}, {bn}, {cn} converge, where

an+1 =

∫ 1

0

min(x, bn, cn) dx

bn+1 =

∫ 1

0

mid (x, cn, an) dx

cn+1 =

∫ 1

0

max(x, an, bn) dx

and mid (a, b, c) = b if a ≥ b ≥ c.

Amer. Math. Monthly, 66(1959) 922–923.

Solution by C. H. Cunkle, Cornell Aeronautical Laboratory, Buffalo, N.Y. The pro-
posed sequences are convergent, with the limits 3/8, 1/2, 5/8 respectively.

Evidently min(x, bn, cn) ≤ x ≤ max(x, an, bn) so that if mid (x, an, cn) = x, we have

min(x, bn, cn) ≤ mid (x, an, cn) ≤ max(x, an, bn) (1)

Now, if mid (x, an, cn) = an, we have either x ≤ an or cn ≤ an, so that
an ≤ max(x, an, bn) implies (1) in this case also. A similar argument holds for
mid (x, an, cn) = cn, so that (1) is true in all cases. By integration there results
an+1 ≤ bn+1 ≤ cn+1, n = 1, 2, . . ..

Now we have

an+1 =

∫ 1

0

min(x, bn, cn) dx ≤
∫ 1

0

d dx =
1

2

and similarly cn+1 ≥ 1
2
. Using this

bn+2 =

∫ 1

0

mid (x, an+1, cn+1) dx =

∫ 1/2

0

max(x, an+1) dx+

∫ 1

1/2

min(x, cn+1) dx

≤
∫ 1/2

0

1

2
dx+

∫ 1

1/2

x dx = 5/8

Dually, bn+2 ≥ 3/8. Since 3/8 ≤ bn+2 ≤ cn+2, an+3 =
∫ 1

0
min(x, bn+2, cn+2) dx > 0, and

similarly cn+3 < 1.
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It is now assumed that n is so large that 0 < an ≤ bn ≤ cn < 1.

an+1 =

∫ bn

0

x dx+

∫ 1

bn

bn dx =
2bn − b2n

2

bn+1 =

∫ an

0

an dx+

∫ cn

an

x dx+

∫ 1

cn

cn dx =
a2

n − c2n + 2cn
2

cn+1 =

∫ bn

0

bn dx+

∫ 1

bn

x dx =
b2n + 1

2

Thus

bn+2 =
1

2

[(
2bn − b2n

2

)2

−
(
b2n + 1

2

)2

+ 2

(
b2n + 1

2

)]

=
1

2
+

(2bn − 1)(−2b2n + 2bn + 1)

8
= bn −

(2bn − 1)3 + 5(2bn − 1)

16

Since 0 < −2b2n + 2bn + 1 whenever 0 < bn < 1, either

1

2
≤ bn+2 ≤ bn or

1

2
> bn+2 > bn

It follows that lim b2n = lim b2n+1 = lim bn = 1
2
. Then

lim an = lim an+1 = lim
2bn − b2n

2
=

3

8

lim cn = lim cn+1 = lim
b2n + 1

2
=

5

8
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Amer. Math. Monthly, 66(1959) 312.

E 1361. Proposed by M. S. Klamkin, AVCO Research and Development

If A, B, C are angles of a triangle, show that

cscA/2 + cscB/2 + cscC/2 ≥ 6

Amer. Math. Monthly, 66(1959) 916.

I. Solution by Leon Bankoff, Los Angeles, Calif. Consider the angle bisectors AD, BE,
CF concurrent at the incentre I of the triangle ABC. It is known that the sum of
the ratios in which a point within a triangle divides the cevians of this point is never
less than 6 (E 1043 [1953, 421]). Since the inradius r ≤ (ID, IE, IF ), it follows that
AI/r +BI/r + CI/r ≥ 6.

[[This is just the first of no fewer than SEVEN published solutions.]]

Amer. Math. Monthly, 66(1959) 423.

E 1368. Proposed by M. S. Klamkin, AVCO Research and Development

Show that if all roots of ax4 − bx3 + cx2 − x+ 1 = 0 are positive, then c ≥ 80a+ b.

Amer. Math. Monthly, 67(1960) 84–85.

Solution by A. J. Goldman, National Bureau of Standards, Washington, D.C. The
proof will show that 80 is the best possible constant.

(i) If a = b = c = 0, the result is true.

(ii) If a = b = 0, c 6= 0, then the roots r1, r2 of cx2 − x + 1 = 0 are positive, so
1/c = r1r2 > 0,hence c > 0 and the result is true.

(iii) If a = 0, b 6= 0, then the roots of bx3 − cx2 + x − 1 = 0 are positive. Since
r1r2r3 = r2r3 + r3r1 + r1r2 = 1/b, we have 1/r1 + 1/r2 + 1/r3 = 1, which (since all
ri > 0) shows that all ri ≥ 1; hence c/b =

∑
ri ≥ 3, so c ≥ 3b ≥ b and the relation

holds.

(iv) Suppose a 6= 0. Then

(c− b)/a = 1/2
∑
i6=j

rirj −
∑

k

rk =

{(∑
ri

)2

−
∑

r2
i

}/
2−

∑
fi

Call this f(r1, r2, r3). We can use Lagrangian multipliers to determine the minimum
of f(r1, r2, r3) in the open subset r1 > 0, r2 > 0, r3 > 0, r4 > 0 of the constraint set

4∏
i=1

ri =
4∑

j=1

∏
i6=j

ri (= 1/a)

i.e.,
∑

1/ri = 1, since on this set the function is bounded below. The minimum occurs
when all ri = 4, fmin = 80; that is, (c− b)/a ≥ 80 as desired.
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Amer. Math. Monthly, 66(1959) 427.

4848. Proposed by M. S. Klamkin, AVCO Research, Wilmington, Mass.

Without performing any integration determine the ratio∫ 1

0

dt√
1− t4

:

∫ 1

0

dt√
1 + t4

Amer. Math. Monthly, 67(1960) 300.

Solution by A. B. Farnell, Convair Research Laboratory, San Diego, California. Since
the first integral involved is convergent, and∫ 1

0

dt√
1− t4

=

∫ 1
4
π

0

d(
√

sin 2θ)

cos 2θ
=

∫ 1
4
π

0

dθ√
sin 2θ∫ 1

0

dt√
1 + t4

=

∫ 1
4
π

0

d(
√

tan θ)

sec θ
=

1√
2

∫ 1
4
π

0

dθ√
sin 2θ

the desired ratio is
√

2.

Editorial Note. Several solvers used contour integration and transformations of the complex plane.
In this way [G. E. ]Raynor and the proposer obtained the more general result∫ 1

0

dt/(1− t2n)1/n :
∫ 1

0

dt/(1 + t2n)1/n = sec(π/2n), n = 2, 3, . . . .

Amer. Math. Monthly, 66(1959) 515.

4855. Proposed by M. S. Klamkin, AVCO Research and Development

The angle of intersection between two spheres is constant for all points on any curve
of intersection. Are there other surfaces with this property?

[[Was a solution to this ever published??]]

64



Amer. Math. Monthly, 66(1959) 816.

4828. Proposed by M. S. Klamkin, AVCO Research, Wilmington, Mass.

A smooth centro-symmetric curve has the property that the centroid of any half-area
which is formed by chords through the centre is equidistant from the centre. Show
that the curve is a circle.

Amer. Math. Monthly, 67(1960) 809-810.

Solution by Harley Flanders, University of California, Berkeley. Represent the curve
in polar coordinates by r = r(θ), a periodic function with r(α + π) = r(α). Assume
r is differentiable. After multiplying r by a suitable constant, the condition on the
centroid is [∫ α+π

α

r3 cos θ dθ

]2

+

[∫ α+π

α

r3 sin θ dθ

]2

=

[∫ α+π

α

r2 dθ

]2

Differentiation with respect to α yields

cosα

∫ α+π

α

r3 cos θ dθ + sinα

∫ α+π

α

r3 sin θ dθ = 0

and a second differentiation,

−2r3 − sinα

∫ α+π

α

r3 cos θ dθ + cosα

∫ α+π

α

r3 sin θ dθ = 0

Another differentiation gives r′ = 0, whence r is a constant and the curve is a circle.

Editorial Note. The proposer remarks that if the locus of the centroiod were an ellipse instead of
a circle, the same argument proves that the original curve must be a homothetic ellipse. He also
conjectures that an analogous hypothesis regarding a surface in three-space will lead to a sphere.
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Amer. Math. Monthly, 67(1960) 87.

4885. Proposed by M. S. Klamkin and D. J. Newman, AVCO Research, Lawrence,
Mass.

Determine the unique solution of the integral equation

F (x1, x2, . . . , xn) =! +

∫ x1

0

∫ x2

0

· · ·
∫ xn

0

F (y1, y2, . . . , yn) dy1dy2 · · · dyn

(The uniqueness when n = 2 was one of the problems in the 1958 Putnbam competi-
tion.)

Amer. Math. Monthly, 68(1961) 73.

Solution by P. G. Rooney, University of Toronto. Let u0 = 1 and

ur+1(x1, . . . , xn) = 1 +

∫ x1

0

∫ x2

0

· · ·
∫ xn

0

ur(y1, . . . , yn) dy1 · · · dyn

The,by induction,

ur(x1 . . . , xn) =
r∑

m=0

(x1x2 · · ·xn)m/(m!)n

Clearly u(x1, . . . , xn) = limur(x1, . . . , xn) exists uniformly in any bounded region of
n-space, and satisfies the integral equation. Thus a solution is

u(x1, . . . , xn) =
∞∑

m=0

(x1x2 · · ·xn)m/(m!)n

Now, if u and v are two bounded measurable solutions and w = u− v, then

w(x1, . . . , xn) =

∫ x1

0

∫ x2

0

· · ·
∫ xn

0

w(y1, . . . , yn) dy1 · · · dyn

Hence, if M is a bound for |w|, then by induction

|w(x1, . . . , xn)| ≤M |x1x2 · · ·xn|m/(m!)n → 0

as m→∞, and u is unique.
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Amer. Math. Monthly, 67(1960) 187.

4889. Proposed by M. S. Klamkin, AVCO Research, Wilmington, Mass.

If k points are distributed at random at the vertices of a regular n-gon, determine the
probability that the centre of gravity of the k masses lies in a circle of radius r about
the centre of the n-gon. What does the probability function reduce to when n→ 0?

[[Was a solution ever published??]]

Amer. Math. Monthly, 67(1960) 693.

E 1430. Proposed by M. S. Klamkin, AVCO Research and Advanced Development

What is the highest order of multiplicity a root can have for the equation

x(x− 1)(x− 2) · · · (x− n+ 1) = λ ?

Amer. Math. Monthly, 68(1961) 298.

Solution by D. C. B. Marsh, Colorado School of Mines. Since the polynomial p(x) =
x(x− 1)(x− 2) · · · (x− n+ 1) has all of its zeros real and distinct, so does p′(x). For
p(x) − λ to have a zero of multiplicity m, p′(x) must have this zero with multiplicity
m− 1. Therefore any root of p(x) = λ can have multiplicity no greater than 2. That
2 is possible is shown by the case λ = p(z) where z is a zero of p′(x).

Amer. Math. Monthly, 67(1960) 702–703.

The Inverse Tangent Integral

4865 [1959, 728]. Proposed by L. Lewin, Enfield, England

Defining the inverse tangent integral of the second order by

Ti2(x) =

∫ x

0

tan−1(x)

x
dx =

x

12
− x3

32
+
x5

52
− · · ·

prove that 6Ti2(1)− 4Ti2(1/2)− 2Ti2(1/3)− Ti2(3/4) = π log 2.

Solution by M. S. Klamkin, AVCO Research and Development, Wilmington, Mass.
The proposer has show that

Ti2

(
y2

2

)
+

1

2
Ti2

{
y(2 + y)

2(1 + y)

}
+

1

2
Ti2

{
2(y − 1)

y(2− y)

}
+ Ti2

{
y

2 + y

}

− Ti2

(
y

2− y

)
+ Ti2

(
1

1 + y

)
− Ti2(y − 1) = 2Ti2(1) +

π

4
log

{
y(2− y)

2(1 + y)

}
(See L. Lewin, Dilogarithms and Associated Functions, London, 1958, p.37.) The
desired result follows upon letting y = 1.
Editorial Note. The problem and the proposer’s solution were received before the publcation of the
book. A variety of similar formulas may be obtained, e.g.

Ti2(7/24) + 2Ti2(1/7) + 6Ti2(1/3)− 8Ti2(1/2) + Ti2(3/4) + (π/2) log(3/2) = 0.
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Amer. Math. Monthly, 67(1960) 802.

E 1431. Proposed by M. S. Klamkin and D. J. Newman, AVCO Research and Advanced
Development

If an+1 = (1 + anan−1)/an−2 and a1 = a2 = a3 = 1, show that an is an integer.

Amer. Math. Monthly, 68(1961) 379–380.

I. Solution by J. L. Pietenpol, Columbia University. Define a sequence {bn} of integers
by

b1 = b2 = b+ 3 = 1 b4 = 2 bn = 4bn−2 − bn−4 (n > 4)

Then

bn+1bn−2 − bnbn−2 = (4bn−1 − bn−2)bn−2 − (4bn−2 − bn−4)bn−1

= bn−1bn−4 − bn−2bn−3

so that, by induction, bn+1bn−2 − bnbn−2 = 1, or bn+1 = (1 + bnbn−1)/bn−2, and hence
{an} = {bn},

II. Solution by H. E. Bray, Rice University. The solution of the problem is implicit in
the following

Theorem. If an+1 = (k + anan−1)/an−2 and a1 = a2 = 1, a3 = p, where k, p are
positive integers such that (k, p) = 1, a necesary and sufficient condition that an be an
integer is that k = rp− 1, where r is an integer.

[[Proof supplied]]

[H. O. ]Pollak showed that the recurrence relation gives integers whenever a1, a2, (a3 + a1)/a2,
(a4 + a2)/a3 are integers. [R. A. ]Spinelli showed that, apart from translations, there are only two
different positive integer sequences satisfying the recurrence relation, namely a1 = a2 = a3 = 1 and
a1 = a3 = 1, a2 = 2.
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NUMBER THEORY

Perfect numbers

Amer. Math. Monthly, 67(1960) 1028.

E 1445. Proposed by M. S. Klamkin, AVCO Research and Advanced Development

A number n is defined as almost perfect if
∑

d|n d = 2n ± 1. Are there any other
almost perfect numbers besides numbers of the form 2m ?

[[This was unsolved, and reproposed, with an asterisk, fifteen year later, at Amer.
Math. Monthly, 82(1975) 73, together with the reference

R. P.Jerrard & Nicholas Temperley, Almost perfect numbers, Math. Mag., 46(1973)
84–87.

In 2006, the only thing known beyond what is stated in the problem, is that numbers
having sum 2n+ 1 must be square.]]

Amer. Math. Monthly, 67(1960) 1034.

4940. Proposed by M. S. Klamkin, AVCO Research and D. J. Newman, Brown Uni-
versity

Problem no.151 in the “Scottish Book” of problems due to Wavre poses the question
of the existence of a harmonic function defined in a region containing a cube in its
interior such that it vanishes on all its edges. Show that such a function 6= 0 exists for
any number of dimensions.

Amer. Math. Monthly, 69(1962) 173.

Solution by Fred Suvorov, Princeton University. Consider

h(x1, x2, . . . , xn) = (sinh(n− 1)1/2x1) · (sinx2) · · · (sinxn)

h is harmonic in n-space and vanishes on the n-cube of side π. (And, of course, many
other places.)

Also solved by the proposer[s].
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Amer. Math. Monthly, 68(1961) 67.

4946. Proposed by M. S. Klamkin, AVCO Research, Wilmington, Mass.

Let Sn = 1 + 1
2

+ 1
3

+ · · ·+ 1/n. Sum
∑∞

1 Sn/n!

Amer. Math. Monthly, 69(1962) 239–240.

II. Solution by J. W. Wrench, Jr., The David Taylor Model Basin, Washington, D.C.
Consider the more general sum y =

∑∞
n=1 Snx

n/n! The function y is found to satisfy
the differential equation xy′−xy = ex−1. The solution, satisfying the condition y → 0
when x→ 0, is

y = ex[γ + lnx− Ei(−x)]

where γ is Euler’s constant and Ei(−x) = −
∫∞

x
e−tt−1 dt, x > 0, is the exponential

integral for a negative real argument.

When x = 1, we find for the sum of the proposed series the expression e · [γ−Ei(−1)],
which is numerically equal to 2.16538221532693635942, to 20 decimal places.

III. Comment by J. H. van Lint, Technical University, Eindhoven, Netherlands. The
solution can be found in Erdélyi-Magnus-Oberhettinger-Tricomi: Higher Transcenden-
tal Functions, part 2, p.143, formula (5).

Amer. Math. Monthly, 68(1961) 807.

4983. Proposed by M. S. Klamkin, AVCO Research, and L. A. Shepp, University of
California

Determine the number of different products, Pn(r), if the factors are to be taken r+1 at
a time, in a1a2a3 · · · an by inserting parentheses and keeping the order of the elements ai

unchanged. The different products which arise will be due entirely to the nonassociative
character of the multiplication. The explicit products for n = 4, r = 1 are given by
((a1a2)(a3a4)), (a1(a2(a3a4))), (((a1a2)a3)a4), (a1((a2a3)a4)), ((a1(a2a3))a4). Whence,
P4(1) = 5. This problem generalizes the case for r = 1 (Bateman Project, Higher
Transcendental Functions, III, 1955, p.230).

Amer. Math. Monthly, 69(1962) 931.

Solution by John B. Kelly, Michigan State University. We follow the method of gener-
ating functions given by N. Jacobson (Lectures in Abstract Algebra, vol.I, pp.18–19)
for the case r = 1. Let

y =
∞∑

n=1

Pn(r)xn

One easily observes the recursion formula

Pn(r) =
∑

Pn1(r)Pn2(r) · · ·Pnr+1(r) (1)
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the summation being extended over all solutions of n1 + n2 + · · · + nr+1 = n in non-
negative integers. From (1) it follows that yr+1 − y + x = 0, whence using a method
given by J. S. Frame for inverting trinomials (this Monthly, April 1957) we find that

Pn(r) = 0 n 6≡ 1 (mod r)

Pn(r) =
1

n

(
(r + 1)k

k

)
where n = kr + 1

(See also Pólya und Szegö, Aufgaben und Lehrsätze aus der Analysis, Berlin, 1954,
Bd.I, Aufgabe 211.)

Editorial Note. The present result is included in Some problems of nonassociative combinations,
[1] I. M. H. Etherington, Edinburgh Math. Notes, 32(1940) 1–6, and [2] I. M. H. Etherington and
A. Erdélyi, ibid., 32(1940) 7–12. It is observed in [1] that Pn(r) is the number of ways in which a
convex polygon with n + 1 sides can be divided into (r + 2)-gons by nonintersecting diagonals.

For a related problem which includes the present result as a special case, see G. N. Raney, Functional
composition patterns and power series reversion, Trans. Amer. Math. Soc., 94(1960) 441–451.

Amer. Math. Monthly, 69(1962) 236.

5014. Proposed by M. S. Klamkin, AVCO Research, Wilmington, Mass.

It is well known that an equilateral triangle cannot be imbedded in a square lattice.
However, it can be done in a cubic lattice. Can this be extended, i.e. can any regular
polygon be imbedded in a cubic lattice of high enough dimension?

Amer. Math. Monthly, 70(1963) 447–448.

Solution by H. E. Chrestenson, Reed College. Suppose that a regular n-gon is imbedded
in a lattice. If s and d are the lengths of the sides and the shortest diagonal, respectively,
the law of cosines gives

d2 = 2s2 − 2s2 cos(π − 2π/n) = 2s2 + s2(2 cos 2π/n)

Sinces2 and d2 are integers, 2 cos 2π/n must be rational. A theorem of D. H. Lehmer
(see I. Niven, Irrational Numbers, Carus Monograph No.11, p.37) states that 2 cos 2π/n
is an algebraic ineger of degree φ(n)/2. Thus φ(n) must be 2, whence n is 3, 4 or 6.
To imbed a regular hexagon, let the origin and A and B be lattice point vertices of
an equilateral triangle (e.g. A: (4,1,1) and B: (1,4,1).) By expanding the triangle
by a factor of 3 and reflecting in the centroid we see that the origin, 2A − B, 3A.
2A+ 2B, 3B and 2B −A are vertices of a regular hexagon. Thus a regular n-gon can
be imbedded in a lattice if and only if n = 3, 4 or 6, and in these cases a cubic lattice
suffices.
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Amer. Math. Monthly, 69(1962) 438.

5028. Proposed by M. S. Klamkin, AVCO Research, Wilmington, Mass.

It is known that (a) any two quadrics which have a common enveloping cone intersect
in plane curves, and (b) any two enveloping cones of a quadric intersect in plane curves.
Does each of these properties characterize quadrics only?

[[Was a solution ever published? Have I missed it?]]

Amer. Math. Monthly, 69(1962) 809.

E 1538. Proposed by M. S. Klamkin and Jerry Yos, AVCO Corporation

A simple closed curve has the property that there exist inscribed squares of the same
dimension in every direction. Must the curve be a circle?

Amer. Math. Monthly, 70(1963) 669–670.

Solution by Marlow Sholander, Western Reserve University. No. Each unit square can
be inscribed in an “eyepiece” of the spectacle-shaped boundary of the union of circles
(x±

√
2)2 + y2 ≤ 1/2 with the rectangle −

√
2 ≤ x ≤

√
2, 1 ≤ 2y ≤

√
2. (A variation

of the spectacles gives the same answer for n-gons.)

II. Solution by Michael Goldberg, Washington, D.C. The curve need not be a circle.
Circumscribe a square about an oval of constant width. Holding the oval fixed, rotate
the square about the oval. Then all four of the vertices of the square describe a new
oval. This new oval is not a circle, yet it has the property that the inscribed square
within it may be turned through all orientations. See Michael Goldberg, “Rotors
tangent to n fixed circles”, J. Math. Phys., 37(1958) 70.

The proposers furnished a counter-example given by

x = a cos θ + ε cos 4θ

y = a sin θ + ε sin 4θ

where 16ε < a. Here there is only one square in each direction.

J. J. Schäffer, of the Instituto de Matematica y Estadistica. Monevideo, Uruguay, pointed out that
this problem is considered by Günter Lumer in “Poĺıgonos inscriptibles en curvos convexas”, Rev. Un.
Mat. Argentina, 17(1955) 97–102. Considerable information, such as the fact that the curve may be
convex and have area larger or smaller than the circle, is contained in the paper.
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Amer. Math. Monthly, 69(1962) 1011.

A Well-Known Series

E 1509. Proposed by A. G. Konheim, IBM, Yorktown Heights, New York

With −1 < t < 1, sum the series

1 +
2

3
t2 +

2

3

4

5
t4 +

2

3

4

5

6

7
t6 +

2

3

4

5

6

7

8

9
t8 + · · ·

II. Solution by M. S. Klamkin, University of Buffalo. The result follows from the
known sum

(sin−1 t)2 = t2 +
2

3

t4

2
+

2

3

4

5

t6

3
+

2

3

4

5

6

7

t8

4
+ · · ·

by differentiatind both sides and dividing by 2t.

The series was located in Smithsonian Mathematical Formulae and Tables of Elliptic Functions, 6.42
No.55, p.122; Chrystal, Algebra, vol.2, 1906, Ex. xx, No.7, p.335 (cites Pfaf as source); Bromwich, An
Introduction to the Theory of Infinite Series, Prob.2, p.197 (claims known to Euler); Knopp, Theory
and Application of Infinite Series, Ex.123, Chap.VIII, p.271; Schuh Leerboek der Differentiaal en
Integraalreckening, vol.2, pp.154–156; Hobson, Treatise on Plane Trigonometry, eqs.20,21,22, pp.279–
280; M. R. Spiegel, this Monthly, 60(1953) 243–247; Taylor, Advanced Calculus, p.632; Edwards,
Differential Calculus for Beginners (1899) p.78.

Amer. Math. Monthly, 70(1963) 438.

E 1588. Proposed by M. S. Klamkin, The State University of New York at Buffalo

An ellipse has the property that the sum of the moments of inertia of its area about
two orthogonal tangents is constant. Does this property characterize the ellipse?

Amer. Math. Monthly, 71(1964) 213.

Solution by the proposer. It follows from the parallel-axis transfer theorem that in order
for this property to hold for a given curve, its orthoptic curve (locus of intersection of
orthogonal tangents) must be a circle whose centre coincides with the centroid of the
area enclosed by the given curve. Another curve having this property (see R. C. Yates,
A Handbook of Curves and Their Properties, J. W. Edwards, Ann Arbor, 1947) is the
deltoid

x = a(2 cos t+ cos 2t)

y = a(2 sin t− sin 2t)

which is a 3-cusped hypocycloid whose orthoptic is the inscribed circle.
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Amer. Math. Monthly, 70(1963) 572–573.

5109. Proposed by M. S. Klamkin, State University of New York at Buffalo and
A. L. Tritter, Data Processing, Inc.

Given the infinite permutation

P =

(
1 2 3 4 5 6 7 8 9 10 . . .
1 2 4 3 5 7 6 8 10 12 . . .

)
where the second row is formed by taking in order from the natural numbers, 1 odd,
2 even, 3 odd, . . ., 2n even, 2n + 1 odd, . . . . What is the cycle structure of this
permutation?

Amer. Math. Monthly, 71(1964) 570.

Solution by George Bergman, Harvard University. Let In designate the set of n integers{
i | 1

2
n(n− 1) < i ≤ 1

2
n(n+ 1)

}
. Examination of the given permutation shows that it

acts on In by the law: i → 21 − un where un = 1
2
n2 if n is even, un = 1

2
(n2 + 1) if n

is odd. The “pivot” of this action is un; un is fixed, numbers of In less than un are
decreased, numbers of In greater than un are increased.

But we see that even the greatest integer in In is not increased as far as un+1, and
even the least integer in In+1 is not decreased as far as un; hence the interval Jn =
{i | un ≤ i < un+1} is sent into itself. This Jn contains 2[n/2] + 1 elements. Let us
represent them by the integers 0 through 2[n/2], writing j for un + j. Then the action
of our permutation is: j → 2j for j ≤ [n/2], j → 2j − 2[n/2] − 1 otherwise. In other
words, the elements of Jn are permuted exactly as the residue classes (mod 2[n/2]+1)
are permuted under multiplication by 2.

The nature of the permutation is as follows: for each divisor d of 2[n/2]+1, the elements
i = un + j of Jn such that (2[n/2] + 1, j) = d form a cycle of order f((2[n/2] + 1)/d),
where f(k) is the least m such that k | 2m−1. This number-theoretic function is
described in standardtexts. For example, let n = 15, Jn = {i | 113 ≤ i < 128},
represented by {j | 0 ≤ j < 15}. The permutation for these integers is(

1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 4 6 8 10 12 14 1 3 5 7 9 11 13

)
The cycles are given by:

d = 1 : (1 2 4 8), (7 14 13 11) ∼ (114 115 117 121), (120 127 126 124)

d = 3 : (3 6 12 9) ∼ (116 119 125 122)

d = 5 : (5 10) ∼ (118 123)

d = 15 : (0) ∼ (113) fixed

f takes on every integral value (for f(2m− 1) = m); therefore all cycles are finite, and
there are infinitely many cycles of every finite order.
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Amer. Math. Monthly, 70(1963) 671.

Polynomial Multiple of a Polynomial

E 1540 [1962, 809]. Proposed by Azriel Rosenfeld, Yeshiva University

Prove that every polynomial has a nonzero polynomial multiple whose exponents are
all divisible by 1000000.

I. Solution by M. S. Klamkin, State University of New York at Buffalo. Let the given
polynomial be

P (x) =
∏

i

(x− ri)

Let
Q(x) = xa

∏
i

[(xa − ra
i )/(x− ri)]

It follows immediately that P (x)Q(x) is a polynomial whose exponents are all divisible
by a. Now let a = 106.

Amer. Math. Monthly, 70(1963) 679.

Expansion of a Definite Integral

5035 [1962, 570]. Proposed by Yoshio Matsuoka, Kagoshima-shi, Japan

Let α be a fixed positive number. Prove that∫ 1
2
π

0

tα cos2n t dt =
1

2
Γ

(
α+ 1

2

)/
n(α=1)/2 − 1

12
Γ

(
α+ 5

2

)/
n(α+3)/2 +O(1/n(α+5)/2)

as n→∞.

Solution by M. S. Klamkin, State University of New York at Buffalo. First expand tα

into the series
tα = A1 sinα t+ A2 sinα+2 t+ A3 sinα+4 t+ · · ·

(This is a Lagrange reversion of a power series.) It follows immediately that A1 = 1,
A2 = α/6. Since ∫ 1

2
π

o

sinm t cos2n t dt =
Γ
(

m+1
2

)
Γ(n+ 1

2
)

2Γ(1
2
m+ n+ 1)

it follows that∫ 1
2
π

0

tα cos2n t dt =
Γ
(

α+1
2

)
Γ(n+ 1

2
)

2Γ(1
2
α+ n+ 1)

+
α

12

Γ
(

α+3
2

)
Γ(n+ 1

2
)

Γ(1
2
α+ n+ 2)

+ · · ·

Expanding out the Gamma functions for large n by Stirling’s approximation, i.e.,

Γ(n+ 1) =
(n
e

)n√
2nπ

[
1 +

1

12n
+O

(
1

n2

)]
we obtain the proposed expansion.
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Amer. Math. Monthly, 72(1965) 789–790.

Oops! E 1676 Again

E 1721 [1964, 911]. Proposed by J. C. Van Rhijn, Vollenhove, The Netherlands

Given an ellipse E with foci F1 and F2, a point P outside E, the tangents PR1 and
PR2 from P to E, and a positive number f (0 < f < 1). Find the locus of P if
PR1 · PR2 = f · PF1 · PF2.

Editor’s comment: This problem was posed as E 1676 [1964, 317] and a solution published in this
Monthly, 72(1965) 188–189.

Comment by M. S. Klamkin, University of Minnesota. The result follows immediately
from some results on ellipses in C. Zwikker, Advanced Plane Geometry, North-Holland,
Amsterdam (1950) pp.98 & 112: If the parametric equation of the ellipse E is z =
a cos θ+1b sin θ and R1 and R2 are given by θ = u+ q and θ = u− q respectively, then

−PR1 · PR2 =

(
a+ b

2

)2

e2iu +

(
a− b

2

)2

e−2iu − c2

2
cos 2q (c2 = a2 − b2)

and PF1 ·PF2 = −PR1 ·PR2/ cos2 q. If now |PR1 ·PR2| = f |PF1 ·PF2|, then cos2 q = f
and P is given by (a cosu+ ib sinu)/ cos q; in other words, the locus of P is an ellipse
confocal with E.

Following Zwikker, we then note the following generalization of the usual reflection
property of ellipses: The tangents to an ellipse from a point make equal angles with
the lines joining that point to the foci.
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Amer. Math. Monthly, 72(1965) 921–922.

Inversion of Convolutal Sequences

5231 [1964, 923]. Proposed by H. W. Gould, West Virginia University

Let x, z be real numbers. Prove that each of the following systems implies the other:

Bn =
n∑

k=0

(
z

k

)
xkAn−k An =

n∑
k=0

(
−z
k

)
xkBn−k

I. Solution by M. S. Klamkin, University of Minnesota. If F (x, z, k) and G(x, z, k)
satisfy

∞∑
k=0

F (x, z, k)tk ·
∞∑

k=0

G(x, z, k)tk ≡ 1

then either of the following systems implies the other:

Bn =
n∑

k=0

F (x, z, k)An−k An =
n∑

k=0

Bn−kG(x, z, k)

These transform equations follow by direct substitution and noting that

s∑
k=0

G(x, z, k)F (x, z, s− k) =

{
1 s = 0
0 s > 0

The special case for the present problem requires

F (x, z, k) =

(
z

k

)
G(x, z, k) =

(
−z
k

)
∑

F · tk = (1 + xt)z
∑

G · tk = (1 + xt)−s
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Amer. Math. Monthly, 73(1966) 546–547.

Observations with Zero Dispersion

E 1775 [1965, 316]. Proposed by George Purdy, University of Reading, England

Under what conditions do real x1, . . ., xn satisfy the equation
x2

1 + · · ·x2
n = (x1 + · · ·+ xn)2/n for n ≥ 1?

III. Solution by M. S. Klamkin, Ford Scientific Laboratory, Dearborn, Mich.. The
problem here is a special case of a well-known result for convex functions, i.e., if φ(t)
is convex in t ≥ 0, then

φ

(
x1 + x2 + · · ·+ xn

n

)
≤ φ(x1) + φ(x2) + · · ·+ φ(xn)

n

(xi ≥ 0), with equality only if the xi are equal or φ(t) is linear. For the present case
φ(t) = t2 and we must have x1 = x2 = · · · = xn

Amer. Math. Monthly, 73(1966) 553–554.

Solving
∑
f(d)f(n/d) = 1

5293 [1965, 555]. Proposed by Martin J. Cohen, Beverly Hills, California

Find a function f such that
∑
f(d)f(n/d) = 1 for every positive integer n, where the

sum is taken over all d which divide n (including 1 and n).

II. Solution by M. S. Klamkin, Ford Motor Company. The problem may be extended
to find a function F such that∑

d1d2···dr=n

F (d1)F (d2) · · ·F (dr) = 1

for every positive integer n where the sum is taken over all dr which divide n (including
1 and n).

Consider the formal product of r identical Dirichlet series:{∑ F (n)

ns

}
=
∑ G(n)

ns

[See Hardy and Wright, Theory of Numbers, p.248.] Then

G(n) =
∑

d1d2···dr=n

F (d1)F (d2) · · ·F (dr) = 1

whence, ∑ F (n)

ns
= ζ(s)1/r =

∏
primes

{1− 1/ps
n}−1/r
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multiplied possibly by an r th root of unity. Let

{1− 1/ps
n}−1/r = 1 +

a1

ps
n

+
a2

p2s
n

+
a3

p3s
n

+ · · ·

then am =
(−1/r

m

)
. It now follows that if

n = pi1
a1
· pi2

a2
· · · p− as

is then F (n) = ai1ai2 · · · ais

multiplied by a fixed r th root of unity. The original problem corresponds to the special
case r = 2.

Amer. Math. Monthly, 73(1966) 779–780.

A Special Case of a Theorem of Whitney

5293 [1965, 555]. Proposed by R. A. Bell, Kansas City, Mo.

Suppose that g(x) has its first n+1 derivatives defined and continuous in [–1,1]. Define
y(x) = g(x)/x for x 6= 0 and y(0) = g′(0). If g(0) = 0, prove that y(n)(0) = dny/dxn|x=0

exists and equals g(n+1)(0)/(n+ 1).

II. Solution by M. S. Klamkin, Mathematical and Theoretical Sciences Scientific Lab-
oratory, Ford Motor Company, Dearborn, Michigan. Let

Dm[g(x)/x] = Fm(x)/xm+1

so that DF0(x) = D{xD0[g(x)/x]} = Dg(x) = x0g(x). Assume that

DFm(x) = xmDm+1g(x) (?)

Then
Fm+1(x)

xm+2
= Dm+1 g(x)

x
= D

Fm(x)

xm+1
=
xDFm(x)− (m+ 1)Fm(x)

xm+1

whence Fm+1(x) = xDFm(x)− (m+ 1)Fm(x) and

DFm+1(x) = xD2Fm(x)− (m+ 1)DFm(x)

= xD[xmDm+1g(x)]− (m+ 1)xmDm+1g(x)

= xm+1Dm+1g(x)

It follows by induction that (?) is true for all nonnegative integers m.

By L’Hospital’s Rule, limx→0D
n[g(x)/x] will exist if limx→0[DFn(x)/Dxn+1] exists. By

(?), this latter limit is g(n)(0)/(n+ 1).
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Amer. Math. Monthly, 73(1966) 894.

A Consequence of Problem 4964

E 1795 [1965, 665]. Proposed by N. D. Kazarinoff, University of Michigan

Let ABCDEF be a convex hexagon such that the perimeters of the triangle ABF ,
BCD, DEF and BDF are the same. Show that the hexagon must be a triangle, that
is, it must have three 180◦ angles. Compare 4964 [1962, 672].

Solution by M. S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan. Draw
4GHI, where GB ‖ AC, HD ‖ CE and IF ‖ AE. Since the hexagon is convex it lies
inside or on4GHI. By the result of problem 4964 [1962,672], the perimeter of4BFD
cannot be less than each of the triangles GFB, FDI and BDH, and if 4BFD has
the same perimeter as one of these other triangles, then all the four triangles have the
same perimeter. Since 4ABF ≤ 4GBF in perimeter and similarly for the other two
pairs of triangles, ∠ABC = ∠CDE = ∠EFA = π, and the hexagon is a triangle. The
above result would still be valid if we replaced “perimeter” of the triangles by “area”.
This follows from a corresponding result to problem 4964 and is also a solved problem
in this Monthly.

Amer. Math. Monthly, 73(1966) 894.

An Asymptotic Formula

E 1795 [1965, 665]. Proposed by Louis Comtet, Boulogne, France

Show that, as n→∞, s(n) = 1n + 2n + 3n + · · ·+ nn is asymptotic to enn/(e− 1).

Solution by M. S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan. Let
ν(n)|geq0 for n = 1, 2, 3, . . ., and set S(n) =

∑n
r=1 r

ν(n). By Maclaurin’s Integral
Test,

S(n) ≥
∫ n

0

xν(n) dx≥S(n)−nν(n)

Consequently,

1. If ν(n)/n→ 0, then S(n) ∼ nν(n)/[1 + ν(n)]

2. If n/ν(n) → 0, then S(n) ∼ nν(n)

3. If ν(n)/n→ a+ > 0, then 1/a ≤ S(n) ≤ 1 + 1/a

In Case 3 we have

S(n)/nν(n) =
n−1∑
r=0

exp[ν(n) log(1− 1/n)] =
n−1∑
r=0

exp[−ν(n)[r/n+O(r2/n2)]]

=
n−1∑
r=0

e−areO(1) →
∞∑

r=0

e−ar =
ea

ea − 1

by Tannery’s theorem [see, for example, T. J. Bromwich, Introduction to the Theory
of Infinite Series, 2nd ed.(1925) p.136].
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Amer. Math. Monthly, 74(1967) 81.

A Consequence of the Mean Value Theorem

E 1802 [1965, 666]. Proposed by Dov Avishalom, Tel-Aviv, Israel

For functions of class Cn prove that

f (n)(a) = lim
h→0

{
1

hn

n∑
k=0

[
(−1)n−k

(
n

k

)
f(a+ kh)

]}

I. Solution by M. S. Klamkin, Ford Scientific Laboratory. First, it is well known that

n∑
k=0

(−1)kkr

(
n

k

)
=

{
0 (r = 0, 1, . . . , n− 1)
n! (r = n)

(Easily proved by differentiating (1 − x)n =
∑n

k=0(−1)k
(

n
k

)
xk r times (r ≤ n) and

evaluating at x = 1.) Consequently, it follows from L’Hospital’s rule that the desired
limit equals

1

n!

{
Dn

n∑
k=0

(−1)n−k

(
n

k

)
F (a+ kh)

}
k=0

= F n(a).

Amer. Math. Monthly, 74(1967) 206.

5461. proposed by M. S. Klamkin, Ford Scientific Laboratory

Show that it is possible in En to have n+ 1 mutually orthogonal spheres. What is the
maximum number of such spheres?

Amer. Math. Monthly, 75(1968) 202–203.

Solution by Seymour Schuster, University of Minnesota. Consider a hypersphere of
unit radius centred at the origin of a rectangular coordinate system in En. An inversion
with respect to any hypersphere whose centre is two units from the origin transforms
the n coordinate hyperplanes and the unit hypersphere into n+1 mutually orthogonal
hyperspheres.

Conversely any n mutually orthogonal hyperspheres can be inverted into n mutually
orthogonal hyperplanes, and we recall that n is the maximum number of mutually
orthogonal hyperplanes in n-space. Any two distinct hyperspheres orthogonal to n
mutually orthogonal hyperplanes must be concentric. Thus n + 1 is the maximum
number of mutually orthogonal hypersphers in En.

J. D. E. Konhauser states that the number is n + 2 if imaginary hyperspheres are admitted.
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Amer. Math. Monthly, 74(1967) 318.

E 1966. proposed by M. S. Klamkin, Ford Scientific Laboratory

Show how to construct a regular tetrahedron if the vertices lie on four given parallel
planes.

Amer. Math. Monthly, 75(1968) 675.

Solution by the proposer. Let the distances between successive planes be a, b and
c. Starting with any regular tetrahedron, locate points D, E on edge OA such that
OD : DE : EA = a : b : c. On edge OB locate F such that OF : FB = a : b.
Now draw a plane through O, a plane through B and E and a plane through A all
parallel to the plane through F , D and C.

This gives us a configuration similar to the one we wish to construct, which can now
be done by similar figures.

[V. F. ]Ivanoff notes that it is possible to construct a tetrahedron under the given conditions similar
to any given tetrahedron.

[[In connexion with the next item, I’m sure that ‘Sheila M. Kaye’ of McGill is Murray!]]

Amer. Math. Monthly, 74(1967) 337.

On Commutative Rings

5377 [1966, 312]. proposed by Erwin Just and Norman Schaumberger, Bronx Commu-
nity College

In a ring R each element x stisfies the equation x = xn+1 for some integer n. Prove
that xny = yxn for each x and y contained in R.

I. Solution by Shiela M. Kaye, McGill University. We must assume n ≡ n(x) > 0.

(a) xn(x) is idempotent, since (xn(x))2 = xn(x)+1xn(x)−1 = xn(x).

(b) Let ab = 0. Then ba = (ba)n(ba)+1 = b(ab)n(ba)a = 0.

(c) Let x, y ∈ R and let n = n(x). Then from (a), yxn = yx2n, whence (y−yxn)xn = 0.
Also from (b), xn(y − yxn) = 0, so that xny = xnyxn.

(d) Similarly, from xny = x2ny, we deduce yxn = xnyxn, which completes the proof.
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Amer. Math. Monthly, 74(1967) 1141–1142.

Convergence of a Series

E 1884 [1966, 411]. proposed by A. F. Beardon, University of Maryland

Prove that the series
∞∑

n1,...,nk

1

(n2
1 + · · ·+N2

k )p

converges if and only if p > k/2.

II. Solution by M. S. Klamkin, Ford Scientific Laboratory. By the integral test (for m
dimensions) the series will converge or diverge with the integral∫ ∞

1

∫ ∞

1

· · ·
∫ ∞

1

dn1 dn2 · · · dnk

(n2
1 + n2

2 + · · ·+ n2
k)

p

or equivalently (using spherical coordinates) with the integral
∫∞

c
(rk−1 dr/r2p) which

converges if and only if 2p− k + 1 > 1, or p > k/2.

We are assuming p is a constant, otherwise the result is not valid, e.g.,
∑∞

n=1 n
1+1/n

diverges.

Amer. Math. Monthly, 75(1968) 298.

Minors of a Bidiagonal Matrix

5377 [1966, 312]. proposed by D. Ž. Djoković, University of Belgrade, Yugoslavia

Let An = (aij) be an n × n matrix such that aii = ai, i = 1, 2, . . . , n; ai,i+1 = bi,
i = 1, 2, . . . , n − 1; aij = 0 otherwise. Let M be the minor of detAn obtained by
deleting the rows i1, i2, . . ., ik (1 ≤ i1 < i2 < · · · < ik ≤ n) and the columns j1, j2, . . .,
jk (1 ≤ j1 < j2 < · · · < jk ≤ n). Prove that

M = (a1a2 · · · aj1−1)(b
j1bj1+1 · · · bi1−1)(ai1+1ai1+2 · · · aj2−1)

· (bj2bj2+1 · · · bi2−1)(ai2+1ai2+2 · · · aj2−1) · · · (bjk
bjk+1 · · · bik−1)

· (aik+1aik+2 · · · an)

if (1 ≤ j1 ≤ i1 < j2 ≤ i2 < j3 ≤ i3 < · · · < jk ≤ ik ≤ n); M = 0 otherwise. We take
(arar+1 · · · as) = 1 whenever s < r.

Solution by M. S. Klamkin, Ford Scientific Laboratory. We employ induction. Assume
that the result hold for all matrices Ar, r = 1, 2, . . . , n and for all k = 1, 2, . . . , r. Now
consider An+1. If n + 1 = jk > ik then An+1 = 0. If n + 1 = ik > jk delete row ik
and column jk and expand by minors using the last column, giving bAn−1. If ik and
jk < n+ 1, then An+1 = an+1An. By the inductive hypothesis the result also holds for
An+1. Since it clearly holds for A2 it is valid for all An.
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Amer. Math. Monthly, 76(1969) 946–947.

Sums of Powers of Integers

E 2136 [1968, 1113]. proposed by A. Inselberg and B. Dimsdale, IBM Los Angeles
Scientific Center

Let

Sr =
n∑

k=1

kr

It is well known that S3 = S2
1 . Are there other values of p, q, u, v such that Su

p = Sv
q

for all n ?

Solution by M. S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan. We will
consider p, q, u, v to be any real numbers. By the Euler-MacLaurin expansion, the
first few terms of the asymptotic expansion of Sr for r > −1 is given by

Sr ∼
nr+1

r + 1
+

1

2
nr +

rnr−1

12
+ · · ·

Thus

Su
p ∼

(
np+1

p+ 1

)u{
1 +

p+ 1

2n
+
p(p+ 1)

12n2
+ · · ·

}u

Sv
q ∼

(
nq+1

q + 1

)v {
1 +

q + 1

2n
+
q(q + 1)

12n2
+ · · ·

}v

Since Su
p = Sv

q for all n, we must have by equating the first few terms of the expansion
that

(p+ 1)u = (q + 1)v (1)

(p+ 1)u = (q + 1)v (2)

u(u− 1)(p+ 1)2

8
+
up(p+ 1)

12
=

v(v − 1)(q + 1)2

8
+
vq(q + 1)

12
(3)

(assuming that there are at least three terms in both expansions). It now follows from
(2) and (3) that p = q and then that u = v. If the expansion of Sp has less than three
terms, then p = 0 orp = 1. In this case the term up(p+ 1)/12 does not appear in (3).
This then leads to q = 3p. Thus for p = 1, either q = 1 or q = 3, and for p = 0, q = 0.

We now cosider the cases p, q ≤ 1. The case p = −1 6= q is ruled out since here
Sp ∼ lnn and Sq is not. For p, q < −1 we have

Su
p ∼

{
ζ(−p)− np+1

p+ 1
+
np

2
− · · ·

}u
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On comparison of the first two terms of the expansion for Su
p with that for Su

q [[can’t
read the last exponent, neither in JSTOR, nor in the original.]] we must have p = q.
Thus the only solution is the known identity S3 = S2

1 .

[John ]Ivie and many others note that the solution is well known and has been published. See
D. Allison, A note on sums of powers of integers, this Monthly, 1961, p.272. A related result is
developed in S. Cavior, A theorem on power sums, in the April 1968 Fibonacci Quarterly, pp.157–161.
He considers the more general problem of finding polynomials

f(x) =
r∑

i=0

a1x
i g(x) =

s∑
i=0

bix
i

over the real field such that

{f(1) + · · ·+ f(n)}p = {g(1) + · · ·+ g(n)}q

for positive integral r, p, s, q. For this condition to hold, it is shown that the only monic solutions
occur when p = 2, q = 1 and

f(x) = a + x g(x) = x3 + 3ax2 + (2a2 − a)x− a2

where a is an arbitrary real constant. (For a = 0 this is the result of the present problem.) Cavior
also considers the problem of finding non-monic polynomials f and g for arbitrary p and q, and proves
a general theorem.

Amer. Math. Monthly, 76(1969) 1063.

E 2197. Proposed by M. S. Klamkin, Ford Scientific Laboratory and D. J. Newman,
Yeshiva University

Solve the functional equation F (xm) = [F (x)]n.

[[Was a solution ever published??]]

Amer. Math. Monthly, 77(1970) 774.

Solution by the proposers. Let logF (x) = G(x)(log x)α where α = (log n)/(logm).
Then G(xm) = G(x). A general solution for G(x) is G(x) = H(log log x). where H is
periodic with period logm. Thus

F (x) = exp[H(log log x) · (log x)α]

It is to be noted that the problem was deliberately incompletely fomulated in that no
class of functions F and no domain of x were specified, nor the constants m and n. If
F (x) is to be real, then it is assumed that x > 1. In the above it is also assumed that
m, n > 0 and m 6= 1. (The case m = 1 is easily handled. If mn = 0, the equation
may be solved by inspection. The above solution is also valid when m, n are not
bothpositive, provided α can be chosen so that mα = n.)
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Amer. Math. Monthly, 76(1969) 1138.

E 2203∗. Proposed by M. S. Klamkin, Ford Scientific Laboratory

It is known that if 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn, (n ≥ 3), then

xx2
1 x

x3
2 · · ·xx1

n ≥ xx1
2 x

x2
3 · · ·xxn

1

Are there any other nontrivial permutations {a1} and {bi} of the {xi} such that

aa2
1 a

a3
2 · · · aa1

n ≥ bb12 b
b2
3 · · · bbn

1 ?

Amer. Math. Monthly, 77(1970) 1008–1009.

Solution (adapted) by G. L. Watson, University College, London, England. For n = 3
there is no other nontrivial permutation of the xi of the form required. For n = 4 there
are other solutions. For one such solution, note that x3/x1 ≥ 1, x4/x3 ≥ 1, x3−x2 ≥ 0,
x3 − x1 ≥ 0 imply

(x3/x1)
x3−x2(x4/x3)

x3−x1 ≥ 1

whence (upon multiplying both sides by xx4
2 /x

x2
3 )

xx2
1 x

x4
2 x

x3
4 x

x1
3 ≥ xx3

1 x
x2
3 x

x4
2 x

x1
4

For n > 4, the possibilities increase rapidly. For example, with n = 5,

(x5/x2)
x4−x3(x2/x1)

x5−x2 ≥ 1

implies
xx2

1 x
x3
2 x

x5
3 x

x4
5 x

x1
4 ≥ xx5

1 x
x3
5 x

x2
3 x

x4
2 x

x1
4
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Amer. Math. Monthly, 76(1969) 1152.

5705. Proposed by M. S. Klamkin, Ford Scientific Laboratory

Find the general solution of the differential equation

[xDn+1 + 2nDn − xD − n]y = 0.

Amer. Math. Monthly, 77(1970) 1020.

Solution by Robert Heller, Mississippi State University. It can be shown by induction
that xDn+nDn−1 = Dnx from which it follows that the given equation may be written
(Dn − 1)(xD + n)y = 0. Hence

(xD + n)y =
n∑

k=1

cke
akx

where a1, . . ., an are the n distinct n th roots of unity. Multiplication by xn−1 gives

D(xny) =
n∑

k=1

ckx
n−1eakx

Repeated integration by parts shows that

xny = c0 +
n∑

k=1

[
cke

akx

n∑
p=1

(−1)p−1 (n− 1)!

(n− p)!
(akx)

n−p

]

Taking limits of both sides as x → 0 we see that although solutions y may exist on
(−∞,∞), such solutions are not expressed with precisely n + 1 arbitrary constants.
On (−∞, 0) or on (0,∞) we have the general solution

y = c0x
−n + x−n

n∑
k=1

[
cke

akx

n∑
p=1

(−1)p−1 (n− 1)!

(n− p)!
(akx)

n−p

]
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Amer. Math. Monthly, 77(1970) 79.

E 2209. Proposed by M. S. Klamkin, Ford Scientific Laboratory

Determine the locus of the centroids of all triangles similar to a given triangle and
inscribed in another given triangle.

Amer. Math. Monthly, 77(1970) 1012–1013.

Solution by Michael Goldberg, Washington, D.C. If a triangle of given shape grows so
that the vertices trace fixed straight lines in the plane, then every point of the triangle
will trace a straight line.

If the fixed straight lines are the sides of the triangle ABC, and the variable inscribed
triangle is DEF , then its centroid P describes a straight line.. However, there are
some orientations for which the vertices of DEF cannot be confined to the straight
line segments of the triangle ABC. Also, as DEF is turned, the motion of the vertices
will change direction as they shift from oneline of ABC to another line of ABC. Hence
the complete locus of the centroid consists of three straight line segments, shown in
dotted lines in the figure.

A

B

C

D

E

F

P

If, in addition to direct symmetry, reflected symmetry is acceptable, then three more
straight line segments are to be added to the locus of the centroid.

[[The above picture is a special case — in simplifying the calculations I inadvertently
made the two triangles similar. Here is the more general picture, with the reflected
segments shown dashed. — I’ve gone mad and given dotted only; dashed only (the
inner triangle ought to be reflected here); both; and enlarged — take your pic!! R.]]
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A

B

C

D

E

F

P

A

B

C

D

E

F

P
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A

B

C

D

E

F

P

P

Several solvers called attention to the well-known underlying theorem which can be found in Peterson’s
text, also Johnson’s, and elsewhere.
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Amer. Math. Monthly, 77(1970) 79.

E 2214. Proposed by M. S. Klamkin, Ford Scientific Laboratory and B. Ross Taylor,
York High School

It is intuitive that every simple n-gon (n > 3) possesses at least one interior diagonal.
For a simple n-gon what is the leasr number of diagonals which, except for their
endpoints, lie wholly in its interior ?

Amer. Math. Monthly, 77(1970) 1111–1112.

Solution by Anders Bager, Hjørring, Denmark. The two tangents from a point P
outside a circle Γ touch Γ in points A and B. Connect A and B with a broken line
consisting of n − 2 chords succeeding each other along the smaller arc from A to B.
Join P to A and B to obtain a simple n-gon with exactly n − 3 inner diagonals (all
issuing from P ).

The number n − 3 is minimal. This is trivially so if n = 3. Suppose it tru for some
n and consider an arbitrary simple (n+ 1)-gon. From this cut off a triangle such that
two sides are sides of the (n + 1)-gon, and the third side an inner diagonal. This is
always possible and leaves a simple n-gon which, by assumption, has at least n − 3
inner diagonals. Hence the (n + 1)-gon has at least (n − 3) + 1 = (n + 1) − 3 inner
diagonals. Thus the assertion of the problem is true by induction.

[[Also solved by ten others, including the proposers and . . . ]]

R. B. Eggleton establishes the result that a simple n-gon has precisely n − 3 inner diagonals if and
only if no two of its diagonals intersect.
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Amer. Math. Monthly, 77(1970) 83–84.

A Minimum Partition Problem

E 2171 [1969, 414]. Proposed by Kenneth Jackman, Federal Electric Corporation, Fair-
banks, Alaska

Given N , what is the smallestW for which B1+B2+· · ·+Bc = W and B1B2 · · ·Bc ≥ N
with all Bk positive integers.

Note. The statement of the problem is ambiguous since it is not clear whether the
integer c is fixed. Solutions were submitted for both cases.

I. (c fixed.) Solution by David Zeitlin, Minneapolis, Minnesota. From the arithmetic-
geometric inequality, we have

W

c
=
B1 +B2 + · · ·+Bc

c
≥ c
√
B1B2 · · ·Bc ≥ c

√
n

Thus W = c c
√
N if integral; otherwise W + [c c

√
N ] + 1.

II. (c not fixed.) Solution by M. S. Klamkin, Ford Scientific Laboratory. The dual of
this problem is to find the largest number which can be obtained as the product of
positive integers whose sum is ≤ S. This problem was proposed by Leo Moser and
solved by L. Carlitz [Problem 125, Pi Mu Epsilon Journal, Fall, 1961]. If P (S) denotes
the maximum product, it was shown that

P (S) =


3m if S=3m
4 · 3m−1 if S=3m+1
2 · 3m if S=3m+2

Here S is partitioned into as many 3 s as possible.

It now follows immediately that if P (S) + 1 ≤ N ≤ P (S + 1) then Wmin = S + 1 (the
corresponding partition is not unique in general).
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Amer. Math. Monthly, 77(1970) 192.

E 2216. Proposed by M. S. Klamkin, Ford Scientific Laboratory

Which of the two integrals∫ 1

0

xx dx

∫ 1

0

∫ 1

0

(xy)xy dxdy

is larger ?

Solution by R. A.Groeneveld, Mount Holyoke College. Making the substitution u = xy,
the second integral may be written∫ 1

0

∫ 1

0

uu

x
dxdu = −

∫ 1

0

uu(log u) du

Since ∫ 1

0

uu(1 + log u) du = uu|10 = 0

the two stated integrals are equal.

J. Gillis proves the following generalization: Define

Ir =
∫ 1

0

∫ 1

0

· · ·
∫ 1

0

(x1x2 · · ·xr)x1x2···xr dx1dx2 · · · dxr

r = 1, 2, . . . . Then I1 = I2 < I3 < I4 < · · · , and limr→∞ Ir = 1. [M. M. ]Klein reports the computer
value of I1 is 0.78343051.

Amer. Math. Monthly, 78(1971) 676.

II. Comment by C. D. Olds, San Jose Sate College. For readers who wonder how
the computer value reported by Klein might be obtained, the following manipulations
(easily justified) may be of interest.

I =

∫ 1

0

xx dx =

∫ 1

0

ex ln x dx =

∫ 1

o

∞∑
n=0

(x lnx)n

n!
dx

=
∞∑

n=0

1

n!

∫ 1

0

(x lnx)n dx =
∞∑

n=0

(−1)n

(n+ 1)n+1n!

∫ ∞

0

e−ttn dt

=
∞∑

n=0

(−1)n

(n+ 1)n+1n!
Γ(n+ 1) =

∞∑
n=0

(−1)n

(n+ 1)n+1
= 0.78343051 . . .

The series is particularly attractive because of its rapid convergence
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Amer. Math. Monthly, 77(1970) 308.

E 2226. Proposed by M. S. Klamkin, Ford Scientific Laboratory

If one altitude of a tetrahedron intersects two other altitudes, then all four altitudes
are concurrent.

Amer. Math. Monthly, 78(1971) 201.

II. Solution by Simeon Reich, Israel Institute of Technology. Let ABCD be the given
tetrahedron, and let hA intersect hB and hC . Then AB is perpenducular to CD and
AC is perpendicular to BD (Nathan Altshiller-Court, Modern Pue Solid Geometry,
2nd Ed., §204). This can be expressed by

AB · (AD − BC) = 0 AC · (AD − AB)=0

Hence AD · (AB − AC)=0. That is, AD is perpendicular to BC. It follows that
the altitudes are concurrent (loc. cit. §208, §212).

Amer. Math. Monthly, 77(1970) 403.

E 2231∗. Proposed by M. S. Klamkin, Ford Scientific Laboratory

It is a known result that if the centroid of the vertices and the centroid of the area (both
uniformly weighted) of a quadrilateral coincide, then the figure is a parallelogram. If
the centroids of the vertices, of the edges, and of the area (all uniformly weighted) of
a pentagon all coincide, must the figure be a regular pentagon ?

Amer. Math. Monthly, 78(1971) 302.

Solution by W. G. Wild, Wisconsin State University. The answer is no.

Consider the pentagon with vertices at (±7k/20, 0), (±k/2, 4/7) and (0,1). The cen-
troids of the area and of the vertices coincide at (0,3/7). The centroid of the edges is
located at the solution of the equation

3

7
=

11
7

√(
k
2

)2
+
(

3
7

)2
+ 4

7

√(
3k
20

)2
+
(

4
7

)2
7
10
k + 2

√(
k
2

)2
+
(

3
7

)2
+ 2
√(

3k
20

)2
+
(

4
7

)2
(The first moment of the edge masses about the x-axis divided by the total edge mass.)
These trun out to be k = ±1.04228 and ±2.59575.

A more general solution is provided by studying the pentagon with vertices at (±ak/2, 0),
(±k/2, b), (0,1). The centroid of the vertices is at (0, (2b + 1)/5) and if a is equal to
(2 − b)/(3b + b2), then the area centroid coincides with that of the vertices, desig-
nated by (0, ȳ), and the relation (analogous to the one in the special case above) which
expresses ȳ as a function of k assures us that the centroid of the edge can be made
to coincide if the equation has solutions. The related existence study is routine but
tedious.
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[Don ]Coppersmith cites the pentagon with vertices (0, 2
√

19), (±9,
√

19) and (±4,−2
√

19), along
with a more general form. [Harry ]Lass gives (±a, 0), (±a, 1) and (0, 1+ 1

2

√
6), where a is the positive

root of a certain quadratic equation.

Amer. Math. Monthly, 77(1970) 522.

E 2197. Proposed by M. S. Klamkin, Ford Scientific Laboratory and D. J. Newman,
Yeshiva University

Show that if the integral of the reciprocal of a nonconstant polynomial is a rational
function, then the polynomial must be of the form (ax+ b)n.

Amer. Math. Monthly, 78(1971) 408.

Solution by G. A. Heuer and C. V. Heuer, Concordia College. If the rational function,
in its lowest terms, is f(x)/g(x), f and g polynomials, then

[g(x)f ′(x)− f(x)g′(x)]/[g(x)]2 = 1/p(x)

where p is a polynomial. If x − r is a (possibly complex) factor of the numerator on
the left, it divides [g(x)]2, so divides g(x), so divides f(x)g′(x), and therefore g′(x);
thus (x − r)2 | g)x). By induction one finds that if (x − r)m divides the numerator
then (x − r)m | g′(x) and (x − r)m+1 | g(x). Thus the two terms in the numerator
separately divide [g(x)]2. Since f(x) and g(x) are relatively prime, f(x) is a constant.
Thus g′(x) | [g(x)]2 and every linear factor of g′(x) divides g(x). It follows that if
(x− r)m | g′(x) then (x− r)m+1 | g(x). Since the degree of g(x) is only one more than
that of g′(x), g(x) cannot have two different linear factors. The desired result follows.

Amer. Math. Monthly, 78(1971) 905.

Comment and solution by L. R. Abramson, Riverside Research Institute, New York.
The published solution I is in error: if f , g and p are polynomials such that f/g is in
its lowest terms and (f/g)′ = 1/p, then f need not be constant, for it is not necessarily
true that each of fg′, gf ′ divides g2. For example, let f(x) = x − 1, g(x) = x and
p(x) = 1/x2.

The solution may be corrected as follows. Evidently deg f ≤ deg g. If deg f = deg g,
then we can write f/g = c + f1/g where deg f1 < deg g. Since f1/g is another an-
tiderivative for p, there is no loss of generality in assuming that deg f < deg g. Let
the leading terms of f and g be respectively axs and bxt. Then the leading term of
gf ′− fg′ is ab(s− t)xs+t−1, since s− t 6= 0. Inspection rules out the cases s = 0, t = 1
and s = 1, t = 0; hence s+ t ≥ 2 and so s+ t1 ≥ 1. As in the published solution every
m-fold root of gf ′ − fg′ is an (m+ 1)-fold root of g. Thus t = deg g ≥ (s+ t− 1) + d,
where d is the number of distinct roots of gf ′ − fg′. But d ≥ 1, whence s = 0 and
d = 1. In other words, f is constant and g′ has exactly one distinct linear factor; i.e.,
g(x) = (ax+ b)n for some n ≥ 2.
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Amer. Math. Monthly, 77(1970) 532.

5736. Proposed by M. S. Klamkin, Ford Scientific Laboratory

Solve the nonlinear difference equation of r th order

Dn = a1D
m+1
n−1 + a2D

m
n−1D

m+1
n−2 + · · ·+ arD

m
n−1D

m
n−2 · · ·Dm

n−r+1D
m+1
n−r

(m, r, a− i constants).

[[I can’t make sense of the superscripts, but that doesn’t necessarily mean anything.
Later: there’s a correction on p.774, taking out + signs from round the second · · · !]]

Amer. Math. Monthly, 78(1971) 554.

Solution by the proposer. By considering the case r = 2, one is led, after some trial
and error, to rewrite the given equation in the form

1 = a1φn + a2φnφn−1 + · · ·+ arφnφn−1 · · ·φn−r+1

in which we have replaced Dm+1
n−1 /Dn by φn. By letting φn = ψn/ψn+1 we obtain the

linear difference equation

ψn+1 = a1ψn + a2ψn−1 + · · ·+ arψn−r+1

which has the general solution

ψn =
r∑

i=1

kiR
n
i

where Ri are the roots of xr = a1x
r−1 + a2x

r−2 + · · ·+ ar

Retracing our substitutions, we get in turn

φn = ψn/ψn+1 Dnφn = Dm+1
n−1

or equivalently, logDn = (m + 1) logDn−1 − log φn. Let logDn = (m + 1)nAn; then

An − An−1 = − log φ
(m+1)−n

n . Thus

An = − log

{
e−A0

n∏
j=1

φ
(m+1)−j

j

}

and finally

Dn = eA0(m+1)n
n∏

j=1

φ
−(m+1)n−j

j

The equation arose as a generalization in a study of the frequency spectrum of a
mass-spring system which forms a rooted Cayley tree.
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Amer. Math. Monthly, 77(1970) 890.

5754. Proposed by M. S. Klamkin, Ford Scientific Laboratory

Let L(a, c) equal the perimeter of an ellipse with semi-axes a and c (a ≥ c). Show that
if a ≥ b, then

L2(a, c)− 16a2 ≥ L2(b, c)− 16b2

Amer. Math. Monthly, 78(1971) 202.

[[There was a correction, the above ≥ replacing an earlier = .]]

Amer. Math. Monthly, 78(1971) 919–920.

Solution by K. F. Andersen, Royal Roads Military College, Victoria, B.C. Parameterize
the ellipse in the usual trigonometric manner and then let

n = n(t) = (a2 sin2 t+ c2 cos2 t)1/2 v = v(t) = (b2 sin2 t+ c2 cos2 t)1/2

Then u ≥ v since a ≥ b, and by Schwartz’s inequality we obtain:

L2(a, c)− L2(b, c) = (L(a, c)− L(b, c))(L(a, c) + L(b, c))

=

(∫ 2π

0

(u− v) dt

)(∫ 2π

0

(u+ v) dt

)
=

(∫ 2π

0

(u2 − v2)

(u+ v)
dt

)(∫ 2π

0

(u2 − v2)

(u− v)
dt

)
≥

(∫ 2π

0

(u2 − v2)1/2

(u+ v)1/2
· (u2 − v2)1/2(u− v)1/2 dt

)2

=

(∫ 2π

0

(u2 − v2)1/2 dt

)2

= (a2 − b2)

(
2

∫ π

0

sin t dt

)2

= 16(a2 − b2).

Since equality holds in Schwartz’s inequality if and only if there are constants m, n,
not both zero, such that m(u − v) = n(u + v) almost everywhere, we have equality
above if and only if a = b.

Editorial Note. The error in the first printing of the problem was noted by several solvers who derived
interesting consequences from the false proposal. In particular, [E. D. ]Bolker shows that the original
statement implies π2 = 8.
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[[In connexion with the next item, it’s first of all interesting that Oppy’s address was,
in 1965 and 1967, University of Malaya, Kuala Lumpur.

Here is what was published at 1967, 441:

Solution by C. S. Venkataraman, Trichur, India. Let A′ be the midpoint of BC; D the
foot of the perpendicular from A upon BC; O the overline; and R the circumradius of
triangle ABC. We use the following three well-known results:

(i)
∏

cosA ≤ 1
8

(ii)
∑

cos2A = 1− 2
∏

cosA

(iii) 2R cosB cosC = OD

The angles A, B, C being acute implies that O lies inside the triangle ABC. Now
from the triangle ODA′, right-angled at D, we have OD|leqOA′. It follows that the
maximum value of OD is OA′. But when OD = OA′, the triangle OBC is isosceles
with OB = OC, whence AB = AC. Hence from (iii) 2R cosB cosC is maximum when
AB = AC. Similarly 2R cosC cosA is a maximum when BC = AB. Then AC = BC
and 2R cosA cosB is also maximum, and triangle ABC is equilateral. Thus it follows
that ∑

(2R cosB cosC)2 ≤
∑

(2R · 1

2
· 1

2
)2 = 3R2/4

Therefore 4
∑

cos2B cos2C ≤ 3
4
. Using (i) this gives

16
∏

cos2A+ 4
∑

cos2B cos2C ≤ 16(1/64) + 3/4 = 1

which is the requiredresult (1).

Further (i) and (ii) imply∑
cos2A ≥ 1− 2(1/8) = 3/4 ≥ 4

∑
cos2B cos2C

which is result (2). Clearly, equality arises in both cases if and only if ABC is equilat-
eral. ]]
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Amer. Math. Monthly, 79(1972) 394–395.

Two Triangle Inequalities

E 1838 [1965, 1129; 1967, 440]. Proposed by A. Oppenheim, University of Ghana

Suppose that ABC is an acute-angle triangle; then

16
∏

cos2A+ 4
∑

cos2B cos2C ≤ 1 (1)

4
∑

cos2B cos2C ≤
∑

cos2A (2)

Equality occurs when ABC is equilateral or right-angles isosceles and in no other case.

II. Comment and solution by Murray Klamkin, Ford Scientific Laboratory. By virtue of
the weak inequality conditions, ABC can be restricted to non-obtuse triangles rather
than acute triangles.

In a personal communication, A. W. Walker has pointed out that there is a flaw in
the published solution [1967, 441]. He notes that the solution “derives” and uses the
inequality 16

∑
cos2B cos2C ≤ 3; however, this is invalid—just consider an isosceles

right triangle. (By continuity, there exist acute non-isosceles triangles which violate
the inequality.)

We prove (2) of the problem and show how (1) follows from it. By using 2 cos2A =
1 + cos 2A and then making the transformations A′ = π − 2A, etc., we see that (2)
becomes equivalent (after dropping primes) to the following:

3
∑

cosA ≥ 3 + 2
∑

cosB cosC (3)

where now ABC is an arbitrary triangle. Inequality 6.12 of O. Bottema et al., Geo-
metric Inequalities, Nordhoff, Groningen, 1969, states 2R + 5r ≥ ha + hb + hc. Since
ha = AH +HD = 2R cosA+ 2R cosB cosC, etc., it follows that

2R + 5r ≥ 2R
∑

cosA+ 2R
∑

cosB cosC

and hence 5(1 + r/R) ≥ 3 + 2
∑

cosA + 2
∑

cosB cosC which reduces to (3) since
1 + r/R =

∑
cosA.

Now, using (2) we establish a stronger inequality than (1), viz.

16
∏

cos2A+
∑

cos2A ≤ 1 (4)

Since 1−
∑

cos2A = 2
∏

cosA, (4) is equivalent to

(
∏

cosA)(1− 8
∏

cosA) ≥ 0 (5)

But
∏

cosA ≥ 0 since the triangle is non-obtuse and 8
∏

cosA ≤ 1 by 2.24 of Bottema
et al. Thus (5) is established. We note that there is equality in (5) if and only if the
triangle is equilateral or a right triangle. This implies that there is equality in (1) if
and only if the triangle is equilateral or right isosceles.
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Amer. Math. Monthly, 80(1973) 75.

E 2393. Proposed by M. S. Klamkin, Ford Motor Company

Parallel lines are drawn through the vertices A0, A1, . . ., An of a given simplex of
volume V , terminating in the opposite faces (extended if necessary) in the points B0,
B1, . . ., Bn, respectively.

(1) Show that the volume of the simplex determined by. B0, B1, . . ., Bn is nV

(2) Show that the volume of the simplex determined by the vertices A0, A1, . . ., Ar,
Br+1, Br+2, . . ., Bn is given by V ′

r = |n− r − 1|V .

Amer. Math. Monthly, 80(1973) 1145–1146.

Solution by Leon Gerber, St. John’s University. Parallel lines are drawn through the
vertices A0, A1, . . ., An, etc. Let the weights of the point P with respect to the given
simplex be (pi) where

∑n
i=0 pi = s, with s = 1 if P is a proper point and s = 0 if P

is improper. The the cevians AiP (which are parallel if P is improper) meet the face
opposite Ai in Bi = (bij) where bii = 0 and bij = pj/(s − pi). Thus the ratio of the
content of A0A1 . . . Ar−1Br . . . Bn to that of the gven simplex is

det

∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 1 0 · · · 0
br,0 · · · br,r−1 br,r · · · bn,n

· · · · · · · · · · · · · · · · · ·
bn,0 · · · bn,r−1 bn,r · · · bn,n

∣∣∣∣∣∣∣∣∣∣∣∣
= det

∣∣∣∣∣∣
0 · · · pn/(s− pr)
· · · · · · · · ·

pr/(s− pn) · · · 0

∣∣∣∣∣∣
= (r − n)

n∏
i=r

pi/(pi − s)
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Amer. Math. Monthly, 80(1973) 75.

E 2394. Proposed by S. L. Greitzer, Rutgers University, and M. S. Klamkin, Ford
Motor Company

A line is drawn through the centroid G of a simplex A0, A1, . . ., An intersecting the
faces (extended if necessary) in points B0, B1, . . ., Bn, respectively. Show that

n∑
i=1

1

GBi

= 0

where GBi denotes the directed distance from G to Bi. Show also that the above
property characterizes the point G as the centroid; i.e., if the above sum vanishes for
all arbitrary lines, then G is the centroid.

This generalizes known results for triangles and tetrahedrons.

Amer. Math. Monthly, 81(1974) 283–285

Solution by Mildred L. Stancl, Nichols College, Dudley, Massachusetts. Let G be an
arbitrary point which does not lie on a face of a simplex A0A1 . . . An. (The word face
throughout means extended face, i.e., the (n − 1)-dimensional affine subspace spanned
by n of the points A0, A1, . . . , An.) Let L be an arbitrary line through G and let B0,
B1, . . . , Bn be defined as follows: If L intersects the face opposite Ai, let Bi be the
point of intersection and call Bi finite. If L does not intersect the face opposite Ai, let
Bi be a fictitious point and call Bi infinite. Define 1/GBi to be zero if Bi is infinite.

Since the fact that
∑

1/GBi = 0 is immediate if all Bi are infinite, assume that L
intersects at least one face in the point B, where B is one of B0, B1, . . . , Bn. (Unless
otherwise noted, all summations run from 0 to n.) Then B is finite and for each Bj

which is finite the following statements hold:

(i) The j th barycentric coordinate of Bj is zero.

(ii) Bj = (1− tj)G+ tjB where tj is a unique nonzero real number.

(iii) GBj = tjGB where GB is nonzero.

Now let G be the barycentre (centroid) of the simplex, so that G = (n + 1)−1
∑
Ak

and let b0, b1, . . . , bn be the barycentric coordinates of B so that B =
∑
bkAk, If Br is

an infinite point, then the r th barycentric coordinate of B is (n + 1)−1. This remark
is verified by noting the existence of points P and Q lying in the face opposite Ar such
that B is a point of the line segment with endpoints Ar and P , and G is a point of
the line segment with endpoints Ar and Q. The fact that L does not intersect the face
opposite Ar means that the line segment with endpoints P and Q lying in that face is
parallel to the line segment with endpoints B and G lying in L. Thus if s = (n + 1)−1,
then

B = (1 − s)P + sAr, G = (1 − s)Q+ sAr
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The equality br = (n + 1)−1 follows since P and Q have r th barycentric coordinate
zero. Since

∑
bk = 1, the following statement holds:

(iv) If G is the barycentre, if exactly N (1 ≤ N ≤ n + 1) of the points B0, B1, . . . ,
Bn are finite, and if B with barycentric coordinates b0, b1, . . . , bn is one of the finite
points, then

∑′
j bj = N/(n + 1).

(The notation
∑′

j throughout this solution means the summation over those j for
which Bj is finite.)

If Bj is a finite point, statement (ii) implies that

Bj =
∑[

1

n+ 1
(1− tj) + tjbk

]
Ak

and (i) implies that

tj =
1

1− (n+ 1)bj

Since
∑

1/GBi =
∑′

j 1/GBj, statement (iii) implies that

∑ 1

GBi

=
1

GB

′∑
j

[1− (n+ 1)bj]

It now follows from (iv) that
∑

1/GBi = 0.

Conversely, if G is any point such that
∑

1/GBi = 0 for all lines through G, then G
does not lie on a face of A0A1 . . . An for otherwise the denominator of at least one of
the summands would vanish. Let Ak be any one of A0, Ai, . . . , An and consider the
line through G and Ak. The point Ak lies in all but one of the faces; hence, n of B0,
B1, . . . , Bn are equal to Ak and are finite. The remaining one, Bk, is also finite, for
otherwise the sum of the reciprocals of the directed distances would be n/GAk which
is nonzero. Let go, g1, . . . , gn be the barycentric coordinates of G and let ao, a1, . . . ,
an be the barycentric coordinates of Ak. The statements (ii) and (iii) imply

ti =
gi

gi − ai

Statement (iii) implies that

0 =
∑ 1

GBi

=
1

GAk

(
n+

1

tk

)
=

1

GAk

(
n+ 1− ak

gk

)
Since ak = 1 it follows that gk = (n + 1)−1 and G is the barycentre.

Also solved by [. . . ] the proposers.
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Amer. Math. Monthly, 80(1973) 323

Non-Negative Forms

E 2348. Proposed by Leonard Carlitz, Duke University

Let P be a point in the interior of the triangle ABC. Let R1, R2, R3 denote the
distances from P to the vertices of ABC and let r1, r2, r3 denote the perpendicular
distances from P to the sides of ABC. Show that∑

R1(r1 + r3) ≥
∑

(r1 + r2)(r1 + r3) (1)∑
(R1 +R2)(R1 +R3) ≥ 4

∑
(r1 + r2)(r1 + r3) (2)

with equality if and only if ABC is equilateral and P is its centre.

Solution by M. S. Klamkin, Ford Scientific Laboratory. To satisfy (1) we prove a
stronger inequality. For the triangle ABC let a, b, c be the lengths of the sides BC,
CA, AB respectively. From [1, p.107] we have

R1 ≥
r2c+ r3b

a
R2 ≥

r1c+ r3a

b
R3 ≥

r1b+ r2a

c
(3)

with equality if and only if ABC is equilateral and P is its centre. We now prove that∑
a−1(r2c+ r3b)(r2 + r3) ≥

∑
(r1 + r2)(r1 + r3) (4)

This inequality implies (1). This inequality is actually valid for all real r1, r2, r3
since it will be shown to be a non-negative quadratic form with equality if and only if
a = b = c. The matrix associated with (4) is given by

M =

 b2+c2−bc
bc

a+b−3c
2c

a+c−3b
2b

b+a−3c
2c

c2+a2−ca
ca

b+c−3a
2a

c+a−3b
2b

c+b−3a
2a

a2+b2−ab
ab


As is well known, (4) is a non-negative form if three principal minors M1, M2, M3 of
M are non-negative. After some algebraic manipulation we find that

bcM1 = (b− c)2 + bc > 0

4abc2M2 = 4c2(
∑

a2 −
∑

ab) + ab(2
∑

ab−
∑

a2) > 0 and

(x+ y)2(y + z)2(z + x)2M3 = (
∑

xy)(
∑

x2 −
∑

xy)(
∑

x2 + 3
∑

xy) ≥ 0

with equality if and only if x = y = z, or equivalently a = b = c. Here we simplify the
calculation of M3 by using the duality transformation [2]

a = y + z b = z + x c = x+ y
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where x. y, z are arbutrary non-negative numbers, not all zero.

Inequality (2) follows from adding the following two inequalities found in [1, p.11o]:

3
∑

R2R3 ≥ 12
∑

r2r3
∑

R2
1 ≥ 4

∑
r2
1

These inequalities are inequalities if and only if ABC is equilateral and P is its centre.

1. O. Bottema et al., Geometric Inequalities, Noordhoff, Groningen, 1969.

2. M. S. Klamkin, Duality in triangular inequalities, Ford Motor Company preprint,
July 1971.
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Amer. Math. Monthly, 80(1973) 807.

E 2428. Proposed by M. S. Klamkin, Ford Motor Company

If a− i (1 = 1, 2, . . . , n) denote real numbers, show that

nmin(ai) ≤
∑

ai − S ≤
∑

ai + S ≤ nmax(ai)

where
(n− 1)S2 =

∑
1≤i<j≤n

(ai − aj)
2 (S ≥ 0)

and with equality if and only if ai = constant.

Amer. Math. Monthly, 81(1974) 782–783.

I. Solution by Ellen Hertz, Bronx Community College; Carolyn MacDonald, University
of Missouri; Wolfe Snow, Brooklyn College; and Melvin Tews, University of California,
Berkeley (independently). We can assume that a1 ≤ a2 ≤ · · · ≤ an. Then

S2 =
1

n− 1

n∑
i=2

i−1∑
j=1

(ai − aj)
2 ≤ 1

n− 1

n∑
i=2

(i− 1)(ai − a1)
2

≤
n∑

i=2

(ai − a1)
2 ≤

{
n∑

i=1

(ai − a1)

}2

Taking square roots we obtain

na1 ≤
n∑

i=1

ai − S

Similarly,

S2 ≤ 1

n− 1

n−1∑
j=1

(n− j)(an − aj)
2 ≤

{
n∑

j=1

(an − aj)

}2

from which it follows that
n∑

j=1

aj + S ≤ nan

It is clear the equality holds anywhere if and only if it holds throughout and this is
true if and only if ai = constant.

[[the misprint – see below – in the last displayed inequality has been corrected]]
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II. Comment by O. P. Lossers, Technological University, Eindhoven, the Netherlands.
A statistical interpretation is possible. Let a1, a2, . . ., an (n ≥ 2) be a random
sampleof a random variable A with mean µ and variance σ2. As estimates for µ and
σ2 one usually takes

ā =
1

n

n∑
i=1

ai s2 =
1

n− 1

n∑
i=1

(ai − ā)2

The inequalities in the problem then take the form

min ai ≤ ā− s√
n
≤ ā+

s√
n
≤ max ai (∗)

Note that if An is the random variable defined by averaging samples of size n from A,
then the mean of An is also µ, but its variance is σ2/n, so that quantities in (∗) are
related to the parameters of An.

The proposer notes that the case n = 3 is due to D. S. Mitrinović, Analytic Inequalities, Springer-
Verlag, Heidelberg, 1970, p.215.

Amer. Math. Monthly, 82(1975) 401.

III. Comment by C. L. Mallows, Bell Laboratories, Murray Hill, New Jersey. The
left-hand inequality, na1 ≤

∑
ai − S, will be an equality if and only if

a1 = a2 = · · · = an−1 (assuming as in the published solution that a1 ≤ a2 ≤ · · · ≤ an),
contrary to the statement on lines 10–11 of p.783. This follows by taking r = 1 in
Corollary 6.1 of my paper (jointly with Donald Richter), Inequalities of Chebyshev type
involving conditional expectations, Ann. Math. Statist., 40(1969) 1922–1932. Similarly
the dual inequality

∑
aj +S ≤ nan (note the misprint on line 9 of p.783) is an equality

if and only if a2 = a3 = · · · = an. This follows, too, from my paper by using the
inequality dual to that in Corollary 6.1 (i.e., using ur instead of vr). Thus equality
holds in both if and only if n = 2 or all ai are equal. Certainly

∑
ai − S =

∑
a1 + S

if and only if S = 0, i.e., if and only if all ai are equal.
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Amer. Math. Monthly, 81(1974) 1143–1145.

Six equal regions? Yes, Seven? No.

E 2391. Proposed by V. R. R. Uppuluri, Oak Ridge National Laboratory

It is well known that three chord can divide a circular disk into at most seven pieces.
Can these seven pieces all have the same area?

IV. Comment by M. S. Klamkin, Ford Motor Company (similar comment by R. C.Buck,
University of Wisconsin at Madison). The answer is negative even if the circular region
is replaced by a convex region; see R. C. Buck and E. F. Buck, Equipartition of convex
sets, Math. Mag., 22(1949) 195–198, where it is shown that at most six of the regions
can have the same area, and that these equal regions must be the six outer ones.

Amer. Math. Monthly, 81(1974) 291–292

Alpha-max, Beta-min, and a limit for e

E 2406 [1973, 316]. Proposed by Erwin Just and Norman Schaumberger, Bronx Com-
munity College

What is the maximum value of α and the minimum value of β for which(
1 +

1

n

)n+α

≤ e ≤
(

1 +
1

n

)n+β

for all positive integers n ?

Solution by M. S. Klamkin, Ford Motor Company. On taking logarithms we obtain

αmax = inf
n

{
1

log(1 + 1/n)
− n

}
βmin = sup

n

{
1

log(1 + 1/n)
− n

}
We now show that the function

F (x) =
1

log(1 + 1/x)
− x

is monotonically decreasing for x > 0 by showing that its derivative is positive:

F ′(x) =
1

x(x+ 1)[log(1 + 1/x)]2
− 1 =

sinh2 u

u2
− 1 > 0

where e2u=1+1/x. Thus, αmax = 1/ log 2− 1 = 0.4426950 and βmin = limn→∞ F (n). By
expanding log(1 + x) in a Maclaurin series, we have

F (n) =

[
1

n
− 1

2n2
+O

(
1

n3

)]−1

− n

from which it follows that βmin = limn→∞ F (n) = 1
2
.
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Amer. Math. Monthly, 81(1974) 525.

5974. Proposed by M. S. Klamkin, Ford Motor Company

Prove that aside from a polynomial of integration of degree 2n− 1,

x2n−1

∫
dx

x2

∫
dx

x2
· · ·
∫
dx

x2

∫
x2n−1F (x) dx =

∫ ∫
· · ·
∫
F (x) (dx)2n

where there are 2n integrals on each side.

[[I don’t understand this sentence!]]

Amer. Math. Monthly, 83(1976) 143–144.

Solution by A. B. Farnell, Colorado State University. Consider

yn = xn−1

∫
dx

x2

∫
dx

x2

∫
· · ·
∫
dx

x2

∫
G(x) dx

where there are n integrals involved. We propose to show by induction that

y(n)
n = x1−nG(x)

This expression is readily verified for n = 1, 2, 3. Thus we assume it valid for y
(n−1)
n−1 .

Then

y′n = (n− 1)xn−2

∫
· · ·
∫
G(x) dx+ xn−3

∫
· · ·
∫
G(x) dx

xy′n = (n− 1)yn + yn−1

Differentiating (n−1) times, we obtain

xy(n)
n + (n− 1)y(n−1)

n = (n− 1)y(n−1)
n + x2−nG(x)

or
y(n)

n = x1−nG(x)

This shows that

xn−1

∫
dx

x2
· · ·
∫
xn−1F (x) dx =

∫
· · ·
∫
F (x) (dx)n

modulo a polynomial of degree (n−1) for all n.
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ALGEBRA

Inequalities: exponentials

Amer. Math. Monthly, 81(1974) 660.

E 2483. Proposed by M. S. Klamkin, Ford Motor Company

Let x be nonnegative and let m, n be integers with m ≥ n ≥ 1. Prove that

(m+ n)(1 + xm) ≥ 2n
1− xm+n

1− xn

Amer. Math. Monthly, 82(1975) 758–760.

IV. Solution by the proposer. As above, we can assume that 0 < x < 1 and m > n,
and we shall show that the inequality is strict. Also, we shall not restrict m and n to
be integers, but shall allow them to be any positive real numbers m > n > 0. Now
let m + n = r and m − n = s so that r > s > 0 and let t = x1/2 so that 0 < t < 1.
Rearranging the desired inequality we get

1− t2r

rtr
>

1− t2s

sts

On letting t = e−y we get
sinh ry

ry
>

sinh sy

sy

where now 0 < y <∞. But x−1 sinh x has a power series expansion with only positive
coefficients, so that it is a strictly increasing function on (0,∞).

Editor’s comment. Assume that m > n are positive real numbers and that x 6= 1 is nonnegative. We
have seen that

(m + n)(1 + xm) >
2n(1− xm+n)

1− xn
(A)

It is not hard to see that the following inequality is actually equivalent to (A); let us call it the dual
of (A):

2m(1− xm+n)
1− xm

> (m + n)(1 + xn) (B)

(Both (A) and (B) can be rearranged to assert that

(m− n)− (m + n)xn + (m + n)xm − (m− n)xm+n

is positive if 0 ≤ x < 1 and negative if x > 1.)

Lepson shows that
2m(1− xm+n)

1− xn
> (m + n)(1 + xm) (C)

In the same way, the dual of this inequality is

(m + n)(1 + xn) >
2n(1− xm+n)

1− xm
(D)
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(Both (C) and (D) are equivalent to the statement that

(m− n) + (m + n)xn − (m + n)xm − (m− n)xm+n

is positive if 0 ≤ x < 1 and negative if x > 1.) These inequalities can be displayed conveniently by
the following diagram, where the arrows run from the larger quantities to the smaller:

2m(1−xm+n)
1−xm −→ (m + n)(1 + xn) −→ 2n(1−xm+n)

1−xm

2m(1−xm+n)
1−xn −→ (m + n)(1 + xm) −→ 2n(1−xm+n)

1−xn

0 ≤ x < 1 x > 1
?

6

?

6

(The inequality in the centre of the diagram can run either way, according as x > 1 or 0 ≤ x < 1.)
Note that in the case 0 ≤ x < 1, there is actually a chain of five inequalities, and that in the limit as
x → 1−, the middle three equalities of the chain approach equality.

The proposer comments that the special case of his inequality corresponding to n = 1 and m = 2p+1
appears as Problem 4.8 in D. S. Mitrinović, Elementary Inequalities, Noordhoff, Groningen, 1964,
p.95, and as Equation 3.2.4 in D. S. Mitrinović and P. M. Vasić, Analytic Inequalities, Springer-
Verlag, Heidelberg, 1970 p.198. He observes that similar results by V. I. Levin (3.2.12), by Beck
(3.2.11), and by J. M. Wilson (3.2.27), which appear in the latter reference can be extended by
analogous methods.
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Amer. Math. Monthly, 81(1974) 659.

E 2480. Proposed by M. S. Klamkin, Ford Motor Company

If ai ≥ 0,
∑
ai = 1 and 0 ≤ xi ≤ 1 for i = 1.2. . . . , n, prove that

a1

1 + x1

+
a2

1 + x2

+ · · ·+ an

1 + xn

≤ 1

1 + xa1
1 x

a2
2 · · ·xan

n

When does equality hold ?

Amer. Math. Monthly, 82(1975) 670–671.

Solution by Miriam Beesing, Junior, Hamline University. Assume without loss of
generality that ai > 0 for all i. The proposed inequality follows from a straightfor-
ward application of Jensen’s inequality for concave functions: If f is strictly concave
(downwards) on an interval I, then for all yi ∈ I,∑

aif(yi) ≤ f
(∑

aiyi

)
with equality if and only if y1 = y2 = · · · = yn. (See Roberts and Varberg, Convex
Functions, Academic Press, 1973, pp.189, 192.) To apply this to the proposed inequal-
ity, let yi = log xi and f(y) = (1+ey)−1, assuming for the moment that xi > 0 for all i.
Since 0 < xi ≤ 1, it follows that −∞ < yi ≤ 0 and since f ′′(y) = ey(ey−1)(1+ey)−3 < 0
if y < 0, we see that f is strictly concave downwards on (−∞, 0]. Then

n∑
i=1

ai

1 + xi

=
n∑

i=1

ai(1 + exp yi)
−1 ≤

{
1 + exp

(
n∑

i=1

aiyi

)}−1

=

{
1 +

n∏
i=1

exp(aiyi)

}−1

=

{
1 +

n∏
i=1

xai
i

}−1

with equality if and only if y1 = · · · = yn, i.e., if and only if x1 = · · · = xn.

If some xi = 0, the above proof breaks down, but this case is easily handled on its own
merits. Again, equality holds if and only if x1 = · · · = xn, which in this case means
that they are all 0.

If we allow ai = 0 (and assume 00 = 1), then the condition for equality becomes xi =
constant for all i for which ai > 0.

Finally we remark that the inequality is reversed if xi ≥ 1 for all i. This is because
f ′′(y) > 0 on (0.∞) and thus f is concave upwards on [0,∞).

Editor’s comment. The proposer notes that the special case n = 2 of our problem is a lemma of
D. Borwein, used in his solution to Problem 5333 [1965,1030; 1966, 1022]. Borwein’s lemma was used
to prove the special case a1 = · · · = an = n−1 of our problem; once this was shown, 5333 follows
from a trivial application of the arithmetic-geometric mean inequality. [Hans ]Kappus uses Borwein’s

111



lemma as a starting point and obtains our result by an easy induction. Kappus also notes that this
problem generalizes Problem 254 in Elem. Math., 11(1956) p.112.

[R. J. ]Evans shows that the problem generalizes to infinite sequences {ai} and {xi} with ai ≥ 0,∑
ai = 1 and 0 ≤ xi ≤ 1. [E. B. ]Rockower shows, using Riemann sums, that the following continuous

analog holds: Suppose that a(t) and x(t) are continuous functions on the interval [0,1] (the actual
interval is not important) and that a(t) ≥ 0,

∫
a(t) dt = 1 and 0 ≤ x(t) ≤ 1. Then∫ 1

0

a(t)[1 + x(t)]−1 dt ≤
{

1 + exp
∫ 1

0

a(t) log x(t) dt

}−1

with equality if and only if x(t) is constant on the set where a(t) > 0. The above results can be
subsumed by the following generalization, which can be shown by first considering simple functions
and then passing to the limit: Let (X, A, µ) be a measure space with µ(X) = 1 and let f be a
measurable real-valued function on X which satisfies 0 ≤ f(x) ≤ 1 almost everywhere. Then∫

(1 + f)−1 dµ ≤
{

1 + exp
∫

log f dµ

}−1

with equality if and only if f(x) is almost everywhere constant.
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Amer. Math. Monthly, 81(1974) 660

E 2483. Proposed by M. S. Klamkin, University of Waterloo

Let x be non-negative and let m, n be integers with m ≥ n ≥ 1. Prove that

(m+ n)(1 + xm) ≥ 2n
1− xm+n

1− x ∗ n

Amer. Math. Monthly, 82(1975) 759

IV. Solution by the proposer. As above [i.e., in earlier solutions] we can assume that
0 < x < 1 and m > n, and we shall show that [in these cases] the inequality is strict.
Also, we shall not restrict m and n to be integers, but shall allow them to be any
positive real numbers m > n > 0. Nowlet m+ n = r and m− n = s so that r > s > 0
and let t = x1/2 so that 0 < t < 1. Rearranging the desired inequalitywe get

1− t2r

rtr
>

1− t2s

sts

On letting t = e−y we get
sinh ry

ry
>

sinh sy

sy

where now 0 < y <∞. But x−1 sinh x has a power series expansion with only positive
coefficients, so that it is a strictly increasing function on (0,∞).
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Amer. Math. Monthly, 81(1974) 666–668

Area Summations in Partitioned Convex Quadrilaterals

E 2423 [1973, 691]. Proposed by Lyles Hoshek, Monterey Park, California, and
B. M. Stewart, Michigan State University

Let there be given a plane convex quadrilateral of area A. Divide each of its four
sides into n equal segments and join the corresponding points of division of opposite
sides, forming n2 smaller quadrilaterals. Prove: (a) the n smaller quadrilaterals in any
diagonal (ordinary or broken) have a composite area equal to A/n; (b) The composite
area of any row of smaller quadrilaterals and its complementary row (row i and row
n+ 1− i) is equal to 2A/n. (In particular, if n is odd this implies that the composite
area of the middle row is A/n.)

Solution by Donald Batman, M.I.T. Lincoln Laboratory, and M. S. Klamkin, Ford
Motor Company. We obtain more general results by dividing one pair of opposite sides
into n equal segments and the other pair of sides into m equal segments, as shown in
the figure

P (1, 2)

∆

∆′

O

B

C

D

Denote the given quadrilateral by OBDC, where O is the origin. If X is a point in the
plane, then we make the usual identification of X with the vector X from the origin to
the point X. Define p, q by

D = (p+ 1)B + (q + 1)C.

Note that p, q > −1 and also p + q > −1 since the quadrilateral is convex. The
points of division will be denoted by P (r, s), with r = 0, 1, . . . ,m and s = 0, 1, . . . , n;
e.g., P (0, 0) = O and P (m,n) = D. Let Q(r, s) denote the small quadrilateral whose
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upper left-hand vertex is P (r, s) and partition Q(r, s) into the two triangles 4(r, s)
and 4′(r, s) as shown in the figure.

One can show that for suitable scalars x and y

P(r, s) =
r

m
B + x

{
C +

r

m
(D−C−B)

}
=
s

n
C + y

{
B +

s

n
(D−B−C)

}
Since B and C are linearly independent, we find that x = s/n and y = r/m. Thus

P(r, s) =
r

m

{
1 +

sp

n

}
B +

s

n

{
1 +

rq

m

}
C (1)

Since P(r+1, s)−P(r, s) and P(r, s+1)−P(r, s) are independent of r and s respectively,
each segment of the figure is divided into equal parts—m for the “horizontal” segments
and n for the “vertical” segments (as shown in the figure).

For the area |∆(r, s)| of 4(r, s) we have

2|∆(r, s)| = |{P(r + 1, s)−P(r, s)} × {P(r, s+ 1)−P(r, s)}|

=
1

mn

{
1 +

sp

n
+
rq

m

}
|B×C| (2)

and similarly

2|∆′(r, s)| = 1

mn

{
1 +

(s+ 1)p

n
+

(r + 1)q

m

}
|B×C| (3)

Note also that if A is the area of OBDC, then

2A = (p+ q + 2)|B×C| (4)

Look now at any 4(r, s) and its centro-symmetric 4′(m− 1− r, n− 1− s). From (2),
(3) and (4) we have

|∆(r, s)|+ |∆′(m− 1− r, n− 1− s)| = A

mn
(5)

For m, n odd it follows from this that the central small quadrilateral has area A/mn.
(The special case m = n = 3 was established using along synthetic proof by B. Green-
berg, That area problem, Math. Teacher 64(1971) 79–80.)

If we take any small quadrilateral Q(r, s) and its centro-symmetric quadrilateral
Q(m− 1− r, n− 1− s) we see from (5) that

|Q(r, s)| + |Q(m− 1− r, n− 1− s)| = |∆(r, s)|+ |∆′(r, s)|
+ |∆(m− 1− r, n− 1− s)|+ |∆′(m− 1− r, n− 1− s)|

=
A

mn
+

A

mn
=

2A

mn
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which proves part (b).

From (2), (3) and (4) we have

|Q(r, s)| = |∆(r, s)|+ |∆′(r, s)|

=
A

mn(p+ q + 2)

{
2 +

(2s+ 1)p

n
+

(2r + 1)q

m

}

Let m = n; we can now show that part (a) now follows from this formula. In fact
we can show that the result hold not only for broken diagonals, but for “generalized
diagonals”, i.e., for selections of n smaller quadrilaterals with one from each row and
each column, as in the individual terms of a matrix expansion. More precisely, let σ
be a permutation of (0, 1, . . . , n−1); an easy computation shows that

n−1∑
r=0

|Q(r, rσ)| = A

n

giving the result.

We note that Problem E 1548 [1963, 892] and its generalizations follow from the above
results,
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Amer. Math. Monthly, 81(1974) 902.

E 2495. Proposed by M. S. Klamkin, Univerity of Waterloo, Ontario, and L. A. Shepp,
Bell Telephone Laboratories

[[Shepp’s name added as a proposer at Amer. Math. Monthly, 82(1975) 168.]]

Let n be a natural nmber. Evaluate the following limit:

In = lim
x→∞

{
(log x)2n

2n
−
∫ x

0

(log t)2n−1

1 + t
dt

}
Amer. Math. Monthly, 82(1975) 938.

Solution by Watson Fulks, University of Colorado. Consider the slightly modified prob-
lem where 2n is replaced by an arbitrary positive integer k. Then the substitutions y =
log x and u = log t reduce the problem to the determination of f(∞) = limy→∞ f(y)
where f is given by

f(y) =
yk

k
−
∫ y

−∞

uk−1

1 + e−u
du

We note that

f(0) = −
∫ 0

−∞

uk−1

1 + e−u
du = (−1)k

∫ ∞

0

uk−1

1 + eu
du

so that

f(y) = f(0) +

∫ y

0

f ′(t) dt = f(0) +

∫ y

0

uk−1

1 + eu
du

from which

f(∞) = [1 + (−1)k]

∫ ∞

0

uk−1

1 + eu
du

By formula (6), p.312 of Tables of Integral Transforms, Vol.1, Erdélyi et al., McGraw-
Hill, 1954, or by expanding (1 + eu)−1 in powers of e−u and integrating termwise, this
is

f(∞) = [1 + (−1)k]ζ(k)Γ(k)[1− 21−k]

Further, f can be written in the form

f(y) = f(∞)−
∫ ∞

y

uk−1

1 + eu
du

from which the asymptotic behavior of f as y → ∞ is easily deduced, again by
expanding (1 + eu)−1. In particular

f(y) = f(∞)− e−y

k−1∑
j=0

(
j

k − 1

)
yjΓ(k − j) +O(e−2yyk−1)

= f(∞)− e−yyk−1[1 +O(1/y)].

Editor’s comment. As noted by a number of solvers, the solution may be expressed in terms of
Bernoulli numbers using the formula (2n)!ζ(2n) = 22n−1π2n|B2n|.
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Amer. Math. Monthly, 81(1974) 903–904

Minimal Curve for Fixed Area

E 2185 [1969, 825; 1970, 531]. Proposed by Michael Goldberg, Washington, D.C.

Given a convex quadrilateral. Find the shortest curve which divides it into two equal
areas.

Comment by M. S. Klamkin, Ford Motor Company. Although the properties of the
shortest bisecting arc as given by both Ogilvy and Goldberg are correct, neither solver
has really supplied a full mathematical proof. At a geometry seminar held at Michigan
State University several years ago, Branko Grünbaum raised again the more general
problem of determining the shortest arc which divides a given simply connected area
in a fixed ratio, and which lies wholly within the area. Grünbaum noted that Norbert
Wiener [The shortest line dividing an area in a given ratio, Proc. Cambridge Philos.
Soc., 18(1914) 56–58] proved that (if such an arc exists) it must consist of an arc of a
finite or infinite circle or a chain of such arcs having the propertythat two successive
arcs meet only on the boundary of the given area. At the end of this paper is the
footnote, “It is almost self-evident that the shortest line to divide a convex area in a
given ratio is a single arc of a circle, but this I have not been able to prove.” This
conjecture includes E 2185 as a special case.

Wiener’s shortest-line conjecture went unproved for almost sixty years, but in 1973,
Richard Joss, a student of Grünbaum, announced that he had proved it [Notices
A.M.S., June 1973, Abstract 705-D1, p.A-461].

Amer. Math. Monthly, 81(1974) 904–905

Symmedian Point of a Triangle

E 2347 [1972, 303; 1973, 321]. Proposed by Leonard Carlitz, Duke University

Let P denote a point in the interior of the triangle ABC. Let α, β, γ denote the angles
of ABC. Let R1, R2, R3 denote the distances from P to the vertices of ABC and let
r1, r2, r3 denote the distances from the sides of ABC. Show that

R2
1 sin2 α+R2

2 sin2 β +R2
3 sin2 γ ≤ 3(r2

1 + r2
2 + r2

3)

with equality if and only if P is the symmedian point of ABC.

IV. Solution by M. S. Klamkin, Ford Motor Company. The published solution, which
is rather long, involves Lagrange multipliers, which should always be avoided when-
ever possible in proving elementary triangle inequalities. Furthermore, the solution is
incomplete since sufficiency was not established.

We give a generalization by starting with the known inequality [1, p.7]

xR2
1 + yR2

2 + zR2
3 ≥

a2yz + b2zx+ c2xy

x+ y + z
(1)
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where x, y, z are arbitrary real numbers such that x + y + z > 0 and where there is
equality if and only if x/F1 = y/F2 = z/F3 (F1 denotes the area of BPC, etc.). (A
physical interpretation of (1) is that the polar moment of inertia of three masses x, y,
z located at A, B, C respectively, is minimized by taking the axis through the centroid
of the masses.)

For any inequality of the form φ(R1, R2, R3, a, b, c) ≥ 0 there is a dual equality
φ(r1, r2, r3, R1 sinα,R2 sin β,R3 sin γ) ≥ 0, obtained by considering the pedal triangle
of P . Here the distances from P to the vertices of the pedal triangle are r1, r2, r3 and
the sides of the pedal triangle are R1 sinα, R2 sin β, R3 sin γ, respectively. Thus the
dual of (1) is

xr2
1 + yr2

2 + zr2
3 ≥

yzR2
1 sin2 α+ zxR2

2 sin2 β + xyR2
3 sin2 γ

x+ y + z
(2)

Then the stated inequality corresponds to the special case x = y = z of (2). There is
equality if and only if the point P is the centroid of the pedal triangle and consequently
if and only if P is the symmedian point of ABC [2, Theorem 350]. Coincidentally, the
stated inequality appears in the same form in [1, p.10]. By applying (1) to the right
hand side of (2) we obtain∑

yzR2
1 sin2 α

x+ y + z
≥ 4F 2

a2

x
+ b2

y
+ c2

z

(3)

Inequalities (2) and (3) also provide a strengthening and a generalization of the fol-
lowing known inequality [2, Theorem 349], [3, Item 12.54, p.118]:

r2
1 + r2

2 + r2
3 ≥

4F 2

a2 + b2 + c2

1. M. S. Klamkin, Nonnegative Quadratic Forms and Triangle Inequalities, Ford Motor
Company Preprint, June 1971. (Also see Notices A.M.S., Oct.1971, p.966.)

2. R. A. Johnson, Advanced Euclidean Geometry, Dover, New York, 1960.

3. O. Bottema etal., Geometric Inequalities, Wolters-Noordhoff, Groningen, 1969.

119



Amer. Math. Monthly, 81(1974) 1034.

5997. Proposed by M. S. Klamkin, Ford Motor Company

Prove that
|xp−1(x− 1)p(x− 2)p · · · (x− n)p| ≤ Γ((1 + n)p)

where 0 ≤ x ≤ n and p, n are real and ≥ 1. (This inequality has been given by A. Os-
trowski for integral p, n. See Mitrinović and Vasić, Analytic Inequalities, Springer-
Verlag, 1970, p.198.)

Amer. Math. Monthly, 83(1976) 490–491.

Solution by Thomas Foregger, Bell Laboratories, Murray Hill, New Jersey. Let

fn(x) = |xp−1(x− 1)p(x− 2)p · · · (x− n)p|

We show that

fn(x) ≤
(
p− 1

2p− 1

)p−1(
p

2p− 1

)p

{Γ(1 + n)}p if 0 ≤ x < 1

fn(x) ≤ 1

n
{Γ(1 + n)}p if 1 ≤ x ≤ n

First, suppose that 0 ≤ x ≤ 1. Then, using Γ(n+ 1) = n! and the relation
|(x− k)p| = (k − x)p ≤ kp for 0 ≤ x < 1 and k = 1, 2, . . . , n, we have that

fn(x)

(n!)p
= xp−1 (1− x)p

1p

(2− x)p

2p
· · · (n− x)p

np
≤ xp−1(1− x)p

Elementary calculus shows that the right hand side has a maximum value of(
p− 1

2p− 1

)p−1(
p

2p− 1

)p

Next, suppose that1 ≤ x ≤ n and let m = [x]. Then

|(x− k)p| =
{

(x− k)p if 1 ≤ k ≤ m
(k − x)p if m+ 1 ≤ k ≤ n

so that
fn(x)

(n!)p
=
xp−1

np−1

m−1∏
k=1

(x− k)p

(n− k)p
· (x−m)p

n
·

n∏
k=m+1

(k − x)p

(k −m)p

Clearly, 0 ≤ x− k ≤ n− k if 1 ≤ k ≤ m− 1 and 0 ≤ k− x ≤ k−m if m+ 1 ≤ k ≤ n.
Also x ≤ n. Thus

fn(x)

(n!)p
≤ (x−m)p

n
≤ 1

n

Editor’s note. [Emil ]Grosswald observes that the inequality written as |x(x−1) · · · (x−n)|x−1/p ≤ n!
is an easy consequence of Ostrowski’s theorem.

120



APPLIED MATHEMATICS

Physics: projectiles

Amer. Math. Monthly, 82(1975) 520–521.

E 2535. Proposed by M. S. Klamkin, University of Waterloo

A body is projected in a uniform gravitational field and is subject to a resistance
which is a function of its speed |v|. If the acceleration a of the body always has a
constant direction, no matter what the initial velocity v0, show that a = a0e

−kt for
some constant k.

Amer. Math. Monthly, 83(1976) 657.

Solution by Harry Lass and Robert M. Georgevic (jointly), Jet Propulsion Laboratory,
Pasadena, California. We have a = g − f(v)v = λ(t)a0 where g is the constant
gravitational acceleration, a and v the acceleration and velocity of the body, v = |v|,
t the time and a0 = a(0), λ(0) = 1. Differentiating with respect to time yields

(λ′(t) + f(v)λ(t))a0 = −f ′(v)dv
dt

v

For v not parallel to a0 it follows that f ′(v) = 0 and λ′(t) = −f(v)λ(t). Hence f(v) = k
(a constant), λ(t) = e−kt and a = e−kta0.

SOLID GEOMETRY

Tetrahedra: planes

Amer. Math. Monthly, 82(1975) 661.

Largest Cross-Section of a Tetrahedron

E 1298∗ [1958, 43]. Proposed by H. D. Grossman

It is not difficult to show that the longest linear section of a triangle is the longest side
of the triangle. Is the greatest planar section of a tetrahedron the largest face of the
tetrahedron ?

Solution by Murray S. Klamkin, University of Waterloo. The answer is yes, as was
shown in the solution to the identical Advanced Problem 5006 [1962, 63; 1963, 338;
1963, 1108]. Curiously enough, the corresponding result for a 5-simplex is false: See
D. W. Walkup, A simplex with a large cross section, this Monthly, 75(1968) 34–36.
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GEOMETRY

N-dimensional geometry: simplexes

Amer. Math. Monthly, 82(1975) 756.

E 2548. Proposed by Murray S. Klamkin, University of Waterloo

Let A0, A1, . . . , An be distinct points which lie on a hyperplane. Suppose that these
points are parallel projected into another hyperplane and that their images are
B0, B1, . . . , Bn respectively. Prove that for any r = 0, 1, . . . , n the volumes of the
simplexes spanned by A0, A1, . . . , Ar, Br+1, Br+2, . . . , Bn and by
B0, B1, . . . , Br, Ar+1, Ar+2, . . . , An are equal.

Amer. Math. Monthly, 83(1976) 815.

Solution by Aage Bondesen, Espergaerde, Denmark. Call the two given hyperplanes α
and β, and let the given parallel projection p be done from α to β. The set of midpoints
of the segments Ap(A), for A in α, is a hyperplane γ. Let r be the affine reflection in
γ such that r(A) = p(A) for A in α. Since r is volume-preserving, the desired result is
immediate.
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ALGEBRA

Maxima and minima

Amer. Math. Monthly, 83(1976) 54.

E 2573. Proposed by Murray S. Klamkin, University of Waterloo

If n positive real numbers vary such that the sum of their reciprocals is fixed and equal
to A, find the maximum value of the sums of the reciprocals of the n numbers taken j
at a time.

Amer. Math. Monthly, 84(1977) 298–299.

IV. Solution and a generalization by the proposer. Let a1, . . ., an be positive and define

Sr =
∑
sym

1

x1 + · · ·+ xr

and Tr =
r2Sr(
n−1
r−1

)
We shall prove that T1 ≥ T2 ≥ · · · ≥ Tn

Proof. The inequality

Tn−1 = (n− 1)Sn−1 ≥ n2Sn = Tn (1)

follows easily from the Cauchy-Schwartz inequality because

n− 1

Sn

= (n− 1)(x1 + · · ·+ xn) =
∑
sym

(x1 + · · ·+ xn−1)

Using (1), we have (r = 2, 3, . . . , n− 1)

(r − 1)
∑
sym

1

y1 + · · ·+ yr−1

≥ r2

y1 + · · ·+ yr

for any positive y1, y2, . . ., yn. Replacing (y1, . . . , yr) by (xk1 , . . . , xkr) and summing
over all r-tuples (k1, . . . , kr) such that 1 ≤ k1 < · · · < kr ≤ n we obtain (r− 1)(n− r+
1)Sr−1 ≥ r2Sr, i.e., Tr−1 ≥ Tr

Note that the proposed inequality is identical with T1 ≥ Tj
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GEOMETRY

Triangles: medians

Amer. Math. Monthly, 83(1976) 59–60.

Extended Medians of a Triangle

E 2505 [1974, 1111]. Proposed by Jack Garfunkel, Forest Hills High School, Flushing,
New York

Let a, b, c be the sides of a triangle ABC, and let ma, mb, mc be the medians to sides
a, b, c respectively. Extend the medians so as to meet the circumcircle again, and let
these chords be Ma, Mb, Mc respectively. Show that

Ma +Mb +Mc ≥
4

3
(ma +mb +mc) (1)

Ma +Mb +Mc ≥
2

3

√
3(a+ b+ c) (2)

When does equality occur?

II. Solution to (1) by Paul Erdős and M. S. Klamkin, University of Waterloo, Ontario.
Since ma(Ma −ma) = a2/4, etc., (1) can be rewritten as

3
∑

a ∗ 2/ma ≥ 4
∑

ma (1′)

It is knownthat one can form a triangle having sides ma, mb, mc with its respective
medians being 3a/4. 3b/4, 3c/4. Thus (1′) is equivalent to

4
∑

m2
a/a ≥ 3

∑
a 1′′

Since 4m2
a = 2b2 + 2c2 − a2, etc., (1′′) reduces to

∑
(b2 + c2)/a ≥ 2

∑
a or∑

(b+ a)(b− a)2/ab ≥ 0
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GEOMETRY

Polygons: convex polygons

Amer. Math. Monthly, 83(1976) 200.

Area of a Convex Polygon

E 2514. Proposed by G. A. Tsintsifas, Thessaloniki, Greece

Let P be a convex polygonand let K be the polygon whose vertices are the midpoints
of the sidesof P . A polygon M is formed by dividing the sides of P (cyclically directed)
in a fixed ratio p : q where p+ q = 1. Show that

|M | = (p− q)2|P |+ 4pq|K|

where |M | denotes the area of M , etc.

II. Comment by M. S. Klamkin, University of Waterloo. It follows as an easy conse-
quence that min |M | = |K| occurs for p = q = 1

2
.

ALGEBRA

Inequalities: fractions

Amer. Math. Monthly, 83(1976) 483.

E 2603. Proposed by Murray S. Klamkin, University of Waterloo, Ontario

Let xi > 0 (1 ≤ i ≤ n). Prove that

r ·
∑ x1x2 · · ·xr

x1 + x2 + · · ·+ xr

≤
(
n

r

)(
x1 + · · ·+ xn

n

)r−1

and that equality holds if and only if x1 = x2 = · · · = xn.

(The “symmetric” sum above consists of
(

n
r

)
terms.)

Amer. Math. Monthly, 84(1977) 743.

Solution by Lawrence A. Shepp, Bell Laboratories, Murray Hill, New Jersey. If xi 6= xj

then replacing xi and xj by 1
2
(xi + xj) increases the left hand side and leaves the right

hand side constant as is easy to see. Thus the maximum of the left side under fixed
x1 + · · · + xn occurs only for x1 = · · · = xn in which case a direct calculation shows
that the equality holds.
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SOLID GEOMETRY

Analytic geometry

Amer. Math. Monthly, 84(1977) 218–219.

Volume and Surface Area of a Solid

E 2563 [1975, 937]. Proposed by J. Th. Korowine, Athens, Greece

Let f1 and f2 be n0n-negative periodic functions of period 2π and let h > 0. Let P1(θ)
and P2(θ) be the points whose cylindrical coordinates are (f1(θ), θ, 0) and (f2(θ), θ, 0)
respectively. Find integrals for the volume and surface area of the solid bounded by
the planes z = 0, z = h and the lines P1(θ)P2(θ).

Solution by M. S. Klamkin, University of Waterloo, Ontario, Canada. If a point
(r, θ, z) lies on the surface generated by the motion of the segment P1(θ)P2(θ) then

r = r(z, θ) = f1(θ) +
z

h
(f2(θ)− f1(θ)) 0 ≤ z ≤ h

Then the volume we want to find is given by

V =
1

2

∫ 2π

0

(∫ h

0

r(z, θ)2 dz

)
dθ =

h

6

∫ 2π

0

(f 2
1 + f1f2 + f 2

2 ) dθ

This can also be written in the form

V =
h

6
(B1 + 4M +B2)

where Bi (i = 1, 2) are the areas of the bases andM is the area of the mid-cross-section.

Explicitly

Bi =
1

2

∫ 2π

0

f 2
i dθ (i = 1, 2) M =

1

2

∫ 2π

0

(
f1 + f2

2

)2

dθ

The lateral surface area S is given by the well-known area integral in cylindrical
coordinates

S =

∫ 2π

0

∫ h

0

√
r2 + (rrz)2 + r2

θ dz dθ

where rz and rθ are the partial derivatives of r = r(z, θ). In our case we have

rz =
1

h
(f2 − f1) rθ = f ′1 +

z

h
(f ′2 − f ′1)

Then the entire area of the solid is B1 +B − 2 + S.
Editor’s Comment. The expression r2 + (rrz)2 + r2

θ is a quadratic in z. The formula for S which
emerges after this integration is given by [L. ]Kuipers but it is too complicated to state it here.

126



Amer. Math. Monthly, 85(1978) 386–387.

An Old Result

E 2637 [1977, 134]. Proposed by Armand E. Spencer, State University College, Pots-
dam, N.Y.

If a0, a1, . . ., an−1 are integers show that∏
0≤i<j≤n−1

ai − aj

i− j

is also an integer.

Comments. M. S. Klamkin informs us that this is the same as problem 132 in G. Pólya
and G. Szegö, Problems and Theorems in Analysis II, Springer 1976, p.134. The
solution appears as a special case of Problem 96 on pp.96 and 229:

By row manipulations we have∣∣∣∣∣∣∣∣∣
1 . . . 1(
x1

1

) (
xn

1

)
...

...(
x1

n−1

)
. . .

(
xn

n−1

)
∣∣∣∣∣∣∣∣∣ =

(
n−1∏
i=1

i−(n−i)

)
·

∣∣∣∣∣∣∣∣∣
1 . . . 1
x1 xn
...

...(
x1

n−1

)
. . .

(
xn

n−1

)
∣∣∣∣∣∣∣∣∣ =

∏
0≤i<j≤n−1

xi − xj

i− j

Klamkin, Henry Ricardo and the proposer refer to H. W. Segar, Messenger of Math.,
22(1892) 57–67 where this result is stated. The proofs appear in the same journal by
Cayley, 22(1892) 186–190 and by Segar, 23(1893) 31–37. Ricardo has also located this
problem in D. K. Faddeev and I. S. Sominskii, Problems in Higher Algebra, Freeman
1965, Problem 269 and in Shklarsky, Chentzov and Yaglom, The USSR Olympiad
Problem Book, Freeman 1962, Problem 62.

Ronald Evans refers to his joint paper with I. M. Isaacs, Proc. Amer. Math. Soc.,
58(1976) 51–54 where the result is attributed to O. H. Mitchell, Amer. J. Math.,
4(1881) 341–344.

Weyl’s formula for thedimension of simple SU(n)-modules shows that the number in
the problem is equal to the dimension of such a module and hence is an integer.
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ALGEBRA

Inequalities: exponentials

Amer. Math. Monthly, 86(1979) 222.

S 6. Proposed by M. S. Klamkin and A. Meir, University of Alberta

Let xi > 0 for i = 1, 2, . . . , n with n ≥ 2. Prove that

(x1)
x2 + (x2)

x3 + · · ·+ (xn−1)
xn + (xn)x1 ≥ 1

Amer. Math. Monthly, 87(1980) 302–303.

Solution by David Hammer. University of California, Davis. For n = 2, the solution
is in E 1342 [1959, 513]. Hence we assume that n > 2. We also may assume that
0 < xi < 1 for all i. Let S be the given sum. Since S is invariant under cyclic
permutation ofthe xi we may assume that x3 is minimal among the xi and hence that
x3 ≤ x1. Then

S ≥ (x1)
x2 + (x2)

x3 ≥ (x3)
x2 + (x2)

x3 ≥ 1

as desired.

The sharpness of the inequality is shown by the example with n = 4 and

a = r−rr

b = r−r c = r−1 d = 1

Then ab + bc + cd + da = 3r−1 + 1 and one can let r →∞.

A slight generalization is the following: Let xi > 0 for i = 1, 2, . . . , n and let s be a
permuation of 1,2,. . . , n which is the product of m disjoint cycles of length at reast 2
and has k fixed points. Then

n∑
i=1

(xi)
xs(i) ≥ m+ k

(
1

e

)1/e

This follows immediately from S 6 and the well-known fact that the minimum of xx

occurs when x = 1/e.

Editorial note. F. S. Cater gave the generalization that

(x1)x2 + (x2)x3 + · · ·+ (xn−1)x−n + (xn)x1 > 1 + (n− 2) min(xx2
1 , xx3

2 , . . . , xxn
n−1, x

x1
n )

128



NUMBER THEORY

Modular arithmetic: coprime integers

Amer. Math. Monthly, 86(1979) 306.

S 9. Proposed by M. S. Klamkin and A. Liu, University of Alberta

(a) Determine all positive integers n such that gcd(x, n) = 1 omplies that x2 ≡ 1
(mod n).

(b) Determine all positive integers n such that xy+1 ≡ 0 (mod n) implies that x+y ≡ 0
(mod n).

Amer. Math. Monthly, 87(1980) 488.

Solution by Arnold Adelberg, Grinnell College, and Jeffery M. Cohen, graduate student,
University of Pittsburgh (independently). (a) We show that n satisfies the condition if
and only if n | 24. First, if n has a prime divisor p > 3 and q is the product of all the
prime divisors of n different from p, then the Chinese Remainder Theorem implies the
existence of an x with x ≡ 1 (mod q) and x ≡ 2 (mod p). [Let q = 1 if n is a power
of p.] Then gcd(x, n) = 1 and x2 ≡ 4 6= 1 (mod p) so that x2 6≡ 1 (mod n). Next, if
n = 2r3s, then gcd(5, n) = 1 and 52 ≡ 1 (mod n) if and only if n | 24.

Conversely, if n | 24 then gcd(x, 2) = 1 implies x2 ≡ 1 (mod 8) and gcd(x, 3) = 1
implies x2 ≡ 1 (mod 3) so that n satisfies the condition.

(b) Let A and B be the sets of integers n satisfying the conditions in (a) and (b)
respectively. We show that A = B.

Let n ∈ A. The xy + 1 ≡ 0 (mod n) implies that gcd(x, n) = 1, x2 ≡ 1 (mod n) and

x+ y ≡ x+ x2y ≡ x(1 + xy) ≡ x · 0 ≡ 0 (mod n)

Thus A ⊆ B.

Now let n ∈ B. Then gcd(x, n) = 1 implies that there is an integer y with xy ≡ −1
(mod n) which implies x + y ≡ 0 (mod n) and so x2 ≡ x(−y) ≡ 1 (mod n), i.e.,
B ⊆ A. Hence A = B.

Editor’s Note. M. J. DeLeon established several generalizations of S 9 dealing with the property of
a pair (m,n) of positive integers such that gcd(a,m) = 1 implies an ≡ 1 (mod m). He also referred
to problem B-1 of the December 6, 1969 William Lowell Putnam Mathematical Competition, which
asked for a proof that n ≡ −1 (mod 24) implies 24 | σ(n).
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SOLID GEOMETRY

Tetrahedra: opposite edges

Amer. Math. Monthly, 86(1979) 392.

S 12. Proposed by M. S. Klamkin, University of Alberta

If a, a1; b, b1; c, c1 denote the lengths of the three pairs of opposite edges of an arbitrary
tetrahedron, prove that a+ a1, b+ b1, c+ c1 satisfy the triangle inequality.

[[‘sides’ changed to ‘edges’ in the above – R.]]

Amer. Math. Monthly, 87(1980) 576.

[[Spelling ‘Nelson’ corrected to ‘Nelsen’ in the following — R.]]

Solution by Roger B. Nelsen, Lewis and Clark College. Without loss of generality, we
may assume that the edges of of one face are a, b and c; while the edges emanating from
the vertex opposite that face are a1, b1 and c1. Hence the edges of the four triangular
faces of the tetrahedron are (a, b, c); (a1, b1, c); (a1, b, c1) and (a, b1, c1). Each triangle
satisfies the triangle inequality, so that

a < b+ c

a1 < b1 + c

a1 < b+ c1

a < b1 + c1

Adding and dividing by 2 gives a + a1 < b + b1 + c + c1. The other two forms of the
inequality are similarly obtained. Note that this result also holds for the degenerate
tetrahedron consiting of four distinct coplanar points.
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Amer. Math. Monthly, 87(1980) 309.

6294. Proposed by M. S. Klamkin, University of Alberta

If n = n1 + n2 + · · ·+ nr where ni ≥ 0,

[[I’ve changed nr to ni — R.]]

prove that
nn∏
nni

i

≥ Γ(1 + n)∏
Γ(1 = ni)

≥ (n+ 1)n+1∏
(ni + 1)ni+1

Amer. Math. Monthly, 89(1982) 216–217.

Solution by the proposer. The two inequalities will follow easily if we can show that
the two functions

F (x) = log(xx/Γ(1 + x)) and G(x) = log(Γ(1 + x)/(1 + x)1+x)

are superadditive, e.g., F (x + y) ≥ F (x) + F (y) for x ≥ 0. Since F (0) = G(0) = 0, it
suffices to show that both F (x) and G(x) are convex or equivalently that F ′′(x) ≥ 0,
G′′(x) ≥ 0 (See D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Heidelberg,
1970, pp.22–23).

F ′(x) = 1 + log x− Γ′(1 + x)/Γ(1 + x) = 1 + log x− ψ(1 + x)

F ′′(x) = 1/x− ψ′(1 + x) =
1

x
−
{

1

(1 + x)2
+

1

(2 + x)2
+ · · ·

}
By the integral test,

ψ′(1 + x) ≤ 1

(1 + x)2
+

∫ ∞

1+x

dt

t2
=

1

(1 + x)2
+

1

(1 + x)
=

2 + x

(1 + x)2
<

1

x

Thus F (x) is superadditive and∑
F (nk) ≤ F

(∑
ni

)
= F (n)

which establishes the left-hand half of (1).

G′(x) = ψ(1 + x)− 1− log(1 + x)

G′′(x) = ψ, (1 + x)− 1/(1 + x)

To show G′′(x) ≥ 0, first note that

G′′(x) =

∫ ∞

0

te−(x+1)t

1− e−t
dt−

∫ ∞

0

e−(x+1)t dt =

∫ ∞

0

t− 1 + e−t

1− e−t
e−(x+1)t dt

131



so G′′(x) ≥ 0, since e−t ≥ 1− t for t ≥ 0. Thus, G(x) is also superadditive which gives
the right-hand half of (2).

It is to be noted that the case of the left-hand inequality, when the ni are non-negative
integers, reduces to a problem of Leo Moser (Math. Mag., 31(1957) 113). The neat
solution by Chi-yi Wong was to first write (n1 +n2 + · · ·+nr)

n = nn and then to note
that each term of the multinomial expansion of the left-hand expression is less then
nn.

Editorial Note. The solution by [Otto G. ]Ruehr suggests a further problem: Determine

sup
{

α :
∑

fα(ti) ≥ fα(t) whenever t = t1 + t2 + · · ·+ tr ti ≥ 0 r = 1, 2, . . .
}

where
fα(x) = log{γ(1 + x)/(x + α)x+α}

Clearly from the problem, 0 ≤ α ≤ 1.

Amer. Math. Monthly, 87(1980) 675.

6312∗. Proposed by M. S. Klamkin, University of Alberta

Prove or disprove that the set of n equations in n unknowns

xli
1 + xli

2 + · · ·+ xli
n = 0 (i = 1, 2, . . . , n)

where the li arerelatively prime positive integers, has only the trivial solution xi = 0
(i = 1, 2, . . . , n) if and only if each m = 2, 3, . . . , n divides at least one li.

Amer. Math. Monthly, 89(1982) 505.

Solution by Constantine Nakassis, Gaithersburg, Maryland. Let n > 2 be an even
number (n = 2k); suppose that the only even number in l1, l2 . . . ln is l1 (for example
take l1 = n! and let l2, . . . ln be the first n−1 primes that follow n). Consider any k
comple numbers which satisfy

yli
1 + yli

2 + · · ·+ yli
n = 0

Let x2i−1 = yi, x2i = −yi for i = 1, 2, . . . , k. Itis clear then that the proposed system
has nontrivial solutions. (The starred assertion is true if n = 2, but false if n = 2k+1 >
3.)

The case n = 3 remains open; the starred assertion has been established by the proposer
for many triples.
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Amer. Math. Monthly, 89(1982) 498.

E 2958. Proposed by M. S. Klamkin, University of Alberta

Let x, y, z be positive, and let A, B, C be angles of a triangle. Prove that

x2 + y2 + z2 ≥ 2yz sin(A− π/6) + 2zx sin(B − π/6) + 2xy sin(C − π/6).

Amer. Math. Monthly, 92(1985) 289.

Solution by C. S. Karuppan Chetty, Regional Engineering College, Tiruchirapalli, In-
dia.

Solution I. Let

f(x, y, z) = x2 + y2 + z2 − 2yz sinα− 2zx sin β − 2xy sin γ

where α = A− π/6, β = B − π/6 and γ = C − π/6. Since

sinα = cos β cos γ − sin β sin γ

we can express f(x, y, z) as

(x− y sin γ − z sin β)2 + (y cos γ − z cos β)2

and the result follows.

In fact, the given inequality holds for any real x, y, z and for all A, B, C with
A+B + C = π.

Solution II. Defining f(x, y, z) as above, the matrix of the quadratic form f is

U =

 1 − sin γ − sin β
− sin γ 1 − sinα
− sin β − sinα 1


It is easily seen that detU = 0, and hence the leading principal minors of U are 1,
cos2 γ and 0. Therefore f is positive semidefinite and the result follows.
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Amer. Math. Monthly, 89(1982) 593–594.

E 2962. Proposed by M. S. Klamkin, University of Alberta, Canada

It is known that if the circumradii R of the four faces of a tetrahedron are congruent,
then the four faces of the tetrahedron are mutually congruent (i.e., the tetrahedron is
isosceles) [1]. It is also known that if the inradii of the four faces of tetrahedron are
congruent, then the tetrahedron need not be isosceles [2]. Show that if Rr is the same
for each face of a tetrahedron, the tetrahedron is isosceles.

1. Crux Mathematicorum, 6(1980) 219.

2. Crux Mathematicorum, 4(1978) 263.

Amer. Math. Monthly, 92(1985) 290.

Solution by O. P. Lossers, Eindhoven University of Technology, The Netherlands. Let
ABCD bea tetrahedron. We put BC = a, CA = b, AB = c, DA = a1, DB = b1,
DC = c1. The fact that the productbof the circumradius and the inradius is the same
for each face is then expressed by

abc

a+ b+ c
=

ab1c1
a+ b1 + c1

=
a1bc1

a1 + b+ c1
=

a1b1c

a1 + b1 + c
= 2Rr

The first equality is equivalent to

bb1(c− c1) + cc1(b− b1) = a(b1c1 − bc)

or
c1(a+ c)(b− b1) + b(b1 + a)(c− c1) = 0 (1)

We have two more equations obtained from (1) by cyclic permutation, namely

c(c1 + b)(a− a1) + a1(b+ a)(c− c1) = 0 (2)

b1(b+ c)(a− a1) + a(a1 + c)(b− b1) = 0 (3)

Considering (1), (2) and (3) as a system of linear equations for the unknowns a− a1,
b− b1, c− c1 we observe that the determinant of the system has the form∣∣∣∣∣∣

0 p q
r 0 s
t u 0

∣∣∣∣∣∣ = pst+ qru

and does not vanish because all its elements are obviously positive. Hence a = a1,
b = b1, c = c1, which proves the statement.
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Amer. Math. Monthly, 89(1982) 601.

Unequal Trigonometric Sums

E 2874. Proposed by Naoki Kimura and Tetsundo Sekiguchi, University of Arkansas

Let n ≥ 3, 0 < Ai ≤ π/2, i = 1, 2, . . . , n. Assume
∑n

i=1 cos2Ai = 1. Prove∑
tanAi ≥ (n− 1)

∑
cotAi

Solution by M. S. Klamkin, University of Alberta, and V. Pambuccian, student (Rumania)
(independently). The inequality can be rewritten as∑ 1

sinAi cosAi

≥ n
∑ cosAi

sinAi

(1)

Since by Cauchy’s inequality,∑
sinAi cosAi

∑ 1

sinAi cosAi

≥ n2

(1) will follow from the stronger inequality

n ≥
∑

sinAi cosAi

∑ cosAi

sinAi

(2)

By letting xi = cos2Ai and S =
∑
xi (2) can be expressed in the homogeneous form

1

n

∑
xi ≥

{
1

n

∑√
xi(S − xi)

}{∑√
xi/(S − xi)

}
(3)

Finally, we can assume x1 ≤ x2 ≤ · · · ≤ xn so that {xi(S − xi)} and xi/(S − xi) are
monotonic in the same sense and (3) follows by Chebyshev’s inequality with equality if
and only if xi are all equal. (See Hardy, Littlewood and Pólya, Inequalities, pp.43–44.)

Remarks: By Cauchy’s inequality again, (3) interpolates the power mean inequality

1

n

∑
xi ≥ { 1

n

∑√
xi}2

Inequality (3) can be extended to

1

n

∑
xi ≥ { 1

n

∑
xr

i (S − xi)
s}{ 1

n

∑
x1−r

i (S − xi)
−s}

where 1 ≥ r ≥ s ≥ 0. Actually it even suffices to take r/s ≥ maxxi/(S − xi) (this
ensures that xr(S − x)s is an increasing function).

[L. ]Kuipers showed that n
√

n− 1 is at the same time a lower bound for the left member and an
upper bound for the right member of the inequality in the proposal.
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Amer. Math. Monthly, 90(1983) 54.

E 2981. Proposed by M. S. Klamkin, University of Alberta, Canada

If the three medians of a spherical triangle are equal, must the trianglebe equilateral ?
Note that the sides of a (proper) spherical triangle are minor arcs of great circles and
thus its perimeter is < 2π.

Amer. Math. Monthly, 93(1986) 300–302.

Composite solution. Several incorrect solutions were submitted. The following is a
composite solution, portions of which were contributed by C. Gorsch, W. Meyer, the
proposer and the editors.

No, surprisingly the triangle need not be equilateral; however, it must be isosceles, and
is otherwise severely limited.

Let a, b, c denote the angles subtended at the centre of the sphere by the sides of the
triangle; let ma, mb, mc likewise denote the angles subtended by the medians from a,
b, c respectively.

Using dot products, or the spherical law of cosines, or other means, the following may
easily be shown:

cosma =
cos b+ cos c

2 cos a/2
cosmb =

cos c+ cos a

2 cos b/2
cosmc =

cos a+ cos b

2 cos c/2

If the medians are equal—i.e., ma = mb = mc— then

cos b+ cos c

2 cos a/2
=

cos c+ cos a

2 cos b/2
=

cos a+ cos b

2 cos c/2

and conversely.

It is clear that these equations hold if a = b = c. Moreover, they cannot hold if a, b,
c are all different. However, we will show that they may hold if two are equal but the
third is different, i.e., the triangle is isosceles but not equilateral.

Suppose, then, that b = c. The condition for equality of the medians becomes

cos a+ cos b

2 cos c/2
=

cos b+ cos c

2 cos a/2

Let x = cos a and y = cos b = cos c. Then, using the half-angle formula, and cancelling
common twos, we obtain

2y√
1 + x

=
x+ y√
1 + y

The graph of this equation may be shown by standard methods of analytic geometry to
consist of the line y = x together with a portion of the ellipse x2+3xy+4y2+x+3y = 0.
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The line may be disregarded completely, as it corresponds to the case of equilateral
triangles. The major axis of the ellipse is inclined at 1/4 of a right angle clockwise
from the x-axis. The ellipse is otherwise difficult to describe nicely; but it is easily
verified that it contains the following points:

A(0, 0) B(1,−1/2) C(9/7,−6/7) D(1,−1)

E(0,−3/4) F (−1/2,−1/2) G(−1, 0) H(−5/7, 1/7)

Points C and G are extreme in the x direction; points D and H are extreme in the y
direction.

[[The ellipse is not too difficult to describe. Its centre is at (1/7,–3/7), the major and
minor semi-axes are 2(3±

√
2)/7 and have slopes −π/8, 3π/8. — R.]]

The relevant portion of the ellipse is below the line 2y = −(x+1)—the rest is introduced
as an “extraneous root”. This line passes through G and D.

A

B

C

D

E

F

G

H

Not even all points (x, y) on this portion of the ellipse will do, however. Some lead
to improper spherical triangles. To be proper, the perimeter a+2b cannot exceed
2π. On the other hand, a ≥ 2b would lead to a flat or impossible triangle. Hence
a/2 < b < π − a/s. Since the cosine is decreasing over [0, π],

cos a/2 > cos b > cos(π − a/2) = − cos a/2
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Thus cos2 b < cos2 a/2 = (1 + cos a)/2 or 2y2 < x+ 1.

This corresponds to the region inside a parabola opening along the positive x axis and
passing through (−1, 0) and (1,±1).

The parabola intersects the ellipse at G(−1, 0), F (−1/2,−1/2) and D(1,−1). Point G
is a double root and, though the parabola touches the ellipse here, it remains outside it.
The parabola is inside the ellipse from F to D. Only the portion of the ellipse within
the parabola corresponds to viable cases—this is the section from G to F . With this
restriction, a = cos−1 x is between 120◦ and 180◦, whereas b = cos−1 y is between 90◦

and 120◦. Any such values correspond to triangles meeting the required condition.

C. Gorsch has noted that though these values lead to proper triangles with the required
property, they are barely proper in that their perimeters are all very close to the limiting
value 2π. In fact he alleges the existence of a single extremum at approximately
b = 102◦ for which the perimeter is least; but even so the perimeter there is within 4◦

of 360◦.

W. Meyer has noted that the triangle determined by the midpoints of the sides of the
original triangle has the property that its two sides are 120◦ each and the remaining
side is between 90◦ and 120◦. He asserts that, in fact, an arbitrary triangle meeting
these conditions may be given, and then a triangle with the desired medians-equal
property may easily be circumscribed around it.

The proposer raises two related questions: whether the triangle must be equilateral if
the three altitudes are equal; and likewise if the angle bisectors are equal. He alleges
that in the former case, sin a = sin b = sin c, and thus the triangle again need not be
equilateral due to the rise-fall behavior of sine in [0, π]. He leaves open the apparently
more difficult second question.

138



Amer. Math. Monthly, 90(1983) 569.

6440. Proposed by M. S. Klamkin, J. McGregor and A. Meir, University of Alberta

Let F (x), G(x) be two functions in L1(−∞,∞) which satisfy∫ ∞

−∞
F (x) dx =

∫ ∞

−∞
G(x) dx = 1

Show that for any λ in (0,1) there is a set E ⊆ (−∞,∞) such that∫
E

F (x) dx =

∫
E

G(x) dx = λ.

Amer. Math. Monthly, 92(1985) 289–290.

Solution 1 by Gerald A. Edgar, The Ohio State University. By Liapunoff’s theorem
[see W. Rudin, Functional Analysis, second edition, McGraw-Hill, Theorem 5.5], the
set S in R2 defined by

S =

{(∫
E

F (x) dx,

∫
E

G(x) dx

)
: E measurable

}
is convex. Since (0, 0) ∈ S and (1, 1) ∈ S, it follows that (λ, λ) ∈ S for any λ ∈ (0.1).

Solution 2 by the proposers. (This solution is more elementary than the above.) Let
A = {x : F (x) > G(x)}, B = R\A, let Ai = A ∩ (−∞, t), Bt = B ∩ (−∞, t) and
let

α(t) =

∫
At

(F (x)−G(x)) dxβ(t) =

∫
Bt

(G(x)− F (x)) dx

Then α(t) and β(t) are monotone non-decreasing continuous functions with α(−∞) =
β(−∞) and α(∞) = β(∞). Therefore, for every t there exists γ = γ(t) such that
α(t) = β(γ). Now set Ct = At∪Bγ. The clearly Ct ⊂ Cs when t ≤ s and µ(Cs) → µ(Ct)
when s→ t+. Hence the function∫

Ct

F (x) dx =

∫
Ct

G(x) dx =: H(t)

is continuous. Since C−∞ = ∅ and C∞ = R, it follows that H(t) attains all its values
between 0 and 1. Thus, for λ ∈ (0, 1), there is a number τ such that H(τ) = λ and
E = Cτ has the required property.
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Amer. Math. Monthly, 93(1986) 812.

E 3180. Proposed by M. S. Klamkin, University of Alberta, Canada

If A, B, C are angles of a triangle, prove that

cos
A

2
+ cos

B

2
+ cos

C

2
≥ 1 + sin

A

2
+ sin

B

2
+ sin

C

2

Amer. Math. Monthly, 95(1988) 771–773.

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The Nether-
lands. We consider the function V defined by

V (A,B,C) = cos
A

2
+ cos

B

2
+ cos

C

2
−
(

sin
A

2
+ sin

B

2
+ sin

C

2

)
on the compact set S defined by A ≥ 0, B ≥ 0, C ≥ 0 and A+B +C = π. V attains
an absolute maximum and minimum; we will show that the minimum is 1 and the
maximum is 3(

√
3− 1)/2.

Suppose C = 0, so that A + B = π. The identity cos(π/2 − x) = sinx implies
V (A,B, 0) = 1. Similarly V (0, B, C) = V (A, 0, C) = 1 so V is identically 1 on the
boundary of S, and we need only consider interior points.

For fixed C 6= 0 we have

V (A,B,C) =

(
cos

A

2
+ cos

B

2

)
−
(

sin
A

2
+ sin

B

2

)
+

(
cos

C

2
− sin

C

2

)
= 2 cos

A−B

4
·
(

cos
A+B

4
− sin

A+B

4

)
+ cos

C

2
− ∼ C

2

= 2 cos
A−B

4
·
(

cos
π − C

4
− sin

π − C

4

)
+ cos

C

2
− sin

C

2

Since |x| < π/4 implies cos x > sin x, the last expression is minimized only when
A = 0 or B = 0, and it is maximized for a fixed A 6= 0 when B = C. Hence V attains
ite maximum only at A = B = C = π/3, where V = 3/2(

√
3 − 1). Thus we have

1 < V (A,B,C) ≤ 3/2(
√

3− 1), with lower equality only at a degenerate triangle and
upper inequality only at an equilateral triangle.

Editorial Comment. Severa; readers used Lagrange multipliers to find the extrema of V . Lagrange’s
method seems particularly suitable for studying the extrema of such functions of the angles of a
triangle. For example, it shows that the cosine sum and the sine sum separately satisfy the inequalities

2 < cos
A

2
+ cos

B

2
+ cos

C

2
≤ 3

2

√
3

1 < sin
A

2
+ sin

B

2
+ sin

C

2
≤ 3

2
with lower equality only for a degenerate triangle and upper equality only for an equilateral triangle.
H. Guggenheimer remarks that the difference between the maximum and minimum values of V is
surprisingly small when compared to the corresponding differences in the inequalities just quoted.
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Amer. Math. Monthly, 94(1987) 71.

E 3183∗. Proposed by M. S. Klamkin, University of Alberta, Canada

Let P ′ denote the convex n-gon whose vertices are the midpointsof the sides of a given
convex n-gon P . Determine the extreme values of

(i) AreaP ′ / AreaP .

(ii) PerimeterP ′ / PerimeterP .

Amer. Math. Monthly, 96(1989) 157–161.

Solution by David B. Secrest (student), University of Illinois, Urbana. The extreme
values are summarized in the following table:

n 3 4 5 ≥ 6

max
(

areaP ′

areaP

)
1
4

1
2

3
4

1

min
(

areaP ′

areaP

)
1
4

1
2

1
2

1
2

max
(

perimP ′

perimP

)
1
2

1 1 1

min
(

perimP ′

perimP

)
1
2

1
2

1
2

1
2

We divide the proof into seven cases.

Case 1. n = 3. The triangle P ′ is similar to P with sides exactly half as long; the
conclusion is immediate for all four extrema.

Case 2. n = 4, Area Ratio. Given a quadrilateral E1E2E3E4, let E ′
1, E

′
2, E

′
3, E

′
4 be

the midpoints of the sides E1E2, E2E3, E3E4, E4E1 respectively. By similar triangles,
area(E ′

1E2E
′
2) = 1

4
area(E1E2E3) and

area(E ′
3E4E

′
4) =

1

4
area(E3E4E1)

so

area(E ′
1E2E

′
2) + area(E ′

3E4E
′
4) =

1

4
area(E1E2E3E4)

Likewise

area(E ′
4E1E

′
1) + area(E ′

2E3E
′
3) =

1

4
area(E1E2E3E4)

so
area(E ′

1E
′
2E

′
3E

′
4)

area(E1E2E3E4)
=

1

2
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Case 3. n ≥ 6, Maximum Area Ratio. A degenerate n-gon, P = E1E2 . . . En, with
E1 = E2, E3 = E4 and E5 = E6 = · · · = En will have areaP ′/areaP = 1, which is the
largest the ratio can be if P is convex.

Case 4. n ≥ 5, Minimum Area Ratio. Given an n-gon P = E1E2 . . . En draw all the
“corner triangles”, i.e. the ones made by connecting three consecutive vertices of the
n-gon. Let X be some point inside corner triangle E2E3E4. X cannot be inside any of
the other corner triangles except possibly E1E2E3 and E3E4E5 because all the others
are disjoint from E2E3E4. However, E1E2E3 and E3E4E5 are disjoint, so X can be in
at most one of them. In other words, no point inside the N -gon P can be inside more
than two of the corner triangles. Thus∑

area(corner triangles) ≤ 2 areaP.

But the triangles made by connecting midpoints of adjacent sides of P (which will
be referred to hereafter as “midpoint corner triangles”) each has 1/4 the area of the
corresponding corner triangle, so that∑

area(midpoint corner triangles) ≤ 1

2
areaP

Adding areaP ′ to both sides of this inequality and noticing that P ′ and the midpoint
corner triangles together make up P , we get

areaP ≤ 1

2
areaP + areaP ′

or
areaP ′

areaP
≥ 1

2

It is possible to attain this minimum ratio of 1
2

by setting E3 = E4 = · · · = En

Case 5. n = 5, Maximum Area Ratio. Given a convex pentagon P = E1E2E3E4E5, if
we could prove that

area(E1E3E5) ≤ area(E5E1E2) + area(E2E3E4) + area(E4E5E1)

then, by adding area(E1E3E5) + area(E3E4E5) to both sides, we could get

areaP ≤
∑

area(corner triangles)

or
1

4
areaP + areaP ′ ≤ areaP or areaP ′/areaP ≤ 3

4
We will show that by choosing a suitable labelling of the vertices of P , we can prove
the stronger result, that

area(E1E3E5) ≤ area(E5E1E2) + area(E2E3E4) (1)
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In the convex pentagon P there must be a pair of adjacent angles that add to more
than π since the average sum of pairs of adjacent angles in a pentagon is 6π/5. Assume
∠E4 + ∠E5 > π. (see Figure 1).

[[Warning: The label ‘E5’ is misplaced in the original figure. It is corrected in the
figure below. — R.]]

This implies that the extension of E1E5 beyond E5 and the extension of E3E4 beyond
E4 intersect. Draw the lines `1 and `2 through E2 and parallel to E1E5 and E3E4

respectively. Draw E1E3. Pick a point D on E1E3 so that it inside the parallelogram
formed by `1, `2 and the extensions of E1E5 and E3E4. Draw lines through E4 and
through E5 parallel to E1E3. By performing a reflection of the picture if necessary, we
can assume that E5 is closer to E1E3 than E4 is.

We establish some inequalities:

area(DE3E5) ≤ area(DE3E4) (2)

because they share a common base DE3 but E4 is farther away from that base. Like-
wise, for the base E5E1,

area(E5E1D) ≤ area(E5E1E2) (3)

and, for the base E3E4

area(DE3E4) ≤ area(E2E3E4) (4)

Now (2) and (4) yield area(DE3E5) ≤ area(E2E3E4). By adding (3) to the last in-
equality we get (1) and thus area P ′/area P ≤ 3

4
.

It is possible to attain this maximum ratio by setting E1 = E2 and E3 = E4.

Case 6. m ≥ 4, Maximum Perimeter Ratio. An n-gon P = E1E2 . . . En which has
E1 = E2 and E3 = E4 = · · · = En will have perimP = perimP ′.

It is impossible to get a larger ratio than 1 since, by the triangle inequality, the length
of one of the sides of P ′ is at most that of the two half sides of P that it replaces.
(This argument works even if P is not convex.)

Case 7. n ≥ 4, Minimum Perimeter Ratio. Given an n-gon P = E1E2 . . . En let D1 be
the point of intersection of EnE2 and E1E3 and in general Dk the point of intersection
of Ek−1Ek+1 and EkEk+2 where the subscripts are taken mod n. (See Figure 2.) By
the triangle inequality,

E1E2 ≤ D1E2 + E1D1

E2E3 ≤ D2E3 + E2D2

...

EnE1 ≤ DnE1 + EnDn
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Also, 0 ≤ D1D2 +D2D3 + · · ·+DnD1. Adding we obtain

perim P ≤ (D1E2 + E1D1) +D1D2 + (D2E3 + E2D2) +D2D3 + · · ·
= D1E2 + (E1D1 +D1D2 +D2E3) + (E2D2 +D2D3 +D3E4) + · · ·
= E1E3 + E2E4 + · · ·+ EnE2

= 2perimP ′

so

perimP ′/perimP ≥ 1

2

If E1E2 . . . En is a polygon with E2 = E3 = · · · = En then perimP ′ = 1/2 perimP .

144



Amer. Math. Monthly, 94(1987) 382.

One Cubic Factorization Implies Another

E 3083 [1985, 286]. Proposed by Gunnar Blom, University of Lund and Lund Institute
of Technology, Sweden

If the relation
x3 + y3 + z3 = (x+ y)(x+ z)(y + z)

is saisfied by x0, y0, z0 where

(x2
0 + y2

0 − z2
0)(x

2
o + z2

0 − y2
0)(y

2
0 + z2

0 − x2
0) 6= 0

then it is also satisfied by

x1 =
1

y2
0 + z2

0 − x2
0

y1 =
1

x2
0 + z2

0 − y2
0

z1 =
1

x2
0 + y2

0 − z2
0

Observation by M. S. Klamkin, University of Alberta, Canada. This problem is given as
problems 194 and 196 in Wolstenholme, Mathematical Problems, Cambridge University
Press, London (1878 or 1891).

194. Having given the equations

x3 + y3 + z3 = (y + z)(z + x)(x+ y)

a(y2 + z2 − x2) = b(z2 + x2 − y2) = c(x2 + y2 − z2)

prove that
a3 + b3 + c3 = (b+ c)(c+ a)(a+ b).

196. If x = b2 + c2 − a2, y = c2 + a2 − b2 and z = a2 + b2 − c2 prove that

y3z3 + z3x3 + x3y3 − xyz(y + z)(z + x)(x+ y)

is the product of four factors, one of which is

4abc+ (b+ c− a)(c+ a− b)(a+ b− c)(
= (b+ c)(c+ a)(a+ b)− a3 − b3 − c3

)
and the other three are formed from this by changing the signs of a, b, c respectively.

All of these assertions can be proved by direct verification.
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Amer. Math. Monthly, 94(1987) 384–385.

Maximizing a Cyclic Sum of Powers of Differences

E 3087 [1985, 287]. Proposed by Weixuan Li, University of Waterloo, and Edward
T. H. Wang, Wilfrid Laurier University, Waterloo, Ontario, Canada

Let ai, i = 1, 2, . . . , n be real numbers such that 0 ≤ ai ≤ 1, where n ≥ 2. Find a best
upper bound for

Sn = (a1 − a2)
2 + (a2 − a3)

2 + · · ·+ (an − a1)
2

and determine all cases in which this bound is attained.

Solution by M. S. Klamkin and A. Meir, University of Alberta, Edmonton, Alberta,
Canada. More generally we find the maximum of the cyclic sum

S(n, p) = |a1 − a2|p + |a2 − a3|p + · · ·+ |an − a1|p

Clearly the case n = 2m is trivial for which maxS(n, p) = 2m and achieved by either

a1 = a3 = · · · = a2m−1 = 1 a2 = a4 = · · · = a2m = 0

or vice-versa. For the odd case, we show that

maxS(2m+ 1, p) =

{
2m− 1 + 21−p for 0 < p ≤ 1
2m for p > 1

(1)

Proof. Suppose that the above maximum is achieved for the values a1, a2, . . ., a2m+1.
Then either (i) all ai are 0 or 1, or (ii) there exists an ai with 0 < ai < 1. In case
(i), av = av+1 for some v and thus S(2m + 1, p) ≤ 2m for any p > 0. In case (ii), let
0 < av < 1. Then av−1 < av and av+1 < av is impossible since av = 1 would yield a
larger sum. Similarly av−1 > av and av+1 > av is impossible. Thus av−1 > av > av+1

or vice-versa. In both cases,

|av−1 − av|p + |av − av+1|p ≤
{
|av−1 − av+1| ≤ 1 if p > 1
2
{

1
2
|av−1 − av+1|

}p ≤ 21−p if 0 < p ≤ 1

Since clearly
∑

i6=v−1,v |ai − ai+1|p ≤ 2m − 1 for all p > 0, inequality (1) follows, the

bound being attained in the case 0 < p ≤ 1 by taking, for example, a1 = 0, a2 = 1
2
,

a2k = 0, a2k+1 = 1, 2 ≤ k ≤ m.
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Amer. Math. Monthly, 94(1987) 996.

E 3239. Proposed by M. S. Klamkin, University of Alberta

Show that if A is any three-dimensional vector and B, C are unit vectors, then

[(A + B)× (A + C)]× (B×C) · (B + C) = 0

Interpret the result as a property of spherical triangles.

Amer. Math. Monthly, 97(1990) 531–532.

Solution by Walter Janous, Ursulinengymnasium, Innsbruck, Austria. Starting from
the formula

(D× E)× F = (F ·D)E− (F · E)D

we get

[(A + B) × (A + C)]× [B×C]

= [(B×C) · (A + B)][A + C]− [(B×C) ·A + C)][A + B]

= [(B×C) ·A][A + C]− [(B×C) ·A][A + B]

= [(B×C) ·A][C−B]

whence the result follows, since

(C−B) · (B + C) = C ·C−B ·B = 1− 1 = 0

Editorial comment. No two solvers gave the same “interpretation of the result as a
property of spherical triangles”. The proposer showed that the result is equivalent to
the assertion that a great circle which bisects two sides of a spherical triangle intersects
the third side 90◦ from its midpoint. His argument follows.

First, if we have two great circles on a unit sphere determined by the two pairs of
points B′, C ′ and B, C, then the two antipodal points of intersection of these circles
lie on the line ` of intersection of the planes of B′, C ′, O and B, C, O where O is the
centre of the sphere. Then a vector V on ` is given by V = (B′×C′)× (B×C). (Here
B denotes the vector from O to the point B, etc.)

Second, let the respective midpoints of the sides of the spherical triangle ABC be
A′, B′, C ′. Then

A′ = (B + C)/|B + C| B′ = (A + C)/|A + C| C′ = (C + B)/|A + B|

and V ·A′ = 0. The equivalence now follows.
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Amer. Math. Monthly, 95(1988) 358.

An Exponential Inequality

E 3151 [1986, 401]. Proposed by Peter Ivady, Institute for Economy and Organixation,
Budapest, Hungary

Let x ≥ 0, x 6= 1, λ ≥ 1 and 0 ≤ β ≤ 2 be real numbers. Prove that(
xλ − 1

x− 1

)β

≤ λ

(
xλβ − 1

xβ − 1

)

Solution by M. S. Klamkin, University of Alberta. Replacing x by 1/x leaves the
inequality unchanged, so it suffices to consider only x > 1 (it is trivial for x = 0).
Because (e2λat−1)/(e2at−1) = (eλat/eat)·(sinhλat/ sinh at), the hyperbolic substitution
x = e2t converts the inequality to

λ
sinhλβt

sinhβ λt
≥ sinh βt

sinhβ t
(1)

for t > 0, λ ≥ 1 and 2 ≥ β ≥ 0 . Equation (1) holds with equality for λ = 1, so it
suffices to show that the left side is a nondecreasing function of λ, or equivalentlythat
its logarithmic derivative with respect to λ is non-negative, i.e.,
(1/λ)+βt cothλβt−βt cothλt ≥ 0. By multiplying through by λ sinhλt · sinhλβt and
using the addition formula for sinh, we transform this inequality into

sinhλt sinhλβt ≥ λβt sinhλt(β − 1) (2)

Since sinh is negative for negative arguments, (2) holds for 1 ≥ β ≥ 0 and we need
only consider 2 ≥ β ≥ 1. At β = 2, (2) reduces to (sinhλt)(sinh 2λt− 2λt) ≥ 0 which
follows from sinh y ≥ y for y ≥ 0. To establish (2) for 2 > β ≥ 1 it suffices to show
that the logarithmic derivative of the left side with respect to β is less than that of the
right side. This reduces to showing

λt

tanhλβt
≤ 1

β
+

λt

tanhλt(β − 1)

This follows immediately from the fact that tanh is an increasing function.
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Amer. Math. Monthly, 95(1988) 658–659.

Weizenböck Generalized

E 3150 [1986, 400]. Proposed by George A. Tsintsifas, Thessaloniki, Greece

Let ABC be a triangle with sides a, b, c and area F . It is well known that a2+b2+c2 ≥
4F
√

3. If p, q, r are arbitrary positive real numbers, prove that

p

q + r
a2 +

q

r + p
b2 +

r

p+ q
≥ 2F

√
3

Solution III and generalization by M. S. Klamkin, University of Alberta, Canada. Re-
place a, b, c by a1, a2, a3 and p, q, r by p1, p2, p3. We derive more generally an inequality
for S +

∑
pia

4n
i /(k − pi) where 1 ≥ n ≥ 0 and ai ≥ 0. By Cauchy’s inequality, we

have 2(S +
∑
a4n

i ) =
∑

(k − pi)
∑
a4n

i /(k − pi) ≥ (
∑
a2n

i )2. Letting R =
∑
an

i this is
equivalent to

2S|geqR
∏

(R− 2an
i ) (1)

with equality if and only if a2n
1 /(p2 + p3) = a2n

2 /(p3 + p1) = a2n
3 /(p1 + p2). If the {an

i }
are not the sides of a triangle, then the right side of (1) is negative. Suppose that {ai}
form a triangle and that 1 ≥ n ≥ 0. Then {an

i } also form a triangle whose area we
denote by Fn. The right side of (1) is 16 times the square of the side-length formula
for area, yielding 2S ≥ 16F 2

n .

We now use Oppenheim’s generalization [1] of the Finsler-Hadwiger inequality, i.e.,
4Fn/

√
3 ≥ (4F/

√
3)n for 1 ≥ n ≥ 0, with equality for n < 1 if and only if a1 = a2 = a3.

With (1) this yields the generalization

2S ≥ 3(4F/
√

3)2n (0 ≤ n ≤ 1) (2)

The proposed inequality corresponds to the special case n = 1/2. The special case
n = 1 corresponds to the proposer’s problem #1051 in Crux Mathematicorum, 11(1985)
187.

[1.] A. Oppenheim, Inequalities involving elements of triangles, quadrilaterals or tetra-
hedra, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No.461-497(1974) 257–
263; MR 51 #6552.

The inequality a2 + b2 + c2 ≥ 4F
√

3 goes back to Weitzenböck, Math. Z., 5(1919) 137–146.
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Amer. Math. Monthly, 96(1989) 55.

E 3305. Proposed by M. S. Klamkin, University of Alberta, Edmonton

If a, b, c are the sides of a triangle with given semiperimeter s, determine the maximum
values of

(i) (b− c)2 + (c− a)2 + (a− b)2

(ii) |(b− c)(c− a)|+ |(c− a)(a− b)|+ |(a− b)(b− c)|

(iii) (b− c)2(c− a)2(a− b)2

Amer. Math. Monthly, 97(1990) 349.

Solution by David Callan, University of Bridgeport, Bridgeport, CT. The maximum
vakues are 2s2, s2, s6/108 respectively. Let a, b, c denote the sides in decreasing order.
Note that s/2 ≤ b ≤ s. Form a new (degenerate) triangle with the same perimeter
and middle side, the new sides in decreasing order being s, b, s − b. In switching to
the new triangle, no difference between side-lengths decreases; in fact, each difference
increases if the original triangle is nondegenerate. Hence each part of the problem is
the maximization of a polynomial in b over [s/2, s]. The polynomials are:

(i) (2b− s)2 + b2 + (s− b)@

(ii) b(2b− s) + b(s− b) + (s− b)(2b− s)

(iii) (2b− s)2b2(s− b)2

These maximizations can be done by elementary calculus, giving maxima as listed
above, occurring at b = s, s, (3 + 31/2)s/6 respectively.

Editorial comment. Most solvers treated the problem as a constrained maximization problem in
several variables.
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Amer. Math. Monthly, 96(1989) 154.

E 3307. Proposed by Peter Andrews, Wilfrid Laurier University, Murray Klamkin,
University of Alberta, Edmonton, Alberta, and Edward T. H. Wang, Wilfrid Laurier
University

The celebrated Morley triangle of a given triangle ABC is the equilateral triangle whose
vertices are the intersections of adjacent pairs of internal angle trisectors of ABC. If
s, R, r, F and sM , RM , rM , FM are the semiperimeter, the circumradius, the inradius,
and the area, respectively, of ABC and its Morley triangle, determine the maximum
of (i) sM/s, (ii) RM/R, (iii) rM/r and (iv) FM/F .

Amer. Math. Monthly, 98(1991) 755–760.

Editorial remark. The first, second and fourth ratios considered in the problem achieve
their maxima when A = B = C = π/3 and have greatest lower bound zero. The third
ratio, rM/r, achieves a positive minimum when A = B = C = π/3 and has least upper
bound equal to 2/9. Thecalculation of these extremaare given in their approximate
order of difficulty.

Solution of (ii) by the proposers. We prove that

RM/R ≤ (8/
√

3) sin3(π/9)

with equality only when the original triangle is equilateral. We require the known fact
that the Morley triangle has side length 8R sin(A/3) sin(B/3) sin(C/3). (Cf. [1], [2] or
[3] in the list of references.) Since the circumradius of an equilateral triangle is 1/

√
3

times its side-length, we have

RM/R = (8/
√

3) sin(A/3) sin(B/3) sin(C/3)

Now if g2(x) = log sin(x/3), then g′′2(x) = −{3 sin(x/3)}−2. Since g′′2(x) < 0 on
(0, π),we have by concavity

g2(A) + g2(B) + g2(C) ≤ 3g2({A+B + C}/3) = 3g2(π/3)

or
sin(A/3) sin(B/3) sin(C/3) ≤ sin3(π/9)

with equality only if A = B = C = π/3. Thus the claimed result follows.

Solution of (iii) by the proposers. We prove that

(8/
√

3) sin3(π/9) ≤ rM/r < 2/9

with equality on the left only if the original triangle is equilateral. We begin by using
the formulas rM = RM/2 and r = 4R sin(A/2) sin(B/2) sin(C/2) to obtain

rM/r = (1/8)(RM/R)/{sin(A/2) sin(B/2) sin(C/2)}
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or, by the solution of part (ii)

rm

r
=

1√
3

sin(A/3) sin(B/3) sin(C/3)

sin(A/2) sin(B/2) sin(C/2)

Now if g3(x) = log{sin(x/3)/ sin(x/2)}, then

g′′3(x) = −{3 sin(x/3)}−2 + {2 sin(x/2)}−2

=
{sin(x/3)/(x/3)}2 − {sin(x/2)/(x/2)}2

{6x−1 sin(x/3) sin(x/2)}2

Since (sin t)/t is strictly decreasing on (0, π/2), it follows that g′′3(x) > 0 for 0 < x < π.
Hence by convexity

g3(A) + g3(B) + g3(C) ≥ 3g3({A+B + C}/3) = 3g3(π/3)

or
sin(A/3) sin(B/3) sin(C/3)

sin(A/2) sin(B/2) sin(C/2)
≥
{

sin(π/9)

sin(π/6)

}3

= 8 sin3(π/9)

Thus we have the lower bound rM/r ≥ (8/
√

3) sin3(π/9) with equality only if A =
B = C = π/3.

To get an upper bound we note that if 0 < A ≤ C ≤ B < π and if ε is a small positive
number, then

g3(A− ε) + g3(B + ε)− g3(A)− g3(B)

=

∫ ε

0

{g′3(B + t)− g′3(A− t)} dt > 0

since g′3 is strictly increasing on (0, π). Thus rM/r increases if we increase the largest
angle of the triangle and decrease another angle by the same amount. Hence rM/r is
less than the value we get for the degenerate triangle with angles 0, 0, π. Thus

rM

r
<

1√
3

2

3

2

3

√
3

2
=

2

9

Combining our two results we obtain the result claimed. Not that rM/r is confined to
the relatively narrow interval (0.18479,0.22223).

Solution of (i) by the editors. We prove that

sM/s ≤ (8/
√

3) sin3(π/9)

with equality if and only if A = B = C = π/3. We have

sM/s = {24R sin(A/3) sin(B/3) sin(C/3)} /(a+ b+ c)

= {12 sin(A/3) sin(B/3) sin(C/3)} /{sinA+ sinB + sinC}
= {3 sin(A/3) sin(B/3) sin(C/3)} /{cos(A/2) cos(B/2) cos(C/2)}
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If g1(x) = log{sin(x/3)/ cos(x/2)}, then g′1(x) = (1/2) tan(x/2) + (1/3) cot(x/3) and

g′′1(x) = {2 cos(x/2)}−2 − {3 sin(x/3)}−2

which does not have constant sign on (0.π); specifically g′′1(x) < 0 for 0 < x < θ1 =
6 arcsin(1/4) = 1.516 . . . and g′′1(x) > 0 for θ1 < x < π. Thus simple convexity-
concavity arguments alone do not suffice for (i) and we must make a more detailed
analysis by treating three cases:

(a) each of A, B, C is at most θ1

(b) two of A, B, C exceed θ1

(c) exactly one of A, B, C exceeds θ1

Suppose (a) holds. Since g′′1(x) < 0 for 0 < x < θ1 we have by concavity

g1(A) + g1(B) + g1(C) ≤ 3g1({A+B + C}/3) = 3g1(π/3)

[[The penult ‘3’ is missing from the original. – R.]]

and it follows that in this case

sm/s ≤ 3
sin3(π/9)

cos3(π/6)
=

8√
3

sin3(π/9) = 0.18479 . . .

with equality holding if and only if A = B = C = π/3.

Next suppose that (b) holds, say A ≥ B > θ1. It follows that

A = π −B − C < π − θ1

B < (A+B + C)/2 = π/2

C = π − A−B < π − 2θ1

Since g′1(x) > 0 for 0 < x < π we have

sin(A/3)

cos(A/2)
<

sin((π − θ1)/3)

cos((π − θ1)/2)
< 0.76

sin(B/3)

cos(B/2)
<

sin(π/6)

cos(π/4)
=
√

2/2

sin(C/3)

cos(c/2)
<

sin((π − 2θ1)/3)

cos((π − 2θ1)/2)
< 0.037

It follows that in case (b) we have sM/s < 0.06, a bound smaller than that found in
case (a).

Finally suppose that (c) holds. Say A > θ1 and B, C < θ1. Since g′′1(x) < 0 on (0, θ1),
we have by concavity

g1(B) + g1(C) ≤ 2g1((B + C)/2)
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with strict inequality for B 6= C. Thus we may assume B = C. Since A > θ1

B =
1

2
(π − A) <

1

2
(π − θ1) = 0.81275 . . .

If we set f1(x) = 2g1(x) + g1(π − 2x), we have sM/s = 3 exp f1(B). Now f ′1(x) =
2g′1(x)− 2g′1(π − 2x) and we claim that f ′1(x) > 0 for 0 < x ≤ (π − θ1)/2. Indeed

g′1(x) =
1

2
tan

x

2
+

1

3
cot

x

3
>
x

4
+

1− x2/18

s(x/3)
>

1

x

and

g′1(π − 2x) =
1

2
cotx+ |frac13 tan

(
π

6
+

2x

3

)
<

1

2x
+

1

3
tan

(
π

6
+

2x

3

)
For 0 < x ≤ 0.82 we have

f ′1(x) >
1

x
− 2

3
tan

(
π

6
+

2x

3

)
>

1

0.82
− 2

3
tan

(
π

6
+

1.64

3

)
>).0007

Thus. in this case

sM/s < 3 exp f

(
π

2
− θ1

2

)
= 0.16976 . . . < 0.18479 . . .

and hence the maximum of sM/s can occur only in case (a) with A = B = C. Thus
the claimed result sM/s ≤ (8/

√
3) sin3(π/9) is established.

Solution of (iv) by the editors. We prove that

FM/F ≤ (64/3) sin6(π/9) = 0.034148 . . .

with equality if and only if ABC is equilateral. Our argument is similar to that for
(i), but is a little more complicated in case (c).

We have
F = abc/(4R) = 2R2 sinA sinB sinC

and
FM = (

√
3/4){8R sin(A/3) sin(B/3) sin(C/3)}2

so that
FM

F
= 8

√
3
{sin(A/3) sin(B/3) sin(C/3)}2

sinA sinB sinC

If g4(x) = log{sin2(x/3)/ sin x}, then g′4(x) = (2/3) cot(x/3)− cotx and

g′′4(x) = {sin x}−2 − 2{3 sin(x/3)}−2
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Now g′′4(x) is negative for

0 < x < 3 arcsin
(
{3(2−

√
2)/8}1/2

)
= 1.46342 . . . = θ4

and is positive for θ4 < x < π. We treat three cases.

(a) If each of A, B, C ≤ θ4, then, since g′′4(x) < 0 for 0 < x < θ4 we have by concavity

g4(A) + g4(B) + g4(C) ≤ 3g4({A+B + C}/3) = 3g4(π/3)

with equality if and only if A = B = C. Thus in this case

FM/F ≤ 8
√

3 exp{3g4(π/3)} = (64/3) sin6(π/9)

(b) If A ≥ B > θ4 then A < π − θ4, B < π/2 and C < π − 2θ4. Now g′4(x) > 0
for 0 < x < π/2 since tan(x/3) < tan x there, and g′4 > 0 for π/2 < x < π, since
cot(x/3) > 0 and − cotx ≥ 0 there. It follows that in this case

FM/F ≤ 8
√

3
{sin((π − θ4)/3)sin(π/6) sin((π − 2θ4)/3)}2

sin(π − θ4) sin(π/2) sin(π − 2θ4)
= 0.023552 . . .

(c) If A > θ4 ≥ B, C, then, since g′′4(x) < 0 for 0 < x < θ4 we have by concavity

g4(B) + g4(C) ≤ 2g4((B + C)/2)

with equality if and only if B = C. Thus we may assume that B = C and
B = (π − A)/2 < (π − θ4)/2 = 0.83908 . . .. Let f4(x) = 2g4(x) + g4(π − 2x). We shall
show that

g′4(x) > g′4(π − 2x) 0 < x ≤ (π − θ4)/2 (∗)
and conclude that f4 is increasing on this range.

Suppose first that x ∈ I + (0.7, (π − θ4)/2]. Since g′4 is decreasing for 0 < x < θ4 and
increasing for θ4 < x < π, we have

g′4(x) ≥ g′4((π − θ4)/2) = 1.42306 . . .

> 1.18884 . . . = g′4(π − 1.4) ≥ g′(π − 2x)

so (∗) holds for x ∈ I.

Next, suppose that x ∈ J = (0, o.7]. We begin by showing that

3
√

2 sin(x/3) < sin(2x) x ∈ J.

Indeed
sin(2x)

sin(x/3)
= 2 cos

(
5x

3

)
+ 2 cosx+ 2 cos

(x
3

)
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is clearly decreasing on J and we have

sin(2x)/ sin(x/3) > sin 1.4/sin(0.7/3) = 4.26192 . . . > 3
√

2

Now g′4(x) > (1/3) cot(x/3), since tan(x/3) < (tanx)/3 for x ∈ J , and also we have

g′4(π − 2x) =
2

3
tan

(
π

6
+

2x

3

)
+ cot(2x)

Let h(x) = (1/3) cot(x/3)− cot(2x). We prove (∗) for x ∈ J by showing that

h(x) > (2/3) tan(π/6 + 2x/3) (∗∗)

holds on this range. We have seen above that

h′(x) = 2 csc2(2x)− 1

9
csc2

(x
3

)
=

( √
2

sin 2x

)2

−
(

1

3 sin(x/3)

)2

< 0

for x ∈ J . Thus h(x) ≥ h(0.7) = 1.23007 . . .. On the other hand, if x ∈ J , we have

(2/3) tan(π/6 + 2x/3) ≤ (2/3) tan(π/6 + 1.4/3) = 1.01637 . . .

so that (∗∗) and hence (∗) holds for x ∈ J .

It follows that f4(x) is increasing for 0 < x ≤ (π − θ4)/2 so that in case (c) we have

FM/F ≤ 8
√

3 exp f4((π − θ4)/2) = 0.032120 . . .

which is smaller than the estimate found in (a). Thus the claimed result FM/F ≤
(64/3) sin6(π/9) is established.

1. H. S. M. Coxeter & S. L. Greitzer, Geometry Revisited, New Mathematical Library 19(1967)
pp.47–50.

2. Clarence Lubin, A proof of Morley’s theorem, this Monthly, 62(1955) 110–112.

3. K. Venkatachaliengar, An elementary proof of Morley’s theorem, this Monthly, 65(1958) 612–613.

No other correct solutions were received.
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Amer. Math. Monthly, 96(1989) 356.

E 3320. Proposed by M. S. Klamkin, University of Alberta, Edmonton

Determine positive constants a and b such that the inequality

yz + zx+ xy ≥ a(y2z2 + z2x2 + x2y2) + bxyz

holds for all nonnegative x, y, z with x+ y + z = 1 and is the best possible inequality
of this form (in the sense that the inequality need not hold if a or b is increased).

Amer. Math. Monthly, 97(1990) 619–620.

Solution by Mark Ashbaugh, University of Missouri, Columbia, MO. The family (a, b) =
(a, 9 − a) for 0 < a ≤ 4 gives all solution pairs to this problem. Using the values
(x, y, z) = (1/3, 1/3, 1/3) and (x, y, z) = (1/2, 1/2, 0), we obtain the two inequalities
a + b ≤ 9 and a ≤ 4. Thus we need only prove that the desired inequality is valid for
the pairs in the family described, i.e., that the inequality

yz + zx+ xy ≥ a(y2z2 + z2x2 + x2y2) + (9− a)xyz for 0 < a ≤ 4

holds for nonnegative x, y, z with x+y+z = 1. If we let P = (x+y+z)2(yz+zx+xy).
Q = y2z2 + z2x2 + x2y2 and R = (x+ y + z)xyz, then this is equivalent to proving

P (x, y, z) ≥ aQ(x, y, z) + (9− a)R()x, y, z for 0 < a ≤ 4

for all nonnegative x, y, z, since these terms are homogeneous.

The proof is now completed by showing that P ≥ 4Q + 5R and that Q ≥ R, because
together these imply P ≥ aQ + (4 − a)Q + 5R ≥ aQ + (9 − a)R for 0 < a ≤ 4. To
obtain the first inequality P ≥ 4Q+ 5R we note that

P = 2Q+ 5R + x3y + xy3 + y3z + yz3 + x3z + xz3

and then

P − 4Q− 5R = xy(x− y)2 + yz(y − z)2 + xz(x− z)2 ≥ 0 (∗)

To obtain the second inequality, Q ≥ R, we apply the Cauchy-Schwarz inequality to
the vectors V = (xy, yz, zx) and W = (xz, xy, yz) and conclude that

Q = ‖V ‖ · ‖W‖ ≥ V ·W = x2yz + xy2z + xyz2 = R (∗∗)

The points x, y, z for which equality holds are easy to determine. If a < 4, equality
occurs in (∗∗) exactly when x = y = z or at least two of x, y, z are 0, and (∗) also
holds with equality in those cases, so for a < 4 the only instances of equality in the
triangle given by x + y + z = 1 and x, y, z ≥ 0 are the centre (1/3,1/3,1/3) and the
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corners (1,0,0), (0,1,0) and (0,0,1). When a = 4 the situation changes because (∗∗)
is not needed, and (∗) also gives equality if one of x, y, z is 0 and the other two are
equal. Thus if a = 4 we also have equality at (1/2,1/2,0), (1/2,0,1/2) and (0,1/2,1/2),
the midpoints of the sides of the above triangle.

Finally, we note that the best inequality of the form P ≥ bR is P ≥ 9R, which follows
from the fact that the entire discussion above applies also when a = 0; equality holds
in P ≥ 9R only when x = y = z or when two of x, y, z are zero. The best inequality of
the form P ≥ aQ is P ≥ 4Q, also from the discussion above; equality holds in P ≥ 4Q
only when two of x, y, z are zero or when one of them is zero and the other two are
equal.

Amer. Math. Monthly, 96(1989) 641.

E 3337. Proposed by M. S. Klamkin, University of Alberta, Edmonton

Suppose the two longest edges of a tetrahedron are a pair of opposite edges. Prove
that the three edges incident to some vertex of the tetrahedron are congruent to the
sides of an acute triangle.

Amer. Math. Monthly, 97(1990) 927–928.

Solution by Jesús Ferrer, Universidad Complutense, Madrid, Spain. Let O, A, B, C
be the vertices of the tetrahedron, and suppose that OA and BC are the longest edges.
If the edges incident to each vertex fail to be the side lengths of an acute triangle, then
the law of cosines implies the following inequalities:

OA2 ≥ OB2 +OC2 BC2 ≥ OB2 + AB2

OA2 ≥ AB2 + AC2 BC2 ≥ OC2 + AC2 (∗)

(The inequalities (∗) are valid a fortiori if some triples do not satisfy the triangle
inequality.) Summing these inequalities we obtain

OA2 +BC2 ≥ OB2 +OC2 + AB2 + AC2

Expressing the vector
−−→
BC as

−→
OC −

−−→
OB (and similarly for

−→
AB and

−→
AC), we can use

the fact that squared length equals vector inner product to rewrite this as

0 ≥ OA2 +OB2 +OC2 − 2
−→
OA ·

−−→
OB − 2

−→
OA ·

−→
OC + 2

−−→
OB ·

−→
OC

= ‖
−→
OA−

−−→
OB −

−→
OC‖2

that is,
−→
OA−

−−→
OB −

−→
OC = 0. Thus

−→
OC =

−→
BA and

−−→
OB =

−→
CA, which requires OBAC

to be a plane parallelogram. Since equality must hold in all four parts of (∗), in fact
OBAC is a rectangle.

In all other cases at least one of the inequalities (∗) fails, and the lengths of segments
incident to the corresponding vertex are the side lengths of an acute triangle.
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Amer. Math. Monthly, 99(1992) 169–170.

The Area of a Pedal of a Pedal Triangle

E 3392 [1990, 528]. Proposed by Antal Bege, Miercurea-Ciuc, Romania

Given an acute-angle triangle ABC with overline H, let A1, B1, C1 be the feet of the
altitudes from A, B, C respectively, and let A2, B2, C2 be the feet of the perpendiculars
from H onto B1C1, C1A1, A1B1 respectively. Prove that

area (∆ABC) ≥ 16 area (∆A2B2C2)

and determine when equality holds.

Solution II and generalization by Murray S. Klamkin, University of Alberta, Edmonton,
Alberta, Canada. More generally, the pedal triangle of a triangle ABC with respect to
a point P is the triangle whose vertices A1, B1, C1 are the feet of the perpendiculars
from P onto the sides of ABC. For P lying within or on ABC it is known [2, p.139]
that

[A1B1C1] = [ABC](1−OP 2/R2)/4 ≤ [ABC]/4

where [ ] denotes area and O, R are, respectively, the circumcentre and circumradius
of ABC. There is equality if and only if P coincides with O (and this requires that
ABC be non-obtuse). Then, if A2B2C2 is the pedal triangle of A1B1C1 with respect
to P ,

[A2B2C2] ≤ [A1B1C1]/4 ≤ [ABC]/16

For equality in both places here, P must be the circumcentre of both ABC and A1B1C1.
This requires that ABC is equilateral.

Editorial comment. Many solvers used analytic and other means to establish the relation
[A2B2C2] = 4(cos A cos B cos C)2[ABC]. This is a consequence of R2 = 2R cos A cos B cos C (where
R2 is the circumradius of A2B2C2 2, p.191) and the similarity of A2B2C2 and ABC. The required
inequality then follows from the easy inequality cos A cos B cos C ≤ 1/8.

Walther Janous suggest $1.9 of [1] as a good reference for properties of iterated pedal triangles.
He also points out the related inequality [ABC]5 ≥ R8(27/4)2[A2B2C2] that can be obtained from
inequalities found in [3, p.271].

1. H. S. M. Coxeter & S. L. Greitzer, Geometry Revisited, New Mathematical Library 19(1967).

2. R. A. Johnson, Modern Geometry, Houghton Mifflin, 1929.

3. D. S. Mitrinović, J. E.Pečarić & V. Volonec, Recent Advances in Geometric Inequalities, Kluwer,
1989.
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Amer. Math. Monthly, 99(1992) 872.

10256. Proposed by M. S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Let Ai, A
′
i (i = 1, 2, 3, 4) be the vertices of a rectangular parallelepiped P , with A′

i

diametrically opposite to Ai. Let P be any interior point of P . Prove that

S ≤ 2(PA1 · PA′
1 + PA2 · PA′

2 + PA3 · PA′
3 + PA4 · PA′

4)

where S denotes the surface area of P .

Amer. Math. Monthly, 101(1994) 478–479.

Solution by Robin J. Chapman, University of Exeter, U.K. Choose Cartesian coordi-
nates with P as origin, and suppose that the faces of P lie in the planes x = −a,
x = A, y = −b, y = B, z = −c and z = C. The inequality becomes

√
a2 + b2 + c2

√
A2 +B2 + C2 +

√
a2 + b2 + C2

√
A2 +B2 + c2

+
√
a2 +B2 + c2

√
A2 + b2 + C2 +

√
A2 + b2 + c2

√
a2 +B2 + C2

≥ AB + Ab+ aB + ab+ CA+ Ca+ cA+ ca+BC +Bc+ bC + bc

Now by the Cauchy-Schwarz inequality

√
a2 + b2 + c2

√
A2 +B2 + C2 ≥ aB + bC + cA

and also √
a2 + b2 + c2

√
A2 +B2 + C2 ≥ Ab+Bc+ Ca

Hence

√
a2 + b2 + c2

√
A2 +B2 + C2 ≥ (aB + bC + cA+ Ab+Bc+ Ca)/2

and by adding the similar inequalities obtained from the other terms on the left hand
side of the main inequality, we get the main inequality.

Editorial comment. No other solver used coordinates based at P to simplify the formulas. Also, note
that it is not necessary to require P to be an interior point. The interpretation as surface area is
possible whenever A + a, B + b and C + c are all positive, and this choice can be made for any P .
One reader noted that the result is false if one reads the terms PAi ·PA′i as inner products of vectors.
In this interpretation, the sum of inner products is negative whenever P is an interior point. We
apologize for not noticing that this confusion was possible.
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Amer. Math. Monthly, 100(1993) 75.

10275. Proposed by Murray S. Klamkin and A. Liu, University of Alberta, Edmonton,
Alberta, Canada

Let A be a regular n-gon with edge length 2. Denote the consective vertices by
A0, . . . An−1 and introduce An as a synonym for A0. Let B be a regular n-gon in-
scribed in A with vertices B0, . . . , Bn−1 where Bi lies on AiAi+1 and |AiBi| = λ < 1
for 0 ≤ i < n. Also let Ci be the point on AiAi+1 with |AiCi| = αi ≤ λ for 0 ≤ i < n
and let C denote the n-gon, also inscribed in A, with vertices C0, . . . .Cn−1.

With P (F) denoting the perimeter of the figure F , prove that P (C) ≥ P (B).

Amer. Math. Monthly, 102(1995) 76–77.

Solution ii by Roy Barbara, Lebanese University, Fanar, Lebanon. First we formulate
a method for comparing lengths.

Lemma. Let ABCD be a convex broken line. Assume AB = CD and that the angles
at B and C are equal. Denote by I, J and K the midpoints of AB, BC and CD
respectively. Let R be between A and I, T between B and J , and U between C and K.
Let S also lie on BT . Then RS + SU ≥ RT + TU .

Proof.

A

R

I

B S

T J O

C

V

U

K

D
Let V be the reflection of U across BC. Denote by O the intersection of RV and BC.
Using similar triangles, it is clear that O is between J and C. Thus T is inside the
triangle RSV . Therefore RS + SU = RS + SV ≥ RT + TV = RT + TU .

Now we apply the lemma to solve the problem. Consider the n-gon C; a first application
of the lemma to An−1A0A1A2 (R, S, T , U being Cn−1, C0, B0, C1 respectively) means
that replacing the vertex C0 by B0 will decrease the perimeter of C. More generally, if
we denote by Fi the n-gon with vertices B0, . . . .Bi, Ci+1, . . . , Cn−1 (0 ≤ i ≤ n− 1), by
repeated use of the lemma, we obtain P (C) ≥ P (F0) ≥ P (F1) ≥ · · · ≥ P (Fn−1). Since
Fn−1 is B, the proof is complete.

Note that we have proved a more general result: the n-gon B need not be regular; it
is only necessary that |AiBi| < 1

2
|AiAi+1|.
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Amer. Math. Monthly, 101(1994) 575.

10256. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Determine the extreme values of

1

1 + x+ u
+

1

1 + y + v
+

1

1 + z + w

where xyz = a3, uvw = b3 and x, y, z, u, v, w > 0.

Amer. Math. Monthly, 103(1996) 817–818.

Solution by Raphael Robinson, University of California, Berkeley, CA. We must assume
that a and b are positive. Let S denote the sum of the three fractions. We show that:
(1) the greatest lower bound for S is 0; (2) if a+ b ≤ 1/2, then S attains a maximum
value of 3/(1 + a+ b); and (3) if a+ b > 1/2, then the lest upper bound for S is 2 and
this value is not attained.

In our analysis, we shall allow boundary value of 0 and ∞ for the variables if they
can be approached by finite positive values satisfying the hypotheses. If (x, y, z) is a
boundary triple, then one of the variables must be 0 and one must be ∞, the third
being arbitrary. The minimum S on the boundary is 0, attained for x = y = w = ∞,
z = u = 0, and this is the overall minimum. The maximum S on the boundary is 2,
attained for x = y = u = v = 0, z = w = ∞. It remains to be seen whether larger
values of S can occur in the interior.

Suppose that the maximum S occurs at an interior point (x, y, z, u, v, w). Hold z, u,
v, w fixed and vary x and y. Since xy is then constant, we see that dy/dx = −y/x.
Hence

dS

dx
= − 1

(1 + x+ u)2
+

1

(1 + y + v)2
· y
x

This must vanish, so that

x(1 + y + v)2 = y(1 + x+ u)2 (∗)

A similar argument shows that

u(1 + y + v)2 = v(1 + x+ u)2

Thus u/x = v/y and these must also equal w/z. So we may put

u = hx v = hy w = hz

where h = b/a. Condition (∗) becomes

x (1 + (1 + h)y)2 = y (1 + (1 + h)x)2
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which reduces to x− y = (1 + h)2xy(x− y). Hence

x = y or xy = (1 + h)−2

Similarly
x = z or xz = (1 + h)−2

and
y = z or yz = (1 + h)−2

If we do not have x = y = z, then, by permuting the variables if necessary, we may
assume that x = y, xz = yz = (1 + h)−2, hence

x = y = (1 + h)2a3 z = (1 + h)−4a−3

so that
x+ u = y + v = (a+ b)3 z + w = (a+ b)−3

These yield

S =
2 + (a+ b)3

1 + (a+ b)3

Since this value is less than 2, it cannot be the maximum for S. The only remaining
possibility is that x = y = z = a, u = v = w = b, hence S = 3/(1 + a + b). This
furnishes the maximum for S if it is at least 2 (i.e., if a+ b ≤ 1/2).
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Amer. Math. Monthly, 102(1995) 363–364.

Area of a Roulette

10254 [1992, 782]. Proposed by E. Ehrhart, Université de Strasbourg, Strasbourg, France

The curve traced out by a fixed point of a closed convex curve as that curve rolls
without slipping along a second curve will be called a “roulette”. Let S be the area
of one arch of a roulette traced out by an ellipse of area s rolling on a straight line.
Prove or disprove that S ≥ 3s, with equality only if the ellipse is a circle.

Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.
We will show that the inequality is equivalent to (a− b)(a− 2b) ≥ 0 where a and b are
the major and minor semi-axes of the ellipse, respectively. Consequently there will be
equality if a = b or a = 2b. There will be strict inequality only if a > 2b.

Recall that the pedal of a given curve with respect to a point P is the locus of the
foot of the perpendicular from P to a variable tangent line to the curve. The desired
result follows from the following results of Steiner that can be found in B. Williamson,
The Integral Calculus, Longmans Green and Co., London, 1941, 201–203.

(A) When a closed curve rolls on a straight line, the area between the line and the
roulette generated in a complete revolution by any point on the rolling curve is double
the area of the pedal of the rolling curve, this pedal being taken with respect to the
generating point.

(B) The area of the pedal of an ellipse of semiaxes a and b with respect to any point
P is given by π(a2 + b2 + |OP |2)/2, where O is the centre of the ellipse. In the interest
of simplicity, these theorems have been stated only when P lies on the curve. This is
not an essential restriction.

Clearly, the minimum of S for P on the ellipse occurs for |OP | = b. Hence S ≥ 3s is
equivalent to

π(a2 + 2b2) ≥ 3πab or (a− b)(a− 2b) ≥ 0

Editorial comment. The other solvers were able to work through the Calculus without references, but
as one of them said: “. . . I hope some are more elegant in the way they prove the result; I just ground
out the integral . . .”.
The work leading to the formulation of this problem can be found in E. Ehrhart, Les roulettes
d’ellipses. L’Ouvert, 62(1991) 43–45.
Other references to Steiner’s theorem found by the editors are E. Goursat, A Course in Mathematical
Analysis, Vol.1, Dover, 1959, where it is problem 23 (with hints) on p.207, and J. Edwards, A Treatise
on the Integral Calculus, Chelsea, 1955, article 673, pp.696–697, which refers back to W. H. Besant,
Tract on Roulettes and Glisettes, 1870 (and not to Steiner).
[[Surely Steiner was earlier than 1870 ?? — R.]]
Richard Holzsager suggested that it would be interesting to find the convex curve C and point P on
C which gives the minimum ratio of area of the roulette to the area of the curve. He conjectured that
C is given by the arc of the epicycloid x = 3 cos θ − cos 3θ, y = 3 sin θ − sin 3θ with its end points
(±2, 0) connected by a line segment. The point P is (0,0). For this curve, the ratio can be calculated
to be 8/3 will the above results show that when C is an ellipse, the smallest value is 2

√
2.
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Amer. Math. Monthly, 102(1995) 463.

10453. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Prove that the following two properties of the altitudes of an n-dimensional simplex
are equivalent:

i) the altitudes are concurrent.

ii) the feet of the altitudes are the orthocentres of their respective faces.

Amer. Math. Monthly, 105(1998) 563–565.

Solution II by Mark D. Myerson, U.S. Naval Academy, Annapolis, MD. We first show
(i)Longrightarrow(ii). Assume that the altitudes areconcurrent. Let AA′ be the
altitude rom a fixed vertex A to the opposite face, an (n−1)-simplex a, and let BB′

be the altitude from any other fixed vertex B to its opposite face b. Since AA′ and
BB′ meet, they determine a (2-dimensional) plane π. Since π contains AA′, it is
perpendicular to a; similarly, it is perpendicular to b. Thus π is perpendicular to the
(n−2)-simplex a∩ b. Hence the perpendicular projection to a (parallel to AA′) carries
BB′ into the altitude from B to a∩b in a. Applying this for all choices of B shows that
this projection sends all altitudes of the original simplex other than AA′ to altitudes
of a and all of these altitudes contain A′. Thus, A′ is the orthocentre of a.

We now show that (ii)=⇒(i). Assume that the altitudes of an n-simplex Σ in Rn pass
through the orthocentres of the faces. Let AA′be the altitude from a fixed vertex A
to face a. Then A′ is the orthocentre of a. Also, for a vertex B different from A,
BA′ is perpendicular to a ∩ b, where b is the face of Σ opposite B. Let π be the
(2-dimensional) plane determined by BA′ and AA′. Since AA′ is perpendicular to a,
AA′ is perpendicular to a∩ b, and so π must be perpendicular to a∩ b. Since π is also
2-dimensional and a∩b is (n−2)-dimensional, they must span Rn,and so π must contain
a vector perpendicular to b. Thus π is perpendicular to b, and the altitude BB′ from
B to b lies in π. Since BB′ and AA′ lie in the same plane and are not parallel, they
must meet. Since A and B were chosen arbutrarily, it follows that any two altitudes
of Σ intersect. Consider a third altitude CC ′ of Σ. By a similar argument, we know
that, when projected onto a in a perpendicular fashion, the images of both BB′ and
CC ′ pass through A′. Thus the intersection point of BB′ and CC ′ must lie on AA′. It
follows that each altitude passes through the point of intersection of AA′ and BB′.

Editorial comment. A simplex meeting the conditions of the problem is called orthocentric. Another
characterization is: A simplex is orthocentric if and only if any two disjoint edges are orthogonal.
This topic has a long history, and expositions can be found in N. A. Court, Notes on the orthocentric
tetrahedron, this Monthly, 41(1934) 499–502, N. A. Court, The tetrahedron and its altitudes,
Scripta Math., 14(1948) 85–97, and H. Lob, The orthocentric simplex in space of three and higher
dimensions, Math. Gaz., 19(1935) 102–108. A related article is by L. Gerber, The orthocentric simplex
as an extremeal simplex, Pacific J. Math., 56(1975) 97–111. The latter deals primarily with extremal
problems in n dimensions whose solution is an orthocentric simplex, but includes a brief discussion of
the properties of such simplices.
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Amer. Math. Monthly, 102(1995) 841.

10482. Proposed by Emre Alkan, Bosphorus University, Istanbul, Turkey, and Murray
S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Given a regular n-gonal pyramid with apex P and base A1A2 . . . An, denote ∠AiPAi+1

by α with 0 < α ≤ 2π/n. If points Bi are chosen on the rays PAi (i = 1, 2, . . . , n),
determine the maximum and minimum values of

|PB1|+ |PB2|+ · · ·+ |PBn|
|B1B2|+ |B2B3|+ · · ·+ |BnB1|

Amer. Math. Monthly, 107(1998) 673–674.

Solution by O. P. Lossers, University of Technology, Eindhoven, The Netherlands. The
expression lies between 1/2 and 1/(sin(α/2)). This follows by summing over i from 1
to n (with Bn+1 = B1) the inequalities

|BiP |+ |PBi+1| ≥ |BiBi+1| ≥ sin
α

2
· (|BiP |+ |PBi+1|) (∗)

The first inequality in (∗)is just the triangle inequality. Since a2 = b2 + c2−2bc cosα is
equivalent to a2 = (b+ c)2 sin2 α

2
+ (b− c)2 cos2 α

2
, the second inequality in (∗) follows

from the law of cosines applied to 4BiPBi+1 with a = |BiBi=1|.

The second inequality in (∗) also follows in a more direct way by observing that in
any convex quadrilateral the sum of the lengths of the diagonals is more than the
sum of the lengths of either pair of opposite sides. Now apply this to the trapezoid
BiB

′
iBi+1B

′
i+1 where B′

i is chosen on the ray PBi+1 such that |PBi| = |PB′
i| and B′

i+1

the corresponding point on the ray PBi.

Equality in the lower bound occurs only if of any two consecutive Bi at least one
coincides with P (but not all Bi coincide with P ). The upper bound is attained only
if all Bi are the same (positive) distance from P .

Editorial comment. The Anchorage Math Solutions Group pointed out a physical interpretation of
the maximum. Namely, with P positioned above the centroid of the base in a uniform gravitational
field, consider a spatial polygon with vertices on the rays PAi. Think of this polygon as a loop of
rope passing through heavy rings that can slide freeely on the rays PAi while the rope can pass freely
through the rings. If released, the rope and rings slide into a position of static equilibrium in which
the rope is taught and forms a polygon B1B2 . . . Bn, Bi ∈ PAi, with the Bi equidistant fro P . This
position of the Bi will be such as to minimize the potential energy of the system, which is equivalent
to maximizing

∑
|PBi| or maximizing

∑
|PBi|/

∑
|BiBi+1| with

∑
|BiBi+1| fixed.
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Amer. Math. Monthly, 102(1995) 929.

10488. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Determine the extreme values of the sum of the lengths of three concurrent and mu-
tually orthogonal chords of a given sphere of radius R if the point of concurrency is at
a distance d from the centre.

Amer. Math. Monthly, 105(1998) 371–372.

Solution by John H. Lindsey II, Fort Myers, FL. We generalize the problem to the
case of n concurrent and mutually orthogonal chords of an (n−1)-dimensional sphere
of radius R in Rn. We may assume the chords lie along the coordinate axes with
the origin as the point of concurrency. Let the sphere centre be P = (d1, d2, . . . , dn).
Then d2 = d2

1 + d2
2 + · · · + d2

n and the square of the distance of the sphere centre to
the chord along the i th coordinate axis is d2 − d2

i . Thus the length of this chord is
s
√
R2 − d2 + d2

i .

As the (n−1)-sphere is compact, we may locate P to maximize S the sum of the lengths
of the chords. We claim that P must be along the diagonal of some orthant. Otherwise,
suppose ||di < |dj| for some i and j. Note that

√
a+ x +

√
a− x is decreasing in x

for 0 < x < a. Letting a = R2 − d2 + (d2
i + d2

j)/2 and x = (d2
j − d2

i )/2 we see that
decreasing d2

j and increasing d2
i by the same small amount would increase S, yielding

a contradiction. It follows that d2
i = d2/n for all i. Hence the maximum value is

2n

√
R2 − n− 1

n
d2 U

Similarly, we may locate P to minimize S. Suppose two of the di are nonzero, say
0 < |di| ≤ |dj|. Again, increasing d2

j and decreasing d2
i by the same small amount

decreases S, a contradiction. It follows that there is an index j such that di = 0 for all
i 6= j and d2

j = d2. Hence the minimum value is 2R + 2(n− 1)
√
R2 − d2.

Editorial comment. This result may be compared with problem E 3460 [1991, 755; 1993, 87] part of
which dealt with the sum of the squares of the lengths of such chords.

Nelson M. Blachman and L. Scibani also considered the case in which the n chords could be extended
to have a point of intersection outside the sphere. The first part of the selected solution shows that
there is a chord along the i th coordinate axis if d2

i > d2 − R2. To assure existence of extrema, one
should also allow the chord to degenerate to a tangent when d2

i = d2−R2. The analysis in the selected
solution now shows that the minimum occurs when there is an index j such that d2

i = d2 − R2 for
all i 6= j and d2

j = (n − 1)R2 − (n − 2)d2. This leads to a lower bound of 2
√

nR2 − (n− 1)d2 for
R ≤ d ≤

√
n/(n− 1) R.
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Amer. Math. Monthly, 103(1996) 599.

10482. Proposed by Fred Galvin and Saul Stahl, University of Kansas, Lawrence, KS,
Murray S. Klamkin and Andy Liu, University of Alberta, Edmonton, Alberta, Canada,
and Harry Tamvakis and Marcin Mazur, The University of Chicago, Chicago, IL

Prove that for any 2n − 1 lattice points A1, A2, . . ., A2n−1 in the n-dimensional lattice
of points with integer coordinates, there is a lattice point P , distinct from the Ai, such
that none of the open segments PA1, PA2, . . ., PA2n−1 contains any lattice points.

Solution by Nasha Komanda, Central Michigan University, Mt. Pleasant, MI. If a
lattice poiont C = (c1, . . . , cn) is between lattice points A = (a1, . . . , an) and B =
(b1, . . . , bn) then there exist relatively prime positive integers u and v such that
(u+ v)ci = uai + vbi for 1 ≤ i ≤ n, which implies that u+ v divides ai − bi.

For the given lattice points A1, . . . , A2n−1 let Ai = (ai1, . . . , ain). It suffices to find a
lattice point P = (x1, . . . , xn) distinct fro each Ai, such that for each i the n differences
x1 − ai1, . . ., xn − ain have no common factor.

Let p be a prime. Since there are at least 2n distinct values for (y1, . . . , yn) modulo p,
where y1, . . ., yn are integers, there exist integers y1(p), . . ., yn(p) such that for each i
the vector (y1(p), . . ., yn(p)) does not agree with (ai1, . . . , ain) modulo p. Let Y be the
set of primes less than 2n. For 1 ≤ j ≤ n we apply the Chinese Remainder Theorem
to find an integer yj such that yj ≡ yj(p) modulo p for each p ∈ Y and yj 6= aij for
1 ≤ i ≤ 2n − 1.

Let X be the set of all primes that are at least 2n and that divide yj − aij for some
i, j. For each p ∈ X there is an integer z(p) such that z(p) 6≡ ai1 for 1 ≤ i ≤ 2n − 1.
Let xj = yj for 2 ≤ j ≤ n. Apply the Chinese Remainder Theorem again to find x1

such that x1 ≡ y1 (mod p) for p ∈ Y and x1 ≡ z(p) (mod p) for p ∈ X. For each i,
the differences x1 − ai1, . . ., xn − ain have no common factor, as desired.
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Amer. Math. Monthly, 106(1999) 587.

Using the Walls to Find the Centre

10386 [1994, 477]. Proposed by Jordan Tabov, Bulgarian Academy of Sciences, Sofia,
Bulgaria

Let a tetrahedron with vertices A1, A2, A3, A4 have altitudes that meet in a point H.
For any point P , let P1, P2, P3 and P4 be the feet of the perpendiculars from P to
the faces A2A3A4, A3A4A1, A4A1A2 and A1A2A3 respectively. Prove that there exist
constants a1, a2, a3 and a4 such that one has

a1
−−→
PP1 + a2

−−→
PP2 + a3

−−→
PP3 + a4

−−→
PP4 =

−−→
PH

for every point P .

Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.
More generally, let H and P be any two points in the space of the given tetrahedron
and let P1, P2, P3, P4 be the feet of the lines through P parallel to HA1, HA2, HA3,
HA4 in the faces of the tetrahedron opposite A1, A2, A3, A4 respectively. Then there
exist constants a1, a2, a3, a4, independent of P such that

a1

−−→
PP1 + a2

−−→
PP2 + a3

−−→
PP3 + a4

−−→
PP4 =

−−→
PH

Let V denote the vector from an origin outside the space of the given tetrahedron to
any point V in the space of the tetrahedron. Then H and P have the representations
(barycentric coordinates)

H = x1A1 + x2A2 + x3A3 + x4A4 (x1 + x2 + x3 + x4 = 1)

P = u1A1 + u2A2 + u3A3 + u4A4 (u1 + u2 + u3 + u4 = 1)

Since P1 has the representation P1 = r2A2 + r3A3 + r4A4 where r2 + r3 + r4 = 1 we
must have

r2A2 + r3A3 + r4A4 −P = λ1(H−A1)

Since A1, A2, A3, A4 are independent vectors, we get λ1 = u1/(1 − x1), so that
−−→
PP1 = (P1 −P) = (H−Ai)ui/(1− xi). Similarly,

(P1 −P) = (H−Ai)
ui

1− xi

for i = 1, 2, 3, 4

Choosing ai = 1− xi we obtain∑
ai(Pi −P) =

∑
ui(H−Ai) = H−P =

−−→
PH

This proof generalizes to give an analogous result for n-dimensional simplices.
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Murray Klamkin, (Two Year) Coll. Math. Journal

Richard K. Guy

June 22, 2006

File last updated 2006-05-22.

This is the (lost count!) of a number of files listing problems, solutions and other
writings of Murray Klamkin.

The easiest way to edit is to cross things out, so I make no apology for the proliferation
below. Just lift out what you want.
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The Two-Year Coll. Math. J. didn’t have a problems section at the outset. The first
occurrence is at

Two-Year Coll. Math. J., 4 No.1 (Winter 1973) 73.

The first publication of Murray that I found was:

PROBABILITY

Selection problems: points

Two-Year Coll. Math. J., 10 No.1 (Jan., 1979) 53–54.

[[ He is also listed as a solver for each of the other problems (97–100) in this issue! ]]

Random Points on a Line Segment

96. (Sept. 1977) Proposed by Milton H. Hoehn, Santa Rosa Jr. College, Santa Rosa,
CA

On a line segment of length 1, n points are selected at random. What is the expected
value of the sum of the distances between all pairs of these points ?

Solution by M. S. Klamkin, University of Alberta, Edmonton, Alberta. Let X1, X2, . . .,
Xn be independent random variables each uniformly distributed on the unit interval.
Let F ′′ be any function defined and absolutely integrable on the unit interval such
that F ′′ is equal to the second derivative of some function F . (Itis sufficient to choose
F ′′(x) = x and F (x) = x3/6.) Let S =

∑
1≤i<j≤n F ′′(|Xi − Xj|). Then the expected

value

E(S) =
∑

1≤i<j≤n

∫ 1

0

· · ·
∫ 1

0

∫ 1

0

F ′′(|xi − xj|) dx1 dx2 · · · dxn

=

(
n

2

)∫ 1

0

∫ 1

0

F ′′(|x1 − x2|) dx1 dx2 = 2

(
n

2

)∫ 1

x2=0

∫ x2

x1=0

F ′′(x2 − x1) dx2 dx1

= 2

(
n

2

)
(F (1)− F (0)− F ′(0))

For the given problem, let F (x) = x3/6, giving E(S) = n(n− 1)/6.
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ANALYSIS

Differential equations: functional equations

Two-Year Coll. Math. J., 10 No.2 (Mar., 1979) 128–129.

Quadratic Mean Value Theorem

101. (Sept.1977) Proposed by Louis Alpert, Bronx Community College, NY, and Jerry
Brantley, Macomb County Community College, Mt. Clemens, MI (independently)

Determine all functions f defined on (−∞,∞) such that for all a 6= b,

f ′((a + b)/2) = (f(a)− f(b))/(b− a).

[[Solution by John Oman and U. V. Satyanarayan (independently)]]

Comment by M. S. Klamkin, University of Alberta, Edmonton, Canada. The following
theorem is stated and proved in M. S. Klamkin & D. J. Newman, On some inverse
theorems in potential theory, Quart. Appl. Math., 26(1968) 277–280:

Theorem. If f(x + h) − f(x − h) = 2hf ′(x) holds identically in x for two distinct
positive values of h, then f(x) is a quadratic polynomial.
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GEOMETRY

Regular polygons: inscribed polygons

Two-Year Coll. Math. J., 10 No.4 (Sept., 1979) 128–129.

146. Proposed by M. S. Klamkin, University of Alberta, Canada

Prove that the smallest regular n-gon which can be inscribed in a given regular n-gon
will have its vertices at the midpoints of the sides of the given n-gon.

Two-Year Coll. Math. J., 12 No.1 (Jan., 1980) 64.

Solution by Howard Eves, University of Maine, Lubec, ME. Let A1A2A3 . . . An be
the given regular n-gon and let P1P2P3 . . . Pn be an inscribed n-gon, where P1 lies
on A1A2, P2 on A2A3, . . ., Pn on AnA1. Then A1P1/P1A2 = A2P2/P2A3 = · · · =
AnPn/PnA1. For the inscribed n-gon to have minimum area, each of the n congruent
triangles cut off from A1A2 . . . An by P1P2 . . . Pn must have maximum area. Now, by the
familiar formula for the area of a triangle in terms of two sides and the included angle,
triangle PnA1O1 will be maximum when the product (A1Pn)(A1P1) = (A1P1)(P1A2) is
a maximum. But when a line segment A1A2 is partitioned into two parts by a point
P1 such that the product of the two parts is a maximum, P1 is the midpoint of A1A2.
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GEOMETRY

Parallelograms

Two-Year Coll. Math. J., 10 No.5 (Dec., 1979) 361–362.

Least Squares Property of the Centroid

117. (June 1978) Proposed by Norman Schaumberger, Bronx Community College, NY

Let E be the intersection of the diagonals of parallelogram ABCD and let P and
Q be points on a circle with center E. Prove that PA2 + PB2 + PC2 + PD2 =
QA2 + QB2 + QC2 + QD2.

Solution by Murray S. Klamkin, University of Alberta, Edmonton, Canada. Let a1 and
a2 be vectors from the origin to the vertices at the respective ends of one of the diagonals
of the parallelogram. Similarly, let a3 and a4 be the vectors to the endpoints of the other
diagonal,and let g be the vector to the point of intersection of the diagonals. Since the
diagonals of the parallelogram bisect one another, g = 1

2
(a1 +a2) = 1

2
(a3 +a4). We call

the endpoint of g the centroid of the vertices because, clearly, g = 1
4
(a1 + a2 + a3 + a4).

The solution is completed by the following theorem, which, among other things, allows
us to generalize the problem, for example, by substituting a skew quadrilateral ABCD
and the centroid E of its vertices for the parallelogram and the intersection of the
diagonals. Without loss of generality, we will take the center of the circle to be at the
origin.

Theorem. Let a1, a2, . . ., an be vectors belonging to a Euclidean space, let g =
(1/n)

∑n
k=1 ak and let c be a positive real number. Then

∑n
k=1 ‖ak−p‖2 is constant for

all vectors p belonging to the sphere ‖p‖2 = c having center at 0 if, and only if, g = 0.

Proof. From the vanishing of the inner product (
∑n

k=1(ak − g), g − p) = (0, g− p) = 0
it follows that

n∑
k=1

‖ak − p‖2 =
n∑

k=1

‖ak − g + g − p‖2

=
n∑

k=1

‖ak − g‖2 + n‖g − p‖2 (∗)

Sufficiency of the condition g = 0 is now obvious. The proof is completed by observing
that, if g 6= 0, then the values of ‖g − p‖2 in the last term in (∗) at p = cg/‖g‖ and at
p = −cg/‖g‖, respectively, are different.

Corollary. For given vectors a1, a2, . . ., an and all vectors p, a unique minimum
value of

∑n
k=1 ‖ak − p‖ is achievedat p = (1/n)

∑n
k=1 ak

Proof. The factor ‖g−p‖2 in the last term in (∗), with p now representing an arbitrary
vector, is greater when p is not g than when p is g.
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Two-Year Coll. Math. J., 11 No.2 (Mar., 1980) 137–138.

Lattice Point Principle

129. (Nov. 1978) Proposed by Warren Page, New York City Community College,
Brooklyn, NY

For any nm + 1 (n ≥ 2) lattice points in m-space, prove that there is at least one pair
of points {P, Q} such that (P −Q)/n is a lattice point.

[[ Solution by Warren Ruud, Santa Rosa Junior College. CA ]]

Editor’s note: Klamkin noted that a problem equivalent to the case m = 3, n = 2 was given in the
1971 William Lowell Putnam Competition.
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GEOMETRY

Triangle inequalities: sides

Two-Year Coll. Math. J., 11 No.2 (Mar., 1980) 138–141.

Sharpening of Heron’s Inequality

130. (Nov. 1978. Corrected June, 1979) Proposed by Aron Pinker, Frostburg State
College, Frostburg, MD

Let a, b and c be the lengths of the sides of a triangle, P its perimeter and K its area.
Prove that

(1) 1
a

+ 1
b
+ 1

c
≥ 9

P
(4) a2 + b2 + c2 ≥ 4

√
3 K

(2) a2 + b2 + c2 ≥ P 2

3
(5) a3 + b3 + c3 ≥ p3

9
(3) P 2 ≥ 12

√
3 K

Composite of solutions by Donald C. Fuller, Gainesville J.C., GA; M. S. Klamkin,
University of Alberta, Edmonton, Canada; Jack McCown, Central Oregon C.C., Bend,
OR; and Thomas C. Wales, St. Mark’s School, Southboro, MA

With no loss of generality, let a ≥ b ≥ c. Assume that a = b = c is false. (If a = b = c,
then all the inequality signs below, except those of the form k > k0 or k < k0 where
k0 is either 0 or 1, should be changed to equals signs.) Both (1) and (2) are examples
of Cauchy’s inequality:

(a + b + c)

(
1

a
+

1

b
+

1

c

)
− (1 + 1 + 1)2

=

(√
a

b
−
√

b

a

)2

+

(√
a

c
−
√

c

a

)2

+

(√
b

c
−
√

c

b

)2

> 0

proves (1) and

(a2 + b2 + c2)(1 + 1 + 1)− (a + b + c)2 = (a− b)2 + (b− c)2 + (c− a)2 > 0

proves (2). Inequality (2) is also an example of Chebychev’s inequality, as are (5) and

a3 + b3 + c3

3
>

a2 + b2 + c2

3
· a + b + c

3
(6)
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Clearly (5) follows from (6) and (2), and

3(a3 + b3 + c3) − (a2 + b2 + c2)(a + b + c)

= (a2 − b2)(a− b) + (a2 − c2)(a− c) + (b2 − c2)(b− c) > 0

proves (6). We call (3) Heron’s inequality and we prove it by using Heron’s formula
and the inequality of arithmetic and geometric means: If s = P/2, then

K2/s = (s− a)(s− b)(s− c) <
(

1
3
((s− a) + (s− b) + (s− c))

)3
= (s/3)3

from K2 < s4/27, we obtain K < s2/(3
√

3) = P 2/(12
√

3). Finally, (4) follows from
(2) and (3). This completes the solution. Note that we have used

3(ak+1 + bk+1 + ck+1) − (ak + bk + ck)(a + b + c)

= (ak − bk)(a− b) + (ak − ck)(a− c) + (bk − ck)(b− c) > 0

for k = 1 and k = 2, when, clearly, it holds for any positive number. It follows by
induction that

ak + bk + ck > P k/3k−1 (7)

for k equal to any positive integer > 1. Combining (7) with (3) proves

ak + bk + ck > (12
√

3)k/2/3k−1 (8)

which is the extension of (3) and (4) to all positive integer values of k.

Substituting 1/a, 1/b and 1/c for a, b and c, respectively, in (7), and then using (1)
yields (

1

a

)k

+

(
1

b

)k

+

(
1

c

)k

>

(
1

a
+

1

b
+

1

c

)k
/

3k−1 > 3k+1/P k

which shows that (7) holds also for all integer values of k that are less than 0. The
fact is that (7) holds for k equal to any real number such that either k > 1 or k < 0,
and that, if 0 < k < 1, then (7) holds, providing [[provided that?]] the direction of the
inequality in (7) is reversed. This can be deduced from Hölder’s inequality. We have
only, in the case k > 1, to raise both sides of the following inequality to the k th power:

a + b + c < (ak + bk + ck)1/k(1 + 1 + 1)1−1/k

In case 0 6= k < 1 we do the same to the inequality

a + b + c > (ak + bk + ck)1/k(1 + 1 + 1)1−1/k

taking care, in case k < 0, to again reverse the direction of the inequality. Since(7)
holds for all real k > 1, so does (8).
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Comment by Allen Kaufman, Peat Marwick Mitchell & Co., New York, NY. It is easily
shown by elementary calculus that the area sin θ(1 + cos θ) of the triangle T = T (θ)
(0 < θ < π) whose vertices are the points (−1, 0), (cos θ, sin θ) and (cos θ,− sin θ) is
greatest when θ = π/3 (i.e., when T is equilateral), and that a smaller area is obtained
when θ 6= π/3. That is, the area of an equilateral triangle inscribed in a circle is greater
than the area of an inscribed triangle which is not equilateral, providing [[provided
that?]] the latter triangle is isosceles. This conclusion remains correct if we delete the
words “providing [[provided that?]] the latter triangle is isosceles” for the area of an
inscribed triangle having, say, chord AB as one of its sides is certainly not greater than
the area of one of the two inscribed triangles that have AB for their common base. We
refer to the geometric mean of the lengths of the sides of a triangle as the geometric
mean of the triangle, and similarly for other means.

Theorem. Given a triangle which is not equilateral, if its geometric mean is,say, d,
then its area is less than the area of the equilateral triangle of perimeter 3d.

Proof. Let U be a triangle with area u, circumradius x, and whose sides a, b and
c are not all equal. We know that abc = 4ux. Let V be an equilateral triangle of
perimeter 3d, which has area v and circumradius y, so that d3 = 4vy. Assume that
abc = d3. It follows from ux = vy that u < v if and only if x > y. Consider the
equilateral triangle of perimeter 3h which, like U , has circumradius x. It was proved
above that the area, known to be h3/(4x), of this equilateral triangle is greater than
u. Fromh3 > 4ux = 4vy = d3 we obtain h > d. Since h > d, x > y and the proof is
complete.

Clearly, the theorem is equivalent to the inequalities

(
√

3/4)(abc)2/3 > K or (abc)1/3 > (4K/
√

3)1/2

in which a, b and c represent the sides of any triangle which is not equilateral, and K
is the area of the triangle. By the inequality of arithmetic and geometric means, if r
is a real number > 0, then

((ar + br + cr)/3)3 > arbrcr or ((ar + br + cr)/3)1/r > (abc)1/3

It follows that

((ar + br + cr)/3)1/r > (4K/
√

3)1/2 (r > 0) (∗)

Clearly, this result can be expressed in the following way.
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Corollary. Ifr is a positive number, and a triangle which is not equilateral is given
whose exponentialmean of order r is, say, d, then the area of this triangleis less than
the area of the equilateral triangle of perimeter 3d.

To see that (∗) does not hold for r < 0, consider the isosceles triangle whose base has
length c, whose altitude has length 2/c, and which has legs of equal lengths, a = b,
which depend on c. As c → 0, a and b clearly increase beyond all bounds, but K
remains always equal to 1. If r < 0, then, as c → 0, the left side of (∗) tends to 0,
while the right side remains equal to a positive constant. This contradiction shows
that the real number r in (∗) must be positive.

Klamkin noted that it is not possible, simply by reversing the inequality signs, to make (∗) valid for
negative values of r. Consider the triangle determined by a = b = 1, c = 2 sin θ, where θ is less than
π/2 and closeto π/2. Asθ → π/2, the area K = sin θ cos θ → 0, and

((ar + br + cr)/3)1/r = ((2 + (2 sin θ)r)/3)1/r → ((2 + 2r)/3)1/r > 0

This shows that the inequality

((ar + br + cr)/3)1/r < (4K/
√

3)1/r

is not valid.

Editor’s Note: Most solvers mailed solutions correcting and solving the problem prior tothe printing
of a corrected version. Many of them noted that the problem is closely related to TYCMJ problem
98 (Sept. 1977 and Jan. 1979). Klamkin, Kocher, Prielipp and Rabinowitz gave the following refer-
ences: O. Bottema et al., Geometric Inequalities, Wolters-Noordhoff, Groningen, 1969; H. S. Hall &
S. R. Knight, Higher Algebra, Macmillan, London, 1891; and D. S. Mitrinovic, Elementary Inequalities,
Stechert-Hafner, New York, 1964.
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GEOMETRY

Maxima and minima: triangles

Two-Year Coll. Math. J., 11 No.4 (Sept., 1980) 279–280.

Generalization of a Property of the Symmedian Point

140. (Mar. 1979) Proposed by Norman Schaumberger, Bronx Community College, NY

Locate a point P in the interior of a triangle such that the sum of the squares of the
distances from P to the sides of the triangle is a minimum.

Solution by M. S. Klamkin, University of Alberta, Canada. It is known result that the
point in the plane for which the sum of the squares of the distances to the sides of a
triangle is a minimum is the symmedian point (the isogonal conjugate to the centroid).
[R. A. Johnson, Advanced Euclidean Geometry, Dover, NY, 1960, p.216.]

More generally, it is not much harder to locate an interior point P which minimizes

S = x1r
n
1 + x2r

n
2 + x3r

n
3

where x1, x2, x3 are given arbitrary nonnegative numbers, n > 1, and r1, r2, r3 denote
the distances from P to the sides of the triangle. By Hölder’s inequality

(x1r
n
1 + x2r

n
2 + x3r

n
3 )1/n

{(
an

1

x1

)1/(n−1)

+

(
an

2

x2

)1/(n−1)

+

(
an

3

x3

)1/(n−1)
}

≥ a1r1 + a2r2 + a3r3 = 2∆ (∆ = area of triangle)

with equality if and only if

xir
n
i = λn(an

i /xi)
1/(n−1) for i = 1, 2, 3.

λn is determined by solving for ri and substituting in
∑

airi = 2∆ or

λ =
2∆∑

(an
i /xi)1/(n−1)

and
ri = λ(ai/xi)

1/(n−1)

Also,

Smin = (2∆)n
{∑

(an
i /xi)

1/(n−1)
}1−n

The results for the proposed problem are gotten by setting xi = 1, n = 2. The
maximum of S is easily obtained in the following manner:

S

(2∆)n
=
∑ xi

an
i

(airi

2∆

)n

≤ max

(
x1

an
1

,
x2

an
2

,
x3

an
3

)(
a1r1 + a2r2 + a3r3

2∆

)
11



since 1 ≥ airi/2∆ ≥ 0. Thus,

Smax = (2∆)n max
i

xi/a
n
i

and which is taken on for P coinciding with one of the vertices of the triangle.

The above results can also be extended for simplexes in Em in the same way.
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Two-Year Coll. Math. J., 13 No.1 (Jan., 1982) 65.

208. Proposed by M. S. Klamkin, University of Alberta, Canada

The following problem and solution appear in [1]: - “The sum of the roots of the
equation

x4 − 8x3 + 21x2 − 20x + 5 = 0

is 4; explain why on attempting to solve the equation from the knowledge of this fact
the method fails.”

“x4 − 8x3 + 21x2 − 20x + 5 = (x2 − 5x + 5)(x2 − 3x + 1); on putting x = 4 − y, the
expressions x2−5x+5 and x2−3x+1 become y2−37+1 and y2−5y+5, respectively,
so that we merely reproduce the original equation.”

Give a better explanation.

REFERENCE

1. H. S. Hall & S. R. Knight, Higher Algebra, Macmillan, London, 1932, pp.489, 551.

Two-Year Coll. Math. J., 14 No.3 (June, 1983) 261–262.

Composite of solutions by Floyd Barger, Youngstown State University, OH; C. Patrick
Collier, University of Wisconsin–Oshkosh; and Clayton W. Dodge, University of Maine
at Orono. If Hall & Knight has used more space, they mighthave made their point in
the following way. Let f(x) = x4 − 8x3 + 21x2 − 20x + 5. We can solve the equation
f(x) = 0 without using the information that that the sum of two roots is 4 asfollows.
Since the sum of the four roots is 8, to eliminate the third degree term, we compute
f(y + 2) = y4− 3y2 + 1. Since the first degree term has also vanished, we continue the
solution by completing the square:

(y4 − 2y2 + 1)− y2 = (y2 − 1− y)(y2 − 1 + y)

or
f(x) = (x2 − 3x + 1)(x2 − 5x + 5) (1)

and the solution can be completed without difficulty.

This example has been given for the purpose of making the following comments. One
sees easily from (1) that

gcd(f(x), f(3− x)) = x2 − 3x + 1

gcd(f(x), f(5− x)) = x2 − 5x + 5 and

gcd(f(x), f(4− x)) = (x2 − 3x + 1)(x2 − 5x + 5) = f(x)

This shows that if the sum of two roots of f is a given rational number a, then
the methodof obtaining a depressed equation with rational coefficients by using the
Euclidean algorithm to compute the gcd of f(x) and f(a − x) would be successful in

13



case a = 3 or a = 5, but it would fail in case a = 4. We note that the failure would not
be due to the irreducibility of f(x) over the rational numbers, but to the fact that the
substitution of 4−x for x merely interchanges the factors x2− 3x + 1 and x2− 5x + 5.

A different method and one which will not fail to solve the equation f(x) = 0 when
we are given that the sum of two roots is 4 begins by writing

f(x) = (x2 − 4x + b)(x2 − 4x + c) (2)

and then b and c are easily determined by multiplying the factors on the right, and
comparing the coefficients obtained with the coefficients given in the definition of f .
In this way, we obtain the values (−5±

√
5)/2 for b and c, so that, in contrast to (1),

the factorization (2) requires irrational numbers.

14



Two-Year Coll. Math. J., 13 No.1 (Jan., 1982) 66.

The Inequality
∑

(
∑

ar /
∑

as ) >
∑

ar−s

163. (Mar. 1981) (Corrected) Proposed by Wm. R. Klinger, Marion College, Marion,
IN

Assume ai > 0 (i = 1, 2, 3, 4), a5 = a1 and a6 = a2. Prove or disprove:

1.
4∑

i=1

(a3
i + a3

i+1 + a3
i+2)/(ai + ai+1 + ai+2) ≥

4∑
i=1

a2
i

and

2.
4∑

i=1

(a4
i + a4

i+1 + a4
i+2)/(ai + ai+1 + ai+2) ≥

4∑
i=1

a3
i

Solution by M. S. Klamkin, University of Alberta, Canada. Let n and k be integers
that are > 1, let r > s > 0, let ai > 0 (i = 1, 2, . . .), let the ai be not all equal to the
same constant, and let j ≡ m (mod n) imply aj = am. We show more generally that

S ≡
n−1∑
i=1

ar
i+1 + ar

i+2 + · · ·+ ar
i+k

as
i+1 + as

i+2 + · · ·+ as
i+k

>
n∑

m=1

ar−s
m

By Chebyshev’s inequality

1

k

k∑
j=1

ar
i+j ≥

(
1

k

k∑
as

i+j

)(
1

k

k∑
ar−s

i+j

)
i = 0, 1, 2, . . . (∗)

That is, the i th term in the sum which defines S is ≥ (1/k)
∑k

j=1 ar−s
i+j . Since the

numbers a1, a2 . . . are not all equal, at least one of the inequalities in (∗) is strict. It
follows that

S >

n−1∑
i=0

1

k

k∑
j=1

ar−s
i+j =

1

k

k∑
j=1

n−1∑
i=0

ar−s
i+j

=
1

k

k∑
j=1

n∑
m=1

ar−s
m =

n∑
m=1

ar−s
m
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Two-Year Coll. Math. J., 13 No.2 (Mar., 1982) 151–152.

Probability of a Subradial Distance

178. (Nov. 1980) Proposed by Roger L. Creech, East Carolina University, Greenville,
NC

If points A and B are selected at random in the interior of a circle, what is the
probability that AB is less than the length of the radius of the circle ?

Editor’s Note: Klamkin noted that the problem appears in J. Edwards, Treatise on Integral Calculus,
II. Chelsea, NY, 1954, p.852, and is credited to I. P. Ox, 1916.

Two-Year Coll. Math. J., 14 No.2 (Mar., 1983) 173.

248. Proposed by M. S. Klamkin, University of Alberta, Canada

(1) Given that a1, a2, . . . and b1, b2, . . . are non-constant, nonproportional arithmetic
progressions. Determine the maximum number of consecutive terms in the sequence
(a1/b1), (a2/b2), . . . which can be in (i) arithmetic progression, (ii) geometric progres-
sion.

(2) Given that a1, a2, . . . and b1, b2, . . . are non-constant, nonproportional geometric
progressions. Determine the maximum number of consecutive terms in the sequence
(a1 + b1), (a2 + b2), . . . which can be in (i) arithmetic progression, (ii) geometric pro-
gression.

Two-Year Coll. Math. J., 16 No.2 (Mar., 1985) 155–157.

Solution by Michael Vowe, Therwil, Switzerland. (1) Let an = a + (n − 1)d, bn =
b + (n − 1)e, n = 1, 2, . . ., where d 6= 0, e 6= 0, [[ not e = 0 as printed ]] ae − bd 6= 0,
sincethe progressions are nonconstant and nonproportional. Also bn 6= 0, n ≥ 1, for
the ratios to be defined.

(i) Let f be the difference between successive terms in the sequence of ratios, so

f =
a2

b2

− a1

b1

=
bd− ae

b(b + e)

The difference between a third term and the first must be 2f , so

a3

b3

− a1

b1

=
a + 2d

b + 2e
− a

b
=

2(bd− ae)

b(b + e)

This yields e(ae− bd) = 0 which is impossible, so the maximum number of consecutive
terms is two.

16



(ii) Clearly an 6= 0, n ≥ 1, for the ratios to be in geometric progression. Let q be the
ratio of successive terms in the sequence of ratios, so

q =
a2

b2

/
b(a + d)

a(b + e)

The ratio a3/b3 = q2(a1/b1) or a(a+2d)(b+e)2 = b(b+2e)(a+d)2. This may be written
((a + d)2− d2)(b + e)2 = ((b + e)2− e2)(a + d)2, which yields e2(a + d)2 = d2(b + e)2 or
e(a+d) = ±d(b+e). A three-term geometric progression which may be found by using
this condition is a/b, k, (b/a)k2, k 6= 0, formed of ratios of the arithmetic progressions

a, a+bk
2

, bk and b, b+(a/k)
2

, a/k.

There cannot bea fourth term in the sequence of ratios since this would give a4/b4 =
q3(a1/b1), or a2(a + 3d)(b + e)3 = b2(b + 3e)(a + d)3. This may be written

((a + d)3 − d2(3a + d))(b + e)3 = ((b + e)3 − e2(3b + e))(a + d)3

which leads, after using e2(a + d)2 = d2(b + e)2, to ae = bd which is not allowed. Thus
the maximum number of consecutive terms is three.

(2) Let an = apn−1, bn = bqn−1, n = 1, 2, . . ., where a 6= 0, b 6= 0, p 6= 1, q 6= 1, p 6= q,
since the progressions are nonconstant and nonproportional.

(i) Let d be the difference between successive terms in the sequence of sums, so d =
a2+b2−a1−b1 = a(p−1)+b(q−1). The difference between the third term and the first
must be 2d. Therefore a3 + b3−a1− b1 = a(p2− 1)+ b(q2− 1) = 2(a(p− 1)+ b(q− 1)),
which leads to a(p−1)2+b(q−1)2 = 0. A three term arithmetic progression which may
be found using this condition is 6, 10, 14, formed of sums of the geometric progressions
8, 16, 32 and –2, –6, –18.

There cannot be a fourth term in the sequence of sums since this would give 3d =
a4 + b4− a1− b1 or 3(a(p− 1) + b(q− 1)) = a(p3− 1) + b(q3− 1). This may be written
a((p − 1)3 + 3(p − 1)2) + b((q − 1)3 + 3(q − 1)2) = 0, which gives a(p − 1)2(p + 2) +
b(q − 1)2(q + 2) = 0. This leads, after using a(p− 1)2 = −b(q − 1)2, to p = q which is
not allowed. Thus the maximum number of consecutive terms is three.

(ii) Let r be the ratio of successive terms in the sequence of sums, so a2+b2 = r(a1+b1)
or r(a+b) = ap+bq. A third term in the sequence of sums would give a3+b3 = r2(a1+b1)
or (a + b)(ap2 + bq2) = (ap + bq)2. This implies ab(p− q)2 = 0, which is impossible, so
the maximum number of consecutive terms is two.
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Two-Year Coll. Math. J., 14 No.3 (June, 1983) 261.

253. Proposed by M. S. Klamkin, University of Alberta, Canada

Assume that A, B and C are the angles of a triangle. Prove that

3(cot A + cot B + cot C) ≥ cot
A

2
+ cot

B

2
+ cot

C

2

with equality if and only if the triangle is equilateral.

Two-Year Coll. Math. J., 16 No.3 (June, 1985) 224–225.

Solution by Robert L. Young, Cape Cod Community College, West Barnstable, Mass.
Using cot(A/2) = (1 + cos A)/ sin A = csc A + cot A and the corresponding equations
for B and C, the inequality can be reduced to

2(cot A + cot B + cot C) ≥ csc A + csc B + csc C (1)

The left-hand side of (1) can be written in the form (cot A+cot B)+ (cot B +cot C)+
(cot C +cot A). If we then multiply each side of (1) by a factor equal to twice the area
of triangle ABC, we obtain

chc(cot A + cot B) + aha(cot B + cot C) + bhb(cot C + cot A)

≥ bc sin A(csc A) + ac sin B(csc B) + ab sin C(csc C) (2)

where ha, hb and hc represent the lengths of the altitudes of triangle ABC from the
vertices A, B and C respectively. Then (2), and therefore also (1), is seen to be
equivalent to

a2 + b2 + c2 ≥ bc + ca + ab (3)

Doublung (3) gives us

(a2 + b2) + (b2 + c2) + (c2 + a2) ≥ 2ab + 2bc + 2ca

or,equivalently,
(a− b)2 + (b− c)2 + (c− a)2 ≥ 0

This last inequality is obviously correct, and it is obvious that equality holds if and
only if a = b = c. This completes the solution.
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Comment by Michael Vowe, Therwil, Switzerland. Let s be the semiperimeter of the
triangle, R the circumradius, r the inradius, and ra, rb and rc the radii of the excir-
cles opposite A, B and C, respectively. Since cot A = (cot(A/2) − tan(A/2))/2, the
proposed inequality can be written in the form

cot(A/2) + cot(B/2) + cot(C/2) ≥ 3(tan(A/2) + tan(B/2) + tan(C/2))

or
(s− a)/r + (s− b)/r + (s− c)/r ≥ 3((ra/s) + (rb/s) + (rc/s))

That is, s2 ≥ 3r(ra + rb + rc) or s2 ≥ 3r(4R + r). This last inequality occurs in
O. Bottema et al., Geometric Inequalities, Walters-Noordhoff, Groningen, 1968, p.49
(5.6). [[ That shd be ‘Wolters-Noordhoff’ – R. ]]
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Two-Year Coll. Math. J., 14 No.5 (Nov., 1983) 439.

261. Proposed by M. S. Klamkin, University of Alberta, Canada

Explain the following numerical pattern which was obtained on a pocket calculator:

tan 89.999 ≈ 57295.77951

tan 89.9999 ≈ 572957.7951

tan 89.99999 ≈ 5729577.951

tan 89.999999 ≈ 57295779.51

tan 89.9999999 ≈ 572957795.1

tan 89.99999999 ≈ 5729577951.

[[At this point the name of the journal changed to

College Math. Journal]]

Coll. Math. J., 16 No.4 (Sept., 1985) 306–307.

Composite of solutions by Dan Kalman, Augustana College, Sioux Falls, SD; and Jan
Söderkvist (student), Royal Institute of Technology, Stockholm,Sweden. The calculator
is operating correctly. Let θk = 10−kπ/180, k = 3, . . . , 8. The values given by the
calulator for tan(π/2−θk) are,to 10 significant figures, the valuesof 1/θk. We will show
that, to 10 significant figures, tan(π/2− θk) = 1/θk. Let 0 < θ ≤ 10−3π/180 = K. By
Taylor’s formula with the Lagrange form of the remainder,

tan(π/2− θ) = 1/ tan θ = 1/(θ + R)

where
R = (1/3)θ3(1 + tan2 A)(1 + 3 tan2 A)

for some A between 0 and θ. Also

1/θ −R/θ2 < 1/(θ + R) < 1/θ

Since (tan x)/x, considered for 0 < x < π/4, is an increasing function of x, we have
tan A < tan K < 4K/π and

R/θ2 < (K/3)(1 + (4K/π)2)(1 + 3(4K/π)2)

Calculation shows that the right-hand side is less than (1/2)10−5. Noting that the last
figure given by the calculator for tan 89.999 is in the fifth decimal place completes the
solution.
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Two-Year Coll. Math. J., 15 No.1 (Jan., 1984) 68.

265. Proposed by M. S. Klamkin, University of Alberta, Canada

Determine the extreme values of

Si = sini B + sini C − sini A (i = 1, 2)

where A, B and C are angles of a triangle.

Coll. Math. J., 16 No.4 (Sept., 1985) 310.

Composite of solutions by Richard Parris, Phillips Exeter Academy, Exeter, NH; and
Doug Wiens, Dalhousie University, Halifax, Nova Scotia,Canada. If B = C = π/2
and A = 0, then Sn = 2, n = 1, 2. Since sin A ≥ 0, S1 > 2 is impossible. It follows
that sup Sn = 2, n = 1, 2. Since the sines of the angles of a triangle are proportional
to the lengths of the opposite sides, S1 > 0 with equality if the triangle is degenerate.
Therefore, inf S1 = 0. Finally,

S2 = sin2 B + sin2 C − sin2 A = 2 sin B cos C cos A (∗)

which shows that negativevalues of S2 are obtained if π/2 < A < π. With no loss in
generality, let A satisfy these inequalities. By (∗), using the arithmetic-geometric mean
inequality and the concavityof the sine and cosine functions on the interval (0, π/2),
we have

S2 ≥ 2((sin B + sin C)/2)2 cos A ≥ 2 sin2((B + C)/2) cos A

= 2 cos2(A/2) cos A = −2 cos2(A/2) cos(π − A)

≥ −2((2 cos(A/2) + cos(π − A))/3)3

≥ −2 cos3((2(A/2) + (π − A))/3) = −2 cos3(π/3) = −1/4

with equality if and only if A/2 = π − A and B = C. Then min S2 = −1/4 and
S2 = −1/4 if and only if A = (2/3)π and B = C = π/6. This completes the solution.
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Coll. Math. J., 15 No.3 (June, 1984) 267.

278. Proposed by M. S. Klamkin, University of Alberta, Canada

If A is an n× n matrix such that A3 = pA2 + gA + rI, determine (A− I)−1 assuming
it exists.

Coll. Math. J., 17 No.2 (Mar., 1986) 185–186.

Solution by J. Suck, Essen, West Germany. More generally, let A satisfy the polyno-
mial equation p(x) = 0, where p(x) = cnx

n + cn−1x
n−1 + · · · + c1x + c0 and the ciare

given elements of a field which also containsthe components of A, cn 6= 0. Let P = (pij)
denote the (n+1)× (n+1) matrix such that

pij =

(
j

i

)
(i = 0, 1, . . . , n; j = 0, 1, . . . , n)

Let C be the (n+1) × 1 column matrix defined as the transpose (c0, c1, c2, . . . , cn)′ of
the row (c0, c1, c2, . . . , cn). Let S = PC define S = (s0, s1, s2, . . . , sn)′. LetD = (dij)
be the n× n matrix such that

dij = ci+j−1 (i = 0, 1, . . . , n; j = 0, 1, . . . , n)

Let X = (1, x, x2, . . . , xn−1)′ and let Pi (i = 0, 1, . . . , n−1) denote the 1×n row matrix
whose j th component (j = 0, 1, . . . , n−1) is the binomial coefficient

(
j
i

)
. Clearly, the

result, indexed by i, of each one of the n successive divisions by x−1 occurring in the
application of Horner’s process to the problem of writing p(x) as a linear combination
of powers of x−1 can be described by the equation

p(x) = PiDX(x− 1)i+1 + si(x− 1)i + · · ·+ s2(x− 1)2 + s1(x− 1) + s0 (1)

(i = 0, 1, 2, . . . , n−1). The conclusion of the process, obtained for i = n−1, is, of course,
the equation p(x) = sn(x− 1)n + · · ·+ s2(x− 1)2 + s1(x− 1) + s0. Substituting A for
x, and A−I for x−1, in this equation shows that, in consideration of the existence of
(A−I)−1 and the fact that p(A) = 0,

u = min{i : si 6= 0} < n

Substituting u for i in (1) gives us p(x) = PuDX(x−1)u+1+su(x−1)u. From p(A) = 0
and the existence of (A − I)−1, we infer that A satisfies PuDX(x − 1) + su = 0 or,
equivalently, −s−1

u PuDV (x − 1) = 1. Therefore, the inverse of A−I is obtained by
substituting I, A, A2, . . ., An−1 for the components of X = (1, x, x2, . . . , xn−1) in the
expression

−s−1
u PuDX
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The solution of the given problem follows from the above discussion by setting n = 3
and C = (r, q, p,−1). Then

P =


1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1


and S = P = (r+q+p−1, q+2p−3, p−3,−1). By (2), if r+q+p 6= −1, then

(A− I)−1 = −(r + q + p− 1)−1
(
(q + p− 1)I + (p− 1)A− A2

)
If r + q + p = 1 and q + 2p 6= 3, then

(A− I)−1 = −(q + 2p− 3)−1((p− 2)I − A)

If r + q + p = 1, q + 2p = 3 and p 6= 3, then

(A− I)−1 = −(p− 3)−1(−I)

Our solution is completed by noting that r+q+p = 1, q+2p = 3 and p = 3 contradict
the existence of (A− I)−1.
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Coll. Math. J., 15 No.3 (June, 1984) 269–270.

Mean Values of Subsets of a Finite Set

230. (Sept. 1982) Proposed by Sydney Bulman-Fleming and Edward T. H.Wang, Wil-
fred Laurier University, Waterloo, Ontario, Canada

Define the average of a finite nonempty set T of numbersto be the average of the
elementsof T . Is it true that the mean of the averages of all the nonempty subsets of
a finite nonempty set W always equals the average of W ?

Solution by M. S. Klamkin, University of Alberta, Canada. Let f be a continuous
strictly monotonic function defined on an interval which contains all the elements of
W . For all finite nonempty subsets T of this interval, we define the mean Mj(T ) by

Mj(T ) = f−1

{
1

n(T )

∑
a∈T

f(a)

}

where n(T ) denotes the number of elements in T .

Examples. Let T be a finite nonempty set of positive real numbers. If f(x) = x, then
Mf (T ) is the arithmetic mean of the elements in T . If f(x) = ln x, Mf (T ) is the
geometric mean. If f(x) = 1/x, Mf (T ) is the harmonic mean.

We will show that if “average of T” is interpreted as Mf (T ), then the answer is in the
affirmative. Let m = n(W ). Let T and Ta denote, respectively, a nonempty subset
of W , and a subset of W which contains the element a. We note that the Ta are
either 1-element sets, 2-elementsets, . . . , or m-element sets, and that the number of
k-element sets of W which contain a given element a is

(
m−1
k−1

)
, k = 1, 2, . . . ,m. Then

f−1

{
1

2m − 1

∑
T

f(Mf (T ))

}
= f−1

{
1

2m − 1

∑
T

(
1

n(T )

∑
a∈T

f(a)

)}

= f−1

{
1

2m − 1

∑
a∈W

(
f(a)

∑
Ta

1

n(Ta)

)}

= f−1

{
1

2m − 1

∑
a∈W

(
f(a)

m∑
k=1

1

k

(
m− 1

k − 1

))}

= f−1

{
1

2m − 1

∑
a∈W

(
f(a)

m∑
k=1

1

m

(
m

k

))}

= f−1

{
1

m

∑
a∈W

f(a)

}

as was to be shown.
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Coll. Math. J., 15 No.4 (Sept., 1984) 346–347.

282. Proposed by M. S. Klamkin, University of Alberta, Edmonton, Canada and Gregg
Patruno (student), Princeton University, New Jersey (jointly)

(a) It is immediate that

cos2 x · cos2 y

cot2 x · cot2 y
= sin2 x · sin2 y

Show that the identity remains valid even if the multiplication signs on the left-hand
side are changed to subtraction signs.

(b) Generalize the above result.

Coll. Math. J., 17 No.3 (June, 1986) 250–251.

Solution by Harry Sedinger, St. Bonaventure University, St. Bonaventure, NY. The
generalization will be shown first. The functional equation

f(x) · f(y)

g(x) · g(y)
=

f(x)− f(y)

g(x)− g(y)

may be written as
1

f(x)
− 1

f(y)
=

1

g(x)
− 1

g(y)

so [[that]] its general solution is given by any pair of functions satisfying (1/f(x)) −
(1/g(x)) = k, where k is an arbitrary constant. Thus, if f(x) is given and g(x) =
f(x)/(1− kf(x)), then the functional equation is identically satisfied. This identity is
a generalization of the result in (a) as required by (b).

Specifically, to prove (a), choose k = 1 and f(x) = cos2 x, and let

g(x) =
f(x)

1− kf(x)
=

cos2 x

1− cos2 x
= cot2 x

The above argument then shows the result in (a).
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Coll. Math. J., 15 No.4 (Sept., 1984) 349–351.

Generalization of a/b + b/a ≥ 2

235. (Nov. 1982) Proposed by Norman Schaumberger, Bronx Community College,
Bronx, NY

Let m1, m2, m3, m4 be positive real numbers with S =
∑4

i=1 mi. Prove that

4∑
i=1

mi/(S −mi) ≥ 4/3.

Comment by M. S. Klamkin, University of Alberta, Canada. Let m1, m2, . . .mn be the
lengths of the sides of an n-gon, n ≥ 3. Then S−mi > mi, i = 1, 2, . . . , n. In this case
we have the companion inequality

∑n
i=1(mi/(S − mi)) < 2 (Crux Mathematicorum,

7(1981) 28).

Proof:

S −mi = (S −mi)/2 + (S −mi)/2 > (S −mi)/2 + mi/2 = S/2 i = 1, 2, . . . , n

Then 2mi/S > mi/(S −mi) and

2 = (2/S)
n∑

i=1

mi >
n∑

i=1

mi/(S −mi).
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Coll. Math. J., 15 No.5 (Nov., 1984) 446.

Thanks Again, Euler

239. (Jan. 1983) Proposed by Norman Schaumberger, Bronx Community College,
Bronx, NY

Prove or disprove: The product of four distinct nonzero integers in arithmetic progres-
sion cannot be a fourth power.

[[ in fact a (special case of a) classic problem. The result attributed to Euler was
already given by Fermat. – R. ]]

Solution by M. S. Klamkin, University of Alberta, Canada. It is well known that the
product of four consecutive integers cannot be a square since otherwise the identity
(a− 2)(a− 1)a(a + 1) + 1 = (a2− a− 1)2 leads to the equation x2 + 1 = (a2− a− 1)2,
x 6= 0, which has no solution. Similarly, the product of four distinct nonzero integers
in arithmetic progression cannotbe a fourth power since otherwise the identity (a −
2d)(a− d)a(a + d) + d4 = (a2 − ad− d2)2 leads to the equation x4 + d4 = y2, dx 6= 0,
which was shown by Euler to have no solution. The result still holds if a, d are assumed
rational: just multiply the identity by a common denominator. Note that the second
identity follows from the first when a is replaced by a/d.

Editor’s note: The solver noted that this problem appeared in Crux Mathematicorum, Problem
645(1981, p.177) where the above solution was initially sent. The solvers cited many different texts
on Number Theory for the result by Euler.
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297. Proposed by M. S. Klamkin, University of Alberta, Canada

One is given a set of functions Hi(x1, x2, . . . , xr), i = 0, 1, . . . , s which are homogeneous
functions of degrees ni, respectively, and are functionally dependent, i.e.,

H0 = F (H1, H2, . . . , Hs)

Show that H0 is homogeneous in the functions J1, J2,. . . , Js, where

Ji = H
1/n
i

Coll. Math. J., 18 No.1 (Jan., 198) 72.

Solution by William P. Wardlaw, United States Naval Academy, Annapolis, MD.
Let X = (x1, x2, . . . , xr) and let H0 = F (H1, H2, . . . , Hs) = G(J1, J2, . . . , Js) where

Ji = H
1/ni

i . The functions Ji(X) are each homogeneous of degree 1 since Ji(tX) =
(Hi(tX))1/ni = tJi(X), i = 1, 2, . . . , s. The desired result follows since

G(tJ1, tJ2, . . . , tJs) = G(J1(tX), J2(tX), . . . , Js(tX))

= F (H1(tX), H2(tX), . . . , Hs(tX))

= H0(tX) = tn0H0(X) = tn0G(J1, J2, . . . , Js)

Thus H0 = G(J1, J2, . . . , Js) is homogeneous of degree n0 in the functions J1, J2, . . .,
Js as required.
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Estimation of a Product

259. (Sept. 1983) Proposed by Sanjukta Hota (student) and Kathy Williams (student),
jointly, Southeast Missouri State University, Cape Giradeau

Let a, d > 0 and m be a positive integer. Prove:

m

√
a

a + mnd
≤

n∏
k=1

a + (mk − 1)d

a + mkd
≤ m

√
a + (m− 1)d

a + (mn + m− 1)d

Solution by M. S. Klamkin, University of Alberta, Canada. Let A = (a− d)/(md) and
B = a/(md). The given inequalities are equivalent to(

B

B + n

)B−A

≤ Γ(A + n + 1)Γ(B + 1)

Γ(A + 1)Γ(B + n + 1)
≤
(

A + 1

A + n + 1

)B−A

(1)

Equality occurs both when B = A + 1 and when B = A, corresponding to m = 1
and m = ∞, respectively. We will establish (1) for any number m, not necessarily an
integer, which is ≥ 1. Let

F (B) + (B − A) ln
A + 1

A + n + 1
+ ln

Γ(B + n + 1)

Γ(B + 1)
− ln

Γ(A + n + 1)

Γ(A + 1)

Since F (A) = F (A + 1) = 0, thesecond inequality in (1), equivalent to F (B) ≥ 0 for
A < B < A+1, will be established if we show that F (B) is concave or that F ′′(B) ≤ 0.
Since it is known that

d2 ln Γ(z)

dz2
=

∞∑
k=0

(z + k)−2

the demonstration is completed by observing that

F ′′(B) =
∞∑

k=0

{
1

(B + n + 1 + k)2
− 1

(B + 1 + k)2

}
≤ 0

Similarly, to prove the first inequality in (1), let

G(A) = ln
Γ(A + n + 1)

Γ(A + 1)
− ln

Γ(B + n + 1)

Γ(B + 1)
− (B − A) ln

B

B + n

We will prove the inequality G(A) ≥ 0, equivalent to the desired inequality, for B ≥
A ≥ B − 1. Since G(B) = G(B − 1) = 0, it is sufficient to show G′′(A) ≤ 0. The
solution is completed by observing that

G′′(A) =
∞∑

k=0

{
1

(A + n + 1 + k)2
− 1

(A + 1 + k)2

}
≤ 0
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Editor’s Note: Shafer proved that the lower bound for the product can be raised to(
2a + md− 2d

2a + 2mnd + md− 2d

)1/m

for any real number m > 2.
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308. Proposed by M. S. Klamkin, University of Alberta, Canada

Evaluate {
d3n

dx3n
(1− 3

√
2 sin x)3n

}
x=π/6

Coll. Math. J., 18 No.3 (May, 1987) 250–251.

Solution by Michael Vowe, Therwil, Switzerland. The formula of Faà di Bruno, as given
by Steven Roman, The Formula of Faà di Bruno, Amer. Math. Monthly, 87(1980)
p.807, states: If f(t) and g(t) are functions for which all the necessary derivatives are
defined, then

Dnf(g(t)) =
∑ n!

k1! · · · kn!
(Dkf)(g(t))

(
Dg(t)

1!

)k1

· · ·
(

Dng(t)

n!

)kn

where k = k1+· · ·+kn and the sum is over all k1, . . ., kn for which k1+2k2+· · ·+nkn =
n. In this case replace n by 3n and let f(t) = t3n and g(t) = 1− (2 sin t)1/3, then notice{

(Dkf)(g(t))
}

t=π/6
= 0 for 1 ≤ k ≤ 3n− 1

since g(π/6) = 0and Dkf(0) = 0. Thus the only nonzero term in the formula has
k1 = 3n and k2 = k3 = · · · = k3n = 0 (from

3n = k1 + k2 + · · ·+ k3n

= k1 + 2k2 + · · ·+ 3nk3n)

This gives the required evaluation as{
d3n

dx3n

(
1− 3

√
2 sin x

)3n
}

x=π/6

=
(3n)!

(3n)!
(D3nf)

(
g
(π

6

))(
Dg
(π

6

))3n

= (3n)!(−1)3n

(
21/3

3

(
sin

π

6

)−2/3

cos
π

6

)3n

=
(−1)3n(3n)!

33n/2
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313. Proposed by M. S. Klamkin, University of Alberta, Canada

The surface z = F (x, y) is smooth and is tangent to the (x, y) plane at the origin.
Also, all plane curves of the surface containing the z-axis have a minimum value at the
origin. Must the origin be a minimum point of the surface ?

Coll. Math. J., 18 No.5 (Nov., 1987) 426.

Solutions by Howard K. Hilton, Chicago, IL; Joseph D. E. Konhauser, MacalesterCol-
lege, St. Paul, MN; and the proposer (independently). No. We give three examples.

Example by Konhauser: z = f(x, y) = (y− x2)(y− 2x2). Thevalue of z is negative for
points (x, y) lying bewteen the parabolas y = x2 and y = 2x2. The value is zero on
the parabolas, and positive at all other points.

Example by Hilton: z = f(x, y) = (x2 + y2− 2y)(x2− 2y). The circle x2 + y2− 2y = 0
is internally tangent to the parabola x2 − 2y at the origin. The factors of f will have
the same sign at points which are either inside the circle or outside the parabola; the
factors of f have opposite signs at each point that is simultaneously outside the circle
and inside the parabola, and z is zero on the circle and on the parabola.

Example by the proposer: z = f(x, y) = (x − y2)2 − y6. Here z is negative for points
6= (0, 0) of the parabola x = y2. For points (x, y) on the lines y = mx, m arbitrary,
that are sufficiently close to the origin, z is a positive multiple of x2. For points of the
(x, y)-plane on the line x = 0 that are sufficiently close to the origin, z is a positive
multiple of y4.

Each of the three examples is an example of a surface that is smooth and tangent to
the (x, y)-plane at the origin. In each example, the values of f on any line through the
origin in the (x, y)-plane have a strict minimum equal to zero at the origin, and yet
there are points (x, y) arbitrarily close to the origin at which the value of f is < 0.
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Coll. Math. J., 17 No.1 (Jan., 1986) 92.

316. Proposed by M. S. Klamkin, University of Alberta, Canada

If a1, a2, a3, a4, a5 > 0, prove that

∑
cyclic

(
a1a2a3

a4a5

)4

≥
∑

cyclic
a1a

2
2a3

When is there equality ?

Coll. Math. J., 18 No.5 (Nov., 1987) 428.

Solution by Beno Arbel, Tel Aviv University, Israel. The following inequality is ob-
tained with the aid of the Arithmetic Mean-Geometric Mean Inequality: If xi > 0,
i = 1, . . . , 5, then

5∑
i=1

=
∑

cyclic

(
x1 + x2

2

)
≥
∑

cyclic

√
x1x2

with equality if and only if x1 = · · · = x5. This inequality will be used three times to
complete the following proof of the given inequality:

∑
cyclic

(
a1a2a3

a4a5

)4

=

(
a1a2a3

a4a5

)4

+

(
a3a4a5

a1a2

)4

+

(
a5a1a2

a3a4

)4

+

(
a2a3a4

a5a1

)4

+

(
a4a5a1

a2a3

)4

≥ a4
3 + a4

5 + a4
2 + a4

4 + a4
1 =

5∑
i=1

a4
i ≥

∑
cyclic

a2
1a

2
2 ≥

∑
cyclic

a1a
2
2a3

with equality if and only if a1 = · · · = a5, which is the desired result.
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321. Proposed by M. S. Klamkin, University of Alberta, Canada

Prove that for x > 1,

s ≥ (x− 1)x−1xx

(x− 1
2
)2x−1

> 1

Coll. Math. J., 19 No.1 (Jan., 1988) 84–85.

Composite of solutions by Chico Problem Group, California State University; Bjorn
Poonen (student), Harvard College [[??]], Cambridge, MA; and Heinz-Jürgen Seiffert,
Berlin, Germany.

Let f(x) = x ln x and note that limx→0+ f(x) = 0 (use l’Hospital’s rule), and that f(x)
is convex for x > 0 since f ′′(x) = 1/x > 0. The given inequality is then obviously
equivalent to ln 2 ≥ f(x − 1) + f(x) − 2f(x − 1/2) > 0 for x > 1. The right-hand
inequality is then true by the convexity of f(x). To show the left-hand inequality, let
g(x) = f(x− 1) + f(x)− 2f(x− 1/2): Then

lim
x→1+

g(x) = 0 + 0− 2(1
2
ln 1

2
) = ln 2

It only remains to show that g(x) remains less than ln 2 for x > 1. Differentiation
yields

g′(x) = ln(x− 1) + ln x− 2 ln(x− 1
2
) = ln

[
1− 1/4

(x− 1
2
)2

]
< 0

for x > 1, so g(x) strictly decreases proving the left-hand side and hence the given
inequality.

The result may be restated in various other forms: First, if u = x − 1/2, then it
becomes

2 ≥ (u− 1
2
)u−1/2(u + 1

2
)u+1/2u−2u > 1 for u > 1

2

This may be written

2 ≥
(

1− 1

4u2

)u
√

2u + 1

2u− 1
> 1 for u > 1

2

Next, a straightforward generalization gives the inequality

4c ≥ (x− 2c)x−2cxx

(x− c)2x−2c
> 1

for x > 2c > 0. Finally, replacing x by u + c gives

4c ≥ (u− c)u−c(u + c)u+cu−2u > 1 for u > c > 0.
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330. Proposed by M. S. Klamkin, University of Alberta, Canada

Determine the extreme values of

x2

x + yz
+

y2

y + zx
+

z2

z + xy

given that x, y, z are positive numbers such that x + y + z = 1.

Coll. Math. J., 19 No.3 (May, 198) 291–292.

Solution by Vedula N. Murty, Pennsylvania State University at Harrisburg, Capitol
College, Middletown, PA. Let P = {(x, y, z) : x, y, z > 0, x + y + z = 1} and

S = S(x, y, z) =
x2

x + yz
+

y2

y + zx
+

z2

z + xy

Clearly, for (x, y, z) ∈ P , S < x2/x + y2/y + z2/z = 1. Since S = 1 on {(x, y, z) :
x, y, z ≥ 0, x+y +z = 1, exactly one of x, y or z = 0} we conclude, by continuity, that

l.u.b. {S(x, y, z) : (x, y, z) ∈ P} = 1 (∗)

Define T = T (x, y, z) by S = 1 − T . By maximizing T , we will minimize S. For
(x, y, z) ∈ P , we have

S =
x(x + yz)− xyz

x + yz
+

y(y + zx)− xyz

y + zx
+

z(z + xy)− xyz

z + xy

= 1− xyz

(
1

1− y − z + yz
+

1

1− z − x + zx
+

1

1− x− y + xy

)
= 1− xyz

(1− x) + (1− y) + (1− z)

(1− x)(1− y)(1− z)

= 1− 2xyz

(y + z)(z + x)(x + y)

so that

T =
2xyz

(y + z)(z + x)(x + y)
≤ 2xyz

8
√

yz
√

zx
√

xy
=

1

4

by the arithmetic-geometric mean inequality. It follows that S ≥ 3/4 for (x, y, z) ∈ P .
We conclude, since S(1/3, 1/3, 1/3) = 3/4, that

min{S(x, y, z) : (x, y, z) ∈ P} =
3

4

Together with (∗), this completes the solution.
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332. Proposed by M. S. Klamkin, University of Alberta, Canada

Given that ABCD is an inscribed quadrilateral in a unit circle which is symmetric
about AC which is a diameter of the circle. Triangle ABD is rotated about BD
through an angle α. Determine the maximum value of the circumradius R(α) of the
variable triangle A(α)CD for 0 ≤ α ≤ π.

Coll. Math. J., 19 No.3 (May, 1988) 294.

Solution by J. Foster, Weber State College. By the extended law of sines and the
formula for the area of a triangle that is determined by two sides and the included
angle, we obtain that the product of two sides of a triangle is equal to the altitude to
the third side multiplied by twice the circumradius. Since the sides A(θ)D and CD of
triangle A(θ)CD have fixed length, we can maximize R(θ) by minimizing the altitude
to side A(θ)C. This altitude goes from D to a point in the plane containing AC and
perpendicular to BD. Hence, it is minimized when its length is equal to the distance
from D to that plane. This occurs when θ = 0 or π. Therefore, the maximum value of
R(θ) is the radius of the unit circle, or 1.
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337. Proposed by M. S. Klamkin, University of Alberta, Canada

If a, b, c, d > 0, prove that

b3c3

a6
+

c3d3

b6
+

d3a3

c6
+

a3b3

d6
≥ max

{
bc

a2
+

cd

b2
+

da

c2
+

ab

d2
,

a2

bc
+

b2

cd
+

c2

da
+

d2

ab

}
.

Coll. Math. J., 19 No.5 (Nov., 1988) 450.

Solution by Benjamin G. Klein, Davidson College, NC, and V. N. Murty, Pennsylvania
State University at Harrisburg, Capitol College, Middletown (independently).

Theorem. If xi > 0, i = 1, 2, 3, 4 and
∏4

i=1 xi = 1, then

4∑
i=1

x3
i ≥ max

(
4∑

i=1

xi ,
4∑

i=1

1

xi

)

Proof. It is known that

1

4

4∑
i=1

x3
i ≥

(
1

4

4∑
i=1

xi

)3

Hence, to prove that
∑4

i=1 x3
i ≥

∑4
i=1 xi, it is sufficient to show that

1

16

(
4∑

i=1

xi

)3

≥
4∑

i=1

xi

or, equivalently, (
4∑

i=1

xi

)2

≥ 1

The last inequality follows from the arithmetic-geometric mean inequality due to the
fact that

∏4
i=1 xi = 1. To prove that

∑4
i=1 x3

i ≥
∑4

i=1 1/xi we note that, by the
arithmetic-geometric mean inequality,

4∑
i=1

x3
i =

4∑
i=1

1

3

∑
j 6=i

x3
j ≥

4∑
i=1

∏
j 6=i

xj =
4∏

j=1

xj

4∑
i=1

1

xi

=
4∑

i=1

1

xi

�

The problem is solved by substituting x1 = bc/a2, x2 = cd/b2, x3 = da/c2and x4 =
ab/d2.
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294. (Jan. 1985) Proposed by Russell Euler, Northwest Missouri State University,
Maryville

Prove
p∏

k=2

{
r2 − 2r cos

[
θ − 2(k − 1)π

p

]
+ 1

}
=

r2p − 2rp cos pθ + 1

r2 − 2r cos θ + 1

Editor’s Note: Klamkin stated that the result is a classical identity and can be found in a number
of books on trigonometry; e.g., C. V. Durell & A. Robson, Advanced Trigonometry, G. Bell & Sons,
London, 1953, p.226.

Coll. Math. J., 18 No.1 (Jan., 1987) 69.

343. Proposed by M. S. Klamkin, University of Alberta, Canada

Determine the quotient when 2xn+2 − (n + 2)x2 + n is divided by (x− 1)2

Coll. Math. J., 20 No.2 (Mar., 1989) 166.

Solution by Tsz-Mei Ko (student), The Cooper Union, NewYork City. The quotient
may be found directly by synthetic division. Alternatively, factor:

2xn+2−(n+2)x2+n = 2(xn+2−x2)−n(x2−1) = (x−1)[2(xn+1+xn+ · · ·+x2)−n(x+1)]

This may in turn be factored:

(x−1)[2(xn+1−x)+· · ·+2(x2−x)+n(x−1)] = (x−1)2[2(xn+· · ·+x)+· · ·+2(x2+x)+2x+n]

Collecting like powers then gives the desired quotient as 2(xn + 2xn−1 + · · ·+ nx) + n.
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368. Proposed by M. S. Klamkin, University of Alberta, Canada

If w and z are complex numbers, it is a known identity that

|w|+ |z| =
∣∣∣∣w + z

2
−
√

wz

∣∣∣∣+ ∣∣∣∣w + z

2
+
√

wz

∣∣∣∣ (1)

Generalize to an identity involving three complex numbers.

Coll. Math. J., 20 No.5 (Nov., 1989) 443–444.

Composite of a joint solution by Kim McInturff and Peter Simon, Raytheon Cor-
poration, Goleta,CA; and a solution by William P. Wardlaw, U.S. Naval Academy,
Annapolis, MD. The identity (1) can be written in the form

2
[
|
√

w|2 + |
√

z|2
]

= |
√

w −
√

z|2 + |
√

w +
√

z|2 (2)

where
√

w is any one of the two square roots of w and
√

z is any one of the two square
roots of z. Equation (2) is simply the parallelogram law applied to the parallelogram
in the complex plane whose vertices are 0,

√
w,
√

z and
√

w +
√

z. The parallelogram
law, ofcourse, states that the sum of the squares on the sides of any parallelogram is
equal to the sum of the squares on its diagonals. For parallelepipeds, the corresponding
law is that the sum of the squares on the twelve edges of any parallelepiped is equal to
the sum of the squares on its four diagonals. Our generalization is, therefore, obtained
as follows. Let s, w and z be any three complex numbers, and let

√
s,
√

w and
√

z
represent a square root of s, a square root of w, and a square root of z, respectively. We
think of the complex numbers

√
s,
√

w and
√

z as vectors from the origin that coincide
with three concurrent edges of a flat, or flattened, parallelepiped. This parallelepiped
has four edges parallel to

√
s, each of length |

√
s|; it has four edges parallel to

√
w,

each of length |
√

w|; and it has four edges parallel to
√

z, each of length |
√

z|. Thus,
in our generalization, the left side of (2) will be replaced by 4[|

√
s|2 + |

√
w|2 + |

√
z|2].

One diagonal of our flattened parallelepiped has an endpoint at the origin, and the
same length and direction as the vector

√
s +

√
w +

√
z. The other diagonals have

endpoints at the points
√

s,
√

w,
√

z, and their lengths and directions are those of the
vectors −

√
s +

√
w +

√
z,
√

s−
√

w +
√

z and
√

s +
√

w−
√

z, respectively. Therefore
our generalization of (2) is

4[|
√

s|2 + |
√

w|2 + |
√

z|2] = |
√

s +
√

w +
√

z|2 + | −
√

s +
√

w +
√

z|2

+ |
√

s−
√

w +
√

z|2 + |
√

s +
√

w −
√

z|2 (3)

Identity (3) can be proved by an obvious computation which begins with the expansion
of the right sides of four equations (one equation for each of the four terms on the right-
hand side of (3)) similar in form to the equation

|
√

s +
√

w +
√

z|2 = (
√

s +
√

w +
√

z)(
√

s +
√

w +
√

z)
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This proof of (3) is reminiscent of a familiar proof of the parallelogram law; it is in fact
the same proof with complex numbers replacing vecors in 3-space, and the complex
inner product uv̄, defined for every two complex numbers u and v, replacing the inner
product of vectors in real 3-dimensional space.

In order to obtain an identity whose relationship to (3) shall be like the relationship
of (1) to (2), we rewrite (3) in the following way:

4(|s|+ |w|+ |z|) = |s + w + z + 2(
√

s
√

w +
√

w
√

z +
√

z
√

s)|
+ |s + w + z + 2(

√
s
√

w −
√

w
√

z −
√

z
√

s)|
+ |s + w + z + 2(−

√
s
√

w +
√

w
√

z −
√

z
√

s)|
+ |s + w + z + 2(−

√
s
√

w −
√

w
√

z +
√

z
√

s)| (4)

or

4(|s|+ |w|+ |z|) = |s + w + z + 2(
√

sw +
√

wz +
√

zs)|
+ |s + w + z + 2(

√
sw −

√
wz −

√
zs)|

+ |s + w + z + 2(−
√

sw +
√

wz −
√

zs)|
+ |s + w + z + 2(−

√
sw −

√
wz +

√
zs)| (5)

The square roots in (5) cannot be independently chosen. For example, if s = w = z =
−1, and we choose

√
sw =

√
wz =

√
zs = 1, then, as is easily verified, (5) becomes

false. When using (5) for arbitrary complex numbers s, w and z, the correct course is
to impose the condition

√
sw
√

wz
√

zx = swz (6)

To verify that (5), when used in this way, is correct, we note, to begin with, that (5)
reduces to (1) when s, w or z is zero. Let s, w and z not be zero. We note that we can
then choose two of the square roots on the left of (6) arbitrarily, whereupon the value
of the third square root is uniquely determined, and that, if

√
sw,

√
wz,

√
zs satisfy

(6), then the only other systems of values of the three square roots that will satisfy (6)
are

√
sw, −

√
wz, −

√
zs; and −

√
sw,

√
wz, −

√
zs; and −

√
sw, −

√
wz,

√
zs. Direct

examination of (5) shows that changing from one of these systems of values to another
leaves (5) unaltered. Finally, we show that for any nonzero complex numbers s, w and
z, if

√
sw,

√
wz,

√
zs are chosen so that (6) is satisfied, then the right-hand side of (5)

will be equal to the right-hand side of (4) for some choice ofthe values of
√

s,
√

w and√
z. In fact, if

√
s is any one of the two square roots of s and we define

√
w and

√
z

by
√

w =
√

sw/
√

s and
√

z =
√

sz/
√

s, then, by (6),

√
w
√

z =
√

sw
√

zs/s = (swz/
√

wz)/s = wz/
√

wz =
√

wz

from which it is apparent that the right sides of (5) and (4) are equal. Since we already
know that (4) is correct, we conclude that (5) is correct when the square roots in (5)

40



are chosen in accordance with (6). Thus our generalization of (1) is the identity (5)
with the values of its square roots subjected to (6), but otherwise arbitrary.

Editor’s Notes: An extension of the above generalization of (1), a generalization in a differentdirection,
and a combination of the two generalizations can be found in a classroom capsule, in this issue, by
M. S. Klamkin & V. N. Murty, entitled “Generalization of a Complex Number Identity.” The explicit
statement of equation (6) is due to McInturff & Simon.

[[ Here’s the capsule just referred to. – R.]]

Coll. Math. J., 20 No.5 (Nov., 1989) 415–416.

Generalizations of a Complex Number Identity

M. S. Klamkin, University of Alberta, Edmonton, Alberta & V. N. Murty, Pennsylvania
State University, Middletown, PA

A recurring exercise that appears in texts on complex variables is to show that if w
and z are complex numbers, then

|w|+ |z| = |(w + z)/2−
√

wz|+ |(w + z)/2 +
√

wz|

In problem 368, this journal, the first author asked for a generalization to any number
of variables and to any dimensional Euclidean space by replacing the complex numbers
by vectors.

First, we can simplify the identity by getting rid of the bothersome square roots.
Letting w = z2

1 and z = z2
2 we get

2
{
|z1|2 + |z2|2

}
= |z1 − z2|2 + |z1 + z2|2 (1)

Geometrically, we now have that the sum of the squares of the edges of a parallelo-
gram equals the sum of the squares of the diagonals. Consequently, by considering a
parallelepiped, one generalization is that

4
{
|z1|2 + |z2|2 + |z3|2

}
= |z1 + z2 + z3|2 + |z1 + z2 − z3|2

+ |z1 − z2 + z3|2 + | − z1 + z2 + z3|2 (2)

Here, z1, z2, z3 can be complex numbers in the plane or vectors in space. For a proof,
assuming the zi are vectors, just note that

|z1 + z2 − z3|2 = (z1 + z2 − z3)
2

= z2
1 + z2

2 + z2
3 + 2z1 · z2 − 2z1 · z3 − 2z2 · z3 etc.
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Geometrically we have that the sum of the squares of all the edges of a parallelepiped
equals the sum of the squares of the four body diagonals. Also to be noted is that (1)
is the special case of (2) when z3 = 0. A generalization to n-dimensional space (for an
n-dimensional parallelepiped) is immediate, i.e.,

2n
∑

z2
i =

∑
(±z1 ± z2 ± · · · ± zn)2 (3)

where the summation on the right is taken over all the 2n combinations of the ± signs.

For a generalization in another direction, note that (1) can be rewritten as

|z1|2 + |z2|2 = |(z1 − z2)/
√

2|2 + |(z1 + z2)/
√

2|2

In the real plane, the transformation x′ = (x − y)/
√

2, y′ = (x + y)/
√

2 representsa
rotation of the coordinate axes by 45◦ and preserves all distances, i.e.,

√
x2 + y2 =√

x′2 + y′2. For the case here, the value of |z1|2 + |z2|2 is preserved under an orthogonal
transformation. More generally (as is known), if z1, z2, . . ., zn are complex numbers (or
vectors in space) and we make the transformation Z ′ = MZ where M is an arbitrary
real orthogonal matrix and the transpose matrices of Z and Z ′ are

ZT = (z1, z2, . . . , zn) and Z ′T = (z′1, z
′
2, . . . , z

′
n)

then ∑
|z′i|2 =

∑
|zi|2

and its proof is quite direct:∑
|z′i|2 =

∑
z′iz̄

′
i = Z ′T Z̄ ′ = (MZ)T (M̄Z̄) = ZT MT MZ̄ = ZT Z̄ =

∑
|zi|2

(since M is orthogonal, MT M = I). The proof for vectors is the same except that the
multiplication of thetwo vector matrices ZT and Z̄ is via the scalar dot product.

More generally, the matrix M can be replaced by a complex matrix U if it is unitary,
i.e., UT Ū = I. Finally, the identity (3) can be generalized by replacing the zi by z′i
and then letting Z ′ = UZ. For a simple example in (2), let

z′1 = iz1 cos θ + iz2 sin θ, z′2 = z1 sin θ − z2 cos θ, z′3 = z3

where θ is an arbitrary real angle.
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Coll. Math. J., 19 No.2 (Mar., 1988) 186.

374. Proposed by M. S. Klamkin, University of Alberta, Canada

Determine necessary and sufficient conditions on the consecutive sides a, b, c, d of a
convex quadrilateral such that one of its configurations has an incircle, a circumcircle,
and perpendicular diagonals.

Coll. Math. J., 20 No.5 (Nov., 1989) 448–449.

Solution by Brian Amrine, Goleta,CA; and Phil Clarke, Los Angeles Valley College,
Van Nuys, CA (independently). Let a, b, c and d be the lengths of the consecutive sides
of a convex quadrilateral. A necessary and sufficient condition for the quadrilateral to
have an incircle is that

a + c = b + d (1)

A necessary and sufficient condition for the diagonals of the quadrilateral to be per-
pendicular is that

a2 + c2 = b2 + d2 (2)

Equations (1) and (2) imply

ac = bd (3)

Equations (1) and (3) imply

a = b and c = d or a = d and c = b (4)

Conversely, (4) implies (1) and (2). Therefore (4) is a necessary and sufficient condition
for a convex quadrilateral with consecutive sides a, b, c and d to have both an incircle
and perpendicular diagonals. We claim that (4) is a solution to the proposer’s problem.
It is clear that (4) is necessary; conversely, if, say, a = b and c = d, then (1) and (2)
assure the existence of an incircle and perpendicular diagonals, and we can certainly
configure the quadrilateral so that side ameets side d at right angles, and side b meets
side c at right angles, assuring the existence of a circumcircle. This completes the
solution.

Also solved by the proposer, who referred to C. V. Durell & A. Robson, Advanced
Trigonometry, G. Bell, London,1953, pp.27–28.
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Coll. Math. J., 19 No.3 (May, 1988) 290.

377. Proposed by M. S. Klamkin, University of Alberta, Canada

Determine the maximum value of

P = (x− x2)(1− 2x)2(1− 8x + 8x2)2

over 0 ≤ x ≤ 1.

Coll. Math. J., 20 No.5 (Nov., 1989) 450–451.

Solution I by C. Patrick Collier, Universityof Wisconsin, Oshkosh. Multiply and com-
plete the square as follows:

P =
1

16
(1− (8x2 − 8x + 1)2)(1 + (8x2 − 8x + 1))(8x2 − 8x + 1)2

=
1

16

(
1− (8x2 − 8x + 1)2

)
(8x2 − 8x + 1)2 =

1

16

(
1

4
−
(

(8x2 − 8x + 1)2 − 1

2

)2
)

It is now clear that the maximum value of P is 1
64

, occurring when (8x2− 8x+1)2 = 1
2

which determines x =
2±
√

2±
√

2

4
. These four values are between zero and one, which

completes the solution.

Solution II by Philip D. Straffin, Beloit College, WI. The identity cos 4θ = 8 cos4 θ −
8 cos2 θ + 1 suggests the substitution x = cos2 θ which yields

P (cos2 θ) = cos2 θ sin2 θ cos2 2θ cos2 4θ =
1

4
sin2 2θ cos2 2θ cos2 4θ

=
1

16
sin2 4θ cos2 4θ =

1

64
sin2 8θ

Thus for 0 ≤ θ ≤ π
2
, the maximum of P is 1

64
, assumed for θ = π

16
, 3π

16
, 5π

16
, 7π

16
. The

corresponding values of x = cos2 θ are x =
2+
√

2+
√

2

4
,

2+
√

2−
√

2

4
,

2−
√

2−
√

2

4
,

2−
√

2+
√

2

4
,

respectively.

Solution III by Bill Mixon, Austin, TX; and Bert K. Waits, Ohio State University,
Columbus (independently). A computer plot of P suggests that P maybe simply related
to a Chebyshev polynomial. Following this hint, direct computation then verifies that
P = 1

128
(1 − T8(2x − 1)), where T8 is the eighth Chebyshev polynomial: T8(x) =

128x8−256x6+160x4−32x2+1. The domain 0 ≤ x ≤ 1 corresponds to−1 ≤ 2x−1 ≤ 1,
so the well-known property Tn(cos θ) = cos(nθ) gives T8(2x−1) = cos(8 arccos 2x− 1).
Thus P has a maximum of 1

128
(2) = 1

64
, assumed when cos(8 arccos(2x − 1)) = −1,

thus giving the values x = 1
2
(1 + cos π

8
), 1

2
(1 − cos π

8
), 1

2
(1 + cos 3π

8
), 1

2
(1 − cos 3π

8
)

corresponding to x =
2+
√

2+
√

2

4
,

2−
√

2+
√

2

4
,

2+
√

2−
√

2

4
,

2−
√

2−
√

2

4
respectively.
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Solution IV by Mark Biegert, Honeywell Inc., Hopkins,MD. Complete squares to give

P =

(
1

4
−
(

x− 1

2

)2
)(

4

(
x− 1

2

)2
)(

1− 8

(
x− 1

2

))2

=
1

16

(
2− 8

(
x− 1

2

)2
)(

8

(
x− 1

2

)2
)(

1− 8

(
x− 1

2

))2

Let y = 8(x− 1
2
)2, so P (y) = 1

16
(2y−y2)(1−y)2, 0 ≤ y ≤ 2. Then the AGM inequality

gives

P (y) =

(√(
2y − y2

4

)(
(1− y)2

4

))2

≤
(

1

2

(
1

4
(2y − y2) +

1

4
(1− 2y + y2)

))2

=
1

64

with equality when 2y − y2 = 1− 2y + y2, so y = 2±
√

2
2

, yielding the same values for x
as above.
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Coll. Math. J., 19 No.4 (Sept., 1988) 370.

383. Proposed by M. S. Klamkin, University of Alberta, Canada

In an article, “The Creation of Mathematical Olympiad Problems” in the Newsletter
of the World Federation of National Mathematics Competitions, Feb. 1987, pp.18–
28, Arthur Engel, by using a sequence of transformations, “wipes out all traces of its
origin” and ends up with the triangle inequality

a2 + b2 + c2 − 2bc− 2ca− 2ab + 18abc/(a + b + c) ≥ 4F
√

3

where a, b, c and F are the sides and area of the triangle, respectively. He notes that
this inequality is now “a very difficult problem to prove”. Prove or disprove the latter
statement.

Coll. Math. J., 21 No.1 (Jan., 1990) 70.

Composite of solutions by Francisco Bellot, Valladolid, Spain and W. Weston Meyer,
General Motors research Laboratories. Let s, r and R denote the semiperimeter, inra-
dius and circumradius, resoectively, of the triangle. With the well-known relations

a + b + c = 2s bc + ca + ab = s2 + 4rR + r2 abc = 4Rrs

the given inequality becomes

2(s2 − r2 − 4Rr)− 2(s2 + r2 + 4Rr) + 36Rr ≥ 4F
√

3

which in turn is equivalent to 5R− r ≥ s
√

3.

But an equilateral triangle is simultaneously the triangle of greatest primeter that can
be inscribed in a circle of radius R, so that R ≥ 2s/(3

√
3), and the triangle of least

perimeter that can be circumscribed about a circle of radius r, so that r ≤ s/(3
√

3)
[see Theorems 6.3a and 6.3c of Ivan Niven’s Maxima and Minima Without Calculus,
MAA, 1981]. The desired inequality follows.
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Coll. Math. J., 19 No.5 (Nov., 1988) 449.

389. Proposed by M. S. Klamkin, University of Alberta, Canada

Factor P 2 + PQ + Q2 into real polynomial factors where

P = x2y + y2z + z2x and Q = xy2 + yz2 + zx2

Coll. Math. J., 21 No.2 (Mar., 1990) ??.

Solution by Henry A. Williams, Carroll High School, Ozark, AL. Since

P 3 −Q3 = x6y3 − x3y6 + y6z3 − y3z6 + z6x3 − z3x6

= (y3 − x3)(z3 − x3)(x3 − y3)

and

P −Q = x2y − xy2 + y2z − yz2 + z2x− zx2

= (y − x)(z − x)(x− y)

we have

P 2 + PQ + Q2 =
P 3 −Q3

P −Q
=

(y3 − x3)(z3 − x3)(x3 − y3)

(y − x)(z − x)(x− y)

= (x2 + xy + y2)(y2 + yz + z2)(z2 + zx + x2)

Editor’s Note: The factorization was also successfully accomplished by the symbolic algebra programs
DeriveTM (Shippensburg U. Mathematical Problem Solving Group), MACSYMA c© and MathematicaTM

(Robert Weaver, Mount Holyoke C.) and MAPLETM (Robert Tardiff, Salisbury State U.).
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Coll. Math. J., 20 No.1 (Jan., 1989) 68.

391. Proposed by M. S. Klamkin, University of Alberta, Canada

Determine all integral solutions of the Diophantine equation

2x/(1− x2) + 2y/(1− y2) + 2z/(1− z2) = 8xyz/(1− x2)(1− y2)(1− z2)

Coll. Math. J., 21 No.2 (Mar., 1990) 155–156.

Solution by Duane M. Broline, Eastern Illinois University, Charleston, IL. The only
integral solutions are either of the form (0, a,−a), (a, 0,−a) or (a,−a, 0) where a 6= ±1,
or of the form (r, s − r, t − r) where r,s and t are integers such that r2 + 1 = st and
such that (r, s, t) is not in the following table.

r –3 –3 –2 –2 –1 –1 –1 –1 0 0 1 1 1 1 2 2 3 3
s –5 –2 –5 –1 –2 –1 1 2 –1 1 –2 –1 1 2 1 5 2 5
t –2 –5 –1 –5 –1 –2 2 1 –1 1 –1 –2 2 1 5 1 5 2

[[ This can surely be described more neatly ? How about: ‘with |r| > 1 and, if |r| = 2
or 3, neither |s| nor |t| = 5” ?? Let’s see how these conditions emerge in the solution.
– R. ]]

Let (x, y, z) be an integral solution to the original equation. Clearly, none of |x|, |y|
or |z| is equal to 1. [[Not clear to me why these should not be counted as solutions.
– R.]] Multiplying both sides of the original equation by (1− x2)(1− y2)(1− z2) abd
simplifying gives

((x + y + z)− xyz)((yz + zx + xy)− 1) = 0

Thus, either x + y + z = xyz or yz + zx + xy = 1.

First consider the case that x + y + z = xyz. If any one of x, y or z is zero, then the
other two add to zero. Hence (x, y, z) has the form (0, a,−a), (a, 0,−a) or (a,−a, 0),
where a 6= ±1. If none of x, y or z is zero, then each of |x|, |y| and |z| is at least 2.
Hence,

−3

4
<

1

yz
+

1

zx
+

1

xy
≤ 3

4

[[I’ve added the possibility of equality to the second inequality. – R.]] which contradicts
the assumption that

1

yz
+

1

zx
+

1

xy
= 1

If yz +zx+xy = 1, then (x+y)(x+z) = 1+x2. Setting r = x, s = x+y and t = x+z
we see that (x.y.z) = (r, s − r, t − r), where r2 + 1 = st. Conversely, if r, s and t are
integers such that r2 + 1 = st, then (x.y.z) = (r, s− r, t− r) provides a solution to the
original equation except when one of r, s− r or t− r equals 1 or –1.
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If r = ±1 then it is easy to see that the possibilities for s and t are as given in the
table. If s − r = ±1 then r ± 1 divides r2 + 1. Since r2 + 1 = (r + 1)2 ∓ 2r, we see
that r±1 divides 2; hence r ∈ {−3,−2,−1, 0, 1, 2, 3. The cases that r = ±1 have been
treated previously, while the other cases give additional entries to the table. The case
that t− r = ±1 is handled similarly.

[[ This solution leaves much to be desired. The “∓” should be “−”. It seems to me
that “possibilities” should be “impossibilities”. But worst of all is that the symmetry
has completely disappeared. ]]
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Coll. Math. J., 20 No.1 (Jan., 1989) 69.

395. Proposed by M. S. Klamkin, University of Alberta, Canada

If the altitudes of an acute triangle ABC are extendedto intersect its circumcircle in
points A′, B′, C ′ respectively, prove that

[A′B′C ′] ≤ [ABC]

where [ABC] denotes the area of ABC.

Coll. Math. J., 21 No.3 (May, 1990) 249–250.

Composite of solutions by Walter Blumberg, Coral Springs, FL, and Dave Ohlsen,
Santa Rosa Junior College, CA (independently). Let ^C ′CA = x, ^A′AB = y and
^B′BC = z. It follows that x = ^C ′A′A = ^ABB′ = ^AA′B′; y = ^A′B′B =
^BCC ′ = ^BB′C ′; and z = ^B′C ′C = ^A′AC = ^AC ′C. Thus A = y + z,
B = z + x, C = x + y, and A′ = 2x, B′ = 2y, C ′ = 2z. Since 2x + 2y + 2z = π,
A′ = π − 2A, B′ = π − 2B and C ′ = π − 2C. Let R denote the radius of the cir-
cumcircle. Then ABC = 2R2 sin A sin B sin C and [A′B′C ′] = 2R2 sin A′ sin B′ sin C ′ =
2R2 sin(2A) sin(2A) sin(2C). Hence the inequality [A′B′C ′] ≤ [ABC] is equivalent
to the well-known inequality 8 cos A cos B cos C ≤ 1 (with equality if and only if
A = B = C = π/3).

Editors’ Note. Several solvers used propertiesof the orthic triangle of ABC (the triangle
whose vertices are the feet of the altitudes). See David R. Davis, Modern College
Geometry, Addison-Wesley, 1957.
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Coll. Math. J., 20 No.2 (Mar., 1989) 164.

400. Proposed by M. S. Klamkin, University of Alberta, Canada

Ai and Bi are two sets of points on an n-dimensional sphere with center O such that
Ai and Bi are pairs of antipodal points for i = 1, 2, . . . , n. It follows immediately that
the volumes of the two simplexes

O,A1, A2, . . . , Ar, Br+1, . . . , Bn and O,B1, B2, . . . , Br, Ar+1, . . . , An

are equal since the simplexes are congruent. Show more generally that

vol [O,A1, A2, . . . , An] = vol [O,A1, A2, . . . , Ar, Br+1, . . . , Bn]

Coll. Math. J., 21 No.4 (Sept., 1990) 337–338.

Solution by the Siena Heights College Problem Solving Group, Adrian, MI. Fix 1 ≤
r ≤ n and let S be the simplex formed by the origin and the standard basis vectors
e1, e2, . . ., en in Rn. Let T be the linear operator on Rn that maps ek to Ak when
1 ≤ k ≤ n and let T̃ be the linear operator that maps ek to Ak when 1 ≤ k ≤ r
and maps ek to Bk when r + 1 ≤ k ≤ n. Then det T = det(A1, . . . , An) and det T̃ =
det(A1, . . . , Ar, Br+1, . . . , Bn). Since Bk = −Ak it follows that | det T | = | det T̃ |.

The operator T maps S onto the simplex formed by [O,A1, . . . , An] and the operator
T̃ maps S onto the simplex formed by [O,A1, . . . , Ar, Br+1, . . . , Bn]. By the change of
variables theorem, we have

vol [O,A1, . . . , An] =

∫
T (S)

1 =

∫
S

| det T ′| = vol (S) · | det T ′| and

vol [O,A1, . . . , Ar, Br+1, . . . , Bn] =

∫
T̃ (S)

1 =

∫
S

| det T̃ ′| = vol (S) · | det T̃ ′|

where T ′ and T̃ ′ denote matrices of mixed partials of T and T̃ , respectively.

Since | det T ′| = | det T | = | det T̃ | = | det T̃ ′|, it follows that the volumes of the two
simplexes are equal.
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Coll. Math. J., 20 No.3 (May, 1989) 256.

404. Proposed by M. S. Klamkin, University of Alberta, Edmonton

If an = (n + 1)n+1(n− 1)n/n2n+1, prove that the sequence (an) is increasing.

Coll. Math. J., 21 No.4 (Sept., 1990) 340–341.

Solution by Seung-Jin Bang, Seoul, Korea and Matthew Wyneken, University of
Michigan-Flint (independently). Let f(x) = ln ax, x > 1. Then

f ′(x) = 1/[x(x− 1)]− ln[1 + 1/(x2 − 1)]

> 1/[x(x− 1)]− 1/(x2 − 1)

= 1/[x(x2 − 1)]

> 0

Hence the sequence (an) is increasing.
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Coll. Math. J., 20 No.4 (Sept., 1989) 343.

406. Proposed by M. S. Klamkin, University of Alberta, Edmonton

Prove that

x3

y3
+

y3

x3
+

y3

z3
+

z3

y3
+

z3

x3
+

x3

z3
≥ x2

yz
+

yz

x2
+

y2

zx
+

zx

y2
+

z2

xy
+

xy

z2

where x, y, z > 0.

Coll. Math. J., 21 No.5 (Nov., 1990) 424–425.

Solution I by Bijan Sadeghi, West Valley College, Saratoga, CA. The arithmetic mean-
geometric mean inequality yields

1

3

(
x3

y3
+

x3

y3
+

y3

z3

)
≥ x2

yz
and

1

3

(
y3

x3
+

y3

x3
+

z3

y3

)
≥ yz

x2

Adding the six inequalities obtained by cyclically permuting (x.y.z)in the above two
inequalities produces the desired result.

Solution II by Michael Vowe, Therwil, Switzerland. The given inequality is equivalent
to

(x3 + y3 + z3)

(
1

x3
+

1

y3
+

1

z

3
)
− 3 ≥ (x3 + y3 + z3)

1

xyz
+ xyz

(
1

x3
+

1

y3
+

1

z3

)
or

(x3 + y3 + z3 − xyz)

(
1

x3
+

1

y3
+

1

z3
− 1

xyz

)
≥ 4

But

x3 + y3 + z3 ≥ 3xyz and
1

x3
+

1

y3
+

1

z3
≥ 3

xyz

so that

x3 + y3 + z3 − xyz ≥ 2xyz and
1

x3
+

1

y3
+

1

z3
− 1

xyz
≥ 2

xyz

from which the desired result follows(with equality if and only if x = y = z.)

Editor’s Note. This inequality is a special case of Muirhead’s Theorem: Let

[α] = [α1, α2, . . . , αn] =
1
n!

∑
xα1

1 xα2
2 · · ·xαn

n

wherethe sum is taken over alln! permutations of the xi. If

i) α′1 + α′2 + · · ·+ α′n = α1 + α2 + · · ·+ αn

ii) α′1 ≥ α′2 ≥ · · · ≥ α′n α1 ≥ α2 ≥ · · · ≥ αn

iii) α′1 + α′2 + · · ·+ α′ν ≤ α1 + α2 + · · ·+ αν (1 ≤ ν < n)

then [α′] ≤ [α] (see Inequalities, G. H. Hardy, J. E. Littlewood, G. Pólya, Cambridge, 1959,pp.44–48).
The inequality in this problem is the case [6, 3, 0] ≥ 1

2 [5, 2, 2] + 1
2 [4, 4, 1] divided by x3y3z3.
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407. Proposed by M. S. Klamkin, University of Alberta, Edmonton

Evaluate ∫ [
(x2 − 1)(x + 1)

]−2/3
dx

Coll. Math. J., 21 No.5 (Nov., 1990) 425–426.

Solution by Benjamin M. Freed, Clarion University, Clarion,PA. Since∫ [
(x2 − 1)(x + 1)

]−2/3
dx =

∫ (
x− 1

x + 1

)−2/3

(x + 1)−2 dx

we let u = x−1
x+1

. Then du = 2(x + 1)−2 dx so that∫ [
(x2 − 1)(x + 1)

]−2/3
dx =

1

2

∫
u−2/3 du =

3

2
u1/3 + C =

3

2

(
x− 1

x + 1

)1/3

+ C

Editors’ Note. Many solvers used the same substitution. Other popular substitutions included 1/(x+
1); ((x − 1)/(x + 1))k for k = 1

2 , 1
3 , − 1

3 , − 2
3 and −1; arctanx; arctan

√
x; arctan x−1

2 ; arccos x;
and arccoshx. Integration by parts and tables were also successfully employed. Several solvers and
the proposer generalized the problem. Gonzáles-Torres remarks: “An integral of the form

∫
[(x2 −

1)(x + 1)]p dx, where p is a rational number, has an integrand which (by means of the substitution
u = x + 1) becomes the differential binomial u2p(u−2)p du. [[misprinted(?)as n−2.]] According to a
theorem of P. Chebyshev, the integral can be expressed in terms of elementary functions if and only
if at least one of the following three numbers is an integer: p, 2p or 3p. This shows that, among
proper fractional exponents p, only ± 1

2 , ± 1
3 and ± 2

3 will givean integral of the above form that can
be evaluated in finite terms.”
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411. Proposed by M. S. Klamkin, University of Alberta, Edmonton, Canada

Let T1, T2, . . ., Tn denote the elementary symmetric functions of {a1, a2, . . . , an}, i.e.,
T1 =

∑
i ai, T2 =

∑
i<j aiAj, . . ., Tn = a1a2 · · · an where the sums are symmetric over all

the ai. It is well known that the ai are uniquely determined, aside from permutations,
by the Ti. Let

Sr = ar
1 + ar

2 + · · ·+ ar
n

Show that the ai are determined uniquely, aside from permutations, if one is given
Tk1 , Tk2 , . . ., Tkr , Skr+1 , Skr+2 , . . ., Skn , where (k1, k2, . . . , kn) is any permutation of
(1, 2, . . . , n).

Coll. Math. J., 21 No.5 (Nov., 1990) 429.

Solution by Daniel E. Otero, Xavier University, Cincinnati, OH. The result follows
from Newton’s identities [See L. E. Dickson, New First Course in the Theory of Equa-
tions, Wiley and Sons, 1939, p.147; or L. Weisner. Introduction to the Theory of Equa-
tions, Macmillan, 1938, p.115] which relate the elementary symmetric polynomials Tr

and the power sums Sr for 1 ≤ r ≤ n. Namely,

Sr − Sr−1T1 + Sr−2T2 − · · ·+ (−1)r−1S1Tr−1 + (−1)rrTr = 0

For k = 1, 2, . . . , r−1, let Uk represent either choice of Sk or Tk. Then it follows by
induction from Newton’s identities that Sr is a polynomial expression in U1, U2, . . .,
Ur−1 and Sr. In particular this implies that Tr is a polynomial expression in U1, U2,
. . ., Ur.

Since the ai are uniquely determined, up to permutation, by the Ti, they are similarly
determined by the Ui.
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Application of the Extended Chebyshev Inequality

390. (Jan. 1988) Proposed by Norman Schaumberger, Bronx Community College, NY

Assume that a > 0, b > 0 and c > 0. Prove that, for n > 1,

n∏
i=1

[a2i−1 + b2i−1 + c2i−1] ≤ 3n−1[an2

+ bn2

+ cn2

]

with equality if and only if a = b = c.

Coll. Math. J., 20 No.5 (Nov., 1989) 445–446.

Solution by Murray S. Klamkin, University of Alberta, Edmonton, Canada. The in-
equality is a special case of the following extended Chebyshev inequality. Let n
be a positive integer, and let q1, q2, q3, . . ., qn be positive real numbers such that
q1 + q2 + q3 + · · ·+ qn = 1. If 0 ≤ a1 ≤ a2 ≤ a3 ≤ · · · ≤ an, 0 ≤ b1 ≤ b2 ≤ b3 ≤ · · · ≤ bn,
. . ., 0 ≤ k1 ≤ k2 ≤ k3 ≤ · · · ≤ kn, then[

n∑
i=1

qiai

][
n∑

i=1

qibi

]
· · ·

[
n∑

i=1

qiki

]
<

n∑
i=1

qiaibi · · · ki

unless any one of the columns of the array

a1 b1 · · · k1

a2 b2 · · · k2
...

...
...

an bn · · · kn

is a column of zeros, or each column, with at most one exception, is constant. This
completes the statement of the extended Chebyshev inequality. To apply it in our
case, with no loss of generality, let a ≤ b ≤ c. Set n = 3. Let a1 = a, a2 = b, a3 = c;
b1 = a3, b2 = b3, b3 = c3; c1 = a5, c2 = b5, c3 = c5; etc. The solution is completed by
observingthat 1 + 3 + 5 + · · ·+ 2n−1 = n2.

REFERENCE

D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, Heidelberg, 1970, pp.36–37.

Comment by Eugene Levine, Adelphi University, Garden City, NY. Wecan just as
easily, and in the same way, show that, for any positive real numbers r1, r2, . . ., rn and
a1, a2, . . ., ak, where n > 1 and k > 1, the following inequality holds:

n∏
i=1

[
k∑

j=1

ari
j

]
≤ kn−1

k∑
j=1

aN
j

56



in which N = r1 + r2 + · · · + rn. For example, using
∑

d|N φ(d) = N , where φ is the
Euler totient function, we obtain

∏
d|N

[
k∑

j=1

a
φ(d)
j

]
≤ kτ(N)−1

k∑
j=1

aN
j

where τ(N) is the number of distinct positive divisors of N .

Editor’s Notes: Gebre-Egziabber, McInturff, Shan&Wang, and the proposer, using rational exponents
and the power mean inequality, multiplied[

an2
+ bn2

+ cn2

3

](2i−1)/n2

≥ a2i−1 + b2i−1 + c2i−1

3

for i = 1, 2, 3, . . . , n. Murty referred to G. Chrystal, Textbook of Algebra, Vol.II, Dover, p.48.
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Coll. Math. J., 21 No.1 (Jan., 1990) 68–69.

375. (March 1988) Proposed by Norman Schaumberger, Bronx Community College,
NY

Assume ai > 0, (i = 1, 2, 3, 4). Prove that

4∑
i=1

a27
i

/
4∏

i=1

ai ≥
4∑

i=1

1/ai

Editor’s Note: Klamkin, McInturff and Selby proved that the given inequality is valid for ai >
0 if the exponent 27 is replaced by 3. Klamkin showed that, more generally, am

1 + am
2 + · · · +

am
n ≥

∑
ar1
1 ar2

2 · · · ars
s where the summation is cyclic over the subscripts and the ri are arbitrary

positive numbers whose sum is m. Klamkin also referred to a similar inequality, problem 6-3, Crux
Mathematicorum, 5(1979) 198.

Coll. Math. J., 21 No.2 (Mar., 1990) 152.

387. (Nov. 1988) Proposed by Larry Hoehn, Austin Peay State University, Clarksville,
TN

If a and b are distinct integers and n is a natural number, prove that

22n−1(a2n + b2n)− (a + b)2n

(a− b)2

is an integer.

Editors’ Note: Klamkin notes that a generalization is given in Problem 4, Crux Mathematicorum,
14(1988) pp.131, 139; viz., if P (x, y) is a symmetric polynomial in x and y and is divisible by
(x− y)2n−1, then it is also dividible by (x− y)2n

[[ I didn’t notice any mention of Murray in 1991 – R. ]]
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468. Proposed by Murray Klamkin and Andy Liu (jointly), University of Alberta,
Edmonton, Canada

If

In =

∫ ∞

1

dx

1 + xn+1
n > 0

show that
log(2)

n
+

1

4n2
> In >

log(2)

n

where log(x) is the natural logarithm function.

Coll. Math. J., 24 No.1 (Jan., 1993) 97–98.

Solution by Joe Howard, New Mexico Highlands University, Las Vegas, NM. Let u =
x−1, so du = −x−2 dx. Then

In =

∫ ∞

1

dx

1 + xn+1
=

∫ 1

0

un−1 du

1 + un+1

Now for u ∈ (0, 1)

un−1

1 + un
+ u2n−1 − u2n >

un−1

1 + un+1
>

un−1

1 + un

which can be easily verified. Integrating from 0 to 1 gives

log 2

n
+

1

4n2 + 2n
> In >

log 2

n

Editors’ Note. Hongwei Chen and H.-J. Seiffert (independently) improved the lower bound to log(2)/n+
(n + 2)/6n(2n + 1)(3n + 2). Seiffert also gave the following generalization:

If
Im,n =

∫ ∞

1

xm

1 + xn+1
dx

with −1 < m < n, then

log(2)
n−m

+
m + 1

2(n−m)(2n−m + 1)
> Im,n >

log
(2)n−m +

(m + 1)(n + m + 2)
6(n−m)(2n−m− 1)(3n−m + 2)
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483. Proposed by Murray Klamkin, University of Alberta, Edmonton, Canada

Let
Sr = ar

1 + ar
2 + · · ·+ ar

n r = 1, 2, . . .

Determine S2n+2 given that S1 = 1 and S2 = S3 = · · · = Sn = 0.

Coll. Math. J., 24 No. (Sept., 1993) 380–382.

Solution by Prestonburg Community College Math Problem Solvers Group, Preston-
burg, KY. Let P (x) =

∏n
i=1(x− ai) = xn + P1x

n−1 + P2x
n−2 + · · ·+ Pn. Then we have

Newton’s formulas [1]
S1 + P1 = 0

S2 + P1S1 + 2P2 = 0

· · · · · · · · ·

Sn + P1Sn−1 + P2Sn−2 + · · ·+ P n−1S1 + nPn = 0

and the recurrence relations [1]

Sn+k + P1Sn+k−1 + · · ·+ PnSk = 0 k ≥ 1

Since S1 = 1 and S2 = · · · = Sn = 0,we get

Pk = −1

k
Pk−1 =

(−1)k

k!
k ≥ 1

Now we show by a recursive argument that

Sn+k =
(−1)n+1

(k − 1)!n!
1 ≤ k ≤ n + 1 (∗)

First, note that

Sn+1 = −Pn =
(−1)n+1

0!n!

Sn+2 = −P1Sn+1 =
(−1)n+1

1!n!

Sn+3 = −P1Sn+2 − P2Sn+1 =
(−1)n+1

2!n!
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Now assume that (∗) holds for Sn+i, 1 ≤ i ≤ k − 1 < n + 1. Then

Sn+k = −
k−1∑
i=1

PiSn+k−i

= −
k−1∑
i=1

(−1)i

i!

(−1)n+1

(k − i− 1)!n!

=
(−1)n

(k − 1)!n!

k−1∑
i=1

(−1)i (k − 1)!

i!(k − i− 1)!

=
(−1)n

(k − 1)!n!

k−1∑
i=1

(−1)i

(
k − 1

i

)
It follows from

∑m
j=0(−1)j

(
m
j

)
= 0 that

Sn+k =
(−1)n

(k − 1)!n!

[
−
(

k − 1

0

)]
=

(−1)n+1

(k − 1)!n!

Finally,

S2n+2 = −
n∑

i=1

PiS2n−i+2

= −
n∑

i=1

(−1)i

i!

(−1)n+1

(n− i + 1)!n!

=
(−1)n

n!(n + 1)!

n∑
i=1

(−1)i

(
n + 1

i

)
=

(−1)n

n!(n + 1)!

[
−
(

n + 1

0

)
− (−1)n+1

(
n + 1

n + 1

)]
=

1− (−1)n

n!(n + 1)!

1. J. V. Uspensky. Theory of Equations, McGraw-Hill, 1948.
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Coll. Math. J., 23 No.4 (Sept., 1992) 347.

460. (Sept. 1991) Proposed by William V. Webb, Akron, OH

Solve the difference equation: yn+1 = ayx
n (n = 0, 1, . . .), where a > 0; x 6= 0 and

y0 > 0.

Coll. Math. J., 20 No.5 (Nov., 1989) 445–446.

Solution II by Murray S. Klamkin, University of Alberta, Edmonton, Canada.

By letting yn = a1/(1−x)uxn

n we have un+1 = un. Hence

yn = a1/(1−x)
[
a−1/(1−x)y0

]xn

[[ Here one would need to treat x = 1 separately, in which case yn = any0 – R. ]]

Editors’ Note: G. Ladas notes that this equation models the growth of a single-species population
interacting with a maintained resource [see R. M.May, et al., Time delays, density-dependence and
single species oscillations, J. Anim. Ecol., 43(1974) 747–770].
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488. Proposed by Murray Klamkin and Andy Liu, University of Alberta, Edmonton

A is at the northeast corner and B is at the southwest corner of an n+1 by n+1 square
lattice. In each move, A goes south or west to a neighboring lattice point while B
simultaneously goes north or east to a neighboring lattice point. A and B stay within
the lattice, and, when faced with two possible directions [[in which]] to move, each flips
a fair coin to decide the direction. Determine the probability that A and B meet.

Coll. Math. J., 24 No.5 (Nov., 1993) 435–436.

Solution by John S. Sumner and Kevin L. Dove (jointly), University of Tampa, Tampa,
FL. Let B = (0, 0) and A = (n, n). If A and B meet, then they must meet on the
diagonal {(i, n − 1) : i = 0, 1, . . . , n}. Suppose 0 ≤ i ≤ n and A and B meet at
(i, n − 1). Since the number of ways for A and B to travel to this point is

(
n
i

)
and(

n
i

)
respectively, with each path for A or B having probability 2−n, it follows that the

probability that A and B meet is

2−2n

n∑
i=0

(
n

i

)2

= 2−2n

(
2n

n

)

Editor’s note: Many solvers noted that the desired probability is asymptoticto 1/
√

πn. Several solvers
generalized to n + 1 by m + 1 lattices, and to biased coins.
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475. (March 1992) Proposed by Seung-Jin Bang, Seoul, Korea

Prove that
∞∑

n=1

(
1 +

1

2
+ · · ·+ 1

n + 1

)
1

n(n + 1)
=

∞∑
n=1

2

n(n + 1)

Editors’ Note: M. S. Klamkin proved the following generalization: For r = 1, 2, . . .,

∞∑
n=1

(
1 +

1
2

+ · · ·+ 1
n + r

)
1

n(n + 1) · · · (n + r)
=

1
r2 · r!

(
1
r

+ 1 +
1
2

+ · · ·+ 1
r

)
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510. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Canada

Which of the two integrals

Sn =

∫ π/2

0

∫ π/2

0

· · ·
∫ π/2

0

sin(x1 + x2 + · · ·+ xn) dx1 dx2 · · · dxn

Cn =

∫ π/2

0

∫ π/2

0

· · ·
∫ π/2

0

cos(x1 + x2 + · · ·+ xn) dx1 dx2 · · · dxn

is larger ?

Coll. Math. J., 25 No.4 (Sept., 1994) 338–339.

Solution I by John S. Sumner and Kevin L. Dove (jointly), University of Tampa,
Tampa, FL. Using the identities for the sine and cosine of a sum, it is clear that {Sn}
and {Cn} satisfy the system of difference equations

Sn = Cn−1 + Sn−1 Cn = Cn−1 − Sn−1 n ≥ 2
S1 = 1 C1 = 1

The solution to this system is Sn = 2n/2 sin
(

nπ
4

)
and Cn = 2n/2 sin

(
nπ
4

)
for n ≥ 1.

Thus Sn > Cn if n ≡ 2, 3, 4 (mod 8), Sn < Cn if n ≡ 0, 6, 7 (mod 8) and Sn = Cn if
n ≡ 1, 5 (mod 8).

Solution II by Kevin Ford (student), University of Illinois at Urbana-Chanpaign, IL.
We claim that Sn = Cn when n ≡ 1, 5 (mod 8), Sn < Cn when n ≡ 2, 3, 4 (mod 8)
and Sn < Cn when n ≡ 0, 6, 7 (mod 8). Since

Cn + iSn =

∫ π/2

0

∫ π/2

0

· · ·
∫ π/2

0

ei(x1+···+xn) dx1 · · · dxn =

(∫ π/2

0

eix dx

)n

= (1 + i)n

we have arg(Cn + iSn) = πn/4 and the claim follows.
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520. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Determine all pairs (p, q) of positive integers (p > q) such that there exist geometric
progressions in which

(i) the q th term is p, the p th term is q, and the (p+q)th term is an integer;

(ii) the q th term is q, the p th term is p, and the (p+q)th term is an integer.

Coll. Math. J., 26 No.1 (Jan., 1995) 71–72.

(i) Solution by John S. Sumner and Kevin L. Dove (jointly), University of Tampa,
Tampa, FL. Suppose (p, q) satisfies (i). Let q = arp−1 and p = arq−1. Then k = arp+q−1

is an integer. Note that(
k

q

)1/q

= r =

(
k

p

)1/p

and so
( q

k

)p/k

=
(p

k

)q/k

It follows [Mathematics Magazine, (February 1990) 30] that there exists a positive
integer u such that

p

k
=

(
1 +

1

u

)u+1

and
q

k
=

(
1 +

1

u

)u

Thus p/q = 1 + 1/u and p = q + q/u. Hence u divides q and we can put q = mu. We
have now that p = m(1 + u) and

k =
mu(

1 + 1
u

)u =
muu+1

(1 + u)u

Therefore (1+u)u divides m and again we put m = M(1+u)u for some positive integer
M . Finally, we have k = Muu+1 so that

p = M(1 + u)u+1 and q = Mu(1 + u)u

Conversely, it is easy to check that any pair (p, q) of such integers satisfies (i) with
ratio r = (k/p)1/p and first term a = q/rp−1.

(ii) Solution by Con Amore Problem Group, Royal Danish School of Educational Stud-
ies, Copenhagen, Denmark. We seek p, q, n ∈ N with p > q ≥ 1 and such that there
exist a, r ∈ R with

arp = p (1) arq = q (2) and n = arp+q (3)

Clearly (1)–(3) imply that

n = prq = qrp (4) whereupon r =

(
p

q

)1/(p−q)

(5)

66



Now, from (4) and (5) we have

n =
pp/(p−q)

qq/(p−q)
(6)

Letting k = gcd(p, q), setting p = Pk and q = Qk, so that gcd(P, Q) = 1, and putting
d = P −Q, we get

Qq · nd = P P · kd (7)

Fromgcd(QQ, P P ) = 1 it follows that QQ | kd.

If the prime decomposition of Q is

Q =
t∏

i=1

Qαi
i (8)

then the prime factor Qi (i = 1, . . . , t) must occur in the prime decomposition of k,
say with exponent βi. Let Qγi

i be the maximum power of Qi that divides n. Then by
(7) we have

αiQ + γid = βid (i = 1, . . . , t) (9)

By (8), Q is then a d th power, say Q = Q̂d. Similarly, P is a d th power, say P = P̂ d.
We then have d = P −Q = P̂ d− Q̂d and, since P̂ and Q̂ are integers, this can happen
only if d = 1 (since P̂ 2 − Q̂2 > 2, P̂ 3 − Q̂3 > 3, . . .).

Consequently, P = Q + 1 and QQ | k. This implies that there is a positive integer m
such that k = QQm, from which it follows that

p = Pk = (Q + 1)QQm (10) and q = Qk = QQQm = QQ+1m (11)

As in (i), it is straightforward to check that if Q and m are chosen arbitrarily in N ,
and p and q are defined by (10) and (11), then (p, q) is a solutionto our problem.
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Coll. Math. J., 25 No.2 (Mar., 1994) 159–161.

497. (Mar. 1993) Proposed by Edward Aboufadel, Rutgers University, New Brunswick,
NJ

In a book review in the September 1991 issue of SIAM Review, Nicholas Kazarinoff
quotes from V. I. Arnol’d’s Huygens and Barrow, Newton and Hooke: Pioneers in
Mathematical Analysis and Catastrophe Theory from Evolvents to Quasicrystals:

Here is an example of a problem that people like Barrow, Newton and
Huygens would have solved in a few minutes and which present-day math-
ematicians are not, in my opinion, capable of solving quickly: to calculate

lim
x→0

sin(tan x)− tan(sin x)

arcsin(arctan x)− arctan(arcsin x)

Solve Arnol’d’s problem. (it Editors’ note: Although some computer algebra programs
are able to evaluate this limit, we are not soliciting such solutions.)

Solution I based upon solutions submitted by most solvers

Since

sin(tan x) = x +
1

6
x3 − 1

40
x5 − 55

1008
x7 + O(x9)

tan(sin x) = x +
1

6
x3 − 1

40
x5 − 107

5040
x7 + O(x9)

arcsin(arctan x) = x− 1

6
x3 +

13

120
x5 − 341

5040
x7 + O(x9)

arctan(arcsin x) = x− 1

6
x3 +

13

120
x5 − 173

5040
x7 + O(x9)

it follows that

lim
x→0

sin(tan x)− tan(sin x)

arcsin(arctan x)− arctan(arcsin x)
= lim

x→0

− 1
30

x7 + O(x9)

− 1
30

x7 + O(x9)
= 1

Solution II by M. S. Klamkin and L. Marcoux, University of Alberta, Edmonton,
Canada. We provide the following generalization.

Let F (x) and G(x) be odd differentiable functions whose power series expansions are

F (x) = x + a3x
3 + a5x

5 + a7x
7 + · · ·

G(x) = x + b3x
3 + b5x

5 + b7x
7 + · · ·

Then by letting

F−1(x) = x + c3x
3 + c5x

5 + c7x
7 + · · ·

G−1(x) = x + d3x
3 + d5x

5 + d7x
7 + · · ·
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it follows by substituting back in the series for F and G,expanding out, and equating
like corfficients that

c3 = −a3 c5 = 3a2
3 − a5 c7 = 8a3a5 − 9a3

3 − a7 . . .
d3 = −b3 d5 = 3b2

3 − b5 d7 = 8b3b5 − 9b3
3 − b7 . . .

It now follows by substitution

and expansion that

F (G(x))−G(F (x)) = {2(a5b3 − a3b5) + 3a3b3(b3 − a3)}x7 + O(x9)

F−1(G−1(x))−G−1(F−1(x)) = {2(c5d3 − c3d5) + 3c3d3(d3 − c3)}x7 + O(x9)

= {2(a5b3 − a3b5) + 3a3b3(b3 − a3)}x7 + O(x9)

Hence if the coefficient of x7 does not vanish, then

lim
x→0

F (G(x))−G(F (x))

F−1(G−1(x))−G−1(F−1(x))
= 1

In particular, for F (x) = sin x and G(x) = tan x, the coefficient of x7 does not vanish,so
the desired limit = 1.

The coefficientof x7 can vanish if, say,

Case 1. a3 = a5 = 0 Case 2. a3 = b3 = 0

In both of thesecases the limit is still 1 provided that, respectively,

a7b3 6= 0 a7b5 − a5b7 6= 0

Here for case 1,

F (G(x))−G(F (x)) = F−1(G−1(x))−G−1(F−1(x)) = 4a7b3x
9 + O(x11)

and here for case 2,

F (G(x))−G(F (x)) = F−1(G−1(x))−G−1(F−1(x)) = 2(a7b5 − a5b7)x
11 + O(x13)

Editors’ note: . . . this problem appeared as problem 7 in the Missouri Journal of Mathematical Sci-
ences, Vol.1, No.1 (1989).
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Coll. Math. J., 25 No.3 (May, 1994) 240.

527. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Let Q(x, y, z, w) be a polynomial that is symmetric with respect to each of its variables.
Determine theminimum degree of Q if Q is divisibleby (xm+1 − ym+1)n where m and
n are positive integers.

Coll. Math. J., 26 No.3 (May, 1995) 246.

Solution by the proposer. By symmetry, we must have a factor of the form (xm+1 −
ym+1)n for each of the 6 pairs of variables. This would give the minimum degree for
Q to be 6(m + 1)n whenever n is even. Now suppose n is odd and observe that by
hypothesis Q is divisible by (x− y)n. We show that Q must be divisible by (x− y)n+1.
Note that

(x− y)nR(x, y, z, w) = Q(x, y, z, w) = Q(y, x, z, w) = −(x− y)nR(y, x, z, w)

where R is some polynomial. It then follows that

(x− y)n{R(x, y, z, w) + R(y, x, z, w)} = 0

for all x, y, z, w so that R(x, y, z, w) + R(y, x, z, w) is identically zero except possi-
bly when x = y. But this sum is a polynomial, so a continuity argument implies
that R(x, x, z, w) = 0 for all x, z, w. It now follows by the remainder theorem that
R(x, y, z, w) must be divisible by x− y. Consequently, for n odd, the minimum degree
for Q is 6(m + 1)n + 6.
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Coll. Math. J., 25 No.4 (Sept., 1994) 334.

531. Proposed by Murray S. Klamkin and Andy Liu, University of Alberta, Edmonton,
Canada

If A,B, C and D are consecutive vertices of a quadrilateral such that ∠DAC = 55◦ =
∠CAB, ∠ACD = 15◦ and ∠BCA = 20◦, determine ∠ADB.

Coll. Math. J., 26 No.4 (Sept., 1995) 330–331.

Solution I by Man-Keung Siu, University of Hong Kong, Hong Kong. We show that
∠ADB = 40◦.

Take a point E on AB such that ∠ECB = 5◦. Since the triangles ADC and AEC
are congruent, AC and DE are perpendicular to each other. From this we see that
∠ADE = 35◦ and ∠EDC = 75◦. Since ∠EBC = ∠ABC = 105◦, EBCD is a cyclic
quadrilateral. Hence ∠EDB = ∠ECB = 5◦. Finally, ∠ADB = ∠ADE + ∠EDB =
35◦ + 5◦ = 40◦.

Solution II by Michael H. Andreoli, Miami Dade Community College (North), Miami,
FL. Since the sum of angles in 4ACD and in 4ABC is 180◦, ∠ADC = 110◦ and
∠ABC = 105◦. Without loss of generality suppose AD = 1. Applying the law of sines
to 4ACD and 4ABC and equating the resulting expressions for AC yields AB =
(sin 20◦ sin 110◦)/(sin 15◦ sin 105◦). Since sin 110◦ = cos 20◦ and sin 105◦ = cos 15◦, we
can use the double angle formulas to write AB = 2 sin 40◦.

Applying the law of cosines to 4ABD yields BD = [1 + (AB)2 − 2(AB) cos 110◦]1/2

where AB = 2 sin 40◦.

Applying the law of sines to 4ABD, using the above expressions for AB and BD gives

sin(∠ADB) = sin 40◦
[
2 sin 110◦/(1 + 4 sin2 40◦ − 4 sin 40◦ cos 110◦)1/2

]
(1)

This can be expressed in terms ofsines and cosines of 40◦ using

sin 110◦ = sin 70◦ = sin(40◦ + 30◦) = (
√

3/2) sin 40◦ + (1/2) cos 40◦

cos 110◦ = − cos 70◦ = − cos(40◦ + 30◦) = (1/2) sin 40◦ − (
√

3/2) cos 40◦ and

1 = sin2 40◦ + cos2 40◦

Making these substitutionsin (1) and simplifying gives sin(∠ADB) = sin 40◦. Since we
know that 0 ≤ ∠ABD ≤ ∠ADC = 110◦, it follows that ∠ADB = 40◦.
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Coll. Math. J., 25 No.5 (Nov., 1994) 462.

536. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Canada

Determine the minimum values of

(i) a2 + T2

(ii) a2 + b2 + T2

(iii) a2 + b2 + c2 + T2

where T2 = a(b + c + d) + b(c + d) + cd, abcd = 1 and a, b, c, d > 0.

Coll. Math. J., 26 No.5 (Nov., 1995) 406–407.

Solution by David Zhu, Jet Propulsion Laboratory, Pasadena, CA.

(i) a2 + T2 = a2 + a(b + c + d) + bc + bd + cd.

Note that b + c + d ≥ 2 3
√

bcd and bc + bd + cd ≥ 3
3
√

b2c2d2 where the inequalities hold
if and only if b = c = d. Letting u = a and v = b = c = d it now suffices to minimize
u2 + 3uv + 3v2 subject to uv3 = 1. This is equivalent to minimizing v−6 + 3v−2 + 3v2

which occurs when v = [(
√

5 + 1)/2]1/4. Thus, the minimum of a2 + T2 is

2
√

2(7 + 3
√

5)

(1 +
√

5)3/2
=

√
22 + 10

√
5

(ii) a2 + b2 + T2 = (a2 + b2) + (a + b)(c + d) + ab + cd

With the product ab fixed, a2 + b2 + T2 is minimized if and only if a = b, and with
the product cd fixed, a2 + b2 + T2 is minimized if and only if c = d. Letting u = a = b
and v = c = d it now suffices to minimize 3u2 + 4uv + v2 subject to uv = 1. But
3u2 + v2 ≥ 2

√
3uv = 2

√
3 with equality holding if and only if

√
3u = v or u = (1/3)1/4

so that the minimum value of a2 + b2 + T2 is 2
√

3 + 4.

(iii) a2 + b2 + c2 + T2 = (a2 + b2 + c2) + (a + b + c)d + (bc + ca + ab).

[[the last paren was misprinted as (ab + ad + bc) – R.]]

With the product abc fixed, a2+b2+c2+T2 is minimized if and only if a = b = c. Letting
u = a = b = c and v = d in this case, it now suffices to minimize 6u2 + 3uv subject to
u3v = 1, which is equivalent to minimizing 6u2 + 3u−2. But 6u2 + 3u−2 ≥ 6

√
2 with

equality holding if and only if u = (1/2)1/4 so that the minimum value of a2+b2+c2+T2

is 6
√

2.
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Coll. Math. J., 25 No.5 (Nov., 1994) 462.

538. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Canada

Determine the maximum area of the quadrilateral with consecutive vertices A, B, C
and D id ∠A = α, BC = b and CD = c are given.

Coll. Math. J., 26 No.5 (Nov., 1995) 407–409.

Solution by D. Kipp Johnson, Valley Catholic High School, Beaverton, OR. Notation.
The area of a polygon is denoted by enclosing its name in brackets.

Case 1. α < π. Construct two rays forming an angle α and originating at point
A. Let points B and D move along these rays, with BC = b and CD = c and let
∠BCD = θ. We seek to maximize [ABCD] by considering θ.

Clearly we may assume θ < π because θ > π would give a concave quadrilateral, and
its area could be increased by reflecting 4BCD in the line determined by B and D,
producing a convex quadrilateral with a greater area.

Now [ABCD] = [BCD] + [ABD]. For a given θ, [BCD] is fixed, and so is the length
x of BD. But [ABD] with a given angle α and a given side x opposite that angle is
maximized when 4ABD is isosceles with AB = AD. But AB = AD =⇒ ∠ABD =
∠ADB = π/2− α/2. By the law of sines applied to 4ABD we have

AD = AB =
x sin(π/2− α/2)

sin α
=

x cos(α/2)

sin α

giving

[ABD] =
1

2
(AD)(AB) sin α =

x2 cos2(α/2)

2 sin α

and

[ABCD] =
1

2
bc sin θ +

(b2 + c2 − 2bc cos θ) cos2(α/2)

2 sin α
(1)

where we have used the law of cosines in 4BCD to write x2 = b2 + c2 − 2bc cos θ. We
may now write

[ABCD] =
(b2 + c2) cos2(α/2)

2 sin α
+

bc

2
(sin θ − k cos θ)

where k = [2 cos2(α/2)]/ sin α is some positive constant. [ABCD] will be maximixed
when (sin θ − k cos θ) is maximized, and it is easily determined that this occurs (for
0 < θ < π) when θ = arctan(−1/k) + π. Substituting back into (1) gives

[ABCD]max =
(b2 + c2) cos2(α/2) + 2bc cos(α/2)

2 sin α
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Case 2. α > π. In this case there is no maximum value. Let rays
−→
AB and

−−→
AD again

form an angle α, with B and D sliding along these rays with fixed distances CB = b
and CD = c, the angleat C being θ (θ < 2π−α < π) and BD having length x (which
is a function of θ).

We have

[ABCD] = [CBD]− [ABD] =
1

2
bc sin θ − [ABD]

The first term [CBD] may have a maximum (if θ = π/2 happens to be in the domain
of θ), but the second term has no minimum ([ABD] has 0 as a greatest lower bound).
Thus [ABCD] cannot be maximized.
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Coll. Math. J., 25 No.5 (Nov., 1994) 463–464.

511. (Nov. 1993) Proposed by Zhang Zaiming, Yuxi Teachers’ College, Yunnan, China

Let ai, bi, ci and ∆i be the lengths of the sides and the area, respectively, of triangle
i, i = 1, 2. Prove that

a2
1a

2
2 + b2

1b
2
2 + c2

1c
2
2 ≥ 16∆1∆2

where equality holds if and only if the two triangles are equilateral.

Editors’ note: Klamkin observes that the above result follows from the stronger inequality
a1a2 + b1b2 + c1c2 ≥ 4

√
3∆1∆2 in a problem of G. Tsintsifas [Crux Mathematicorum, 13(1987) 185].

[[Gordon]] Bennet proved the stronger result

a2
1a

2
2 + b2

1b
2
2 + c2

1c
2
2 ≥ 16∆1∆2 + a2

1(b2 − c2)2 + b2
1(c2 − a2)2 + c2

1(a2 − b2)2

[Univ. Beograd. Publ. Elektrotehn. Fak., (1977) 39–44]. Many solvers invoked Jensen’s inequality,
while others use[[d]] Pedoe’s inequality [Amer. Math. Monthly, 70(1963) 1012].

[[In the above I haven’t been able to confirm the spelling of Bennet[t], who appears
with both one tee and two. — R.]]

Coll. Math. J., 26 No.1 (Jan., 1995) 67.

544. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Canada

Evaluate the sum

S = 1− 3n

1!
+

3n(3n−1)

2!
− 3n(3n−1)(3n−2)

3!
+ · · ·+ (−1)N 3n(3n−1)() · · · (2n+1)

n!

Coll. Math. J., 27 No.1 (Jan., 1996) 77–78.

Composite of solutions submitted by most of the solvers.

S =
n∑

k=0

(−1)k

(
3n

k

)
= 1 +

n∑
k=1

(−1)k

[(
3n− 1

k

)
+

(
3n− 1

k − 1

)]

=
n∑

k=0

(−1)k

(
3n− 1

k

)
+

n−1∑
k=0

(−1)k+1

(
3n− 1

k

)
= (−1)n

(
3n− 1

n

)

Editors’ note. Several solversused induction to establish the result. [[Eleven solvers]] provided the
generalization

∑n
0 (−1)k

(
r
k

)
= (−1)n

(
r−1
n

)
[[Two solvers]] proved the generalization

∑[n/3]
0 (−1)k

(
r
k

)
=

(−1)[n/3]
(

n−1
[n/3]

)
. Several solvers noted that this problem (or one equivalent to it) appears as an

exercise in several combinatorics texts. Callan noted the similarity to Monthly problem 6637 (1990,621;
1992,72).

[[This last was proposed by Herbert Wilf. – R.]]
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Coll. Math. J., 26 No.5 (Nov., 1995) 405.

562. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Canada

Evaluate the (n + 2)× (n + 2) symmetric determinant∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 . . . 1
1 0 a1 a2 . . . an

1 a1 0 a1 + a2 . . . a1 + an

1 a2 a2 + a1 0 . . . a2 + an
...

...
...

...
...

1 an an + a1 an + a2 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
Coll. Math. J., 27 No.5 (Nov., 1996) 406.

Solution by Joe Howard, New Mexico Highlands University, Las Vegas, NM. Subtract
row 2 from rows 3, 4, . . . , (n + 2); expand along column 1; and factor out a1, a2, . . . ,
an to obtain the (n + 1)× (n + 1) determinant

(−1)a1a2 · · · an

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
1 −1 1 . . . 1
1 1 −1 . . . 1
...

...
...

...
1 1 1 . . . −1

∣∣∣∣∣∣∣∣∣∣∣
Subtract row 1 from rows 2, 3, . . . , (n+1); and then expand along column 1 to obtain
the n× n determinant

(−1)a1a2 · · · an

∣∣∣∣∣∣∣∣∣∣∣

−2 0 0 . . . 0
0 −2 0 . . . 0
2 0 −2 . . . 0
...

...
...

...
0 0 0 . . . −2

∣∣∣∣∣∣∣∣∣∣∣
= (−1)n+12n(a1a2 · · · an)
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[[In connexion with the following problem, compare problem 629 below — R.]]

Coll. Math. J., 27 No.1 (Jan., 1996) 75.

570. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Canada

In triangle ABC the angle bisectors of angles B and C meet the altitude AD at points
E and F respectively. If BE = CF , prove that ABC is isosceles.

Coll. Math. J., 28 No.1 (Jan., 1997) 72.

Editors’ note. As several solvers noted, if both B and C are acute, then this problem
is identical to CMJ problem 546 (the solution to which appeard in the March 1996
issue). When B or C is obtuse, however, ABC need not be isosceles. For example, if the
vertices of ABC are A(0,

√
3), B(0, 1) and C( 4

√
12, 0), then E(0,−

√
3) and F (0,

√
3−1)

so that BE = CF = 2, yet ABC is not isosceles.
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Coll. Math. J., 27 No.4 (Sept., 1996) 312.

583. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Canada

A known property of a parabola is that if tangents are drawn at any two points P and
Q of the curve, then the line from the point of intersection of the tangents and parallel
to the axis of the parabola bisects the chord PQ. Does this property characterize
parabolas ? That is, if a curve has the above property where the line is drawn parallel
to the y-axis, must the curve be a parabola whose axis is parallel to the y-axis ?

Coll. Math. J., 28 No.4 (Sept., 1997) 319–320.

Solution by John D. Eggers, North Georgia College and State University, Dahlonega,
Georgia. Yes, a curve with the above property must be a parabola with a vertical
axis. Call the above property Property T, and let Γ be a curve satisfying Property T.
First, observe that Γ is a differentiable curve, since by Property T it has a tangent at
every point. Second, observe that Γ is the graph of a function; for, if it were not, there
would exist a pair of points on Γ such that the segment joining them would be vertical,
contradicting Property T. Thus, Γ has a parametrization of the form t 7→ (t, γ(t)) with
domain U and open subset of R. Let t0 be a fixed element in U and let t be in U . The
corresponding points of Γ are P0 = (t0, γ(t0)) and P = (t, γ(t)). The equation of the
line tangent to Γ at P0 is

y = γ(t0) + γ′(t0)(x− t0)

The equation of the line tangent to Γ at P is

y = γ(t) + γ′(t)(x− t)

The x-coordinate of the intersection of the tangent lines is

x =
[γ′(t)t− γ′(t0)t0]− [γ(t)− γ(t0)]

γ′(t)− γ′(t0)

Since a vertical line through the point of intersection of the lines tangent to Γ at P0

and at P must bisect the segment joining P0 and P , it follows that x = (t0 + t)/2.
Thus

[γ′(t)t− γ′(t0)t0]− [γ(t)− γ(t0)]

γ′(t)− γ′(t0)
=

t0 + t

s

After some calculation one finds that the above equation is equivalent to the linear
first-order differential equation

γ′(t)− 2

t− t0
γ(t) = −2γ(t0)

t− t0
− γ′(t0)

By standard techniques one finds the general solution to be

γ(t) = c(t− t0)
2 + γ′(t0)(t− t0) + γ(t0)

where c is a conctant of the integration. Observe that c 6= 0, for if c = 0, then Γ would
be a line, contradicting Property T. Hence Γ is a parabola with a vertical axis.
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Coll. Math. J., 27 No.5 (Nov., 1996) 408–409.

New Perfect Boxes

565. (Nov. 1995) Proposed by K. R. S. Sastry, Dodballapur, India

Find the dimensions of all rectangular boxes with sides of integral [[integer]] length
such that the volume is numerically equal to the sum of the lengths of the edges plus
the surface area.

Solution by Murray S. Klamkin and Andy Liu (jointly), University of Alberta, Edmon-
ton, Canada. The diophantine equation here is

abc = 4(a + b + c) + 2(bc + ca + ab)

where a, b, c are the lengths of the edges. Letting (a, b, c) = (x+2, y+2, z+2) we get
the simpler equation xyz = 8(x + y + z) + 40 where x, y, z > 0. Assuming without
loss of generality that x ≥ y ≥ z, we get the following cases.

(1) z = 1 and then y = 8 + 112/(x − 8) so that (x, y) = (22, 16), (24,25), (36,12),
(64,10) or (120,9).

(2) z = 2 and then y = 4 + 44/(x− 4) so that (x.y) = (15, 8), (26,6) or (48,5).

(3) z = 3 and then y = 2 + (2x + 80)/(3x− 8) so that (x, y) = (8, 8), (24,4) or (88,3).

(4) z = 4 and then y = 2 + 22/(x− 2) so that (x, y) = (13, 4).

(5) z = 5 and then y = 1 + (3x + 88)/(5x− 8) so that there are no solutions.

(6) z ≥ 6. Since xyz ≥ 36x and 8(x + y + z) + 40 ≤ 32x, there are no more solutions.

Finally all the solutions (a, b, c) are given by

(10,10,5) (15,6,6) (17,10,4) (24,18,3) (26,6,5) (26,17,3)
(28,8,4) (38,14,3) (50,7,4) (66,12,3) (90,5,5) (122,11,3)
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Coll. Math. J., 28 No.2 (Mar., 1997) 145.

597. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Canada

Determine all pairs of inetegers (x, y) such that 19 | ax + by where (a, b) is any pair of
integers such that 19 | 11a + 2b.

Coll. Math. J., 29 No.2 (Mar., 1998) 154.

Solution by Joseph Reznick (student), College of Charleston, Charleston, SC. Assume
11a + 2b ≡ 0 (mod 19). Then b ≡ 4a (mod 19). Now, we want to find all pairs of
integers (x, y) such that for every a, 0 ≤ a ≤ 18, we have ax + by ≡ 0 (mod 19). This
is equivalent to

ax + 4ay ≡ 0 (mod 19)

For a 6≡ 0 (mod 19) this implies

x + 4y ≡ 0 (mod 19)

Therefore the solution set is {(x, y) | x + 4y ≡ 0 (mod 19)}.

In addition, it is interesting to note that if instead of 19 we take any other prime p,
and instead of the coefficients 11 and 2 we take any other coefficients q and r, then the
solution set is {(x, y) | x + qr−1y ≡ 0 (mod p)}.

Coll. Math. J., 28 No.5 (Nov., 1997) 408–409.

Squared Cotangents

588. (Nov. 1996) Proposed by Can Anh Minh (student), University of Southern Cali-
fornia, Los Angeles, CA

In 4ABC, denote the angles at A, B, C by 2α, 2β, 2γ, respectively. Prove that
cot2 β cot2 γ + cot2 γ cot2 α + cot2 α cot2 β ≥ 27.

Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.
Let Sn = cotn β cotn γ+cotn γ cotn α+cotn α cotn β. We prove the more general result:
Sn ≥ 3n+1 with equality if and only if α = β = γ. From the Cauchy-Schwarz inequality,

(cot β cot γ + cot γ cot α + cot α cot β)(tan β tan γ + tan γ tan α + tan α tan β) ≥ 9

But since γ = (π/2)− (α + β), tan γ = cot(α + β) = (1− tan α tan β)/(tan α + tan β)
so that tan β tan γ + tan γ tan α + tan α tan β = 1. Hence S1 ≥ 9. By the power mean
inequality, (Sn/3)1/n ≥ S1/3, thus Sn/3 ≥ 3n and the result follows.
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Coll. Math. J., 30 No.2 (Mar., 1999) 147–148.

Extending the Radius of Convergence

625. Proposed by Sining Zheng and Yuyue Song, Dalian University of Technology,
Dalian, People’s Republic of China

Let the power series
∑

anx
n have radius of convergence R > 0 and let λ > R. Does

there exist a power series
∑

bn such that

(1)
∑

bnx
n has radius of convergence R, and

(2)
∑

(an + bn)xn has radius of convergence λ ?

Solution by James Duemmel, Western Washington University, Bellingham, WA and
Murray S. Klamkin, University of Alberta, Canada (independently).

Consider any series
∑

cnx
n with radius of convergence λ. Let bn = cn − an. Then∑

bnxn has radius of convergence R and
∑

(an + bn)xn =
∑

cnx
n has radius of con-

vergence λ.

Editors’ Note: Most solvers made the unnecessary assumption that λ was finite.

[[Compare the next item with problem 570 above. — R.]]

Coll. Math. J., 30 No.3 (May, 1999) 233.

An Isosceles Triangle

629. Proposed by David Beran, University of Wisconsin–Superior, Superior, WI

In triangle ABC the angle bisectors of angles B and C meed the median AD at points
E and F respectively. If BE = CF , prove that 4ABC is isosceles.

Editors’ Note: Klamkin and Sastry point out that the identical problem with solution by Esther
Szekeres appears in Crux Mathematicorum, 20(1994) 264. [[John]] Graham and Sastry note that a
special case of this problem appears with solution in CMJ problem 546 [1995,157; 1996, 150].

[[I made the following remark before I discovered that this wasn’t Murray’s last ap-
pearance in CMJ. Murray appears in the list of solvers of problem 677 on p.213 of
Coll. Math. J., 32 No.3 (May, 2001). He also solved problems 695, 726, 742, the last
mention being in the Jan., 2004 issue. — R. ]]
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Coll. Math. J., 32 No.5 (Nov., 2001) 381.

711. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada

(a) Find all integers n such that there exists a polynomial Pn(x), with integer coeeffi-
cients which satisfies

Pn(n) = n2 Pn(2n) = 2n2 and Pn(3n) = n2

(b) Find all integers n such that there exists a polynomial Qn(x) with integer coeffients
which satisfies

Qn(n) = n2 Qn(2n) = 2n2 Qn(3n) = n2 and Qn(4n) = 2n2

Coll. Math. J., 33 No.5 (Nov., 2002) 412.

Solution by Li Zhou, Polk Community College, Winter Haven, FL.

(a) Let A denote this set of integers. Then A = Z since Pn(x) = 2n2 − (x − 2n)2

satisfies the conditions for any n ∈ Z.

(b) Let B denote this set of integers. The 0 ∈ B since Q0(n) ≡ 0 satisfies the conditions.
Suppose that n is not zero and that Q(x) ∈ Z[x] satisfies Q(n) = n2, Q(2n) = 2n2 and
Q(4n) = 2n2. By the Remainder Theorem, thereis a polynomial R(x) such that

Q(x) = (x− 2n)(x− 4n)R(x) + 2n2

In fact, R(x) ∈ z[x] by division and induction on the degree of Q(x). But then

n2 = Q(n) = 3n2R(n) + 2n2

which implies that R(n) = −1/3 6∈ Z. Thus, B = {0}, and note that we have only
used three of the four conditions. (We note that the conditions at n, 3n and 4n
force B = {0}, the conditions at 2n, 3n and 4n give the same answer as (a) with
Qn(x) = (x − 3n)2 + n2) for each n ∈ Z, and the conditions at n and 4n imply that
3 | n with Q3k(x) = kx + 6k2.
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Excerpts from Murray Klamkin, Math. Mag.

Richard K. Guy

June 22, 2006

This file updated on 2006-04-28.

This is the second of a number of files listing problems, solutions and other writings
of Murray Klamkin.

The easiest way to edit is to cross things out, so I make no apology for the proliferation
below. Just lift out what you want.

Math. Mag., 24(1951) 266

103. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn, N.Y.

A high-school student solved the linear differential equation dy/dx+ Py = Q for y as
if it were an ordinary algebraic equation. Under what conditions could this procedure
have yielded a correct solution of the differential equation?

Math. Mag., 25(1951) 114.

II. Solution by R. E. Winger, Los Angeles City College. The high school student
presumably cancelled the d s, getting y/x+ Px = Q. If this is to be a correct solution
of the differential equation, then y/x = dy/dx. That is, y = cx, an almost trivial
result. When this is substituted into the original equation (in either form) we get
Q = c(1 + Px), the necessary relation between P and Q.
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Math. Mag., 25(1951) 47

103. Proposed by O. E. Stanaitis, St. Olaf College, Minnesota

Establish the convergence or divergence of

a) 1− 1

2
+

1√
3
− 1

4
+

1

5
√

5
− 1

8
+

1

7
√

7
− 1

16
+ · · ·

b) 1− 1√
2

+
1

3
− 1

2
+

1

5
− 1√

6
+

1

7
− 1

2
√

2
+ · · ·

I. Solution by M. S. Klamkin’s Sophomore Calculus Class, Polytechnic Institute of
Brooklyn, N.Y. a) The given series may be written in the form(

1 +
1

3
√

3
+

1

5
√

5
+ · · ·

)
−
(

1

2
+

1

4
+

1

8
+ · · ·

)
thereby exhibiting it as the difference of two well-known convergent series. It follows
that the given series is convergent.

b) Consider
∞∑

n=1

(
1

2n− 1
− 1√

2n

)
=

∞∑
n=1

√
2n− (2n− 1)

(2n− 1)
√

2n

Since the degree of the denominator exceeds that of the numerator by only 1
2
, the series

diverges.

Math. Mag., 25(1952) 224

Q 57. Submitted by M. S. Klamkin

Prove that the derivative of an even function is odd and vice versa.

A 57. Since E(x) = E(−x), dE(x)/dx = dE(−x)/dx = [dE(−x)/d(−x)][d(−x)/dx] =
−dE(−x)/d(−x) = odd. Since O(x) = −O(−x), dO(x)/dx = −dO(−x)/dx =
[−dO(−x)/d(−x)][d(−x)/dx] = dO(−x)/d(−x) = even.
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Math. Mag., 25(1952) 282–283

A Conic Unrolled

87. [Jan. 1951] Proposed by Leo Moser, Texas Technological College

A right circular cone is cut by a plane. The intersection, of course, is a conic. Find
the equation of the curve thtthis conic goes into if the cone is unrolled on to a plane.
In particular, if the cone is a cylinder and the plane cuts the axis of the cylinder at
45◦, then the ellipse formed will unroll into a sine curve.

Solution by M. S. Klamkin’s Sophomore Calculus Course, Polytechnic Institute of
Brooklyn. Let the equation of the cone in cylindrical coordinates be a2r2 = z2. Cut the
cone along its intersection with the plane y = 0 and let that line become the x′-axis.
Then the coordinates of the transform of a point (r, θ, z) on the cone are (r′, θ′) where

r′ =
√
r2 + z2 = r

√
1 + a2 and θ′ = rθ/

√
r2 + z2 = θ/

√
1 + a2

Now consider the transform of the intersection of the cone with a general surface,
F (r, θ, z) = 0. The equation of a cylinder with elements passing through the inter-
section curve and parallel to the z-axis is F (r, θ, ar) = 0. Thus the equation of the
transform curve will be

F (r′/
√

1 + a2, θ′
√

1 + a2, ar′/
√

1 + a2) = 0

If F (r, θ, z) = 0 is a plane, then

r(A cos θ +B sin θ) + Cz +D = 0

and the transform curve is

(r′/
√

1 + a2)(A cos θ′
√

1 + a2 +B sin θ′
√

1 + a2 + Ca) +D = 0

If we use a cylinder, r = a, instead of the cone a2r2 = z2 we find that the point
(r, θ, z) transforms into (x′, y′) where x′ = z and y′ = aθ. Thus if the curve of inter-
section is given by r = a and F (r, θ, z) = 0, then upon development the intersection
is transformed into F (a, y′/a, x′) = 0. Now if the intersecting surface is the plane
r(A cos θ +B sin θ) + Cz +D = 0, then

F (a, y′/a, x′) = a(A cos y′/a+B sin y′/a) + Cx′ +D = 0

which is a sine curve for all plane intersections except when A = B = 0 or when C = 0.
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Math. Mag., 26(1952) 54.

Q 70. Submitted by M. S. Klamkin

Find the maximum value of (
N∑

n=1

anxn

)
N∏

n=1

(an − xn)

A 70. (
N∑

n=1

anxn

)
N∏

n=1

(an − xn) =

(
N∑

n=1

anxn

)
N∏

n=1

(a2
n − anxn)

/
N∏

n=1

an

Clearly the sum of the factors of the numerator is a constant,
∑N

n=1 a
2
n. Now it follows

from the theorem that the geometric mean ≤ the arithmetic mean, that if the sum
of k factors of a function is a constant, b, then the maximum value of the function is
(b/k)k. Therefore the maximum value sought is(

N∑
n=1

a2
n

)N+1/
(N + 1)n+1

N∏
n=1

a

[[ARE THERE MISPRINTS IN THE PREVIOUS ITEM ??]]

Math. Mag., 26(1952) 115.

Q 15. [Sept. 1950] Find the sum of the squares of the coefficients in the expansion of
(a+ b)n. M. S. Klamkin offers this alternative solution.

(1+x)n =

(
n

0

)
+

(
n

1

)
x+· · ·+n

n
xn and (1+1/x)n =

(
n

0

)
+

(
n

1

)
/x+· · ·+

(
n

n

)
/xn.

Multiplying we have that the sum of the squares of the coefficients is the constant term
(middle term) of (1 + x)2n/xn. That is, (2n)!/(n!)2 or

(
2n
n

)
.
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[[This next item was among the first batch of Trickies, which Charles Trigg alternated
with his Quickies.]]

Math. Mag., 26(1953) 168.

T 5. Submitted by M. S. Klamkin. A rich person who possessed a very expensive
Swiss watch once bragged to a poor friend that not only was his watch an automatic
winding one, but it lost only 11

4
sec. per day. The friend remarked that the watch

would indicate the correct time only about once in a century. This annoyed the rich
man who demanded to know of a better watch. The friend said that his four-year old
daughter had just gotten a watch which though inexpensive at least did indicate the
correct time twice a day. How accurate was the daughter’s watch?

S 5. The cheap watch must have gained or lost 24 hours per day. It was a stationary
toy watch.

Math. Mag., 26(1953) 221–222.

Euler’s φ-function

145. [Sept. 1952] Proposed by Leo Moser, University of Alberta, Canada

It is well-known that n = 14 is the smallest even integer for which φ(n) = n is
insolvable. Show for every positive integer, r, that φ(x) = 2(7)r is insolvable.

II. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. In L. E. Dickson’s
History of the Theoryof Numbers, Volume I, p.135, there is a result due to Alois Pichler
which states “When q is a prime > 3, φ(x) = 2qn is impossible if p = 2qn + 1 is not
prime; while if P is prime it has the two solutions p and 2p.” Since 2(7)r + 1 =
2(6 + 1)r + 1 = 6A + 3 has the factor 3 iy follows that φ(x) = 2(7)r has no solutions.
The reference contains other results of a similar nature by Pichler.
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Math. Mag., 27(1953) 51.

177. Proposed by Murray S. Klamkin, Polytechnic Institute of Brooklyn

If w = zn + a1z
n−1 + · · · + an + b1/z + b2/z

2 + · · · br/zr maps into |w| = 1 for |z| = 1
show that an = br = 0, n = 1.2.3. . . . and r = 1, 2, 3, . . ..

Math. Mag., 27(1954) 222.

I. Solution by Alfredo Jones, University of Notre Dame. If

w = zn + a1z
n−1 + · · ·+ an + b1/z + b2/z

2 + · · · br/zr

maps |z| = 1 into |w| = 1 then

w′ = w′ · zr+1 = zn+r+1 + a1z
n+r + · · ·+ brz

also satisfies that condition. The area of the image of the unit circle by w′ will be
A = kπ where k is the number of times w′ traverses |w| = 1 while z traverses |z| = 1.
Now k ≤ n+ r+ 1 as k is also the number of zeros of w′ for |z| < 1, which is less than
or equal to n+ r + 1. Writing z = Reiθ this area is also:

A = π

∫ 2π

0

zf ′(z)f(z) dθ = π[n+ r + 1 + (n+ r)|a1|2 + · · ·+ |br|2]

But this implies that a1 = a2 = · · · = br = 0.

[[I don’t understand the effs in the last display. Are they a misprint? – R. There’s a
second solution by Walter B. Carver.]]

Math. Mag., 27(1953) 56–57.

Q 97. Submitted by Murray S. Klamkin

Solve ax2 + bx+ c = 0 without completing the square or using the quadratic formula.

A 97. Let x = y + h = y − b/2a. Then we have ay2 + y(2ah + b) + ah2 + bh +
c = 0. Now since h = −b/2a, this equation becomes ay2 − b2/4a + c = 0, so y =
±
√

(b2 − 4ac)/4a2 and x = [−b ±
√
b2 − 4ac]/2a. [This is the method of Vieta, for

example, see D. E. Smith, History of Mathematics, Vol. II (Ginn) 1925, p.449.]

Math. Mag., 27(1953) 57.

Q 101. Submitted by Murray S. Klamkin

Prove that 21/2 + 31/3 is irrational.

A 101. Assume that 21/2 + 31/3 = R, a rational number. Then 3 = (R −
√

2)3 =
R3 + 6R−

√
2(3R2 + 2). It follows that

√
2 is rational. Since it is well-known that this

is not true, the assumption is false.
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[[There are misprints in each of the next two items. I hope that I’ve corrected more
than I’ve made. — R.]]

Math. Mag., 27(1953) 106–107.

Q 100. Submitted by Murray S. Klamkin

Express(a2
1 + b21)(a

2
2 + b22)(a

2
3 + b23) as the sum of two squares.

A 100. (a1 + ib1)(a2 + ib2)(a3 + ib3)

= a3(a1a2 − b1b2)− b3(a1b2 + a2b1) = i[b3(a1a2 − b1b2) + a3(a1b2 + a2b1)]

Equating the modules [[moduli ?]] of the two sides of the identity we have

(a2
1 + b21)(a

2
2 + b22)(a

2
3 + b23)

= [a3(a1a2 − b1b2)− b3(a1b2 + a2b1)]
2 + [b3(a1a2 − b1b2) + a3(a1b2 + a2b1)]

2

Math. Mag., 27(1953) 56–57.

Q 99. Proposed by Murray S. Klamkin

Evaluate
∫∞

0
log x dx/(1 + x2).

A 99. Let x = 1/y, then

I =

∫ ∞

0

log x dx

1 + x2
=

∫ ∞

0

log(1/y)(−1/y2) dy

1 + 1/y2
= −

∫ ∞

0

log y dy

1 + y2
= −I.

Thus I = 0.

[[There seem to be two ‘Q101’s, both submitted by Murray!!]]

Math. Mag., 27(1953) 106–107.

Q 101. Submitted by Murray S. Klamkin

Find integer solutions of x2 + y2 = z3

A 101 In the result of A 100 let a1 = a2 = a3 = a and b1 = b2 = b3 = b, whence we
have

(a2 + b2)3 = (a3 − 3ab2)2 + (3a2b− b3)2.

Hence a general solution is x = a3 − 3ab2, y = 3a2b − b3, z = a2 + b2, where the
parameters a, b are integers.

[[But is it THE general solution?? Are there solutions not of this form? — R.]]

7



Math. Mag., 27(1954) 148.

191. Proposed by Murray S. Klamkin, Polytechnic Institute of Brooklyn

Find the sum
n∑

s=0

(−1)s

[
1

s+ 1
+

1

s+ 2
+ · · ·+ 1

s+ n

](
n

s

)
Math. Mag., 28(1954) 35.

I. Solution by L. Carlitz, Duke University. Put

Sk = 1 +
1

2
+ · · ·+ 1

k
(k ≥ 1) S0 = 0

Then

S =
n∑

s=0

(−1)s

(
1

s+ 1
+

1

s+ 2
+ · · ·+ 1

s+ n

)(
n

s

)
=

n∑
s=0

(−1)s(Sn+s − Ss)

(
n

s

)
Using the notation of finite differences

4nSk =
n∑

s=0

(−1)n−s

(
n

s

)
Sk+s

But

4Sk =
1

k
42Sk =

−1

(k + 1)(k + 2)
· · ·

4nSk = (−1)n−1 (n− 1)!

(k + 1)(k + 2) · · · (k + n)

so that

n∑
s=0

(−1)n−s(Sk+s − Ss)

(
n

s

)
= (−1)n−1 (n− 1)!

(k + 1) · · · (k + n)
− (n− 1)!

n!

In particular for k = n we get

S = (−1)n

n∑
s=0

(−1)n−s(Sn+s − Ss)

(
n

s

)

= (−1)−1

{
(n− 1)!

(n+ 1) · · · (2n)
− (n− 1)!

n!

}
=

1

n

{
1−

(
2n

n

)−1
}
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Math. Mag., 27(1954) 159–160.

T 10. Submitted by M. S. Klamkin.

Can a checker be moved from position (1,1) to position (8,8) moving one square at a
time and never diagonally, in such a way that the checker enters each square once and
once only?

S 10. Yes. The trick here is to move to (1,2) or (2,1) and then back to (1,1) which
is then entered for the first time. One possible sequence of moves is (1,1), (1,2), (1,1),
(2,1), (2,3), (1,3), (1,4), (2,4), (2,5), (1,5), (1,6), (2,6), (2,7), (1,7), (1,8), (3,8), (3,1),
(4,1), (4,8), (5,8), (5,1), (6,1), (6,8), (7,8), (7,1), (8,1), (8,8).

Math. Mag., 27(1954) 218–219.

97. [March 1951] Proposed by Bruce Kellogg, Massachusetts Institute of Technology

Let {in} = i1, i2, i3, . . . be a sequence of real numbers such that limn→∞ in = 1 and
in > 1 for all n. Does the infinite series∑ 1

nin

converge or diverge, or does the divergence or convergence depend upon the sequence
{in} ?

Solution by R. M. Foster and M. S. Klamkin, Polytechnic Institute of Brooklyn. Let

in = 1 +
r log log n

log n

where the logs are natural logarithms, then∑ 1

nin
=
∑ 1

n(log n)2

Thus if r (constant) > 1 the series converges, and r ≤ 1 the series diverges. See the
solvers’ note on the convergence of p-series in the American Mathematical Monthly,
Nov. 1953, pp.625–626.

[[The last display is misprinted – the right side shd be a fn of r. Can someone correct
it from the following article ?
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Amer. Math. Monthly, 60(1953) 625–626.

ON THE CONVERGENCE OF THE p-SERIES

R. M. Foster and M. S. Klamkin, Polytechnic Institute of Brooklyn

In quite a few textbooks, we find the statement that the p-series

∞∑
n=1

n−p (1)

converges for p > 1, and diverges for p ≤ 1. This is not quite correct. It should rather
be stated, that the series converges for p (constant) > 1, and diverges for p ≤ 1. An
example illustrating this point is given by the series (1) with p = 1+(1/n). This series
diverges since

lim
n→∞

n1+(1/n)

n
= 1

and
∑∞

n=1 n
−1 diverges. This example was guiven as a problem in this Monthly (Nov.

1948, p.584). One of the solutions gave the following generalization of this problem:

If limn→∞ φ(n) = 0, then
∑∞

n=1 n
−[1+φ(n)] diverges. This latter statement, however, is

not correct. For, let r be constant and let nφ(n) = ψ(n) = (lnn)r. Then

lim
n→∞

φ(n) = lim
n→∞

lnψ(n)

lnn
= 0

but the series
∞∑

n=1

1

nψ(n)
=

∞∑
n=1

1

n(lnn)r

converges for r (constant)> 1, and diverges for r ≤ 1. similarly, other functions ψ(n)
can be chosen such that the series converges or diverges.]]
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Math. Mag., 27(1954) 226–227.

Q 104. Submitted by M. S. Klamkin

Factor

∣∣∣∣∣∣∣∣
1 + x 1 1 1
1 + x 1 + x 1 1 + x

1 1 + x 1 + x 1
1 1 1 + x 1 + x

∣∣∣∣∣∣∣∣
[[This is evidently a misprint for

∣∣∣∣∣∣∣∣
1 + x 1 1 1 + x
1 + x 1 + x 1 1

1 1 + x 1 + x 1
1 1 1 + x 1 + x

∣∣∣∣∣∣∣∣ ]]

A 104. When x = 0 the four rows are identical, so x3 is a factor. The sum of each
of the rows is 4 + 2x which is therefore a factor. Thus D = Ax3(x + 2), where A is
a constant. Next x4 appears in only two terms, each positive, so A = 1 + 1. Hence
D = 2x3(x+ 2).

Math. Mag., 27(1954) 227.

Q 106. Submitted by M. S. Klamkin

Find the center of gravity of a semicircular area.

[[Sh’d’ve said it’s of uniform surface density.]]

A 106. Clearly the C.G. falls on the radius which is perpendicular to the diameter
at a distance ȳ from the diameter. When the area is rotated about the diameter a
spherical volume is generated. Hence by Pappus’s Theorem we have

2πȳ(πr2/2) = 4πr3/3 so ȳ = 4r/3π

11



Math. Mag., 27(1954) 226–228.

Q 108. Submitted by M. S. Klamkin

Find all the integral solutions of x(x+ 1)(x+ 2)(x+ 3) + 1 = y2.

A 108. Since the left hand side of the equation is a perfect square, all integer values
of x will satisfy the equation.

Math. Mag., 27(1954) 226–228.

Q 109. Submitted by M. S. Klamkin

If A, B and C are three vectors originating from a common point, prove that (A×B)+
(B × C) + (c × A) is a vector perpendicular to the plane determined by the terminal
points of A, B and C.

A 109. Since

(A×B) + (B × C) + (c× A) = (B − A)× (C −B)

the statement follows immediately.

[[The next item is an example of a “Falsie”]]

Math. Mag., 27(1954) 228.

F 15. Submitted by M. S. Klamkin

Let z be a complex number such that tan z = i. Then

tan(z + w) =
1 + tanw

i− tanw
= i

Thus the tangent of every complex number is i.

E 15. The fallacy lies in the fact that no z exists such that tan z = i.

Math. Mag., 27(1954) 287.

Q 110. Submitted by M. S. Klamkin

If a, b and c are sides of a triangle such that a2 + b2 + c2 = bc+ ca+ ab, prove that the
triangle is equilateral.

[[From the answer, I guess that this sh’d’ve been 2(bc+ ca+ ab). – R.]]

A 110. The equation is equivalent to (a− b)2 +(b− c)2 +(c−a)2 = 0. Thus a = b = c

12



Math. Mag., 27(1954) 287.

Q 112. Submitted by M. S. Klamkin

A billiard ball is hit (without any “English”) so that it returns to its starting point
after hitting four different cushions. Show that the distance travelled by the ball is the
same regardless of the starting point.

A 112. Image that the four cushions are mirrors and we are using a light ray. By the
principle of images it is easily shown that the distance equals twice the diagonal.

Math. Mag., 27(1954) 287.

Q 114. Submitted by M. S. Klamkin

Sum
∞∑

n=1

(
1

1!
+

1

2!
+

1

3!
+ · · · 1

n!

)xn

A 114. If F (x) =
∑
anx

n then F (x)/(1 − x) =
∑

(a1 + a2 + · · · + an)xn. Thus
F (x) =

∑∞
n=1

xn

n!
= ex − 1, so our sum is S = ex−1

1−x
.

[[Would someone check this ??]]
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[[Next comes a wonderful Pólya original which has to go in!]]

Math. Mag., 28(1955) 27.

209. Proposed by Murray S. Klamkin, Polytechnic Institute of Brooklyn

Show that F (x, y) =
∞∑

n=0

(−1)nxn

an+1 + y
is symmetric in x and y.

Math. Mag., 28(1955) 235–236.

Solution by George Pólya, Stanford University.

(1) Heuristic consideration. Symmetry of F (x, y) means that x and y are interchange-
able, yet the proposed expression does not render such interchangeability immediately
clear. So, we desire another expression for F (x, y) which does render it immediately
clear. What kind of expression? As the proposed expression is a power series in x, it
is natural to think of a power series in x and y (the Maclaurin expansion in these two
variables). How can one obtain it? Expand in powers of y.

(2) Proof. Expanding in geometric series we obtain:

F (x, y) =
∞∑

m=0

(−1)mxm

am+1

(
1 +

y

am+1

)−1

=
∞∑

m=0

(−1)mxm

am+1

∞∑
m=0

(
− y

am+1

)n

=
∞∑

m=0

∞∑
n=0

(−1)m+nxmyn

a(m+1)(n+1)

in which expression x and y are obviously interchangeable.

(3) Critique. If |a| ≥ 1, the foregoing transformations are easily justified provided
that |x| < |a|, |y| < |a|. If, however, 0 < |a| < 1 the proposed series doesnot behave
symmetrically in x and y. In fact, its sum is a regular (analytic) function in a certain
neighborhood of the point x = −a, y = a, whereas it becomes infinite (has a pole) at
the point x = a, y = −a. If a = 0, F (x, y) = y−1(1 + x)−1 and the asymmetry is quite
obvious.
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Math. Mag., 28(1955) 37.

Q 118. Submitted by M. S. Klamkin

Find the three smallest integers such that the sum of the reciprocals of its divisors
equals 2.

A 118.
∑

1/dr = 2. But
∑
N/dr =

∑
dr. Thus

∑
dr = 2N or N is a perfect number

and the answer is 6, 28 and 496.

Math. Mag., 28(1955) 37–38.

Q 121. Submitted by M. S. Klamkin

If |zn + a1z
n−1 + · · ·+ an + b1

z
+ b2

z2 + · · ·+ br

zr | = 1 for |z| = 1, what are the restrictions
on the coefficients ai and bi ?

[[Compare 177 above.]]

A 121. The expression is equivalent to:

|brzr+n + br−1z
r+n−1 + · · ·+ a1z + 1| = 1

for |z| = 1. By the Maximum Modulus Theorem all the coefficients must be zero.
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Math. Mag., 28(1955) 109–110.

A Fibonacci Expression

197. Proposed by A. S. Gregory, University of Illinois

Let the explicit expression for the n th term of a sequence Kn be known. Find an
explicit expression for the n th term of a sequence {φn} which is defined as follows:

φn = φn−1 + φn−2 +Kn n = 1, 2, 3, . . .

with φ0 and φ1 given.

Solution by Murray S. Klamkin, Polytechnic Institute of Brooklyn. From the definition
we have:

φ2 = φ1 + φ0 +K2

φ3 = 2φ1 + φ0 +K2 +K3

φ4 = 3φ1 + 2φ0 + 2K2 +K3 +K4

φ5 = 4φ1 + 3φ0 + 3K2 + 2K3 +K4 +K5

Let Ar denote the r th term of the Fibonacci sequence 1,1,2,3,5,8,. . . . Explicitly,

Ar =
1

2

[
(1 +

√
5)r−1 + (1−

√
5)r−1

]
[[This has several errors!! Instead read:

Ar =
1

2
√

5

[(
1 +

√
5

2

)r

−

(
1−

√
5

2

)r]

]]

By induction it follows that:

φn = Anφ1 + An−1φ0 + An−1K2 + An−2K3 + · · ·+ A1Kn

16



Math. Mag., 28(1955) 113–114.

Q 123. Submitted by Murray S. Klamkin

If three generators of a right circular cone are

x− 1

1
=
y − 2

2
=
x− 3

−3

x− 1

−3
=
y − 2

3
=
z + 3

3

x− 1

11
=
y − 2

8
=
z + 3

9

[[That x− 3 should surely be z+ 3 ?? And I think it should be z+3
1

in the second line.
Make it:

x− 1

1
=
y − 2

2
=
z + 3

−3

x− 1

−3
=
y − 2

3
=
z + 3

1

x− 1

11
=
y − 2

8
=
z + 3

9

Then we have (1, 2,−3), (−3, 3, 1), (11, 8, 9) orthogonal ?]]

show that the vertical semi-angle of the cone is arccos
√

3/3.

A 123. Since the three generators are mutually orthogonal they may be replace by
the x, y and z axes. By symmetry the axis of the cone can be written x = y = z. Thus
cosα =

√
3/3.

Math. Mag., 28(1955) 113–114.

Q 127. Submitted by Murray S. Klamkin

Show that the volume of the solid (x+ y)2 + (y + z)2 + (z + x)2 = 2 equals 4π
√

2/3.

A 127. By rotating the axes the equation can be transformed into ax′2+by′2+cz′2 = 1

where a, b and c are the roots of the discriminating cubic

∣∣∣∣∣∣
1− λ 1/2 1/2
1/2 1− λ 1/2
1/2 1/2 1− λ

∣∣∣∣∣∣ = 0.

1/2 is obviously a double root, and by adding the three rows the other root is 2. Thus
the volume is 4π

√
2/3.

Math. Mag., 28(1955) 114.

[[at this point Murray has a way of quickening Q 105.]]

Math. Mag., 28(1955) 135–138.

Article by Murray:

On Barbier’s Solution of the Buffon Needle Problem.

17



Math. Mag., 28(1955) 160.

223. Proposed by Murray S. Klamkin, Polytechnic Institute of Brooklyn

Prove that there is no integral triangle such that cosA cosB cosC+sinA sinB sinC =
1.

Math. Mag., 29(1955) 46.

Solution by Chi-yi Wang, University of Minnesota. The relation

(cosA− cosB)2 = (1− cos2A)(1− cos2B)(1− cos2C)

implies that (cosA − cosB)2 = − cos2C sin2A sin2B. This equation has the trivial
solution A = B = 0◦, C = 180◦ and the only nontrivial solution A = B = 45◦, C = 90◦.
Since the two legs and the hypotenuse of an isosceles right triangle are proportional to
1, 1,

√
2 the stated result follows.

Math. Mag., 28(1955) 163–164.

203. Proposed by Norman Anning, Alhambra, California

Prove that three of the intersections of x2− y2 + ax+ by = 0 and x2 + y2− a2− b2 = 0
trisect the circle through these three points.

I. is a solution by W. O. Moser, U of Toronto

II. is a solution by Husseyin Demir, Zonguldak, Turkey

III. Solution by Richard K. Guy, University of Malaya, Singapore. The curves are
a rectangular hyperbola and a circle centre O. [[Yes!! It was spelt thus]] The circle
through 3 of the points of intersection is therefore the circle x2 + y2 = a2 + b2. By
inspection, (−a, b) is common to the two curves. Let P , Q, R be the other 3 points of
intersection. Then, by well-known theorems, the orthocentre [[Yes!]] of PQR and the
fourth point, (−a, b), of intersection of the rectangular hyperbola with the circle PQR
lie at opposite ends of a diameter of the rectangular hyperbola. But the centre of the
rectangular hyperbola is (−1

2
a, 1

2
b). Therefore the orthocentre of PQR is O. But this

is also the circumcentre. Therefore PQR is equilateral.

IV. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. Consider

z2 = (a2 + b2)3/2 eiθ where cos θ =
−a√
a2 + b2

and

sin θ =
−b√
a2 + b2

Then
x2 + y2 = a2 + b2

18



and

z2 = (a2 + b2)3/2 cos θ + i sin θ

z

Equating the real parts of this equation leads to x2−y2 = −ax−ay. Thus the solution
follows immediately.

Math. Mag., 28(1955) 170–172.

Q 128. Submitted by Murray S. Klamkin

Determine the probability that a random rational fraction a/b is irreducible.

A 128. Probability

P =

(
1− 1

22

)(
1− 1

32

)
· · · =

∏(
1− 1

p2

)
where the infinite product is extended over all primes.

1

P
=

1∏(
1− 1

p2

)
=

(
1 +

1

22
+

1

24
· · ·
)(

1 +
1

32
+

1

34
+ · · ·

)
· · ·

= 1 +
1

22
+

1

32
+

1

42
+ · · · = π2

6

Thus P = 6/π2.

Math. Mag., 28(1955) 170–171.

Q 132. Submitted by Murray S. Klamkin

If A, B, C are the angles of a triangle show that sin2A+sinB sinC cosA is symmetric
in A, B and C.

A 132. Since
sinA

a
=

sinB

b
=

sinC

c
=
bc sinA

abc
=

2∆

abc

where ∆ is the area of the triangle and as

cosA =
b2 + c2 − a2

2bc

the given sum equals
2∆2(a2 + b2 + c2)

(abc)2

19



Math. Mag., 28(1955) 241–242.

Q 136. Submitted by Murray S. Klamkin

Let [x] denote the greatest integer less than or equal to x, and let (x) denote the integer
nearest to x. Express (X) as a function of [x].

A 136. By plotting y = [x] and y = (x) it is readily seen that (x) = [x− 1
2
]+1 = [x+ 1

2
].

[[The next item is a chestnut, so, if we’re pruning, it shd be one of the first to go. R.]]

Math. Mag., 28(1955) 241–242.

Q 139. Submitted by Murray S. Klamkin

What is the smallest number of balance weights needed to weight every integral weight
from 1 to 121 pounds ?

A 139. If the weights can be placed only on one side of the balance, then the weights
needed are 1, 2, 4, 8, 16, 32, 64. If they can be placed on both sides then we need only
1, 3, 9, 27, 81.

Math. Mag., 28(1955) 284.

240. Proposed by Murray S. Klamkin, Polytechnic Institute of Brooklyn

Determine the value of

A× (B × C) +B × (C × A) + C × (A×B)

without expanding any of the vector triple products.

Math. Mag., 29(1956) 170.

Solution by Samuel Skolnik, Los Angeles City College. If A, B and C are coplanar
vectors or if one of them is a null vector, the solution is trivial.

Assume that A, B and C are non-coplanar and let P = A× (B×C) +B× (C ×A) +
C × (A×B). Then

A · P = A · A× (B × C) + A ·B × (C × A) + A · C × (A×B)

= 0 + (A×B) · (C × A) + (A× C) · (A×B)

= (A×B) · (C × A)− (C × A) · (A×B) = 0

Similarly B · P = 0 and C · (= 0. Since P could not be perperpendicular to three
non-coplanar vectors A, B and C it follows that P = 0.

20



[[This next one only if you want an example of several unfamiliar sledgehammers
cracking a fairly familiar nut.]]

Math. Mag., 28(1955) 285–287.

A FRACTIONAL SUM

216. [Nov. 1954] Proposed by Erich Michalup, Caracas, Venezuela

Prove that
∞∑

n=1

16n2 + 12n− 1

8(4n+ 3)(4n+ 1)(2n+ 1)(n+ 1)
=

1

24

I. Solution by Dennis Russell

II. Solution by L. A. Ringenberg

III. Solution by Murray S. Klamkin, Polytechnic Institute of Brooklyn. Let S represent
the sum

1

2

∞∑
1

[
3

4n+ 2
− 1

4n+ 1
− 1

4n+ 3
− 1

4n+ 4

]
Now

N∑
1

1

a+ nb
=

1

b

[
χ
(a
b

+ n+ 1
)
− χ

(a
b

+ 1
)]

where χ(x) = Γ′(x)
Γ(x)

. Thus

S =
1

8

[
−3χ(

3

2
) + χ(

5

4
) + χ(

7

4
) + χ(2)

]
Since χ(x+1)−χ(x) = 1/x and χ(1) = −γ, χ(1

2
) = −γ−2 log 2, χ(1

4
) = π/2−γ−3 log 2

it follows that S = 1
24

.
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Math. Mag., 28(1955) 288–289.

A PRODUCT OF TWO BINOMIALS

218. [Nov. 1954] Proposed by Ben K. Gold, Los Angeles City, College

Prove
K∑

i−1

(−1)i

(
K + i

K

)(
2K + 1

K − i

)
= 1

II. Solution by Murray S. Klamkin, Polytechnic Institute of Brooklyn. We can establish
the equality

k∑
r=0

(−1)r

(
k + r

k

)(
2k + 1

k − r

)
=

(2k + 1)!

(k!)2

k∑
r=0

(
k
r

)
k + 1 + r

A more general expression [[not ‘expansion’?]] follows from the expansion of the Beta
function (See author’s note in Scripta Math., Dec. 1953, p.275). If m and n are
nonnegative integers

B(m+ 1, n+ 1) =
m!n!

(m+ n+ 1)!
=

∫ 1

0

tm(1− t)n dt =

∫ 1

0

n∑
r=0

(−1)r

(
n

r

)
tm+r dt

Thus
n∑

r=0

(−1)r
(

n
r

)
m+ r + 1

=
m∑

r=0

(−1)r
(

m
r

)
n+ r + 1

=
m!n!

(m+ n+ 1)!

The proposed identity follows by setting m = n = k. (This identity was previously
obtained by R. Gloden, Scripta Math., 1952, p.178).

The identity can be extended to nonintegers m and n both ≥ 0. In this case the limits
are from 0 to ∞, and

m!n!

(m+ n+ 1)!
becomes

Γ(m+ 1)Γ(n+ 1)

Γ(m+ n+ 2)
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Math. Mag., 28(1955) 292.

Q 142. Submitted by Murray S. Klamkin

Find the class of functions such that 1
F (x)

= F (−x). One simple example is F (x) = ex.

A 142. Let F (x) = E(x) +O(x) where E(x) is even and O(x) is odd. Then

1

E(x) +O(x)
= E(x)−O(x)

Thus E(x) = ±
√

1−O(x)2 and F (x) = O(x)±
√

1−O(x)2. Let O(x) = tanx, then
F (x) = tan x± sec x.

[[but the following is better and more general — R.]]

Math. Mag., 29(1955) 54.

[Alternate solution by Gaines Lang.] By taking absolute values and then logarithms of
each side it is clear that lnF (x) is an odd function. Hence F (x) = ±eG(x) where G(x)
is an odd function.

Math. Mag., 28(1955) 292–293.

Q 145. Submitted by Murray S. Klamkin

Determine the equation of the cone through the origin passing through the intersection
of x2

a2 + y2

b2
+ z2

c2
= 1 and x

a
+ y

b
+ z

c
= 1.

A 145. The surface
x2

a2
+
y2

b2
+
z2

c2
=
[x
a

+
y

b
+
z

c

]2
is a cone through the origin and obviously passes through the given intersection.

[[? Better also to give in the form

yz

bc
+
zx

ca
+
xy

ab
= 0?]]
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Math. Mag., 28(1955) 293.

T 16. Submitted by M. S. Klamkin.

Determine θ such that
sin θ + sin 2θ + sin 3θ

cos θ + cos 2θ + cos 3θ
= tan 2θ

S 16. As this is an identity it is satisfied for all θ for which the denominator is not
zero.

Math. Mag., 28(1955) 293.

T 17. Submitted by M. S. Klamkin.

Find the relationship between A and B if

A = 1 +
2

1!
− 23

3!
+

25

5!
− 27

7!
+ · · · and B = 2− 4

3!
+

6

5!
− 8

7!
+

10

9!
− · · ·

S 17. A = 1 + sin 2 and B = sin 1 + cos 1. Therefore A = B2

Math. Mag., 28(1955) 293.

T 18. Submitted by M. S. Klamkin.

Evaluate cos 5◦ + cos 77◦ + cos 149◦ + cos 221◦ + cos 293◦.

S 18. The expression is the sum of the projections of a regular pentagon and therefore
equals zero.

[[This next is a real chestnut.]]

Math. Mag., 29(1955) 53.

Q 146. Submitted by Murray S. Klamkin

Sum the series 1
1·2 + 1

2·3 + 1
3·4 + · · ·

A 146.

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · · =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · · = 1
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Math. Mag., 29(1955) 53.

Q 148. Submitted by Murray S. Klamkin

Express 1/(1 + x)(1 + x2)(1 + x4)(1 + x6) as a power series.

[[That x6 shd be x8 — R.]]

A 148. [[corrected]]

1/(1 + x)(1 + x2)(1 + x4)(1 + x8) = (1− x)/(1− x16)

= (1− x)(1 + x16 + x32 + x48 + · · · )

= 1− x+ x16 − x17 + x32 − x33 + · · ·

Math. Mag., 29(1955) 53–54.

Q 150. Submitted by Murray S. Klamkin

Show that (a+ b+ c)3 = 27abc if a1/3 + b1/3 + c1/3 = 0.

A 150.

a+b+c−3(abc)1/3 = (a1/3 +b1/3 +c1/3)(a2/3 +b2/3 +c2/3−a1/3b1/3−b1/3c1/3−c1/3a1/3)

Now if a1/3 + b1/3 + c1/3 = 0 then we have a+ b+ c = 3(abc)1/3 or (a+ b+ c)3 = 27abc.
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Math. Mag., 29(1955) 107.

253. Proposed by Murray S. Klamkin and C. H. Pearsall Jr., Polytechnic Institute of
Brooklyn

In Ripley’s (New) “Believe It Or Not” the following statement appears (p.207). “The
persistent number 526,315,789,473,684,210 may be mutiplied by any number. The
original digits will always reappear in the result.” Show that this statement is not
correct.

Math. Mag., 29(1956) 286.

Solution by M. A.Kirchberg, Milwaukee, Wiskonsin. Observing that twice this number
equals one-tenth of it less 1 plus 1018, we see that 19 times the number is 1019 − 10 or
9999999999999999990.

Also solved by R. K. Guy, University of Malaya, Singapore; [3 others] and the proposers.

Math. Mag., 29(1955) 115.

Q 152. Submitted by Murray S. Klamkin

Prove that the average of the square of the velocity is greater than or equal to the
square of the average velocity.

A 152. To prove V 2 ≥ (V )2 we have that∫ b

a
V 2 dp∫ b

a
dp

≥

[∫ b

a
V dp∫ b

a
dp

]2

follows from the Cauchy-Schwartz Inequality.

[[The notation needs improving, correcting and explaining — R.]]

Math. Mag., 29(1955) 115–116.

Q 154. Submitted by Murray S. Klamkin

Show that Vn/Sn = r/n where Vn and Sn are the volume and surface of an n-
dimensional sphere.

A 154. From similar figures it follows that Vn = K1r
n and Sn = K2r

n−1. But by
dividing the spheres dVn = Sn dr so that K1n = K2 and Vn

Sn
= K1r

K2
= r

n
.

[[Or, divide sphere into cones, whose vol. is (1/n)(base)(height) ? — R.]]
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Math. Mag., 29(1955) 115–116.

Q 156. Submitted by Murray S. Klamkin

Solve 4x3 − 6x2 + 4x− 1 = 0.

A 156. The given equation is equivalent to (x−1)4 = x4 or (2x−1)[(x−1)2 +x2] = 0
which has roots x = 1/2, (1± i)/2.

Math. Mag., 29(1955) 115–116.

Q 158. Submitted by Murray S. Klamkin

Find the area of the ellipse 4x2 + 2
√

3xy + 2y2 = 5.

A 158. Rotate the ellipse into the form Ax2 +Cy2 = 5. The A+C = 6and −4AC =
(2
√

3)2 − 4(4)(2). That is A = 5 and C = 1 or A = 1 and C = 5. Thus the area is
π
√

5.

[[¿¿ Better is to ask that

4x2 + 2
√

3xy + 2y2 = 5(x2 + y2)/r2

represent a pair of coincident straight lines: 3 = (4− 5/r2)(2− 5/r2) and the product
of the squares of the roots is 5 ?? — R.]]

Math. Mag., 29(1956) 163.

261. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Determine the entire class of analytic functions F (x) so that Simpson’s Quadrature
Formula ∫ h

−h

F (x) dx =
h

3
[F (−h) + 4F (0) + F (h)]

holds exactly.

Math. Mag., 30(1956) 51.

Solution by Harry D. Ruderman, Bronx, New York. Let F (x) = E(x)+O(x), the sum
of an even and odd function; that is

E(x) =
F (x) + F (−x)

2
and O(x) =

F (x)− F (−x)
2

Assume that each is integrable. The Quadrature Formula is satisfied for any odd
function that is integrable. The result is equal to 0. After replacing F (x) by E(x)+O(x)
and using the property E(−x) = E(x), Simpson’s formula becomes

x∑
0

E(x) dx =
x

3
[E(x) + 2E(0)] 0 ≤ x ≤ h (1)
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This relation implies that E(X) has a derivative in this interval. Differentiate both
members of (1).

E(x) =
xE ′(x)

3
+
E(x) + 2E(0)

3

This is a simple differential equation with the solution

E(x) = A+Bx2 with A = E(0)

If F (x) has two integrable components and satisfies Simpson’s Formula in the interval
0 ≤ x ≤ h, then F (x) = A+Bx2 +O(x). Thus F (x) is the sum of a quadratic and an
odd function.

Math. Mag., 29(1956) 173–174.

Q 160. Submitted by Murray S. Klamkin

Find the sum of 1+1+2+3+5+8+13+21+34+55+89+144.

A 160.

Math. Mag., 29(1956) 174.

Q 162. Submitted by M. S. Klamkin

(From the 1953 Putnam Competition) Six points are in general position in space, no
three in line and no four in a plane. The fifteen line segments joining then in pairs are
drawn and then painted, some segments red and some blue. Prove that some triangle
has all its sides the same color.

A 162. There are five segments emanating from any point. Three of these must be of
the same color, say red. No matter how we connect the ends of these three segments
we get at least one triangle of the same color.

[[Fifty years on, some of these quickies seem awfully hackneyed, but perhaps they’re
new to a newer generation. — R.]]

Math. Mag., 29(1956) 174.

Q 163. Submitted by M. S. Klamkin

Prove that 1 + 1/2 + 1/3 + · · ·+ 1/n is never an integer for n > 1.

A 163. Multiply the sum by one half the least common multiple. The there will be
exactly one term equal to 1/2 and the remaining terms will be integers since there can
be only one term which contains the highest power of 2 in the sequence 1, 2, 3, . . . , n.
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Math. Mag., 29(1956) 174.

Q 164. Submitted by M. S. Klamkin

If F (m)+F (n)
2

≥ F
(

m+n
2

)
is true for all real m and n, prove that F−1(m)+F−1(n)

2
≤

F−1
(

m+n
2

)
in a domain where the inverse function F−1(x) exists.

A 164. Geometrically this is equivalent to proving that if a function is convex its
inverse is never convex. Plot the curves y = F (x) and y = F−1(x). These curves are
mirror images in the line y = x. Thus the proof follows by symmetry.

Math. Mag., 29(1956) 222.

269. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Find the sum
∑∞

n=1

[
n
1!

+ n−1
2!

+ n−2
3!

+ · · ·+ 1
n!

]
xn

Math. Mag., 30(1956) 108.

Solution by Maimouna Edy, Hull, P.Q., Canada.

∞∑
n=1

[
n

1!
=
n− 1

2!
+
n− 2

3!
+ · · ·+ 1

n!

]
xn

=

(
∞∑

n=0

xn

(n+ 1)!

)
·

(
∞∑

n=0

nxn

)
=

(
1

x

∞∑
n=0

xn+1

(n+ 1)!

)
·

(
x

∞∑
n=0

nxn−1

)

=

(
∞∑

n=0

xn+1

(n+ 1)!

)(
∞∑

n=0

nxn−1

)
= ex−1(1− x)−2

This result is valid for |x| < 1

Math. Mag., 29(1956) 230.

Q 167. Submitted by M. S. Klamkin

Prove that 1 + 1/3 + 1/5 + · · ·+ 1/(2n− 1) for n > 1 can never be an integer.

A 167. Assume the sum S is integral and let p be the greatest prime less than or equal
to 2n− 1. There will not be any other multiples of p less than 2n− 1 since between a
and 2a there lies a prime. Then

1 + 1/3 + 1/5 + · · ·+ 1/(2n− 1)− 1/p = S − 1/p =
pS − 1

p

But the right side has a denominator p while the left side does not. This is a contra-
diction which proves the original statement.
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Math. Mag., 29(1956) 231.

T 22. Submitted by M. S. Klamkin

Solve the simultaneous system

cosA cosB + sinA sinB sinC = 1

sinA+ sinB = 1

A+B + C = 180◦

S 22. From the first and third equations it follows that cos(A−B) ≥ 1. Thus A = B
and then C = 90◦. But this does not satisfy the second equation. Therefore the
equations are inconsistent.

Math. Mag., 29(1956) 290.

Q 176. Submitted by M. S. Klamkin

Sum
∞∑

n=0

n4 − 6n3 + 11n2 − 6n+ 1

n!

A 176.

∞∑
n=0

n4 − 6n3 + 11n2 − 6n+ 1

n!
=

∞∑
n=0

n(n− 1)(n− 2)(n− 3) + 1

n!
= 2

∞∑
n=0

1

n!
= 2e

Math. Mag., 30(1956) 47.

284. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Determine the envelope of convex polygons of n sides inscribed in the ellipse x2

a2 + y2

b2
= 1

and having a maximum area.

[[This should be a quickie. Orthogonal projection changes area in a constant ratio; the
max area of a cyclic n-gon is given by the regular n-gon, which envelops a circle which
projects back to a homothetic ellipse of size cos(π/n) times the original.]]

Math. Mag., 30(1957) 230.

[[Vindicated! This is Howard Eves’s solution, but a second, longer, solution by Chih-yi
Wang, was also published.]]
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Math. Mag., 30(1956) 53–54.

Q 177. Submitted by M. S. Klamkin

Prove

|Σ1 +
√

Σ2
1 − Σ2

2|+ |Σ1 −
√

Σ2
1 − Σ2

2| = |Σ1 + Σ2|+ |Σ1 − Σ2|

A 177. Let Σ1 + Σ2 = w2
1 and Σ1−Σ2 = w2

2. Then Σ2
1−Σ2

2 = w2
1 ·w2

2 or |w1 +w2|2 +
|w1 − w2|2 = 2|w1|2 + 2|w2|2 This is equivalent to the theorem that the sum of the
squares of the diagonals of a parallelogram is equal to the sum of the squares of the
sides.

Math. Mag., 30(1956) 53–54.

Q 179. Submitted by M. S. Klamkin

Is ii real or complex ?

A 179. Here ii = ei log i = ei[i(π/2+2kπ)] = e−(π/2+2kπ), but this is real.

Math. Mag., 30(1956) 53–54.

Q 180. Submitted by M. S. Klamkin

Solve x4 + 4x− 1 = 0

A 180. x4 + 4x− 1 = 0 is equivalent to x4 + 2x2 + 1− 2(x2 − 2x+ 1) = 0. [[misprint

corrected]] Thus x2+1 = ±
√

2(x−1) and x2∓x
√

2+1±
√

2 = 0 so x =
±
√

2±
√

2−4(1±
√

2)

2

[[The following’s a rather slow quickie!]]

Math. Mag., 30(1956) 53–54.

Q 182. Submitted by M. S. Klamkin from Goursat-Hedrick, MATHEMATICAL
ANALYSIS, Vol.1, p.32.

Determine a polynomial F (x) of seventh degree such that F (x) + 1 is divisible by
(x− 1)4 and F (x)− 1 is divisible by (x+ 1)4.

A 182. Let F (x) + 1 = (x− 1)4P1 and F (x)− 1 = (x+ 1)4P2. F (x) not divisible by
(x− 1)(x + 1). Multiplying we have F (x)2 − 1 = (x2 − 1)4P1P2. Differentiating gives
2FF ′ = 8x(x2−1)3P1P2+(x2−1)4(P1P2)

′. Thus F ′ is divisible by (x2−1)3 and since it

is of sixth degree, F ′ = (x2 − 1)3. So F (x) = k
[

x7

7
− 3x5

5
+ x3 − x

]
+ c. The constants

are determined from F (1) = −1, F (−1) = 1 so that F (x) = 1
16

[5x7−21x5+35x3−35x].
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291. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Determine the minimum of ∑s
r=1 x

s
r∏s

r=1 xr

where xr > 0

Math. Mag., 30(1957) 290.

Solution by Chih-yi-Yang, University of Minnesota. Since the arithmetic mean is never
less than the geometric mean of any positive terms we have

s

{
s∑

r=1

xs
r

s

}
≥ s

s∏
r=1

xr

whence the required minimum value is s, which is attained if all xr are equal.

[[In connexion with the next item, it’s interesting to compare SIAM Rev., 1(1959)
68–70, the issue where Murray initiated the famous Problems Section with:

Problem 59-1∗, The Ballot Problem, by Mary Johnson (American Institute of Physics)
and M. S. Klamkin.

A society is preparing 1560 ballots for an election for three offices for which there are
3, 4 and 5 candidates, respectively. In order to eliminate the effect of the ordering of
the candidates on the ballot, there is a rule that each candidate must occur an equal
number of times in each position as any other candidate for the same office. what is
the least number of different ballots necessary?]]

Math. Mag., 30(1956) 110.

T 24. Submitted by M. S. Klamkin

A certain physical society is planning a ballot for the election of three officers. There
being 3, 4 and 5 candidates for the three offices. There is a rule in effect (in order to
eliminate the ordering of the candidates on the ballot as a possible influence on the
election) that for each office, each candidate must appear in each position the same
number of times as any other candidate. What is the smallest number of different
ballots necessary?

S 24. [[misnumbered S 25 in the original.]] Offhand one would say 3 · 4 · 5 = 60.
However, if one adds two fictitious names to the group of three and one fictitious name
to the group of four, then only five different ballots are necessary. Not only will this
method reduce the printing costs, but it will also give statistics on whether or not
members vote by relative order [or not]. [[last two words redundant]]
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Math. Mag., 30(1956) 111–112.

Q 184. Submitted by M. S. Klamkin

Simplify

I =
sin x+ sin 2x+ sin 3x+ · · ·+ sinnx

cosx+ cos 2x+ cos 3x+ · · ·+ cosnx

A 184.
n∑
1

sinnx =
sin n−1

2
x sin n

2
x

sin x
2

and
n∑
1

cosnx =
cos n−1

2
x sin n

2
x

sin x
2

Therefore I = tan n−1
2
x

Math. Mag., 30(1956) 111–112.

Q 185. Submitted by M. S. Klamkin

Prove that
k∑

r=0

(−1)r

(
n+ r

s

)(
k

r

)
where s ≤ k − 1

A 185.

xn(1− x)k =
k∑

r=0

(−1)r

(
k

r

)
xn+r

Since Ds(xn)(1− x)k
∣∣
x=1

= 0 the result follows.

Math. Mag., 30(1956) 172.

Q 187. Submitted by M. S. Klamkin

Prove

√
ab+ bc+ ca

3
≥ 3
√
abc where a, b, c ≥ 0

A 187. Let ab + bc + ca = s then the maximum value of (ab)(bc)(ca) occurs when

ab = bc = ca or a = b = c. Thus
√

ab+bc+ca
3

≥ 3
√
abc for all a, b, c ≥ 0.
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Math. Mag., 30(1956) 172–173.

Q 189. Submitted by M. S. Klamkin

Evaluate
s+1∑
r+1

n∑
s+1

sin[(2r − 2s− 1)θ]

A 189. Since

(2r − 2s− 1)θ + [2(n+ 2− r)− 2(n− 1 + s)− 1]θ = 0

it follows that the given sum is zero.

Math. Mag., 30(1956) 172–173.

Q 190. Submitted by M. S. Klamkin

Solve y = x− x2

2
x = 1+y2

2

A 190. y = 1
2

+ y2

2
− x2

2
so (y − 1)2 = x2 or x = ±(y − 1). Thus 1 + y2 = 2(1− y) or

1+y2 = 2(y−1) so we have y = −1±
√

2 and x = 2±
√

2 or y = 1± i
√

2 and x = i
√

2

[[I’ve altered some ors and ands: the original didn’t seem to have them right – R.]]

Math. Mag., 30(1956) 173.

T 27. Submitted by M. S. Klamkin

A person travelling eastward at a rate of 3 miles per hour finds that the wind appears
to blow directly from the north. On doubling his speed it appears to come from the
north-east. What was the wind velocity ?

S 27. The vector triangle is as follows, so w = 3
√

2 m.p.h. from the north-west.

3 3

w

45◦
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305. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Find lim
z→1+

(z − 1)
∞∑

n=0

2n

1 + z2n

Solution by L. Carlitz, Duke University, N.C. Logarithmic differentiation of the familiar
identity

∞∏
)

(1 + x2n

) =
1

1− x
|x| < 1

gives
∞∑
0

2nx2n

1− x2n =
x

1− x

For x = 1
z

this becomes

∞∑
0

2n

1− z2n =
1

z − 1
|z| > 1

and therefore

lim
z→1+

(z − 1)
∞∑
0

2n

1− z2n = 1.

Math. Mag., 30(1956) 231–232.

Q 192. Submitted by M. S. Klamkin

Find the equation of the plane through the point (x0, y0, z0) which cuts the least volume
from the first octant.

S 192. Let the plane be x
a

+ y
b

+ z
c

= 1. The abc is to be minimized subject to the
restraint x0

a
+ y0

b
+ z0

c
= 1 or

(
x0

a

) (
y0

b

) (
z0

c

)
is to be maximized. Since the sum of the

factors is 1, then
(

x0

a

)
=
(

y0

b

)
=
(

z0

c

)
= 1

3
. Thus the plane is x

3x0
+ y

3y0
+ z

3z0
= 1.

Math. Mag., 30(1956) 231–232.

Q 195. Submitted by M. S. Klamkin

If
∞∑

n=1

(an)2 converges, prove that
∞∑

n=1

an

n
converges.

S 195. a2
n + 1

n2 ≥ 2an

n
. But

∑∞
n=1

1
n2 converges. Therefore

∑∞
n=1

an

n
does also.
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Q 197. Submitted by M. S. Klamkin

Find f(x, y) such that the family f(x, y) = c is orthogonal to the family f(x, y) = k

A 197. Such a family can be obtained by solving any differential equation of the form

dy

dx
= [G(x, y) +G(y, x)][H(x)−H(y)]

Math. Mag., 30(1957) 290–291.

Q 201. Submitted by M. S. Klamkin

Determine a one-parameter solution of(
y′′

1 + (y′)2

) 1
2

= sinh(y − x)− 1

A 201. By inspection a first integral is y′ = sinh(y − x). Let z = y − x, then
z′ + 1 = sinh z which is integrable into a one-parameter solution.

Math. Mag., 30(1957) 291.

Q 203. Submitted by M. S. Klamkin

Solve
dy

dx
= x2 +

√
x4 − 2xy

A 203. To solve, let y = x3z, then x3 dz
dx

+ 3x2z = x2(1 +
√

1− 2x). The variables are
now separable.

Math. Mag., 31(1957) 57.

Q 204. Submitted by M. S. Klamkin

If A, B, C and D are vectors and [ABC] is a scalar triple product, prove that

[BCD]A− [CDA]B + [DAB]C − [ABC]D = 0

A 204. Let I =

∣∣∣∣∣∣∣∣
A B C D
a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

∣∣∣∣∣∣∣∣ Then I · i = I · j = I · k = 0 so I = 0. Expanding by

minors, we get the desired result.
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Math. Mag., 31(1957) 57–58.

Q 206. Submitted by M. S. Klamkin

If x, y and z are positive and if x+y+z = 1 prove that (1/x−1)(1/y−1)(1/z−1) ≥ 8

A 206. The sum of the three factors on the left hand side of the inequality equals 1.
Thus their minimum occurs when x = y = z = 1/3. Hence the inequality follows.

Math. Mag., 31(1957) 57–58.

Q 208. Submitted by M. S. Klamkin

If f(x) ≡ f(x+ 1) ≡ f(x+
√

2) and f(0) =
√

2, find f(x).

A 208. Since f(x) has two independent periods, it must be the constant f(x) =
√

2.

Math. Mag., 31(1957) 57.

Q 210. Submitted by M. S. Klamkin

If f(x) can be integrated in finite form, show that the inverse function f−1(x) can also
be integrated in finite form.

A 210. I =
∫
f−1(x) dx. Let y = f−1(x), then x = f(y) and dx = f ′(y) dy. Then

I =
∫
yf ′(y) dy = yf(y)−

∫
f(y) dy

Math. Mag., 31(1957) 119.

Q 211. Submitted by M. S. Klamkin

Show that 32n+1 + 2n+2 is divisible by 7.

A 211. 32n+1 + 2n+2 = 3(7 + 2)n + 2n+2 = 7k + 3 · 2n + 4 · 2n = 7(k + 2n).

Math. Mag., 31(1957) 119.

Q 213. Submitted by M. S. Klamkin

Prove that every skew symmetric determinant of odd order has a value zero.

A 213. Interchanging rows and columns does not change the value, but is equivalent
to changing the sign of every element, so

4 = (−1)n4 = −4. Hence 4 = 0
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Math. Mag., 31(1957) 119.

Q 215. Submitted by M. S. Klamkin

Determine the minimum value of the sum of the squares of the perpendiculars from a
point in the plane of a triangle to its three sides.

A 215. Let x, y, z be the perpendiculars and a, b, c be the sides. Then x2 + y2 + z2

is to be minimized subject to ax + by + cz = 2A where A is the area of the triangle.
This is equivalent to finding the shortest distance from the origin to the plane
ax+ by + cz − 2A = 0. Thus r = 2A/

√
a2 + b2 + c2 and the minimum x2 + y2 + z2 is

4A2/(a2 + b2 + c2).

Math. Mag., 31(1958) 177.

Q 216. Submitted by M. S. Klamkin

Find the sum of 1(1!) + 2(2!) + 3(3!) + · · ·+ n(n!)

A 216. Since n(n!) = (n+ 1− 1)(n!) = (n+ 1)!− n! we have

n∑
1

n(n!) = (n+ 1)!− 1

Math. Mag., 31(1958) 177.

Q 218. Submitted by M. S. Klamkin

Find an expression true for all n for the n th derivative of sin ax.

A 218. Dn sin ax = an sin(ax+ nπ
2

)

Math. Mag., 31(1958) 229.

338. Proposed by M. S. Klamkin, AVCO, Lawrence, Massachusetts

The vector field R
r3 satisfies the equations ∇× R

r3 = 0 and ∇· R
r3 = 0. Consequently, this

field has a scalar potential and a vector potential. The scalar potential is well known
to be 1

r
. Determine the vector potential.

Math. Mag., 32(1958) 110.

Solution by D. A. Breault, Sylvania Electric Products Inc. Under the given conditions,
we are asked to determine G = G(R), such that,

f(R) = R/r3 = curlG(R)

Since f(R) is solenoidal, G(R) is given by

G(R) = −R×
∫ 1

0

f(tR)t dt

38



whenever the integral exists. In this case it does exist, and is in fact equal to 1/3R×
R/r3, whence

G(R) = 1/3R×R/r3 +∇∅

where ∅ is an arbitrary scalar function whose second partials exist (see Brand, AD-
VANCED CALCULUS, pp.391ff).

Math. Mag., 31(1958) 237.

Q 223. Submitted by M. S. Klamkin

Evaluate

I =

∫ π

0

x sin x

1 + cos2 x
dx

A 223. Let x = π − y, then

I = −
∫ π

0

(π − y) sin y

1 + cos2 y
dy = −π

2

∫ π

0

d(cos y)

1 + cos2 y
=
π2

4

Math. Mag., 31(1958) 294.

Q 224. Submitted by M. S. Klamkin

Find the sum to N terms of 1, 12, 123, 1234, . . . , an, an + 1111 · · · 11

A 224. The successive differences are

1 11 111 1111 11111 . . .
10 100 1000 10000 . . .

Thus

S =
N∑

r=1

r∑
s=1

10s − 1

9
=

N∑
r=1

10(10r − 1)

92
− r

9
=

102(10N − 1)

93
− 10N

92
− N(N + 1)

18

Math. Mag., 32(1958) 33–34.

Note by Murray:

A note on an n th order linear differential equation.
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Math. Mag., 32(1958) 49.

A Composite of Conics

327 [January 1958]. Proposed by Chih-yi Wang, University of Minnesota

Show that the curve

x6 + y6 − 18(x4 + y4) + 81(x2 + y2)− 108 = 0

consists of two ellipses and a circle.

I. Solution by M. S. Klamkin, AVCO, Lawrence, Massachusetts. The equation can be
written in the form

(x2 + y2)3 − 18(x2 + y2)2 + 81(x2 + y2)− 108 + 3x2y2(12− x2 − y2) = 0

[[misprint corrected]] or

(x2 + y2 − 12){(x2 + y2 − 3)2 − 3x2y2} = 0

or
(x2 + y2 − 12)(x2 − xy

√
3 + y2 − 3)(x2 + xy + y2 − 3) = 0

Whence, the curve consists of 2 ellipses and 1 circle.

Math. Mag., 32(1958) 55–56.

Q 226. Submitted by M. S. Klamkin

Maximize a cosα+ b cos β + c cos γ where cos2 α+ cos2 β + cos2 γ = 1

A 226. If we let A = ai + bj + ck and X = i cosα + j cos β + k cos γ we have to
maximize A ·X where |X|=1. Consequently we have maxA ·X = |A| =

√
a2 + b2 + c2

Math. Mag., 32(1958) 56.

Q 229. Submitted by M. S. Klamkin

Prove that x3 + y3 + z3 − 3xyz = a3 is a surface of revolution.

A 229. The general equation of a surface of revolution is (x−a)2 +(y−b)2 +(z−c)2 =
F (rx + sy + tz) where the axis is x−a

r
= y−b

s
= z−c

t
. Since the given equation may be

written as

x2 + y2 + z2 =
2a3

3(x+ y + z)
+

(x+ y + z)2

3

it follows that it is a surface of revolution about x = y = z.
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356. Proposed by M. S. Klamkin, AVCO, Lawrence, Massachusetts

Determine the shortest distance on the right circular cylinder r = R, z = 0, z = H
between the two points P1(r1, θ1, 0); P2(r1, θ2, H) and also between the two points
P3(R, θ3, z3) and P4(R, θ4, z4).

[[Either no solution was published, or I missed it. — R.]]

Math. Mag., 32(1958) 112–113.

Q 231. Submitted by M. S. Klamkin

Prove that N ! cannot be a perfect square.

A 231. The proof follows from the fact that there is always a prime between r and 2r
for all r > 1.

Math. Mag., 32(1958) 171–172.

Q 236. Submitted by M. S. Klamkin

Find the sum of the series

S = 1 + x+ 2x2 + 3x3 + 5x4 + · · ·+ axn + bxn+1 + (a+ b)xn+2 + · · ·

for |x| < 1.

A 236.

S = 1 + x+ 2x2 + 3x3 + 5x4 + · · ·+ axn + bxn+1 + (a+ b)xn+2 + · · ·
xS = x+ x2 + 2x3 + · · ·
x2S = x2 + x3 + · · ·

so S(1− x− x2) = 1 or S = 1/(1− x− x2).
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Math. Mag., 32(1958) 171.

Q 240. Submitted by M. S. Klamkin

Show that
mz1 + (1−m)z2 ≤ max[|z1|, |z2|]

where 0 ≤ m ≤ 1.

A 240. Proof:

z1

z2

m(z1 − z2)

O

A

B

C

Geometrically it follows that OB ≤ max[OA,OC]
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369. Proposed by M. S. Klamkin, AVCO, Lawrence, Massachusetts

An explorer travels on the surface of the earth, assume to be a perfect sphere, in the
manner to be described. First he travels 100 miles due north. He then travels 100
miles due east. Next he travels 100 miles due south. Finally, he travels 100 miles due
west, ending at the point from which he started. Determine all the possible points
from which he could have started.

Math. Mag., 33(1959) 110.

Solution by D. A. Breault, Sylvania Electric Products Inc., Waltham, Massachusetts.
The problem here is to choose the starting point so that the two East-West legs of
the tour, even though they differ by 100 miles of latitude, span the same number of
longitudinal units. This can easily be done if the starting point is anywhere on the
circle of South latitude which is exactly 50 miles below the equator.

Math. Mag., 33(1960) 226–228.

Editor’s note: Since the statement of the problem does not exclude the possibility
of the explorer retracing a portion of his path, a large family of solutions exists in
addition to the one published in November. A number of such solutions have been
received since that date.

Solution by Benjamin L. Schwartz, Technical Operations Inc., Honolulu, Hawaii. Let
R denote the radius of the earth, t the length of each segment of the trip. Introduce
a spherical coordinate system with origin at the earth’s center, and θ and φ the lon-
gitude and colatitude, respectively. If the explorer starts at P0 = (R, θ0, φ0), then by
elementary analytic geometry, the succeeding corners of his tour are:

P1 = (R, θ0, φ0 −
t

R
)

P2 = (R, θ0 +
t

R
sin(φ0 −

t

R
), φ0 −

t

R
)

P3 = (R, θ0 +
t

R
sin(φ0 −

t

R
), φ0)

P4 = (R, θ0 +
t

R
sin(φ0 −

t

R
)− t

R
sinφ0, φ0)

and for P4 to coincide with P0 we require

θ4 = θ0 +
t

R
sin(φ0 −

t

R
)− t

R
sinφ0

to be coterminal with θ0 (not necessarily equal to θ0, as the other solvers have appar-
ently assumed).

We have then
t

R

[
1

sin(φ0 − t/R)
− 1

sinφ0

]
= 2kπ (1)
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for any integer k. For k − 0 we get the published solution.

Other solutions exist, however, for other values of k. Rewrite (1) in the form

sinφ0 − sin(φ0 − t/R)

sinφ0 sin(φ0 − t/R)
=

2kπR

t
(2)

In general, for any fixed integer value of k, this transcendental equation in φ0 has a
family of solutions, only a finite number satisfying 0 ≤ φ0 ≤ π, which is implied since
φ is the colatitude. These supplement the previously published partial solution to
provide the general solution.

The solutions of (2) are not readily computed in closed form in general. To solve the
equation numerically in any particular case, we can use some simple approximations.
Since R� t, the right hand side is relatively large when k 6= 0, and the numerator of
the left hand side is small. Hence, solutions exist only in the neighborhood of φ0 = 0
or φ0 = π, where the factors of the left side denominator are small. Using first a
neighborhood of φ0 = 0 (the North Pole) we can replace sinφ approximately with φ,
and the equation becomes

t/R

φ0(φ0 − t/R)
=

2kπR

t
(3)

which can easily besolved as a quadratic in φ0 when numerical values are given to t, R
and k. For example, using R = 4000, t = 100, k = 2 we get

φ2
0 − 0.0250φ0 − 0.000049739 = 0 (4)

which yields
φ0 = 0.026852

This is a circle of latitude 107.41 miles south of the North Pole. The explorer who
starts here will proceed north to a point 7.41 miles from the pole; he will then turn
eastward and encircle the pole twice, and go on an additional 6.883 miles. A southward
journey will return him to his original latitude, exactly 100 miles east of his starting
point, and his final westward leg will close the polygon. A similar analysis can be
applied to determine the solutions with different numbers of windings around the pole,
i.e., different k, as well as those in the neighborhood of the South Pole.
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Math. Mag., 32(1958) 171.

Q 246. Submitted by M. S. Klamkin

Determine the class of angles which can be trisected with a straight edge and compasses.

A 246. Since cos θ = 4 cos3 θ/3 − 3 cos θ/3 it follows that angles of the form θ =
arccos(4x3 − 3x) where x is constructible and cos θ/3 = x.

Math. Mag., 32(1958) 285–286.

Q 247. Submitted by M. S. Klamkin

For what values of x is m2+n2−a2−b2 > (mn−ab)x where 0 ≤ a ≤ m and 0 ≤ b ≤ n ?

A 247. Let x = 2 cos θ. Then we have m2 + n2 − 2mn cos θ > a2 + b2 − 2ab cos θ.

θ

A

B C

D
E

In the figure, AB = m, AC = n, AD = a and AE = b. So BC
2

= m2 +n2− 2mn cos θ

and DE
2

= a2 + b2 − 2ab cos θ. In order that DE be less than BC we must have
θ > 60◦ or x < 1.

Math. Mag., 32(1958) 286–287.

Q 252. Submitted by M. S. Klamkin

Find the sum of

=

(
m

r

)(
n

0

)
+

(
m

r − 1

)
+ · · ·+

(
m

0

)(
n

r

)
A 252. On equating coefficients of xr on both sides of the identity

(1 + x)m(1 + x)n = (1 + x)m+n

we have the sum S =
(

m+n
r

)
.
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Math. Mag., 32(1958) 57–58.

Q 254. Submitted by M. S. Klamkin

Prove that
∫ b

a
f(x) dx =

∫ b

a
f(a+ b− x) dx

A 254. Let a+ b− x = y. Then we have
∫ b

a
f(a+ b− x) dx = −

∫ a

b
f(x) dx.

Math. Mag., 33(1959) 109.

393. Proposed by M. S. Klamkin, AVCO, Lawrence, Massachusetts

Find a power series expansion of

P =
∞∏

r=1

(1 + x2r

) for |x| < 1.

[[On Math. Mag., 34(1960) 51 it was stated that this was originally submitted as a
“Quickie”.]]

Math. Mag., 33(1960) 299.

Solution by Chih-yi Wang, University of Minnesota. Define

PN =
N∏

r=1

(1 + x2r

)

Then

PN =
(1− x2)PN

1− x2
=

1− x2N+1

1− x2

And

P = lim
n→∞

PN = (1− x2)−1 =
∞∑

n=0

x2n for |x| < 1.

[R. G. ]Buschman gave as a reference Knopp, Infinite Series, 2nd English Edition,
p.436, Example 3.

Math. Mag., 33(1959) 118.

Q 262. Submitted by M. S. Klamkin

For what values of u0 does the sequence {un} diverge when un+1 = 1
un+2

?

A 262. Consider the inverse sequence an = 1
an+1+2

or an+1 = 1
an
− 2. where a0 = −2.

Then {un} diverges for u0 = ar, r arbitrary, since ur = −2. {un} can be shown to
converge for all other real values of u0.
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Math. Mag., 33(1959) 175–176.

Q 264. Submitted by M. S. Klamkin

Evaluate
∑M

m=1

∑N
n=1 min(m,n) for M ≥ N .

A 264.

M∑
m=1

N∑
n=1

min(m,n) =
N∑

n=1

(
n∑

m=1

(m) +
M∑

m=n+1

(n)

)
=

N∑
n=1

[
n

2
(n+ 1) + n(m− n)]

Since
∑N

n=1 n
2 = n(n+1)(2n+1)

6
, we have our sum equal to N(N+1)(3M−N+1)

6
.

Math. Mag., 33(1960) 226.

408. Proposed by M. S. Klamkin, AVCO, Lawrence, Massachusetts

Three congruent ellipses are mutually tangent symmetrically. Determine the radius of
the circumcircle.

Math. Mag., 34(1960) 117.

Solution by Joseph D. E. Konhauser, HRB-Singer Inc., State College, Pennsylvania.
Let C denote the intersection of the common tangents to the three ellipses. Extend
the major axes of two of the ellipses and denote the point of intersection by P . Let T
denote the point of tangency of these two ellipses. Denote the center of one of these
ellipses by H, then angle HPC = 30◦. Let F and G be the foci of the ellipse with
center H with points in the order F , H, G, P . Let I, J be the foci of the other ellipse
with J between I and P .

If a, b, c have their usual meaning, then, by the law of cosines

(2a)2 = GP
2
+ IP

2 −GP · IP

Using IP = GP + 2c, we obtain

GP + c =
√

4b2 + c2 =
√
a2 + 3b2

From triangle CHP

HC =
c+GP√

3
=

√
a2 + 3b2

3

Selecting coordinate axes with origin at H, with positive x-axis in direction HP and
positive y-axis in direction HC, then the ellipse with center H has equation

x2

a2
+
y2

b2
= 1
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and point C has coordinates (
0,

√
a2 + 3b2

3

)
By means of the calculus, it can be shown that the points on the ellipse at maximum
distance from C have coordinates(

±a
{

1− [b2/c4]
a2 + 3b2

3

}
,−b

2

c2

√
a2 + 3b2

3

)

The desired radius is then computed by the distance formula and is

2a2

√
3c

Math. Mag., 33(1960) 236–237.

T 36. Submitted by M. S. Klamkin

Determine the greatest perimeter of all pentagons inscribed in a given circle.

S 36. The perimeter of the regular convex pentagon is 10r sin π/5, however the perime-
ter of the regular non-convex pentagon is 10r sin 2π/5 which is greater. For a (2n+1)-
sided polygon the maximum perimeter wiuld be (4n+2)r sin 2π/(2n+1), whereas for
the 2n-sided polygon the maximum perimeter would be 4nr. In this case the polygon
has degenerated into the diameter.
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Math. Mag., 33(1960) 237–238.

F 17. Submitted by M. S. Klamkin

A student derived l’Hospital’s rule in the following manner: Let

F (x)

G(x)
= H(x) where F (a) = G(a) = 0 and G′(a) 6= 0.

Then F ′(x) = G′(x)H(x) +G(x)H ′(x) or

F ′(x)

G′(x)
= H(x) +

G(x)

G′(x)
H ′(x).

Then

lim
x→a

F ′(x)

G′(x)
= lim

x→a
H(x)

since G(a) = 0 and G′(a) 6= 0.

E 17. Although G(a) = 0 and G′(a) 6= 0 it does not follow that

lim
x→a

G(x)

G′(x)
H ′(x) = 0

Actually
G(x)

G′(x)
H ′(x) =

F ′(x)

G′(x)
− F (x)

G(x)

so the student’s assertion is equivalent to the trivial observation that if

lim
x→a

[
F ′(x)

G′(x)
− F (x)

G(x)
= 0

]
then lim

x→a

F ′

G′ = lim
x→a

F

G
.

Math. Mag., 33(1960) 302.

Q 267. Submitted by M. S. Klamkin

Prove that the average velocity with respect to distance is greater than or equal to the
average velocity with respect to time.

A 267. To prove V̄s ≥ V̄t we have∫ s2

s1
V ds∫ s2

s1
ds

≥
∫ t2

t1
V dt∫ t2

t1
dt

but this leads to ∫ t2
t1
V 2 dt∫ t2

t1
V dt

≥
∫ t2

t1
V dt∫ t2

t1
dt

which follows from the Cauchy-Schwartz inequality.
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Math. Mag., 34(1960) 50.

422. Proposed by M. S. Klamkin, AVCO, Wilmington, Massachusetts

Solve the differential equation

{x(1− λ)D2 + (xφ′ + 1)D + xφ′′ + φ′}y = 0

where λ is a constant and φ is a given function of x.

Math. Mag., 34(1960) 242.

Solution by P. D. Thomas, Coast and Geodetic Survey, Washington, D.C. Using primes
to denote differentiation of y with respect to x, rearrange and collect the terms of the
given differential equation to get

(xyφ′)′ + (1− λ)(xy′)′ + λy′ = 0

a first integral being at once

xhφ′ + (1− λ)xy′ + λy = C (constant)

or

y′ +
y(xφ′ + λ)

(1− λ)x
=

C

(1− λ)x
(1)

Now (1) is linear and the known solution is

y = e−
R

P dx(
R

Qe
R

P dx dx+k) (2)

where from (1)

P =
xφ′ + λ

(1− λ)x
Q =

C

(1− λ)x

and k is a constant.∫
P dx =

1

1− λ

∫ (
φ′ +

λ

x

)
dx =

φ+ λ lnx

1− λ
(3)

∫
Qe

R
P dx dx =

C

1− λ

∫
eφ/(1−λ) x(2λ−1)/(1−λ) dx (4)

The solution may them be written from (2), (3) and (4) as

y = xλ/(λ−1) e−φ/(1−λ)

[
CI

1− λ
+ k

]
where I =

∫
eφ/(1−λ) x(2λ−1)/(1−λ) dx
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Math. Mag., 34(1960) 58–59.

Q 268. Submitted by M. S. Klamkin

Show that one cannot inscribe a regular polygon of more than four sides in an ellipse
with unequal axes.

A 268. Assume that it can be done. Then there would exist a circle intersecting the
ellipse in more than four points which is impossible.

Math. Mag., 34(1960) 58–59.

Q 269. Submitted by M. S. Klamkin

If a, b and c are positive numbers, give a geometrical interpretation for the inequality

2[a2b2 + b2c2 + c2a2] ≥ a4 + b4 + c4

A 269.
4a2b2 ≥ (a2 + b2 + c2)2

or
[(a+ b)2 − c2][c2 − (a− b)2]

Now assume a ≥ b ≥ c, then c ≥ a− b. Consequently, a, b and c form a triangle.
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Math. Mag., 34(1960) 109.

428. Proposed by M. S. Klamkin, AVCO, Wilmington, Massachusetts

The number N = 142857 has the property that 2N , 3N , 4N , 5N and 6N are all
permutations of N . Does there exist a number M such that 2M , 3M , 4M , 5M , 6M
and 7M are all permutations of M ?

Math. Mag., 34(1961) 3033–304.

I. Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey. Since we get all per-
mutations of M by 1M , 2M , . . ., 7M the number M , if it exists, is a seven-digit
number.

Let M = abcdefg = Gg where G = abcdef and let 1 ≤ p ≤ 7 such that p · Gg = gG.
Then

p(10G+ g) = 106g +G

or

G =
(106 − p)g

(10p− 1)
= Np ·

g

Dp

Now

p Np Dp Np/Dp (np/3)/Dp

1 999999 9 111111 · · ·
2 999998 19 Irreducible · · ·
3 999997 29 Irreducible · · ·
4 999996 39=3·13 · · · Irreducible
5 999995 49=7·7 Irreducible · · ·
6 999994 59 Irreducible · · ·
7 999993 69=3·23 · · · Irreducible

Since the coefficient Np/Dp is not an integer except when p = 1, there is no solution
for G other than gggggg. But M = Gg = ggggggg cannot be a solution.

Hence there is no solution to the problem.

II. Comment by Dermott A. Breault, Sylvania Electric Products Inc., Waltham, Massa-
chusetts. The number M = 0588235294117647 has the property that kM is a permu-
tation of M for k = 2, 3, . . ., 16. The number

L = 0344827586206896551724137931

has the property that kL is a permutation of L for k = 2, 3, . . ., 28. (Mconsists of the
digits of one cycle of the decimal expansion of 1/17 and is 16 digits long, while L was
similarly derived from 1/29. I believe that it it is correct when p is prime and 1/p = Q
has cycle length p− 1, then kQ will be a permutation of Q for k = 2, 3, . . ., p-1.)
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[[The belief is correct, of course. In L & M above I’ve moved the zeros from the end
to the beginning. In The Book of Numbers, p.160, Conway & Guy call these long
primes and give the further examples:

23: 0434782608695652173913

47: 0212765957446808510638297872340425531914893617

59: 0169491525423728813559322033898305084745762711864406779661

61: 016393442622950819672131147540983606557377049180327868852459

97: 010309278350515463917525773195876288659793814432-
989690721649484536082474226804123711340206185567

and indicate that 109, 131, 149, 167, 179, 181, 193, 223, 229, 223, 257, 269, . . . will
also serve.]]

Math. Mag., 33(1960) 120, 123.

T 39. Submitted by M. S. Klamkin

Find the sum of

S =
∞∑

n=1

1/pn

where pn is the n th prime in the sequence n5 + n+ 1.

S 39. Since
(n5 + n+ 1) = (n2 + n+ 1)(n3 − n2 + 1)

there is only one prime p1 = 3. Whence S = 1/3.
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Math. Mag., 34(1961) 173.

435. Proposed by M. S. Klamkin, AVCO, Wilmington, Massachusetts

Determine the largest and the smallest equilateral triangles that can be inscribed in
an ellipse.

Math. Mag., 34(1961) 368–369.

Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey. Let A1A2A3 be an equi-
lateral triangle inscribed in the ellipse

(x2/a2) + (y2/b2) = 1 (E) a > b (1)

and let
(x− u)2 + (y − v)2 − r2 = 0 (Ω) (2)

be the circle circumscribed to A1A2A3. It cuts (E) at the fourth point A4()x4, y4.

Eliminating y between (1) and (2) we get an equation of fourth degree in x

c4 · y4 − 4a2c2u · x3 + · · · = 0

of which the roots are x1, x2, x3, x4.

If we elim[in]ate x between (1) and (2), the corresponding equation will be

c4 · y4 + 4b2c2v · y3 + · · · = 0

and the roots are y1, y2, y3, y4.

Since A1A2A3 is an equilateral triangle, we have

x1 + x2 + x3 = 3u

y1 + y2 + y3 = 3v

and

x4 =
∑

xi − 3u =
4a2u

c2
− 3u =

(a2 + 3b2)u

c2

y4 =
∑

yi − 3v = −4b2v

c2
− 3v = −(b2 + 3a2)v

c2

These coordinates satisfy (1) so we obtain the relation

(u2/α2) + (v2/β2) = 1 (3)

where

α =
ac2

a2 + 3b2
β =

bc2

b2 + 3a2
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Hence the centers of the circles (Ω) lie on the ellipse (3) of which α > β.

Now since the largest and the smallest triangles correspond to the greatest and the
smallest values of the radius r of the circle (Ω), we write

r2 = (x4 − u)2 + (y4 − v)2

=
(a− α)2u2

α2
+

(b+ β)2v2

β2

= Au2 + (b+ β)2 = Bv2 + (a− α)2

dr/du = 0 gives
u = 0 and r1 = b+ β

Similarly dr/dv = 0 gives
r2 = a− α

and one may readily verify that r1 > r2.

Hence, the largest (smallest) equilateral triangles inscribed in the ellipse are ones in-
scribed in the circles of center u = 0, v = ±β (u = ±α, v = 0) and radius b+β(a−α).

[[I think there’s something wrong here — there should be at least two radii and the
dimensions of the expression look wrong. — R.]]

There are four solutions, two for the largest and two for the smallest triangles.

Constructions: The largest (smallest) triangles inscribed in an ellipse have one of their
vertices at the extremities of the minor (major) axis of the ellipse, the axis being an
[[not ‘the’]] axis of symmetry of the triangle.

Math. Mag., 34(1960) 182, 184.

Q 274. Submitted by M. S. Klamkin

Find the general solution of the Diophantine equation

(x4 + y4 + z4)2 = 2(x8 + y8 + z8)

A 274. The equation can be factored into

(x2 + y2 + z2)(x2 + y2 − z2)(y2 + z2 − x2)(z2 + x2 − y2) = 0

Consequently, the general solution is given by the complete solution to an integral right
triangle. That is, x = 2mn, y = m2 − n2, z = m2 + n2 and permutations.
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Math. Mag., 34(1960) 182, 184.

T 43. Submitted by M. S. Klamkin

Determine integers a and b such that x15 +ax+ b and 513−233x−144 have a common
factor.

A 43. Assume the common factor has the form x2 − mx − n. If m = n = 1, then
x13−F13x−F12 where Fn are the Fibonacci numbers 1, 1, 2, 3, 5, 8, . . ., and F13 = 233
while F12 = 144. Consequently −a = F15 = 610 and −b = F14 = 377. Whether or not
other solutions exist is a considerably more involved problem.

Math. Mag., 34(1961) 244, 248.

Q 275. Submitted by M. S. Klamkin

Show that the moments of inertia about all centroidal axes of an area with n-fold
(n ≥ 3) symmetry are the same

A 275. The ellipse of inertia must be circular since three diameters of a proper ellipse
cannot all be equal.

Math. Mag., 34(1961) 244, 248.

Q 276. Submitted by M. S. Klamkin

Show that xmDm+nxn ≡ Dnxm+nDm where D is the differential operator d
dx

.

A 276. Since Dnx =
∑
arx

rDr, xnDn = xD(xD − 1) · · · (xDn + 1). Consequently
xmDm and Dnxn commute.

Math. Mag., 34(1961) 309–310.

T 45. Submitted by M. S. Klamkin

Determine the equation to the conic passing through the five points (−3,−2), (−2, 3),
(1, 1), (−1, 1), (4,−1).

A 45. Since (−2, 3), (1, 1), and (4,−1) are collinear, the conic degenerates into the
two straight lines

(2x+ 35− 5)(3x− 2y + 5) = .0

56



Math. Mag., 34(1961) 363.

456. Proposed by M. S. Klamkin, AVCO, Wilmington, Massachusetts

Determine two-parameter solutions of the following “almost” Fermat Diophantine
equations:

1. xn−1 + yn−1 = zn

2. xn+1 + yn+1 = zn

3. xn+1 + yn−1 = zn

Math. Mag., 35(1962) 124.

Solution by Leo Moser, University of Alberta. We will exhibit two-parameter solutions
for the more general equation

xa + yb = zc (a, b, c) = 1 (1)

Since (a, b, c) = 1we can first find an m and n such that

abm+ 1 = cn (2)

Now let u and v be arbitrary integers and let

x = ubm(uabm + vabm)bm

and
y = vam(uabm + vabm)am

Then
xa + yb = (uabm + vabm)abm+1

By (2) we have
xa + yb = (uabm + vabm)nc

so that with z = (uabm + vabm)n equation (1) is satisfied.

Math. Mag., 34(1961) 372, 352.

Q 286. Submitted by M. S. Klamkin

Find the n th derivative of cos3 x.

A 286.

Dn cos3 x = Dn

[
cos 3x+ 3 cosx

4

]
=

3n

4
cos(3x+ nπ/2) +

3

4
cos(x+ nπ/2).
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Math. Mag., 34(1961) 435.

T 47. Submitted by M. S. Klamkin

Show that in any polygon there exist two sides whose ratio lies between 1/2 and 2.

A 47. Assume that it is not true. Then the largest side would be greater than the
sum of all the other sides. That is

arn > a+ ar + ar2 + · · ·+ arn−1 if r ≥ 2.

Math. Mag., 34(1961) 62–63.

Q 290. Submitted by M. S. Klamkin

Through a given point within a given angle, construct a line which will form a triangle
of minimum area.

A 290. In order for the triangle ABC to be a minimum it follows that BP = PC.
Consequently, draw PM parallel to AB, lay off MC = MA and draw CPB.

P

A

B

C

M
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Math. Mag., 35(1962) 117.

474. Proposed by M. S. Klamkin, AVCO, Wilmington, Massachusetts

The three polynomials x−x, x2 +y2−2xy and x3 +y3 +z3−3xyz can each be factored
into real polynomials. Which if any of the higher prder analogous polynomials

n∑
r=1

xn
r − nx1x2 · · ·xn

are reducible?

Math. Mag., 35(1962) 310–311.

Solution by J. A. Tyrell, King’s College, London. None of the higher order polyno-
mials are reducible (into either real or complex factors). To see this, observe that a
factorization of

xn
1 + yn

1 + zn
1 (1)

could be obtained from any factorization of the given polynomial (for n ≥ 4) merely
by setting x4, . . ., xn equal to zero. As (1)is well-known to be irreducible (for all
positive integers n) our assertion follows. The following proof that (1)is irreducible
may be of interest. (The impossibility of linear factors is trivial to demonstrate.) To
prove the more general assertion, interpret x1, x2, x3 as the homogeneous coordinates
of a point in a projective plane; the vanishing of (1) then represents a plane curve of
order n and, since the partial derivatives of (1) with respect to the xi [[not x1]] do not
vanish simultaneously at any point of the plane, the curve is non-singular (i.e. it has
no multiple points). If the expression (1) were factorable, the curve would be reducible
and then would necessarily possess multiple points (at the points of intersection of
any two components). It follows that the expression (1) is irreducible. (Note: the
geometrical facts used here may be looked up in any elementary treatise on Higher
Plane Curves.)

Math. Mag., 35(1962) 126, 128.

Q 294. Submitted by M. S. Klamkin

Show that the vector expression

A× (∇×B) +B × (∇× A) + (A · ∇)B + (B · ∇)A

would be the same in an English or an Israeli (reading from right to left) article.

A 294. Both expressions are just expressions of ∇(A ·B)
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Math. Mag., 35(1962) 126, 128.

Q 296. Submitted by M. S. Klamkin

If two ellipsoids have an ellipse in common, all their other points of intersection, if real,
lie on another ellipse.

A 296. Let the equations of the common ellipse be

C ≡ ax2 + bxy + cy2 + dx+ ey + f = 0

The most general equations of two ellipsoids which pass through this ellipse are

C + z(a1x+ b1y + c1z + d1) = 0

C + z(a2x+ b2y + c2z + d2) = 0

Al points on both ellipsoids which are not on z = 0 must satisfy

a1x+ b1y + c1z + d1 = a2x+ b2y + c2z + d2

which is another plane intersecting in another ellipse.

Math. Mag., 35(1962) 252–253.

A Random Probability

469. [January 1962]. Proposed by J. Gallego-Diaz, Universidad del Zulia, Maracaibo,
Venezuela.

A random straight line is drawn across a regular hexagon. What is the probability
that is intersects two opposite sides ? [[the first published solution, by W. W. Funken-
busch, Michigan College of Miningand Technology, gave the answer 1

3
+ (
√

3/π) ln 3
4
≈

0.174725894.]]

II. Solution by Murray S. Klamkin, AVCO, Wilmington, Massachusetts. The problem
is not uniquely soluble for no definition of the random straight line distribution was
given. We will obtain two answers by assuming two different distributions both of
whaich are invariant under the group of motions in the plane (will give the same
answer to all observers). 1. We assume that two points (which define the random line)
are taken at random with a uniform distribution on the sides of the hexagon with no
two points on the same side. There is no loss of generality in assuming that one of
the points is on a fixed side and the other is on one of the five other sides. Whence,
probabibilty of intersecting two opposite sides is 1/5. 2. If we assume that the two
points as before can also be on the same side, then probility is 1/6.
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Math. Mag., 35(1962) 257–258.

Q 300. Submitted by M. S. Klamkin

Integrate

I =

∫
dθ

a+ b cos θ

without recourse to the usual substitution z = tan θ/2.

[[In fact Murray’s solution does exactly that!]]

A 300.

I =

∫
dθ

(a− b) sin2 θ
2

+ (a+ b) cos2 θ
2

= 2

∫
d tan θ/2

a+ b+ (a− b) tan2 θ/2

=
2√

a2 + b2
arctan

√
a− b

a+ b
tan θ/2 for a > b or

=
2√

a2 + b2
arctanh

√
b− a

b+ a
tan θ/2 for a < b.

Math. Mag., 35(1962) 309.

497. Proposed by M. S. Klamkin, AVCO, Wilmington, Massachusetts

Show that

4
n∑

r=0

r3

(
n

r

)p

= 6n
n∑

r=0

r2

(
n

r

)p

− n3

n∑
r=0

(
n

r

)p

Math. Mag., 36(1963) 201.

Solution by Francis D. Parker, University of Alaska. Thisproblem is equivalent to
showing that

n∑
r=0

[4r3 − 6nr2 + n3]

(
n

r

)p

= 0

Let f(r) = 4r3 − 6nr2 + n3 and g(r) =
(

n
r

)p
.

It follows easily that f(r) = −f(n − r) and that g(r) = g(n − r). From these results
the conclusion is immediate.
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Math. Mag., 35(1962) 317, 272.

Q 303. Submitted by M. S. Klamkin

If every r th term is removed from the series 1−1/2+1/3−1/4+ · · · , find the resulting
sum.

A 303. If r is even the resulting series obviously diverges. If r is odd, then

Srn−r =

(
1− 1/2 + 1/3− · · · 1

rn

)
− 1

r

(
1− 1/2 + 1/3− · · · 1

n

)

S = lim
n→∞

Srn−r =

(
1− 1

r

)
ln 2

Math. Mag., 35(1962) 317, 272.

T 55. Submitted by M. S. Klamkin

Find all the solutions of the Diophantine equation

y =
x11

11
+
x10

2
+

5x9

2
− x7 + x5 − x3

2
+

5x

66

S 55. Since y =
∑x

r=1 r
10, y is integral for all integers x.

Math. Mag., 35(1962) 317, 272.

T 56. Submitted by M. S. Klamkin

Describe the family of curves whose equation is (x+y+1)2 = 3(x+y−xy−a2) where
x and y are real and ais a real parameter.

S 56. The equation can be rewritten as ()2 + ()2 + ()2 = −6a2. Whence the family
consists of the single point (1,1).
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Math. Mag., 35(1962) 77–78.

Q 306. Submitted by M. S. Klamkin

Show that
1

11
+

1

111
+

1

1111
+ · · ·+ 1

10
=

1

1100
+

1

111000
+ · · ·

[[ This was originally misprinted with one too few zeroes in the last fraction. There is
a correction at Math. Mag., 37(1964) 203.]]

A 306. Since

1

11

(
1− 1

100

)
+

1

111

(
1− 1

1000

)
+ · · · = 1

9

[
1

100
+

1

1000
+ · · ·

]
=

1

10

the result follows immediately.

Math. Mag., 35(1962) 77–78.

Q 309. Submitted by M. S. Klamkin

Determine
∞∏

n=2

[
1− 2

1 + n3

]
A 309. ∏[

1− 2

1 + n3

]
=
∏(

n− 1

n+ 1

)
·
∏(

n2 + n+ 1

n2 − n+ 1

)
= (2)

(
1

3

)
=

2

3
.

[[something wrong here, though answer is right. The n th partial product of the third
product is n2−n+11

3
, which tends to infinity. If the original product is written as

∏
n3−1
n3+1

then it is seen to converge, since the n th partial product is 2(n2+n+1)
3n(n+1)

which tends to

2/3 (from above!) In fact see the following:]]
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Math. Mag., 37(1964) 282–283.

Comment by Alan Sutcliffe, Knottingley, Yorkshire, England. There appear to be two
compensating errors in this rather abbreviated solution. The first is the assumption
that

∞∏
n=2

f(n)g(n) =
∞∏

n=2

f(n)
∞∏

n=2

g(n)

which is not true.

The second is in the evaluation of the two products, where cancellation is used to show
that

1

3
· 2

4
· 3

5
· 4

6
· 5

7
· · · · = 2

and
7

3
· 13

7
· 21

13
· 31

21
· 43

31
· · · · = 1

3

If we replace this second series by

3

1
· 6

3
· 10

6
· 15

10
· 21

15
· · · ·

(= 1, by the solver’s method of cancellation) we can prove that 1 = 2 as follows:

1 =
∞∏

n=2

1 =
∞∏

n=2

(
n− 1

n+ 1

)
·
∞∏

n=2

( 1
2
n(n+ 1)

1
2
n(n− 1)

)
= (2)(1) = 2.

A valid proof of the original proposition, suggested by the editor, may be given in the
following way:

N∏
n=2

[
1− 2

1 + n3

]
=

N∏
n=2

(
n− 1

n+ 1

)
·

N∏
n=2

(
n2 + n+ 1

n2 − n+ 1

)
=

2

N(N + 1)
· N

2 +N + 1

3

=
2

3

(
1 +

1

N2 +N

)
N∏

n=2

[
1− 2

1 + n3

]
= lim

n→∞

2

3

(
1 +

1

N2 +N

)
=

2

3
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Math. Mag., 36(1963) 142, 108.

Q 310. Submitted by M. S. Klamkin

Show that sin θ > tan2 θ/2 for 0 < θ < π/2.

A 310. Let cos θ = x. Then

√
1− x2 >

1− x

1 + x
or (1 + x)3/2 > (1− x)1/2

which is obviously true.

Math. Mag., 36(1963) 142, 108.

Q 312. Submitted by M. S. Klamkin

Show that no equilateral triangle which is either inscribed in or circumscribed about
an ellipse (excluding the circular case) can have its centroid coinciding with the center
of the ellipse.

A 312. Orthogonally project the ellipse into a circle. The equilateral inscribed or
circumscribed triangles will become inscribedor circumscribed non-equilateral triangles
whose centroids cannot coincide with the center of the circle. Since centroids transform
into centroids, the proof is completed.

[[See also Math. Mag., 42(1969) 287. 816 which is identical. ]]

Math. Mag., 36(1963) 197.

518. Proposed by M. S. Klamkin, State University of New York at Buffalo

Show that an integer is determined uniquely from a knowledge of the product of all its
divisors.

Math. Mag., 37(1964) 57–59.

I. Solution and comments by Leo Moser, University of Alberta. By pairing a divisor d
of n with its complementary divisor n/d (and leaving

√
n, if it is a divisor, unpaired)

we see that the geometric mean of the divisors of n is
√
n and hence, if τ(n) denotes

the number of divisors of n, ∏
d|n

d = nτ(n)/2

We therefore need to show that

nτ(n) = mτ(m) implies that n = m

We will show more generally that if f(n) is an arithmetic function for which

m | n implies f(m) ≤ f(n) then (1)
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nf(n) = mf(m) implies n = m (2)

Proof of (2): Clearly n and m have the same prime factors. Suppose that

n = Pα1
1 · · ·Pαk

k and m = P β1

1 · · ·P βk

k

are the prime power representations of n and m. Comparing the exponents of P1 in n
and m we find

α1f(n) = β1f(m) (3)

Similarly
α2f(n) = β2f(m) (4)

From (3) and (4) we find
α1

α2

=
β1

β2

and similarly we find that
α1

β1

=
α2

β2

= · · · = αk

βk

If this common ratio is 1 we are done. If not, assume without loss of generality that
it exceeds 1. Then m | n and by (1) f(m) ≤ f(n). Also m < n so that nf(n) > mf(m)

and the result is established.

We note that special cases of suitable f(n) include

f(n) = φ(n) =
∑

(a,n)=1

1 f(n) = σ(n) =
∑
d|n

d

and f(n) = ω(n), where ω(n) is the number of distinct prime divisors of n.

Somewhat related to the fact that nφ(n) = mφ(m) implies n = m is the fact that
nφ(n) = mφ(m) implies n = m. This appears as a problem in An Introduction to
the Theory of Numbers by Niven & Zuckerman. On the other hand we note that the
corresponding result is not true for φ replaced by σ. In fact 12σ(12) = 14σ(14) and
more generally, if (a, 42) = 1 then 12aσ(12a) = 14aσ(14a).

[[This last formula is garbled in the original. — R.]]

Let us call a solution of nσ(n) = mσ(m) primitive if it cannot be obtained from a
smaller solution by mutiplying through by some factor. We have not been able to
decide whether nσ(n) = mσ(m), n 6= m has infinitely many solutions.

[[Forty years later Moser’s problem is still unsolved at B11 in Unsolved Problems in
Number Theory. It is almost certain that the ‘We’ in his last sentence is Erdős &
Moser. — R.]]
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Math. Mag., 36(1963) 206, 156.

Q 314. Submitted by M. S. Klamkin

It follows by symmetry that the line joining the centers of two congruent, parallel,
intersecting ellipse bisects the common chord. Show that the result holds if the ellipses
are no longer congruent but similar.

A 314. The result is obvious true for two intersecting circles. Consequently it is true
for two similar paralle ellipses by orthogonal projection.

Math. Mag., 36(1963) 206, 156.

Q 317. Submitted by M. S. Klamkin

A determinant whose elements are either 0 or 1 has a value ±1. What is the maximum
and minimum number of ones ?

A 317. Obviously the minimum number is n. The maximum number is n2 − n + 1
which occurs in the determinant |Ars| where Ars = 1− δ1,r−s and δm,n = 0 for m 6= n,
and δm,m = 1.

Math. Mag., 36(1963) 266–267.

An Eccentric Orbit

504. [January 1963] Proposed by M. S. Demos, Drexel Institute of Technology

The orbit of the earth about the sun is an ellipse with the sun at the focus. Astronomy
textbooks say that the mean distance of the sun from the earth is the major semi-axis
a.

Show thaat the correct mean distance with respect to time is (1 + e2/2)a, where eis
the eccentricity.

Solution by M. S. Klamkin, SUNY at Buffalo, New York. For an elliptic orbit where

r = a(1− e cosE)

dE =
k

r

dt√
a

(“Theoretical Mechanics”, Vol.1, Macmillan, p.279.) Whence,

r̄ =

∫
r dt∫
dt

=

∫ 2π

0
r2 dE∫ 2π

0
r dE

= a(1 + e2/2)

by a simple integration. Also it is easily shown that the average r with respect to
polar angle is a

√
1− e2. Both of these results are well known and in particular they

are both posed as a problem in the aforementioned reference p.304, problem 25. Also
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the problem as posed is given in “Theoretical Mechanics”, C. J. Coe, p.149. i.e., “In
elliptic orbits the major semi-axis a of the ellipse is known in astronomy as the mean
distance of the planet from the sun. Show that the actual average distance relative to
the time is not a but a(1 + e2/2).”

Note: The arithmetic average of the perihelion distance and aphelion distance is a.

Math. Mag., 36(1963) 270, 239.

Q 318. Submitted by M. S. Klamkin

N perfectly elastic balls of equal mass are moving on the same straight line. What
arrangement of velocities will produce the maximum number of collisions ?

A 318. When two balls collide they will just exchange velocities. A simpler way of
looking at this is to imag[in]e the balls passing through each other. If we arrange the
velocities in monotonic order, we will obtain

(
N
2

)
collisions. That this is maximum

follows by considering the world lines of the balls (s vs. t). The maximum number of
points of intersection of N straight lines is

(
N
2

)
. If we have an elastic wall at one point

of the line, the maximum number of collisions will be doubled.

[[The original read ‘worldliness’ which would be nice to preserve! — R.]]

Math. Mag., 36(1963) 320.

497. Proposed by M. S. Klamkin, State University of New York, Buffalo

It is known that if a family of integral curves of the linear differential equation y′ +
P (x)y = Q(x) is cut by the line x = a, then the tangents at the points of intersection
are concurrent. Prove, conversely, that if for a first order equation y′ = P (x, y) the
tangents (as above) are concurrent, then F (x, y) is linear in y.

Math. Mag., 37(1964) 203.

Solution by Roop N. Kesarwani, Wayne State University, Michigan. Let the point of
intersection with the line x = a of a typical member of the family of integral curves of
y′ = F (x, y) be (a, y0). If a is fixed, y0 clearly depends on the parameter of the family.

The tangent at the point of intersection to the integral curve is then y−y0 = F (a, y0)(x−
a). All such tangents pass through the same point, say (A,B). Therefore B − y0 =
F (a, y0)(A− a), or

F (a, y0) =
B − y0

A− a

proving that F (x, y) is linear in y.

Klamkin pointed out that this result provides a basis for a graphical solution of the given differential
equation. See H. Betz, P. B. Burcham & G. M. Ewing, Differential Equations with Applications, 1954;
and M. S. Klamkin, On a graphical solution of a first order linear differential equation, Amer. Math.
Monthly, 61(1954) 565–567.
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Math. Mag., 36(1963) 328, 280.

Q 323. Submitted by M. S. Klamkin

Determine the maximum number of consecutive terms of the coefficients of a binomial
expansion which are in arithmetic progression.

A 323. Three. For three terms to be in A.P., we must have

2

(
m

n

)
=

(
m

n− 1

)
+

(
m

n+ 1

)
or (m− 2n)2 = m+ 2

whence
m = a2 − 2 2n = a2 ± a− 2

In orderto have four terms in A.P., (a2−a)/2 = (a2 +a−2)/2 or a = 1 and impossible.
(See Note of Th. Motzkin, Scripta Math., March, 1946, p.14.)

Math. Mag., 37(1964) 55.

543. Proposed by M. S. Klamkin, State University of New York, Buffalo

If
∫ b

a
[F (x)− xr]2 dx = λ2, find upper and lower bounds for

∫ b

a
[F (x)]2 dx.

(Note: For a class of similar problems, see J. L. Synge, The Hypercircle in Mathematical
Physics, p.82.)

Math. Mag., 37(1964) 281–282.

Solution by Martin J. Cohen, Beverly Hills, California. I will prove a more general
statement: Let F , G, H be functions such that F (x) = G(x) +H(x). Let

A =

[∫ b

a

F 2(x) dx

]1/2

B =

[∫ b

a

G2(x) dx

]1/2

C =

[∫ b

a

H2(x) dx

]1/2

A ≥ 0, B ≥ 0, C ≥ 0. Then (B − C)2 ≤ A2 ≤ (B + C)2.

All we need is the form of the Minkowski integral inequality which states that[∫ b

a

f 2(x) dx

]1/2

+

[∫ b

a

g2(x) dx

]1/2

≥
[∫ b

a

(f(x)± g(x))2 dx

]1/2
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B + C =

[∫ b

a

G2(x) dx

]1/2

+

[∫ b

a

H2(x) dx

]1/2

≥
[∫ b

a

(G(x) +H(x))2 dx

]1/2

=

[∫ b

a

F 2(x) dx

]1/2

= A

so that A2 ≤ (B + C)2.

A+B =

[∫ b

a

F 2(x) dx

]1/2

+

[∫ b

a

G2(x) dx

]1/2

≥
[∫ b

a

(F (x)−G(x))2 dx

]1/2

=

[∫ b

a

H2(x) dx

]1/2

= C

and similarly A+ C ≥ B so that A ≥ |B − C| and A2 ≥ (B − C)2

Letting G(x) = xr we see that

B =

[
b2r+1 − a2r+1

2r + 1

]1/2

so that ∫ b

a

F 2(x) dx ≤

[[∫ b

a

(F (x)− xr)2

]1/2

+

[
b2r+1 − a2r+1

2r + 1

]1/2
]2

and ∫ b

a

F 2(x) dx ≥

[[∫ b

a

(F (x)− xr)2

]1/2

−
[
b2r+1 − a2r+1

2r + 1

]1/2
]2

Math. Mag., 37(1964) 62, 53.

Q 327. Submitted by M. S. Klamkin

Determine all the triangles such that

a2 + b2 − 2abλ cosC = b2 + c2 − 2bcλ cosA

= c2 + a2 − 2caλ cosB

A 327. a2 + b2 − 2abλ cosC = (1 − λ)a2 + (1 − λ)b2 + λc2. Consequently, a = b = c
unless λ = 1/2 for which case the equations are identically satisfied.
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Math. Mag., 37(1964) 62, 53.

Q 328. Submitted by M. S. Klamkin

Determine ∫ ∞

0

1− e−t

tm
dt where (2 > m > 1).

A 328. Let

φ(a) =

∫ ∞

0

1− e−at

tm
dt

then

φ′(a) =

∫ ∞

0

e−at

tm−1
dt =

1

a2−m
Γ(2−m)

Hence

φ(1) =
1

m− 1
Γ(2−m) = −Γ(1−m).

This procedure can be extended to integrals of the form∫ ∞

0

(
1− t+

t2

2!
− · · · − e−t

)
dt

tr

Math. Mag., 37(1964) 119.

549. Proposed by M. S. Klamkin, SUNY at Buffalo, New York

The solution of the Clairaut equation y = xy′ + F (y′)is obtained by setting y′ = c
which gives y = cx+F (c). Determine the most general first order differential equation
in which the solution can be obtained in this manner.

[[ Compare Math. Mag., 45(1972) 102, 112. Q 537. ]]

Math. Mag., 37(1964) 358.

Solution by Josef Andersson, Vaxholm, Sweden. (Translatedby the editor.) If the
equation is written y = Φ(x, y′) it follows that

y′ =
∂Φ

∂x
+
∂Φ

∂y′
· y′′

The solution y′ = C, y′′ = 0 gives
∂Φ

∂x
= y′

and Φ = xy′ + F (y′).

The Clairaut equation is therefore unique.
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Math. Mag., 37(1964) 126, 83.

Q 332. Submitted by M. S. Klamkin

Factor x5 − 5x2 + 2.

A 332.

x5 − x4 − x3

+ x4 − x3 − x2

+ 2x3 − 2x2 − 2x
− 2x2 + 2x + 2

x5 − 5x2 2

so x5 − 5x2 + 2 = (x2 − x− 1)(x3 + x2 + 2x− 2).

[[Is this really a quickie ? — R.]]

Math. Mag., 37(1964) 126, 83.

Q 334. Submitted by M. S. Klamkin

Determine the ratio
n∑

r=0

r

(
n

r

)p

÷
n∑

r=0

(
n

r

)p

A 334. The ratio n/2 follows immediately from

n∑
r=0

r

(
n

r

)p

=
n∑

r=0

(n− r)

(
n

r

)p

or from

n∑
r=0

r2

(
n

r

)p

=
n∑

r=0

(n− r)2

(
n

r

)p

Math. Mag., 37(1964) 126, 82.

T 59. Submitted by M. S. Klamkin

Determine a function φ(x, y) such that the set of points (x, y) satisfying φ(x, y) = 0
has area 1.

S 59. φ(x, y) = |x − 1| + |x + 1| + |y − 1| + |y + 1| − 4 = 0. This set consists of all
points in and on the square with vertices (±1,±1).

[[This seems to give area 4, rather than area 1. – R.]]
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Math. Mag., 37(1964) 126, 82.

T 60. Submitted by M. S. Klamkin

A person was directed to the downtown side of an unfamiliar subway station. He
desired to get on the first car. Which end of the platform should he walk to, assuming
that there are no signs, signal lights or trains in the station to cue him ?

S 60. In the United Stes, he should walk in a direction such that the uptown tracks
are kept on his left. Presumably, in London, it would be in the opposite direction.
That is, if the trains run the same was as the automobile.

Math. Mag., 37(1964) 206, 176.

Q 336. Submitted by M. S. Klamkin

Show that the only factorization of homogeneous polynomials into polynomials is into
homogeneous ones.

A 336. Proof for three variables.

Assume
H(x, y, z) = F (x, y, z)G(x, y, z)

But Hcan be expressed in the form

xnP
(y
x
,
z

x

)
Let r = y/x and s = z/x, then

xnP (r, s) = F (x, rx, sx)G(x, rx, sx)

Now it follows that
F (x, rx, sx) = xn1P1(r, s)

G(x, rx, sx) = xn2P2(r, s)

Since the only factorizations of xn are of the form xn1 ·xn2 where n1 +n2 = n. Whence
F and G are homogeneous.

[[Not a very quickie ? Does the proof automatically extend to any number of variables ?
— R.]]
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Q 263. [January 1960]. Submitted by Melvin Hochster & Jeff Cheeger. Solve arctan p
x
+

arctan q
x

+ arctan r
x

= π for x where p, q and r are fixed.

A 263. In the diagram we have

p
p

q

q r

r

x

α

β

γ

A
2

B/2

C/2

A

B C

arctan p
x

+ arctan q
x

+ arctan r
x

=
α+β+γ = (π/2)− (A/2)+ (π/2)− (B/2)+ (π/2)− (C/2) = (3π/2)−π/2 = π. Thus
x is the radius of the incircle of a triangle of sides p + q, q + r and r + p and has the
value

√
pqr/(p+ q + r).

Math. Mag., 37(1964) 282.

Comment by M. S. Klamkin, State University of New York at Buffalo. The proof
submitted by the proposers, although elegant, is only valid if p + q, q + r and r + p
form a triangle. The solution x =

√
pqr/(p+ q + r) is still correct even if a triangle is

not formed.

This follows from

arctan
p

x
+ arctan

q

x
+ arctan

r

x
= arctan

x2(p+ q + r)− pqr

x(x2 − pq − qr − rp)
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Math. Mag., 37(1964) 283.

Comment on Q319

Q 319. [September 1963]. Submitted by C. W. Trigg. Factor a3 + b3 + c3 − 3abc.

A 319. By symmetry, one factor must be (a+ b+ c) and another facot must contain
squaredterms and terms of the form −ab so that in the product, terms of the form a2b
will vanish, so a3 + b3 + c3 = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca).

[[There’s an obvious misprint here, as well as the relevant following comment by Mur-
ray. — R.]]

Comment by M. S. Klamkin, SUNY at Buffalo, New York. The argument used in
obtaining the factorization of Q 319, i.e.,

a3 + b3 + c3 − 3abc

is invalid in general. It works here since the given polynomial, coincidentally, has a
pair of symmetric factors. While it is easy to establish that the only factorizations of
homogeneous polynomials are into homogeneous polynomials, it is not true that sym-
metric polynomials factor into symmetric polynomials. Two obvious counter-examples
are

x2y2 + x3 + y3 + xy = (x2 + y)(y2 + x) and

xy2 + x2y + yz2 + y2z + zx2 + z2x+ 2xyz = (x+ y)(y + z)(z + x)

Another method which is often useful for finding symmetric but not necessarily homo-
geneous factors is the following:

Let a, b, c be the roots of
x3 − px2 + qx− r = 0

Then ∑
a2 = p2 − 2q∑

a3 = p
∑

a2 − q
∑

a+ 3r = p3 − 3pq + 3r

Whence

a3 + b3 + c3 − 3abc = p3 − 3pq = p(p2 − 3q) =
(∑

a
)(∑

(a2 − bc)
)
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Math. Mag., 37(1964) 286, 252.

Q 340. Submitted by M. S. Klamkin

Determine {ar} such that

[a0 + a1 + a2 + · · · ]x = a0 + a1x+ a2x
2 + · · · .

A 336.

[a0 + a1 + a2 + · · · ]x = elogS = 1 +
x logS

1!
+
x2(log x)2

2!
+ · · · .

where S =
∑
ar. Consequently we have

a0 = 1 a2 =
a2

1

2!
· · · ar =

ar
1

r!

and S = ea1

Math. Mag., 37(1964) 360, 321.

Q 344. Submitted by M. S. Klamkin and D. J. Newman [[Not ‘J. D.’]]

If r̄ denotes the mean distance between two random points in a sphere of radius r (with
uniform distribution with respect to volume), show that 3r/2 > r̄ > 3r/4.

A 348. Let A′ denote the image of A with respect to O, the center of the sphere.
Then OA+OB > AB (in general). Whence

OA = OB =

∫ r

0

r · 4πr2 dr ÷
∫ r

0

4πr2 dr = 3r/4

Also AB + |overlineAB′ > 2OA. Since AB = AB′ the inequalities follow. [[ not
‘follows’]]

Math. Mag., 37(1964) 360, 321.

Q 348. Submitted by M. S. Klamkin

If three forces are in equilibrium they must be coplanar and concurrent.

A 348. If two of the forces are skew, it would be possible to get a nonzero moment
about an axis intersecting these two axes. Consequently, these two forces must lie in
a plane and intersect (possibly at infinity). Then the third force (by moments) must
lie in this plane and be concurrent to the other two.

[[It may not be immediately apparent that you can get your nonzero moment — e.g., if
the three forces were in three members of one family of generators of a hyperboloid of
one sheet, then you might keep trying generators from the other family and get a zero
moment. Also the case of three parallel, coplanar forces doesn’t seem to be dismissed.
— R.]]
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Math. Mag., 38(1965) 53.

577. Proposed by M. S. Klamkin, SUNY at Buffalo and L. A. Shepp, Bell Telephone
Laboratories

[[ Shepp’s name was added in an erratum at Math. Mag., 39(1966) 127. ]]

Show that if xn ≥ xn−1 ≥ · · · ≥ x2 ≥ x1 ≥ 0 then xx2
1 x

x3
2 · · ·xx1

n ≥ xx1
2 x

x2
3 · · ·xxn

1 for
n ≥ 3, with equality holding only if n− 1 of the numbers are equal.

Math. Mag., 38(1965) 249–250.

Solutionby L. Carlitz, Duke University. We may assume that x1 > 0. Then the stated
inequality is equivalent to(

x2

x1

)x2

· · ·
(
xn

x1

)x1

≥
(
x2

x1

)x1
(
xn

x1

)xn−1

[[I’m a bit suspicious of this. — R.]]

We may therefore assume that xn ≥ · · · ≥ x2 ≥ x1 = 1.

For n = 3 put x2 = 1 + a, x3 = 1 + b, where b ≥ a. The stated inequality becomes
(1 + a)1+b(1 + b) ≥ (1 + a)(1 + b)1+a, that is,

(1 + a)b ≥ (1 + b)a (1)

This is an immediate consequence of Bernoulli’s inequality. Moreover, we have equality
if and only if a = b or a = 0.

In the general case, we wish to show that

n−1∏
s=2

xxs+1
s · xn ≥ x2

n∏
s=3

xxs−1
s

If we put xs = 1 + as,
1
2
≤ s ≤ n, this inequality becomes

n−1∏
s=2

(1 + as)
1+as+1(1 + an) ≥ (1 + a2)

n∏
s=2

(1 + as)
1+as−1 (2)

where an ≥ an−1 ≥ · · · ≥ a2 ≥ 0. Then by (1), the left member of (2) is greater than
or equal to

n−1∏
s=2

(1 + as+1)
as ·

N∏
s=2

(1 + as) =
n∏

s=2

(1 + as)
as−1 ·

n∏
s=2

(1 + as)

= (1 + a2)
n∏

s=2

(1 + as)
1+as−1
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This proves (2).

The condition for equality in (1) is either a = b or a = 0. Thus the condition for
equality in (2) is either as = as+1 or as = 0, (s = 2, . . . , n−1). Assume that

a2 = · · · = ak = 0 < ak+1 = · · · = an (3)

then (2) becomes

(1 + an)(n−k−1)(1+an)+1 = (1 + a2)(1 + an)(n−k−1)(1+an)+1

Provided 2 ≤ k < n. This gives an = a2 which contradicts (3). Hence either a2 =
· · · = an−1 = 0 or a2 = · · · = an−1 = an.

Also solved by the proposer.

[[Compare the following item from the Monthly:

Amer. Math. Monthly, 76(1969) 1138.

E 2203∗. Proposed by M. S. Klamkin, Ford Scientific Laboratory

It is known that if 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn, (n ≥ 3), then

xx2
1 x

x3
2 · · ·xx1

n ≥ xx1
2 x

x2
3 · · ·xxn

1

Are there any other nontrivial permutations {a1} and {bi} of the {xi} such that

aa2
1 a

a3
2 · · · aa1

n ≥ bb12 b
b2
3 · · · bbn

1 ?

Amer. Math. Monthly, 77(1970) 1008–1009.

Solution (adapted) by G. L. Watson, University College, London, England. For n = 3
there is no other nontrivial permutation of the xi of the form required. For n = 4 there
are other solutions. For one such solution, note that x3/x1 ≥ 1, x4/x3 ≥ 1, x3−x2 ≥ 0,
x3 − x1 ≥ 0 imply

(x3/x1)
x3−x2(x4/x3)

x3−x1 ≥ 1

whence (upon multiplying both sides by xx4
2 /x

x2
3 )

xx2
1 x

x4
2 x

x3
4 x

x1
3 ≥ xx3

1 x
x2
3 x

x4
2 x

x1
4

For n > 4, the possibilities increase rapidly. For example, with n = 5,

(x5/x2)
x4−x3(x2/x1)

x5−x2 ≥ 1

implies
xx2

1 x
x3
2 x

x5
3 x

x4
5 x

x1
4 ≥ xx5

1 x
x3
5 x

x2
3 x

x4
2 x

x1
4 ]]
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Math. Mag., 38(1965) 60, 47.

Q 349. Submitted by M. S. Klamkin

Four spheres whose centres are at (xn, yn, zn). n = 1, 2, 3, 4 are mutually tangent
externally. Find their radii.

A 349. It follows that

ri + rj =
√

((xi − xj)2 + (yi − yj)2 + (zi − zj)2)

[[the last two minuses were printed as pluses. There seem to be other misprints as well.
Perhaps the next ‘sub i’ shd be ‘sub 1’ ? Can someone check ? Thanks. — R.]]

Whence 2ri +
∑4

1 ri = a12 + a13 + a14,
∑4

1 r =
1
3

∑
r,s ars, 6r1 = 2(a12 + a13 + a14)− (a23 + a34 + a42)

Math. Mag., 38(1965) 60, 47.

Q 353. Submitted by M. S. Klamkin

Solve the functional equation

f(x+ y)f(x− y) = {f(x) + f(y)}{f(x)− f(y)}

given f has a second derivative.

A 353. Differentiating with respect to x and then with respect to y yields

f ′′(x+ y)

f(x+ y)
=
f ′′(x− y)

f(x− y)
= constant.

Whence f(x) = a sinmx, ax, or a sinhmx. This is a sort of a converse to Trickie
T 52 by C. F. Pinzka (Vol.35, No.2, March, 1962).

Math. Mag., 44(1971) 113.

Comment by Sid Spital, California State College, Hayward. Answer A 353 is correct
but fails to point out that all solutions must be odd. This results from first setting
x = 0 in the functional equation: f(y)f(−y) = f(0)2 − f(y)2and then setting y = 0:
f(0) = 0. Hence f(−y) = −f(y).
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Math. Mag., 38(1965) 188, 159.

Q 359. Submitted by M. S. Klamkin

Minimize
∫ 1

0
F ′(x)2 dx where F (0) = 0 and F (1) = 1.

A 359. By the Schwartz inequality∫ 1

0

F ′(x)2 dx

∫ 1

0

dx ≥
{∫ 1

0

F ′(x) dx

}2

= 1

Math. Mag., 44(1971) 53.

Comment by Sidney Spital, California State College at Hayward. An alternative solu-
tion is obtained by letting G(x) = F (x)− x. Then clearly since G(0) = G(1) = 0, we
have ∫ 1

0

(G′(x) + 1)2 dx =

∫ 1

0

(G′(x))2 dx+ 1 ≥ 1

Math. Mag., 38(1965) 188, 159.

Q 361. Submitted by M. S. Klamkin

Find a geometrical solution for the functional equation F (2θ) = F (θ) cos θ/2.

A 361. F (θ) denotes the distance the C.G. of a sector of angle 2θ is from the center.
Consequently F (θ) = sin θ/2θ.

Math. Mag., 38(1965) 188, 159.

Q 363. Submitted by M. S. Klamkin

Factor x11 + x4 + 1.

A 363. If ω is a primitive cube root of unity, it follows immediately that ω3m+2 +
ω3n+1 = 0. [[Is it really??]] Consequently x2 + x + 1 is a factor of x3m+2 + x3n+1 + 1.
To find other factors, just divide.

[[this needs cleaning up a bit. — R.]]
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Math. Mag., 38(1965) 252, 211.

Q 366. Submitted by M. S. Klamkin

Solve

x+ y + z = 3

x2 + y2 + z2 = 7/2

x3 + y3 + z3 = 9/2

A 366. Let x, y, z be the roots of s3 + a1s
2 + a2s+ a3 = 0. Then

a1 = 3
∑

x2 =
(∑

x
)2

− 2
∑

xy and a2 = 11/4

Next ∑
x3 + a1

∑
x2 + a2

∑
x+ 3a3 and a3 = −3/4

The roots of the cubic are 1/2, 2/2 and 3/2.

Math. Mag., 38(1965) 326, 302.

Q 369. Submitted by M. S. Klamkin

Find

In = Dn

{
arctan

2x3

1 + 3x2

}
x=0

A 369. Since

arctan
2x3

1 + 3x2
= 2 arctanx− arctan 2x

we have I2n = 0 and

I2n+1 =
(−1)n

2n− 1
(22n−1 − 2)
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Math. Mag., 38(1965) 326, 302.

Q 373. Submitted by M. S. Klamkin

Show that ex is a transendental function.

A 373. Assume that ex is algebraic, then

a0(x)e
nx + a1(x)e

(n−1)x + · · ·+ an(x) = 0

where ar(x) are polynomials. Consequently

−a0(x)e
x/2 =

a1(x)e
(n−1)x + · · ·+ an(x)

e(n−1/2)x

Letting x→ 0 we obtain a contradiction, whence ex is transcendental.

[[No doubt my stupidity, but I don’t get this. — R.]]

Math. Mag., 39(1966) 71–73.

588. [May, 1965]. Proposed by Joseph D. E. Konhauser, HRB-Singer Inc., State
College Pennsylvania

Show that the operators (D−1)n× (D−1) and x(D−1)n+1 +n(D−1)n are equivalent
for n = 1, 2, 3, . . ., where D ≡ d/dx.

II. Solution by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan.
Let L(D) designate any linear differential operator with variable coefficients (it could
even be just a function of x). Then by Leibniz’s rule for the n th derivative,

Dn{xL(D)} ≡ xDnL(D) + nDn−1L(D)

Now multiply by exp
∫
p dx (p is an arbitrary function of x) and use the exponential

shift theorem, i.e.,

exp

∫
p dxL(D) ≡ L(D − p) exp

∫
p dx

This yields:

{(D − p)nxL(D − p)− x(D − p)nL(D − p)− n(D − p)n−1L(D − p)} exp

∫
p dx ≡ 0

or equivalently

(D − p)nxL(D − p) ≡ x(D − p)nL(D − p) + n(D − p)n−1L(D − p)

The proposed problem corresponds to the special case L(D) +D, p = 1.
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Math. Mag., 39(1966) 76, 42–43.

Q 377. Submitted by M. S. Klamkin

Solve the difference equation

Pn+1 − 2Pn + (1 + x2)Pn−1 = 0

where P0 = a(x) and P1 = b(x).

A 377. Let xQn = Pn+1 − Pn, then

Qn+1 = Qn − xPn

Now let Fn = Pn + iQn, which gives us

Fn+1 = (1− ix)Fn

F0 = b(x) + i[b(x)− a(x)]/x

and
Fn = (1− ix)nF0

where P equals the real part of Fn.

Math. Mag., 39(1966) 134, 111.

Q 378. Submitted by M. S. Klamkin and W. J. Miller

Find the average area of all triangles which canbe inscribed in a given triangle. (It is
assumed that the vertices are uniformly distributed over the sides of the given triangle.)

A 378. (1) Analytic solution.

Ā =
1

abc

∫ a

0

∫ b

0

∫ c

0

{A− 1

2
[z(b− y) sinA+ x(c− z) sinB + y(a− x) sinC]} dxdtdz

Ā = A/4 where A is the area of the given triangle.

(2) Geometric solution. If a series of triangles have a common base and their vertices
be in a given finite straight line whichis wholly on the same side of the base, the average
[[area]] of all triangles thus formed is that [[of]] whose vertex is at the middle of the
line segment; since for every triangle which exceeds this, there is obviously another
just as much less than it. Consequently the mean-inscribed triangle is one joining the
midpoints of the sides, and Ā = A/4.
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Math. Mag., 39(1966) 187.

624. Proposed by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan

Show that a sufficient condition for a sphere to exist which intersects eachof four given
spheres in a great circle is that the centers of the four given spheres be noncoplanar.

Math. Mag., 40(1967) 47–48.

Solution by P. N. Bajaj, Western Reserve University. Let the given spheres have
equations

x2 + y2 + z2 + 2uix+ 2viy + 2wiz + di = 0 i = 1, 2, 3, 4

referred to rectangular coordinates. Sphere x2 + y2 + z2 + 2Ux+ 2V y + 2Wz + P = 0
cuts these in the circles lying in the planes

2(U − ui)x+ 2(V − vi)y + 2(W − wi)z + () = 0 i = 1, 2, 3, 4

If the circles of intersection are great circles, then

−2(U − ui)ui − 2(V − vi)vi − 2(W − wi)wi + (D − di) = 0 i = 1, 2, 3, 4

or 2Uui + 2V vi + 2Wwi −D = 2u2
i + 2v2

i + 2w2
i − di i = 1, 2, 3, 4

A sufficient condition for these equations to determine U , V , W , D is

det

∣∣∣∣∣∣∣∣
u1 v1 w1 1
u2 v2 w2 1
u3 v3 w3 1
u4 v4 w4 1

∣∣∣∣∣∣∣∣ 6= 0

i.e., centers of the given spheres are nonplanar. Hence the result.
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Math. Mag., 39(1966) 257, 226.

Q 388. Submitted by M. S. Klamkin

Evaluate in closed form the integral ∫ ∞

√
2

dx

x+ x
√

2

A 388. Consider

I =

∫
dx

x+ xm
=

∫
fracx−m dxx1−m + 1

=
1

1−m
log(x1−m + 1)

Thus ∫ ∞

√
2

dx

x+ x
√

2
= (
√

2− 1) log[1 + 2(1−
√

2)/2]

Math. Mag., 39(1966) 315, 281.

Q 393. Submitted by M. S. Klamkin

Sum
∞∑

n=0

2n

32n + 1

[[ the exponent 2n was misprinted as 2n — R. ]]

A 393. Here
2n

32n + 1
=

2n

32n − 1
− 2n+1

32n+1 − 1

So the sum S = 1/2

Math. Mag., 39(1966) 315, 281.

Q 397. Submitted by M. S. Klamkin

Determine

lim
n→∞

1

n
n
√

(n+ 1)(n+ 2) · · · (n+ n)

A 397.

logL = lim
n→∞

1

n

[
log

(
1 +

1

n

)
+ log

(
1 +

2

n

)
+ · · ·+ log

(
1 +

n

n

)]
logL =

∫ 1

0

log(1 + x) dx = 2 log 2− 1
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from the definition of a definite integral. Therefore L = 4/e.

Math. Mag., 41(1968) 49.

Comment by S. Spital, California State Polytechnic College, Pomona. An alternative
solution is provided by a generating power series. Let an = (n+1)(n+2) · · · (n+n)/nn

and consider
∞∑

n=0

anxn

From the ratio and root tests,

lim
n→∞

n
√
an = lim

n→∞
an + 1/an

= lim
n→∞

(2n+ 1)(2n+ 2)

(n+ 1)2(1 + 1/n)n

= 4/e

Math. Mag., 41(1968) 294–295.

Comment by Eckford Cohen, Manhattan, Kansas. This limit can also be evaluated by
applying a weak form of Stirling’s formula. We may write

cn
def
=

1

n
((n+ 1)(n+ 2) · · · (n+ n))1/n = 4

(
a2

2n

an

)
where an = n

√
n!/n. It follows that

lim
n→∞

cn =
4

e

from the well-known result, limn→∞ an = 1/e. The latter result can be proved in a
number of ways. For a simple proof based on the exponential function, we refer to
S. Saks & A. Zygmund, Analytic Functions, Chapter 7, Section 5.
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Math. Mag., 40(1967) 52–53.

Comment on Problem 612

612. [January & September, 1966]. Proposed by M. B. McNeil, University of Missouri
at Rolla

The integral

I1 =
1

π3

∫ π

0

∫ π

0

∫ π

0

du dv dw

1− cosu cos v cosw

occurs in the study of ferromagnetism and in the study of lattice vibrations. Prove
that

I1 = (4π3)−1[Γ(1/4)]4

Comment by William D. Fryer, Cornell Aeronautical Laboratory, Buffalo, N.Y., and
Murray S. Klamkin, Scientific Laboratory, Ford Motor Company, Dearborn, Michigan.
The sum

S =
∞∑

n=0

{
1

22n

(
2n

n

)}3

occurs in a combinatorial probability problem [1]. We evaluate the sum by two methods
and obtain as a by-product some interesting equivalent expressions.

Since (
2n

n

)
=

2

π

∫ π/2

0

(2 cos θ)2n dθ (1)

S =
4

π2

∞∑
n=0

1

26n
(
2n
n

) ∫ π/2

0

∫ π/2

0

(4 cos θ cosψ)2n dθ dψ (2)

By using
∞∑
0

(
2n

n

)
xn =

1√
1− 4x

(2) becomes

S =
4

π2

∫ π/2

0

∫ π/2

0

dθ dφ√
1− cos2 θ cos2 φ

=
4

π2

∫ π/2

0

∫ π/2

0

dθ dφ√
1− sin2 θ sin2 φ

or, in terms of the complete elliptic function of the first kind,

S =
4

π2

∫ π/2

0

K(sin θ) dθ

=
4

π2

∫ 1

0

K(k) dk√
1− k2
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The last integral is given in [2, p.637] as

S =
4

π2
K

(
1√
2

)2

Identities leading to equivalent hypogeometric or gamma functions may be found in
the same reference (pp.905, 909). Whence, also,

S =
1

4π2
Γ(

1

4
)4 = 2F1(

1

2
,
1

2
; 1;

1

2
)2 = 1.393203929685+

The sum S was also obtained as a by-product in establishing

I =
1

π2

∫ π

0

∫ π

0

∫ π

0

du dv dw

1− cosu cos v cosw
=

1

4π2
Γ(

1

4
)4

which is problem 612 in the Mathematics Magazine (January-February, 1966) due to
M. B. McNeil.

1. W. Feller, An Introduction to Probability Theory and its Applications, Wiley, New York, 1950.

2. I. M. Ryshik & I. S. Gradstein, Tables of Series, Products and Integrals, Academic Press, New
York, 1965.

Math. Mag., 40(1967) 54, 30.

Q 400. Submitted by M. S. Klamkin

Find the general solution to the differential equation

{Dnx2nDn − xnD2nxn + λ2n−1}y = 0

A 400. The only solution is y = 0 since Dnx2nDn ≡ xnD2nxn. This follows from
Dmxm = xmDm+a1xm−1+· · ·+am by Leibniz’s theorem, xrDr = xD(xD−1 · · · (xD−
r + 1)). Since xD − k1 commuteswith xD − k2, D

mxm commutes with xnDn or
Dmxm+nDn ≡ xnDm+nxm.
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Math. Mag., 40(1967) 101.

655. Proposed by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan

It is easy to show that any two spheres are homothetic, regardless of their orientation.
Show that this property characterizes spheres; that is, if two bounded figures are
homothetic, regardless of their orientation, then they both must be spheres.

Math. Mag., 40(1967) 287–288.

Solution by Pierre Bouchard, Université de Montréal, Canada. It is easy to show
that {x : |x| ∈ (1, 2), x ∈ R3} and {x : |x| ∈ (3, 6), x ∈ R3} are not spheres and
are homothetc, regardless of their orientation. This negates the proposal as stated.
However, we can prove that the given figures must have a frontier which is the union
of a set S of concentric spheres, the cardinality of S being the same in each figure. But
“seen” from “outside the bounds” they look like spheres. We proceed to prove this
last fact.

Let F1 and F2 be the “exterior frontiers” of the given figures in a given position:more
precisely Fi = {x : ∃y such that |y| = 1 and x = sup zz=cxy∈Fi

} where i = 1, 2 and Fi

is the i th figure c ∈ R. First remark that for every y on the unit sphere there is a
corresponding x (because of the “regardless of orientation”; otherwise the figures would
be unbounded or void). Since F1 and F2 are homothetic regardless of orientation, so
are F1 and F2 (since affine homothety is translation or central homothety we may
restrict ourselves to central homothety).

Let P1, P2 be in F1. Then there is an α in R such that αP1, αP2 are in F2. Let r be
a rotation such that r(αP1) is on the line OP2 and r(αP2) is on the line OP1 (i.e., r is
the rotation of π with respect to the axis passing through O and 1

2
(P1/|P1|+P2/|P2|)).

Then F1 and r(F2) are homothetic and since sup zz∈F z = cy is unique we must have
r(αP1) = βP2, r(αP2) = βP1. Since r preserves distances,

[[I hope that I haven’t made more typos than I’ve corrected — especially since I’m not
sure that I understand the notation or the argument. Would someone check ? Thanks!
— R.]]

β = |r(αP1)|/|P2|
= |α(P1)|/|P2|
= α|P1|/|P2|

and

β = |r(αP2)|/|P1|
= |α(P2)|/|P1|
= α|P2|/|P1|
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Whence |P1|/|P2| = |P2|/|P1|, or |P2| = |P1|. That is F1 is a sphere so is F2 (homothetic
image of a sphere).

Klamkin suggested that the counterexample exhibited by Bouchard could be eliminated
by adding to the statement of the problem the qualifying statement, “bounded closed
convex figures”.

Math. Mag., 40(1967) 110, 85.

Q 405. Submitted by M. S. Klamkin

It is apparent that a bounded figure need not have a unique chord of maximum length.
Show, however, that two such maximum chords cannot be parallel.

A 405. The proof is indirect. Assume two congruent and parallel chords of maximum
length. The endpoints of these chords are the vertices of a parallelogram, one of whose
diagonals, at least, is larger than all the sides. This contradicts our initial assumption
and, consequently, we obtain our stated result.

Math. Mag., 40(1967) 164.

Greatest Divisors of Even Integers

636. [November, 1966]. Proposed by Vassili Daiev, Sea Cliff, New York

The greatest divisors of the form 2k of the numbers of the sequence 2, 4, 6, 8, 10, 12,
14, . . ., are 2, 22, 2, 23, 2, 22, 2, . . .. Find the n th term of this sequence.

II. Solution by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan. If
an denotes the n th term, then it follows immediately that

a2n+1 = 21

a4n+2 = 22

a8n+4 = 23

...
...

In general
a2rm+2r−1 = 2r

Note that every number n can be expressed uniquely in the form 2rm+ 2r−1.
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Math. Mag., 40(1967) 167.

A Convex Curve Property

641. [November, 1966]. Proposed by Yasser Dakkah, S.S. Boys’ School, Qalqilya,
Jordan

Prove that if
n∑

i=1

xi = S

and 0 < xi (i = 1, 2, . . . , n), then

n∑
i=1

coshxi ≥ cosh(S/n)

I. Solution by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan.
The result follows immediately from the well known inequality for convex functions,
i.e.,

If φ(x) is convex then

Φ(x1) + φ(x2) + · · ·+ φ(xn)

n
≥ φ

(
x1 + x2 + · · ·+ xn

n

)
Since cosh x is everywhere convex (D2 coshx > 0), just replace φ(x) by coshx to give
the desired result. Note that there is nonecessity for the restriction xi > 0.

Math. Mag., 40(1967) 232, 199.

Q 414. Submitted by M. S. Klamkin

How many primes p exist such that p, p+ 2d and p+ 4d are all primes where d is not
divisible by 3 ?

A 414. Now p must be of the form 3, 3m+ 1 or 3m+ 2, while d must be of the form
3n+ 1 or 3n+ 2. Going through the six possibilities, we find there is only one prime,
p = 3.

91



Math. Mag., 40(1967) 289, 254.

Q 416. Submitted by M. S. Klamkin

Determine the range of thefunction I(t) where

I(t) =

∫ ∞

0

dx

(x2 + 1)(xt + 1)

A 416.

I(t) =

∫ 1

0

dx

(x2 + 1)(xt + 1)
+

∫ ∞

1

dy

(y2 + 1)(yt + 1)

In the second integral let y = 1/x. We then obtain

I(t) =

∫ 1

0

dx

x2 + 1
= π/4

Thus the range of I(t) = 0. This integral appears in Induction and Analogy in Math-
ematics, by G. Pólya.

Math. Mag., 41(1968) 43.

683. Proposed by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan

Two triangles have sides
√
a2 + b2,

√
b2 + c2,

√
c2 + a2 and

√
p2 + q2,

√
q2 + r2,

√
r2 + p2.

Which triangle has the greater area if in addition we have a2b2 + b2c2 + c2a2 =
p2q2 + q2r2 + r2p2 and a > p, b > q ?

Math. Mag., 41(1968) 221.

I. Solution by Michael Goldberg, Washington, D.C. The tri-rectangular tetrhedron
whose right-angled edges have lengths a, b, c has the lengths

√
a2 + b2,

√
b2 + c2 and√

c2 + a2 for its other edges. Since the squares of the areas of the right-triangle faces
add to the square of the area of the fourth face, the square of the area of the fourth face
is (a2b2 + b2c2 + c2a2)/4. Similarly, for a tri-rectangula tetrahedron whise right-angled
edges have lengths p, q, r, the square of the area of the fourth face is (p2q2 + q2r2 +
r2p2)/4. But since we are told that a2b2 + b2c2 + c2a2 = p2q2 + q2r2 + r2p2, the two
triangles have the same area, regardless of the relations between a, p, b and q.

Math. Mag., 41(1968) 50, 42.

Q 423. Submitted by M. S. Klamkin

Can one find a number (to base 10) which doubles itself on reversing its digits ?

A 423. No. Let the number be of the form a · · · b then b · · · a = 2(a · · · b). Now a can
be 0, 1, 2, 3 or 4 and corresponding to these values b can be (0), (2,3), (4,5), (6,7) or
(8,9) respectively. By comparing the last digits, none of these are possible.
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Math. Mag., 41(1968) 166, 133.

Q 430. Submitted by M. S. Klamkin

Find a “simple” n th term formula for the sequence 0, 1, −1, 0, 0, −1, 1, o, 0, 1, −1,
0, 0, −1, 1, 0, 0, 1, −1, . . . .

A 430. One possible answer is; sin π(n2 − n)/4.

Math. Mag., 41(1968) 223, 191.

Q 435. Proposed by Irving Gerst and M. S. Klamkin

Evaluate the ratio
∞∑

n=0

(−1)nxn2

(1− x)(1− x3) · · · (1− x2n+1)

divided by
∞∑

n=0

(−1)nxn2+n

(1− x2)(1− x4) · · · (1− x2n+2)

A 435. The ratio is one, since each sum is one. This follows from the known simple
summation

1 =
1

1− a1

− a1

(1− a1)(1− a2)
+

a1a2

(1− a1)(1− a2)(1− a3)
− · · ·

[[ I’m not sure about the signs here — would someone check ? Thanks ! — R. ]]
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Math. Mag., 41(1968) 175–181.

[[ There’s an article by Murray:

On the volume of a class of truncated prisms and some related centroid problems. ]]

Math. Mag., 41(1968) 285–286.

Fermat’s Principle

685. [March, 1968]. Proposed by Jack M. Elkin, Polytechnic Institute of Brooklyn

Prove Fermat’s Principle for a circular mirror. That is,given two points A and B inside
a circle, locate P such that AP + PB is an extremum.

I. Solution by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan.
The problem is not formulated correctly. For the case of a constant refractive medium,
Fermat’s principle states that the path of light is such that AP +PB is an extremum.
Thus we will not be proving Fermat’s principle by locating P such that AP + PB
is an extremum. Perhaps the proposer wishes to establish the law of reflection from
Fermat’s principle or conversely. In either case, this is a well-known problem and a
simple solution follows by the use of level lines. Also, for greater generality, we can
just as easily use an arbitrary convex closed curve with continuous curvature.

Consider the family of curves AP + PB = k (constant). These are ellipses having A
and B as foci. Clearly, the minimum occurs (possibly at more than one point) for the
smallest ellipse of the family which is tangent to the given curve. The point (or points)
of tangency will correspond to the minimizing point P . Then since the focal radii
make equal angles with any tangent line, we obtain the law of reflection. Similarly,
the maximum occurs for the largest ellipse of the family which is tangent to the given
curve.

The converse theorem follows just as easily. IF AP and PB make equal angles with
the given curve, then the ellipse with foci at A and B and which passes through P
must be tangent to the given curve at P . Either the ellipse will be locally inside the
given curve at P or outside of it. In the former case AP +PB willbe a local minimum
and in the latter case a local maximum.

II. Comments by Leon Bankoff, Los Angeles, California. This is essentially the Billiard
Problem of Alhazan (965–1039 A.D.), which appears as Problem 41 in Dörrie’s “100
Great Problems of Elementary Mathematics” (Dover Reprint, N.Y., 1965). In its
optical application, the problem is associated with Fermat’s principle that “nature
always acts by the shortest path”. A solution to an analogous problem is given on
p.73 ofthe 1869 issue of the “Lady’s and Gentleman’s Diary”, a source of reference
somewhat less accessible than the work of Dörrie. The European reader may prefer to
consult the French counterpart of Dörrie’s book, “Célèbres Problèmes Mathématiques”,
by Édouard Callandreau, Éditions Albin Michel, Paris, 1949, p.305, Problem 71, or
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Dörrie’s German text, “Triumph der Matematik”, Physica-Verlag, Würzburg, 1958.

Scholarly enthusiasts who are not allergic to the dust of obscure library shelves may
enjoy delving into Volume I of Leybourn’s “Diary Questions”, pp.167–169, which gives
three solutions originally published in the “Ladies’ Diary” for 1727–1728.

Most of the published solutions involve one of the four intersections of the given circle
with the equilateral hyperbola whose diameter is AB and whose ordinate axis is parallel
to the line connecting the inverses of A and B with respect to the given circle.

One of the solutions in the 1869 “Diary” locates the point P as the point of tangency
of the given circle with one of the family of confocal ellipses whose foci are A and B. In
the proposed problem, both A and B lie within the circle. Hence the required ellipse
lies entirely within the circle and touches the circle at the point P on the circumference
for which AP + PB is a minimum.

The location of P by means of conic sections precludes the possibility of a construction
with Euclidean tools, except in the trivial case where A and B lie on a circle concen-
tric with the given circle. In that case, P lies on the perpendicular bisector of the
line joining A and B, and is easily found by ruler and compass or by a Mascheroni
construction with compass alone.

An interesting sidelight mentioned in the 1869 ‘Diary” is that “this question occurs in
the construction of steam boilers. The brace in the form of A′P , B′P , OP (where A”
and B′ are the inverses of A and B with respect to the given circle whose center is O)
is stronger when the angle A′PB′ is bisected by OP .”
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Math. Mag., 41(1968) 287–288.

Central Symmetry

687. [March, 1968]. Proposed by Sidney H. L. Kung, Jacksonville University, Florida

Prove that if the perimeter of a quadrilateral ABCD is cut into two portions of equal
length by all straight lines oassing through a fixed point O in it, the quadrilateral is a
parallelogram.

II. Solution by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan.
We consider a more general problem wherewe have a closed curve which is starlike with
respect to the fixed point O and has the same perimeter property as the quadrilateral.

By the perimeter property,
Rdθ = S dθ

or the curve must be centro-symmetric with respect to O. If C is a quadrilateral, it
follows that it must then be a parallelogram.

O

R

S

Rdθ

S dθMath. Mag., 42(1969) 223.

Comment by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan.
1. In the statement of the problem, “quadrilateral” should be replaced by “simple
quadrilateral”; otherwise we could have Figure 1 as a solution.
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O O

R

S

Fig. 1 Fig. 2

2. The second solution given by myself is erroneous. The sophomoric error is in the
equation Rdθ = S dθ. This equation should have been

R2 +

(
dR

dθ

)2

= S2 +

(
dS

dθ

)2

It now does not necessarily follow that R = S to give a centrosymmetric figure. As
a nice counterexample, consider Figure 2 made up from three semicircles. Every line
through O bisects the perimeter. It would be of interest to find a noncentrosymmetric
convex counterexample. However, if we restrict the figure to be a simple polygon, then
Goldberg’s solution implies that the polygon is centrosymmetric.
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Math. Mag., 41(1968) 295.

Comment on Q 426

Q 426. Without using calculus, determine the least value of the function f(x) =
(x+a+b)(x+a−b)(x−a+b)(x−a−b), where a and b are real constants. [Submitted
by Roger B. Eggleton]

Comment by M. S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan. A more
direct solution can be obtained by noting that

f(x) = (a+ b+ x)(a+ b− x)(a− b+ x)(a− b− x)

= ((a+ b)2 − x2)((a− b)2 − x2)

= (a2 + b2 − x2)2 − 4a2b2

Thus the minimum is −4a2b2 for x2 = a2 + b2.

[[On p.224 there’s an almost identical comment by S. Spital, California State College
at Hayward.]]

Math. Mag., 42(1969) 221–222.

Integral Distances

718. [January, 1969]. Proposed by A. H. Lumpkin, East Texas State University

In R×R with the usual metric, if G is an infinite subset of R×R such that for all x,
y in G, d(x, y) is an integer, then G ⊆ l for some line l.

II. Comment by M. S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan. This
is a known result due to Paul Erdős, Integral distances, Bull. Amer. Math. Soc.,
51(1945) 996. See also H. Hadwiger, H. Debrunner & V. Klee, Combinatorial Geometry
in the Plane, Holt Reinhart & Winston, New York, 1964, p.5.

As shown in the latter reference, the result does not imply the existence of a number
k0 such that the conclusion also holds when the number k of points with exclusively
integral distances is greater than k0.

Additionally, there’s no need for the “symbolic” language of the proposal. It could
have been stated simply as: “If an infinite setof points in the plane is such that all of
its points are at integral distances from each other, then all the points lie on a single
line.”
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Math. Mag., 42(1969) 268.

746. Proposed by Murray S. Klamkin, Ford Scientific Laboratory, and Morris Mordu-
chow, Polytechnic Institute of Brooklyn

Determine the extreme values of S1/r + S2/(n − r) where n is a fixed integer, S1 =
p1 + p2 + · · ·+ pr

S1 + S2 =
n−1∑
i=0

i

and the p s are distinct integers in the interval [0, n−1].

Math. Mag., 43(1970) 171–172.

Solution by L. Carlitz, Duke University. We may assume without loss of generality
that r ≤ n/2. We will show that

1

2
(n− 2r − 2) ≤ A ≤ 1

2
(3n− 2r − 2)

(
1 ≤ r ≤ n

2

)
(∗)

where A = S1/r + S2/(n− r).

Proof. If

S1 = 0 + 1 + 2 + · · ·+ (r − 1) =
1

2
r(r − 1)

S2 = r + (r + 1) + · · ·+ (n− 1) =
1

2
n(n− 1)− 1

2
r(r − 1)

=
1

2
(n− r)(n+ r − 1)

then

A =
1

2
(n+ 2r − 2) (1)

If

S1 = (n− r) + (n− r + 1) + · · ·+ (n− 1)

=
1

2
n(n− 1)− 1

2
(n− r)(n− r − 1)

=
1

2
r(n− 2r − 1)

S2 = 0 + 1 + · · ·+ (n− r − 1) =
1

2
(n− r)(n− r − 1)

then

A =
1

2
(3n− 2r − 2) (2)
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Now let

S1 = p1 + · · ·+ pr (p1 < p2 < · · · < pr) S1 + S2 =
n−1∑
k=0

k (3)

where p1, p2, . . ., pr are any r distinct numbers in [0, 1, . . . , n − 1]. Assume that the
corresponding values of A satisfies (∗). Let a ∈ S1, b ∈ S2 and put

S ′1 = S1 − a+ b S ′2 = S2 + a− b

Then

A′ =
1

r
(S1 − a+ b) +

1

n− r
(S2 + a− b) = A+

n− 2r

r(n− r)
(b− a)

Hence if b > a it follows that A′ ≥ A (with strict inequality except when n = 2r).
Thus setting out with

S1 = 0 + 1 + · · ·+ (r − 1) S2 = r + (r + 1) + · · ·+ (n− 1)

itis clear that after a number of interchanges a ↔ b we get S1, S2 as in (3) and that
the corresponding A satisfies

A ≥ 1

2
(n+ 2r − 2)

Similarly, starting with

S1 = (n− r) + (n− r + 1) + · · ·+ (n− 1)

S2 = 0 + 1 + · · ·+ (n− r − 1)

then again after a number of interchanges a ↔ b we get S1, S2 as in (3) and that the
corresponding A satisfies

A ≤ 1

2
(3n− 2r − 2)
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Math. Mag., 42(1969) 277, 244.

Q 466. Submitted by M. S. Klamkin

If AB and BA are both identity matrices, then A and B are both square matrices.

A 466. Let A be m × n and B be n ×m with m ≥ n. The rank of AB is m. But
since the rank of a product of two matrices cannot exceed the rank of either of the
two matrices which is at most n, we must have m ≤ n. Thus m = n. The result is
also valid if AB and BA are both nonsingular scalar matrices, e.g., if ABC, CAB and
BCA are all nonsingular scalar matrices, then they are all square matrices.

Math. Mag., 43(1970) 290.

Comment by J. L. Brenner, University of Arizona. An alternative proof is the follow-
ing. We first note the equations[

λI A
0 λI

] [
λI −A
−B λI

] [
λI 0
B λI

]
=

[
λ3I − AB 0

0 λ3I

]
[
λI 0
B λI

] [
λI −A
−B λI

] [
λI A
0 λI

]
=

[
λ3I 0
0 λ3I −BA

]

[[ One of the above λ3 s was misprinted as λ2 ]]

If AB = Ir, BA = Is then using det(XY Z) = detX detY detZ = det(ZY X), (λ2 −
1)r(λ3)s = (λ3)r(λ2 − 1)s.

This cannot be valid for all λ except if r = s, which is what was to be shown. The only
thing this proof uses is det(XY ) = detX detY = detY detX. The proof is therefore
slightly more powerful than the one given on page 244.

[[ Math. Mag., 43(1970) 165. Murray is listed as Associate Editor of the Problems
Section. ]]
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Math. Mag., 43(1970) 236, 185.

Q 483. Submitted by M. S. Klamkin

If A, B, C are the angles of a triangle such that

tan(A−B) + tan(B − C) + tan(C − A) = 0

then the triangle is isosceles.

A 483. Expanding out and replacing tanA, tanB and tanC by a, b and c respectively
we get

a− b

1 + ab
+

b− c

1 + bc
+

c− a

1 + ca
= 0

On combining fractions and factoring we obtain

(a− b)(b− c)(c− a) = 0

and thus the triangle is isosceles. Note [that] the condition that A+B +C = π is not
necessary.

Math. Mag., 43(1970) 272–275.

[[ There’s an article by Murray:

On some soluble N th order differential equations. ]]

Math. Mag., 44(1971) 55, 16.

Q 494. Submitted by M. S. Klamkin

In a given sphere APB, CPD and EPF are three mutually perpendicular and con-
current chords. If AP = 2a, BP = 2b, CP = 2c, DP = 2d, EP = 2e and FP = 2f ,
determine the radius of the sphere.

A 494. If we choose a rectangular coordinate system whose axes are alongthe three
given chords, then the center is is at the point (b−a, d−c, f−e) where we are assuming
without loss of generality that b ≥ a, d ≥ c and f ≥ e. Then [[The eff in the next
equation was misprinted as bee ]]

R2 = (b− a− 2b)2 + (d− c− 0)2 + (f − e− 0)2

= a2 + b2 + c2 + d2 + e2 + f 2 − 2ef

(since ab = cd = ef).

It is to be noted that the result is easily extended for the case of an n-dimensional
sphere. For the special case of the circle (n = 2), the cross terms disappear.
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Math. Mag., 44(1971) 55, 17.

Q 498. Submitted by M. S. Klamkin

Given a cake in the form of a triangular layer (prism) which is covered with a thin
layer of icing on its top and sides. Show how to divide the cake into eleven portions
so that each portion contains the same amount of cake and icing.

A 498. Divide the triangle perimeter into eleven equal parts and make vertical cuts
emanating from the center of the inscribed circle to these points of division. This
problem for a square appears in H. S. M. Coxeter, Introduction to Geometry and the
method is valid for any polygonal layer cake having an incircle.

Math. Mag., 44(1971) 106.

792. Proposed by Murray S. Klamkin, Ford Scientific Laboratory

It is a known result that a necesssary and sufficient condition for a triangle inscribed
in an ellipse to have a maximum area is that its centroid coincide with the center of
the ellipse. Show that the analogous result for a tetrahedron inscribed in an ellipsoid
is not valid.

Math. Mag., 45(1972) 53.

Solution by the proposer. By means of an affine transformation, it suffices to consider
a sphere instead of an ellipsoid.

For a sphere, it is a known result that the inscribed regular tetrahedron has the max-
imum volume and for this case its centroid coincides with the center of the sphere.
However, the converse is not valid, i.e., if the centroid of an inscribed tetrahedron in a
sphere coicides with the center of the sphere, the tetrahedron need not be regular but
it must be isosceles (one whose pairs of opposite edges are congruent). This latterresult
can be obtained vectorially as follows:

Let A, B, C, D denote the four vertices on a unit sphere with center at O. Then if
the two centroids coincide, we have A + B + C + D = 0 in addition to A2 = B2 =
C2 = D2 = 1. Whence (A + B)2 = (C + D)2 or A ·B = C ·D = 0. Thus

(A−B)2 = (C−D)2

and similarly
(A−C)2 = (D−B)2

(A−D)2 = (B−C)2

and the tetrahedron is isosceles.

Conversely, if the tetrahedron is isosceles, then (A − B)2 = (C − D)2, (A − C)2 =
(D − B)2, (A −D)2 = (B − C)2 in addition to A2 = B2 = C2 = D2 = 1. Whence,
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A ·B = C ·D, A ·C = D ·B, A ·D = B ·C and (A + B)2 = (C + D)2. Then

(A + B−C−D) · (A + B + C + D) = 0

and similarly
(A + D−B−C) · (A + B + C + D) = 0

Thus
(A−C) · (A + B + C + D) = 0

and similarly
(A−B) · (A + B + C + D) = 0

(A−D) · (A + B + C + D) = 0

Finally the last three equations imply A + B + C + D = 0 or that the two centroids
coincide. (A geometric proof appears in N. Altshiller-Court, Modern Solid Geometry,
MacMillan, New York, 1935, p.95).
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Math. Mag., 44(1971) 170–171.

Another Triangle Property

773. [September, 1970]. Proposed by Norman Schaumberger, Bronx Community
College

LetM be an arbitrary point not necessarily in the plane of triangle A1A2A3. If Bi is
the midpoint of the side opposite Ai prove

3∑
i=1

MA2
i −

3∑
i=1

MB2
i =

1

3

3∑
i=1

AiB
2
i

II. Solution by M. S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan. We
Prove a more general result, i.e., if A1, A2, . . ., An+1 benote any n+1 points in any Er

and if Bj (j = 1, 2, . . . , n+1) denotes the centroid of all the Ai with the exception of
Aj then for any arbitrary point M

n+1∑
i=1

MA2
i −

n+1∑
i=1

MB2
i =

n− 1

n+ 1

n+1∑
i=1

AiB
2
i (1)

Let Ai, Bi, M denote vectors from the centroid of all the Ai to Ai, Bi, M respectively.
Then

n+1∑
i=1

Ai = 0 and −Bi = Ai/n

The l.h.s. of (1) is now

n+1∑
i=1

(M−Ai)
2 −

n+1∑
i=1

(M + Ai/n)2

or
n2 − 1

n2

n+1∑
i=1

A2
i

Since the r.h.s. of (1) is now

n− 1

n+ 1

n+1∑
i=1

A2
i (1 + 1/n)2

identity (1) follows. The proposed problem corresponds to the special case n = 2.
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Math. Mag., 44(1971) 178, 140.

Q 522. Submitted by M. S. Klamkin

Determine all triangles XY Z satisfying

sin 2X

sinA
=

sin 2Y

sinB
=

sin 2Z

sinC

where ABC is a given triangle.

A 522. First note that XY Z must be acute. Now let 2X = π − R, 2y = π − S and
2Z = π − T . Thus RST is a triangle and

sinR

sinA
=

sinS

sinB
=

sinT

sinC

Whence RST ∼ ABC and

2X = π − A 2Y = π −B 2Z = π − C.

Math. Mag., 44(1971) 229, 240.

Q 527. Submitted by M. S. Klamkin

Evaluate the determinant

Dn = |ar − bs| r, s = 1, 2, . . . , n

A 527. Since D vanishes for ap = aq, p 6= q, and is linear in ar, it must identically
vanish for n > 2. Also D1 = a1 − b1 and D2 = (a1 − a2)(b1 − b2).

Math. Mag., 44(1971) 238–239.

Comment on Q 503

Q 503. [January, 1971]. Submitted by A. K. Austin, University of Sheffield. A boy
walks 4 mph, a girl walks 3 mph and a dog walks 10 mph. They all start together
at a certain place on a straight road and the boy and girl walk steadily in the same
direction. The dog walks back and forth between the two of them, going repeatedly
from one to the other and back again. After one hour where is the dog and which
direction is he facing ?

I. Comment by M. S. Klamkin, Ford Motor Company. I disagree with the proposer’s
solution. While I agree that the motion is reversible from any initial starting position
in which the participants are not at the same location, it is not possible to start the
motion when all three start fro the same location. The dog would have a nervous
breakdown attempting to carry out his program. If one id not convinced, let the initial
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starting distance between the boy and the girl be ε (arbitrarily small), then one can
show that the number of times the dog reverses becomes arbitrarily large in a finite
time.

An analogous situation occurs in the well known problem of the four bugs pursuing each
other cyclically with the same constant speed and starting initially at the vertices of a
square. At any point of their motion (except when together), the motion is reversible
by reversing the velocities. However, when together, the directions of the velocities are
indeterminate and thus they cannot reverse without further instructions.

[[Parallel comments were also made by Leon Bankoff, Charles Trigg, Lyle E. Pursell]]

Math. Mag., 42(1969) 287.

816. Proposed by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan

Show that no equilateral triangle which is either inscribed in or circumscribed about
a noncircular ellipse can have its centroid coincide with the center of the ellipse.

[[This is identical with Math. Mag., 36(1963) 142, 108.

Q 312. Submitted by M. S. Klamkin

Show that no equilateral triangle which is either inscribed in or circumscribed about
an ellipse (excluding the circular case) can have its centroid coinciding with the center
of the ellipse.

A 312. Orthogonally project the ellipse into a circle. The equilateral inscribed or
circumscribed triangles will become inscribedor circumscribed non-equilateral triangles
whose centroids cannot coincide with the center of the circle. Since centroids transform
into centroids, the proof is completed. ]]

Math. Mag., 45(1972) 236.

Solution by Leon Bankoff, Los Angeles, California. Ifan equilateral triangle and a
circumscribed ellipse were to share the same centroid, the ellipse and the circumcircle
of the triangle would be concentric. Consequently the four intersections of the circle
and the ellipse would be vertices of a rectangle. Since the vertices of an equilateral
triangle cannot lie on three vertices of a rectange, the initial assumption regarding a
common centroid is untanable.

The same assumption for the inscribed ellipse would mean that each chord of contact of
the ellipse would be bisected by a corresponding internal angle bisector of the tangential
equilateral triangle. This could only occur if each vertex of the triangle lay on an
extended principle axis of the ellipse. This, in turn, would necessitate two vertices on
one axis—an obvious impossibility for a circumscribed triangle.
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Math. Mag., 44(1971) 297.

Comment on Q 505

Q 505. [January, 1971]. Submitted by Gregory Wulczyn. Solve the differential equa-
tion

(x− a)(x− b)y′′ + 2(2x− a− b)y′ + 2y = 0

Comment by M. S. Klamkin, Ford Motor Company. The problem can be easily ex-
tended and solved to the differential equation

(x− a)(x− b)y′′ + n(2x− a− b)y′ + n(n− 1)y = 0 (n = 2, 3, 4, . . .)

Letting y = Dn−2z, the differential equation can be rewritten as

Dn{z(x− a)(x− b)} = 0

Whence

z =
1

(x− a)(x− b)
{A0 + A1x+ · · ·+ An−1x

n−1}

= B0 +B1x+ · · ·+Bn−3x
n−3 +

A

x− a
+

B

x− b

Finally

y = Dn−2

{
A

x− a
+

B

x− b

}
=

A′

(x− a)n−1
+

B′

(x− b)n−1

[[By now it’s rather a slow quickie. — R.]]

Math. Mag., 45(1972) 238–239.

[[Further !]] Comment by Murray S. Klamkin, Ford Motor Company. The still more
general equation

(x− a)(x− b)y′′ + n(2x− a− b)y′ = F (x) (n arbitrary)

can also be solved easily by first noting the factorization

{(x− a)D + n}{(x− b)D + n− 1}y = F (x)

Then by the exponential shift theorem,

y = (x− b)1−n

∫
(x− b)n−2 dx

(x− a)n

∫
F (x)(x− a)n−1 dx

On letting F (x) = 0, we find on comparison with my previous comment (Nov.-Dec.,
1971) that ∫

(x− b)n−2 dx

(x− a)n
= A′

{
x− b

x− a

}n−1

+B′ (1)
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which at first glance is somewhat surprising since one would expect a series by ex-
panding out {(x − a) + (a − b)}n−2 (here A′ = 1/(n − 1)(b − a)). This leads to the
summation

n∑
r=0

(
n
r

)
r + 1

{
a− b

x− a

}r+1

=
1

n+ 1

{(
x− b

x− a

)n+1

− 1

}
A further extension to an r th order equation is given by the following: If Si (i =
0, 1, . . . , r) denote the elementary symmetric functions of x− ai (i = 1, 2, . . . , r), i.e.,

r∏
i=1

(λ+ x− ai) ≡
r∑

i=0

Siλ
r−1

then the solution of the differential equation

r∑
j=0

j!

(
n

j

)
Sr−jD

r−jy = 0 (2)

is given by

y =
r∑

i=1

Ai(x− ai)
r−n−1 (Ai arbitrary constants)

The latter follows since it can be shown by induction that (2) factorizes into

{(x− a1)D + n}{(x− a2)D + n− 1} · · · {(x− ar)D + n− r + 1}y = 0

for any ordering of the ai. The nonhomogeneous equation corresponding to (2) can
also be solved by quadratures by means of the exponential shift theorem. Also, corre-
sponding to (1) for r = 3, we have∫

(x− c)n−3 dx

(x− b)n−1

∫
(x− b)n−2 dx

(x− a)n
= A

{
x− c

x− a

}n−2

+B

{
x− c

x− b

}n−2

+ C

There are analogous results for r > 3.

[[This must be the world’s slowest quickie ! — R.]]
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Math. Mag., 45(1972) 47, 56.

Q 536. Submitted by M. S. Klamkin

Show that the square roots of three distinct prime numbers cannot be terms of a
common geometric progression.

A 536. If they were then

arn1 =
√
p1, arn2 =

√
p2, arn3 =

√
p3, (n1, n2, n3 distinct integers)

Eliminating a anr r yields

(p1/p2)
n2−n3 = (p2/p3)

n1−n2

[[exponents have been corrected(?) please check! — R.]]

which is clearly impossible (by the unique factorization theorem). The result holds for
any integral roots.

Math. Mag., 45(1972) 239.

Comment by William Wernick, City College of New York. If three terms are in geo-
metric progression then the product of the first and last must equal the square of the
second, thus in this case

√
ac = b or b2 = ac which is clearly impossible with distinct

primes.

[[This assumes that the terms were consecutive — this was not the intention — Later,
on Math. Mag., 46(1973) 174–175 one reads]]

Comment by the proposer. In his comment on Q 536 (September 1972) Wernick does
not solve the given problem since he assumes that the three terms are consecutive
terms of a geometric progression.

Math. Mag., 45(1972) 102, 112.

Q 537. Submitted by M. S. Klamkin

Determine solutions to
xF ′(x)− F (x) = F ′(F ′(x))

other than F (x) = a(x− 1).

A 537. This is a Clairaut equation. Consequently we differentiate obtaining xF ′′(x) =
F ′′(x)F ′′(F ′(x)). One solution is F ′′(x) = 0 or F (x) = a(x − 1). The other solutions
are derivable from x = F ′′(F ′(x)). The general solution of this latter equation seems
difficult to derive. However, it does have the power solution F (x) = axn+1 where
n = (1±

√
5)/2 and a = n−1/n/(n+ 1).

[[sqrt sign missing from penult equation. And compare Math. Mag., 37(1964) 119.
549. ]]
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Math. Mag., 45(1972) 167, 176.

Q 542. Submitted by Murray S. Klamkin

If a, b, c, d and x, y denote respective lengths of four consecutive sides and both
diagonals of a quadrilateral having both an incircle and a circumcircle, show that
(a+ b+ c+ d)2 ≥ 8xy, with equality if and only if the quadrilateral is a square.

A 542. Since the quadrilateralhas an incircle, a+ c = b+ d. Since the quadrilateral is
inscribable, xy = ac+ bd. Thus we must show equivalently that

a2 + c2 ≥ 2b(a+ c− b)

For a given a + c the r.h.s. has a maximum value of (a + c)2/2 when b = (a + c)/2.
Since

2(a2 + c2)− (a+ c)2 = (a− c)2 ≥ 0

our inequality is established. The stated inequality is also equivalent to

(a+ b+ c+ d)2 ≥ 8(ac+ bd)

for circumscribable quadrilaterals (a, b, c, d are lengths of consecutive sides).

Math. Mag., 45(1972) 168–169.

Minimum of an Exponential Function

803. [September, 1971]. Proposed by Kenneth Rosen, University of Michigan

Let x and y be positive real numbers with x + y = 1. Provethatxx + yy ≥
√

2 and
discuss conditions for equality.

III. Solution by Murray S. Klamkin, Ford Motor Company. It is well known that if
F (x)is strictly convex for 0 ≤ x ≤ a, then

F (x1) + F (x2) + · · ·+ F (xn) ≥ nF

(
x1 + x2 + · · ·+ xn

n

)
with equality if and only if x1 = x2 = · · ·+ xn. Since D2xx = xx(1 + log x)2 + xx−1, xx

is strictly convex for x ≥ 0. Thus for x1 + x2 + · · ·+ xn = nb,

n∑
i=1

xxi
i ≥ nbb.

The given problem corresponds to the special case n = 2, b = 1
2
.
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Math. Mag., 45(1972) 172–173.

Arithmetic-Geometric Mean Inequality

807. [September, 1971]. Proposed by Norman Schaumberger, Bronx Community
College

Let (xi), i = 1, 2, 3, . . . be an arbitrary sequence of positive real numbers and set

∆k = (1/k)
k∑

i=1

xi −

(
k∏

i=1

xi

)1/k

If n ≥ m, prove that n∆n ≥ m∆m.

II. Solution by Murray S. Klamkin, Ford Motor Company. It suffices just to prove the
case m = n− 1 (n ≥ 2), i.e.,

(n− 1)(x1x2 · · ·xn−1)
1/(n−1) ≥ n(x1x2 · · ·xn)1/n − xn (1)

Let
xn = λn(x1x2 · · ·xn−1)

1/(n−1)

so that (1) becomes
λn − 1 ≥ n(λ− 1)

which is a known elementary result (just factor λn − 1) with equality if and only if
λ = 1.

Remark. Since ∆1 = 0, the above solution provides an apparently new elementary
inductive proof of the Arithmetic-Geometric mean inequality (∆n ≥ 0).

Math. Mag., 46(1973) 52–53.

[[Further !]] Comment by Murray S. Klamkin, Ford Motor Company, Dearborn, Michi-
gan. The result here is known and is contained in a class of inequalities which are
sometimes called Rado type inequalities (see D. S. Mitrinović, Analytic Inequalities,
Springer-Verlag, Heidelberg, 1970, pp.94, 98–102). Related to these inequalities are
the ones analogous to

{Gn(x)

An(x)
} ≤ {Gn−1(x)

An−1(x)
}n−1

which are sometimes called Popoviciu type inequalities. Here, Gn and An denote the
gepmetric and arithmetic means of x1, x2, . . ., xn, respectively. A similar proof can
also be given for the latter inequality. Just let

xn = λ(x1 + x2 + · · ·+ xn−1)

giving
λ

(1 + λ)n
≤ (n− 1)n−1

nn
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It follows easily that the r.h.s. is the maximum value of the l.h.s. which is taken on for
λ = 1/(n− 1).

Math. Mag., 45(1972) 228–229.

841. Proposed by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan

Solve the following generalization of Clairaut’s equation:

y = xp+ F (p){1 +
√

1 + xG(p)}

where p = dy/dx.

Math. Mag., 46(1973) 170–171.

Solution by the proposer. Let r = 1 +
√

1 + xG(p) and differentiate with respect to x,
giving

xp′ + rp′F ′ + r′F = 0

Now replace r′ by p′ dr
dp

and x by (r2 − 2r)/G to give

p′
{

(r2 − 2r)/G+ rF ′ + F
dr

dp

}
= 0

If the first factor is zero, i.e., p′ = 0, we get y = cx+ F (c){1 +
√

1 + xG(c)} provided
that F (c)G(c) = 0.

The other factor can be rewritten as{
Dp +

2

FG
− F ′

F

}
1

r
=

1

FG

Whence
1

r
= F exp

{
−2

∫
dp

FG

}∫
exp

{
2
∫

dp
FG

}
dp

F 2G

which givesx as a function of P . The original equation gives y also as a function of p.
These two latter equations give the solution in parametric form.
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Math. Mag., 46(1973) 42.

853. Proposed by Murray S. Klamkin, Ford Motor Company, Dearborn, Michigan

It is a well-known theorem that all quadric surfaces which pass through seven given
points will also pass through an eighth fixed point. (a) If the seven given points are
(0,0,0), (0,0,1), (0,1,0), (2,0,0), (1,1,0), (1,0,1) and (1,1,1), determine the eighth fixed
point. (b) Determine the eighth fixed point explicitly as a function of the seven general
given points (xi, yi, zi), i = 1, 2, 3, . . . , 7.

Math. Mag., 46(1973) 288–289.

Solution by the proposer. If the equation of a quadric surface be

ax2 + by2 + cz2 + dxy + eyz + fzx+ gx+ hy + iz + j = 0

then the equations must satisfy the 7 equations

j = 0 a+ b+ d+ g + h = 0
c+ i = 0 a+ c+ f + g + i = 0
b+ h = 0 a+ b+ c+ d+ e+ f + g + h+ i = 0
4a+ 2g = 0

Thus, the eqation reduces to the form

a(x2 + xy − zy + zx− 2x) + by(y − 1) + cz(z − 1) = 0

and the eighth fixed point is (−1, 1, 1).

[[Part (b) not solved ??]]

Math. Mag., 46(1973) 43, 54.

Q 558. Submitted by Murray S. Klamkin

Itis known that if a ray of light is reflected off three successive faces of a triangular
corner mirror, the final direction of the ray is parallel but opposite to that of the
incoming ray. Show that the same property holds more generally for n successive
reflections off the n faces of an n-rectangular corner mirror in En.

A 558. Let R = (cos a1, cos a2, . . . , cos an) denote the unit vector corresponding to the
incoming ray. Here aj denotes the angle R makes with the axis xj. After reflection off
any face (say the one normal to x1), the new ray is given by

R = (− cos a1, cos a2, . . . , cos an), etc.

Consequently, after n reflections, the final ray is given by

Rn = (− cos a1,− cos a2, . . . ,− cos an) = −R.
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Math. Mag., 46(1973) 43, 54.

Q 559. Submitted by Murray S. Klamkin

If an+1 = 5an +
√

24a2
n − 1, n = 0, 1, 2, . . . and ao = 0, show that the sequence {an} is

always integral.

A 559. Squaring a2
n+1− 10an + a2

n = 1. Solving for an: a−n = 5an+1−
√

24a2
n+1 + 1.

Reducing n by one in the latter equation and adding it to the given equation we get
an+1 = 10an − an−1. Since a0 = 0 and a1 = 1 all the ai are integers.

Math. Mag., 46(1973) 53–54.

Comment on Q 546

Q 546. [May, 1972]. Submitted by Erwin Just. If n is an integer greater than 2, prove
that n is thesum of the n th powers of the roots of xn − kx− 1 = 0.

Comment by Murray S. Klamkin, Ford Motor Company, Dearborn, Michigan. One
can obtain further results in a similar fashion. If T1, T2, . . ., Tn denote the elementary
symmetric functions of x1, x2, . . ., xn, i.e.,

P (x) =
∏

(x− xi) = xn − T1x
n−1 + T2x

n−2 − · · ·+ (−1)nTn

and if

Sk =
n∑

i=1

xk
i

then the Newton formulae are given by

Sk − T1Sk−1 + T2Sk−2 − · · ·+ (−1)k−1Tk−1S1 + (−1)kTk = 0 (k ≤ n) (A)

Sk − T1Sk−1 + T2Sk−2 − · · ·+ +(−1)nTnSk−n = 0 (k > n) (B)

If P (x) ≡ xn − ax − 1, then Tn−1 = (−1)na, Tn = (−1)n−1 and T1 = T2 = · · · =
Tn−2 = 0. It then follows that Sm = 0 for m = rn + 1, rn + 2, . . ., (r + 1)n − r − 2
(1 ≤ r ≤ n− 3). The nonvanishing power sums are given by

Sn−1 = (n− 1)a Sn = n S2n−2 = (n− 1)a2

S2n−1 = (2n− 1)a S2n = n S3n−3 = (n− 1)a3

S3n−2 = (3n− 2)a2 S3n−1 = (3n− 1)a S3n = n etc.
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Math. Mag., 46(1973) 104, 112.

Q 564. Submitted by Murray S. Klamkin

If AiBiCiDi (i = 1, 2, 3, 4) denote four given quadrilaterals in space such that the four
vector sums

AiBi+1 + CiBi−1 + Ai+1Bi+2 + Ci+1Di+2 + Ai+2Bi + Ci+2Di

(i = 1, 2, 3, 4) and Ai = Ai+4, etc. are zero, show that the sums remain zero for any
changes of the lorientations of the quadrilaterals.

A 564. Let AiBi = R∼i, BiCi = S∼i, CiDi = T∼i, OAi = U∼i (i = 1, 2, 3, 4) then the
given vectors can be shown to reduce to

[[these rather curious subscripts are all printed as ∼ 1, as is that on T in the next
display, tho I’m sure they shd be eyes]]

R∼i + T∼i +R∼i+1 + T∼i+1 +R∼i+2 + T∼i+2 (i = 1, 2, 3, 4)

Consequently R∼i + T∼i = 0 which is invariant under rigid body motions. Also the
quadrilaterals must be parallelograms.

Math. Mag., 46(1973) 104–105, 112.

Q 565. Submitted by Murray S. Klamkin

Determine the trihedral angles OA′B′C ′ such that if one picks an arbitrary point A,
B, C, respectively on the open rays OA′, OB′, OC ′, then ABC is always an acute
triangle.

A 565. It follows by continuity that none of the face angles can be acute or obtuse.
Thus the only possibility is a trirectangular angle. If OA = a, OB = b, OC = c, then

AB2 = a2 + b2 BC2 = b2 + c2 AC2 = c2 + a2

Since the sum of any two is greater than the third, ABC is acute.

Math. Mag., 46(1973) 111–112.

Comment on Q 543

Q 543. [May, 1972]. Submitted by Alexander Zujus. Sow that for all natural numbers
n ≥ 4, (n− 1)n > nn−1

II. Comment by Murray S. Klamkin, Ford Motor Company. More generally, x1/x is a
monotonic decreasing function for x ≥ e. This follows since

Dx1/x = x1/x(1− log x)/x2
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Math. Mag., 46(1973) 167, 112.

Q 568. Submitted by Murray S. Klamkin

Solve the equation x2n + x2n−2 + · · ·+ x2r + · · ·+ x2 + 1 = xn

A 568. Summing the left hand side, we get x2n+2−1
x2−1

= xn or equivalently (xn−1)(xn+2+

1) = 0. Thus x = eiθ where

θ = 2πm/n m = 1, 2, . . . , n−1 (excluding θ = π if m is even)

θ = π(2m+ 1)/n m = 1, 2, . . . , n+1 (excluding θ = π if n is odd)

More generally one can treat
n∑

i=0

xri = xrn/2

in a similar way.

Math. Mag., 46(1973) 230.

875. Proposed by Murray S. Klamkin, Ford Motor Company, Dearborn, Michigan

If {ai}, {bi} denote two sequences of positive numbers and n is a positive integer, show
that: ∑

i

a2n
i ·
∑

j

b2n
j ≥

∑
i

a2n−1
i bi ·

∑
j

ajb
2n−1
j ≥ · · · ≥

∑
i

an
i b

n
i ·
∑

j

an
j b

n
j

Math. Mag., 47(1974) 170–171.

Solution by Robert M. Hashway, West Warwick, Rhode Island. Since the inequalities
are trivially true when either the ai or the b− i are all zero, the ai and the bi may be
either positive or zero. Hence {ai} and {bi} can be made of the same dimension by
inserting zeroes. What must be shown is that: if {ai}, {bi} are sequences consisting of
positive real numbers or zero, and n is a positive number, then∑

i

a2n−k
i bki

∑
j

ak
j b

2n−k
j ≥

∑
i

a2n−k−1
i bk−1

i

∑
j

ak−1
j b2n−k−1

j

where k is an integer such that n− 1 ≥ k ≥ 0

Proof: We need to determine if the expression below is positive or zero:∑
i

a2n−k
i bki

∑
j

ak
j b

2n−k
j −

∑
i

a2n−k−1
i bk−1

i

∑
j

ak−1
j b2n−k−1

j

[[in the original, the last two exponents k − 1 were printed as n + 1 and k + 1 but I
don’t think that that can be right. — R.]]
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We can easily see that:∑
i

a2n−k
i bki

∑
j

ak
j b

2n−k
j =

∑
i

a2n
i b

2n
i +

∑
i

∑
j 6=i

a2n−k
i ak

j b
k
i b

2n−k
j

and∑
i

a2n−k−1
i bk−1

i

∑
j

ak−1
j b2n−k−1

j =
∑

i

a2n
i b

2n
i +

∑
i

∑
j 6=i

a2n−k−1
i ak+1

j bk+1
i b2n−k−1

j

Hence what remains to prove is that

sk =
∑

i

∑
j 6=i

(a2n−k
i ak

j b
k
i b

2n−k
j )− a2n−k−1

i bk+1
i ak+1

j b2n−k−1
j ≥ 0

By interchanging the indices i and j and summing over all j, i we have

sk =
∑

i

∑
j<i

(
a2n−k

i ak
j b

k
i b

2n−k
j + a2n−k

j ak
i b

k
j b

2n−k
i

− a2n−k−1
i bk+1

i ak+1
j b2n−k−1

j

−a2n−k−1
j bk+1

j ak+1
i b2n−k−1

i

)
By factoring out similar terms we have:

sk =
∑

i

∑
j<i

ak
j b

k
i a

k
i b

k
j (biaj − bjai)((ajbi)

m − (aibj)
m)

where m = 2(n− k)− 1.

Since each term of the seriesis positive, the result is clear.
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Math. Mag., 46(1973) 232, 240.

Q 576. Submitted by Murray S. Klamkin

Given an n-dimensional simplex OA1A2 · · ·An whose edges emating from O are mu-
tually orthogonal. Show that the square of the content of the (n−1)-dimensional face
opposite O is equal to the sum of the squares of the contents of the remaining faces.

A 576. Let the tetrahedron [[sic]] be given by the n coordinate planes of an n-
dimensional rectangular coordinate system x1, x2, . . ., xn and the hyperplane P :∑
xi/ai = 1. If V and B denote the contents of the simplex and the face opposite O

(the origin), respectively, then V = dB/n where d denotes the distance from O to P .
Since V = 1

n!
πa2 and P = {

∑
a−2

i }−1/2

[[something weird about that formula for V but I can’t figure out what it is. And ditto
near the end of the next display. — R.]]

B2 = {(n− 1)!}−2{
∑

a−2
i }πa2

i

Now each term in the summation for B2 corresponds to the square of the content of
the remaining faces (the (n−1)-dimensinal version of the expression for V ). The case
n = 2 corresponds to the Pythagorean theorem but we have not proved it since it was
used implicitly in the solution. However, the result does generalize the known result
for the tetrahedron (n = 3).

Math. Mag., 46(1973) 286–287, 296.

Q 580. Submitted by Murray S. Klamkin

Determine the extreme values of

2 sinA cosB cosC + 2 sinB cosC cosA+ 2 sinC cosA cosB

sin 2A+ sin 2B + sin 2C

where A, B, C denote the angles of a triangle.

A 580. The expression is equivalent to∑
(a2 + c2 − b2)(a2 + b2 − c2)∑

a2(b2 + c2 − a2)
= 1

dron (n = 3).
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Math. Mag., 46(1973) 48, 60.

Q 584. Submitted by Murray S. Klamkin

If A, B, C are nonnegative angles satisfying the triangle inequality and with a sum
≤ π show that

2
∑

sin2B sin2C ≥ 4
∏

sin2A+
∑

sin4A

with equality if and only if A+B + C = π.

A 584. The inequality can be rewritten as 4∆ ≥ 8 sinA sinB sinC or 1 ≥ R where
∆ and R are area and circumradius, respectively, of a triangle of sides 2 sinA, 2 sinB
and 2 sinC. If we inscribe the triangle in a unit sphere, we obtain a corresponding
spherical triangle of sides 2A, 2B, 2C whose circumradius is then ≤ 1. The equality
occurs when the spherical triangle corresponds to a great circle.
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Math. Mag., 47(1974) 107.

900. Proposed by Murray S. Klamkin, Ford Motor Company, and Seymour Papert,
Massachusetts Institute of Technology

A long sheet of rectangular paper ABCD is folded such that D falls on AB producing
a smooth crease EF with E on AD and F on CD (when unfolded). Determine the
minimal area of triangle EFD by elementary methods.

A B

CD

D′

E

F

θ

Math. Mag., 48(1975) 121–122.

Solution by Michael Goldberg, Washington, D.C. If AD = 1 and K denotes the area
of the triangle EFD, then

K = (DD′)(EF )/4 = (1/ cos θ)(1/2 cos2 θ sin θ)/4 = {1/(sin 2θ +
1

2
sin 4θ)}/2

= 1/2M where M = sin 2θ +
1

2
sin 4θ

Then dM/dθ = 2 cos 2θ + 2 cos 4θ = 0. Hence − cos 4θ = cos 2θ

π − 4θ = 2θ, θ = π/6 = 30◦, K = {1/(
√

3/2 +
√

3/4)}/2 = 2
√

3/9 ≈ 0.385

The following demonstration can serve as an elementary kinematic solution or verifi-
cation of the foregoing result. The triangle D′EF attains its extremal area when the
line EF intersects its neighboring position at its midpoint G; then the area added by
moving the triangle is equal to the area subtracted. As the point D′ moves along the
straight line AB, the instantaneous center of rotation of the triangle D′EF is on a
line through D′ perpendicular to AB. Hence, the perpendicular must pass through G.
Hence AD′ = 1

2
(DF ) and this occurs only when θ = 30◦.

Math. Mag., 46(1973) 108, 114.

Q 590. Submitted by Murray S. Klamkin

O − ABCDE is a regular pentagonal pyramid such that ∠AOB = 60◦. Find ∠AOC.

A 590. By symmetry ∠AOC = ∠ABC = 108◦.
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Math. Mag., 47(1974) 109–110.

Property of an Interior Point

867. [May, 1973]. Proposed by L. Carlitz, Duke University

[[Compare 910 below. — R.]]

Let P be a point in the interior of the triangle ABC. Let R1, R2, R3 denote the
distances of P from the vertices of ABC and let r1, r2, r3 denote the distances from
P to the sides of ABC. Show that∑

r1R2R3 ≥ 12r1r2r3∑
r1R

2
1 ≥ 12r1r2r3∑

r2
2r

2
3R2R3 ≥ 12r2

1r
2
2r

2
3

In each case there is equality if and only if ABC is equilateral and P is the center of
ABC.

II. Solution by Murray S. Klamkin, Ford Motor Company. The three inequalities are
special cases of ∑

cyclic

Ri
1R

j
2R

k
3

ru
i r

v
2r

w
3

≥ 3

{
R1R2R3

r1r2r3

}m/3

≥ 3 · 2m

where i + j + k = u + v + w = m ≥ 0. The left hand inequality follows immediately
from the A.M.-G.M. inequality while the right hand inequality follows from the known
inequality R1R2R3 ≥ 8r1r2r3 with equality if and only if ABC is equilateral and
P is the center [see O. Bottema et al., Geometric Inequalities, Walters-Noordhoff,
Groningen, 1969, p.111].

Remark: We can obtain a stronger identity by using (loc. cit.)

R1R2R3 ≥ r1r2r3/
∏

sin A/2

Also, by using (x+ y+ z)/3 ≥ {
∑
yx/3}1/2 we can augment the proposed inequalities

to {∑ R1

r1

}2

≥ 3
∑ R2R3

r2r3
≥ 36{∑ 1

r1R2
1

}2

≥ 3
∑ 1

r2r3R2
2R

2
3

≥ 36{∑
r2
1R1

}2

≥ 3
∑

r2
2r

2
3R2R3 ≥ 36r2

1r
2
2r

2
3

122



Math. Mag., 46(1973) 167, 178.

Q 597. Submitted by Murray S. Klamkin

Prove that
(n+ 1)n+1

nn
>

nn

(n− 1)n−1

for n = 1, 2, 3, . . . (here nn = 1 for n = 0).

A 597. The inequality can be rewritten as

n+ 1

n− 1

{
1− 1

n2

}n

> 1

By Bernoulli’s inequality {
1− 1

n2

}n

≥ 1− 1

n

whence
n+ 1

n− 1

{
1− 1

n2

}n

≥ n+ 1

n
> 1

Math. Mag., 47(1974) 177–178.

Comment on Q 572

Q 572. [May, 1973]. Submitted by Norman Schaumberger

Show that if n and k are positive integers then xn + yn = zn+1/k always has solutions
in integers x, y, z.

Comment by Murray S. Klamkin, Ford Motor Company. Since z must be a k th power,
we can replace the equation by xn + yn = znk+1. One can show more generally that
xa + yb = zc always has solutions in integers x, y, z if a, b, c are positive integers with
ab, c relatively prime. Just let x = 2bt ·ubc, y = 2at ·uac, z = 2s ·uab. Then 2abt+1 = 2cs.

Since (ab, c) = 1, there are infinitely many positive integers s, t satisfying abt+1 = cs.
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Math. Mag., 47(1974) 240.

914. Proposed by Murray S. Klamkin, Ford Motor Company

If for any n of a given n+1 integral weights, there exists a balance of them on a two
pan balance where a fixed number of weights are placed on one pan and the remainder
on the other pan, prove that the weights are all equal.

Math. Mag., 48(1975) 247.

Solution by Thomas E. Elsner, General Motors Institute. Let w1, w2, . . ., wn+1 be the
n+1 integral weights. Since any n of the weights balance, the sum of any n weights
must be even. This implies further that all the weights have the same parity (congruent
(mod 2)). Now the balancing properties of the initial weights must be shared by the
integers wi/2 or (wi − 1)/2 (depending on whether the wi are all even or odd).

Hence the wi must be congruent (mod 4). Continuing in the same way, the wi are
congruent (mod 2k) for every k and this implies that the weights are equal and further,
that n is even.

Editor’s comment. Several solvers noted that this problem is a generalization of prob-
lem B-1 on the 1973 William Lowell Putnam Exam. The proposer referenced the USSR
Olympiad Problem Book, W. H. Freeman and Co., 1962, p.8.

Math. Mag., 49(1976) 254.

Editors’ Comment. James A. Davis and Richard A. Gibbs point out that the published
solution (September 1975) is incomplete. The argument that the balancing property
of the initial weights wi must be shared by wi/2 or (wi− 1)/2 fails just when all wi are
odd and the the two pans contain unequally many weights. For example, 3+3+3 = 9,
but 1 + 1 + 1 6= 4. It should also be noted that the fixed number in the problem must
be the same for every choice of n of the n+1 weights. The necessity of this is seen for
the set {1, 1, 1, 1, 3} of weights.

II. Solution by James A. Davis, Sandia Laboratories: We assume that the result holds
if equally many weights are placed in the two pans, as proved in Solution I.

Let S = {w1, w2, . . . , wn+1} be the given set of n+1 weights such that any n of them
can be balanced with a suitable choice of k weights on one pan and n−k weights
on the other. Now consider a set T = {w1, w2, . . . , wn+1, w1, w2, · · · , wn}; that is, T
consists of 2n+1 weights with two copies of the weights w1, w2, · · · , wn. Now if weight
wn+1 is removed from T , the remaining weights balance with n weights on each pan.
If weight wi (1 ≤ i ≤ n) is removed from T , then T can be viewed as the union of
T1 = {w1, w2, . . . , wi−1, wi+1, · · · , wn+1} and T2 = {w1, w2, . . . , wn}. Since both T1and
T2 can be divided into k and n−k weights which balance, there is a balance of the
weights of T with n weights on each pan. Thus, from Solution I, we conclude that all
the weights of T , and hence of S, are equal and that n must be even.
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Editors’ Note. The problem generalizes to n+1 weights with real, positive values. A
very nicesolution (using linear algebra) to the problem with equally many weights on
the two pans has been given by C. C. Clever and K. L. Yocom, this Magazine, 49
135–136.

[[I’ve copied out the article here. — was Murray on the Putnam Committee at that
time? — R.]]

A Generalization of a Putnam Problem

C. C. Clever

K. L. Yocom

South Dakota State University

The following problem appeared on the 1973 Putnam Examination: Let a1, a2, . . .,
a2n+1 be integers such that, if any one of them is removed, those remaining can be
divided into two sets of n having equal sums. Prove a1 = a2 = · · · = a2n+1. A proof
may be based on special properties of integers. (Show that the given integers are
either all even or all odd. The if they are all even they may be divided by 2 while
if they are allodd they may may be increased by 1 without destroying the property
of the problem.) In generalizing the problem, we developed a different proof which is
an interesting application of linear algebra. We begin with two generalizations of the
problem, which we prove by means of a lemma concerning matrices. Then we state
and prove a further generalization as our main theorem.

Generalization 1. Let x1, x2, . . ., x2n+1 be complex numbers such that, if any one of
them is removed, those remaining can be divided into two sets of n having equal sums;
then x1 = x2 = · · · = x2n+1.

Generalization 2. Let x1, x2, . . ., x2n be complex numbers such that, if any one of
them is removed, those remaining can be divided into two sets having equal sums; then
x1 = x2 = · · · = x2n = 0.

Lemma. If A is an n by nmatrix having zeros on the main diagonal and all ±1 off the
diagonal, then A is nonsingular if n is even and the rank of A is at least n−1 if n is
odd.

Proof. In the expansion of detA, each term -s 0, 1 or −1 and the number, dn, of
nonzero terms in the expansion is the number of permutations of order n which leave
no element fixed. Such permutations are commonly called derangements and it is well
known [1, p.31] that d1 = 0, d2 = 1 and dn+2 = (n + 1)(dn + dn+1) for n ≥ 1. It
follows inductively that dn is even for n odd and dn is odd for n even. Thus if n is
even, detA 6= 0 while if n is odd, each principal submatrix of A of order n − 1 has a
nonzero determinant. This completes the proof of the lemma.
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Proof of 1. Let x = col(x1, x2, . . . , x2n+1) and let A be a 2n+1 by 2n+1 matrix
having zeros on the main diagonal and exactly n entries equal to 1 and n equal to
−1 in each row. Then the components of a solution vector x of Ax = 0 satisfy the
hypotheses of Generalization 1. Since x0 = col(1, 1, . . . , 1) is one such solution vector,
A is singular and by the lemma, A has rank 2n. Thus all solutions are of the form
x = cx0 =col(c, c, . . . , c).

Proof of 2. Let x =col(x1, x2, . . . , x2n) and let A be a 2n by 2n matrix with zeros on
the main diagonal and ±1 off the diagonal. Then A is nonsingular by the lemma and
hence Ax = 0 has only the trivial solution x = 0.

Theorem. Let k and nbe positive integers satisfying n > 2 and 1 ≤ k ≤ n− 2.

(a) If n−k = 2m, an even integer, and x1, x2, . . ., xn is a sequence of complex numbers
such that, if any k of them are removed, those remaining can be divided into two sets
of m having equal sums, then x1 = x2 = · · · = xn.

(b) If n − k = 2m + 1, an odd integer, and x1, x2, . . ., xn is a sequence of complex
numbers such that, if any k of them are removed, those remaining can be divided into
two sets having equal sums, then x1 = x2 = · · · = xn = 0.

Proof. The theorem is true for k = 1 by 1 and 2 above. Now proceed inductively on k,
assuming the theorem true for k = 1, 2, . . . , K−1 < n− 2. First suppose n−K = 2m
in which case we are to establish (a) for k = K. Let xi and xj be any two designated
elements of thesequence with i 6= j. Remove any K − 1 elements of the sequence,
but leave xi and xj (this is possible since n − K + 1 ≥ 3). Then we are left with a
sequence of length 2m + 1 satisfying the hypotheses of 1 and hence xi = xj. Thus
x1 = x2 = · · · = xn. Similarly if n − K = 2m + 1 we must establish (b) for k = K.
Again, remove K − 1 elements of the sequence but this time leave some designated
element xi. The remaining sequence of length n−K+1 = 2m staisfies the hypotheses
of 2 and hence xi = 0. Thus x1 = x2 = · · · = xn = 0.

1. H. J. Ryser, Combinatorial Mathematics, MAA Carus Monograph, No.14, 1963.

126



Math. Mag., 47(1974) 241, 224.

Q 599. Submitted by Murray S. Klamkin

If a(n) denotes the exponent of the prime p in the factorization of n, determine the
sum

S(m) = a(1) + a(2) + · · ·+ a(pm).

A 599. S(m+1)−S(m) = a(pm+1)+a(pm+2)+ · · ·+a(pm+1). Since a(pq) = 1+a(q)
and a(r) = 0 if p - r,

S(m+1)−S(m) = (p−1)pm−1+a(pm−1+1)+a(pm−1+2)+ · · ·+a(pm−1+(p−1)pm−1)

or
S(m+ 1)− 2S(m) + S(m− 1) = (p− 1)pm−1

It now follows easily that

S(m) =
pm − 1

p− 1

Remark: The special case p = 2 was given as a problem on a recent Dutch Mathematical
Olympiad.
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Math. Mag., 47(1974) 241, 224.

Q 601. Submitted by Murray S. Klamkin

If {zi} and {wi} (w1 6= z1 6= z2) denote complex numbers such that∣∣∣∣∣∣
z1 z4 1
z2 z3 1
w1 w2 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
z1 z1 1
z2 z3 1
w1 w3 1

∣∣∣∣∣∣
∣∣∣∣∣∣
z1 z1 1
z2 w2 1
w1 w3 1

∣∣∣∣∣∣ = 0

prove that z2 − z1 = z3 − z4.

[[The entries in the top row of the second determinant look fishy. Also, after looking
at the answer, I believe that the inequalities should have been given in the order
(z1 6= w1 6= z2) — or should it be (z1 6= w1 6= z2 6= z1) ? — R.]]

A 601. Solving for w2 and w3 from the first two determinants being zero and substi-
tuting into the third one, we obtain

(z2 + z4 − z1 − z3)(w1 − z1)(w1 − z2) = 0

Thus, it is necessary and sufficient that

z2 − z1 = z3 − z4

The sufficiency condition is equivalent to the following geometric theorem: If ABCD
is a parallelogram and ABX, DCY and ACZ are directly similar triangles, then also
XY Z ∼ ABX (this is given as an exercise in T. M. MacRobert, Functions of a Complex
Variable, Macmillan, London, 1950, p.277).
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Math. Mag., 47(1974) 286.

919. Proposed by Murray S. Klamkin, Ford Motor Company

An (n+1)-dimensional simplex with vertices O, A1, A2, . . ., An+1 is such that the (n+1)
concurrent edges OAi are mutually orthogonal. Show that the orthogonal projection
of O onto the n-dimensional face opposite to it coincides with the orthocenter of that
face (this generalizes the known result for n = 2).

Math. Mag., 48(1975) 299.

Solution by Leon Gerber, St. John’s University. Let O be the origin of an (n+1)-
dimensional coordinate system and let Ailie on the i th coordinate axis at a distance
ai from O. The equation of the face F opposite O is

∑n+1
i=1 xi/ai = 1. Let a−1 =∑n+1

i=1 a
−2
i and let H = (a/ai). Clearly H lies in F and OH is perpendicular to F . Also,

A1H · A2A3 = [a/a1 − a1, a/a2, a/a3, . . . , a/an+1] · [0,−a2, a3, 0, . . . , 0]

= −a+ a = 0

so A1H is perpendicular to A2A3 and similarly for any three distinct subscripts.

Remark. This result and its converse, namely that if an n-simplex is orthocentric
there exist numbers ai, i = 1, . . . , n+1 such that AiA − j2 = a2

i + a2
j , i 6= j, is in the

literature:

W. J. C. Sharp, On the properties of simplicissima, Proc. London Math. Soc., (1886-7) 325–359
(footnote on p.358).

E. Egervary, On orthocentric simplexes, Acta Litt. Sci. Szeged, 9(1940) 218–226.

.
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Math. Mag., 47(1974) 287, 297.

Q 606. Submitted by Murray S. Klamkin

Show elementarily that
(x+ y + z)x+y+z ≥ xxyyzz

for positive x, y, z.

A 606. More generally, it will follow by induction that

{
∑

xi}
P

xi ≥
∏

xxi
i (xi > 0)

if we first show that
(x+ y)x+y ≥ xxyy

Letting y = kx we get the obvious inequality

(1 + k)(1 + k)k ≥ kk

Another solution, but not as elementary, follows from the concavity of log x:∑
xi log xi∑
xi

≤ log

∑
x2

i∑
xi

≤ log
∑

xi

There is equality if and only if all the xi but one are zero.
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ALGEBRA

Inequalities: fractions

Math. Mag., 47(1974) 52, 58.

Q 608. Submitted by Murray S. Klamkin

If x, y, z are nonnegative and are not sides of a triangle, show that

1 +
x

y + z − x
+

y

z + x− y
+

z

x+ y − z
≤ 0

.

A 608. We will show more generally that if xi (i = 1, 2, . . . , n) are nonnegative and
are not sides of an n-gon, then

1 +
n∑

i=1

xi

S − 2xi

≤ 0

where S =
∑
xi. Assume that 2xn > S and let xn = T +2a where T = x1 +x2 + · · ·+

xn−1 and a > 0. Then we have to show equivalently that

T + 2a

2a
≥ 1 +

n−1∑
i=1

xi

2(a+ T − xi)

which follows from
xi

2a
≥ xi

2(a+ T − xi)
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ALGEBRA

Systems of equations: n variables

Math. Mag., 48(1975) 115.

930. Proposed by Murray S. Klamkin, University of Waterloo

Solve the system of equations (xi − ai+1)(xi+1 − ai+3) = a2
i+2 (i = 1, 2, . . . , n) for the

xi, where an+i = ai, xn+i = xi and a1a2 · · · an 6= 0.

Math. Mag., 49(1976) 97–98.

Solution by Paul Y. H. Yiu, University of Hong Kong. Let yi = xi − ai+1 (6= 0),
i = 1, 2, . . . , n. The given equations reduce to

yi+1 − ai+3 = −ai+2

yi

(yi − ai+2) yi = yn+i i = 1, 2, . . . , n (∗)

Suppose yi = ai+2 for some i = 1, 2, . . . , n; then yi = ai+2 for all i = 1, 2, . . . , n. A
solution is therefore furnished by yi = ai+2, i.e.,

xi = ai+1 + ai+2 i = 1, 2, . . . , n

If yi 6= ai+2 for all i = 1, 2, . . . , n, then we have∏
i

yi = (−1)n
∏

i

ai

This indicates that we may have solutions of the form

yi = ai+2 + ki

where ki 6= 0, ki = kn+i i = 1, 2, . . . , n. (∗) gives

1

ki

+
1

ki+1

= − 1

ai+2

(∗∗)

We distinguish bewteen the following two cases:

(1) nis odd. From (∗∗)

2

ki

=

(
1

ki

+
1

ki+1

)
−
(

1

ki+1

+
1

ki+2

)
+ · · · −

(
1

ki−2

+
1

ki−1

)
+

(
1

ki−1

+
1

ki

)
= − 1

ai+2

+
1

ai+3

− · · ·+ 1

ai

− 1

ai+1

ki = 2

{
n+1∑
p=2

(−1)p+1

ai+p

}−1
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(2) n is even. (∗∗) is consistent if and only if
∑n

i=1((−1)i/ai) = 0. Under this condition
we have

1

ki

= (−1)i+1λ+
1

n

n−1∑
p=1

(−1)p(n− p)

ai+p−1

where λ is a parameter. (A standard algorithm leads to a solution in which xn = λn is a
parameter; the above expression is obtained by symmetrizing this parametric solution.)
Thus, if n is even and if

n∑
i=1

(−1)i

ai

= 0

the given system admits besides the obvious solution xi = ai+1+ai+2 an infinite number
of solutions given by

xi = ai+1 + ai+2 +

{
(−1)i+1λ+

1

n

n−1∑
p=1

(−1)p(n− p)

ai+p+1

}−1

where λ is an arbitrary parameter except that it cannot be chosen to make any 1/ki

vanish.
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ALGEBRA

Inequalities: fractions

Math. Mag., 47(1974) 117, 122.

Q 618. Submitted by M. S. Klamkin

If 1 ≥ x, y, z ≥ −1, show that

1

(1− x)(1− y)(1− z)
+

1

(1 + x)(1 + y)(1 + z)
≥ 2

with equality if and only if x = y = z = 0.

A 618. More generally, we have

S =
m∏

i=1

(1− xi)
ni +

m∏
i=1

(1 + xi)
ni ≥ 2

where −1 ≤ xi ≤ 1, ni < 0 for i = 1, 2, . . . ,m. Since a+ b ≥ 2
√
ab for a, b ≥ 0 we have

S ≥ 2
∏m

i=1(1− x2
i )

ni/2 ≥ 2 with equality if and only if xi = 0.

ANALYSIS

Maxima and minima: constraints

Math. Mag., 48(1975) 181.

942. Proposed by M. S. Klamkin, University of Waterloo

Determine the maximum value of

S =
∑

1≤i<j≤n

(
xixj

1− xi

+
xixj

1− xj

)
. where xi ≥ 0 and x1 + x2 + · · ·+ xn = 1.

Math. Mag., 49(1976) 153–154.

Solution by Joseph Silverman, Student, Brown University. We have

2S =
n∑

i=1

n∑
j=1

(
xixj

1− xi

+
xixj

1− xj

)
− sumn

i=1

2x2
i

1− xi

= 2
n∑

i=1

n∑
j=1

xixj

1− xi

−
n∑

i=1

2x2
i

1− xi

= 2

(
n∑

j=1

xj

)(
n∑

i=1

xi

1− xi

)
− 2

n∑
i=1

x2
i

1− xi

= 2
n∑

i=1

xi − x2
i

1− xi

= 2
n∑

i=1

xi = 2

Thus S = 1.
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ANALYSIS

Integral inequalities

Math. Mag., 48(1975) 182, 186.

Q 622. Submitted by M. S. Klamkin

If G, F are integrable, a > 0, G(x) ≥ F (x) ≥ 0 and
∫ 1

0
xF (x) dx =

∫ a

0
xG(x) dx, show

that
∫ 1

0
F (x) dx ≤

∫ a

0
G(x) dx.

A 622. Since∫ 1

a

xF (x) dx = r

∫ 1

a

F (x) dx =

∫ a

0

x{G(x)− F (x)} dx = s

∫ a

0

{G(x)− F (x)} dx

where 1 ≥ r ≥ a and a ≥ s ≥ 0, we have that
∫ 1

a
F (x) dx ≤

∫ a

0
{G(x)−F (x)} dx which

is equivalent to the desired result.

Remarks. The problem arose in showing that the time of vertical ascent of a particle
subject to gravity and air resistance is less than the time of descent. One can give
another proof by showing that the speed of ascent is greater than the speed of descent
at corresponding heights. h equality if and only if xi = 0.
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GEOMETRY

Butterfly problem

Math. Mag., 48(1975) 238–239.

949. Proposed by P. Erdős, Hungarian Academy of Science, and M. S. Klamkin,
University of Waterloo

In a circle with center O, OXY is perpendicular to chord AB (as shown).

A B
C

D

O

X

Y

Z

E

P

H

Prove DX ≤ CY .

[This problem also appeared as

OSSMB 75-5 Ontario Secondary School Math. Bull., 11(1975/1) 15 by Paul Erdős

and as CRUX 75 Crux 1(1975) 71 by R. Duff Butterill]

Math. Mag., 49(1976) 217–218.

I. Solution by Mark Kleiman, Student, Stuyvesant High School, New York, N.Y. Draw
DY and choose H on DY so that XH is perpendicular to DY . We have that ∠XDH =
∠ZDY = π/2 − ∠XY Z since the intercepted arcs form a semicircle. Thus, right
triangle XDH is similar to right triangle XCY and so XH : DX = XY : CY . Since
XH ≤ XY , DX ≤ CY .

II. Solution by Donald Batman, Socotto, New Mexico. Let the end of the diameter
be P and let PD intersect AB at E. Then, EX = XC by the “butterfly problem”.
(See, for example, Steven R. Conrad, Another simple solution to the butterfly problem,
this Magazine, 46(1973) 278–280.) Applying the law of sines to triangles DEX and
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Y XC to obtain
DX

sinDEX
=

EX

sinD
=

XC

sinY
=

CY

sinY XC

we find DX = CY sinDEX ≤ CY .

Math. Mag., 48(1975) 242–243.

Inequalities for a Triangle

910. [September, 1974]. Proposed by L. Carlitz, Duke University

[[Compare 867 above. — R.]].

Let P be a point in the interior pf the triangle ABC and let r1, r2, r3 denote the
distances from P to the sides of ABC. Let a, b, c denote the sides and r the radius of
the incircle of ABC. Show that

a

r1
+

b

r2
+

c

r3
≥ 2s

r
(1)

ar2
1 + br2

2 + cr2
3 ≥ 2r2s (2)

(s− a)r2r3 + (s− b)r3r1 + (s− c)r1r2 ≤ r2s (3)

ar2
1 + br2

2 + cr2
3 + (s− a)r2r3 + (s− b)r3r1 + (s− c)r1r2 ≥ 3r2s (4)

where 2s = a + b + c. In each case there is equality if and only if P is the incenter of
ABC.

Solution by M. S. Klamkin, University of Waterloo. Since ar1 + br2 + cr3 = 2rs = 2∆
(∆ = area of ABC), it follows from Cauchy’s inequality that(

x

r1
+
y

r2
+
z

r3

)
(ar1 + br2 + cr3) ≥ (

√
ax+

√
by +

√
cz)2 (5)

(xr2
1 + yr2

2 + zr2
3)

(
a2

x
+
b2

y
+
c2

z

)
≥ (ar1 + br2 + cr3)

2 (6)

for all x, y, z ≥ 0. Thus,

x

r1
+
y

r2
+
z

r3
≥ (

√
ax+

√
by +

√
cz)2/2∆ (7)

xr2
1 + yr2

2 + zr2
3 ≥ 4∆2

/{
a2

x
+
b2

y
+
c2

z

}
(8)

with equality in (7) and (8) respectively, if and only if

ar2
1

x
=
br2

2

y
=
cr2

3

z
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xr1
a

=
yr2
b

=
zr3
c

Itis to be noted that (6) is valid for all real r1, r2, r3. For the special case (x, y, z) =
(a, b, c), (7) and (8) rduce to (1) and (2). Incidentally, (2) willalso follow immediately
from (3) and (4).

We now show that (3) and (4) are special cases corresponding to n = 1 of the known
master triangle inequality

u2 + v2 + w2 ≥ (−1)n+1{2vw cosnA+ 2wu cosnB + 2uv cosnC} (9)

[[misprint of 2uc cosnC in last term has been corrected. — R.]]

where u, v, w are arbitrary real numbers; A, B, C are angles of an arbitrary triangle.
There is equality if and only if u/ sinnA = v/ sinnB = w/ sinnC (M. S. Klamkin,
Asymmetric triangle inequalities, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz.,
No.357–No.380(1971) 33–44). Letting u = ax, v = by, w = cz, (9) for n = 1 is also
equivalent to

a2x2 + b2y2 + c2z2 ≥ (b2 + c2 − a2)yz + (c2 + a2 − b2)zx+ (a2 + b2 − c2)xy (10)

The latter inequality can be traced back to Wolstenholme (ibid.).

By multiplying (3) and (4) by 4s and using 2rs =
∑
ar1 they can be rewritten respec-

tively as ∑
cyclic

{a2r2
1 − (b2 + c2 − a2)r2r3} ≥ 0 (11)

∑
cyclic

{a(2b+ 2c− a)r2
1 + [(b+ c)2 − a2 − 6bc]r2r3} ≥ 0 (12)

Now noting that if a2
1 = a(2b + 2c − a), b21 = b(2c + 2a − b) and c21 = c(2a + 2b − c),

then a1, b1, c1 are sides of a triangle, it follows that (11) and (12) are valid for all real
r1, r2, r3 with equality if and only if r1 = r2 = r3.

One can also obtain (8) as a special case of (10).

A further generalization of (2) is given by

(xrm
1 + yrm

2 + zrm
3 )1/m

{(
am

x

)1/(m−1)

+

(
bm

y

)1/(m−1)

+

(
cm

z

)1/(m−1)
}(m−1)/m

≥ 2∆

where x, y, z, m−1 > 0; this follows from Hölder’s inequality.
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ANALYSIS

Limits: sequences

Math. Mag., 48(1975) 293–294.

958. Proposed by Murray S. Klamkin, University of Waterloo

Give direct proofs of the following two results:

a. If Re(z0) > 0 and the sequence {zn} is defined for n ≥ 1 by

zn =
1

2

(
zn−1 +

A

zn−1

)
where A is real and positive, then limn→∞ =

√
A.

b. Suppose {xn} is a real sequence defined for n ≥ 1 by

xn =
1

2

(
xn−1 −

A

xn−1

)
where A is positive. Show that if p is a given integer greater than 1, then the initial
term x0 can be chosen so that {xn} is periodic with period p. (These results are
contained implicitly in K. E. Hirst, A square root algorithm giving periodic sequences,
J. London Math. Soc., (2) 6(1972) 56–60.)

Math. Mag., 50(1977) 48–49.

Solution by L. van Hamme, Vrije Universiteit Brussel, Brussels, Belgium. a. If w is a
complex number defined by

z0 =
√
A

1 + w

1− w

then

Re(z0) =
z0 + z̄0

2
=

√
A

2

(
1 + w

1− w
+

1 + w̄

1− w̄

)
=
√
A

1− |w|2

|1− w|2

The condition Re(z0) > 0 is therefore equivalent to |w| < 1. Now

z1 =
1

2

(√
A

1 + w

1− w
+
√
A

1− w

1 + w

)
=
√
A

1 + w2

1− w2

Using repeatedly the relation

zn =
1

2

(
zn−1 +

A

zn−1

)
we find in the same way

zn =
√
A

1 + w2n

1− w2n
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Since |w| < 1 it follows that limn→∞ zn =
√
A.

Remark. If Re(z0) < 0 one finds limn→∞ zn = −
√
A.

b. Take x0 =
√
A cot(π/(2p − 1)). Wewill show that xn =

√
A cot(π · 2n/(2p − 1)) for

n ≥ 0. This follows, by induction, from

xn+1 =

√
A

2

[
cot

(
π · 2n

2p − 1

)
− tan

(
π · 2n

2p − 1

)]
=
√
A cot

(
π · 2n+1

2p − 1

)
Hence

xn+p =
√
A cot

(
π · 2n+p

2p − 1

)
=
√
A cot

(
π · 2n +

π · 2n

2p − 1

)
=
√
A cot

(
π · 2n

2p − 1

)
= xn

and {xn} has period p.
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SOLID GEOMETRY

Skew quadrilaterals

Math. Mag., 48(1975) 295, 303.

Q 630. Submitted by M. S. Klamkin and M. Sayrafiezadeh

Suppose a skew quadrilateral ABCD with diagonal AC perpendicular to diagonal BD
is transformed into the quadrilateral A′B′C ′D′ so that the corresponding lengths of
the sides are preserved. Prove that A′C ′ is perpendicular to B′D′.

A 630. The result is a consequence of the following, which is elementary but apparently
not widely known:

Theorem. Given vectors a, b, c and d such that a + b + c + d = 0, then (a+b) is
perpendicular to (a+d) if and only if |a|2 + |c|2 = |b|2 + |d|2.

Proof. Using dot products,

c · c = (−1)2(d+ a+ b) · (d+ a+ b) = |a|2 + |b|2 + |d|2 + 2(a · b+ a · d+ d · b)
= |b|2 + |d|2 − |a|2 + 2(a · a+ a · b+ a · d+ d · b)

Hence
|a|2 + |c|2 = |b|2 + |d|2 + 2(a+ b) · (a+ d)

and the theorem follows.

Note. A more geometric proof can be given by considering spheres centered at some
of the vertices of the figuresand the powers of certain points with respect to them.
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Math. Mag., 48(1975) 296–297.

Trilinear Coordinates

916. [November, 1974]. Proposed by H. Demir, M.E.T.U., Ankara, Turkey

Let XY Z be the pedal triangle of a point P with respect to the triangle ABC. The
find the trilinear coordinates x, y, z of P such that

Y A+ AZ = ZB +BX = XC + CY.

Solution by M. S. Klamkin, University of Waterloo. By drawing segments from P
parallel to AB and AC respectively and terminating on BC it follows that

BX = x cotB + z cscB CX = x cotC + y cscC

The other distances CY , AY , AZ, BZ follow by cyclic interchange. From the hypoth-
esis,

(y + z)(cotA+ cscA) = (z + x)(cotB + cscB) = (x+ y)(cotC + cscC) =
2s

3

where s = semiperimeter. Solving:

x =
s

3

(
tan

B

2
+ tan

C

2
− tan

A

2

)
y =

s

3

(
tan

A

2
+ tan

C

2
− tan

B

2

)
and

z =
s

3

(
tan

A

2
+ tan

B

2
− tan

C

2

)
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ANALYSIS

Differential equations: order 4

Math. Mag., 49(1976) 44, 48.

Q 631. Submitted by M. S. Klamkin, University of Waterloo

Solve the differential equation (xD4 − axD + 3a)y = 0.

A 631. We solve the more general problem (xDn+1 − knxD + kn)y = 0. The equa-
tioncan be factored into (Dn − kn)(xD − n)y = 0. Thus,

(xD − n)y =
n−1∑
i=0

Aie
kωix

where ω is a primitive n th root of unity and the Ai are arbitrary constants. Integrating
again, we get

y = Anx
n + xn

n−1∑
i=0

Ai

∫
fracekωix dxxn+1
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ANALYSIS

Rate problems

Math. Mag., 49(1976) 95–101.

The Longest Swim January 1975

926. Proposed by Melvin F. Gardner, University of Toronto

A swimmer can swim with speed v in still water. He is required to swim for a given
length of time T in a stream whose speed is r < v. If he is also required to start
and finish at the same point, what is the longest path (total arc length) that he can
complete? Assume the path is continuous with piecewise continuous first derivatives.

Solution by M. S. Klamkin, University of Waterloo. If θ(t) denotes the angle heading
of the swimmer with respect to the stream velocity, then

ẋ =
dx

dt
= v cos θ + r ẏ =

dy

dt
= v sin θ

The length L of a closed path swum in time T is then given by

L =

∫ T

0

{ẋ2 + ẏ2}1/2 dt =

∫ T

0

{v2 + 2vr cos θ + r2}1/2 dt

=

∫ T

0

{v2 − r2 + 2rẋ}1/2 dt

Applying the Schwarz-Buniakowski inequality and noting that
∫ T

0
ẋ dt = 0

L2 ≤
∫ T

0

{v2 − r2 + 2rẋ} dt ·
∫ T

0

dt = T 2(v2 − r2)

with equality if and only if ẋ = constant. Thus Lmax = T (v2 − r2)1/2 for a back and
forth segment path perpendicular to the stream velocity.

We can also find the closed path of minimum length for a given time T . Since

v2 + 2vr + r2 ≥ (v + r cos θ)2

L ≥
∫ T

0

(v + r cos θ) dt =

∫ T

0

{v + r(ẋ− r)/v} dt = (v2 − r2)T/v

with equality if and only if cos2 θ = 1. Thus Lmin = (v2 − r2)T/v for a back ad forth
segment path parallel to the stream velocity.

The above reults are generalized for the flight of an aeroplane in a three-dimensional
irrotational wind field in a paper On extreme length flight paths submitted for publi-
cation.
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NUMBER THEORY

Forms of numbers: sums of squares

Math. Mag., 49(1976) 96, 101.

Q 634. Submitted by M. S. Klamkin, University of Waterloo

If a, b, c, d are positive integers where ab = cd, show that a2 + b2 + c2 + d2 is always
composite.

A 634. Since d = ab/c, a = mn, b = rs, c = mr, d = ns. The,

a2 + b2 + c2 + d2 = (m2 + s2)(n2 + r2)

This problem appeared on a West German Olympiad.

GEOMETRY

Equilateral triangles: orthogonal projection

Math. Mag., 49(1976) 211.

988. Proposed by Murray S. Klamkin, University of Waterloo

A given equilateral triangle ABC is projected orthogonally from a given plane P to
another plane P ′. Show that the sum of the squares of the sides of triangle A′B′C ′ is
independent of the orientation of the triangle ABC in plane P .

Math. Mag., 51(1978) 71–72.

Solution by W. Weston Meyer, General Motors Research Laboratories. We associate
complex variables z = x+ iy and z′ = x′ + iy′with P and P ′ respectively. Let Π be a
closed n-sided polygom in P with vertices z1, z2, . . ., zn, zn+1 (zn+1 = z1), and let Π′ be
the image of Π in P ′ under an affine transformation x′ = ax+ by+ c, y′ = dx+ ey+ f .
In terms of z′ and z the transformation can be written z′ = αz + βz̄ + γ where α, β,
γ are complex constants and z̄ is the conjugate of z. A side ∆j = zj+1 − zj of Π will
transform: ∆′

j = α∆j + β∆̄j. Applying the cosine law identity

|u+ v|2 = |u|2 + |v|2 + 2Re(uv̄)

one obtains
|∆′

j|2 = (|α|2 + |β|2)|∆j|2 + 2Re(αβ̄∆2
j)

for the squared length pf ∆′
j. Let

S =
n∑

j=1

|∆j|2 S ′ =
n∑

j=1

|Delta′j|2 and σk =
n∑

j=1

∆k
j (k = 1, 2)
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Then S ′ = (|α|2 + |β|2)S+ 2Re(αβ̄σ2). Rotation of Π through an angle θ in plane
P will leave S unchanged while causing each ∆2

j , and hence σ2, to rotate through an
angle 2θ. The sum S ′ will be fixed for all θ if and only if the same is true of Re(αβ̄σ2),
in other words if and only if αβ̄σ2 = 0. We have the following theorem:

Under any affine transformation, other than a similarity transformation,
for S ′ to be independent of the orientation of Π in P it is necessary and
sufficient that ∆1, ∆2, . . ., ∆n be roots of ∆n − pn−3(∆) = 0, where pn−3

is a polynomial of degree n−3 at most.

It is generally true that
(∆ − ∆1)(∆ − ∆2) · · · (∆ − ∆n) = ∆n − σ1∆

n−1 + 1
2
(σ2

1 − σ2)∆
n−2 − pn−3(∆). In

the present case, σ1 = 0 because Π is closed; by excluding similarity (i.e., conformal)
transformations we deny the value 0 to αβ̄ so that αβ̄σ2 = 0 only if σ2 = 0. Thus the
theorem.

When n = 3, pn−3 must be a constant. This establishes the equilateral triangle as the
only triangle with the O-I property (meaning that S ′ is orientation-independent). By
reason of the cyclotomic equation, ∆n = 1, all regular polygons have the O-I property;
but a polygon of more than three sides need not be regular to have it. Indeed, by the
addition of a single vertex, any n-gon lacking the property can be expanded into an
(n+1)-gon possessing it. We should mention, finally, that orthogonal projection from
P to P ′ is a special case of affine transformation, non-conformal if the planes are not
parallel.
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GEOMETRY

Triangle inequalities: medians and sides

Math. Mag., 49(1976) 212, 218.

Q 638. Submitted by M. S. Klamkin, University of Waterloo

Let a, b and c denote the sides of an arbitrary triangle with respective medians ma,
mb and mc. Determine all integral p and q so that(√

3

2

)p

(apmq
a + bpmq

b + cpmq
c) ≥

(√
3

2

)q

(aqmp
a + bqmp

b + cqmp
c)

A 639. If ais any integer, (−1)|a| = (−1)a. Hence,

(−1)
P
|ki−mi| =

∏
(−1)|ki−mi| =

∏
(−1)(ki−mi) = (−1)

P
(ki−mi) = (−1)0 = 1

Thus
∑
|ki −mi| must be even.
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ALGEBRA

Means

Math. Mag., 49(1976) 253.

1000. Proposed by Murray S. Klamkin, University of Waterloo

T denotes a cyclic permutation operator actingonthe indices of a sequence {ai}, that
is, T (a1x1 + a2x2 + · · · + anxn) = a2x1 + a3x2 + · · · + a1xn. If, for all i, ai ≥ 0 and
xi > 0, show that{

n∑
i=1

ai

n

}n

≥
n∏

i=1

T i

{
a1x1 + a2x2 + · · ·+ anxn

x1 + x2 + · · ·+ xn

}
≥

n∏
i=1

ai

Math. Mag., 51(1978) 201.

Solution by Jerry Metzger, University of North Dakota. Let

wi = T i

{
a1x1 + · · ·+ anxn

x1 + · · ·+ xn

}
Since the geometric mean of the wi never exceeds their arithmetic mean, we have

n∑
i=1

a1

n
=

n∑
i=1

wi

n
≥

(
n∏

i=1

wi

)1/n

which yiels the left-hand inequality. Also, from the arithmetic mean-geometric mean
inequality,

T i

{∑
aixi∑
xi

}
≥ {ax1

i · · · axn−i+1
n an−i+2

1 · · · axn
i−1}1/

P
xi

so that
n∏

i=1

T i

{∑
aixi∑
xi

}
≥

n∏
i=1

ai
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ALGEBRA

Rate problems: rivers

Math. Mag., 50(1977) 46.

1004. Proposed by Murray S. Klamkin, University of Alberta

A river flows with constant speed w. A motorboat cruises with a constant speed v
with respect to the river, where v < w. If the path travelled by the boat is a square of
side L with respect to the ground, the time of traverse will vary with the orientation
of the square. Determine the maximum and minimum time for the traverse.

Math. Mag., 51(1978) 248.

Solution by Paul Y. H. Yiu, University of Hong Kong.

To travel along the side of a square making an angle θ ≤ π/2 with the direction of
the current, the motorboat must be set in an appropriate direction, as shown in the
diagram below, and the resultant speed is

u1 =
√
v2 − w2 sin2 θ + w cos θ

u2 u1

v v
w

θ

The same diagram shows that the resultant speed along the opposite side is

u2 =
√
v2 − w2 sin2 θ − w cos θ

Replacing θ by (π/2)− θ we obtain the resultant speeds u3 and u4 along the other two
sides. The time T of the traverse is L(u−1

1 + u−1
2 + u−1

3 + u−1
4 ). Thus we find that

T =
2L

v2 − w2

[
2v2 − w2 +

√
(2v2 − w2)2 − (w2 cos 2θ)2

]1/2

We see that the minimum occurs when θ = 0 and Tmin = 2L(v+
√
v2 − w2)/(v2−w2).

The maximum occurs when θ = π/4 and Tmax = 2L(4v2 − 2w2)1/2/(v2 − w2).

[[On Math. Mag., 50(1977) 47, in connexion with Problem 955 there is quoted:

M. S. Klamkin, An identity for simplexes and related inequalities, Simon Stevin,
48(1974-1975) 57–64. ]]
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SOLID GEOMETRY

Space curves

Math. Mag., 50(1977) 165–166.

Coplanar Points November 1975

962. Proposed by Curt Monash, The Ohio State University

Consider the space curve C(t) defined by C(t) = (tk, tm, tn) for t ≥ 0 and k, m, n
integers.

a. Show that if (k,m, n) equals (1,2,3) or (−2,−1, 1), then C(t) does not contain four
coplanar points.

b. Show that for (k,m, n) = (1, 3, 4), C(t) does contain four coplanar points.

c∗. Find a characterization of (k,m, n) so that C(t) does not contain four coplanar
points.

I. Solution by Vaclav Konecny, Jarvis Christian College. Consider the equation of a
plane in usual notation A ≡ ax+ by + cz + d = 0. C(t) has common points with A if
atk + btm + ctn + d = 0 (t ≥ 0). As k, m, n are integers this equation can be always
rewritten as polynomial equation in t. The number of changes of coefficients can be
made maximum 3. Thus the number of positive roots is not greater than 3. Therefore
C(t) does not contain four coplanar points except in some special cases (e.g., k = m;
k = n; m = n; k = m = n) when the curve is in a plane.

[[the above solution, where the English could be improved, has been included, since it
may be that Murray’s solution (where ‘1/6’ should ? be replaced by ‘6 times’) refers
to conditions therein. I’m not clear about the ‘characterization’ — why does ‘b.’ have
four coplanar points ?]]
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II. Solution by M. S. Klamkin, University of Alberta. We shall show that C(t) never
contains four coplanar points under the given constraints.

[[what are these ?]]

Let the four points correspond to a, b, c, d. Then there will be no four coplanar points
if the alternant determinant∣∣∣∣∣∣∣∣

1 ak
1 am

2 an
3

1 bk1 bm2 bn3
1 ck1 cm2 cn3
1 dk

1 dm
2 dn

3

∣∣∣∣∣∣∣∣ ≡ |a
0bkcmdn| 6= 0

(here the determinant is 1/6 of the volume of the tetrahedron spanned by the four
points).

It is a known result [1,2] that the generalized Vandermonde determinant |aα1
1 a

α2
2 · · · aαn

n |,
where a1, a2, . . ., an are positive and α1, α2, . . ., αn are real numbers, is equal to zero if
and only if either amongst the numbers ai or amongst the numbers αi some are equal.
Note that, if say a = 0, the determinant reduces to the lower order one |bkcmdn|. For
the case where any of the (k,m, n) are negative, none of a, b, c, d can be zero. Then
by clearing of fractions, we are back to the previous cases.

In particular, it is known that

|a0b1c3d4| = D
∑

ab

|a0b1c3d5| = D{
∑

a2b+ 2
∑

abc}

|a0b2c3d5| = D{
∑

a2bc+ 3abcd}

|a0b1c4d5| = D{
∑

a2b2 +
∑

a2bc+ 2abcd}

|a0b1c3d6| = D{
∑

a3b+
∑

a2b2 + 2
∑

a2bc+ 3abcd}

where the summations are symmetric sums over a, b, c, d and

D = |a0b1c2d3| = (a− b)(a− c)(a− d)(b− c)(b− d)(c− d)

1. A. P. Mishina, I. V. Proscuryakov, Higher Algebra, Pergamon, Oxford, 1965, pp.14–15.

2. F. R. Gantmacher, M. G. Krein, Oscillating Matrices and Kernels and Small Vibrations of Me-
chanical Systems, Gostekhizat, Moscow, 1950, p.88. [[Gostekhizdat ?]]
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GEOMETRY

Triangle inequalities: interior point

Math. Mag., 50(1977) 212–213.

A Geometric Inequality: Completed November 1975

959. Proposed by L. Carlitz, Duke University

Let P be a point in the interior of the triangle ABC and let r1, r2, r3 denote the
distances from P to the sides of the triangle.

Let R denote the circumradius of ABC. Show that

√
r1 +

√
r2 +

√
r3 ≤ 3

√
R/2

with equality if and only if ABC is equilateral and P is the center of ABC.

Comment by Murray S. Klamkin, University of Alberta. The n-dimensional extension
of this problem (Jan. 1977) is not entirely complete. The verification of the extreme
point was said to be easy and consequently was not done. However, since this is a
maximum problem subject to the constraints

∑
ei/hi = 1, ei ≥ 0, one has to check for

extrema on all the boundaries of the constraint domain, which consists of very many
faces of dimensions 0 to n − 1. Here we give a still further extension with a simple
(non-calculus) proof using Hölder’s inequality.

We will show that{∑
x

2p/(2p−3)
i

}(2p−3)/2p

·
{
R2(n+ 1)3

n2

}1/2p

≥
∑

xir
1/p
i (1)

where xi (i = 1, 2, . . . , n+ 1) are arbitrary non-negative numbers, ri are the distances
from an interior point P of an n-simplex to the (n−1)-dimensional faces, R is the
circumradius of the simplex, and p is any number greater than 3/2. Letting xi = 1
and p → 3/2, we recapture the extension given previously by Gerber. For n = 2 and
p = 2 we obtain

27R2

4
(x4

1 + x4
2 + x4

3) ≥ {x1

√
r1 + x2

√
r2 +

√
r3}4

There is equality in (1) if and only if the simplex is regular, P is the centroid and the
xi are equal.

Proof. By Hölder’s inequality,{∑
ri/hi

}1/p {∑
xq

ih
q/p
i

}1/q

≥
∑

xir
1/p
i (2)
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and {∑
x

2p/(2p−3)
i

}(2p−3)/2p

·
{∑

h2
i

}q/2p

≥
∑

xq
ih

q/p
i (3)

where 1/p+ 1/q = 1 and p > 3/2. Combining (2) and (3), using
∑
ri/hi = 1 (ri = ei

in Gerber’s notation and hi = altitude of simplex from vertex i), we get{∑
x

2p/(2p−3)
i

}(2p−3)/2p

·
{∑

h2
i

}1/2p

≥
∑

xih
1/p
i

Finally, using ∑
h2

i ≤
∑

m2
i

where mi is the median of the simplex from vertex i and

n2
∑

m2
i ≤ R2(n+ 1)3

we obtain (1).

Although Gerber notes that (4) is an immediate consequence of Lagrange’sidentity
(which may have been known to Leibniz), we include a proof for completeness.

Let Vi and G denote vectors from the circumcenter O to the vertices Vi and to the
centroid, respectively, of the simplex. Then∑

V2
i =

∑
{(Vi −G) + G}2

=
∑

|ViG|2 + (n+ 1)|OG|2

Since |Vi|2 = R2 and |ViG| = nmi/(n+ 1) we obtain (4). Further applications of this
polar moment of inertia identity are given in this Magazine, 48(1975) 44–46.

[[the above comment includes references to the following article:

Geometric Inequalities via the Polar Moment of Inertia

M. S. Klamkin, Ford Motor Company, Dearborn, Michigan

and to the solution by Gerber, which is given below: ]]

Math. Mag., 50(1977) 50–51.

II. Solution (generalization) by Leon Gerber,. Let P be a point in an n-simplex A with
inradius r and circumradius R. Let the distances of P from the vertices and faces of
A be respectively di and ei for i ∈ I = {0, 1, . . . , n}. Berkes [1] proved that(

1

n+ 1

∑
dp

i

)1/p

≥ nr (1)
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for p = 1. Since the left side is a power mean, which increases with p. the result follows
for all p ≥ 1. In [2, Theorem 4.4] we proved (1) for p ≥ 2/[1 + log(n+ 1)] and also(

1

n+ 1

∑
ep

i

)1/p

≤ R/n (2)

for p ≤ 0. The present problem is that of proving (2) for n = 2 and p = 1/2. We shall
prove (2) for p = 2/3 and hence obtain:

Theorem. Inequality (2) isvalid for all p ≤ 2/3. Equality holds if and only if P is the
center of a regular simplex. (We conjecture that the best possible exponent exceeds 2/3
and approaches 1 as n increases.)

Proof. Let hi be the altitude to face i, Vi the n-dimensional volume of the n-simplex
with vertex P and opposite face i, V the volume of the given simplex, and Ki the
(n−1)-dimensionalarea of face i. Then∑ ei

hi

=
∑ eiKi/(n+ 1)

hiKi/(n+ 1)
=
∑ Vi

V
= 1

Hence the problem becomes

maximize
∑

e
2/3
i subject to

∑ ei

hi

= 1

The method of Lagrange multipliers yields

2

3
e
−1/3
i − λh−1

i = 0 i ∈ I (3)

for the extreme point; it is easy to verify that this yields a maximum. Then

ei =

(
2hi

3λ

)3

1 =
∑ ei

hi

=

(
2

3λ

)3∑
h2

i and λ =
2

3

(∑
h2

i

)1/3

Multiplying (3) by 3ei/(2(n+ 1)) and summing, we get[
1

n+ 1

∑
e
2/3
i

]3/2

=

[
3λ

2(n+ 1)

]3/2

= (n+ 1)−3/2
(∑

h2
i

)1/2

for the extreme point. Since this last expression is independent of λ and ei we have[
(n+ 1)−1

∑
e
2/3
i

]3/2

≤ (n+ 1)−3/2
(∑

h2
i

)1/2

(4)

for all points of A.

Let G be the centroid and C the circumcenter of A, and let AiGi (i ∈ I) be the
medians. Clearly hi ≤ AiGi (i ∈ I), with equality if and only if A is regular, in which
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case equality holds in (4) ifand only if P is the center. Further, it is an immediate
consequence of Lagrange’s identity that

0 ≤ CG2 = R2 − (n+ 1)−1
∑

AiG
2 = R2 − n2(n+ 1)−3

∑
AiD

2
i

with equality if and only if C = G, which holds if and only if A is regular. Thus[
(n+ 1)−1

∑
e
2/3
i

]3/2

≤ (n+ 1)−3/2
(∑

h2
i

)1/2

≤ (n+ 1)−3/2
(∑

AiG
2
i

)1/2

≤ R/n

1. J. Berkes, Einfacher Beweis und Verallgemeinerung einer Dreiecksungleichung, Elem. Math.,
22(1967) 135–136; MR 20 #1254.

2. L. Gerber, The orthocentric simplex as an extreme simplex, Pacific J. Math., 56(1975) 97–111;
MR 51 #12717.
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[[The 50-year index contains the following Murray items:]]

A note on an n-th order differential equation, 32(1958) 33–34.

A probability of more heads, 44(1971) 146–149.

(with R. G. McLenaghan) An ellipse inequality, 50(1977) 261–263.

An extension of the butterfly problem, 38(1965) 206–208; Sequels, 42(1969) 17–21,
21–23; 46(1973) 278, 280; 49(1976) 86–87.

Circle through three given points, 44(1971) 279–282.

(with Ernest C. Schlesinger) Diamond inequalities, 50(1977) 96–98; Comment, 50(1977)
276.

Duality in spherical triangles, 46(1973) 208–211.

Extensions of some geometric inequalities, 49(1976) 28–30.

(with D. J. Newman) Extensions of the Weierstrass product inequalities, 43(1970)
137–141.

Geometric Inequalities via the polar moment of inertia, 48(1975) 44–46.

On Barbier’s solutionof the Buffon needle problem, 28(1955) 135–138.

On ruled and developable surfaces of revolution, 27(1954) 207–209.

On some problems in gravitational attraction, 41(1968) 130–132.

On some soluble N th order differential equations,43(1970) 272–275.

On the volume of a class of truncated prisms and some related centroid problems,
41(1968) 175–181; Correction, 42(1969) 23.

Perfect squares of the form (m2 − 1)a2
n + t, 42(1969) 111–113.

(with D. J. Newman) Some combinatorial problems of arithmetic, 42(1969) 53–56.

The equation of a sphere, 42(1969) 241–242.

(with Ralph P. Boas) Extrema of polynomials, 50(1977) 75–78.

(with G. D. Chakerian) Minimal covers for closed curves, 46(1973) 55–61.

(with G. D. Chakerian and G. T. Sallee) On the butterfly problem, 42(1969) 21–23.

(with Leon Bankoff and Paul Erdős) The asymmetric propeller, 46(1973) 270–272.

(with Robert W. Gaskell and P. Watson) Triangulations and Pick’s theorem, 49(1976)
35–37; Comment, 49(1976) 105, 158.

[[I just tried ‘Klamkin’ on MathSciNet – 115 hits, all of them Murray. Would be easy
to pick them all up, if wanted. – R.]]
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NUMBER THEORY

Digit problems: primes

Math. Mag., 51(1978) 69.

1029∗. Proposed by Murray S. Klamkin, University of Alberta

Does there exist any prime number such that if any digit (in base 10) is changed to
any other digit, the resulting number is always composite?

Math. Mag., 52(1979) 180–182.

Solution by Paul Erdős, Hungarian Academy of Science. We prove a slightly stronger
result and in the end make some comments and state a few more problems.

For every k > k0 there are primes

p =
k∑

i=0

ai10i a0 > 0, ak > 0, 0 ≤ ai ≤ 9

so that all the integers

p+ t · 10i |t| ≤ 10 0 ≤ i ≤ k (1)

are composite. In fact there are 21(k + 1) integers of the form (1). Put x = 10k+1.
We will determine p mod qi where the qi will be suitably chosen primes whose product
is less than xε where ε is small but fixed. Then by Linnik’s theorem (the smallest
p ≡ a (mod b) is less than bc for an absolute constant c if (a, b) = 1) there is a p < x
which satisfies all these congruences. The congruences will be chosen so that all of the
numbers will be multiples of one of the qi; thus they are all composite.

By a well-known theorem of Bang-Birkhoff-Vandiver, there is always a qj so that
10j ≡ 1 mod qj and 10i 6≡ 1 (mod q)j 1 ≤ i < j. (The theorem states: for every
a and j [except 26 − 1] there is a qj so that aj − 1 ≡ 0 (mod q)j and ai − 1 6≡ 0
(mod q)j for every 1 ≤ i < j.) Consider these primes so that

r∏
j=1

qj ≤ xε/2 <

r+1∏
j=1

qj

since
∏r

j=1 qj < 10r2
, r can be chosen as [ε

√
log x]. Now we determine the congruences.

Suppose that the congruences

p ≡ um (mod q)m 1 ≤ m ≤ j − 1

have already been determined. Let b1, . . ., bsj−1
be the integers of the form t · 10i,

|t| ≤ 10, 0 ≤ i ≤ k which do not satisfy any of the congruences

t · 10i ≡ −um (mod q)m 1 ≤ m ≤ j − 1
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The numbers t · 10i determine at most 21j residues mod qj (since 10i takes exactly
j distinct values by 10j ≡ 1 (mod q)j). Therefore thereis a uj for which bL ≡ −uj

(mod q)j, 1 ≤ L ≤ j is satisfied by at least {bsj−1
} values of L where {N} denotes the

least integer ≥ N . Put p ≡ uj (mod q)j. This determines the congruences

p ≡ uj (mod q)j 1 ≤ j ≤ r = [ε
√

log x] (2)

The number of integers t · 10j, |t| ≤ 10, 1 ≤ j ≤ k fpr which p + t · 10j (p satisfying
the congruences (1)) is not a multiple of one of the qj 1 ≤ j ≤ r is at most

21(k + 1)
r∏

j=2

(
1− 1

j

)
<

21 log x

r
<

21
√

log x

ε

Let v1, v2, . . ., vx, x < 21 log x
ε

be those integers of the form t · 10j. Let Q1, Q2, . . .,
Qx be the consecutive primes which are not qi. Put

p ≡ −vi (mod Q)i i = 1, . . . , x (3)

There are r + x congruences (2) and (3). The product of the moduli equals

r∏
j=1

qj

x∏
i=1

Qi < xε/2xε/2 = xε

(
∏
Qi < xε/2 is trivial from the prime number theorem or a much more elementary

result.) This completes our proof since the primes p satisfying (2) and (3) satisfy(1)
and as stated by Linnik there are primes p < x.

Denote by la(p) the exponent of a mod p.

I can prove ∑
p<x

1

la(p)
> xc (4)

and in (4) probably c can be taken to be 1− ε, but this seems very difficult.

From (4) we can deduce by the methods used here that there are infinitely many primes
p, 10k < p < 10k+1, so that if we simultaneously alter (log k)ε digits we always get a
composite number.

Is it true that if am > cm/m, c > 1, m = 1, 2, . . . then there are always primes, in fact
infinitely manyof them, so that all the numbers p + am, am < p are composite ? I do
not know.

Editor’s Comment. Individual computer searches by Allan Wm. Johnson, Harry L. Nel-
son and Stanley Rabinowitz found six-digit primes which provide a solution. The
complete list of such six-digit primes supplied by Nelson is: 294001, 505447,584141,
604171 and 971767. Rabinowitz supplied the table below which shows a divisor for
each number that can be formed from 294001 by changing one digit.

158



digit replacement digit
changed 0 1 2 3 4 5 6 7 8 9
100000 23 3 1 47 3 73 7 3 587 239
10000 7 173 3 29 17 3 227 7 3 1
1000 3 397 29 3 1 7 3 43 11 3
100 1 19 3 7 83 3 151 11 3 29
10 1 41 3 29 11 3 157 409 3 7
1 2 1 2 3 2 5 2 7 2 3

TRIGONOMETRY

Inequalities: tan and sec

Math. Mag., 51(1978) 128, 132.

Q 652. Submitted by M. S. Klamkin, University of Alberta

Show that
∑n

i=1(1 + tanαi) ≤
√

2
∑n

i=1 secαi when secαi > 0. When does equality
hold ? (This is a generalization of Q472, March 1970.)

A 652. We see that

n∑
i=1

(1 + tanαi) =
n∑

i=1

sinαi + cosαi

cosαi

=
√

2
n∑

i=1

sin(α1 + π/4)

cosαi

≤
√

2
n∑

i=1

secαi

Equality holds if and only if sin(αi + π/4) = 1 for all i. In particular, if α1, α2 and
α3 are the angles of a triangle, then 3 +

∑
tan 3αi/4 ≤

√
2
∑

sec 3αi/4 with equality
if and only if the triangle is equilateral.

In the original answer to Q472 it was also shown that secα + sec β ≥ 2. Again, this
isn’t sharp. Since sec x is convex in (−π/2, π/2),

1

n

n∑
i=1

secαi ≥ sec

(
n∑

i=1

αi/n

)

with equality if and only if αi = constant.
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GEOMETRY

Triangle inequalities: radii

Math. Mag., 51(1978) 193.

1043. Proposed by M. S. Klamkin, University of Alberta

If (ai, bi, c1)are the sides, Ri the circumradii, ri the inradii. and si the semi-perimeters
of two triangles (i = 1, 2), show that{

s1

r1R1

s2

r2R2

}1/2

≥ 3

{
1

√
a1a2

+
1√
b1b2

+
1

√
c1c2

}
(1)

with equality if and only if the two triangles are equilateral.

Also show that the analogous three triangle inequality{
s1

r1R1

s2

r2R2

s3

r3R3

}1/2

≥ 9

{
1

√
a1a2a3

+
1√
b1b2b3

+
1

√
c1c2c3

}
(2)

is invalid.

Math. Mag., 52(1979) 320–321.

Solution by Paul Bracken, undergraduate, University of Toronto. We prove first that

(a1 + b1 + c1)(a2 + b2 + c2) ≥ 3
(√

a1a2b1b2 +
√
b1b2c1c2 +

√
a1a2c1c2

)
(3)

Apply the Schwarz inequality x1y1 + x2y2 ≤
√
x2

1 + x2
2

√
y2

1 + y2
2 to

L ≡
√
a1 + b1 + c1

√
a2 + b2 + c2 to obtain

L ≥
√
a1a2 +

√
b1b2 +

√
c1c2 and

L2 ≥ a1a2 + b1b2 + c1c2 + 2
(√

a1a2b1b2 +
√
b1b2c1c2 +

√
a1a2c1c2

)
But certainly for positive x, y, z we know that x2 + y2 + z2 ≥ xy + yz + zx. Set
x =

√
a1a2, y =

√
b1b2 and z =

√
c1c2 in this inequality and apply it in the previous

expression for L2. This gives (3) immediately.

Now L2 is 4s1s2 and we have the well-known relation 4riRi = (aibici)/si (i = 1, 2).
Hence

4s1s2 =
√
s1s2/(r1R1r2R2) ·

√
a1a2b1b2c1c2

By using this in (3) and dividing both sides by
√
a1a2b1b2c1c2, (1) is proved. Equality

will hold in (3) if and only if we have a1 = a2 = b1 = b2 = c1 = c2; thatis if both
triangles are equilateral, sice only then will equality hold in both of the inequalities
that were used above.
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By using 4riRi = aibici/si equation (2) becomes analogous to (3):

p1p2p3 ≥ 9
(√

a1a2a3b1b2b3 +
√
b1b2b3c1c2c3 =

√
c1c2c3a1a2a3

)
This is not always true for triangles. Consider sides a1, a1/100, 99a1/100 as a1, b1, c1;
a2, a2/100, 99a2/100 as a2, b2, c2; a3, a3/100, 99a3/100 as a3, b3, c3. The left hand side
is 8a1a2a3. The right side is bigger than (8.8)a1a2a3.

[[This needs checking. The triangles are degenerate and I’m sure that non-degenerate
ones can be found. — R.]]

Comment by M. S. Klamkin, University of Alberta. As a companion inequality we also
have

4

{
1
√
a1

+
1√
b1

+
1
√
c1

}{
1
√
a2

+
1√
b2

+
1
√
c2

}
≥
{

s1

r1R1

· s2

r2R2

}1/2

or equivalently

{2
∑√

a1b1}{2
∑√

a2b2} ≥ {
∑

a1}{
∑

a2} (4)

The latter follows from the area of a triangle of sides a1/4, b1/4, c1/4 being non-negative,
i.e.,

2
∑√

ab−
∑

a ≥ 0

There’s equality in (4) if both triangles are degenerate (each having a vanishing side).

161



Math. Mag., 51(1978) 198–199.

Lott’s Problem November 1976

997. Proposed by John Lott, Student, Southwest High School, Kansas City, Missouri

Let P be a polynomial of degree n, n ≥ 2 with simple zeros z1, z2, . . ., zn. Let {gk}
be the sequence of functions defined by g1 = 1/P ′ and gk+1 = g′k/P

′. Prove for all k
that

∑n
j=1 gk(zj) = 0.

Editors’ Comment. M. S. Klamkin gives an extension by starting with the partial
fraction expansion

1

(P (z))m
=

m∑
i=1

{
Ai1

z − zi

+
Ai2

(z − zi)2
+ · · ·+ Aim

(z − zi)m

}
where the Aij are functions of the roots. By expanding both sides of this equation in
powers of 1/zand equating the coedfficients of like powers of z, he obtains the following
identities:∑

i

Ai1 = 0
∑

i

(Ai1zi) = 0
∑

i

(Ai1z
2
i + 2Ai2zi + Ai3) = 0 etc.

He then shows (m − 1)!Ai1 = gm(zi) and derives other recurrence relations for the
remaining Aij.
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ANALYSIS

Curves: normals

Math. Mag., 52(1979) 113.

1067. Proposed by M. S. Klamkin, University of Alberta

Problem P.M.11 on the first William Lowell Putnam Competition, April 16, 1938, was
to find the length of the shortest chord that is normal to the parabola y2 = 2ax,
a > 0, at one end. A calculus solution is quite straightforward. Give a completely
“non-calculus” solution.

Math. Mag., 53(1980) 185.

Solution by J. M. Stark, Lamar University. Let t be a real parameter, t > 0. Then
P [t2/(2a), t] is a point on that part of the parabola y2 = 2ax which lies above the
x-axis.

A line withslope m passing through P has equation

y − t = m[x− (t2/2a)] (1)

Without use of the calculus, the tangent line to the parabola at point P is found
by requiring that line (1) have a double point of intersection with the parabola at
P . Solving (1) for y and substituting into y2 − 2ax gives a quadratic in x whose
discriminant can be written in the form (2a− 2mt)2. Requiring that this discriminant
be zero gives m = (a/t) as the slope of the tangent line to the parabola y2 = 2ax at
the point P [t2/(2a), t], t > 0. By trigonometry the slope of the normal line to this
parabola at P is −t/a, and so the normal line at P has equation

y − t = (−t/a)[x− (t2/2a)] (2)

Solving simultaneously (2) and y2 = 2ax gives that the normal line to the parabola
y2 = 2ax at the point P [t2/(2a), t], t > 0, also intersects the parabola at the point
Q[(t2 + 2a2)2/(2at2),−t− (2a2)/t].

Denote by L the length of the chord PQ, normal to y2 = 2ax at P . Using the formula
for the distance between two points and factoring, it is easily obtained that

L2 = (a6/t4)[4(t/a)2 + 1][(t/a)2 − 2]2 + 27a2 (3)

Now (3) shows that L2 ≥ 27a2 and that for t > 0 the shortest chord normal to the
parabola at one end is obtained when t =

√
2a, and the shortest chord is 3

√
3a.
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ALGEBRA

Inequalities: exponentials

Math. Mag., 52(1979) 114, 118.

Q 658. Submitted by M. S. Klamkin, University of Alberta

If a, b > 0, prove that ab + ba > 1.

A 658. Since the inequality is obviously valid if either aor b ≥ 1, it suffices to consider
a = 1− x and b = 1− y, where 0 < x, y < 1. Our inequality now becomes

1− x

(1− x)y
+

1− y

(1− y)x
> 1

By the mean value theorem

(1− x)y = 1− xy

(1− θx)1−y
≤ 1− xy

Hence

1− x

(1− x)y
+

1− y

(1− y)x
≥ 1− x+ 1− y

1− xy
=

2− x− y

1− xy
− 1 + 1 =

(1− x)(1− y)

1− xy
+ 1 > 1

The stated inequality appears in D. S. Mitrinović, Analytic Inequalities, Springer-
Verlag, Heidelberg, 1970, p.281, where a more involved proof is given.

[This problem also appeared as CMB P261 by R. Schramm

Canad. Math. Bull., 20(1977) 148]
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GEOMETRY

Regular polygons: inscribed polygons

Math. Mag., 52(1979) 258.

1076. Proposed by M. S. Klamkin, University of Alberta

Let B be an n-gon inscribed in a regular n-gon A. Show that the vertices of B divide
each side of A in the same ratio and sense if and only if B is regular.

Math. Mag., 53(1980) 249–250.

Solution by Imelda Yeung, student, Oberlin College. Let Ai, Bi (i = 1, 2, . . . , n) denote
the vertices of a regular n-gon A and the vertices of an inscribed n-gon B, respectively.
Let a be the length of each side of a. If Bi divides AiAi+1 into segments of length c
and d, then by the law of cosines, we deduce that

Bi−1Bi
2

= c2 + d2 − 2cd cos θ = constant, where θ =
(k − 2)π

k

Thus4Bi−1AiBi ' 4BiAi+1 and therefore angle (Bi−1BiBi+1) = 180◦−(180◦−θ) = θ.
Hence the vertices Bi form a regular n-gon.

Conversely, if B is a regular n-gon, then angle (Bi−1BiBi+1) = angle (Ai−1AiAi+1) = θ.
It follows that

angle (AibiBi−1) + angle (AiBi−1B − i) = angle (AibiBi−1) + angle (Ai+1BiBi+1)

and so angle (AiBi−1Bi) = angle (Ai+1BiBi+1). Therefore4Bi−1AiBi ' 4BiAi+1Bi+1.
Thus Bi−1Ai = BiAi+1 and AiBi = Ai+1Bi+1. Therefore the vertices of B divide each
side of A in the same ratio and sense.

ANALYSIS

Maxima and minima: unit circle

Math. Mag., 52(1979) 259, 265.

Q 662. Submitted by M. S. Klamkin, University of Alberta

Determine the maximum of

R =
|z1z2 + z2z3 + z3z4 + z4z5 + z5z1|3

|z1z2z3 + z2z3z4 + z3z4z5 + z4z5z1 + z5z1z2|2

where z1, z2, z3, z4 and z5 are complex numbers of unit length.

A 662. Divide the denominator by |z1z2z3z4z5| and use 1/z = z̄ to obtain (with
z6 = z1) R = |

∑
zizi+1| ≤

∑
|zizi+1| = 5. The idea of this problem is based on

Problem E3528 of A. A. Bennett in the Amer. Math. Monthly, 39(1932) p.115.
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LINEAR ALGEBRA

Matrices: orthogonal matrices

Math. Mag., 52(1979) 259.

Really Orthogonal March 1978

1035. Proposed by H. Kestelman, University College, London

A is a real n×n matrix. Do there exist orthogonal matrices B such that A+B is real
orthogonal ?

Solution by M. S. Klamkin, University of Alberta. Since there are n+
(

n
2

)
= (n2 +n)/2

conditions for an n × n matrix to be orthogonal, we have n2 + n conditions on B.
Consequently, we do not expect to find solutions. In particular, let

A =

(
2 1
1 2

) (
cos θ sin θ
− sin θ cos θ

)
Then it would be necessary that (2 + cos θ, 1 + sin θ) and (1 − sin θ, 2 + cos θ) are
orthogonal vectors or that cos θ = −2.

GEOMETRY

Maxima and minima: shortest paths

Math. Mag., 52(1979) 316.

1083. Proposed by M. S. Klamkin and A. Liu, University of Alberta

Given an equilateral point lattice with
n points on a side, it is easy to draw
a polygonal path of n segments passing
through all the n(n+1)/2 lattice points.
Show that it cannot be done with less
than n segments.

n = 5Math. Mag., 53(1980) 303.

Solution by Richard Beigel, Stanford University. Proof by induction. Thisis obvious
for n = 2. Assume the proposition for n−1. If any segment is contained completely
in an edge, then at least n−1 segments are required in order to cover the remaining
points by the inductive hypothesis. Otherwise, each segment intersects an edge in at
most one point. Since each edge has n points, the proposition holds. Clearly, the proof
shows that the segments need not be connected.
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ALGEBRA

Inequalities: finite sums

Math. Mag., 52(1979) 317, 323.

Q 664. Submitted by M. S. Klamkin, University of Alberta

Prove that
n∑

k=1

(xk + 1/xk)
a ≥ (n2 + 1)a

na−1

where xk > 0 (k = 1, 2, . . . , n), a > 0 and x1 + x2 + · · ·+ xn = 1.

[[I’ve stuck in a label ‘(1)’as it’s referred to several times – is it in the right place ?
Later: I’ve moved the label down below. Is that better ? This is another of Murray’s
not-so-quickies. — R.]]

A 664. The inequality is an immediate consequence of Jensen’s inequality for convex
functions F , i.e.,

n∑
k=1

F (xk)/n ≥ F

{
n∑

k=1

xk/n

}
With equality if and only if xk = constant and followed by Cauchy’s inequality:

n∑
k=1

(xk + 1/xk)
a ≥ n

{
n∑

k=1

(xk + 1/xk)/n

}a

≥ (n2 + 1)n

na−1
(1)

It now remains to show that the function y = (x+1/x)a is convex in the given domain
0 < x < 1 or equivalently that y′′ ≥ 0. Here

y′′ = a(x+ 1/x)a−2
{
a(1− 1/x2)2 + 1/x4 + 4/x2 − 1

}
Since 1/x > 1, y′′ ≥ 0 for a ≥ 0. It also follows that y′′ < 0 for 0 > a ≥ −1.
Consequently inequality (1) is reversed for this latter domain of a. More generally,

n∑
k=1

F (xk + 1/xk)/n ≥ F

{
n∑

k=1

(xk + 1/xk)/n

}
≥ F (n+ 1/n)

for convex increasing F and the same domain as (1) for the outer inequality.

Comment. Inequality (1) is given and proved in D. S. Mitrinović, Analytic Inequal-
ities, Springer-Verlag, Heidelberg, 1970, pp.282–283, in a longer way using Lagrange
multipliers.
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Math. Mag., 53(1980) 49.

1089. Proposed by M. S. Klamkin, University of Alberta

Determine the highest power of 1980 which divides

(1980n)!

(n!)1980

Math. Mag., 54(1981) 36–37.

Solution by G. A. Heuer, Concordia College & Karl Heuer, Moorhead, Minnesota. Let
Vm(x) be the exponent of the highest power of m which divides x. If p isa prime,

Vp

(
(mn)!

(n!)n

)
= Vp((mn)!)−mVp(n!) =

∑
k≥1

([
mn

pk

]
−m

[
n

pk

])
Thus, if m has the prime factorization m =

∏r
i=1 p

ei
i

Vm

(
(mn)!

(n!)m

)
= min

i

[
1

ei

∑
k≥1

([
mn

pk
i

]
−m

[
n

pk
i

])]

The brackets [·] in all cases denote the greatest integer, and we note that the summand
is the m-residue of [mn/pk

i ]. In particular, since 1980 = 2252 · 5 · 11,

V1980

(
(1980n)!

(n!)1980

)
= min

1≤i≤4

[
1

ei

∑
k≥1

([
1980n

pk
i

]
− 1980

[
n

pk
i

])]

where e1 = e2 = 2, e3 = e4 = 1 and p1, p2, p3 and p4 are 2, 3, 5 and 11 respectively.
Depending upon n, the minimum may occur in any of the four terms. Vp((mn)!/(n!)m)
is small when n is a power of p, and for pk−1 ≤ n < pk it grows with the sum of the
digits of n in base p. If n = 8 the minimum in V1980 occurs when p = 2; if n = 9, 5 or
11 it occurs when p = 3, 5 or 11 respectively.
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1093. Proposed by M. S. Klamkin, University of Alberta

Prove that for complex numbers u, v and w,

|u− v|+ |u+ v − 2w + |u− v|| < |u+ v| (1)

if and only if

|w − v|+ |w + v − 2u+ |w − v|| < |w + v| (2)

Math. Mag., 54(1981) 212.

Editor’s Comment. While the result is true if the numbers are real, itis not necessarily
true if the numbers are complex. J. M. Stark provides an example which can be
simplified to u = 3i, v = 2i and w = i for which the first inequality is true, but the
second is false.

Math. Mag., 53(1980) 180.

1100. Proposed by M. S. Klamkin & M. V. Subbarao, University of Alberta

Suppose that F (x) is a power series (finite or infinite) with rational coefficients and

Ak =
∫ 1

0
xkF (x) dx for integers k ≥ 0.

(i) If all the Ak are rational, must F (x) be a polynomial ?

(ii) Does there exist an F (x) such that all the Ak except one are rational ?

(iii) Does there exist an F (x) such that all the Ak except AP (k), k = 0, 1, 2, . . ., are
rational, where P (k) is an integer valued polynomial, e.g., P (k) = 2k ?

(iv)∗ Given a finite indexed set Am(k) k = 0, 1, 2, . . . , n, does there exist an F (x) such
that all the Ak except the Am(k) are rational ?
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Solution by Paul J. Zwier, Calvin College. Note first that the series
∑∞

i=0 1/(k + i +
1)(m + i + 1), where k and m are nonnegative integers, is rational if k 6= m and
irrational if k = m. This follows from the fact thatif k 6= m

1

(k + i+ 1)(m+ i+ 1)
=

1

m− k

[
1

k + 1 + 1
− 1

m+ i+ 1

]
so that the series is telescopic and, if k = m, converges to an irrational number since
the series

∞∑
i=1

1

i2
=
π2

6

We can now answer questions (i), (ii) and (iv). If we define ci = 1/(m + i + 1) and
then Fm(x) =

∑
cix

i

Ak =
∞∑
i=0

1

(k + i+ 1)(m+ i+ 1)

which is rational for k 6= m and irrational for k = m. This gives a positive answer
to (ii). If we are given a finite set {m1,m2, . . . ,mn} then Fm1 + Fm2 + · · · + Fmn is a
power series with the corresponding Ai rational except when k is one of the mi. This
answers (iv) in the affirmative.

As to part (iii), if we take F (x) = (1 − x2)−1/2, then F has a power series expansion
with rational coefficients and

Ak =

∫ 1

0

xk(1− x2)−1/2 dx

We find A0 = π/2, A1 = 1 and for k ≥ 2,

Ak =
k − 1

k
Ak−2

Thus A2k is irrational and A2k+1 is rational.
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1107. Proposed by M. S. Klamkin, University of Alberta

Determine the maximum value of sinAi sinA2 · · · sinAn if tanA1 tanA2 · · · tanAn = 1

Math. Mag., 55(1982) 45.

Solution by Jeremy D. Primer, Columbia High School, Maplewood, New Jersey. Let P
denote the product of the sines. From

∏n
1 sinAi =

∏n
1 cosAi Then

P 2 =
n∏
1

sinAi cosAi = 2−n

n∏
1

sin 2Ai ≤ 2−n

Thus |P | ≤ 2−n/2 and equality is attained when A1 = A2 = · · · = An = π/4. Therefore
2−n/2 is the maximum value.

Math. Mag., 53(1980) 301, 305.

Q 666. Submitted by M. S. Klamkin, University of Alberta

If w and z are complex numbers, prove that

2|w| · |z| · |w − z| ≥ (|w|+ |z|)|w|z| − z|w|

A 666. Let w = reiα and z = seiβ. Then we have to show that 2|reiα − seiβ| ≥
(r + s)|eiα − eiβ| or

4
{
(r cosα− s cos β)2 + (r sinα− s sin β)2

}
≥ (r+s)2

{
(cosα− cos β)2 + (sinα− sin β)2

}
This is equivalent to

2(r2 + s2 − 2rs cos(α− β)) ≥ (r2 + s2 + 2rs)(1− cos(α− β))

or finally (r − s)2(1 + cos(α− β)) ≥ 0. There is equality if r = 0 or s = 0 or r = s or
α− β = ±π.
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1137. Proposed by M. S. Klamkin, University of Alberta

It is known that tanx + sinx ≥ 2x for 0 ≤ x < π/2, which is a stronger inequality
than tanx ≥ x. Establish the still stronger inequality

a2 tan x(cosx)1/3 + b2 sin x ≥ 2xab

for 0 ≤ x ≤ π/2.

Math. Mag., 56(1983) 53–54.

Solution by Anders Bager, Hjørring, Denmark. The stated inequality is valid for all
pairs (a, b) ∈ R × R and all x ∈ [0, π/2), with equality if and only if either x = 0 or
(a, b) = (0, 0).

Proof. The quadratic form

a2(tan x)(cos x)1/3 − 2xab+ b2 sin x

(in (a, b), for fixed x) has the discriminant

D = 4
(
x2 − (tan x)(cos x)1/3(sinx)

)
If x = 0, then D = 0 and the quadratic form vanishes. From now on we suppose
0 < x < π/2. We shall prove that D < 0, which is equivalent to

cosx <

(
sin x

x

)3

(1)

and which imples that the quadratic form is positive, except when (a, b) = (0, 0). Since

cosx < 1− x2

2
+
x4

24
and

sin x

x
> 1− x2

6
for 0 < x <

π

2

we need only prove that

1− x2

2
+
x4

24
<

(
1− x2

6

)3

Since this is equivalent to x2 < 9, hence true, the proof is complete.

It may be remarked that (1) is true for 0 < x ≤ π, since cos x ≤ 0 for π/2 ≤ x ≤ π.
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Q 679. Submitted by M. S. Klamkin, University of Alberta & M. R. Spiegel, East
Hartford, Connecticut

Let Sn be the sum of the digits of 2n. Prove or disprove that Sn+1 = Sn for some
positive integer n.

A 679. LetS(k) be the sum of the digits in the base-ten representation of the positive
integer k. Then k ≡ S(k) (mod 9). Hence if S(2n+1) = S(2n) then

2=2n+1 − 2n ≡ S(2n+1)− S(2n) ≡ 0 (mod 9)

which is impossible, since 9 - 2n.

Math. Mag., 56(1983) 177.

1172. Proposed by M. S. Klamkin University of Alberta, Canada

Determine the number of real solutions x (0 ≤ x ≤ 1) of the equation

(xm+1 − am+1)(1− a)m =
{
(1− a)m+1 − (1− x)m+1

}
am

where 0 ≤ a ≤ 1 and m is a positive integer.

Math. Mag., 57(1984) 180.

Solution by Vania D. Mascioni, stident, ETH Zürich, Switzerland. Let f(x) = l.h.s. –
r.h.s. and note that

sgn f ′(x) = sgn ((m+ 1) (xm(1− a)m − (1− x)mam))

= sgn (x(1− a)− (1− x)a) = sgn (x− a)

Thus f(x) is minimal when x = a. Since f(a) = 0, x = a is the only solution to the
given equation.
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Q 685. Submitted by M. S. Klamkin, University of Alberta, Canada.

If two altitudes of a plane triangle are congruent, then the triangle must be isosceles.
Does the same result hold for a convex spherical triangle ?

A 685. No. Consider a spherical triangle cut off from a lune AA′ by an arc BC
through its center. By symmetry, the altitudes from B and C are congruent.

A A′

B

C

Math. Mag., 56(1983) 240, 244.

Q 686. Submitted by M. S. Klamkin, University of Alberta.

It is known that for any triangle of side lengths a, b and c:

3(bc+ ca+ ab) ≤ (a+ b+ c)2 ≤ 4(bc+ ca+ ab)

Prove more generally that if a1, a2, . . ., an are the sides of an n-gon, then

2n

n− 1

∑
i<j

aiaj ≤

(
n∑

i=1

ai

)2

≤ 4
∑
i<j

aiaj

and determine when there is equality.

A 686. The first inequality is equivalent to
∑

i<j(ai−aj)
2 ≥ 0, with equality if and only

if the polygon is equilateral. The second inequality is equivalent to
∑n

i=1 ai(p− ai) ≥∑n
i=1 a

2
i where p =

∑n
i=1 ai, with equality only for the degenerate n-gon in which n−2

of the sides are of length zero.
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Q 688. Submitted by M. S. Klamkin, University of Alberta

Show that

√
a2 + b2 + c2 +

√
b2 + c2 + d2 +

√
c2 + d2 + a2 +

√
d2 + a2 + b2 ≥ 3

√
a2 + b2 + c2 + d2

A 688. |(a, b, c, 0)|+ |(0, b, c, d)|+ |(a, 0, c, d)|+ |(a, b, 0, d)|

≥ |(a, b, c, 0)|+ |(0, b, c, d)|+ |(a, 0, c, d) + (a, b, 0, d)| = 3|(a, b, c, d)|

Lore generally, let A1, . . . ,An be vectors with sum S. Then by the triangle inequality,

|S−A1|+ · · ·+ |S−An| ≥ (n− 1)|S|

The inequality to be proved corresponds to the special case in which n = 4 and the
vectors Ai are mutually orthogonal. There is equality if and only if at least three of
the four vectors are null.
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Equal Areas and Centroid of a Triangle November 1983

1181. Proposed by George Tsintsifas, Thessaloniki, Greece

Let A1A2A3 be a triangle and M an interior point. The straight lines MA1, MA2,
MA3 intersect the opposite sides at the points B1, B2, B3 respectively. Show that if
the areas of triangles A2B1M , A3B2M and A1B3M are equal, then M coincides with
the centroid of triangle A1A2A3.

II. Solution by Murray S. Klamkin, University of Alberta. Using barycentric coordi-
nates, let M = xiA1+x2A2+x3A3, where x1, x2 and x3 are positive and x1+x2+x3 = 1.
Then x1 = [MA2A3]/[A1A2A3], etc., where [PQR] denotes the area of PQR. Also

B1 =
x2A2 + x3A3

x2 + x3

etc.

Since A2B1/A2A3 = x3/(x2 + x3), we have

[A2MB1]

[A1A2A3]
=

x3x1

x2 + x3

etc.

By hypothesis we have
x3x1

x2 + x3

=
x1x2

x3 + x1

=
x2x3

x1 + x2

or
x2(1− x1) = x3(1− x2) = x1(1− x3)

Without loss of generality we assume that x1 ≥ x2 ≥ x3. Then x1(1−x3) = x3(1−x2) ≤
x3(1− x3) and so x1 ≤ x3. Thus x1 = x2 = x3 and M is the centroid.

Math. Mag., 58(1985) 299, 304.

Q 702. Submitted by M. S. Klamkin, University of Alberta

Are there any integral solutions to the Diophantine equation x2 + y2 + z2 = xyz − 1 ?

A 702. By parity considerations, exactly two of x, y, z must be even. Hence by the
substututions x = 2a, y = 2b, z = 2c+1 the equation reduces to 4a2+4b2+4c2+4c+2 =
4ab(2c+ 1). This is impossible.
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Math. Mag., 59(1986) 44–45, 53.

Q 704. Submitted by M. S. Klamkin, University of Alberta

Determine the maximum value of

cos2 ∠POA+ cos2 ∠POD + cos2 ∠POC + cos2 ∠POD

where ABCD is a face of a cube inscribed in a sphere with center O, and P is any
point on the sphere.

A 704. We choose a rectangular coordinate system so that the direction cosines of OA,
OB, OC and OD are ( 1√

3
,± 1√

3
,± 1√

3
). Let the direction cosines of OP be (u, v, w).

Then ∑
cos2 ∠POA =

∑(
u√
3
± v√

3
± w√

3

)2

=
4

3
(constant).

he four vectors are null.
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An Inequality for the Logarithm March 1985

1212. Proposed by L. Bass and R. Výborný, The University of Queensland, Australia;
and V. Thomée, Chalmers Institute of Technology, Sweden

Prove that if x > 1 and 0 < u < 1 < v, then

v(x− 1)(xv−1 − 1)

(v − 1)(xv − 1)
< log x <

u(x− 1)(1− xu−1)

(1− u)(xu − 1)

Solution by M. S. Klamkin, University of Alberta, Canada. The inequality can be
rewritten as

F (v − 2)

F (v − 1)
<
F (−1)

F (0)
<
F (u− 2)

F (u− 1)
for 0 < x 6= 1 and u < 1 < v

where

F (λ) =

∫ x

1

tλ dt for x > 0 and any real λ.

Hence it suffices to show that F (λ)/F (λ + 1) decreases as λ increases. This follows
from the continuity of F and the fact that

d

dλ

(
F (λ)

F (λ+ 1)

)
=

1

(F (λ+ 1))2

(∫ x

1

tλ+1 dt

∫ x

1

tλ(log t) dt−
∫ x

1

tλ dt

∫ x

1

tλ+1(log t) dt

)
=

1

(F (λ+ 1))2

∫ x

1

∫ x

1

sλtλ(log t)(s− t) ds dt

=
1

2(F (λ+ 1))2

∫ x

1

∫ x

1

sλtλ((s− t) log t+ (t− s) log s) ds dt

= − 1

2(F (λ+ 1))2

∫ x

1

∫ x

1

sλtλ((s− t)(log s− log t) ds dt < 0 if λ 6= −1
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Q 711. Submitted by M. S. Klamkin, University of Alberta, Canada

Determine the extreme values of the circumradii R(θ) of the set of triangles T (θ) whose
sides are sin θ, cos θ, cos 2θ for 0 < θ < π/4.

A 711. First one should verify that the triangles T (θ) actually exist for all θ in the
given interval. This will follow from the elementary inequality cos 2θ + sin θ > cos θ.
However, it will also follow from the subsequent geometry.

For θ = 0 we get a degenerate triangle of sides 0, 1, 1 whose circumradius is R = 1/2.
For θ = π/4 we get a degenerate triangle of sides 1/

√
2, 1/

√
2, 0 with R = 1/2

√
2. So

it may appear that 1/2
√

2 < R(θ) < 1/2. However, we will show that R(θ) = 1/2 for
all θ in the open interval (0, π/4).

Consider a triangle ABC inscribed in a circle of readius 1/2 as shown, where AB and
BC subtend angles of 2θ and π − 4θ, respectively, at the center O. Here AB = sin θ,
BC = cos 2θ and AC = cos θ.

1/2 1/2O
A

B C

2θ
π − 4θ

Math. Mag., 59(1986) 240, 248.

Q 713. Submitted by M. S. Klamkin, University of Alberta

If one of the arcs joining the midpoints of the sides of a spherical triangle is 90◦, show
that he other two arcs are also 90◦.

A 713. If A, B, C denote vectors from the center of the sphere to the vertices
of the spherical triangle, we have to show equivalently that |A| = |B| = |C| and
(B + C) · (C + A) = 0 imply that (B + C) · (A + B) = 0 and (A + B) · (A + C) = 0.

Since (B+C) · (C+A)− (B+C) · (A+B) = (B+C) · (C−B) = C2−B2 = 0, and
(B + C) · (C + A) − (A + B) · (A + C) = (C −A) · (A + C) = 0, the result is now
immediate.
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Q 717. Submitted by M. S. Klamkin, University of Alberta

Are there any integral solutions to the Diophantine equation

x1987
1 + 2x1987

2 + 4x1987
3 + · · ·+ 21986x1987

1987 = 1986x1x2 · · ·x1987 ?

(Note: This problem is anextensionof a problem from the Wisconsin Talent Search.)

A 717. The only solution is the trivial one, x1 = x2 = · · · = x1987 = 0. This follows by
induction and infinite descent.Note that x1 must be even. Thus x1 = 2y1 which gives
the identical equation in the variables x2,x3, . . ., x1987, y1.

Math. Mag., 60(1987) 179, 184.

Q 723. Submitted by M. S. Klamkin, University of Alberta

ABCD is a quadrilateral inscribed in a circle. Prove that the four lines, each passing
through amidpoint ofone of the sides of ABCD and perpendicular to the opposite side,
are concurrent.

A 723. Let A, B, C, D bevecors from the center of the circle to the respective vertices
A, B, C, D. The four line will intersect at the point P given by P = (A + B + C +
D)/2. Note that the vector from the midpoint of AB to P is (C + D)/2, and this is
perpendicular to CD since |C| = |D|, and similarly for the other segments BC, CD
and DA. It also hold for the diagonals AC and BD, so that there are six concurrent
lines.

This result was given by R. E. Lester, Math. Gaz., 46(1962) 147. For other interesting
properties of the point P , see R. A. Johnson, Advanced Euclidean Geometry, Dover,
New York, 1960, p.252.
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1265. Proposed by M. S. Klamkin University of Alberta, Canada

Determine the maximum area F of a triangle ABC if one side is of length λ and twoof
its medians intersect at right angles.

Math. Mag., 61(1988) 125–126.

Solution by Cornelius Groenewoud, Bartow, Florida. We show that F = 3λ2/8 or
F + 3λ2/4 depending on whether one of the perpendicular medians is drawn to the
side of length λ or not.

Two cases are considered: (i) One of the perpendicular medians is drawn to the side
AB of length λ; (ii) Neither of the perpendicular medians is drawn to AB.

Place the side AB along the positive x-axis with A at the origin of a rectangular
coordinate system. For the first case let M be the midpoint of AB and N the midpoint
of AC.

A AB B

C

C

L

M M

N

N

P

Case i Case ii

Imposing the negative reciprocal condition between the slopes of medians BN and CM
showsthat the medians to AB and AC are perpendicular when C lies on a circle of
radius 3λ/4, centered at P (5λ/4, 0). The area, λh/2 will be meaximum when h attains
its maximum of 3λ/4. For this case F = 3λ2/8.

For the second case let L be the midpoint of BC. Imposing the negative reciprocal
condition on the slopes of the medians to AL and BN shows that the medians to AC
and BC are perpendicular if C lies on a circle of radius 3λ/2 centered at the midpoint
of AB. The area is λh/2, but in this case the maximum value of h is 3λ/2. The
corresponding area is F + 3λ2/4.
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II. Solution by Thomas Jager, Calvin College, Michigan. The maximum is 3λ2/4.
Label triangle ABC as shown, where the medians from B and C intersect in an angle
θ.

A

BC a

b c

s t

2s2t θ

By the law of cosines, a2 = 4t2 + 4s2 − 8st cos θ, (c/2)2 = t2 + 4s2 − 4st cos(π− θ) and
(b/2)2 = s2+4t2−4st cos(π−θ). These equations imply that 5a2−b2−c2 = −8st cos θ.
It follows that the medians from B and C intersect in a right angle if and only if
5a2 = b2 + c2.

Suppose θ = π/2. By the law of cosines, a2 = b2 + c2 − 2bc cosA, and thus,

F 2 = (1
2
bc sinA)2 = 1

4
b2c2 − 1

4
b2c2 cos2A =

1

4
b2c2 − 1

4

(
b2 + c2 − a2

2

)2

= 1
4
b2c2 − a4

If a = λ, F 2 = 1
4
b2(5λ2 − b2) − λ4 and this is minimized when b2 = 5λ2/2, giving

F = 3λ2/4.

If b = λ, F 2 = 1
4
λ2(5a2 − λ2)− a4 = 9

64
λ4 − (a2 − 5

8
λ2)2 is maximized when a = 5λ2/8,

giving F = 3λ2/8.
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1281. Proposed by M. S. Klamkin University of Alberta

a. Determine the least number of acute dihedral angles in a tetrahedron.

b∗. Deneralize the result for an n-dimensional simplex. Here a dihedral angle is the
supplement of the angle between outward normals to two (n−1)-dimensional faces of
the simplex.

Math. Mag., 61(1988) 320.

a. Solution by the proposer. There is at least one vertex of the tetrahedron such that
its corresponding face angles are all acute. Otherwise, since the sum of two face angles
at a vertex is greater than the third face angle, the sum of all face angles would be
greater than 4π. However, since there are four faces, this sum must be equal to 4π.

We now give two lemmas obtained from the following two laws of cosines from spherical
trigonometry for the face angles a, b, c and the opposite dihedral angles, respectively,
of a trihedral angle:

sin b sin c sinA = cos a− cos b cos c etc., (1)

sinB sinC cos a = cosA+ cosB cosC etc., (2)

Lemma 1. If π/2 > a ≥ b ≥ c, then from (1), B and C are acute.

Lemma 2. If A ≥ B ≥ π/2 > C, then by (2), a, b ≥ π/2 > c.

In a tetrahedron PQRS, we can take P as a vertex with all acute face angles. Then
by Lemma 1, we can take PQ and PS as the edges of two acute dihedral angles. We
now assume that there are no more acute dihedral angles and obtain a contradiction.
By Lemma 2 applied to the trihedral angles at vertices Q and S, it follows that angles
PQS and PSQ are both non-acute. Since this is impossible, there are always at least
three acute dihedral angles in any tetrahedron.

b. Partial solution by L. P. Pook, Glasgow, Scotland. For finite n the n(n − 1)/2
dihedral angles of a regular n-dimensional simplex are acute, so this is an initial upper
bound.

A lower value for the upper bound is obtained by constructing a low altitude right
hyper-pyramid, vertex V , witha regular (n− 1)-dimensional simplex as base. The
altitude is chosen such that the dihedral angles between pyramidal faces are obtuse;
the remaining n dihedral angles between the base and the pyramidal faces must be
acute.

Distorting the pyramid by moving V , in a hyperplane parallel to the base, to a position
such that at least one dihedral angle at the base becomes obtuse results in at least an
equal number of dihedral angles between pyramidal faces becoming acute. In view of
this it is conjectured that n is indeed the required minimum number of acute dihedral
angles.
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1289. Proposed by M. S. Klamkin University of Alberta

Two identical beads slide on two straight wires intersecting at right angles. If the beads
start from rest in any position other than the intersection point of the wires and attract
each other in an arbitrary mutual fashion but also subject to a drag proportional to
the speed, show that the beads will arrive at the intersection simultaneously.

Math. Mag., 62(1989) 62–63.

Solution by Yan-loi Wong (student), University of California, Berkeley. Resolving the
attractive force f(x, y) along the axes (the wires), the equations of motion for the two
beads are given by

x′′ =
−xf(x, y)√
x2 + y2

+ kx′

y′′ =
−yf(x, y)√
x2 + y2

+ ky′

where k is a positive constant. Eliminating f(x, y) we find that

yx′′ − xy′′ = k(yx′ − xy′)

(yx′ − xy′)′ = k(yx′ − xy′)

It follows that
yx′ − xy′ = Cekt

for some constant C. Since x′(0) = y′(0) = 0, we have yx′ − xy′ = 0. Hence, until

y(t) = 0
d

dt

(
x

y

)
= 0

so that x(t) = Ay(t) for some nonzero constant A, and this gives the desired result.
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Q 729. Submitted by M. S. Klamkin, University of Alberta

Determine the extreme values of

S =
x+ 1

xy + x+ 1
+

y + 1

yz + y + 1
+

z + 1

zx+ z + 1

where xyz = 1 and x, y, z ≥ 0.

[[I don’t like that ‘= 0’ — R.]]

A 729. Let A = x/(xy + x+ 1), B = y/(yz + y + 1), C = z/(zx+ z + 1). Then

A = x/(1/z + x+ 1) = zx/(zx+ z + 1) = 1/(yz + y + 1)

B = y/(1/x+ y + 1) = xy/(xy + x+ 1) = 1/(zx+ z + 1)

C = z/(1/y + z + 1) = yz/(yz + y + 1) = 1/(xy + x+ 1)

Therefore 3(A+B + C) = 3and S has the constant value 2.

An alternative and quicker solution is

S =
x+ 1

xy + x+ 1
+

y + 1

yz + y + 1
+

z + 1

zx+ z + 1

=
x+ 1

xy + x+ 1
+

y + 1
1
x

+ y + 1
+

1
xy

+ 1
1
y

+ 1
xy

+ 1
= 2

[[I guess I’m too much of a sloth to follow this! — R.]]

A related open problem is to find the extremes of S if the condition xyz = 1 is replaced
by xyz = a.
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Math. Mag., 61(1988) 114.

1292. Proposed by M. S. Klamkin University of Alberta, Canada

Determine the maximum value of

x2
1x2 + x2

2x+ 3 + · · ·+ x2
nx1

given that x1 + x2 + · · ·+ xn = 1, x1, x2, . . ., xn ≥ 0 and n ≥ 3.

Math. Mag., 61(1988) 137.

I. Solution by the 1988 Olympiad Math Team. The maximum is 4/27, achieved when
the xk comprise a cyclic permutation of (2/3, 1/3, 0, . . . , 0).

Suppose n > 3. Choose j so that xj+1 ≥ xj (where xn+1 = x1). The modified sequence
(. . . , xj−2, xj−1 + xj, xj+1), . . ., with only n−1terms, gives at least as high a value forthe
objective function as does the original sequence, since

x2
j−2(xj−1 + xj) + (xj−1 + xj)

2xj+1 ≥ x2
j−2xj−1 + (x2

j−1 + x2
j)xj+1

≥ x2
j−2xj−1 + x2

j−1xj + x2
j−1xj + x2

jxj+1

Thus it suffices toprove the bound of 4/27 onlyfor n = 3.

So, suppose n = 3. Without loss of generality, cycle the three indices so that x2 takes
on the intermediate value. Then (x2 − x1)(x2 − x3) ≤ 0 ≤ x1x2 so

x2
1x2 + (x2 − x1)(x2 − x3)x3 ≤ x2

1x2 + x1x2x3

These terms can be rearranged to give

x2
1x2 + x2

2x3 + x2
3x1 ≤ (x1 + x3)

2x2 = (1− x2)
2x2

≤ 4

( 1
2
(1− x2) + 1

2
(1− x2) + x2

3

)3

= 4/27

the last by the AM-GM inequality whenever 0 ≤ x2 ≤ 1.

[[There’s also a longer solution by Eugene Lee. — R.]]
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Math. Mag., 61(1988) 115, 127.

Q 733. Submitted by M. S. Klamkin, University of Alberta

If A, B, C are the angles of a triangle, determine the maximum area ofa triangle whose
sides are cos(A/2), cos(B/2), cos(C/2).

A 733. Comment: One might start from the expression for the square of the area of
the triangle, i.e.,

F 2 = s

(
s− cos

A

2

)(
s− cos

B

2

)(
s− cos

C

2

)
where 2s = cos

A

2
+ cos

B

2
+ cos

C

2

and then maximize subject to the constraints A+B + C = 180◦ and A, B, C ≥ 0.

Solution: First,one shoud verify that triangles with the given sides exist for all triangles
ABC. If A ≥ B ≥ C, it suffices to show that

cos
A

2
+
B

2
> cos

C

2

or equivalently

cos
A−B

4
> sin

A+B

4

which follows.

An alternative proof of the existence of a triangle follows from the fact that the three
sides are sin π−A

2
, sin π−B

2
, sin π−C

2
, and that the angles (π − A)/2, etc., are positive

and add to 180◦. Since in any triangle DEF of sides d, e, f , we have d = 2R sinD,
etc., where R is the circumradius, it follows that sin π−A

2
, sin π−B

2
, sin π−C

2
are sides

of a triangle with fixed circumradius 1/2. It is well known and easy to prove that of
all triangles inscribed in a given circle, the equilateral triangle has themaximum area.
Thus, our maximum area corresponds to an equilateral triangle of sides cos 30◦, or
3
√

3/16.

As a bonus, by using the known result that the product of the sides of a triangle equals
four times the product of its area and circumradius, we have the triangle identity

cos2 A

2
cos2 B

2
cos2 C

2
= 4s

(
s− cos

A

2

)(
s− cos

B

2

)(
s− cos

C

2

)

[[Another very slow quickie ! — R.]]
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Math. Mag., 59(1986) 118–119.

Integral triangles tetrahedrons February 1987

1261. Proposed by Stanley Rabinowitz, Digital Equipment Corporation, Nashua, New
Hampshire

a. What is the area of the smallest triangle with integral sides and integral area ?.

b∗. What is the volume of the smallest tetrahedron with integral sides and integral
volume ?

[[I wd make that ‘integer edges’ — R.]]

(a) Solution by M. S. Klamkin, University of Alberta. We will show that the area of
a triangle with integral sides and integral area is divisible by 6. Since a 3-4-5 triangle
has area 6, the smallest area is necessarily 6.

Let T be a triangle with integral sides and integral area. We may assume that
gcd(a, b, c) = 1. Let s denote the semiperimeter.

The inradius r = Area/s and thus must be rational. Since tan(A/2) = r/(s − a),
tan(A/2) is rational and let it equal n/m where (m,n) = 1. Similarly, tan(B/2) = q/p
with (p, q) = 1. Then

sinA =
2mn

(m2 + n2)
cosA =

(m2 − n2)

(m2 + n2)
sinB =

2pq

(p2 + q2)
etc.,

and

sinC = sin(A+B) =
2(mq + np)(mp− nq)

(m2 + n2)(p2 + q2)

The sides of any triangle are proportional to the sines of the opposite angles; specifically,
a = 2R sinA, etc., where R is the circumradius. Let us take 4R = (m2 + n2)(p2 + q2)
and let T̄ be the triangle with sides

ā = mn(p2 + q2) b̄ = pq(m2 + n2)

c̄ = (mq + np)(mp− nq) = mn(p2 − q2) + pq(m2 − n2) (1)

We may assume that mn is relatively prime to pq, otherwise we can divide out the
common factor. T̄ has integral area (Area T̄ = tfrac12b̄c̄ sinA) and T̄ is similar to T .
Also

Area T̄ =
āb̄c̄

4R
= mnpq

(
mn(p2 − q2) + pq(m2 − n2)

)
(2)

Suppose that ā = da, b̄ = db, c̄ = dc for integer d ≥ 1. Then, Area T̄ = d2 AreaT .
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Suppose d is even. Then, from (1) our supposition that gcd(m,n, p, q) = 1 it must be
the case that m, n, p, q are odd. In this case ā, b̄, c̄ are divisible by 2 but not by 4;
i.e., d isnot divisible by 4. Also, Area T̄ is divisible by 8 (in (2), p2− q2 ≡ m2−n2 ≡ 0
(mod 8)) and therefore AreaT is even.

Equation (1), together with gcd(m,n, p, q) = 1, shows that 3 is not a common factor
of ā, b̄, c̄; that is, d is not a multiple of 3.

If one of m, n, p, q is divisible by 3, then the sides are not divisible by 3, but Area T̄
(and Area T ) is. If none of m, n, p, q is divisible by 3, Area T̄ (and Area T ) is because
p2 − q2 ≡ m2 − n2 ≡ 0 (mod 3).

Thus, Area T is divisible by 6 and the proof is complete.

No solutions were received for Part (b). The proposer supplied computer generated evidence (a list
of tetrahedra with small volumes) that suggeststhat the smallest volume is 6. Also, see Crux Math.
(May 1985) 162–166 for a consideration of tetrahedra having integer-valued edge lengths, face areas,
and volume.

Math. Mag., 61(1988) 196, 203.

Q 734. Submitted by M. S. Klamkin, University of Alberta, Canada

Determine the lous of all points whose parametric representation is given by

x =
ξ(hξ + kη + lζ)

(ξ2 + η2 + ζ2)

y =
η(hξ + kη + lζ)

(ξ2 + η2 + ζ2)

z =
ζ(hξ + kη + lζ)

(ξ2 + η2 + ζ2)

where the parameters ξ, η, ζ take on all values in [0,1] and h, k, l are positive constants.

A 734. Geometrically, if one wants the locus of points which are the orthogonal pro-
jections of the fixed point (h, k, l) on all lines through the origin with direction numbers
(ξ, η, ζ), one can obtain the given parametric representation. From this interpretation,
it follows quickly that the locus is that portion of the sphere with the segment joining
the origin to (h, k, l) as a diameter and which lies in the first orthant.

Alternatively, it follows that

x2 + y2 + z2 = hx+ ky + lz

Thus the surface is that part of the sphere with radius r =
√
h2 + k2 + l2/2 and center

(h/2, k/2, l/2) which lies in the first orthant.
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Math. Mag., 61(1988) 193–194.

[[There’s a Note by Murray: Symmetry in probability distributions.]]

Math. Mag., 61(1988) 261, 265–266.

Q 737. Submitted by M. S. Klamkin, University of Alberta, Edmonton, Canada

Determine Pn(n2) where

Pn(x) =
x− 12

2!2
− (x− 12)(x− 22)

3!2
+ · · ·+ (−1)n(x− 12)(x− 22) · · · (x− (n− 1)2)

n!2

A 737. We show more generally by induction that if

Qn(x) = 1− x

a1

+
x(x− a1)

a1a2

−· · ·+(−1)n(x)(x− a1) · · · (x− an−1)

a1a2 · · · an

(1)

then

Qn(x) =
(a1 − x)(a2 − x) · · · (an − x)

a1a2 · · · an

so that

Pn(x) =
Qn(x)− 1 + x/a1

x

where ai = i2. Thus, Pn(n2) = 1− 1/n2.

Assume (1) is valid for n = k. Then

Qk+1(x) =
(a1 − x)(a2 − x) · · · (ak − x)

a1a2 · · · ak

+
(−1)k+1(x)(x− a1) · · · (x− ak)

a1a2 · · · ak+1

=
(a1 − x)(a2 − x) · · · (ak − x)

a1a2 · · · ak

(
1− x

ak+1

)
Thus our result is also true for n = k+1. Since the result also holds for n = 1, it holds
for all n.
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Math. Mag., 61(1988) 315, 325.

Q 739. Submitted by M. S. Klamkin, University of Alberta, Edmonton, Canada

Determine the largestvalue of the constant k such that the inequality

(x1 + x2 + · · ·+ xn)2(x1x2 + x2x3 + · · ·xnx1) ≥ (x2
1x

2
2 + x2

2x
2
3 + · · ·+ x2

nx
2
1)

is valid for all x1, x2,. . ., xn ≥ 0.

A 739. Without loss of generality we can let x1 +x2 + · · ·+xn = 1. The letting n = 2,
x1 = x2 = 1/2, we must satisfy 1/4 ≥ k/42. Thus k must be ≤ 4. For k = 4, the
inequality becomes

x1x2(1− 4x1x2) + x2x3(1− 4x2x3) + · · ·+ xmx1(1− 4xnx1) ≥ 0

and this inequality hols since max(xixj) = 1/4. There is equality if and only if one
variable equals 1 or else two successive variables equal 1/2, or trivially, if all the
variables are zero.
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Math. Mag., 62(1989) 58.

1315. Proposed by M. S. Klamkin and A. Liu, University of Alberta, Canada

Determine all real values of λ such that the roots of

P (x) ≡ xn + λ
n∑

r=1

(−1)rxn−r = 0 (n > 2)

are all real.

Math. Mag., 63(1990) 61.

I. Solution by Seung-Jin Bang, Seoul, Korea. If λ = 0 then all the roots of P are real.
We will show that if λ 6= 0 then P has at least one nonreal root.

Suppose λ 6= 0 and set x = −1/y. The equation becomes

G(y) ≡ 1/λ+
n∑

r=1

yr

Suppose the rootsr1, r2, . . ., rn are all real. Then the roots of G are si ≡ 1/ri (i =
1, 2, . . . , n), and

n∑
i=1

s2
i =

(∑
i

si

)2

− 2
∑
i<j

sisj = 12 − 2 = −1,

a contradiction.

II. Solution by David Callan, University of Bridgeport, Bridgeport, Connecticut. If
λ = 0 obviously all roots are real. Suppose λ 6= 0. We cab write P (x) as Q(x)/(x+ 1)
where Q(x) = xn+1 +(1−λ)xn +(−1)nλ. Since P (0) 6= 0 the number of real roots of P
is the number of positive roots of P (x) plus the number of positive roots of P (−x). By
Descartes’s rule of signs, the number of positive roots of Q(x) (resp., Q(−x)) is at most
the number of sign changes in the list of coefficients 1, 1−λ, (−1)nλ (resp. 1, λ−1, −λ).
The total of these sign changes is clearly ≤ 3. Noting [[that]] P (−x) = Q(−x)/(1− x)
and so x = 1 counts asa positive root of Q(−x) one more time than it does as a root
of P (−x), the above results for Q imply that P has at most two real roots.
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Math. Mag., 62(1989) 59, 66.

Q 742. Submitted by M. S. Klamkin, University of Alberta, Edmonton, Canada

Let

Sn =
sin2n+2 θ

sin2n α
+

cos2n+2 θ

cos2n α

If Sk = 1 for some positive integer k, show that Sn = 1for n = 1, 2, . . ..

A 742. More generally, let

Sn =
n∑

i=1

x2n+2
i

y2n
i

where
x2

1 + x2
2 + · · ·+ x2

n = 1 = y2
1 + y2

2 + · · · y2
n

Then if Sk = 1 for some positive integer k, Sn = 1 for n = 1, 2, . . ..

[[I don’t follow – has this sentence been misplaced ? — R.]]

By Hölder’s inequality(
n∑

i=1

x2k+2
i

y2k
i

)1/(k+1)( n∑
i=1

y2
i

)k/(k+1)

≥
n∑

i=1

x2
i

Since we have the equality case by the hypotheses, we must have x2k+2
i /y2k

i = λy2
i or

x2
i = cy2

i for all i. It then follows that c = 1 and Sn = 1 for n = 1, 2, . . ..

(Comment: The initial problem for the special case k = 1 appears in E. W. Hobson,
A Treatise on Plane and Advanced Trigonometry, Dover, New York, 1957, p.96.)
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Math. Mag., 62(1989) 137, 143.

Q 746. Submitted by M. S. Klamkin, University of Alberta, Canada

If Vi denotes the (n−1)-dimensional volume of the face Fi opposite the vertex Ai of
the (n−1)-dimensional simplex Sn : A0A1 . . . An, show that

V0 + V1 + · · ·+ Vn > 2V

for all i.

A 746. Orthogonally project the faces F0, F1, . . ., Fi−1, Fi+1, . . ., Fn onto the space
of Fi. If A′i (hte projection of Ai) lies in the convex hull Hi of A0, A1, . . ., Ai−1, Ai+1,
. . ., An then

V ′
0 + V ′

1 + · · ·+ V ′
i−1 + V ′

i+1 + · · ·+ V ′
n = Vi

where V ′
j denotes the (n−1)-dimensional volume of the orthogonal projection of face

Fj. If A′i lies outside the convex hull Hi then

V ′
0 + V ′

1 + · · ·+ V ′
i−1 + V ′

i+1 + · · ·+ V ′
n > Vi

Finally, since Vj > V ′
j we are done. Note that there is equality only in the case of a

degenerate simplex in which case one vertex lies in the convex hull of the remaining
vertices.

Note that for n = 2 we have a1 +a2 +a3 > 2ai for the sides of a triangle, and for n = 3
we have F1 + F2 + F3 + F4 > 2Fi for the areas of the faces of a tetrahedron.
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On pp.198–199 of Math. Mag., 62(1989) we read:

Murray Klamkin was awarded the MAA’s Award for Distinguished Service
to Mathematics in 1988, largely in recognition of his many contributions to
problem solving. In this issue we further recognize this work: every problem
posed in this issue is a proposal of Murray Klamkin’s.

[[we don’t really need that double genitive — R.]]

1322. An n-gon of consecutive sides a1, a2, . . ., an is circumscribed about a circle of
unit radius. Determine the minimum value of the product of all of its sides.

Math. Mag., 63(1990) 191–192.

Solution by the proposer. If we denote the consecutive angles of the n-gon by 2A1, 2A2,
. . ., 2An then

P ≡
∏

ai =
∏

(cotAi + cotAi+1)

where the products and sums here and subsequently are cyclic over i and
∑
Ai =

(n−2)π/2 with Ai < π/2.

First, we consider n > 4. By taking two consecutive angles very close to π, we can
make P arbitrarily small; that is to say, thereis no minimum in this case.

Consider the case n = 4. Since cotx is convex in (0, π/2)

cotx+ cot y ≥ 2 cot
(x+ y)

2

Hence

P = a1a2a3a4 ≥ 16 cot
A1 + A2

2
· cot

A2 + A3

2
· cot

A3 + A4

2
· cot

A4 + A1

2

Then, since

cot
A3 + A4

2
=

1

cot A1+A2

2

and cot
A4 + A1

2
=

1

cot A2+A3

2

we get that
a1a2a3a4 ≥ 16

This is a stronger result than the minimum perimeter circumscribed quadrilateral is a
square. [[‘quadrilateral’s being’ ? — R.]]
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Now consider the case n = 3. We start with the known inequality [[known to whom?]]
(a1a2a3)

2 ≥ (4F/
√

3)3 where F is the area of the triangle and equality holds if
a1 = a2 = a3. Since a1a2a3 = 4RF , where R is the circumradius, a geometrical
interpretation of this inequality is that the inscribed triangle of largest are in a circle
of radius R is the equilateral one. Now F = cotA1 + cotA2 + cotA3 and it is known
that the minimum area circumscribed triangle is the equilateral one. This follows eas-
ily from the convexity of cotx for x in (0, π/2). Again there is equality only for the
equilateral problem. Thus min(a1a2a3) = 24

√
3, or equivalently,∏

(cotAi + cotAi+1)
2 ≥

(
4
∑

cotAi/
√

3
)3

1323. Submitted by M. S. Klamkin, University of Alberta, Canada

A parallelepiped has the property that all cross sections that are parallel to any fixed
face F have the same area as F . Are there any other polyhedra with this property ?

Math. Mag., 63(1990) 191–192.

Solution by the proposer. First, the polyhedron must be convex. If not, there would be
a pair of reentrant faces and the area of cross sections parallel to one of these two faces
could not be the same. We now show that the polyhedron must be a parallelepiped.
Consider three parallel sections whose distances from a face F are x, x1 and x2 where
x = w1x1 +w2x2 w1 +w2 = 1 and w1, w2 > 0. It then follows by the Brun-Minkowski
inequality (L. A. Lyusternik, Convex Figures and Polyhedra, Dover, New York, 1963,
pp.117–118), that the areas of the three sections must satisfy

A(x) ≥ w1A(x1) + w2A(x2)

and equality holds if and only if the region between the outer sections is a cylindrical
solid. Since we have equality by hypothesis, the figure must be a prism with respect
to each face and hence must be a parallelepiped.

Comment from the proposer: I set the same problem with area replaced by perimeter
in the 1980 Canadian Mathematics Olympiad. In this case the figure could also be a
regular octahedron. Whether or not there are any other solutions for this problem is
still open.
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1324. Submitted by M. S. Klamkin, University of Alberta, Canada

Determine the maximum value of

x1x2 · · ·xn(x2
1 + x2

2 + · · ·+ x2
n)

where x1 + x2 + · · ·+ xn = 1 and x1, x2, . . ., xn ≥ 0.

Math. Mag., 63(1990) 192–193.

Solution by Eugene Lee, Boeing Commercial Airplanes, Seattle, Washington. The max-
imum is (1/n)n+1. To prove this we establish inductively the proposition Pn: The func-
tion fn(x1, . . . , xn) ≡ x1 · · ·xn(x2

1 + · · ·x2
n) over the simplex σn−1(λ) ≡ {(x1, . . . , xn) :

xi ≥ 0,
∑n

1 xi = λ}, any λ > 0, attains its maximum uniquely when x1 = · · · = xn.

One way to prove P2 is to observe that

f2(x, λ− x) = f2(λ/2, λ/2)− 2(x− λ/2)4

Now let n ≥ 3. Fix xn 0 < xn < λ and rewrite fn as

fn(x1, . . . , xn) = xnfn−1(x1, . . . , xn−1) + x3
n

n−1∏
i=1

xi

The induction hypothesis says that fn−1(x1, . . . , xn−1) has a unique maximum over
σn−2(λ − xn) at x1 = · · · = xn−1. But the same is true of

∏n−1
i=1 (from the arithmetic

mean-geometric mean inequality). Hence, for any fixed 0 < xn < λ, fn(x1, . . . , xn−1, xn)
attains its maximum uniquely when x1 = · · · = xn−1.

The role of xn being replaceable by any xk,we have proved Pn. (For if (x1, . . . , xn)
lies in the interior of σn−1(λ) with x1 6= xj for some i, j, then, taking k different
from i or j and letting yk = xk yr = (λ − xk)/(n − 1) for r 6= k, we see that
fn(x1, . . . , xn) < fn(y1, . . . , yn).)

197



II. Solution by Professor Freidkin, University of the Witwatersrand, Johannesburg,
Republic of South Africa. Let F (x1, x2, . . . , xn) ≡ x1x2 · · ·xn(x2

1 + x2
2 + · · · + x2

n). We
will show that F attains its maximum value (of n−(n+1)) when all of the arguments are
equal.

Suppose that two of the arguments of F , say x1 and x2, are not equal. The we have
the following.

F (x1, x2, . . . , xn) = x1x2

n∏
i=3

xi

(
x2

1 + x2
2 +

n∑
i=3

)

=

(
x1 + x2

2
+
x1 − x2

2

)(
x1 + x2

2
− x1 − x2

2

)
×

n∏
i=3

xi

(
1

2
(x1 + x2)

2 +
1

2
(x1 − x2)

2 +
n∑

i=3

x2
i

)

=
1

8

(
(x1 + x2)

4 − (x1 − x2)
4
) n∏

i=3

xi

+
1

4

n∏
i=3

xi

(
(x1 + x2)

2 − (x1 − x2)
2
) n∑

i=3

x2
i

<
1

8
(x1 + x2)

4

n∏
i=3

xi +
1

4

n∏
i=3

xi(x1 + x2)
2

n∑
i=3

x2
i

≡ F

(
x1 + x2

2
,
x1 + x2

2
, x3 . . . , xn

)
Thus the maximum must occur when all the xi are equal.

III. Solution by the proposer. We will show that(
x1 + x2 + · · ·+ xn

n

)n+2

≥ x1x2 · · ·xn

(
x2

1 + x2
2 + · · ·+ x2

n

n

)
(1)

so that the desired maximum value is n−(n+1) and is taken on when all the xi are equal.

Our proof is by induction. First, (1) is valid for n = 2, since it reduces to (x1−x2)
4 ≥ 0.

We now assume (1) is valid for n = k and we will prove it valid for n = k + 1. Let
A = (x1 + x2 + · · ·+ xk)/k and P + x1x2 · · ·xk. Then from (1) with n = k,

Px(x2
1 + x2

2 + · · ·+ x2
k) + Px3 ≤ kxAk+2 + Px3 ≤ kxAk+2 + x3Ak
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It now suffices to show that

(k + 1)

(
x1 + x2 + · · ·+ xk + x

k + 1

)k+3

= (k + 1)

(
kA+ x

k + 1

)k+3

≥ kxAk+2 + x3Ak

or equivalently, that kxAk+2 +x3Ak ≤ k+1, where, without loss of generality, we have
assumed that kA+ x = k + 1.

Using the standard calculus technique, we differentiate with respect to A andset it to
zero,

DA(kxAk+2 + x3Ak) = k(k + 2)xAk+1 + kx3Ak−1 + (kAk+2 + 3x2Ak)(−k) = 0

or
(kt3 − (k + 2)t2 + 3t− 1)tk−1 = 0

where t = A/x. The cubic factors into (t− 1)(kt2 − 2t+ 1). The only real roots are 0
and 1. Themaximum occurs for A = x = 1 and we have proved the case for n = k+ 1.
Thus the result is valid for all n = 2, 3, 4, . . ..

199



1325. Submitted by M. S. Klamkin, University of Alberta, Canada

a. Determine the minimum value of

max
0≤xi≤1

|F1(x1) + F2(x2) + · · ·+ Fn(xn)− x1x2 · · ·xn|

over all possible real-valued functions Fi(t), 0 ≤ t ≤ 1, 1 ≤ i ≤ n.

b. Determine the minimum value of

max
0≤xi≤1

|F1(x1)F2(x2) · · ·Fn(xn)− (x1 + x2 + · · ·+ xn)|

over all possible real-valued functions Fi(t), 0 ≤ t ≤ 1, 1 ≤ i ≤ n.

Math. Mag., 63(1990) 194–196.

Solution by the proposer.

a. We will show that the minimum is (n−1)/2n. The first part of the proof is indirect.
Assume that for any Fi and all xi that

|F1(x1) + F2(x2) + · · ·+ Fn(xn)− x1x2 · · ·xn| < a ≤ n− 1

2n

Let

S0 = F1(0) + F2(0) + · · ·+ Fn(0)

S1 = F1(1) + F2(1) + · · ·+ Fn(1)

We have
|S0| < a |1− S1| < a

and for j = 1, 2, . . . , n,
|S1 − Fj(1) + Fj(0)| < a

Thus,

a+ (n− 1)a+ na > |S0|+ (n− 1)|1− S1|+
n∑

j=1

|S1 − Fj(1) + Fj(0)|

and therefore

2na > | − S0 + (n− 1)(1− S1) + (n− 1)S1 + S0| = n− 1

Hence

T1 ≡ |F1(x1) + F2(x2) + · · ·+ Fn(xn)− x1x2 · · ·xn| ≥
n− 1

2n
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for some choice of the xi. That the minimum is (n− 1)/2n will followby the choiceof
functions

Fi(xi) ≡
xi

n
− n− 1

2n2

for all i. Here

T1 =

∣∣∣∣∣
n∑

i=1

(
xi

n
− n− 1

2n2

)
− x1x2 · · ·xn

∣∣∣∣∣
and all we need now show is that Tmax = (n − 1)/2n. Since T is linear in the xi its
maximum will be taken on by each variable being 0 or 1. For all ones, T = (n−1)/2n.
For r (< n) ones and n−r zeros,

T =

∣∣∣∣ rn − n− 1

2n

∣∣∣∣ ≤ n− 1

2n

and with equality only for r = n− 1.

Comment: The special case of showing that the minimum is greater than or equal
to 1/4 for n = 2 wasa 1959 Putnam problem (A. M. Gleason, R. E. Greenwood,
L. M. Kelly, The William Lowell Putnam Mathematical Competition, Problems and
Solutions, 1938–1964, MAA, Washington, D.C., 1980, p.499).

b. First consider the even case; that is, replace n by 2n. Wewillshow that the minimum
is n/4 The first part of the proof is indirect. Assume that for any Fi and all xi that

|F1(x1)F2(x2) · · ·F2n(x2n)− x1 − x2 − · · · − x2n| < a ≤ n/4

Let

P0 = |F1(0)F2(0) · · ·F2n(0)|
P1 = |F1(1)F2(1) · · ·F2n(1)|

We then have

−a < P0 < a 2n− a < P1 < 2n+ a PoP1 < a(2n+ a)

n− a < |F1(0)F2(0) · · ·Fn(0)Fn+1(1)Fn+2(1) · · ·F2n(1)| < n+ a

We now take all combinations similar to the last inequality with n zeros and n ones
and multiply them to give

(n− a)α < (P0P1)
α/2 < (n+ a)α

where α =
(
2n
n

)
. Equivalently,

(n− a)2 < P0P1 < (n+ a)2
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Also
(n− a)2 < P0P1 < a(2n+ a)

and from this we get a > n/4. Hence

T2 ≡ |F1(x1)F2(x2) · · ·F2n(x2n)− x1 − x2 − · · · − x2n| ≥ n/4

for some choice of the xi. That the minimum is n/4 will follow by the choice of functions
Fi(xi) ≡ axi + b for all i where a, b are taken to satisfy

(a+ b)2n = 2n+ n/4 and a2n = n/4

Here

T2 =

∣∣∣∣∣
2n∏
i=1

(axi + b)− x1 − x2 − · · · − x2n

∣∣∣∣∣
(a+ b)2n−1 =

n(n− 1)

2(2n− 1)
and a2n−1 =

n(n− 1)

2(2n− 1)

Since T2 is linear in the xi it takes on its extreme values when all the xi are 0 or 1.
Thus it now remains to show that

(a+ b)ra2n−1−r <
n(n− 1)

2(2n− 1)
+ r

or, equivalently, that

(9n2 − 9r + 2)r(n2 − n)2n−1−r ≤ (n2 + n(4r − 1)− 2r)2n−1

for r = 0, 1, . . . , 2n−1. The proof goes through as before using concavity.

202



1326. Submitted by M. S. Klamkin, University of Alberta, Canada

A particle is projected vertically upwards in a uniform gravitational field and subject
to a drag force mv2/c. The particle in its ascent and descent has equal speeds at two
points whose respective heightsabove the point of projection are x and y. It has been
shown by Newton that if a denotesthe maximum height of the particle, then x and y
are related by

e2(a−x)/c + e−2(a−y)/c = 2 (1)

Consider the same problem except that the drag force is now F (mv2/c) where F is a
smooth function. Show that if (1) still holds for all possible y values, then F (u) = u.

Math. Mag., 63(1990) 197–198.

Solution by Michael Golomb, Purdue University, West Lafayette, Indiana. We may
assume [[that]] the unit of mass is chosen so that m = 1. The equation of motion
during ascent is

v dv/dx = −g − F (v2/c), v(0) = v0 > 0

At the maximum height a the velocity is 0, thus∫ v

0

v dv

g + F (v2/c)
= −

∫ x

a

dx = a− x

We set v2/c = u and obtain ∫ v2/c

0

du

g + F (u)
=

2

c
(a− x)

In the same way, we obtain for the descent∫ v2/c

0

du

g − F (u)
=

2

c
(a− y)

Thus, if (1) is to hold then

exp

(∫ v2/c

0

du

g + F (u)

)
+ exp

(∫ v2/c

0

du

−g + F (u)

)
= 2 (2)

Set

w = v2/c P (w) =
1

g + F (w)
Q(w) =

1

−g + F (w)

Then differentiating (2) twice with respect to w, we obtain

(P ′ + P 2)e
R w
0 P + (Q′ +Q2)e

R w
0 Q = 0 (3)
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But P ′ = −F ′P 2, Q′ = −F ′Q2, hence (3) becomes

(1− F ′)(P 2e
R w
0 P +Q2e

R w
0 P ) = 0

Since P 2e
R

P +Q2e
R

Q > 0 we conclude [[that]] F ′ = 1, i.e., F (w) = w + k, where k is
a constant. With this F , (2) becomes

g + v2/c+ k

g + k
+
−g + v2/c+ k

−g + k
= 2

It is readily seen that this equation implies k = 0, thus F (w) = w.
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Q 748. Submitted by M. S. Klamkin, University of Alberta, Canada

Determine the maximum value of

F =
(x2n − a2n)(b2n − x2n)

(x2n + a2n)(b2n + x2n)

over all real x.

A 748. On dividing,

F = −1 +
2(a2n + b2n)x2n

x4n + (a2n + b2n)x2n + a2nb2n

Now by the artithmetic mean-geomtric mean inequality,

x2n +
a2nb2n

x2n
+ (a2n + b2n)

takes onits minimum value when x2 = ab (we can assume that a, b ≥ 0). Finally,

Fmax =
(bn − an)2

(bn + an)2

Q 749. Submitted by M. S. Klamkin, University of Alberta, Canada

Prove that
xλ+1

yλ

+
yλ+1

zλ

+
zλ+1

xλ

≥ x+ y + z

where x, y, z, λ > 0.

A 749. Expanding out, we have to show that

zλxλ(xλ+1 − yλ+1) + xλyλ(yλ+1 − zλ+1) + yλzλ(zλ+1 − xλ+1) ≥ 0

Since the inequality is cyclic, we can assume without loss of generality that (i) x ≥
y ≥ z or else (ii) x ≥ z ≥ y.

For (i) we can rewrite the inequality in the obvious form

zλ(xλ − yλ)(xλ+1 − yλ+1) + yλ(xλ − zλ)(yλ+1 − zλ+1) ≥ 0

For(ii) we rewrite the inequality in the form

zλ(xλ − yλ)(xλ+1 − zλ+1) + xλ(zλ − yλ)(zλ+1 − yλ+1) ≥ 0
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More generally, the given inequality is the soecial case a = y, b = z, c = x of the
inequality

xλ+1

aλ

+
yλ+1

bλ
+
zλ+1

cλ
≥ (x+ y + z)λ+1

(a+ b+ c)λ

where λ = (x+ y + z)/(a+ b+ c) and x, y, z, a, b, c > 0.

To prove this, let

F (λ) ≡
(
a(x/a)λ+1 + b(y/b)λ+1 + c(z/c)λ+1

a+ b+ c

)1/(λ+1)

Then by the power mean inequality

F (λ) ≥ F (0)

which gives the desired result. Itis to be noted thaat λ may be 0 and the inequality
can be extended to ∑

i

xλ+1
i

aλ
i

≥ (
∑

i xi)
λ+1

(
∑

i ai)
λ

Another proof of

xλ+1
1

xλ
2

+
xλ+1

2

xλ
3

+ · · ·+ xλ+1
n

xλ
1

≥ x1 + x2 + · · ·+ xn

follows immediately from the rearrangement inequality; i.e., if a1 ≥ a2 ≥ · · · ≥ an ≥ 0,
b1 ≥ b2 ≥ · · · ≥ bn ≥ 0, and the ci are a permutation of the bi then a1c1 + a2c2 + · · ·+
ancn ≥ aibn + a2bn−1 + · · ·+ anb1.

[[Another not-so-quick quickie. — R.]]

Q 750. Submitted by M. S. Klamkin, University of Alberta, Canada

Ptolemy’s inequality states that ac+ bd ≥ ef , where a, b, c, d are consecutive sides of
a quadrilateral (it need not be planar), and e, f are its diagonals. There is equality if
and only if the quadrilateral is cyclic (has a circumcircle). Determine a corresponding
inequality for a spherical quadrilateral.

A 750. Let a, b, c, d and e, f denote the sides and diagonals of a spherical quadrilateral.
Then the chord lengths of the spherical arcs of the sides and diagonals are given by
a′ = 2R sin(a/2), b′ = 2R sin(b/2), etc., where R is the radius of the sphere. Then by
Ptolemy’s inequality above

sin(a/2) · sin(c/2) + sin(b/2) · sin(d/2) ≥ sin(e/2) · sin(f/2)

Again there is equality if and only if the quadrilateral is cyclic.
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Q 751. Submitted by M. S. Klamkin, University of Alberta, Canada

If z1, z2, . . ., z5 are complex numbers such that

|zi+1 + zi+2| = |zi+3 + zi+4 + zi+5|

for i = 1, 2, . . . , 5 and zi+5 + zi prove that z1 + z2 + · · ·+ z5 = 0.

A 751. We will show more generally that if A1, A2, . . ., An are vectors in En such
that

|Ai+1 + Ai+2 + · · ·Ai+r| = Ai+r+1 + Ai+r+2 + · · ·+ Ai+n

for 2r < n, i = 0, 1, . . . , n−1 and Ai+n = Ai, then

A1 + A2 + · · ·+ An = 0

Proof. Let Si = Ai+1 + Ai+2 + · · · + Ai+r and S = A1 + A2 + · · · + An. The given
relations become |Si| = |S−Si| which on squaring becomes S2 = 2S ·Si. On summing
over i, we get nS2 = 2rS2. Hence S = 0.

Math. Mag., 63(1990) 57, 63.

Q 758. Submitted by M. S. Klamkin, University of Alberta, Alberta, Canada

Evaluate

I =

∫ a

0

xn(2a− x)n dx÷
∫ a

0

xn(a− x)n dx

A 758. Letting x = 2t in the first integral, we get

I = 22n+1

∫ a/2

0

tn(a− t)n dt÷
∫ a

0

tn(a− t)n dt

Since∫ a

0

tn(a− t)n dt =

∫ a/2

0

tn(a− t)n dt+

∫ a

a/2

tn(a− t)n dt = 2

∫ a/2

0

tn(a− t)n dt,

I = 22n.

This problem is due to E. B. Elliott and appears in Mathematical Problems from the
Educational Times, where each integral is evaluated separately.
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Math. Mag., 63(1990) 126, 133.

Q 761. Submitted by M. S. Klamkin, University of Alberta, Edmonton, Canada

If a1, a2, . . ., an+1 > 0, prove that

a1a2 · · · an+1(a
−n
1 + a−n

2 + · · ·+ a−n
n+1) ≥ a1 + a2 + · · ·+ an+1

A 761. Letting P =
∏n+1

i=1 ai, S =
∑n+1

i=1 a
−n
i , the inequality can be written as

P
[
(S − a−n

1 ) + (S − a−n
2 ) + · · ·+ (S − a−n

n+1)
]
≥ n

n+1∑
i=1

ai

Since by the arithmetic mean - geometric mean inequality,

S − a−n
i ≥ nai/P

we getthe desired inequality. There is equality if and only if all the ai are equal.

Alternative solution with generalization. Letting ak = 1/xk we then have to show
equivalently that

xn
1 + xn

2 + · · ·+ xn
n+1 ≥ x1x2 · · ·xn + x2x3 · · ·xn+1 + · · ·+ xnx1 · · ·xn−1

for xk > 0. More generally, we have

xp
1 + xp

2 + · · ·+ xp
n+1 ≥ x1x2 · · ·xp + x2x3 · · ·xp+1 + · · ·+ xnx1 · · ·xp−1

for all positive integers p and n. A proof follows immediately by applying Hölder’s
inequality to

(xp
1 + xp

2 + · · ·+ xp
n)1/p(xp

2 + xp
3 + · · ·+ xp

1)
1/p · · · (xp

p + xp
p+1 + · · ·+ xp

p+n−1)
1/p

where xn+k = xk.

Math. Mag., 64(1991) 65–66.

Comment

Q 761. In Vol.63, No.2, April 1990, p.133 Murray Klamkin offered the following
generalization to his Quickie (Q761): “For positive integers n and p and numbers
x1, . . . , xn > 0,

xp
1 + xp

2 + · · ·+ xp
n ≥ x1x2 · · ·xp + x2x3 · · ·xp+1 + · · ·+ xnx1 · · ·xp−1

where each subscript on the right is understood to be reduced nodulo n to one of
1, 2, . . . , n.” Peter D. Johnson, Jr., Auburn University, offers the following generaliza-
tion.
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We start with the well-known rearrangement inequality (e.g., see Inequalities, Hardy,
Littlewood & Pólya, Chapter 10): If a1 ≤ · · · ≤ an and b1 ≤ · · · ≤ bn and π is a
permutation of {1, 2, . . . , n}, then

∑
i aibi ≥

∑
i aibπ(i).

For non-negative sequences this generalizes, by induction on p, to the following.

If p ≥ 2 and n are positive integers, and A = (aij) is a p×nmatrix of non-negative num-
bers with non-decreasing rows, then for any permutations π2, π3, . . ., πp of {1, 2, . . . , n},

n∑
j=1

a1ja2j · · · apj ≥
n∑

j=1

a1ja2,π2(j) · · · ap,πp(j)

Klamkin’s inequality is obtainable from this by taking the rows of A to be equal (to
a non-decreasing rearrangement of x1, . . ., xn) and the permutations π2, . . ., πp to be
successive powers of a certain cycle (π2).

Math. Mag., 63(1990) 190, 198.

Q 763. Submitted by M. S. Klamkin, University of Alberta, Edmonton, Canada

Determine all real solutions of the simultaneous equations

2x(1 + y + y2) = 3(1 + y4)

2y(1 + z + z2) = 3(1 + z4)

2z(1 + x+ x2) = 3(1 + x4)

A 763. Since 1 + x+ x2 > 0, etc., it follows that x, y, z areall positive. Without loss
of generality we may assume x ≥ y ≥ z. Then

2x(1 + x+ x2) ≥ 3(1 + x4)

so that
0 ≥ (x− 1)2(3x2 + 4x+ 3)

Thus x = 1 giving the one real solution x = y = z = 1.
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Math. Mag., 63(1990) 274.

1355. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Determine the extreme values of

F ≡ x1x2 · · ·xn − (x1 + x2 + · · ·+ xn)

where b ≥ xi ≥ a ≥ 0 for all i.

Math. Mag., 64(1991) 278.

Solution by Christos Athanasiadis, student, Massachusetts Institute of Technology,
Cambridge, Massachusetts. We note that as a function of xj alone, F is linear, so
it attains its extreme values at xj = a and xj = b. It easily follows that the extreme
values of F are attained at n-tuples (x1, x2, . . . , xn) for which xi ∈ {a, b} forall i. Thus,
by the symmetry of F , the extreme values of F are among the numbers c0, c1, . . ., cn
defined by

ck = an−kbk − (n− k)a− kb

Note that ck+1− ck = (an−k−1bk − 1)(b− a) for k = 0, 1, . . . , n−1. We now distinguish
three cases.

Case 1. a ≥ 1. Then ck+1 ≥ ck for all k, so the minimum of F is c0 = an− na and the
maximumis cn = bn − nb.

Case 2. b ≤ 1. Then ck+1 ≤ ck for all k so the minimum is cn and the maximum is c0.

Case 3. a < 1 < b. In this case, ck+1|geqck if and only if

k ≥ (n− 1) log(1/a)

log(b/a)
(∗)

Thus, if k is the smallest integer for which (∗) holds, then the minimum of F is ck,
while the maximum is max{c0, cn}.
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Math. Mag., 63(1990) 274, 280.

Q 768. Submitted by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Show that

(a+ b+ c)n(a2n + b2n + c2n) ≥ (an + bn + cn)(a2 + b2 + c2)n

where a, b, c ≥ 0 and n ≥ 1.

A 768. By the power mean inequality,∑
a2n∑
an

=

∑
an · an∑
an

≥
(∑

an · a∑
an

)n

where the sums here and subsequently are symmetric over a, b, c. Then∑
an+1∑
an

≥
∑
a2∑
a

since it is equivalent to ∑
ab(an−1 − bn−1)(a− b) ≥ 0

The inequality can be easily extended for a more general combination of exponents
and to any number of variables.
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Math. Mag., 63(1990) 279.

Comments
1311. Murray Klamkin notes that the result of this problem is equivalent to a gen-
eralization he gave to a USA Olympiad Problem (M. S. Klamkin, USA Mathematical
Olympiads, 1972–1976, MAA, Wasington, D.C., 1988, p.84). Moreover, the result in
this reference is valid for both the odd and even cases.

[[The problem referred to is

Math. Mag., 61(1988) 315.

1311. Proposed by Mihály Bencze, Braşon, Romania

Let 0 < m ≤ x1, x2, . . . , x2n+1 ≤M . Prove that

(M −m)2 + 4Mm

(
2n+1∑
k=1

xk

)(
2n+1∑
k=1

1

xk

)
≤ (2n+ 1)2(M +m)2 ]]
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Math. Mag., 63(1990) 350–351.

1362. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

If (ai, bi, ci) are the sides, Ri the circumradii, ri the inradii, and si the semi-perimeters
of n triangles (i = 1, 2, 3, . . . , n) respectively, show that

3
(∏

a
−1/n
i +

∏
b
−1/n
i +

∏
c
−1/n
i

)
≤

∏(
si

riRi

)1/n

≤ 2n
∏(

a
−1/n
i + b

−1/n
i + c

−1/n
i

)
where the sums and products are over i = 1 to n.

Math. Mag., 64(1991) 355.

(We regret that the statement of the problem inadvertently contained an extra sum-
mation sign [[removed from the above]] which rendered the problem meaningless, and
omitted the necessary condition that n > 1.)

Solution by Jiro Fukuta, Motosu-gun, Gifu-ken, Japan. From Hölder’s inequality,

3
(∏

a
−1/n
i +

∏
b
−1/n
i +

∏
c
−1/n
i

)
≤ 3

∏(
a
−1/n
i + b

−1/n
i + c

−1/n
i

)1/n

Now (ai + bi + ci)
2 = a2

i + B2
i + c2i + 2(bici + ciai + aibi) ≥ 3(bici + ciai + aibi) and

therefore 3(a−1
i + b−1

i + c−1
i ) ≤ (ai + bi + ci)

2/(aibici) = si/(riRi). It follows that

3
(∏

a
−1/n
i +

∏
b
−1/n
i +

∏
c
−1/n
i

)
≤
∏(

si

riRi

)1/n

For the other inequality, it is enough to prove that if a, b, c are the lengths of the three
sides of a triangle, (

(a+ b+ c)2

abc

)1/n

≤ 2(a−1/n + b−1/n + c−1/n)

or
(a+ b+ c)2 ≤

(
2(bc)1/n + 2(ca)1/n + 2(ab)1/n

)n
Let A = a1/n, B = b1/n and C = c1/n. Then the preceding equation can be rewritten
as

(An +Bn + Cn)2 ≤ (2BC + 2CA+ 2AB)n

But

(2BC + 2CA+ 2AB)n =
(
A(B + C − A) +B(C + A−B) + C(A+B − C) + A2 +B2 + C2

)n
≥ (A2 +B2 + C2)n
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because (B + C)n = (b1/n + c1/n)n ≥ b + c ≥ a = An and thus B + C ≥ A and so on.
Applying Jensen’s inequality, we have

(An +Bn + Cn)2 ≤ (A2 +B2 + C2)n

for n > 0. The result follows.

Math. Mag., 63(1990) 351, 357.

Q 770. Submitted by Murray S. Klamkin, University of Alberta, Edmonton, Canada

Determine the minimum value of x2 + y2 + z2 given that

xyz − x− y − z = 2 and x, y, z ≥ 0.

A 770. The constraint condition can be rewritten as

1/(1 + x) + 1/(1 + y) + 1/(1 + z) = 1

Then by Jensen’s inequality for convex functions,

1/(1 + x) + 1/(1 + y) + 1/(1 + z) ≥ 3/(1 + A)

where A+ (x+ y + z)/3. Thus, A ≥ 2. Then by the power mean inequality,

(x2 + y2 + z2)/3 ≥ A2

so that x2 + y2 + z2 ≥ 12 and with equality if and only if x = y = z = 2.

More generally, if
∑

1/(1+xi) = 1 and xi ≥ 0 for i = 1, 2, . . . , n, then
∑
xp

i ≥ n(n−1)p

for p ≥ 1 and with equality if and only if xi = n− 1.

Math. Mag., 63(1990) 328–329.

[[There’s a Note:]]

A Single Inequality Condition for the Existence of Many r-gons

Murray S. Klamkin & Zrzysztof Witczynski
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Math. Mag., 63(1990) 356–357.

Comments
Q759. In this problem, proposed by Norman Schaumberger, Bronx Community Col-
lege, a, b, c and d are the lengths of the sides of a quadrilateral and P is its perimeter.
Then

abc/d2 + bcd/a2
cda/b

2 + dab/c2 > P

unless a = b = c = d.

Murray Klamkin, University of Alberta, makes the following comments.

First, one can obtain the given inequality in one step by an application of Hölder’s
inequality, i.e.,

(a3b3c3 + b3c3d3 + c3d3a3 + d3a3b3)1/3 × (d3a3b3 + a3b3c3 + b3c3d3 + c3d3a3)1/3

×(c3d3a3 + d3a3b3 + a3b3c3 + b3c3d3)1/3 ≥ a3b2c2d2 + b3c2d2a2 + c3d2a2b2 + d3a2b2c2

For a generalization of this, one can start with the m-th root of the cyclic sum (with
respect to the ai) whose first term is aα1

1 a
α2
2 · · · aαn

n and multiplying by (m−1) m-th
roots of successive permutations of this sum as above (1 ≤ m ≤ n).

The given inequality is also a special case of Muirhead’s inequality [Hardy, Littlewood
& Pólya, Inequalities, Cambridge University Press, London, 1934, pp.44–48]:

Let
[α1, α2, . . . , αn] = (1/n!)

∑
aα1

1 a
α2
2 · · · aαn

n

where the sum is over the n! terms obtained from aα1
1 a

α2
2 · · · aαn

n by all possible permu-
tations of the ai and ai > 0, αi > 0. If

{α1, α2, . . . , αn} majorizes {β1, β2, . . . , βn} βi ≥ 0

that is,

α1 ≥ α2 ≥ · · · ≥ αn β1 ≥ β2 ≥ · · · ≥ βn

α1 + α2 + · · ·+ αk ≥ β1 + β2 + · · ·+ βk n > k ≥ 1

α1 + α2 + · · ·+ αn = β1 + β2 + · · ·+ βn

then
[α1, α2, . . . , αn] � [β1, β2, . . . , βn]

Since {3, 3, 3, 0} majorizes {3, 2, 2, 2}, we obtain the original given inequality. It also
follows that

[9, 0, 0, 0] � [6, 3, 0, 0] � [3, 3, 3, 0] � [3, 3, 2, 1] � [3, 2, 2, 2], etc.
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Math. Mag., 64(1991) 61, 67.

Q 774. Submitted by Murray S. Klamkin, University of Alberta, Edmonton, Canada

If A, B, C, D are distinct coplanar vectors with equal lengths such that A ·B+C ·D =
A ·D + B ·C, show that A ·B + C ·D = 0.

A 774. If O is the origin of the vectors, then their endpoints A, B, C, D, respectively,
lie on a circle centered at O. Since (A−C) · (B−D) = 0, AC ⊥ BD. Hence, A, B,
C,D are in consecutive order on the circle and do not lie on any semicircle.

A

B

C

D

P

α
β

γ
δ

Referring to the preceding figure, we have to show that cosα + cos δ = 0. Since
90◦ = ∠APB = 1

2
(arcAB + arcCD), α+ δ = 180◦ and we are done.

Math. Mag., 64(1991) 356–357.

Comments
Q774. In the Quickie Solution (Vol.64, No.1, pp.61,67) to this problem, the author
states that “A, B, C,D are in consecutive order on the circle and do not lie on any
semicircle.” The following example, pointed out by Mike Schramm (student) and
Kevin Farrell, Lyndon State College, shows that this conclusion is false. Let A=(5,14),
B=(14,–5), C=(–5,14) and D=(14,5). These vectors satisfy the hypotheses of the
theorem, namely, they are distinct coplanar vectors with equal lengths and A ·B+C ·
D = A ·D + B ·C. They do not satisfy the conclusion stated above. They are not in
consective order and do lie on a semicircle.

Murray Klamkin, University of Alberta comments: In the solution, it was assumed
that AC and BD, which must be perpendicular chords of a circle, intersect at a point
P lying within or on a circle. The example given above shows that P might lie outside
the circle. Here is a simpler solution that takes care of both cases.

Choose a rectangular coordinate system with origin at the center O of the circle and
with axes parallel to AC and BD. Then the four vectors have the representations
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A = (α, β), C = (−α, β) B = (γ, δ) and D = (γ,−δ). (Note that α need not be
positive, etc.) Finally,

A ·B + C ·D = αγ + βδ − αγ − βδ = 0

Since also

A2 + B2 + C2 + D2 − (A−B)2 − (C−D)2 = 2(A ·B + C ·D) = 0

we have equivalently that

AP 2 +BP 2 + CP 2 +DP 2 = 4R2 (R = radius of the circle)

The latter corresponds to the known result (Crux Mathematicorum, 15(1989) 293,
#1) that the sum of the areas of the four circles whose diameters are AP , BP , CP
and DP is equal to the area of the given circle. In this result it is assumed that P
lies within the circle. But the above proof shows that it is valid if P is outside the
circle. This four-circle result apparently has been generalized (Crux Mathematicorum,
16(1990) p.109, #1535) to a result concerning two intersecting chords in an ellipse.
However, the ellipse result can be shown to follow from the circle result by an affine
transformation.

Math. Mag., 64(1991) 132, 137–138.

Q 777. Submitted by Murray S. Klamkin and Andy Liu, University of Alberta, Ed-
monton, Alberta, Canada

T1 and T2 are two acute triangles inscribed in the same circle. If the perimeter of T1

is greater than the perimeter of T2, must the area of T1 also be treaterthan the area of
T2 ?

A 777. By considering two triangles with angles (80◦, 50◦, 50◦) and (70◦, 70◦, 40◦) the
answer is in the negative.

The result would be valid for two general triangles if the angles of T2 majorized those
of T1, that is, if A1 ≥ B1 ≥ C1, A2 ≥ B2 ≥ C2, then A2 ≥ A1 and A2 +B2 ≥ A1 +B1.
Then by the majorization inequality,

F (A1) + F (B1) + F (C1) ≥ F (A2) + F (B2) + F (C2) (1)

for concave functions F . The rest follows since the perimeter and area of a triangle
ABC is [[are?]] given by 2R(sinA+sinB+sinC) and 2R2 sinA sinB sinC respectively,
and sinx and ln sinx are concave on (0, π).

Comments. For the special case when T1 and T2 have a common angle (or equivalently
a common side), then the angles of T2 majorize those of T1. Itwould be of interest to
give an elementary geometric proof of (1) for F (x) = sin x or ln sinx.
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Math. Mag., 64(1991) 198, 206.

Q 779. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Determine thebest upper and lower bounds for thesum

a

f + a+ b
+

b

a+ b+ c
+

c

b+ c+ d
+

d

c+ d+ e
+

e

d+ e+ f
+

f

e+ f + a

where a, b, c, d, e and f are nonnegative and no denominator is zero.

A 779. Let S be the given sum and T = a+ b+ c+ d+ e+ f . Then

S > a/T + b/T + c/T + d/T + e/T + f/T = 1

That 1 is the best possible bound follows by choosing

a = 1/ε6 b = 1/ε5 c = 1/ε4 d = 1/ε3 e = 1/ε2 and f = 1/ε

where ε� 1.

[[The last ‘f ’ was misprinted as ‘e’ ]]

The least upper bound is 3 and follows from

a

f + a+ b
+

b

a+ b+ c
≤ a+ b

a+ b
= 1

c

b+ c+ d
+

d

c+ d+ e
≤ c+ d

c+ d
= 1

e

d+ e+ f
+

f

e+ f + a
≤ e+ f

e+ f
= 1

The 3 bound is achievable by either setting a = c = e = 0 or else by setting b = d =
f = 0.

Math. Mag., 64(1991) 275, 281.

Q 783. Submitted by Murray S. Klamkin and Andy Liu, University of Alberta, Ed-
monton, Canada

If all the vertices of a regular n-gon are lattice points in a plane tessellated by equilateral
triangles, then n = 3 or n = 6.

A 783. Suppose n 6= 3 and n 6= 6 but there exists a regular lattice n-gon A1A2 . . . An.
Construct equilateral triangles A1A2B1, A2A3B2, . . ., AnA1Bn inside A1A2 . . . An.
It is easy to see that B1B2 . . . Bn is also a regular lattice n-gon, and smaller than
A1A2 . . . An. This construction can be repeated to generate a sequence of lattice n-gons
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converging to a single point. This is clearly impossible. On the other hand, there cer-
tainly exist regular lattice n-gons for n = 3 and n = 6. For n = 3, B1B2B3 = A1A2A3.
For n = 6, B1 = B2 = B3 = B4 = B5 = B6 and the construction cannot be repeated.

Math. Mag., 64(1991) 277.

Quadrilateral subdivision October 1990

1354. Proposed by Frank Schmidt, Bryn Maur College, Bryn Maur, Pennsylvania,
and Rodica Simion, George Washington University, Washington, DC.

Let ABCD be a convex quadrilateral in the plane with trisection points joined as in
the figure to form nine smaller quadrilaterals.

a. Show that the area of A′B′C ′D′ is one-ninth the area of ABCD.

b. Give necessary and sufficient conditions so that all nine quadrilaterals have equal
area.

A B

C

D

A′ B′

C ′
D′

II. Comment by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.
Results generalizing part a, and easily implying part b, are given in Donald Batman
& Murray Klamkin, Solution to Problem E2423 (1974, Amer. Math. Monthly, pp.666–
668). Part a also appeared previously as Problem E1548 (1962, Amer. Math. Monthly).

Math. Mag., 65(1992) 57, 65.

Q 786. Submitted by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Evaluate the absolute value of the n× n determinant of the matrix (ars), where ars =
ωrs (r, s = 1, 2, . . . , n) and ω is a primitive root of xn = 1.
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A 786. The rs-th term of the matrix (ars)(ars) is given by

ωr+s + ω2(r+s) + · · ·+ ωn(r+s)

The latter is 0 unless r + s = n or 2n, in which case it is equal to n. Thus,

det(ars)(ars) = det



0 0 0 · · · 0 n 0
0 0 0 · · · n 0 0
...

...
... · · · ...

...
...

0 0 n · · · 0 0 0
0 n 0 · · · 0 0 0
n 0 0 · · · 0 0 0
0 0 0 · · · 0 0 n


= ±nn

and therefore | det(ars)| = nn/2

Math. Mag., 65(1992) 195, 200.

Q 792. Submitted by Murray S. Klamkin, University of Alberta, Edmonton, Canada

Determine all positive integer triples (x, y, z) satisfying the Diophantine equation

x4 + y4 + z4 = 2y2z2 + 2z2x2 + 2x2y2 − 3

A 792. The equation is equivalent to

(x+ y + z)(y + z − x)(z + x− y)(x+ y − z) = 3

Hence x+ y + z = 3 and then x = y = z = 1.

A more interesting problem is to find integers w such that

(x+ y + z)(y + z − x)(z + x− y)(x+ y − z) = 3w4

has solutions other than x = y = z = w. Geometrically, this problem is equivalent to
finding integer triangles having the same area as an equilateral triangle of side w.

[[is this an unsolved problem ? — R.]]
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Math. Mag., 65(1992) 266.

1407. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Determine the maximum value of the sum

xp
1 + xp

2 + · · ·+ xp
n − xq

1x
r
2 − xq

2x
r
3 − · · · − xq

nx
r
1

where p, q, r are given numbers with p ≥ q ≥ r > 0 and 0 ≤ xi ≤ 1 for all i.

Math. Mag., 66(1993) 271.

Solution by David Jonathan Barrett, New York, New York. We show that bn/2c is the
maximum value.

Let fp,q,r(x1, . . . , xn) denote the given expression. Then for the xi as given

fp,p,p(x1, . . . , xn) ≥ fp,q,r(x1, . . . , xn) (1)

We show that the left side reaches its maximum at some point where equality holds.
For n = 2 it is easy to check that fp,p,p(x1, x2) reaches its maximum of 1 at (1,0) and
(0,1).

Assume n ≥ 3. For fixed p, x3, xn let

g(x1, x2) = xp
1 + xp

2 − xp
1x

p
2 − xp

2x
p
3 − xp

nx
p
i

Then fp,p,p(x1, . . . , xn) is the sum of g(x1, x2) and some function independent of x1 and
x2. To maximize fp,p,p(x1, . . . , xn) with respect to x1, x2 we need only to maximize
g(x1, x2). Since the latter has no relative extremum in the interior of the unit square,
it must reach its maximum on the boundary, that is, where at least one of x1, x2 is 0
or 1. Examination reveals that either (1,0) or (0,1) must be a maximal point.

But the same argument goes through for any two adjacent variables in the function,
so that some n-tuple of 0 s and 1 s (with nver more than two consecutive 0 s and 1 s)
must be a maximal point for fp,p,p(x1, . . . , xn). In fact, by starting with x1 = 1 and
alternating 0 s and 1 s, we get the desired maximum at a point where equality in (1)
holds.
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Math. Mag., 65(1992) 266, 272–273.

Q 794. Submitted by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

The general problem of Appolonius [[sic]] is to draw a circle tangent to three given
circles. Special cases ensue when all or some of the circles are replaced by points or
lines. Solve the problem in the case of two points O, Q and a circle C,where O is the
center of C and Q is an interior point of C.

A 794. The center(s) of the desired tangent circle(s) is (are) the midpoint(s) of the
hypotenuse(s) of the right triangle(s) drawn as in the figure.

O

QP1 P2

M1 M2

[[Note: only one solutions was given. The above has been written with a plural alter-
native, and the diagram includes the second solution. — R.]]
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Math. Mag., 65(1992) 349, 354.

Q 797. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada, and dedicated to the late Joseph Konhauser, Macalester College, St. Paul,
Minnesota

Determine the maximum and minimum values of

S = sin2 x+ sin2 y + 2k sin x sin y

wherex, y ≥ 0, x+ y = α and α, k are given constants with 0 ≤ α ≤ π.

A 797. We rewrite S in the form

S = sin2 x+ sin2 y + 2 cosα sin x sin y + 2(k − cosα) sinx sin y

and it then follows easily that

S = sin2 α+ 2(k − cosα) sinx sin y

= sin2 α+ (k − cosα) (cos(x− y)− cos(x+ y))

Case 1. k ≥ cosα.

maxS = sin2 α+ (k − cosα)(1− cosα) = (1 + k)(1− cosα)

minS = sin2 α

Case 2. k < cosα.

minS = (1 + k)(1− cosα)

maxS = sin2 α

This problem was suggested by the following Quickie problem by the late Joe Kon-
hauser (private communication).

O

A
B

C

b

c

α
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From a point A on the circular arc (radius R) of a sector of a nonobtuse angle α, drop
perpendiculars to the sides. If the two feet are B and C, determine the extreme values
of BC. Since OBAC is cyclic, the circumradius of ABC is the same as that of OAB,
which is OA/2 since ∠OBA is a right angle. Then since the product of the sides of
triangle BAC = 4× its circumradius × its area,

bc ·BC = 4(R/2)(bc sin(π − α))/2

or BC = R sinα = constant.

Math. Mag., 66(1993) 65.

Q791. Murray Klamkin, University of Alberta, Canada, points out that this problem,
generalizations, and the continuous analogues, have appeared in the following notes

1. Murray S. Klamkin, A probability of more heads, this Magazine, 44(1971) 146–149.

2. Murray S. Klamkin, Symmetry in probability distributions, this Magazine, 61(1988) 193–194.

[[Q791 was:

Math. Mag., 65(1992) 195, 200.

Q791. Proposed by Barry Cipra, Northfield, Minnesota

Suppose you have n coins and your opponent has n + 1. You each toss allyour coins
and count the number of heads. You lose if you have fewer heads, otherwise you win
(i.e., you win all ties). Assuming that the coins are fair, is this game fair ?

A791. For each combination of coin tosses C, let C ′ be the combination produced by
reversing every coin. It is clear that this association yields an involution on the set of
all combinations of coin tosses. But it is also easy to see that it reverses the win-loss
outcome of any combination. Therefore the number of winning combinations equals
thenumber of losing combinations, so the game is fair. ]]
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Math. Mag., 65(1992) 127, 132.

Q 802. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Prove that if one altitude intersects two other altitudes of a tetrahedron, then all four
altitudes of the tetrahedron are concurrent.

[[ I think that this occurs somewhere else as well. — with hindsight, it mustbe E2226
in the Monthly: see below — R.]]

A 802. Let the vertices of the tetrahedron be A0, A1, A2, A3 and assume the altitude
from A0 intersects the altitudes from A1 and A2. We now choose a vector origin to
be the point P that is the intersection of the altitude from A0 with the altitude from
A1. The vectorAi 1 = 1, 2, 3, 4 will denote the vector from P to Ai. Since A0 is
orthogonal to the face opposie A0, we immediately have

A0 ·A1 = A0 ·A2 = A0 ·A3 (1)

and similarly
A1 ·A0 = A1 ·A2 = A1 ·A3 (2)

The intersection of the altitudes from A0 and A2 is kA0 for some k. Then as above,
we also have

(A2 − kA0) ·A0 = (A2 − kA0) ·A1 = (A2 − kA0) ·A3

Then using (1) and (2), we have that all the Ai ·Aj (i 6= j) are equal. Hence P is
the orthocenter of the tetrahedron.

Proceeding in the same way, it follows that if one altitude of an n-dimensional simplex
intersects n−1 other altitudes, all n+1 altitudes are concurrent.

This problem first appeared as Problem E2226 in the Amer. Math. Monthly. This
solution is much simpler than the one published there (February 1971, Vol.78, No.2,
p.200).
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Math. Mag., 66(1993) 193, 201.

Q 805. Submitted by Murray S. Klamkin and A. H. Rhemtulla, University of Alberta,
Edmonton, Alberta, Canada

Let S be a semigroup.

(i) Given that xryr = yrxr for all x, y ∈ S and for r = 2, 3, . . . ,must S be commutative ?

(ii) Given that x2 = x3 = x4 = · · · for all x ∈ S, must S be commutative ?

A 805. LetS bethe multiplicative semigroup with generators

A =

0 a 0
0 0 0
0 0 0

B =

0 0 0
0 0 b
0 0 0

C =

0 0 c
0 0 0
0 0 0


with a, b, c nonzero real numbers. Then for any matrix D in S, Dr = 0 for r = 2, 3, . . ..
However

AB =

0 0 ab
0 0 0
0 0 0

 6=

0 0 0
0 0 0
0 0 0

 = BA.
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Math. Mag., 66(1993) 266.

1428. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Determine the remainder when (x2 − 1)(x3 − 1) · · · (x16 − 1)(x18 − 1) is divided by
1 + x+ x2 + · · ·+ x16

Math. Mag., 67(1994) 305.

Solution by F. J. Flanigan, San Jose State University, San Jose, California.

The remainder is 17. More generally, for p an odd prime, the remainder when Fp(x) =
(x2− 1)(x3− 1) · · · (xp−1− 1)(xp+1− 1) is divided by Φ(x) = 1 + x+ x2 + · · ·+ xp−1 is
the constant p.

To see this, write Fp(x) = Q(x)Φp(x) + R(x) where R(x) is a polynomial of degree at
most p − 2. Let ζ be a root of Φp(x), that is, a primitive p th root of unity. Clearly
Fp(ζ) = R(ζ). But

Fp(ζ) = (ζ2 − 1) · · · (ζp−1)(ζp+1 − 1) = (1− ζ)(1− ζ2) · · · (1− ζp−1)

= Φp(1)

where we have used ζp+1 = ζ and the standard factorization Φ(x) = (x − ζ)(x −
ζ2) · · · (x− ζp−1), as well as the fact that p−1 is even (to reverse each factor).

From this we learn that R(ζ) = Fp(ζ) = Φp(1) = 1 + 1 + · · ·+ 1 = p, the given prime.
But this is true for each of the p−1 primitive p th roots of unity. Since the polynomial
R(x) has degree no larger than p−2, R(x) ≡ p for all x, proving the claim.

Note: For a positive integer n, recall that a complete positive reduced residue system
modulo n is a set κ = {k1, k2, . . . , kφ(n)} of positive integers, no two of which are
congruent modulo n and each of which is coprime to n. For n and κ as above, define
Eκ(x) =

∏
k∈κ(x

k − 1). Then, for n ≥ 3, the remainder when Eκ(x)isdividedbythen th
cyclotomic polynomial Φn(x) is the integer Φn(1). The proof given above, mutatis
mutandis, works here as well.
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Math. Mag., 66(1993) 267, 272.

Q 809. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

If the four altitudes of a tetrahedron are concurrent, prove that the six midpoints of
the edges of the tetrahedron are cospherical.

A 809. Let A, B, C, D denote vectors from the orthocenter to the vertices A, B, C,
D, respectively, of the tetrahedron. Because A is orthogonal to B − C and C − D,
etc., it follows that

A ·B = A ·C = A ·D = B ·C = B ·D = C ·D = λ

We now show that the six midpoints of the edges (A + B)/2, (A + C)/2, etc., are all
equidistant from the centroid (A+B+C+D)/4. All we need to show is that 16 times
the square of one of the six distances, say

16|(A + B)/2− (A + B + C + D)/4|2 = |A + B−C−D|2, . . .

is symmetric with respect to A, B, C, D. Expanding out and using the above identities,
we get

|A|2 + |B|2 + |C|2 + |D|2 − 4λ.
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Math. Mag., 66(1993) 339, 345.

Q 812. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Determine the maximum value of

(x+ y + z)
(√

a2 − x2 +
√
b2 − y2 +

√
c2 − z2

)
A 812. The problem can be done in several ways using the multivariate calculus. Here
is a generalization by elementary means.

We determine the maximum value of

P =
n∑

i=1

xi ·
n∑

i=1

√
a2

i − x2
i

Let xi = ai sin θi, −π/2 ≤ θi ≤ π/2, ai > 0, so that

P =
n∑

i=1

ai sin θi ·
n∑

i=1

ai cos θi

=
1

2

(
n∑

i=1

a2
i sin 2θi + 2

n∑
i=1

n∑
j=i+1

aiaj sin(θ1 + θj)

)

Clearly the maximum is taken on when all θi = π/4 so that

maxP =
1

2

(
n∑

i=1

ai

)2

Math. Mag., 66(1993) 67, 74.

Q 815. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

ABCD is a convex quadrilateral inscribed in the base of a right circular cone of vertex
P . Show that for the pyramid PABCD, the sum of the dihedral angles with edges
PA and PC equals the sum of the dihedral angles with edges PB and PD.

A 815. Equivalently, we want to show that for a cyclic spherical quadrilateral, the
sum of onepair of opposite angles equals the sum of the other pair of opposite angles.
Let O be the pole of the circumcircle of ABCD. Since triangles AOB, BOC, COD
and DOAare isosceles, the result follows. Note that it does not matter if O lies in the
interior of ABCD or not.
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Math. Mag., 67(1994) 146.

1446. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Canada

Determine the least number of times the graph of

y =
a2

x2 − 1
+

b2

x2 − 4
+

c2

x2 − 9
− 1

intersects the x-axis (a, b, c are nonzero real constants).

Math. Mag., 68(1995) 151.

Solution by Jerrold W.Grossman, Oakland University, Rochester, Michigan. The graph
always intersects the x-axis six times. By symmetry, it suffices to consider x ≥ 0. Itis
clear that y < 0 when x = 0, that limx→n− y = −∞ for n = 1, 2, 3, that limx→n+ y = ∞
for n = 1, 2, 3, and that limx→∞ y = −1. Furthermore

dy

dx
= −2x

(
a2

(x2 − 1)2
+

b2

(x2 − 4)2
+

c2

(x2 − 9)2

)
so y is decreasing on (0,1), (1,2), (2,3) and (3,∞). Since y is also continuous on these
intervals, it follows from all these statements that there is precisely one x-intercept in
each of (1,2), (2,3) and (3,∞) and no x-intercept in (0,1).
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Math. Mag., 67(1994) 225.

1453∗. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Let En+1 = xEn where E0 = 1, n = 0, 1, . . ., and x ≥ 0 (E1 = x, E2 = xx, etc.) It is
easy to show that for x ≥ 1, En (n > 1) is a strictly increasing convex function.

[[Not true for x = 1? – Later: the analysis below sets this straight – R.]]

Prove or disprove each of the following.

(i) E2n is a unimodal convex function for n > 1 and all x ≥ 0.

(ii) E2n+1 is an increasing function for x ≥ 0, and is concave in a small enough interval
[0, ε(n)].

Math. Mag., 68(1995) 230–231.

Composite analysis by Richard Holzsager, The American University, Washington, DC,
and George Gilbert, Texas Christian University, Fort Worth, Texas. Neither statement
gives the correct concavity. For instance, one can set up a recursion and let the
computer calculate that E

′′
10(0.02) ≈ −15.5. Also, a straightforward calculation shows

that limx→0+ E
′′
3 (x) = ∞, so that E3 cannot be concave in any interval containing 0.

In fact, the function En is convex in some interval of the form [0, εn) for n > 1. To see
this, call a function f “small of order r” near 0 if, for any δ > 0, f(x)/xr−δ → 0 as
x→ 0+. Note that xr lnk x is small of order r for all k. Let κr stand for any function
that is small of order r. The convexity follows once we establish that, for n ≥ 1

E2n = 1 + x lnx+ κ2 E ′
2n = ln x+ 1 + κ1 E2n = 1/x+ κ0 (1)

E2n+1 = x+x2 ln2 x+κ3 E
′
2n+1 = 1+2x(ln2 x+lnx)+κ2 E

′′
2n+1 = 2(ln2 x+3 lnx+1)+κ1 (2)

From En+1 = xEn we find that

E ′
n+1 = En+1

(
En

x
+ E ′

n lnx

)
and

E ′′
n+1 = En+1

(
E2

n

x2
+

2EnE
′
n lnx

x
+ E ′2

n ln2 x− En

x2
+ E ′′

n lnx

)
It is easy to show that these formulas hold for n = 1. Furthermore, one finds that (1)n

implies (2)n and (2)n implies (1)n+1 so, by induction, (1) and (2) hold for all n ≥ 1.
This completes the proof of our claim.

Finally, we show that E2n+1 is increasing for x ≥ 0. We need only consider 0 < x < 1.
For such x, a < b implies xb < xa and applying this repeatedlywe see that, for 0 < x < 1

x = E1 < E3 < · · · < E2n+1 < · · · < E2n < · · · < E2 < E0 = 1
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Repeated application of the recurrence E ′
n = En(En−1/x+ E ′

n−1 lnx) yields

E ′
n =

EnEn−1

x
(1 + En−2 lnx+ En−2En−3 ln2 x+ · · ·+ En−2En−3 · · ·E0 lnn−1 x)

For a given x in (0,1)

E ′
2n+1 =

E2n+1E2n

x

[
(1 + E2n−1 lnx) + E2n−1E2n−2 ln2 x(1 + E2n−3 lnx) + · · ·

+E2n−1 · · ·E2 ln2n−2 x(1 + E1 lnx) + E2n−1 · · ·E0 ln2n x
]

is positive unless 1 + E2j+1 lnx < 0 for some j. However, in this case 1 + E2k lnx < 0
for all k, hence, rearranging

E ′
2n+1 =

E2n+1E2n

x
[1 + E2n−1 lnx(1 + E2n−2 lnx)

+ · · ·+ E2n−1 · · ·E1 ln2n−1 x(1 + E0 lnx)
]

we see that each summand is positive, proving that E2n+1 is increasing.

The second step of iterating the recurrence yields

E ′
2n+2 = E2n+2E2n+1

[
1 + E2n lnx

x
+ E ′

2n ln2 x

]
Note that xx > 1/e and that xx1/e

decreases on (0, e−e). If E2n > 1/e on (0, e−e), then
also

E2n+2 > xxE2n > xx1/e

> (e−e)(e−e)1/e

=
1

e

[[shd that first ‘>’ be an ‘=’ ? – R.]]

It follows that 1 + E2n lnx < 0 on (0, e−e), hence that E ′
2n < 0 on (0, e−e) for all

n ≥ 1. If E2n were convex for x ≥ e−e, unimodality would be established. One final
observation: Because 1 + E2n lnx increases with n, if E ′

2n(x) > 0 for a given x, then
E ′

2n+2k(x) > 0 for all integers k > 0.
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Math. Mag., 67(1994) 305, 310.

Q 824. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Determine all positive rational solutions of xx = yy with x ≥ y > 0.

A 824. Obviously, one set of solutions is x = y. To obtain all the others, we let
x = 1/u and y = 1/v to give uv = vu where v > u. It is known that all the solutions
of the latter equation are given by

v = (1 + 1/m)m+1 u = (1 + 1/m)m m = 1, 2, . . .

(See W. Sierpiński, Elementary Theory of Numbers, Hafner, New York, 1964, 106–107.)

Hence
x = (1 + 1/m)−m y − (1 + 1/m)−1−m

Math. Mag., 67(1994) 385, 390.

Q 826. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Which of the two integrals∫ 1

0

(√
1 + x2r tan2 α− xr secα

)1/s

dx

∫ 1

0

(√
1 + x2s tan2 α− xs secα

)1/r

dx

is larger, given that r > s > 0 and π/2 > α > 0 ?

A 826. The first integral equals the area in the first quadrant bounded by the x and
y axes and the curve

(ys + xr secα)2 = 1 + x2r tan2 α

which simplifies to
y2s + 2ysxr secα+ x2r = 1

Since the mirror image of the latter curve across the x = y line is

y2r + 2yrxs secα+ x2s = 1

the two integrals are equal in value.
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Math. Mag., 67(1994) 69, 74.

Q 830. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Determine
∫ 1

0
(1 − xm)n dx ÷

∫ 1

0
(1 − xm)n−1 dx m, n > 0 without using beta function

integrals.

A 830. Integrating by parts,

Fn ≡
∫ 1

0

(1− xm)n dx = mn

∫ 1

0

xm(1− xm)n−1 dx

= mn

∫ 1

0

(
(xm − 1)(1− xm)n−1 + (1− xm)n−1

)
dx

or, Fn(1 +mn) = mnFn−1. Hence

Fn

Fn−1

=
mn

1 +mn
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Math. Mag., 68(1995) 228–229.

Concurrent Lines in a Triangle June 1994

1452. Proposed by John Frohliger and Adam Zeuske (student), St. Norbert College,
DePere, Wisconsin

Let ABC be a given triangle and θ an angle between −90◦ and 90◦. Let A′, B′,
C ′ be points on the perpendicular bisectors of BC, CA, AB, respectively, so that
∠BCA′, ∠CAB′, ∠ABC ′ all have measure θ. Prove that the lines AA′, BB′, CC ′ are
concurrent, provided that points A′, B′, C ′ are not equal to A, B, C, respectively.

II. Solution by Murray S. Klamkin, University of Alberta, Edmonton,Alberta, Canada.
Since BA′ = CA′ = 1

2
sec θ, it follows that the areal coordinates of A′ are

1
4

(
a2 tan θ, ab sec θ sin(C − θ), ac sec θ sin(B − θ)

)
If V denotes a vector from a given origin to a point V , then the vector representation
of A′ is given by

A′ = 1
4
(Aa2 tan θ + Bab sec θ sin(C − θ) + Cac sec θ sin(B − θ))

It now follows that the line AA′ intersects BC in a point A′′ such that

BA′′

A′′C
=
c sin(B − θ)

b sin(C − θ)

and similarly for the other two lines (by cyclic interchange). Then since

c sin(B − θ)

b sin(C − θ)

a sin(C − θ)

c sin(A− θ)

b sin(A− θ)

a sin(B − θ)
= 1

it follows by Ceva’s theorem that the lines AA′, BB′, CC ′ are concurrent, provided
that the points A′, B′, C ′ are not equal to A, B, C, respectively.

The two angles of θ that must be excluded are −90◦ and 90◦.

Math. Mag., 69(1996) 74.

Comments
S1452. Concurrent Lines in a Triangle June 1995.

Peter Yff writes that “the locus of the point of concurrence is a conic known as Kiepert’s
hyperbola. This is a rectangular hyperbola passing through A, B, C, the centroid, the
orthocenter, the Spieker center, the isogonic centers and the Napoleon points.” He
refers to page 223 of R. A. Johnson’s Advanced Euclidean Geometry.
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Math. Mag., 68(1995) 307.

1481. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

It is known that if a point moves on a straight line with constant acceleration and s1,
s2, s3 are its positions at times t1, t2, t3 respectively, then the constant acceleration is
given by

2

(
(s2 − s3)t1 + (s3 − s1)t2 + (s1 − s2)t3

(t2 − t3)(t3 − t1)(t1 − t2)

)
Show that this property characterizes uniformly accelerated motion; that is, if a particle
moves on a straight line and s1, s2, s3 are its positions at any times t1, t2, t3 respectively,
then if

(s2 − s3)t1 + (s3 − s1)t2 + (s1 − s2)t3
(t2 − t3)(t3 − t1)(t1 − t2)

= constant

the motion is one of constant acceleration.

Math. Mag., 69(1996) 308.

Solution by Victor Kutsenok, St. Francis College, Fort Wayne, Indiana. Fix t2 6= t3.
Then

(s2 − s3)t+ (s3 − s)t2 + (s− s2)t3
(t2 − t3)(t3 − t)(t− t2)

=
a

2

for some real number aand t 6= t2, t3, where s is the position corresponding to time t.
Then (s2− s3)t+ (s3− s)t2 + (s− s2)t3 = (a/2)(t2− t3)(t3− t)(t− t2) for all t. Solving
for s yields a quadratic for in t, so the given motion is one of constant acceleration
with s′′ = a.

Math. Mag., 67(1994) 308, 318.

Q 840. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

IfA1A2A3A4 is aplane cyclic quadrilateral andHi is the orthocenter of triangleAi+1Ai+2Ai+3

where Ai+4 = Ai for i = 1, 2, 3, 4, prove that

(i) Area(A1A2A3A4)=Area(H1H2H3H4) and

(ii) the lines A1H1, A2H2, A3H3, A4H4 are concurrent.

A 840. A vector proof is particularly apt here since if Ai is a vector from the circum-
center of A1A2A3A4 to the vertex Ai, the orthocenter of Ai+1Ai+2Ai+3 is given simply
by Hi = S −Ai i = 1, 2, 3, 4, where S = A1 + A2 + A3 + A4 (note for example that
(H1 − A2) · (A3 − A4) = A2

3 − A2
4 = 0). It follows that H1H2H3H4 is congruent to

A1A2A3A4, which establishes (i).

For (ii), the lines HiAi are given by Ai + λi(H−Ai), where λi are scalar parameters.
Letting λi = 1/2, the four lines are concurrent at the point given by S/2.
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Math. Mag., 68(1995) 310–312.

Recurrence in which positivity implies uniqueness October 1994

1456. Proposed by Howard Morris, Chatsworth, California

Show that the only sequence of numbers (αi) that satisfies the conditions

(i) αi > 0 for all i ≥ 1, and

(ii) αi−1 = iαi+1
αi+i

for all i > 0.

III. Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.
If we let αi = xn + 1, (ii) becomes

n+ 1

xn

− n− 1

xn−1

= −1

Then, with xn = n(n+ 1)Fn we get the telescoping difference equation

1

Fn

− 1

Fn−1

= −n

Hence,

Fn =
2F1

2− (n+ 2)(n− 1)F1

and thus

αn =
2 + (n2 + n+ 2)F1

2− (n2 + n− 2)F1

Since 2F1 = α1 − 1, (i) implies that F1 > −1/2. Since αn is positive for n = 2, 3, . . .,
it must be the case that F1 = 0, or equivalently, αn = 1 for n = 1, 2, . . .. Finally, from
(ii) with i = 1, we get α0 = 1.
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Math. Mag., 68(1995) 400, 406.

Q 841. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada, and Stanley Rabinowitz, MathPro Press, Westford, Massachusetts

Prove that the sequence un = 1/n, n = 1, 2, . . ., cannot be the solution of a nonhomo-
geneous linear finite-order difference equation with constant coefficients.

[[ N.B. On p.391 of Math. Mag., 69(1996) there is a correction from “nonhomogeneous”
to “homogeneous” ! — R. ]]

A 841. Assume to the contrary that it is possible. Then there exist constants ai, not
all zero, such that

a0 +
a1

n
+

a2

n+ 1
+ · · ·+ ar

n+ r − 1
= 0 (1)

for n = 1, 2, . . .. It then follows that the left-hand side of (1), which is a rational
function of n,must identically vanish for all n. Letting n → 0, it follows that a1 = 0.
Then letting n→ −1, it follows that a2 = 0, and similarly, all the ai are zero, and this
is a contradiction.

In a similar way, it follows that no strictly rational function can be the solution of a
linear finite-order difference equation with constant coefficients.
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Math. Mag., 67(1994) 400, 406.

Q 843. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Evaluate the following two n× n determinants:

(i) D1 = det(ars)r,s=1,...,n where arr = ar, r = 2, . . . , n and all the remaining elements
are 1.

(ii) D2 = det(brs)r,s=1,...,n where brr = br, r = 1, 2, . . . , n and all remaining elements are
1.

A 843. (i) On setting any ar = 1, D1 vanishes. Hence (a2− 1)(a3− 1) · · · (an− 1) is a
factor of D1. The remaining factor can only be the constant 1 since D is a polynomial
in the ai with leading term a2a3 · · · an.

(ii) If br = 1 for some r, the determinant reduces to the case consideredin (i), so we
will assume that that none of the br is equal to 1. Replace br by x/xr + 1 so that

x1x2 · · ·xnD2 = D′
2 = det(crs) where crr = x+ xr and crs = xr for r 6= s

By setting x = 0 in D′
2 we get n rows that are proportional. Hence xn−1 is a factor of

D′
2. The other factor must be linear in x having the form x+λ since the the coefficient

of xn in D′
2 must be 1. It is clear that λ =

∑
x1 since the coefficient of xn−1 can only

come in from the main diagonal. Finally

D′
2 =

(
x+

n∑
i=1

)
xn−1 and D2 =

(
1 +

n∑
i=1

1

bi − 1

)
n∏

i=1

(b1 − 1)

Alternatively, one can split the first row as (1, 1, . . . , 1)+(b1−1, 0, . . . , 0) and then use
the linearity of the determinant in a row, part (i), and induction.
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Math. Mag., 69(1996) 143.

1496. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Find a solution to the differential equation d2y/dx2 = −kx/y4, k > 0, other than one
of the form y = ax3/5.

Math. Mag., 69(1996) 145–147.

I. Solution by Hongwei Chen, Christopher Newport University, Newport News, Vir-
ginia. The given differential equation is a special case of the Emden-Fowler equation
d2y/dx2 = Axnym. All possible solvable cases are given in A. D. Polyanin & V. F. Za-
itsev, Handbook of Exact Solutions for Ordinary Differential Equations, CRC Press,
1995, 241–250.

We claim that the general solution to the differential equation is given in the parametric
form

x =

(
C2 ±

∫ (
2k

3
t−3 + C1

)−1/2

dt

)−1

y = t

(
C2 ±

∫ (
2k

3
t−3 + C1

)−1/2

dt

)−1

where t is a parameter, C1 and C2 are arbitrary constants.

The transformation x = 1/s, y = t(s)/s changes the equation into

d2t

ds2
=

1

s3

d2y

dx2
= −kt−4

By using the substitution w(t) = dt/ds this equation is reduced to the first order
equation

dw

dt
=
dw/ds

dt/ds
=
d2t/ds2

w
= −kt

−4

w

Integrate to obtain

w2 =
2k

3
t−3 + C1

where C1 is a constant. Thus,

dt

ds
= ±

(
2k

3
t−3

)1/2

so that

±
∫ (

2k

3
t−3

)−1/2

dt =

∫
ds
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and therefore

s = C2 ±
∫ (

2k

3
t−3

)−1/2

dt

where C2 is an additional constant. Hence, the general solution of the original equation
is given by

x =

(
C2 ±

∫ (
2k

3
t−3 + C1

)−1/2

dt

)−1

y = t

(
C2 ±

∫ (
2k

3
t−3 + C1

)−1/2

dt

)−1

Setting C1 = 0 leads to

x =

(
C2 ±

√
6

25k
t5/2

)−1

so that

t =

(
C +

√
25k

6
x−1

)2/5

and

y = x

(
C +

√
25k

6
x−1

)2/5

II. Solution by the proposer. Setting y = xt(x) we get

x4 d
2t

dx2
+ 2x3 dt

dx
= − k

t4

Multiplying by the integrating factor 2 dt/dx we get

d

dx

(
x4

(
dt

dx

)2
)

=
d

dx

2k

3t3

Integrating and taking square roots yields

dt

dx
= ±

√
2k
3t3

+ C1

x2

As in the first solution above, separation of variables leads to the parametric solution,
and setting C1 = 0 allows us to perform the integral to obtain the analytic solution.
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Math. Mag., 68(1995) 225, 230.

Q 851. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Prove that among all parallelepipeds of given edge lengths, the rectangular one has
the greatest sum of the lengths of the four body diagonals.

A 851. Let a, b and c be the given edge lengths. Let vectors A, B and C denote three
corresponding vectors along three coterminal edges of the parallelepiped. We want to
maximize

S = |A + B + C|+ |A + B−C|+ |A−B + C|+ | −A + B + C|

We may write

B ·C = bc cosα C ·A = ca cos β A ·B = ab cos γ

where α, β and γ denote the angles between the pairs of vectors. Hence

| ±A±B±C| = (a2 + b2 + c2 ± 2bc cosα± 2ca cos β ± 2ab cos γ)1/2

where the appropriate ± signs are chosen. Since
√
x is concave for x ≥ 0

S ≤ 4(a2 + b2 + c2)1/2

with equality if and only if the four body diagonals are equal, or, equivalently, if the
parallelepiped is rectangular.
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Math. Mag., 69(1996) 304.

1505. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada, and Cecil C. Rousseau, The University of Memphis, Memphis, Tennessee

Let a and b be positive numbers satisfying a+ b ≥ (a− b)2. Prove that

xa(1− x)b + xb(1− x)a ≤ 1

2a+b−1

for 0 ≤ x ≤ 1 with equality if and only if x = 1/2.

Math. Mag., 70(1997) 301–302.

I. Solution by Robert L. Doucette, McNeese State University, Lake Charles, Louisiana.
With the change of variables x = 1

2
− 1

2
y the given inequality becomes

(1− y)a(1 + y)b + (1− y)b(1 + y)a ≤ 2 (1)

. for |y| ≤ 1. Let g(y) be the left-hand side of (1).

If a = b then (1) becomes (1− y2)a ≤ 1, which is clearly true for |y| ≤ 1.

We assume in the following that b > a. Note that the maximum of g on the interval
[−1, 1] must occur at some interior point of the interval. A routine calculation shows
that g′(y) = 0 if and only if(

1 + y

1− y

)b−a

=
1 + b+a

b−a
y

1− b+a
b−a

y
(2)

Observe that the left-hand side of (2) is always positive on (−1, 1), while the right-hand
side is positive only for |y| < (b− a)/(b+ a). Using the series representation

ln

(
1 + y

1− y

)
= 2

∞∑
n=0

1

2n+ 1
y2n+1 |y| < 1

to expand each side of (2), we seek |y| < (b− a)/(b+ a) such that

y

∞∑
n=0

1

2n+ 1

[(
b+ a

b− a

)2n+1

− (b− a)

]
y2n = 0 (3)

From the conditions imposed on a and b, it follows that(
b+ a

b− a

)2n+1

− (b− a) ≥
(
b+ a

b− a

)
− (b− a) ≥ 0

where the first inequality is strict for n > 0. This means [[that]] (3), and hence the
equation g′(y) = 0, has the unique solution y = 0 in the interval (−1, 1). It follows
easily that g(y) ≤ g(0) = 2 on [−1, 1], with strict inequality for y 6= 0.

243



II. Solution by Joseph G. Gaskin, SUNY College at Oswego, Oswego, New York. Let
f(x) = xa(1−x)b+xb(1−x)a where 0 ≤ x ≤ 1. If a = b, then f(x) ≤ f(1/2) = 2(1/4)a,
with equality if and only if x = 1/2. So, supposing that a 6= b, we may assume a < b.

Since f(0) = f(1) = 0 and since f is differentiable and positive on (0,1), it follows that
f is maximized at a critical point in (0, 1). From

f ′(x) = xa−1(1− x)a−1
[
(a− (a+ b)x)(1− x)b−a + (b− (a+ b)x)xb−a

]
we see that f ′(x) = 0 for x ∈ (0, 1) if and only if

g(x) =
(a+ b)x− a

b− (a+ b)x

(
1− x

x

)b−a

= 1

Note that g(1/2) = 1 and that if g(x) = 1 > 0 on (0,1), then a/(a+ b) < x < b/(a+ b).

After a bit of algebra we find that

g′(x) =
b− a

(b− (a+ b)x)2

(
1− x

x

)b−a
[(a+ b)− (a+ b)2] (x− x2) + ab

x(1− x)

Every factor is clearly positive on (a/(a+ b), b/(a+ b)) except possibly for[
(a+ b)− (a+ b)2

]
(x− x2) + ab

This term is clearly positive if (a + b) − (a + b)2 ≥ 0. Otherwise, the hypothesis
(a+ b) ≥ (a− b)2 implies[

(a+ b)− (a+ b)2
]
(x− x2) + ab ≥

[
(a+ b)− (a+ b)2

]/
4 + ab

≥
[
(a− b)2 − (a+ b)2

]/
4 + ab = 0

with strict inequality for x 6= 1/2. We conclude that g is strictly increasing on (a/(a+
b), b/(a+b)), thereby proving that the only critical point of f(x) is when x = 1/2. The
inequality f(x) ≤ f(1/2) = 21−a−b follows immediately.
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Math. Mag., 68(1995) 385, 391.

Q 858. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Show that the Diophantine equation

x2 + 27y2z2(y + z)2 = 4(y2 + yz + z2)3

has an infinite number of integral solutions (x, y, z) with x, y, z relatively prime and
xyz 6= 0.

A 858. I. Since 4(y2 + yz + z2)3 − 27y2z2(y + z)2 = (y − z)2(y + 2z)2(z + 2y)2 the
general solution is immediate.

II. Provided by the Editors. The roots of f(t) = t3 − (y2 + yz + z2)t+ yz(y + z) arey,
z and −y−z. Therefore the discriminant of the cubic satisfies

4(y2 + yz + z2)3 − 27y2z2(y + z)2 = (y − z)2(y + 2z)2(z + 2y)2

Thus every integral pair (y, z) with yz(y − z)(y + 2z)(2y + z) 6= 0 gives rise to two
integral solutions (x, y, z) to the given equation with xyz 6= 0. In particular, we may
take y and z to be distinct, relatively prime, positive integers.

Math. Mag., 70(1997) 142, 150.

Q 863. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Prove that

n

 n∑
i=1

aibi +

(
n∑

i=1

a2
i

n∑
i=1

b2i

)1/2
 ≥ 2

n∑
i=1

ai

n∑
i=1

bi

where the ai and bi are real. Determine when equality holds.

A 863. Let a = (a1, . . . , an), b = (b1, . . . , bn) and c denote n-dimensional vectors. The
given inequality will follow from the more general |c|2(a · b + |a| |b|) ≥ 2(a · c)(b · c)
by setting c = (1, . . . , 1). Let α, β, γ denote the angles between a and c, between b
and c, and between a and b, respectively. Thegeneralizy inequality is now equivalent
to |a| |b| cos γ + |a| |b| ≥ 2|a| |b| cosα cos β, or cos γ + 1 ≥ 2 cosα cos β. Since in the
trihedral angle α+ β ≥ γ and 2π − (α+ β) ≥ γ, it suffices to show that

1 + cos(α+ β) ≥ 2 cosα cos β or 1 ≥ cos(α− β)

Equality holds if and only if α = β and either α + β = γ or α + β = 2π − γ. In
particular, a, b and c must be linearly dependent if equality holds.
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Math. Mag., 70(1997) 382.

1538. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada, and George T. Gilbert, Texas Christian University, Fort Wirth, Texas

Find all intger solutions to 2(x5 + y5 + 1) = 5xy(x2 + y2 + 1).

Math. Mag., 71(1998) 395–396.

I. Solution by Brian D. Beasley, Presbyterian College, Clinton, South Carolina. We
show that the given equation holds for integers x and y if and only if x+ y + 1 = 0.

The given equation is true if and only if

2(x5 + y5 + 1)− 5xy(x2 + y2 + 1) = (x+ y + 1)f(x, y) = 0

where

f(x, y) = 2x4 − 2x3y + 2x2y2 − 2xy3 + 2y4 − 2x3 − x2y − xy2 − 2y3

+ 2x2 − xy + 2y2 − 2x− 2y + 2

Thus we need only show that f(x, y) 6= 0 for all integers x and y. Observe that in any
solution of the original equation x and y must have opposite parity. By symmetry, we
may assume without loss of generality that x is even and y is odd. Then

f(x, y) ≡ 2y4 − xy2 − 2y3 − xy + 2y2 − 2y + 2 (mod 4)

However, each of the expressions 2y4− 2y3 = 2y3(y− 1), −xy2− xy = −xy(y+ 1) and
2y2 − 2y = 2y(y − 1) is divisible by 4 for x even, leaving f(x, y) ≡ 2 (mod 4).

II. Solution by Lenny Jones and students Karen Blount, Dennis Reigle and Beth Stock-
slager, Shippensburg University, Shippensburg, Pennsylvania. The only solutions are
ordered pairs of integers (x, y) with x+ y + 1 = 0.

To see this, factor 2(x5 + y5 + 1)− 5xy(x2 + y2 + 1) as (x+ y + 1)f(x, y) where

f(x, y) =
[
2x3(x− y − 1)

]
+
[
x(2y2 − y + 2)(x− y − 1)

][
2y4 − 2y3

]
+
[
2y2 − 2y

]
+ 2

If y = x, then f(x, y) = 2x4 − 6x3 + 3x2 − 4x + 2, which has no integer roots by the
rational root theorem. Note that x and y cannot both be negative. By symmetry, it
suffices to show that f(x, y) 6= 0 for x ≥ y + 1 with x ≥ 0. In this case, observe that
each of the bracketted terms in f(x, y) is nonnegative, so that f(x, y) > 0.
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[[ On p.389 of Math. Mag., 70(1997) we read

Acknowledgements. The editors would like to thank Murray S. Klamkin, Loren C. Larson, Efton
Park, Daniel H. Ullman and Peter Yff for their help in reviewing problem proposals over the last two
years. ]]

[[ On p.230 of Math. Mag., 71(1998) we read, in connexion with

1528. Proposed by Florin S. Pirvănescu, Slatina, Romania

Let M be a point in the interior of convex polygon A1A2 . . . An. If dk is the distance
from M to AkAk+1 (An+1 = A1), show that

(d1 + d2)(d2 + d3) · · · (dn + d1) ≤ 2n cosn π

n
·MA1 ·MA2 · · · · ·MAn

and determine when equality holds.

the following

Comment. Murray Klamkin observed that the result follows from the stronger inequal-
ity with dk redefined to be the length of the angle bisector of ∠AkMAk+1, referring to
D. S. Mitrinović, J. E. Pecarić & V. Volenec, Recent Advances in Geometric Inequali-
ties, p.423. ]]
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Math. Mag., 71(1998) 316, 322.

Q 883. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Given N rays in Rn forming a non-degenerate n-hedral angle with vertex O and a point
P in the interior of this angle, find points on the rays minimizing the volume of the
simplex formed by the points and O under the restriction that P is in the hyperplane
formed by the points.

(This generalizes Q847 from the April 1996 issue of this Magazine.)

A 883. Choosing the origin to be at O, let vi denote the unique vector from O along
the i th ray such that v1+· · ·+vn = P. If the chosen points are xivi then the restriction
implies that 1/x1 + · · ·+ 1/xn = 1. The volume of the simplex is

x1 · · ·xn det(v1 . . .vn)/n!

The arithmetic-geometric mean inequality implies [[that]] the volume is minimized
when

x1 = · · · = xn = n

so that P is the centroid of the (n−1)-simplex formed by the n chosen points.

[[ On p.396 of Math. Mag., 71(1998) we read

Acknowledgements. The editors would like to thank Murray S. Klamkin, Loren C. Larson, Harvey
Schmidt and Daniel H. Ullman for their help in reviewing problem proposals over the last year. ]]
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Math. Mag., 72(1999) 69–70.

Extrema of Volumes of Truncated Simplexes February 1998

1456. Proposed by Michael Golomb, Purdue University, West Lafayette, Indiana

Let S be a given n-dimensional simplex with centroid C. A hyperplane through C
divides the simplex into two regions, one or both of which are simplexes. Find the
extrema of the volumes of those regions which are simplexes.

Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.
We will show that the maximum volume is vol (S)/2 and the minimum volume is
[n/(n+1)]n vol (S) where vol (S) denotes the volume of S.

Let V1, V2, . . ., Vn and C denote vectors from one vertex to all other vertices of S and
C, respectively. Let a hyperplane through C cut these vectors at points given by x1V1,
x2V2, . . ., xnVn respectively, where the xi lie in [0,1]. The, since C =

∑n
i=1 Vi/(n+1)

lies in the hyperplane, thereare nonnegative weights w1, w2, . . ., wn with sum 1, such
that

∑n
i=1wixiVi =

∑n
i=1 Vi/(n+1). Since the Vi are linearly independent, wixi =

1/(n+1), so that
∑n

i=1 1/xi = n+ 1. Since the volume cut off the simplex is

vol (S)
n∏

i=1

xi ≥ vol (S)

/(
1

n

n∑
i=1

1/xi

)n

= vol (S)[n/(n+1)]n

so that the minimum volume occurs when xi = n/(n+1) for all i.

To obtain the maximum volume, we let 1/xi = 1+yi so that we now want to minimize∏n
i=1(1 + yi) subject to

∑n
i=1 yi = 1. Expanding the product, we see that

n∏
i=1

(1 + yi) ≥ 1 +
n∑

i=1

yi = 2

with equality if and only if one yi is 1 and the rest are 0. This yields a maximum
volume of vol (S)/2.
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Math. Mag., 73(2000) 156.

1596. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

From the vertices A0, A1, . . ., An of a simplex S, parallel lines are drawn intersecting
the hyperplanes containing the opposite faces in the corresponding points B0, B1, . . .,
Bn. Determine the ratio of the volume of the simplex determined by B0, B1, . . ., Bn

to the volume of S.

Math. Mag., 74(2001) 157–158.

Solution by L. R. King, Davidson College, Davidson, NC. The ratio for n-dimensional
simplexes is n. Without loss of generality we may consider the standard simplex S0

with one vertex at the origin and the others at e1, e2, . . ., en, where e1, . . ., en denotes
the usual basis for Rn. (The translate S − A0 is the image L(S0) for some linear
transformation L : Rn −→ Rn. Because L has rank n, ratios of volumes are invariant
under L.)

Let B0 = (s1, s2, . . . , sn) be the intersection point of the line from the origin with the
face oppositethe origin, so s1 + s2 + · · · + sn = 1. We then find Bk = ek − 1

sk
B0 and

Bk−B0 = ek−tkB0 where tk =
(
1 + 1

sk

)
. (Note that sk 6= 0 because otherwise the line

through ek and parallel to B0 would be parallel to the face opposite ek.) The volume
of the simplex with vertices B0, . . ., Bn is

1

n!
| det(B1−B0, . . . , Bk−B0, . . . , Bn−B0)|

=
1

n!
| det(e1−t1B0, . . . , ek−tkB0, . . . , en−tnB0)|

=
1

n!
| det(e1, . . . , en)−t1 det(B0, e2, . . . , en)−t2 det(e1, B0, . . . , en)

− · · · − tn det(e1, . . . , en−1, B0)|

=
1

n!
|1− (t1s1 + t2s2 + · · ·+ tnsn)|

=
1

n!

∣∣∣∣∣1− n−
n∑

k=1

sk

∣∣∣∣∣ =
1

n!
n

Because the standard simplex has volume 1/n! the ratio of the volumes is n.

Comment: Leon Gerber notes that this problem has a long history and that it ap-
peared, with his solution, as a problem in Amer. Math. Monthly, 80(1973) 1145–1146.

250



Math. Mag., 73(2000) 403, 410.

Q 905. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Determine the maximum volume of a tetrahedron given the lengths of three of its
medians.

A 905. Let ABCD be the tetrahedron, mA, mB, mC and mD the median lengths,
the last three given, and G the centroid. The medians are concurrent and are such
that AG = 3mA/4, BG = 3mB/4, CG = 3mC/4 and DG = 3mD/4. Thus the volume
of ABCD is four times the volume of GBCD. Furthermore the latter volume will be
a maximum when BG, CG and DG are mutually orthogonal. Hence the maximum
volume is 4(BG · CG ·DG/6) = 9mBmCmD/32.

This easily generalizes to determining the maximum volume of an n-dimensional sim-
plex given the lengths of n of its medians.

Math. Mag., 74(2001) 155, 161.

Q 910. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB,
Canada

Given [[a]] positive integer k, it is easy to find two base 10 numbers whose product has
more yhan k digits andhas all digits the same. As an example, take 9 and (10n− 1)/9
with n > k. Give examples for which the two numbers have the same number of digits.

A 910. First note that 103+6n +1 ≡ 0 (mod 7) and that (103+6n− 1)/9 and (103+6n +
1)/7 have the same number of digits. We then have

[(103+6n)/7][7(103+6n)/9] = (106+12n − 1)/9
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Math. Mag., 74(2001) 239.

1624. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada

An ellipsoid is tangent to each of the six edges of a tetrahedron. Prove that the three
segments joining the points of tangency of the opposite edges are concurrent.

Math. Mag., 75(2002) 229–230.

Solution by Michel Bataille, Rouen, France. Under a suitable affine transformation,
the ellipsoid becomes a sphere, and concurrency and tangency are preserved. Thus we
need only consider the case in which the ellipsoid is a sphere that is tangent at points
R, S, T , U , V and W to sides [[edges?]] BC, CA,AB, DA, DB and DC, respectively,
of tetrahedron ABCD. Because all segments of tangents from a vertex to the point
of tangency on the sphere have the same length, we can set x = AS = AT = AU ,
y = BT = BR = BV , z = CR = CS = CW and t = DU = DV = DW . Denoting by
M the vector from the point M , let I be the point determined by

mI = zt(yA + xB) + xy(tC + zD) = zt(y + x)T + xy(t+ z)W

Because zt(y + x) and xy(t + z) are positive and sum to m, it follows that I lies on
segment TW . Similarly,

mI = yz(tA + xD) + tx(zB + yC) = yz(t+ x)U + tx(z + y)R

and
mI = ty(zA + xC) + zx(tB + yD) = ty(z + x)S + zx(t+ y)V

showing that I lies on segments UR and SV as well. Thus the three segments joining
points of tangency of opposite edges are concurrent at I.

Math. Mag., 74(2001) 240, 246.

Q 911. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB,
Canada

Two points P and Q are on opposite sides of a given plane in R3. Describe how to
determine a point R in the plane so that |PR−QR| is maximal.

A 911. Let Q′ be the reflection across the plane of Q, so QR = Q′R. By the triangle
inequality, |PR − Q′R| ≤ PQ′. The maximal value PQ′ is achieved when R is the
intersection of line PQ′ with the plane. In the event that PQ′ is parallel to the plane,
the value PQ′ is approached as R approaches the point at infinity in the plane that is
in the direction of line PQ′.
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Math. Mag., 74(2001) 325, 330.

Q 913. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB,
Canada

Let F be a function that has a continuous third derivative on [0,1]. If F (0) = F ′(0) =
F ′′(0) = F ′(1) = F ′′(1) = 0 and F (1) = 1, prove that F ′′′(x) ≥ 24 for some x in [0,1].

A 913. Consider the Taylor series expansions about the points x = 0 and x = 1,

F (x) = F (0) + F ′(0)x+
F ′′(0)

2
x2 +

F ′′′(c1)

6
x3

F (x) = F (1) + F ′(1)(x− 1) +
F ′′(1)

2
(x− 1)2 +

F ′′′(c2)

6
(x− 1)3

where 0 ≤ c1 ≤ x and x ≤ c2 ≤ 1. These reduce to

F (x) =
F ′′′(c1)

6
x3 and F (x) = 1 +

F ′′′(c2)

6
(x− 1)3

Setting x = 1/2 we find that there are c1 and c2 with F ′′′(c1) + F ′′′(c2) = 48. Thus at
least one of F ′′′(c1) and F ′′′(c2) is greater than or equal to 24.

Math. Mag., 74(2001) 404, 409.

Q 916. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Do there exist any integers k such that there are an infinite number of relatively prime
positive integer triples (x, y, z) satisfying the Diophantine equation

x2y2 = k2(x+ y + z)(y + z − x)(z + x− y)(x+ y − z) ?

A 916. In order for the right-hand side of the equation to be positive, x, y, z must be
the lengths of the sides of a triangle. If A is the area of the triangle and α is the angle
between the sides of lengths x and y, then

4A2

sin2 α
= 16k2A2

so sinα = 1
2k

. By the Law of Cosines,

z2 = x2 + y2 − 2xy cosα = x2 + y2 ± xy

k

√
4k2 − 1

Because the left-hand side is an integer and the right-hand side is irrational, there are
no solutions.
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Math. Mag., 75(2002) 63–64.

1641. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Show that if the midpoints of the six edges of a tetrahedron lie on a sphere, then the
tetrahedron has an orthocenter.

Math. Mag., 75(2002) ??395–396.

Solution by Daniele Donini, Bertinoro, Italy. Let A1, A2, A3 and A4 be the vertices of
the tetrahedron, and let O and r be, respectively, the center and radius of the sphere.
Fix an orthogonal coordinate system with origin O. Given a point P , let P denote the
vector from O toP . By hypothesis, ‖Ai + Aj‖ = r for each pair of distinct indices i,
j. The condition can be rewritten as

4r2 = ‖Ai + Aj‖2 = Ai ·Ai + 2Ai ·Aj + Aj ·Aj

or equivalently

Ai ·Aj = 2r2 − 1
2
(Ai ·Ai + Aj ·Aj) (1)

The orthocenter of A1A2A3A4 is a point H such that the vectors Ai−Aj and Ak−H
are orthgonal, that is, such that

() · () = 0 for any triple of distinct indices i, j, k

By (1), this condition is equivalent to

(Ai −Aj) ·H = 1
2
(Ai ·Ai + Aj ·Aj) for any triple of distinct indices i, j, k

which is in turn equivalent to the conditions

(Ai −A1) ·H = 1
2
(A1 ·A1 + Ai ·Ai) for any index i = 2, 3, 4 (2)

Note that the reverse implication follows from

(Ai −Aj) ·H = (Ai −A1) ·H− (Aj −A1) ·H
= 1

2
(A1 ·A1 −Ai ·Ai)− 1

2
(A1 ·A1 −Aj ·Aj)

= 1
2
(Aj ·Aj −Ai ·Ai)

Now consider (2) as a system of three linear equations in three unknowns; the unknowns
are the three coordinates ofH. Because the three vectors A2−A1, A3−A1 and A4−A1

are linearly independent, the system has exactly one solution. The solution gives the
coordinates of the orthocenter H.
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Math. Mag., 75(2002) 146, 151.

Q 920. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB,
Canada

The ellipse x2

a2 + y2

b2
= 1 is inscribed in a parallelogram. Determine the area of the

parallelogram if two of the points of tangency are (a cosu, b sinu) and (a cos v, b sin v),
with 0 ≤ u < v < π.

A 920. Under the transformation (x, y) −→ (bx/a, y) the parallelogram is trans-
formed into another parallelogram and the ellipse is transformed into an inscribed
circle of radius b. The circle is tangent to the image parallelogram at the points
(b cosu, b sinu) and (b cos v, b sin v). Draw radii to the four points of tangency. The
result is two quadrilaterals of area b2 tan(v−u

2
) and two of area b2 tan(π−v+u

2
), for a total

area of4b2 csc(v − u). Because ratios of areas are preserved under the transformation,
the desired area is 4ab csc(v − u).

Math. Mag., 75(2002) 228, 233.

Q 922. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB,
Canada

Two directly homothetic triangles are such that the incircle of one of them is the
circumcircle of the other. If the ratio of their areas is 4, prove that the triangles are
equilateral.

A 922. Let the sides, area, circumradius and inradius of the larger triangle be a, b,
c, F , R and r respectively, and let the corresponding sides and area of the smaller
triangle be a′, b′, c′ and F ′. We then have

a

a′
=
b

b′
=
c

c′
= 2 4FR = abc and 4F ′r = a′b′c′

It follows that
FR

F ′r
=

abc

a′b′c′
= 8

and hence that R = 2r. However, it is known that R ≥ 2r with equality if and only if
the triangle is equilateral.
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Math. Mag., 75(2002) 318, 323.

Q 923. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB,
Canada

Let xk, yk, (1 ≤ k ≤ n) be positive real numbers and let r, s be real numbers with∑n
k=1 x

r
k =

∑n
k=1 y

s
k = 1. Prove that if

∑n
k=1(x

r(m+1)
k /ysm

k ) = 1 for some positive

integer m, then
∑n

k=1(x
r(m+1)
k /ysm

k ) = 1 for every positive integer m.

A 923. Applying Hölder’s inequality for the particular value of m we find

1 =
n∑

k=1

xr
k =

n∑
k=1

xr
k

y
sm/(m+1)
k

y
sm/(m+1)
k

≤

(
n∑

k=1

x
r(m+1)
k

ysm
k

)1/(m+1)( n∑
k=1

ks
k

)m/(m+1)

= 1

Because we have equality and
∑
xr

k =
∑
ys

k it follows that xr
k = ys

k 1 ≤ k ≤ n. The
desired result follows immediately.
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Math. Mag., 75(2002) 320–321.

A Centroidal Equality October 2001

1630. Proposed by Geoffrey A. Kandall, Hamden, CT

Let P be in the interior of 4ABC, and let lines AP , BP and CP intersect sides BC,
CA and ABin L, M and N respectively. Prove that if

AP

PL
+
BP

PM
+
CP

PN
= 6

then P is the centroid of 4ABC.

Solution by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada. We
prove the following generalization:

Let P be a point in the interior of the n-dimensional simplex A0A1A2 . . . An and for
0 ≤ k ≤ n let the cevian from Ak through P intersect the opposite face in Bk. If

n∑
k=0

AkP

PBk

= n(n+ 1)

then P is the centroid of the simplex.

We use barycentric coordinates. Let P, Ak and Bk denote vectors from a common
origin to the points P , Ak and Bk respectively. Then P =

∑n
k=0 xkAk where

∑n
k=0 xk =

1 and each xk > 0, and Bk = (P− xkAk)/(1− xk). We then have

AkP = ‖Ak −P‖
AkBk = ‖Ak − (P− xkAk)/(1− xk)‖ = ‖Ak −P‖/(1− xk)

and
BkP = AkBk − AkP = xk‖Ak −P‖/(1− xk)

It follows that

n(n+ 1) =
n∑

k=0

AkP

PBk

=
n∑

k=0

(
1

xk

− 1

)
so
∑n

k=0 1/xk = (n+ 1)2. However, by the Cauchy-Schwarz inequality

n∑
k=0

1

xk

=

(
n∑

k=0

xk

)(
1

xk

)
≥ (n+ 1)2

with equality if and only if xk = 1/(n+1), 0 ≤ k ≤ n. It follows that P is the centroid
of the simplex.
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This completes the solution of the problem. However, other similar results also hold.
Indeed, it also follows that if any of the following three equations holds, then P is the
centroid of the simplex:

n∑
k=0

PBk

AkP
=
n+1

n

n∑
k=0

AkBk

AkP
=

(n+ 1)2

n

n∑
k=0

AkBk

PBk

= (n+ 1)2

If thefirst of these equations is true, then

n+ 1

n
=

n∑
k=0

PBk

AkP
=

n∑
k=0

xk

1− xk

= −(n+1) +
n∑

k=0

1

1− xk

so
∑n

k=0 1/(1− xk) = (n+ 1)2/n. By the Cauchy-Schwarz inequality

n∑
k=0

1/(1− xk) ≥ (n+ 1)2

/
n∑

k=0

(1− xk) = (n+ 1)2/n

with equality if and only if xk = 1/(n+ 1), 0 ≤ k ≤ n. Similar arguments can be used
to show that if either of the other two equations is true, then P is the centroid of the
simplex.

Note: Miguel Amengual Covas of Spain points out that the triangle version of this
problem appeared on a Romanian Mathematics Competition. See Revista de Matem-
atica din Timisora, Annul II (seria a 4-a), nr.1-1997, pp.16–17. The triangle version of
this problem also appeared as problem E 1043 in the Amer. Math. Monthly, 59(1952)
p.697, with solution in 60(1953) p.421.
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Math. Mag., 75(2002) 400, 404.

Q 925. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Evaluate the determinant ∣∣∣∣∣∣
y+z
x

x
y+z

x
y+z

y
z+x

z+x
y

y
z+x

z
x+y

z
x+y

x+y
z

∣∣∣∣∣∣
A 925. Let D be the value of the determinant. Clearing fractions we have

xyz(y + z)(z + x)(x+ y)D =

∣∣∣∣∣∣
(y + z)2 x2 x2

y2 (z + x)2 y2

z2 z2 (x+ y)2

∣∣∣∣∣∣ (∗)

Because the resulting determinant vanishes when x = 0 or y = 0 or z = 0, it has
xyz as a factor. Next note that if x + y + z = 0, then the determinant has three
proportional rows. Hence the determinantin (∗) also has (x+ y+ z)2 as a factor. Thus
the determinant in (∗) has the form

Pxyz(x+ y + z)2

Because this determinant is a symmetric, homogeneous polynomial of degree 6, it
follows that P = k(x+ y+ z) for some constant k. To determine k, set x = y = z = 1.
The determinant in (∗) then has value 54 and it follows that k = 2. We then find

D =
2(x+ y + z)3

(y + z)(z + x)(x+ y)
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Q 926. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Find the maximum value of

sin2(2A) + sin2(2B) + sin2(2C) + 2 cos(2A) sin(2B) sin(2C)

+2 cos(2B) sin(2C) sin(2A) + 2 cos(2C) sin(2A) sin(2B)

where A, B, C are the angles of a triangle ABC.

A 926. Let the vertices of 4ABC be given in counter-clockwise order, let D be a
point in the plane of the triangle, and let A, B and C, respectively, be the vectors
from D to A, B and C. It is known that

A[DBC] + B[DCA] + C[DAB] = 0 (∗)

where [XY Z] denotes the directed area of 4XY Z. Now let D be the circumcenter of
4ABC. Then

[DBC] = 1
2
‖B‖ ‖C‖ sin(∠BDC) = 1

2
‖B‖ ‖C‖ sin(2A)

with similar expressions for [DCA] and [DAB]. Substitute these results into (∗), then
calculate the length of the resulting expression. Noting that B ·C = ‖B‖ ‖C‖ cos(2A),
with similar expressions for C ·A and A ·B, we have

0 = (A[DBC] + B[DCA] + C[DAB]) · (A[DBC] + B[DCA] + C[DAB])

=
‖A‖2‖B‖2‖C‖2

4

(
sin2(2A) + sin2(2B) + sin2(2C) + 2 cos(2A) sin(2B) sin(2C)

+ 2 cos(2B) sin(2C) sin(2A) + 2 cos(2C) sin(2A) sin(2B))

Thus the expression in the problem statement is identically 0.
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Math. Mag., 76(2003) 151.

1667. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada

Let a, b and c be nonnegative constants. Determine the maximum and minimum values
of √

a2x2 + b2y2 + c2z2 +
√
a2y2 + b2z2 + c2x2 +

√
a2z2 + b2x2 + c2y2

subject to x2 + y2 + z2 = 1.

Math. Mag., 77(2004) 157–158.

I. Solution by Michael Andreoli, Miami-Dade Community College, North Campus, Mi-
ami, Fl. Let S =

√
a2x2 + b2y2 + c2z2 +

√
a2y2 + b2z2 + c2x2 +

√
a2z2 + b2x2 + c2y2.

We show that if x2 + y2 + z2 = 1,then the maximum and minimum values of S are√
3(a2 + b2 + c2) and a+ b+ c, respectively.

Because the square root function is concave, Jensen’s inequality implies

1

3
S ≤

√
1

3
((a2x2 + b2y2 + c2z2) + (a2y2 + b2z2 + c2x2) + (a2z2 + b2x2 + c2y2))

=

√
1

3
(a2 + b2 + c2)(x2 + y2 + z2) =

√
1

3
(a2 + b2 + c2)

Thus S ≤
√

3(a2 + b2 + c2). Because equality holds if x = y = z = 1/
√

3, this valueof
S is the minimum value.

Because x2 + y2 + z2 = 1, it also follows from Jensen’s inequality that√
a2x2 + b2y2 + c2z2 ≥

√
a2x2 +

√
b2y2 +

√
c2z2 = ax2 + by2 + cz2

and similar inequalities hold for
√
a2y2 + b2z2 + c2x2 and

√
a2z2 + b2x2 + c2y2. It fol-

lows that
S ≥ (a+ b+ c)(x2 + y2 + z2) = a+ b+ c

Because equality occurs when x = 1 and y = z = 0, this value is the minimum value
for S.

II. Solution by Michel Bataille, Rouen, France. Let

u =
√
a2x2 + b2y2 + c2z2 v =

√
a2y2 + b2z2 + c2x2 w =

√
a2z2 + b2x2 + c2y2

and S = u+ v+w, and observe that u2 + v2 +w2 = a2 + b2 + c2 when x2 + y2 + z2 = 1.
Hence,by the Cauchy-Schwarz inequality,

S = u+ v + w ≤
√

12 + 12 + 12
√
u2 + v2 + w2 =

√
3(a2 + b2 + c2)

with equality when x = y = z = 1/
√

3.
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Again by the Cauchy-Schwarz inequality,

uv =
√

(ax)2 + (by)2 + (cz)2
√

(cx)2 + (ay)2 + (bz)2 ≥ cax2 + aby2 + bcz2

with analogous inequalities for vw and wu. Summing we find

uv + vw + wu ≥ (ab+ bc+ ca)(x2 + y2 + z2) = ab+ bc+ ca

Thus

S2 = a2 + b2 + c2 + 2(uv + vw + wu) ≥ a2 + b2 + c2 + 2(ab+ bc+ ca)

= (a+ b+ c)2

so S ≥ a+ b+ c. Equality holds when x = 1 and y = z = 0.

Math. Mag., 76(2003) 319, 325.

Q 934. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

A tetrahedron has base with sides [[edges?]]of length a, b, c and an altitude of length
h to this base. Determine the minimum possible surface area for the tetrahedron.

A 934. Let the distances from the foot of the altitude to the sides of length a, b, c be
x, y, z respectively. Then the sum of the areas of the three lateral faces is

1

2
a
√
x2 + h2 +

1

2
b
√
y2 + h2 +

1

2
c
√
z2 + h2

By Minkowski’s inequality, this quantity is greater than or equal to

1

2

√
h2(a+ b+ c)2 + (ax+ by + cz)2 =

1

2

√
h2(a+ b+ c)2 + 4F 2

where F is the area of the base. Equality occurs if and only if x = y = z = r, where r is
the radius of the incircle of the base; that is, if and only if the incentre of the base is the
foot of the given altitude. Thus the minimal surface area is 1

2
(a+ b+ c)(r+

√
h2 + r2)
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Math. Mag., 76(2003) 399.

1683. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

For integer n ≥ 2 and nonnegative real numbers x1, x2, . . ., xn define

An = (x2
1 + x2

2)(x
2
2 + x2

3) · · · (x2
n + x2

1)/2
n

Bn = (x1x2 + x2x3 + · · ·+ xnx1)
n/nn

(a) Determinee all n, if any, such that An ≥ Bn for all choices of xk.

(b) Determinee all n, if any, such that Bn ≥ An for all choices of xk.

Math. Mag., 77(2004) 399–400.

Solution by Roy Barbara, American University of Beirut, Beirut, Lebanon.

a. We show that An ≥ Bn always holds for n = 2, 3, but need not hold for n ≥ 4. For
n = 2 the inequality follows immediately from (x1 − x2)

2 ≥ 0. For the case n = 3, let
S1 = x1 + x2 + x3, S2 = x1x2 + x2x3 + x3x1 and S3 = x1x2x3. We may assume that
S2 = 1. Then the n = 3 case of the inequality becomes

1

8
(x2

1 + x2
2)(x

2
2 + x2

3)(x
2
3 + x2

1) ≥
1

27

To prove this, first observe that

S2
1 = x2

1 + x2
2 + x2

3 + 2S2 ≥ 3S2 = 3, so S1 ≥
√

3

and by the arithmetic-geometric mean inequality

1

3
=
S2

3
≥ S

2/3
3 , so S3 ≤

√
3

9

Thus

1

8
(x2

1 + x2
2)(x

2
2 + x2

3)(x
2
3 + x2

1) ≥
(
x1 + x2

2

)2(
x2 + x3

2

)2(
x3 + x1

2

)2

=
1

64
(S1 − x3)

2(S1 − x1)
2(S1 − x2)

2

=
1

64
(S1S2 − S2

3) ≥
1

64

(
√

3−
√

3

9

)2

=
1

27

as desired.

Now let n ≥ 4. Setting x1 = x2 = 0 and x3 = x4 = · · · = xn = 1, we get An = 0 and
Bn > 0, showing that An < Bn is possible.
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b. For n ≥ 2, the inequality Bn ≥ An does not hold for all real xk. Set xk = 1 for k
odd and xk = 0 for k even. Then for even n ≥ 2,

Bn = 0 <
1

2n
= An

and for odd n ≥ 2,

Bn =
1

nn
<

1

2n−1
= An
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Math. Mag., 77(2004) 156

1691. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada

Let p, r and n be integers with 1 < r < n and let k be a positive constant. Determine
the maximum and minimum values of

n∑
j=1

tpj
1 + ktj

where tj = xj + xj+1 + · · · + xj+r−1 with xi ≥ 0 (1 ≤ i ≤ n), x1 + x2 + · · · + xn = 1
and xi+n = xi.

Math. Mag., 78(2005) 159–160.

Solution by the proposer. The second derivative of F (t) = tp/(1 + kt) is

F ′′(t) =
tp−2(p(p− 1) + 2kp(p− 2)t+ k2(p− 1)(p− 2)t2)

(1 + kt)3

Thus F is concave for p = 1 and convex for p ≥ 2 and p ≤ 0.

Noting that for any choice of the tj we have t1+t2+· · ·+tn = r, we apply a majorization
result due to Hardy, Littlewood & Pólya (see A. W. Marshall & I. Olkin, Inequalities:
Theory of Majorization and its Applications, Academic Press, NY, 1979).

Given a vector y = (y1, . . . , yn), let y[1], y[2], . . ., y[n] be the components of y

in decreasing order. For vectors y and z, write y ≺ z if
∑k

j=1 y[j] ≤
∑k

j=1 z[j]

for 1 ≤ k < n and
∑n

j=1 y[j] =
∑n

j=1 z[j]. If g is convex on [a, b], y, z ∈ [a, b]n,
and y ≺ z, then

∑n
j=1 g(yj) ≤

∑n
j=1 g(zj).

For all choicesof the xj wehave( r
n
,
r

n
, . . . ,

r

n
,
)
≺ (t1, t2, . . . , tn) ≺ (1, 1, . . . , 1, 0, . . . , 0)

where the last n-tuple consists of r ones followed by n−1 zeroes. Thus, if p = 1 (so
that F is concave), we have

n∑
i=1

F (ti) ≤ nF
( r
n

)
=

nr

n+ kr
and

n∑
i=1

F (ti) ≥ rF (1) + (n− r)F (0) =
r

1 + k

If p ≥ 2 or p ≤ 0 (so that F is convex), then

n∑
i=1

F (ti) ≥ nF
( r
n

)
=

rp

np−2(n+ kr)
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and for p ≥ 2 or p = 0,

n∑
i=1

F (ti) ≤ rF (1) + (n− r)F (0) =
r

1 + k

If p < 0, the sum is not bounded above.

Math. Mag., 77(2004) 320.

1701. Proposed by Murray S. Klamkin, University of Alberta, Edmunton [[sic]], AB

Prove that for all positive real numbers a, b, c, d,

a4b+ b4c+ c4d+ d4a ≥ abcd(a+ b+ c+ d)

Math. Mag., 78(2005) 324–325.

I. Solution by Zuming Feng, Philips Exeter Academy, Exeter, NH.

By the arithmetic-geometric mean inequality,

a4b+ abc2d+ abcd2 ≥ 3a2bcd

Similarly,
b4c+ abcd2 + a2bcd ≥ 3ab2cd

c4d+ a2bcd+ ab2cd ≥ 3abc2d

d4a+ ab2cd+ abc2d ≥ 3abcd2

Adding the four inequalities leads to the desired result.

II. Solution by Chip Curtis, Missouri Southern State University, Joplin MO.

Note that
(a4b)23/51(b4c)7/51(c4d)1/51(d4a)10/51 = a2bcd

so by the weighted arithmetic-geometric mean inequality,

23

51
a4b+

7

51
b4c+

1

51
c4d+

10

51
d4a ≥ a2bcd

Adding this to the analogous results for b2cda, c2dab, d2abc gives the desired inequality.

Note. A few readers proved that if a1, a2, . . . , an are nonnegative real numbers, then

an
1a2 + an

2a3 + · · · an
na1 ≥ a1a2 · · · an(a1 + a2 + · · ·+ an).
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[[The following were published posthumously.]]

Math. Mag., 77(2004) 397, 403.

Q945. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada

Determine the maximum value of
n+1∏
k=1

(1 + tanhxk)

/
n+1∏
k=1

(1− tanh xk)

for real numbers x1, x2, . . ., xn+1 with
∑n+1

k=1 xk = 0.

A945. Because

tanh(a+ b) =
tanh a+ |tanhb
1 + tanh a tanh b

it follows that

tanh(x1 + x2 + · · ·+ xn) =
T1 + T3 + T5 + · · ·
1 + T2 + T4 + · · ·

where
Tk =

∑
1≤i1<i2<···<ik≤n

tanh xi1 tanh xi2 · · · tanh xik

is the symmetric sum of the products of the tanh xj taken k at a time. Hence

1 + tanhxn+1 = 1− tanh(x1 + x2 + · · ·+ xn) =
1− T1 + T2 − T3 + · · ·
1 + T2 + T4 + T6 + · · ·

and

1− tanh xn+1 =
1 + T1 + T2 + T3 + · · ·
1 + T2 + T4 + T6 + · · ·

We then have∏n+1
k=1(1 + tanhxk)∏n+1
k=1(1− tanh xk)

=
1 + T1 + T2 + T3 + · · ·
1− T1 + T2 − T3 + · · ·

· 1 + tanhxn+1

1− tanh xn+1

= 1

showing that the expression is identically 1.

Q946. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada

Let ABCD be a tetrahedron. Let `A denote the line through the centroid of face BCD
and perpendicular to the face, and let `B, `C and `D be defined in a similar way. Prove
that `A, `B, `C and `D are concurrent if and only if the four altitudes of the tetrahedron
are concurrent.

A946. Let X denote the vector from the origin to the point X. First assume that `A,
`B, `C and `D are concurrent at P . Then `A is parallel to the vector 1

3
(B+C+D)−P.

The altitude from A is parallel to `A so has vector equation

RA(t) = A + t

(
1

3
(B + C + D)−P)

)
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Setting t = 3 we obtain RA(3) = 4G − 3P, where G is the centroid of ABCD. By a
similar argument, each of the other three altitudes also contains this point. Hence the
four altitudes are concurrent,

Next assume that the altitudes are concurrent at H. Then the vector equation of `A is

LA(t) =
1

3
(B + C + D) + t(A−H)

Setting t = 1
3

we obtain L(1
3
) = 4

3
G− 1

3
H. By a similar argument, `B, `C and `D also

contain this point, so the four lines are concurrent.

Math. Mag., 78(2005) 322.

40 Years ago in the Magazine
Readers who enjoyed Kung’s noye, “A Butterfly Theorem for Quadrilaterals”, might
enjoy recalling Klamkin’s “An Extension of the Butterfly Problem”. 38(1965) 206–208.
His main result can be summarized as follows:

Let AB be an arbitrary chord of a circle with midpoint P , and let chords JH and GI
intersect AB at M and N respectively. If MP = PN , the if AB intersects JI at C
and GH at D we have CP = PD. Furthermore, if line segments AB, GJ and IH are
extended so that AB intersects GJ and IH at E and F respectively, the EO +OF ,

E A
C

M P
N

D B F

J

G

I

H
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This edition started on 2005-10-27

This is the (lost count!) of a number of files listing problems, solutions and other
writings of Murray Klamkin.

The easiest way to edit is to cross things out, so I make no apology for the proliferation
below. Just lift out what you want.
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Math. Gaz,, 52(1968) 156–157

3202. Inequalities Concerning the Arithmetic, Geometric and Harmonic
Means

In mathematical note 5168 [Math. Gaz,, 50(1966) 310], Mitrinović establishes by a
usual calculus approach that{

Gn

An

}n

≤
{

Gn−1

An−1

}n−1

≤ · · · ≤
{

G2

A2

}n

≤ G1

A1

= 1

where

An =
1

n

n∑
r=1

ar, Gn =
n∏

r=1

a1/n
r (n = 1, 2, . . .)

and a1, a2, . . . are arbitrary positive numbers. Here we give a more elementary proof,
starting with the well known inequality An ≥ Gn which can also be derived in an
elementary fashion without calculus. In addition, we give some analogous inequalities
involving the harmonic mean

Hn = n

/(
1

a1

+
1

a2

+ · · ·+ 1

an

)
By the A.M.–G.M. inequality,[

n

{
a1 + a2 + · · ·+ an

n

}
+ an+1

]
/(n + 1) ≥ (n+1)

√[{
a1 + a2 + · · ·+ an

n

}n

an+1

]
or, equivalently,{

a1 + a2 + · · ·+ an+1

n + 1

}
/(a1a2 · · · an+1) ≥

{
a1 + a2 + · · ·+ an

n

}n

/(a1a2 · · · an)

which implies the desired result.

It also follows immediately that{
Gn+1

Hn+1

}n+1

≥
{

Gn

Hn

}n

(n = 1, 2, . . .)

Using the A.M.–G.M. inequality for n = 2, one can easily show that the minimum
value (over x) of

(A + x)(B + 1/x) = (AB + 1 + Bx + A/x), (A, B, x ≥ 0)

2



occurs when x =
√

(A/B). Thus,

(A + x)(B + 1/x) ≥ {
√

(AB) + 1}2

Now letting

A = a1 + a2 + · · ·+ an

B =
1

a1

+
1

a2

+ · · ·+ 1

an
x = an+1

we obtain

(n + 1) ·

√(
An+1

Hn+1

)
− n ·

√(
An

Hn

)
≥ 1 (n = 1, 2, . . .)

Note that by successive addition of the last relation for n = 1, 2, . . . , we obtain
An ≥ Hn with equality if and only if a1 = a2 = · · · = an.

Scientific Laboratory, Murray S. Klamkin
Ford Motor Company,
Dearborn,
Michigan,
U.S.A.
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Math. Gaz,, 52(1968) 156–157

3249. On the roots of a certain determinantal equation

In a recent note in this Gazette, 51(1967), Vermeulen showed that the roots of the
determinantal equation An = 0 are all real and negative where

An =

∣∣∣∣∣∣∣∣∣
λ + a1 + e1 a1 . . . a1

a2 λ + a2 + e2 . . . a2
...

...
...

an an . . . λ + an + en

∣∣∣∣∣∣∣∣∣
and the ai and ei are strictly positive.

In this note we establish the result more elementarily and in addition give simple
bounds for the roots.

It follows easily, as was done by Vermeulen, that

An = (λ + en)An−1 + an

n−1∏
1

(λ + ei)

This difference equation is solved simply by letting

An = φn

n∏
1

(λ + ei)

whence we find

An =

{
1 +

a1

λ + e1

+
a2

λ + e2

+ · · ·+ an

λ + en

} n∏
1

(λ + ei) (1)

Without loss of generality we can assume that 0 < ei < Ei+1. Now consider the graph
of

y = 1 +
a1

x + e1

+
a2

x + e2

+ · · ·+ an

x + en

where at first the ei are assumed to be distinct. The graph is continuous except at
the points x = e1, e2, . . . en which correspond to vertical asymptotes. It follows by
continuity that there are n real negative roots −λi such that

e1 < λ1 < e2 < λ2 < e3 < · · · < en−1 < λn−1 < en < λn

A typical graph is shown in the figure for n = 3.
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-

6

x

y

If some of the ei coincide, it follows from (1) that there will be roots at the −ei which
coincide and the others are located as before. For example, if n = 6 and the only
equalities are e1 = e2 = e3 and e5 = e6, then three roots are −e1, −e1, −e5 and the
other three roots occurin the intervals (−∞,−e5), (−e5,−e4) and (−e4,−e3).

The special case corresponding to e1 = e2 = · · · = en = 0 is well known. Here the
roots are −

∑
ai, 0, 0, . . . , 0.

Murray S. Klamkin

Ford Scientific Laboratory, P.O. Box 2053, Dearborn, Michigan 48121
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Math. Gaz,, 66(1982) 156–157

66.27 An algebraic theorem related to the theory of relativity

In a previous note with the same title (Gazette, December 1972) M. D. Dampier estab-
lishes the following theorem which has an application to the special theory of relativity.

theorem. If K(x, y, z, t) is a homogeneous quadratic function of x, y, z, t with the
property that K(x, y, z, t) = 0 whenever x, y, z, t are real numbers such that

x2 + y2 + z2 − t2 = 0 (1)

then there exists a constant a such that

K(x, y, z, t) = a(x2 + y2 + z2 − t2).

Here we give extensions with a more transparent proof.

theorem. If K(x, y, z, t) is a polynomial in x, y, z, t with the property that K(x, y, z, t) =
0 whenever x, y, z, t are real numbers such that

x2 + y2 + z2 − t2 = 0

then K is divisible by x2 + y2 + z2 − t2).

proof. It follows bydivision of K by t2 − x2 − y2 − z2 that

K(x, y, z, t) = F (x, y, z, t)(t2 − x2 − y2 − z2) + A(x, y, z)t + B(x, y, z)

where F , A and B are polynomials. Since K vanishes for all real values t = ±
√

x2 + y2 + z2

A(x, y, z)
√

x2 + y2 + z2 + B(x.y.z) = 0

−A(x, y, z)
√

x2 + y2 + z2 + B(x.y.z) = 0

for all real x, y, z. Thus A and B must vanish identically.

The previous result can easily be extended to the case where equation (1) is replaced
by

p∑
i=1

x2
i −

n∑
i=p+1

x2
i = 0

and K is a polynomial in the n variables.

m. s. klamkin

Department of Mathematics, University of Alberta, Canada T6G 2G1
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The Mathematical Gazette started a Problems Corner in 1980. I’ve skimmed through
it, and may have missed some items, but the first mention of Marray that I noticed
was in the list of solvers of

Math. Gaz,, 80(1996) 426–427

79.I (C.F. Parry) ABC is a scalene triangle with sides a, b and c. If

c2(b2 − c2)2 = a2(c2 − a2)2 = b2(a2 − b2)2

show that
(b2 + c2)(c2 + a2)(a2 + b2)

(b2 − c2)(c2 − a2)(a2 − b2)
= 13.

Solutions were usually published editorially, with little or no attribution to particular
individuals. [Though later this improved somewhat as is evidenced by some of the
quotes below.]

The next mention that I found was in connexion with

Math. Gaz,, 84(2000) 327

83.K (C. F. Parry)

A1B1C1 and A2B2C2 are two arbitrary triangles. Show that

cot A1(cot B2 + cot C2) + cot B1(cot C2 + cot A2) + cot C1(cot A2 + cot B2) ≥ 2

with equality only in the equiangular case, i.e., when A1 = A2, B1 = B2 and C1 = C2.

Math. Gaz,, 85(2001) 525–526

Addendum. Murray S. Klamkin has submitted the following commentary upon Prob-
lem 83.K (C. F. Parry) July 2000, pp.327–328.

The inequality

cot A1(cot B2 + cot C2) + cot B1(cot C2 + cot A2) + cot C1(cot A2 + cot B2) ≥ 2

[ “≥ 2” is missing here]

is another representation of the known Neuberg-Pedoe inequality

a2
1(b

2
2 + c2

2 − a2
2) + b2

1(c
2
2 + a2

2 − b2
2) + c2

1(a
2
2 + b2

2 − c2
2) ≥ 16F1F2
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where a, b, c and F are the sides and area of a triangle. A number of proofs and
generalizations are given in [1, pp.354–364]. The equivalence is obtained by noting
that

cot B + cot C =
sin A

sin B sin C
=

2Ra

bc
=

a2

2F

and

cot A =
R(b2 + c2 − a2)

abc
=

b2 + c2 − a2

4F

The following simple geometric interpretation is due to Pedoe:

Let 4A′
2B

′
2C

′
2 be similar to 4A2B2C2 with sides a1, b2a1/a2, c2a1/a2 and superimpose

4A′
2B

′
2C

′
2 on 4A1B1C1 by letting B′

2C
′
2 coincide with B1C1 and A1, A′

2 beon the same
side of B1C1. Then the Neuberg-Pedoe inequality is simply (A1A

′
2)

2 ≥ 0 (just use the
law of cosines in 4A1B1A

′
2 and expand out cos(B1 −B2)).

Reference

1. D. S. Mitrinović, J. E. Pecarić & V. Volenec, Recent Advances in Geometric In-
equalities, Kluwer, 1989.
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Murray features in

Math. Gaz,, 86(2002) 149–151

85.G (Lee Ho-Joo)

From a point inside a triangle ABC perpenduculars OP , OQ, OR are drawn to its
sides BC, CA, AB resoectively. Prove that

OA.OB + OB.OC + OC.OA ≥ 2(OA.OP + OB.OQ + OC.OR)

From the few responses to this problem we have chosen Michel Bataille’s solution.
A

B C

O

P

QR

By the sine rule,
QR

sin A
= OA,

PR

sin B
= OB and

PQ

sin C
= OC. Now, using the cosine

rule,

QR2 = OR2 + OQ2 + 2OR.OQ cos A = OR2 + OQ2 − 2OR.OQ cos(B + C)

= (OR cos B −OQ cos C)2 + (OR sin B + OQ sin C)2

≥ (OR sin B + OQ sin C)2

so that QR ≥ OR sin B + OQ sin C.

9



In the same way, we obtain PR ≥ OP sin C+OR sin A and PQ ≥ OQ sin A+OP sin B.
It follows that for any positive real numbers r, s, t
r OA + s OB + t OC

≥ r
OR sin B + OQ sin C

sin A
+ s

OP sin C + OQ sin A

sin B
+ t

OQ sin A + OQ sin B

sin C

= OP

(
s
sin C

sin B
+ t

sin B

sin C

)
+ OQ

(
t
sin A

sin C
+ r

sin C

sin A

)
+ OR

(
r
sin B

sin A
+ s

sin A

sin B

)
≥ 2(

√
stOP +

√
tr OQ +

√
rs OR)

[the latter because of the general inequality a + b ≥ 2
√

ab for positive a, b]. Thus
rOA + sOB + tOC ≥ 2(

√
stOP +

√
trOQ +

√
rsOR).

Taking r = (OB.OC)2, s = (OC.OA)2, t = (OA.OB)2 and dividing out by OA.OB.OC
now yields the desired result.

Remark. Taking r = s = t = 1 instead yields the well-known Erdős-Mordell inequality
OA + OB + OC ≥ 2(OP + OQ + OR).

W. Janous and M. S. Klamkin cite a 1961 paper on this problem [1],and the latter has
sent the following commentary.

With OP , OQ, OR denoted by r1, r2, r3 respectively and OA, OB, OC denoted
by R1, R2, R3 respectively, Oppenheim showed that for any homogeneous inequality
I(R1, R2, R3, r1, r2, r3) ≥ 0 we also have two further dual inequalities, i.e.,

I(R1, R2, R3, r1, r2, r3) ≥ 0 ⇔ I(1/r1, 1/r2, 1/r3, 1/R1, 1/R2, 1/R3) ≥ 0

⇔ I(R2R3, R3R1, R1R2, r1R1, r2R2, r3R3) ≥ 0.

Applying these duality transformation relations repeatedly to the Erdős-Mordell in-
equality

R1 + R2 + R3 ≥ 2(r1 + r2 + r3) (1)

he gets the following set of equivalent inequalities.

P (1)
1

r1

+
1

r2

+
1

r3

≥ 2

(
1

R1

+
1

R2

+
1

R3

)
Q(1) R2R3 + R3R1 + R1R2 ≥ 2(r1R1 + r2R2 + r3R3)

where here P (1) and Q(1) denote the first and second transformations on (1) respec-
tively. Then we have

10



QP (1)
R2R3

r1

+
R3R1

r2

+
R1R2

r3

≥ 2(R1 + R2 + R3)

PQ(1)
1

r2r3

+
1

r3r1

+
1

r1r2

≥ 2

(
1

r1R1

+
1

r2R2

+
1

r3R3

)
PQP (1) r1R1 + r2R2 + r3R3 ≥ 2(r2r3 + r3r1 + r1r2)

QPQ(1) r1R1 + r2R2 + r3R3 ≥ 2(r2r3 + r3r1 + r1r2)

Finally, L. J. Mordell proves the result, R1R2R3 ≥ (r2 + r3)(r3 + r1)(r1 + r2), in
his October 1962 Gazette article “On geometric problems of Erdős and Oppenheim”
pp.213–215.

Reference

1. A. Oppenheim, The Erdős inequality and other inequalities for a triangle, Amer.
Math. Monthly, 68(1961) 226–230; addendum 349; MR 23 #A1254 [a review in Italian].

Murray is acknowledged on Math. Gaz,, 86(2002) 152 as a solver of

85.H (N. Lord)

Let Ln, Sn denote the arc length and surface area of revolution (about the x-axis)
of the astroid-like curve x = cosn t, y = sinn t (0 ≤ t ≤ π

2
). Prove or disprove the

geometrically plausible assertions: Ln → 2 and Sn → π as n →∞.

Murray features in

Math. Gaz,, 87(2003) 591–592

87.C (Nick Lord)

Find the smallest value of α for which

1
27
− xyz ≤ α[1

3
− (yz + zx + xy)]

holds for all non-negative x, y, z satisfying x + y + z = 1. (That α = 7
9

works is the
substance of British Mathematical Olympiad 2(1999) qn.3.)

This was a popular problem which attracted a wide variety of different methods of
solution ranging from ingenious algebra and roots of cubics to polar coordinates and
calculus of one or more variables.
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Li Zhou’s solution is striking in its brevity:

By symmetry, we may assume that x ≤ y ≤ z. Then x ≤ 1
3
. Substituting x = 0 and

y = z = 1
2

into the given inequality, we get 1
27
≤ α(1

3
− 1

4
), thus α ≥ 4

9
. When α = 4

9

we use yz ≤
(

y+z
2

)2
and y + z = 1− x to obtain

α[1
3
− (yz + zx + xy)]− 1

27
+ xyz = −(4

9
− x)yz − 4

9
x(y + z) + 1

9

≥ −(4
9
− x)(1−x

2
)2 − 4

9
x(1− x) + 1

9

= 1
4
x(x− 1

3
)2 ≥ 0.

Hence the smallest value of α is 4
9
.

Mario Catalani’s soltuion typified those which used calculus.

We can rewrite the desired inequality as

1
27
− xyz

1
3
− (yz + zx + xy)

≤ α

Let g(x, y, z) be th LHS. Then

g(x, y, z) =
1

9
× 1− 27xyz

1− 3(yz + zx + xy)

=
1

9
× 1− 27xy(1− x− y)

1− 3 (xy + x(1− x− y) + y(1− x− y))

≤ 1

9
× 1− 27xy(1− x− y)

1− 3(1− x)x

≤ 1

9
× 1

1− 3(1− x)x

where we used the restrictions z = 1− x− y, 0 ≤ y ≤ 1− x and x ≥ 0. Now consider
the function

f(x) =
1

9
× 1

1− 3(1− x)x

Either by calculus or completing the square, we readily see that f(x) attains its max-
imum at x = 0.5 and f(0.5) = 4

9
. It follows

f(x) ≤ 4

9

Then

g(x, y, z) ≤ 4

9
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Now it is easy to compute

g(0.5, 0.5, 0) =
4

9

This shows that α = 4
9
.

Michel Bataille and Murray Klamkin point out that, when α = 4
9
, the inequality

rearranges to

x(x− y)(x− z) + y(y − z)(y − x) + z(z − x)(z − y) ≥ 0

which is a case of Schur’s inequality discussed, for example, in P. Ivády’s June 1983
Gazette article (pp.126–127).

Murray Klamkin and Walther Janous further observe that, writing T1 =
∑

x, T2 =∑
yz, T3 = xyz, when α = 4

9
the given inequality is the same as T 3

1 ≥ 4T1T2 − 9T3

which is the best inequality of a homogeneous symmetric inequality of three non-
negative variables x, y, z with equality if x = y = z. For if T 3

1 ≥ aT1T2 + bT3, the
latter condition forces 9a + b = 27. But then

4T1T2 − 9T3 ≥ aT1T2 + (27− 9a)T3

since T1T2 ≥ 9T3.

Perhaps Murray’s last contribution to Math. Gaz. appears at

Math. Gaz,, 88(2004) 324–325

87.I (Michel Bataille)

Let A, B, C and D be distinct points on a circle with radius r. Show that

AB2 + BC2 + CD2 + DA2 + AC2 + BD2 ≤ 16r2

When does equality occur?

This extremely popular problem attracted a wide range of solutions. Notable for its
algebraic elegance was that of I. G. Macdonald.

We may assume that r = 1 and that A, B, C, D are represented by four complex
numbers t1, . . . t4 of modulus 1 (so that t̄i = t−1

i ). Then

AB2 = |t1 − t2|2 = (t1 − t2)(t
−1
1 − t−1

2 ) = 2− t1t
−1
2 − t2t

−1
1

13



and so on, so that

S = AB2 + BC2 + · · ·+ BD2 =
∑
i<j

(2− tit
−1
j − tjt

−1
i )

= 12−
∑
i6=j

tit
−1
j

= 16− e1ē1

= 16− |e1|2

where e1 = t1 + t2 + t3 + t4. Hence S ≤ 16 and S = 16 if and only if e1 = 0. This means
that the quartic equation whose roots are t1, . . . t4 is of the form x4 + e2x

2 + e4 = 0
(because the coefficient of x3 is −e1 = 0 and that of x is −ē1e4 = 0). Hence S = 16 if
and only if ABCD is a rectangle.

John Rigby observed that the inequality may be extended to n points on a circle.
Several solvers used vectors: these gave rise to the shortest proofs. Moreover, Murray
S. Klamkin (quoted) and Li Zhou noted that the proof extends (unchanged) to more
than 2 dimensions to give the definitive generalisation: if P1, . . . , Pn are n points
(distinct or otherwise) all distance r from O in Rd, then∑

i<j

|PiPj|2 ≤ n2r2

To see this, write pi =
−−→
OPi and observe that

∑
i<j |pi − pj|2 ≤ n2r2 in expanded-out

form is equivalent to n2r2+2
∑

i<j pi·pj ≥ 0. This now follows since the LHS is also the

expansion of (p1+p2+ · · ·+pn)2. There is equality if and only if p1+p2+ · · ·+pn = 0,
i.e., the centroid of P1, P2, . . . , Pn coincides with O.

It is interesting to note that, in the 3-dimensional extension of 87.I with four points,
equality holds for inscribed isosceles tetrahedra (which includes rectanglesin a circle
of radius r as a degenerate case). And equality also holds for the Platonic solids—a
pretty observation!

Finally, Christopher Bradley noted that a proof of the n = 3 case was the key to
Problem 3 of the 1996 Lithuanian Mathematical Olympiad (Crux Mathematicorum,
26 275–277).
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Math. Gaz,, 89(2005) 114

Readers will be saddened to learn of the passing of Murray Klamkin who died aged
83 in August 2004. He was universally admired as the doyen of problemists worldwide
with an encyclopaedic knowledge which he was delighted to share. His problems and
solutions graced the columns of every mathematics journal whichhas a problems sec-
tion; in particular, he responded regularly to the problems in the Gazette. His last
contribution (July 2004, pp.324–325) typified his elegant, incisive style.

Nick Lord
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Excerpts from Murray Klamkin, SIAM Rev. 1959–98

Richard K. Guy

June 22, 2006

File updated 2006-05-22.

This is the first of a number of files listing problems, solutions and other writings of
Murray Klamkin. [I haven’t accessed Vols. 1 and 2 of SIAM Rev. Murray may have
been Problems Editor from the start? YES! He was – see page 4 below.]

The easiest way to edit is to cross things out, so I make no apology for the proliferation
below. Just lift out what you want.

SEE PAGES 24–25 FOR FURTHER REMARKS ABOUT EDITING.

The rest may be of use to others who are wishing to make collections of Murray’s work.

To reduce confusion, my own remarks from now on will be in double brackets:

[[Perhaps Bruce S. and Andy L. (and presumably wewouls welcome input from others?)
will give me some detail as to the format. Not just a catalog of Murray problems?

Is there any record of any of Murray’s excellent problem-solving talks? E.g., those he
gave at training sessions for IMO teams. (The appendix to) the following article gives
a glimpse of what I’d like to see in the way of general introduction.]]
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M. S. Klamkin & D. J. Newman, The philosophy and applications of transform theory,
SIAM Rev., 3(1961) 10–36; MR 22 #9810.

[[There is an Appendix (pp.35–36) to this paper which is intended to illustrate the
problem solving dictum: TRANSFORM, SOLVE, INVERT.]]

APPENDIX

1. Solve
y′(x2 + 1) = xy +

√
x3 + x− y2

2. Given four mutually external circles C1, C2, C3, C4, with radii r1, r2, r3, r4,
respectively, find the relation among the circles if they have a common tangent circle
(Casey’s relation).

3. ABCD is a parallelogram circumscribing a conic. Show that its diagonals are
conjugate diameters.

4. If the side-lines of a skew quadrilateral touch a sphere, the points of contact are
coplanar.

5. Through a point P inside an ellipse, draw a line cutting off a minimum area from
the ellipse.

6. Show that it is possible to “weight” a pair of dice, such that ten of the eleven sums
which can come up have equal probability.

7. Is it possible to “weight” N (N > 2) dice such that all possible sums have equal
probability of coming up?

8. Construct a linkage which will convert circular motion into straight-line motion.

9. Determine the condition on two circles such that a closed Steiner chain can be
formed.

10. Determine the leading term in the asymptotic ecxpansion of An, where

An+1 = An + A−1
n (A0 = 1)

11. Determine the number of ways of inserting parentheses to form products r + 1 at
a time in (a1a2a3 · · · an).

12. What is the analogue of problem 11 as a dissection of a convex n-gon?

13. The points of contact of the sides of triangles of minimum area circumscribing an
ellipse are the mid-points of the sides (also true if the ellipse is replaced by a convex
oval).

2



14. Show that∫ 1

0

dt

[1− t2n]1/n
÷
∫ 1

0

fracdt[1 + t2n]1/n = sec
π

2n
n = 2, 3, . . .

without integrating.

15. Construct the mid-point of a line segment with compass alone.

16. Construct the straight line joining two given points with a straightedge alone whose
length is too small to span the two points.

17. Determine the shape of a smooth curve such that the time of descent (to the
bottom) of a particle sliding down is independent of the initial position of the particle.

18. Sum

Sn =
∞∑

r=1

a(r, n)

r

where n is an integer >! and a(r, n) =

{
1 if n - r
1− n if n | r 19. Show that the theorems

of Menelaus and Ceva are dual.

20. Show that one cannot decompose the integers into a finite number of arithmetic
progressions such that all the common differences are distinct.

21. Determine a four parameter solution of the Diophantine equation

x2
1 + x2

2 + x2
3 + x2

4 = (a2
1 + a2

2 + a2
3 + a2

4)z
n (n > 1, ar given)
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[[Let me backtrack. I’ve now got access to the first two volumes of SIAM Review, and
there’s some important stuff, Murray-wise:]]

SIAM Rev., 1(1959) 68–70.

PROBLEMS

Edited by Murray S. Klamkin, AVCO Manufacturing Corporation

All problems should be sent to Murray S. Klamkin, R-6 Physics, AVCO Research and
Advanced Development Division, Wilmington, Massachusetts.

The editors of the SIAM Review desire the development and continuance of a Problems
Section. To this end, Murray S. Klamkin has been appointed an editor of the Problem
Section, and he seeks contributed problems, with or without solution, which would
be of interest to the SIAM membership. Each problem should be cast in its applied
or industrial setting, complete with references and indications of known approaches;
solutions to problems must be self-contained. Discussions should, where applicable,
call attention to areas where there is a need for the development of mathematical
techniques. Problems (as well as solutions) should be submitted in accordance with
the instructions given on the inside front cover. Solutions will be oublished, and the
editors will list annually the problems yet to be solved. An asterisk placed beside a
problem number indicates that the problem was submitted without solution.

Problem 59-1∗, The Ballot Problem, by Mary Johnson (American Institute of Physics)
and M. S. Klamkin.

A society is preparing 1560 ballots for an election for three offices for which there are
3, 4 and 5 candidates, respectively. In order to eliminate the effect of the ordering of
the candidates on the ballot, there is a rule that each candidate must occur an equal
number of times in each position as any other candidate for the same office. what is
the least number of different ballots necessary?

It is immediately obvious that 60 different ballots would suffice. However, the following
table gives a solution for 9 different ballots:

No. of ballots 312 78 130 234 182 104 208 286 26
Office
1. . . . A A A B B B C C C
2. . . . D D E E F G F G E
3. . . . H I K I K J J L L

4



Another solution (by C. Berndtson) is given by

No. of ballots 260 182 78 234 52 130 104 312 208
Office
1. . . . A A A B B B B C C
2. . . . D F E G G D G E F
3. . . . H I J J H I K L K

The above tables just give the distribution for the first position on the ballot for each
office. The distributions for the other positions are obtained by cyclic permutations.

We now show that 9 is the least possible number of ballots. Let us consider the
distribution for office 3 using only 8 different ballots. We musthave the following (for
simplicity we consider a total of 60 ballots):

No. of ballots x 12− x y 12− y z 12− z 12 12
Office
3. . . . H H I I J J K L

Now to get a total of 15 representations for each position for office 2, we must have
x = y = 3, z = 6. But this does not satisfy the requirements for office 1. Similarly no
number of ballots fewer than 8 will suffice.

It would be of interest to solve this problem in general. The problem is to determine a
distribution of the candidates such that the system of linear equations for the number
of each type of ballot, which contains more equations than unknowns, is solvable in
positive integers.

A trick solution to the problem can be obtained using 5 different ballots: add two
fictitious names to the group of 3 and one to the group of 4. We then have 3 offices
for which there are 5 “candidates” for each. This would also provide a survey on the
effect of ordering of the candidates on the ballot.
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Problem 59-2∗, N-dimensional Volume, by Maurice Eisenstein (AVCO Manufacturing
Corporation) and M. S. Klamkin.

Determinethe volume in N -space bounded by the region

0 ≤ a1x1 + a2x2 + · · ·+ aNxn < 1 (ar ≥ 0)

br ≥ xr ≥ cr (r = 1, 2, . . . , N)

This problem has arisen from the following physical situation: a series-parallel circuit
of N resistances is given where each of the resistances Ri are not known exactly but
are uniformly distributed in the range Ri ± εiRi (εi � 1). We wish to determine the
distribution function for the circuit resistance

R = F (R1, R2, . . . , RN)

To first order terms

4R =
N∑

i=1

∂F

∂Ri

dRi (|dRi| ≤ εiRi)

The probability that the circuit resistance lies between R and R+4R will be propor-
tional to the volume bounded by the region

0 ≤
N∑

i=1

∂F

∂Ri

xi ≤ 4R (−εiRi ≤ xi ≤ εiRi)

Special cases of the problem arise in the two following examples:

(A) A sequence of independent random variables with a uniform distribution is chosen
from the interval (0,1). The process is continued until the sum of the chosen numbers
exceeds L. What is the expected number of such choices? The expected number E
will be given by

E = 1 + F1 + F2 + F3 + · · ·

where Fi is the probability of failure up to and including the i th trial. Geometrically,
Fi will be given by the volume enclosed by

x1 + x2 + · · ·+ xi ≤ L

0 ≤ xr ≤ 1 (r = 1, 2, . . . , i)

For the case L = 1

E =
∞∑

m=0

1

m!
= e

6



(D. J. Newman & M. S. Klamkin, Expectations for sums of powers, Avco Research
and Development Division, RAD-U-58-13; to be published shortly in the American
Mathematical Monthly.)

[[D. J. Newman & M. S.Klamkin, Expectations for sums of powers, Amer. Math.
Monthly, 66(1959) 50–51; MR 21 #390.]]

(B) What is the probability that N points picked at random in a plane form a convex
polygon?

If we denote the interior angles by θi, the probability that the polygon will be convex
will be proportional to the volume of the region given by

θ1 + θ2 + θ3 + · · ·+ θN = (N − 2)π

0 ≤ θr < 2π

(we are assuming that the angles are uniformly distributed).

SIAM Rev., 2(1960) 41–45

Solution by I. J. Schoenberg, University of Pennsylvania.

Let Bω denote the volume of the n-dimensional polyhedron

0 ≤ xi ≤ ai i = 1, 2, . . . , n (1)

0 ≤ λ1x1 + λ2x2 + · · · ≤ ω (2)

where λ2
1 +λ2

2 + · · ·+λ2
n = 1 and ar, λr, ω ≥ 0. Also, let bi = aiλi. If F (u) is a function

of one variable u, we define the operator Ln by

LnF (u) =
∑

(α1,α2,...,αi)

(−1)n−iF (bα1+bα2+···+bαi
) (3)

where (α1, α2, . . . , αi) runs through all the 2n combinations of the n quantities b1, b2,
. . ., bn. For example

L1F (u) = F (b1)− F (0)

L2F (u) = F (b1 + b2)− F (b1)− F (b2) + F (0)

It follows that
LnF (u) = Ln−1F (u+ bn)− Ln−1F (u)

If F (u) is sufficiently smooth,∫
· · ·
B

∫
F (n)(λ1x1 + · · ·+ λnxn) dx1 · · · dxn =

∏
r = 1nλ−1

r LnF (u) (4)

7



where B denotes the box defined by (1). To establish (4) we assume it holds for
n = 1, 2, . . . , n− 1. Then∫ an

0

dxn

∫
· · ·

xn fixed

∫
F (n)(λ1x1 + · · ·+ λnxn) dx1 · · · dxn−1

=
1

λ1 · · ·λn−1

∫ an

0

Ln−1F
′(u+ λnxn) dxn

=
1

λ1 · · ·λn−1

{Ln−1F (u+ bn)− Ln−1F (u)}

=
∏

λ−1
r LnF (u)

Since (4) is valid for n = 1 it is valid for all n by induction. One consequence of (4)
is that LnF (u) = 0 whenever F (u) is a polynomial of degree less than n. By a known
theorem of Peano we can write

LnF (u=

∫ ∞

−∞
Φn(x)F (n)(x) dx (5)

where the kernal Φn may be described as follows: If we define the truncated power
function xk

+ by

xk
+ =

{
xk if x ≥ 0
0 if x < 0

k = 0, 1, 2, . . . (6)

then

Φn(x) = Ln
(u− x)n−1

+

(n− 1)!
(7)

where the right side x is treated as a parameter and Ln operates on the variable u.
Since Φn(x) = 0 if x < 0 or x >

∑n
1 br = b,∫

· · ·
B

∫
F (n)(λ1x1 + · · ·+ λnxn) dx1 · · · dxn =

∏
λ−1

r

∫ b

0

Φn(x)F (n)(x) dx (8)

Equation (8) shows that
∏
λ−1

r Φn(x) is the area of the intersection of the box B with
the hyperplane λ1x1 + · · · + λnxn = x (x fixed). To see this more clearly, we choose
F (x) in (8) such that

F (n)(x) =

{
1 if x ≤ ω
0 if x > ω

i.e.

F (x) = (−1)n (ω − x)n
+

n!
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Equation (8) now reduces to

Bω =
∏

λ−1
r

∫ ω

0

Φn(x) dx (9)

Since the operator Ln commutes with the integration∏
λrBω = Ln

∫ ω

o

(u− x)n−1
+

(n− 1)!
dx = −Ln

{
(u− x)n

+

n!

}x=ω

x=0

=
1

n!
Lnu

n
+ −

1

n!
Ln(u− ω)n

+

Writing B = a1a2 · · · an and observing that if ω ≥ b then Ln(u−ω)n
+ = 0 and Bω = B.

We may now write our final result as

Bω = B −
∏
λ−1

r

n!
Ln(u− ω)n

+ (10)

As an example, let us consider the hypercube when ar = 1 and λr = n−1/2, r =
1, 2, . . . , n. Then also br = n−1/2 and (10) gives

Bω = 1− nn/2

n!
4n(u− ω)n

+|u=0 (11)

where 4n is the ordinary nth order advancing difference operator of step h = n−1/2.
Now, if ω = 0 then Bω = 0 and (11) gives

4nun
+|u=0 = 4nun|u=0 = n−n/2n!

which is a known relation. If ω = n−1/2 then again for the ordinary power function

4n(u− ω)n|u=0 = n−n/2n! (12)

Passing to the truncated power function only one term of the left side of (12) drops
out so that

4n(u− ω)n
+|u=0 = n−n/2{n!− 1}.

Finally (11) gives for ω = n−1/2 the value

Bn−1/2 =
1

n!

which is also known.

The expression (7) shows that Φn(x) is what has been called elsewhere [Bull. Amer.
Math. Soc., 64(1958) 352–357] a spline curve of degree n − 1, i.e. a composite of

different polynomials of degree n− 1 having n− 2 continuous derivatives while Φ
(n−1)
n

9



has jumps at the “knots” x = bα1 +· · ·+Bαi
. The Laplace transform of Φn(x), however,

has the simple form∫ ∞

−∞
e−sxΦn(x) dx =

n∏
r=1

1− e−sbr

s
(13)

This transform is particularly useful if we wish to discuss the limit properties of the
distribution Φn(x) for large n. Remark: No originality is claimed for the matters
presented here. The operator Ln was studied by M. Frechet, T. Popoviciu and others.
Laplace transforms of the kind obtained here were already derived by Laplace himself.
Finally, G. Pólya’s Hungarian doctoral dissertation [Mathematikai es Physikai Lapok
XXII] is devoted to an intensive study of the transforms (13). As a matter of fact,
Pólya starts from the problem of determining the volume Bω and also stresses the
relations with probability theory which are obtained if n is allowed to tend to infinity.

Also solved by Larry Shepp who shows that the probability that an n+1 sided polgon
be convex (the angles of which are assumed uniformly distributed) is

Pn+1 =
2n − n− 1

(n− 1)n −
(

n+1
1

)
(n− 3)n + · · ·+ (−1)[n/2]+1

(
n+1

[n/2]−1

)
(n− 2[n/2] + 1)n

This generalizes the result of H. Demir for the case n = 3 (Pi Mu Epsilon J., Spring
1958).

Editorial Note: E. G. Olds in “A note on the convolution of uniform distributions”,
Ann. Math. Statist., 23(1952) 282–285, gives a derivation for the probability density
function for a sum of independent rectangularly distributed random variables.

[[ Here’s the review of the BAMS ref – Schoenberg’s introduction of the idea of “spline”:

MR0100746 (20 #7174) Schoenberg, I. J., Spline functions, convex curves and me-
chanical quadrature. Bull. Amer. Math. Soc. 64 1958 352–357.

By a spline function of degree n− 1 is meant a function of the form

Sn−1,k(x) = Pn−1(x) +
k∑

ν=1

Cν(x− ξν)+
n−1,

where Pn−1(x) is a polynomial of degree ≤ n − 1 and x+
n−1 = xn−1 for x ≥ 0 and 0

if x < 0. In this research announcement a fundamental theorem of algebra is given
for spline functions and applications are indicated to mechanical quadrature formulas
of Gauss and Radau type. The determination of the knots (ξν) of a spline function
with given zeros is made to depend upon a refinement of a theorem of Carathéodory
on convex hulls.

Reviewed by P. J. Davis]]
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[[I’ve now got myself out of chronological order, since next is Problem 60-11, which is
below.]]

SIAM Rev., 1(1959) 172.

Problem 59-6∗, The Smallest Escape Asteroid, by M. S. Klamkin (AVCO Research
and Advanced Development Division).

A problem which was solved in the American Mathematical Monthly (May, 1953,
p.332) was to determine the largest asteroid that one could jump “clear” oo (escape).
A more interesting and more difficult problem would be to determine the smallest
asteroid that one could jump “clear” off. The difficulty arises in the reaction of the
asteroid. For a large one the reaction is negligible. But this is not true for a small one.
[[I don’t think that a solution was ever offered.]]

SIAM Rev., 2(1960) 41.

Problem 60-3, A Center of Gravity Perturbation, by M. S. Klamkin (AVCO Research
and Advanced Development Division).

Determine a vector Z = (z1, z2, . . . , zn) which maximizes (A · Z)2 + (B · Z)2 where A
and B are given vectors and |zr| ≤ 1, r = 1, 2, . . . , n. This problem arises from the
following physical situation:

A composite body consists of n component masses {mr} with individual cC.G.s at
(xr, yr). The masses will not be known exactly but can vary within a tolerance of
±εrmr (εr � 1). What is the greatest distance the C.G.can be from the C.G. which is
calculated by using the nominal masses?

If the origin of our coordinate system is taken at the nominal C.G., then to first order
terms the perturbation in the position of the C.G. due to perturbations in the masses
will be given by

4x =

∑
xr4mr∑
mr

4y =

∑
yr4mr∑
mr

Then
4x2 +4y2 = (A · Z)2 + (B · Z)2

where

A =

{
εrmrxr∑

mr

}
r = 1, 2, . . . , n

B =

{
εrmryr∑

mr

}
r = 1, 2, . . . , n

Z = {zr} |zr| ≤ 1, r = 1, 2, . . . , n

11



It follows that the maximizing vector Z (emanating from the origin) will terminate on
one of the vertices of the hypercube (±1,±1, . . . ,±1). The difficulty in the probem
resides in the fact that in the actual problem involved, n = 43 and thus the number of
vertices is 243 which is much too large to check each one. Crude upper and lower bounds
can be immediately obtained by considering Z to terminate on the circumscribed and
inscribed hyperspheres, respectively. In these cases the maximizing vector will lie in
the plane of A and B and is easily determined. The ratio of these bounds is

√
n. The

lower bound can be improved by choosing the “closest” vextex vector to the latter
maximizing vector.

[[No solution appeared until:]]

SIAM Rev., 34(1992) 651–652.

Solution by John Quinn (St. Francis Xavier University, Nova Scotia, Canada).

We let
Ω = {(A · Z,B · Z) : |zi| ≤ 1, i = 1, . . . , n}

Our problem is to find a point (α, β) in Ω, whose distance r from the origin is a
maximum. If (ᾱ, β̄), r̄ is optimal, then the vector (ᾱ, β̄) is an outward normal to the
disk of radius r̄ about the origin, and to a line of support to the centro-symmetric
convexpolygon Ω at the vertex (ᾱ, β̄). This line has equation

αᾱ+ ββ̄ = r̄2

and intersects Ω only at (ᾱ, β̄). It follows that the corresponding ¯Z is uniquely
determined by the condition that

ᾱ
n∑

i=1

aizi + β̄
n∑

i=1

bizi =
n∑

i=1

(ᾱai + β̄bi)zi

is maximum, where A= (ai), B= (bi). Thus ¯Z is given by

zi =

{
+1 if ᾱai + β̄bi > 0
−1 if ᾱai + β̄bi < 0

(1)

and, rather than maximizing (A · Z)2 + (B · Z)2 over all Z with |zi| ≤ 1, we need only
consider Z given by (1) as (ᾱ, β̄) ranges over all nonzero vectors in R2. But (1) simply
states that zi = 1 or −1, according to whether (ai, bi) lies above or below the line

` : ᾱα + β̄β = 0.

If ` is rotated, the corresponding ¯Z changes only when ` intersects one of the points
(ai, bi). Since there are only n such points, there are at most n distinct ¯Z generated
by (1). We shall refer to these Z as the suspects.

12



A systematic way of generating the suspects is to use lines having normal vectors
(−bj, aj). We then definZ(j) for j = 1, 2, . . . , n by

z
(j)
i =

{
+1 if − bjai + ajbi ≥ 0
−1 if otherwise

and determine j so that
(A · Z(j))2 + (B · Z(j))2

is a maximum.

Note. The above method generalizes to, for example, the problem of finding

max{A · Z + B · Z + C · Z}.

The argument involving a family of lines is replaced by one involving a family of
planes through the origin, and the n suspects Z(j) for a maximum are replaced by
Z(j,k), j = 1, 2, . . . , n; k = 1, 2, . . . , n; k 6= j, where

z
(j,k)
i =

{
+1 if 〈ai, bi, ci〉N (j,k) ≥ 0
−1 if otherwise

and
N (j,k) = 〈aj, bj, cj〉 × 〈ak, bk, ck〉.

Editorial comment. It is to be noted that for the solution given here, the number of
calculations necessary to determine the optimum Z is O(n2). This is far better than
trying all vectors Z= (±1,±1, . . . ,±1), which requires O(2n) calculations. An open
problem is to determine whether or not one can do better than O(n2). [M.S.K.]

[[Now I’m back on track, but out of order. Chronologically, but not logically, the reader
should step back to the (Appendix to the) article by MSK & D.J.Newman.]]
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SIAM Rev., 3(1961) 72.

Problem 61-4, Flight in an Irrotational Wind Field, by M. S. Klamkin (AVCO) and
D. J. Newman (Yeshiva University)

If an aircraft travels at a constant air speed, and traverses a closed curve in a horizontal
plane (with respect to the ground), the time taken is always less when there is no
wind, than when there is any constant wind. Showthat this result is also valid for
any irrotational wind field and any closed curve (the constant wind case is due to
T. H. Matthews, Amer. Math. Monthly, Dec. 1945, Problem 4132).

SIAM Rev., 4(1962) 155–156.

Solution by the proposers.

If we let W = wind velocity, V = actual plane velocity (which is tangential to the
path of flight), then |V−W| is the constant air speed of the airplane (without wind)
and will be taken as unity for convenience.

We now have to show that ∮
ds

V
≥
∮
ds

1
(1)

By the Schwarz inequality∮
|V| ds ·

∮
ds

|V|
≥
{∮

ds

}2

(2)

Since ∮
|V| ds =

∮
V · dR =

∮
(V −W) · dR +

∮
W · dR

and ∮
W · dR = 0 (W is irrotational)∮

|V| ds ≤
∮
|V −W| |dR| =

∮
ds. (3)

(1) now follows from (2) and (3).

[[Articles:]]

Murray S. Klamkin, On cooking a roast, SIAM Rev., 3(1961) 167–169; MR 23 #B238.

Murray S. Klamkin, On the transformation of a class of boundary problems into initial
value problems for ordinary differential equations, SIAM Rev., 4(1962) 43–47; MR 27
#5950.

14



SIAM Rev., 4(1962) 257.

[[The following is out of order, having been taken from the SOLUTIONS. The problem
was first published at SIAM Rev., 2(1960) 219.]]

Problem 60-11 A Parking Problem, by M. S. Klamkin (AVCO), D. J. Newman
(Yeshiva University) and L. Shepp (University of California, Berkeley).

Let E(x) denote the expected number of cars of length 1 which can be parked on a
block of length x if cars park randomly (with a uniform distribution in the available
space). Show that E(x) ∼ cx and determine the constant c.

[[On p.258, after a solution by Alan G. Konheim and Leopold Flatto is the
following Editorial Note: [Murray was Problems Editor as well as one of the setters.]]]

This problem was obtained third-hand by the proposers and attempts were made to
track down the origin of the problem. These efforts were unsuccessful until after the
problem was published. Subsequently, H. Robbins, Stanford University, has informed
me that he had gotten the problem from C. Derman and M. Klein of Columbia Uni-
versity in 1957 and that in 1958 he had proven jointly with A. Dvoretzky that

E(x) = cx− (1− c) +O(x−n) n ≥ 1

plus other results like asypmtotic normality of x etc. They had intended to pub-
lish their results but did not when they found that A. Rényi had published a paper
proving (8) [i.e., the above displayed formula] in 1958, i.e.,“On a One-Dimensional
Problem Concerning Random Place Filling,” Mag. Tud. Akad. Kut. Mat. Intézet.
Közleményei,pp.109–127. Also (8) is proven by P. Ney in his Ph.D. thesis at Columbia.

A reference to the Rényi paper was also sent in by T. Dalenius (University of California,
Berkeley).

An abstract of the Rényi paper was sent in anonymously from the National Bureau of
Standards. The abstract appears in the International Journal of Abstracts: Statistical
Theory and Method, Vol.I, No.1, July 1959, Abstract No.18. According to the abstract,
there is a remark due to N. G. DeBruijn in the Rényi paper stating that a practical
application of the Rényi result is in the parking problem that was proposed here. In
addition, the constant c has been evaluated to be 0.748.
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SIAM Rev., 4(1962) 396.

Problem 62-15, A Property of Harmonic Functions, by M. S. Klamkin (University of
Buffalo).

A. For what functions F do there exist harmonic functions φ satisfying(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2

= F (φ)

B. Give a physical interpretation for (A).

[[No solution appeared until]]

SIAM Rev.. 40(1998) 981–983.

[[The section heading of this issue bears the dedication:

This last issue is dedicated with respect, gratitude and affection to Murray S. Klamkin,
founder of the Problems and Solutions section and its editor for over thity years.

The affiliation ‘U of Buffalo’ has a footnote added:

Now Professor Emeritus, University of Alberta.

See also the final paragraph of the solution.]]

Solution by O. G. Ruehr (Graduate Student, University of Michigan (1962)—Professor
Emeritus, Michigan Technological University (1998)).

The following generalization and solution for part (A) is taken entirely from [2], with
motivation in [1]. We treat the Helmholtz equation ∇2φ+ k2φ = 0 in n dimensions, k
is constant. To illustrate the procedure we will work out the cases n = 1, 2. For n = 1,
we differentiate F (φ) = φ2

x with respect to x and divide by φx to get F ′(φ) = 3φxx.
From the Helmholtz equation we find that F ′(φ)+2k2φ = 0. For n = 2, we differentiate
F (φ) = φ2

x + φ2
y twice with respect to x and with respect to y to get

F ′φx = 2φxφxx + 2φyφyx

F ′φy = 2φxφxy + 2φyφyy

F ′′φ2
x + F ′φxx = 2φ2

xx + 2φxφxxx + 2φ2
xy + 2φyφyxx

F ′′φ2
y + F ′φyy = 2φ2

xy + 2φxφxyy + 2φ2
yy + 2φyφyyy

Adding the last two equations and using the Helmholtz equation and the definition of
F yields

FF ′′ − k2φF ′ = 4φ2
xy + 2(φ2

xx + φ2
yy)− 2k2F

From the first two equations we obtain

(F ′ − 2φxx)(F
′ − 2φyy) = 4φxy2

16



Combining the last two equations we have

FF ′′ − k2φF ′ = F ′
2
+ 2k2φF ′ − 2k2F + 4φxxφyy + 2(φ2

xx + φ2
yy)

Since the last two terms are just twice the square of the Helmholtz equation, we obtain
finally the differential equation for F as follows:

FF ′′ = F ′
2
+ 3k2φF ′ − 2k2F + 2k4φ2

From now on let us agree to write f(x) for F (φ). The function f satisfies the differential
equation βn = 0, where the differential polynomials β are defined by

β1 =
df

dx
+ 2k2x

β2 = 2f
dβi−1

dx
−
(
i
df

dx
+ 2k2x

)
βi−1 i = 2, 3, . . . , n

These relationships are found formally by repeated differentiation and algebraic sim-
plification. For n = 1 we have f ′ + 2k2x = 0, for n = 2 we have f(f ′′ + 2k2) − (f ′ +
k2x)(f ′ + 2k2x) = 0, in agreement with the cases worked out above. For a solution of
the differential equation for f when n = 2 and k = 1, see [3]. It is to be emphasized
that these are necessary conditions that f must satisfy, and we say nothing about the
existence of the solutions of the partial differential equations themselves. Similar re-
sults are found in [2] for the heat equation in n dimensions and it is shown there that
such restrictions cannot exist for the scalar wave equation (because of d’Alembert’s
solution).

Again, omitting details, which are in [2], we find a parametric solution for the differ-
ential equation βn = 0 for arbitrary n as follows:

f =

(
dx

dt

)2

and
d2x

dt2
+
dx

dt

(
1

(t− c1)
+

1

(t− c2)
+ · · · 1

(t− cn−1)

)
+ k2x = 0

Verification of this solution is facilitated by writing f = ẋ2, ẍ + ṡẋ/s + k2x = 0 and
finding by induction that βi = −2iẋis(i)/s. Since βn = 0, s is an arbitrary polynomial
of degree n− 1 and the result follows as indicated.

Returning to the case n = 3 and harmonic functions (k = 0), we obtain the differential
equation

4f 2f ′′′ − 10ff ′f ′′ + 6f ′
3

= 0
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which has solutions f(x) = BeAx, A sinh4(Bx+C) and A(x−B)4, where A, B, C are
arbutrary constants and the results come from eliminating the parameter t from the
general solution given above.

The solver cannot resist remarking on the irony that the solution had been accom-
plished before the problem was published. I was not aware of the problem nor was
Murray Klamkin aware of my solution during the more than twenty years we worked
together.

REFERENCES

[1] R. K. Ritt, The modeling of physical systems, IRE Trans. Antennae and Propagation, AP-
4(1956) 216–218.

[2] O. G. Ruehr, Studies in nonlinear modeling V; Nonlinear modeling functions of a special type,
Univ. Mich. Radiation Lab. Report, 2648-5-T(1962).

[3] O. G. Ruehr, Problem 73-12, A nonlinear differential equation, SIAM Rev., 16(1974) 261–262.
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Problem 63-9∗, An optimal search, by Richard Bellman (The Rand Corporation)

Suppose that we know that a particle is located in the interval (x, x+ dx), somewhere
along the real line −∞ < x < ∞ with a probability density function g(x). We start
at some initial point x0 and can move in either direction. What policy minimizes the
expected time required to find the particle, assuming a uniform velocity and

(a) assuming that the particle will be recognized when we pass x, or

(b) assuming that there is a probability p > 0 of missing the particle as go past it?

Also, what would be the optimum starting point x0 ?

Editorial note. A related class of two dimensional search problems are the following
“swimming in a fog” problems. A person has been shipwrecked in a fog and wishes to
determine the optimal path of swimming to get to shore (in the least expected time—
assuming a uniform rate of swimming). The boundary conditions can be any of the
following:

1. The ocean is a helf-plane,

2. Condition (1) plus the knowledge that the initial distance to shore is ≤ D (with
a uniform distribution),

3. The ocean boundary is a given closed curve, i.e., a circle,rectangle, or possibly
not closed (a parabola),

4. Condition (2) and (3), etc.
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SIAM Rev., 28(1986) 234.

Comment by Wallace Franck (University of Missouri–Columbia)

I had given a necessary and sufficient condition for this problem in this Journal (7(1965)
503–512). In the comment by Anatole Beck on this problem in the September 1985
Problem Section, p.447, he had given a counerexample to the necessity condition. The
purpose of this comment is to alert the reader to my erratum (8(1966) 524) which
gives the correct form for this condition. I have corresponded with Professor Beck and
he agrees that the corrected condition is indeed correct.

SIAM Rev., 5(1963) 275–276.

Problem 63 − 13∗, An Infinite Permutation, by M. S. Klamki+n (State University
of New York at Buffalo).

Consider the infinite permutation(
1 2 3 4 5 6 · · · n · · ·
1 3 2 5 7 4 · · · f(n) · · ·

)
where

f(3n− 2) = 4n− 3

f(3n− 1) = 4n− 1

f(3n) = 2n

We now write P as a product of cycles:

P = (1)(2, 3)(4, 5, 7, 9, 6)(8, 11, 15, . . .) · · ·

It is conjectured that the cycle (8, 11, 15, . . .) is infinite. Other problems concerning P
are

(a) Can P be expressed as a product of a finite number of cycles?

(b) Are there any other finite cycles other than those indicated?

Editorial Note: For a similar problem where there are cycles of every length, see
Problem 5109, Amer. Math. Monthly, May, 1963. A major difference between the
two permutations is that in the latter case, the ratio of odd to even numbers of f(n)
approaches 1, whereas in the former case, the ratio approaches 2.
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[[Here is the Monthly problem:]] AMM 70(1963) 572–573.

5109. Proposed by M. S. Klamkin, State University of New York at Buffalo, and
A. L. Tritter, Data Processing, Inc.

Given the infinite permutation(
1 2 3 4 5 6 7 8 9 10 · · ·
1 2 4 3 5 7 6 8 10 12 · · ·

)
where the second row is formed by taking in order from the natural numbers, 1 odd,
2 even, 3 odd, . . ., 2n even, 2n + 1 odd, . . . . What is the cycle structure of this
permutation?

[[Here’s the solution. Note that Alan Tritter’s name has disappeared from the setters.]]

AMM 71(1964) 569–570.

5109. Proposed by M. S. Klamkin, State University of New York at Buffalo

Given the infinite permutation(
1 2 3 4 5 6 7 8 9 10 · · ·
1 2 4 3 5 7 6 8 10 12 · · ·

)
where the second row is formed by taking in order from the natural numbers, 1 odd,
2 even, 3 odd, . . ., 2n even, 2n + 1 odd, . . . . What is the cycle structure of this
permutation?

Solution by George Bergman, Harvard University. Let In designate the set of integers{
i|1

2
n(n− 1) < i ≤ 1

2
n(n+ 1)

}
. Examination of the given permutation shows that it

acts on In by the law: i→ 2i−un where un = 1
2
n2 if n is even, un = 1

2
(n2+1) if n is odd.

The “pivot” of this action is un; un is fixed, numbers of In less than un are decreased,
numbers of In greater than un are increased. But we see that even the greatest integer
of In is not increased as far as un+1, and even the least integer of In+1 is not decreased
as far as un; hence the interval Jn = {i|un ≤ i < un+1} is sent into itself. This Jn

contains 2[n/2] + 1 elements. Let us represent them by the integers 0 through 2[n/2],
writing j for un + j. Then the action of our permutation is: j → 2j for j ≤ [n/2],
j → 2j−2[n/2]−1 otherwise. In other words the elements of Jn are permuted exactly
as the residue classes (mod 2[n/2] + 1) are permuted under multiplication by 2.

The nature of the permutation is as follows: for each divisor d of 2[n/2]+1 the elements
i = un + j of Jn such that (2[n/2] + 1, j) = d, form a cycle of order f((2[n/2] + 1)/d),
where f(k) is the least m such that k | 2m − 1. This numbertheoretic function is
described in the standard texts. For example, let n = 15, Jn = {i|113 ≤ i < 128},
represented by {j|0 ≤ j < 15}. The permutation for these integers is(

1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 4 6 8 10 12 14 1 3 5 7 9 11 13

)
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The cycles are given by:

d = 1: (1 2 4 8), (7 14 13 11) ∼ (114 115 117 121), (120 127 126 124)

d = 3: (3 6 12 9) ∼ (116 119 125 122)

d = 5: (5 19) ∼ (118 123)

d = 15: (0) ∼ (113), fixed.

f takes on every integral value (for f(2m− 1) = m); therefore all cycles are finite, and
there are infinitely many cycles of every finite order.

Also solved by L. Carlitz, Donald Liss, P. Catherine Varga and Oswald Wyler.

[[I continue from SIAM Rev. The following comment from Dan Shanks, (and another
from Oliver Atkin) deserves quoting, especially as it helps to establish the provenance
of connecting Collatz’s name with the 3x+1 problem. Collatz mentioned the problem
to me, later, so it’s nice to have this earlier corroboration. — RKG]]

SIAM Rev., 7(1965) 285–286.

Comment by Daniel Shanks (David Taylor Model Basin).

These problems date back, at least, to 1950 when L. Collatz mentioned them in personal
conversations during the International Congress at Harvard. In 1955, on one of the
first 650’s, the writer found that the cycle (8, 11, . . .) contained members > 1010 and
would not close under that limit. Further, the cycle (14, 19, . . .) behaved similarly; it
could not be made either to close or to join the cycle (8, 11, . . .). Many other such
open and nonjoining cycles (with the limit 1010) were found.

However, the cycle (44, 59, . . ., 66) closes with a period of 12. The known finite cycles
therefore have periods 1, 2, 5 and 12. These periods are consistent with the following
approximate theory.

Let m be a member of a finite cycle, and let there be a, b and c transformations
respectively of the form f(3n+1) = 4n+1, f(3n− 1) = 4n− 1 and f(3n) = 2n before
the cycle returns to m. Then we have approximately

m

(
4

3

)a(
4

3

)b(
2

3

)c

≈ m

Thus
22a+2b+c ≈ 3a+b+c

or

log2 3 ≈ 2a+ 2b+ c

a+ b+ c

The most likely periods for a finite cycle, which are here given by the sum a + b + c,
are therefore the denominators in the best rational approximations of log2 3. Since the
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continued fraction

log2 3 = 1 +
1

1+

1

1+

1

2+

1

2+

1

3+

1

1+
· · ·

has the convergents
1

1
,

2

1
,

3

2
,

8

5
,

19

12
,

65

41
, · · · ,

we do find denominators of 1, 2, 5, 12.

However, it has not been proven [[sic]] that these denominators constitute the only
allowable periods. Nor has a finite cycle of period 41 been discovered. Nor have any
other finite cycles been so far discovered.

SIAM Rev., 8(1966) 234–236.

Comment by A. O. L. Atkin (Atlas Computer Laboratory, Chilton, England).

[[edited to avoid repetition of what’s in Shanks’s comment.]]

We give a method applicable in principle to the problem of finding all cycles (if any)
of given period p, although the computation required becomes formidable if q/p is
a good approximation to log2 3. The method utizes a quantitative refinement of the
“approximate theory” given by Shanks. We show that there are no new cycles of period
less than 200; in particular, there are none of periods 41 and 53 which are denominators
of convergents to log2 3.

Suppose that there is a cycle (ar) of period p, and that h is its least term. If there are
p− k transformations of the form f(3n) = 2n and k transformations of the other two
kinds, then

1 =

(
2

3

)p−k (
4

3

)k k∏
r=1

(
3f(ar)

4ar

)
reordering the ar if necessary.

Also for all r, 1 ≤ r ≤ k, we have

|1− 3f(ar)/4ar| ≤ 1/4m

Hence
(1− 1/4m)k ≤ 3p/2p+k ≤ (1 + 1/4m)k

Now for 0 < x < 1 we have

log(1 + x) < x

log(1− x) > −x− x2/2(1− x)

so that
−63k/248m ≤ p log(3/2)− k log 2 ≤ k/4m
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Thus for a given p we must have

m ≤ 63

248

/
min

k

∣∣∣p
k

log(1.5)− log 2
∣∣∣ = g(p) , say.

A program was run on the I.C.T. Atlas computer of the Science Research Council
at Chilton, to show that all cycles, other than the known ones, with least terms less
than 5000 have at least 342 terms in their periods. Next, for p ≤ 341, a tabulation
of g(p) showed that g(p) < 5000 except when p = 200, 253, 306. Hence the only
possibleperiods of new cycles are p = 200, 253, 306 and p > 341.

A similar run was performed for the permutations obtained by permuting the values
of f . For instance, with f(3n) = 4n+ 3, f(3n+ 1) = 2n, f(3n+ 2) = 4n+ 1, there is
a cycle of period 94, least term 140. While 149/94 is a good approximation to log2 3 it
is not a convergent. As the referee points out, however, there is more chance of such a
(nondenominator) period here since, for example, (4n + 3)/3n is further from 4

3
than

(4n + 3)/(3n + 2). [[I wasn’t the referee, but note that 149
94

= 65+84
41+53

is a mediant. –
RKG]]

My general conjecture, on a probability basis, is that for any “congruence” permutation
of this kind, the number of finite cycles is finite, since (here) the “expected” value
of f(t)/t is about (2

3
4
3

4
3
)1/3 and that of f−1(t)/t is (3

2
3
2

3
4

3
4
)1/4 so that most cycles

tend to infinity in both directions. Dr. D. A. Burgess of Nottingham University has
given an elegant proof that these expected ratios cannot be unity for any congruence
permutation.

Editorial note. R. Eddy (David Taylor Model Basin) notes that that there are “near”
closures at periods 41, 53 and at “counterexample” periods 17 and 29 for the original
permutation. Here

36→37 : 17 transforms,
46→47 : 17 transforms,
78→77 : 29 transforms,
50→49 : 41 transforms,

554→553 : 53 transforms.

[[Article:]]

Murray S. Klamkin, A duality relation in differential equations and some associated
functional equations, SIAM Rev., 8(1966) 494–500; MR 35 #3154.
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[[RKG speaking. This seems a good place (Later: perhaps now too late, but better
late than never) to interpose an essay on some points of editing:

1. What about further editorial comments by the editors of the volume under con-
struction?

2. What is Canadian English?

3. How far must one be precise in making quotations?

4. Other typographical considerations.

1. The last problem is a good example of where we should step in with additional
comments. (Note the asterisk, denoting absence of a submitted solution.) This is an
analog of the notorious 3x+ 1 problem, and the subject of the classic paper

J. H. Conway, Unpredictable iterations, in Proc. Number Theory Conf., Boulder CO,
1972, 49–52; MR 52 #13717.

It is discussed in UPINT E17 where there a couple of other references.

I have yet to discover what more appeared in SIAM Rev. Later: quite a bit, which
I’ve appended.

2. What is Canadian English? No doubt the simplest example is ‘centre’ (I hope!)
which is the same in both Canadian languages and consistent with its etymology,
Greek ‘kentrum’, a sharp point. [The other spelling has been copied many times in
going through SIAM Rev.] I hope that it [i.e., ‘Canadian English’] includes ‘proved’
when used in mathematical contexts; ‘proven’ being the p.p. of the obsolete verb preve,
meaning ‘test’.

3. In regard to quotations, these should be [sic]! But I’m strongly tempted to remove
one of the ‘others’ from part (b) of the last problem of Murray above. Also I’d like to
give Rényi his accent five times in the Editorial Note quoted above. [Later: I did so!]
But presumably I’m not allowed to change ‘proven’, even if we agree on ‘proved’ in our
own writings. There’s another example below in which ‘steady-state’ is hyphenated in
one sentence and not in the next. [there are occasions on which one would want to use
both forms, but this isn’t one of them.] And in the next sentence, does one really need
commas round the y ?

4. Other typographical matters. E.g., will references normally be in MR style, with
journal titles in ital., vol. nos. in bold followed by year nos. in paren.? But in this
document I have often copied the typographical conventions (fonts, capitalization) of
the original. I hope soon to send this file to interested parties to ensure that I’m
not involving them in extra work, and that I’m not unnecessarily using my own time.
LATER: I’ve taken it upon myself to do some minor editing as I took stuff from
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periodicals, e.g., references put more or less into MR style, and adding MR references
occasionally.

I should also warn other editors of some of my idiosyncrasies, so that they can do a
query-replace if they object to any of them.

(a) I do not automatically put a comma before ‘and’ or ‘or’.

(b) I prefer equation numbers to be on the right. Because the numbers can’t conve-
niently run consecutively throughout this document, I’ve cooked their appearance, and
they’re not flush right, as they should be.

(c) I object to the use of the genitive in place of a plural. E.g., there’s no need for
apostrophe esses in ‘Here the Si and the ci are given’.

(d) But I do like an apostrophe ess (and I do like it to be pronounced) in “Pythagoras’s”,
“Lucas’s”, “Shanks’s”, etc., else we tend to wind up with “Shank’s”, etc.

(e) I prefer not to punctuate displayed formulas. Punctuation is to get the reader to
pause. Good writing minimizes the number of occasions on which we have to warn the
reader to take a breath. A displayed formula always gives pause, and should never be
punctuated if it ends with a subscript:

X =
n∑

i=1

xi, X =
n∑
i′

xi′ , ???]]

[[As to what we include is concerned, there’s an interesting test case at SIAM Rev.,
5(1963) 157–158. Five solutions to W. L. Bade’s Problem 61-9* (note the asterisk)
are carefully edited by Murray, but there’s no indication that any of them are due to
him in the first instance. If we’re short on material, which I’m sure we’re not, this
would be an excellent example of Murray’s very competent editing.]]
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SIAM Rev., 5(1963) 76–77.

[[This is the published solution for the problem proposed in SIAM Rev., 3(1961) 263.
The prime on the solution number is due to a misnumbering in which the same numbers
were used for different problems. Note the asterisk.]]

Problem 61-7′ ∗, One-Dimensional Steady-State Ablation, by Tom Munson (AVCO
Research and Advanced Development Division).

The following second order boundary value problem arises in a consideration of steady-
state ablation in thermally decomposing, non-charring plastic materials. The problem
results from the mathematical model when the steady state ablation is combined with
the assumption that the specific heat of the decomposition products is negligible with
respect to that for the undecomposed material. The coordinate, y, is measured from
the receding surface and the boundary conditions correspond to a specification of the
initial temperature of the material and the effective heat flux at the receding surface.

{D2 + (a+ be−λy)D + c}T = d, T (∞) = k,

[
dT

dy

]
y=0

= Q

Solution by M. S. Klamkin (State University of New York at Buffalo).

Let mx = be−λy. This transforms the equation into{
x2D2 +

[(
1− a

λ

)
x− mx2

λ

]
+

c

λ2

}
T =

d

λ2

The solution of the equation

{x2D2 + (αx+ 2β)xD + [β(β − 1) + (α+ β)(1− α− β)]}T = 0

is given by

T = x1−α−2βe−αx

{
C1 + C2

∫
x2α+2β−2eαx dx

}
(Kamke, E., Differentialgleichungen, Chelsea,New York, 1948, p.451). We now have
to identify the constants, i.e.,

1− a

λ
= 2β

−m
λ

= α

c

λ2
= β(β − 1) + (α+ β)(1− α− β)
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These 3 equations suffice to determine m. α and β in terms of a, c and λ. The solution
will be complicated for the case α and m complex. To obtain the general solution, the
particular solution Tp = d/c is added to the complementary one. The two arbitrary
constants C1 and C2 suffice in general to satisfy the two boundary conditions.

Also solved by Bernard G. Grunebaum [[but we’re presumably not interested in
his solution]].

SIAM Rev., 6(1964) 61.

Problem 64-5∗, A Physical Characterization of a Sphere, by M. S. Klamkin (Univer-
sity of Buffalo).

Consider the heat conduction problem for a solid:

∂T

∂t
= ∇2T

Initially, T = 0. On the boundary, T = 1.

The solution to this problem is well known for a sphere and, as to be expected, it
is radially symmetric. Consequently, the equipotential (isothermal) surfaces do not
vary with the time (the temperature on them, of course, varies). It is conjectured for
the boundary value problem above, that the sphere is the only bounded solid having
the property of invariant equipotential surfaces. If we allow unbounded solids, then
another solution is the infinite right circular cylinder which corresponds to the spherical
solution in two dimensions.

[[Interpolation by RKG: Also the infinite halfspace, corresponding to the 1-dimensional
solution. — Later: I’m now up to 1986 and haven’t found any solution to this unsolved
problem.]]
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SIAM Rev., 6(1964) 177–178.

Problem 64-10, A Boundary Value Problem, by M. S. Klamkin (University of Buf-
falo).

The Thomas-Fermi equation

d2y

dx2
=
√
y3/x (1)

subject to the boundary conditions y(0) = 1, y(∞) = 0 arises in the problem of
determining the effective nuclear charge in heavy atoms (H. T. Davis, Introduction to
Nonlinear Differential and Integral Equations, U. S. Atomic Energy Commission, 1960,
pp.405–407).

Transform this boundary value problem into an initial value one.

SIAM Rev., 7(1965) 566–567. Solution by the proposer.

If we let x = 1/t, then (1) is transformed into

{t4D2 + 2t3D}y =
√
y3t

subject to the boundary conditions y(0) = 0, y(∞) = 1. Now let y′(0) = λ (to be
determined) and (see M. S. Klamkin, On the transformation of a class of boundary
value problems into initial value problems for ordinary differential equations, SIAM
Rev., 4(1962) 43–47; MR 27 #5950)

y(t) = λ3/2F (λ−1/2t) (2)

It follows that F (x) satisfies the initial value problem

{x4D2 + 2x3D}F =
√
F 3t, F (0) = 0, F ′(0) = 1

Then by letting t → ∞ in (2) we have λ = F (∞)−2/3. Consequently, the initial
boundary value problem has been transformed into two similar initial-value problems.
This avoids interpolation techniques for numerically determining λ.
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SIAM Rev., 6(1964) 178.

[[It is stated that ‘the solutions [to the problem stated below] by E. Deutsch (Insti-
tute of Mathematics, Bucharest, Rumania), Thomas Rogge (Iowa State University),
J. Ernest Wilkins Jr. (General Dynamics Corporation) and M. S. Klamkin
(University of Buffalo) were essentially the same and are given by [what follows the
statement of the problem below].’ Since Murray was the Editor, he modestly puts his
name last, but as the original submission was as an unsolved problem, and as Murray
extended the problem and its solution [see ref at end], it may qualify as a Murray
original. — RKG]]

SIAM Rev., 4(1962) 148.

Problem 62-1∗, A Steady-State Temperature, by Alan L. Tritter (Data Processing
Inc.) and A. I. Mlavsky (Tyco, Inc.)

Consider the steady-state temperature (T (r, z)) distribution boundary-value problem
for an infinite solid bounded by two parallel planes:

∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂z2
= 0, 0 < z < H, r ≥ 0, (1){

−k∂T
∂z

=
Q, r < R
0, r > R

}
z=0

{T = 0}z=H and |T | < M (boundedness condition), (all the parameters involved are
constants). Determine the temperature at the point r = z = 0.

[[Solution by MSK et al.]] Letting

φ(λ, z) =

∫ infty

0

rJ0(λr)T (r, z) dr

it follows by integration by parts that the Hankel transform of Eq. (1) is

{D2 − λ2}φ = 0

subject to the boundary conditions

k
∂φ

∂z

]
z=0

=

∫ R

0

QrJ0(λr) dr =
QRJ1(λR)

λ
, {φ = 0}z=H

Consequently

φ(λ, z) =
QR

k

J1(λR)

λ2

sinhλ(H − z)
coshH

Inverting the latter transform:

T (r, z) =
QR

k

∫ ∞

0

sinhλ(H − z)
λ coshλH

J0(λr)J1(λR) dλ
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On letting H →∞ we obtain

lim
H→∞

T (r, z) =
QR

k

∫ ∞

0

E−λzJ0(λr)J1(λR)
dλ

λ

which corresponds to a result given in Carslaw and Jaeger, Conduction of Heat in
Solids, Oxford University Press, London, 1959, p.215.

In particular, the temperature at r = 0, z = 0 is given by

T (0, 0) =
QR

k

∫ ∞

0

λ−1J1(λR) tanhλH dλ

The series expansion

T (0, 0) =
QR

k

{
1− R

H

∞∑
m=1

(−1)m+1

m+
√
m2 +R2/4H2

}

is obtained by expanding tanhλH into the exponential series

tanhλH = 1− 2
∞∑

m=1

(−1)m+1e−2mλH

and employing the integral∫ ∞

0

λ−1e−aλJ1(λR) dλ = (
√
a2 +R2 − a)/R

(Watson, Theory of Bessel Functions, Cambridge University Press, London, 1952,
p.386).

[[There follows further detail from Deutsch, Wilkins, D. E. Amos & J. E. Warren,
about which we needn’t bother, but we should add:]]

For extensions of this problem to the unsteady-state in finite or infinite cylinders see
Unsteady Heat Transfer into a Cylinder Subject to a Space- and Time-Varying Surface
Flux, by M. S. Klamkin, TR-2-58-5, AVCO Research and Advanced Development
Division, May, 1958.
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SIAM Rev., 6(1964) 311.

Problem 64-15, On a Probability of Overlap, by M. S. Klamkin (University of Min-
nesota).

Prove directly or by an immediate application of a theorem in statistics that the
conjecture in the following abstract from Mathematical Reviews, March 1964, p.589 is
valid:

“Oleskiewicz, M.

The probability that three independent phenomenon [sic] of equal duration
will overlap. (Polish, Russian and English summaries) Prace Mat. 4(1960)
1–7.

The value P3 of the probability that 3 stochastically independent phenom-
enon of equal duration t0 which all occur during the time t+ t0 will overlap
is shown by geometrical methods to be equal to (3tt20−2t30)/t

3. The author
makes the conjecture that a similar formula holds for n independent events,
namely Pn = (nttn−1

0 − (n− 1)tn0 )/tn.”

SIAM Rev., 8(1966) 112–113.

Solution by P. C. Hemmer (Norges Tekniske Høgskole, Trondheim, Norway).

We note that an overlap has to start simultaneously with the onset of one of the n
events. The probability of overlap when this event is assumed to be number 1 gives
1/n of the desired probability Pn. Denote the whole time by (0, t + t0) and let event
number 1 occur in (λ, λ + t0), where λ is uniformly distributed in (0, t). An overlap
exists if and only if the other n− 1 events occur at time λ. Independence and uniform
distribution guarantee the following probability for this to happen:

P (λ) =

{
(λ/t)n−1 if 0 ≤ λ ≤ t0
(t0/t)

n−1 if t0 ≤ λ ≤ t

Thus
Pn

n
=

∫ t

0

P (λ) dλ

t
=

(
t0
t

)n [
t− t0
t0

+
1

n

]
in agreement with the conjecture.

[[Solutions also given by A. J. Bosch, W. Oettli. Also solved by J. Richman and
the proposer. There is also an editorial note:]]

Editorial Note. Hemmer also gives two related problems:

1. Determine the probability of overlap of n indepebdent events of durations t1, t2,
. . ., tn which all occur during the time t.

2. Determine the distribution of the duration of the overlap.
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[[Solutions of these follow – can send in the event they’re considered worth including.
— Later! In SIAM Rev., 10(1968) 112 there’s a further editorial note. Here it is. —
R.]]

Editorial Note. A published solution to this problem appeared prior to the appearance
of the problem and solution in this Review as indicated in the following abstract from
Mathematical Reviews, November, 1966, p.1115:

Zubrzycki, S. A problem concerning simultaneous duration of several
phenomena. (Polish, Russian and English summaries) Prace Mat. 7(1962)
7–9.

The author proves a conjecture formulated by M. Oleszkiewicz [same Prace
4(1960) 1–7; MR 27 #3006]. The theorem proved by the author reads as
follows: Let n independent events start at moments randomly chosen in
0 < t < T under the assumption of a uniform probability distribution. Let
each event last t0 time units (t0 < T ). Then the probability Pn that the n
events will havea common interval of duration is given by

Pn =
nTtn−1

0 − (n− 1)tn0
T n
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SIAM Rev., 8(1966) 107.

Problem 66-5, Two Integrals, by A. D. Brailsford and M. S. Klamkin (Ford
Scientific Laboratory).

Evaluate, in closed form, the following two integrals occurring in the calculation of the
elastic strain energy of a rectangular dislocation loop [1].

I1 =

∫ !

0

1− J0(λx)

x
√

1− x2
dx

I2 =

∫ !

0

J2(λx)

x
√

1− x2
dx

REFERENCE

[1] A. D. Brailsford, The strain energy of a kink, Tech. Rept. SL 65-72, Ford Scientific Laboratory.

[[In SIAM Rev., 9(1967) 124–127, solutions are given by D. P. Thomas, Lester
Rubenfeld, Yudell Luke, A. J. Strecok and J. L. Brown, Jr. – also solved
by 16 others and the proposers. I just give the first.]]

Solution by D. P. Thomas (Queen’s College, Dundee,Scotland).

Using the result [2, p.45]

1− J0(λx) = x

∫ λ

0

J1(yx) dy

and making the substitution x = sin θ, we find that

I1 =

∫ π/2

0

∫ λ

0

J1(y sin θ) dy dθ =

∫ λ

0

∫ π/2

0

J1(y sin θ) dθ dy

I2 =

∫ π/2

0

J2(λ sin θ) csc θ dθ

The identity [2, p.374]∫ π/2

0

Jµ(z sin θ)(sin θ)1−µ dθ =
( π

2z

)1/2

Hµ−1/2(z)

where µ is unrestructed and Hν is the Struve function of order ν [2, p.328], enables us
to evaluate the integrals with respect to θ. Hence

I1 =

∫ λ

0

( π
2x

)1/2

H1/2(x) dx =

∫ λ

0

1− cosx

x
dx

I2 =
( π

2x

)1/2

H3/2(λ)
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Tables exist for I1 and 2I2 [3]. Note also that

I1 = log λ+ γ − Ci(λ)

I2 =
1

2
− sinλ

λ
+

1− cosλ

λ2

where γ is Euler’s constant and

Ci(λ) =

∫ λ

∞

cosx

x
dx

REFERENCES

[2] G. N. Watson, Theory of Bessel Functions, 2nd ed. Cambridge University Press, Cambridge,
1944.

[3] A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical
Tables, 2nd ed. Blackwell Scientific Publications, Oxford, 1962.

[[Article:]]

Murray S. Klamkin, A duality relation in differential equations and some associated
functional equations, SIAM Rev., 8(1966) 494–500; MR 35 #3154.

[[Short Note:]]

Murray S. Klamkin & Donald J. Newman, Extended reducibility of some differential
operators, SIAM Rev., 9(1967) 577–580; MR 36 #445.

[[See also MR0104852 (21 #3603) Klamkin, Murray S.; Newman, Donald J. On the
reducibility of some linear differential operators, Amer. Math. Monthly, 66(1959) 293–
295.

The authors prove xnD2n = [xD2− (n− 1)D]n and x2nDn = [x2D− (n− 1)x]n, where
D = d/dx (and point out that the second of these relations is equivalent to a result
of Glaisher [Nouvelle Corr. Math., 2(1876) 240–243, 349–350]); and they use these
relations to solve the differential equations xnD2ny = y, x2nDny = y, and D2x4D2u =
x2u. They also give some generalizations of their identities and solve some further
differential equations.

Reviewed by A. Erdélyi]]
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SIAM Rev., 10(1968) 225.

Problem 68-10, Rank and Eigenvalues of a Matrix, by Sylvan Katz (Aeronutronic
Division, Philco-Ford Corporation) and M. S. Klamkin (Ford Scientific Laboratory).

Determine the rank and eigenvalues of the n × n (n ≥ 3) matrix ‖Ar,s‖ where Ar,s =
cos(r − s)θ and θ = 2π/n. This problem arose in a study of electromagnetic wave
propagation.

SIAM Rev., 11(1969) 628–630.

[[Solutions of 68-10 by G. J. Foschini, Carlene Arthur & Cecil Rousseau,
S. H. Eisman; a generalization by Harry Applegate and an editorial note. Here
are the first solution, the generalization and the note. — R.]]

Solution by G. J. Foschini (Bell Telephone Laboratories, Holmdel, New Jersey).

From elementary complex algebra it follows that if k is an integer then

n∑
j=1

eiθkj =

{
0, k 6≡ 0 (mod n)
n, k ≡ 0 (mod n)

(1)

Using (1) we see that the Vandermonde ‖n−1/2eiθrs‖ has inverse ‖n−1/2e−iθrs‖ and
furthermore that

‖n−1/2eiθrs‖ · ‖Ar,s‖ · ‖n−1/2e−iθrs‖ = ‖n−1/2eiθrs‖ · ‖e
iθ(r−s)

2
+
e−iθ(r−s)

2
‖ · ‖n−1/2e−iθrs‖

has zero entries except in the (1,1) and (n − 1, n − 1) positions, where 1/2 appears.
Thus the rank of ‖Ar,s‖is 2 and its eigenvalues are 1/2 and 0 with multiplicities 2 and
n− 2 respectively.

Additionally, the same similarity transformation of ‖ sin(r− s)θ‖ yields a matrix with
zero entries except in the (1, n− 1) and (n− 1, 1) positions, where 1/2i appears. Thus
the rank of ‖ sin(r − s)θ‖ is 2 and its eigenvalues are 0 (multiplicity n − 2), i/2 and
−i/2.

Generalization by Harry Applegate (City College of New York).

Let t1, t2, . . . , tn be n real numbers (n ≥ 2) such that at least one difference ti − tj is
not a multiple of π. Then the matrix A with entries aij = cos(ti − tj) has rank 2.

Proof. Define vectors

c =


cos t1
cos t2

...
cos tn

 s =


sin t1
sin t2

...
sin tn


It is easy to see that A = ccT +ssT where T means transpose. The condition that some
difference ti − tj isnot a multiple of π shows that c and s are linearly independent. If
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x is an arbitrary vector, Ax = (c, x)c + (s, x)s where (,) is the usual scalar product.
Hence Ax = 0 if and only if (c, x) = (s, x) = 0. This shows that the kernel of A is the
orthogonal complement of the 2-dimensional subspace generated by c and s. Hence
dim(kerA) = n− 2 which implies rank A = 2.

If n ≥ 3 and ti = 2πi/n we get the problem as stated.

Remark. We get a similar result if aij = sin(ti − tj).

Editorial note. Some re;ated results are in the paper

L. Carlitz, Some cyclotomic matrices, Acta Arith., 5(1959) 293–308; MR 22 #2578.
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SIAM Rev., 11(1969) 74–75.

Problem 69-5, A Quartic, by H. Holloway and M. S. Klamkin (Ford Scientific
Laboratory).

Solve the quartic equation

x4 + (1−b)x3 + (1−3a−b+3a2+3ab+b2)x2 + b(2−3a−2b+b2) = 0

Also show that if 0 < a + b < 1, a, b > 0, then all the roots have absolute value less
than unity.

The quartic arises from an analysis of x-ray diffraction by faulted cubic close-packed
crystals. The crystal lattice may be regarded as an array of close-packed {1, 1, 1} planes
which can occupy three sets of stacking positions. In a faulted crystal the stacking has
randomness and the diffraction problem requires specification of the probable stacking
relationships between pairs of layers. This can be done by using genealogical tables of
stacking arrangements to generate difference equations which give the probability for
a given stacking relationship as a function of the fault probabilty and of the separa-
tion between the layers. Growth faulting and intrinsic faulting both generate second
order difference equations [1,2]. A more complex model for growth faulting [3] gives a
fourth order difference equation, and the quartic which results was solved numerically.
Analysis of diffraction by crystals with both intrinsic and extrinsic faulting also yields
a fourth order difference equation whose solution involves solution of the above quartic,
where a and b are the intrinsic and extrinsic fault probability.
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Solution by the proposers.

The given quartic can be factored into the following complex form:{
x2 +

[
ω(1−b)− (ω+ω2)a

]
x+ ωb

}{
x2 +

[
−ω2(1−b) + (ω+ω2)a

]
x− ω2b

}
= 0

where ω = (1 + i
√

3)/2 (a cube root of −1). Thus the four roots are

1

2

{
ω2(1−b)− (ω + ω2)a±

[
−ω(1−b)2 − 3a2 + 2(1+ω)a(1−b) + 4ω2b

]1/2
}

1

2

{
−ω(1−b) + (ω + ω2)a±

[
ω2(1−b)2 − 3a2 + 2(1−ω2)a(1−b)− 4ωb

]1/2
}
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To show that the absolute values of the roots are less than one, we use the following
theorem of Cauchy [M. Marden, Geometry of Polynomials, American Mathematical-
Society, Providence RI, 1966, p.122]:

All the roots of

a0 + a1z + · · ·+ anz
n = 0, an 6= 0

lie in the circle |z| ≤ r, where r is the positive root of the equation

|a0|+ |a1|z + · · ·+ |an−1|zn−1 − |an|zn = 0

Taking one of the quadratic factors above, r is the positive root of

b+ |ω(1−b)− (ω+ω2)a|z − z2 = 0

or

z2 = z

{(
1− b

2

)2

+ 3

(
1− b

2
− a
)}1/2

+ b

and r will be less than one if

(1− b)2 >

(
1− b

2

)2

+ 3

(
1− b

2
− a
)2

or 3a(1− b− a) > 0 (and similarly for the other quadratic term).

For applications of the solution, see the authors’ paper Diffraction by fcc crystals with
intrinsic and extrinsic faults, J. Appl. Phys., 40(1969) 1681–1689.

SIAM Rev., 36(1994) 491–493.

Comment by Stanley Rabinowitz (Westford, Massachusetts).

In the published solution [1], the quartic was factored as the product of two quadratic
polynomials having complex coefficients. Since its zeros occur in complex conjugate
pairs, the quartic must also factor as the product of two quadratics with real coeffi-
cients. The editor [M.S.K.] requested that I find these two factors.

The four roots are known. In [1], Holloway and Klamkin pointed out that the equation
can be written (x2 + αx+ bω)(x2 + ᾱ+ bω̄) = 0, where ω = (1 + i

√
3)/2, and

α = (1− b)ω − ia
√

3 =
(1− b) + i(1− 2a− b)

√
3

2

Thus the roots of the equation are z1, z̄1, z2, z̄2, where

z1 =
−α+

√
α2 − 4bω

2
and z2 =

−α−
√
α2 − 4bω

2
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Note that α2 − 4bω = (p+ iq
√

3)/2, where

p = (1− b)2 + 6a(1− b)− 6a2 − 4b and q = (1− b)2 − 2a(1− b)− 4b

We need to determine z1 + z̄1, z2 + z̄2, z1z̄1 and z2z̄2 in terms of a and b. The required
complex square root is√

p+ iq
√

3

2
=

1

2

[√√
p2 + 3q2 + p+ i sgn q

√√
p2 + 3q2 − p

]
(See, for example, [2, p.95].) Thus

z1+z̄1 =
1

2

(
b− 1 +

√√
p2 + 3q2 + p

)
and z2+z̄2 =

1

2

(
b− 1−

√√
p2 + 3q2 + p

)
Also

z1z̄1 =
1

16

[(
b− 1 +

√√
p2 + 3q2 + p

)2

+

(
(2a+ b− 1)

√
3 + sgn q

√√
p2 + 3q2 − p

)2
]

and

z2z̄2 =
1

16

[(
b− 1−

√√
p2 + 3q2 + p

)2

+

(
(2a+ b− 1)

√
3− sgn q

√√
p2 + 3q2 − p

)2
]

Thus the desired factors are

x2 − 1

2

(
b− 1 +

√√
p2 + 3q2 + p

)
x+ (P1 + P2 + P3)

and

x2 − 1

2

(
b− 1−

√√
p2 + 3q2 + p

)
x+ (P1 − P2 − P3)

where

P1 =
(b− 1)2 + 3(2a+ b− 1)2 + 2

√
p2 + 3q2

16

P2 =
(b− 1)

√√
p2 + 3q2 + p

8

P3 = sgn q

(2a+ b− 1)

√
3
(√

p2 + 3q2 − p
)

8

[1] H. Holloway & M. S.Klamkin, Solution of Problem 69-5, SIAM Rev., 12(1970) 471–473;
reprinted in M.S.Klamkin, Problems in Applied Mathematics, Selections from SIAM Review, Society
for Industrial and Applied Mathematics, Philadelphia PA, 1990 529–530.

[2] A. Mostowski and M. Stark, Introduction to Higher Algebra, Pergamon Press, New York, 1964.
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SIAM Rev., 12(1970) 289–290.

Problem 70-14∗, Conductors of Unit Resistance, by M. S. Klamkin (Ford Scientific
Laboratory).

Aknown result due to Rayleigh [1,2] is that conjugate conductors have reciprocal re-
sistances.
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| | || | || | || | || | || | |
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—
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—
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—
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—
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—
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a a
b b

c
c

d
d

R R′

Fig. 1

Here the conductor is a two-dimensional simply connected region R with boundary
arcs a and b as terminals. The complementary part of the boundary consists of two
arcs c and d which are insulated (see Fig. 1). The conjugate conductor consists of a
region congruent to R but now the arcs c and d are the terminals and the arcs a and
b are insulated.

A self-conjugate conductor is one in which the region R is a reflection of itself in the
straight line connecting the initial point A of terminal a with the initial point C of
terminal b (see Fig. 2). It follows immediately by Rayleigh’s result and symmetry that
a self-conjugate conductor has unit resistance.
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If a given region has unit resistance for arbitrary chords BD which are perpendicular
to a given chord AC, it is then conjectured that the conductor is self-conjugate (i.e.,
ĀC is an axis of symmetry) (see Fig. 3).
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SIAM Rev., 12(1970) 581; corrected (−n inserted) 13(1971) 388.

Problem 70-25∗, On the Diagonals of a Polygon, by M. S. Klamkin (Ford Motor
Company).

If Di, De, Dm denote the number of diagonals which, except for their endpoints, liein
the interior, the exterior, or neither in the interior nor exterior, respectively, of a simple
n-gon P , then

Di +De +Dm =

(
n

2

)
− n.

It is obvious and well known that maxDi =
(

n
2

)
− n occurring when P is convex.

The determination of maxDe is given by Problem E2214 (Amer. Math. Monthly,
77(1970) 79). To complete this classification,determine maxDm. Also consider the
corresponding problem for higher-dimensional polytopes.

[[The problem referred to, and its solution, are inserted here. — R.]]

Amer. Math. Monthly, 77(1970) 79.

E2214. Proposed by M. S. Klamkin, Ford Scientific Laboratory and B. Ross Taylor,
York High School

It is intuitive that every simple n-gon (n > 3) possesses at least one interior diagonal.
For a simple n-gon what is the least number of diagonals which, except for their
endpoints, lie wholly in its interior?

Amer. Math. Monthly, 77(1970) 1111–1112.

Solution by Anders Bager, Hjørring, Denmark. The two tangents from a point P
outside a circle Γ touch Γ in points A and B. Connect A and B with a broken line
consisting of n − 2 chords succeeding each other along the smaller arc from A to B.
Join P to A and B to obtain a simple n-gon with exactly n − 3 inner diagonals (all
issuing from P ).

The number n − 3 is minimal. This is trivially so if n = 3. Suppose it tru for some
n and consider an arbitrary simple (n+ 1)-gon. From this cut off a triangle such that
two sides are sides of the (n + 1)-gon, and the third side an inner diagonal. This is
always possible and leaves a simple n-gon which, by assumption, has at least n − 3
inner diagonals. Hence the (n + 1)-gon has at least (n − 3) + 1 = (n + 1) − 3 inner
diagonals. Thus the assertion of the problem is true by induction.

[[Also solved by ten others, including the proposers and . . . ]]

R. B. Eggleton establishes the result that a simple n-gon has precisely n − 3 inner diagonals if and
only if no two of its diagonals intersect.
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SIAM Rev., 13(1971) 248.

Problem 71-14, An Expected Value, by M. S. Klamkin (Ford Motor Company).

N numbers are chosen independently at random, one from each of the N intervals
[0, Li] (i = 1, 2, . . . , N). If the distribution of each random number is uniform with
respect to length in the interval it is chosen from, determine the expected value of the
smallest of the N numbers chosen.

SIAM Rev., 14(1972) 378–391.

Solution by O. G. Ruehr (Michigan Technological University).

If the random variable xi be associated with the interval [0, Li] and if X = min(xi),
L = min(Li), then

F (x) = Pr{X ≤ x} = 1− Pr{X > x} = 1−
∏

(1− x/Li)

The expected value of X is then

E(X) =

∫ L

0

x dF (x) = xF (x)]L0 −
∫ L

0

F (x) dx =

∫ L

0

{1− F (x)} dx

1

Sn

{
LSn −

L2

2
Sn−1 +

l3

3
Sn−2 − · · · (−1)n L

n+1

n+ 1

}
where the Si are the elementary symmetric functions of the Li. e.g., S1 =

∑
Li,

S2 =
∑

i6=j LiLj

[[In connexion with the following, note that the Editor, the Proposer, and a member
of the Putnam Questions Committee, were all MSK — R.]]

Comment by the proposer. The special case n = 3 occurs in the 31st William Low-
ell Putnam Mathematical Competition (Amer. Math. Monthly, Sept. 1971 – p.765,
Problem A-6.). A more involved set of problems is to determine E{Mi(x1, x2, . . . , xn)}
where Mi denotes the i th smallest of the xi. For i > 1 the above method is appar-
ently not applicable. Here, we indicate how to solve this general class of problems by
determining the result for the two cases i = 2 and n. Letting

Φ(r, n) =

∫ Ln

0

· · ·
∫ Ln

0

∫ Ln−1

0

· · ·
∫ L1

0

n+r−1
max
i=1

(xi)
n+r−1∏

i=1

dxi

we obtain symbolically that

Φ(r, n) =

{∫ Ln

Ln−1

+

∫ Ln−1

0

}r ∫ Ln−1

0

· · ·
∫ L1

0

max(xi)
∏

dxi

= Φ(r + 1, n− 1) + F (r, n)
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where

F (r, n) =
r−1∑
j=0

(
r

j

){∫ Ln

Ln−1

}r−j {∫ Ln−1

0

}j+1 ∫ Ln−1

0

· · ·
∫ Ln−2

0

· · ·
∫ L1

0

max(xi)
∏

dxi

It is to be noted that Φ(r, n) and F (r, n) are also functions of L1, L2, . . ., Ln but we
have left them out for convenience. The summand for F equals(

r

j

)
L1L2 · · ·Ln−2L

j+1
n−1

∫ Ln

Ln−1

· · ·
∫ Ln

Ln−1

r−j
max
k=1

r−j∏
k=1

dxk

In a manner similar to the above or otherwise, we obtain∫ a

0

· · ·
∫ a

0

Mr(xi) dx1 dx2 · · · dxm =
ram+1

m+ 1

Thus

F (r, n) =
r−1∑
j=0

(
r

j

)
L1L2 · · ·Ln−2L

j+1
n−1(Ln − Ln−1)

r−j (r − j)Ln + Ln−1

r − j + 1

It follows from the recurrence equations that

Φ(r, n) = Φ(r+n−1, 1) + F (r+n−2, 2) + F (r+n−3, 3) + · · ·+ F (r, n)

where
Φ(r, 1) = rLr+1

1 /(r + 1)

Finally
E{max(x1, x2, . . . , xn)} = Φ(1, n)/L1L2 · · ·Ln

To obtain E{M2(x1, x2, . . . , xn)} we first consider

ψ(r, n) =

∫ Ln

0

∫ Ln−1

0

· · ·
∫ L2

0

· · ·
∫ L2

0

∫ L1

0

M2(xi)
n+r−1
i=1

n+r−1∏
i=1

dxi

Then using
∫ Ln

0
=
∫ L2

0
+
∫ Ln

L2
we obtain

ψ(r, n) = ψ(r+1, n−1) + (Ln − L2)ψ(r, n−1)

Whence

ψ(r, n) = ψ(r+n−2, 2) + S1ψ(r+n−3, 2) + S2ψ(r+n−4, 2) + · · ·+ Sn−2ψ(r, 2)

where the Si are the elementary symmetric functions of

L3 − L2, L4 − L2, . . . , Ln − L2
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It now remains to determine

ψ(r, 2) =

∫ L2

0

· · ·
∫ L2

0

∫ L1

0

M2(xi) dx1 dx2 · · · dxr+1

Symbolically,

ψ(r, 2) =
R∑

j=o

(
r

j

){∫ L2

L1

}r−j {∫ L1

0

}j+1

M2(xi) dx1 dx2 · · · dxr+1

or

ψ(r, 2) = L1

∫ L2

L1

· · ·
∫ L2

L1

min(xi) dx1 dx2 · · · dxr

+
r∑

j=1

(
r

j

)
(L2 − L1)

r−j

∫ L1

0

· · ·
∫ L1

0

M2(xi) dx1 dx2 · · · dxj+1

=
L1(L2 − L1)

r(rL1 + L2)

r + 1
+

r∑
j=1

(
r

j

)
2Lj+2

1 (L2 − L1)
r−j

j + 2

Then
E{M2(x1, x2, . . . , xn)} = ψ(1, n)/L1L2 · · ·Ln

The previous problems become even more involved if we replace the intervals [0, Li] by
[Ki, Li].

[[also solved by a dozen others as well as the proposer]]
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SIAM Rev., 13(1971) 572.

Problem 71-28, An Inequality, by M. S. Klamkin (Ford Motor Company) and D. J. New-
man (Yeshiva University).

Determine the largest value of the constant k such that

a3 + b3 + c3 ≥ 3abc+K(a− b)(b− c)(c− a)

for all nonnegative a, b, c.

SIAM Rev., 14(1972) 656–657.

Solution by C. C. Rousseau (Memphis State University).

The arithmetico-geometric mean inequality gives

a3 + b3 + c3 ≥ 3abc

for all nonnegative a, b, c. Hence, taking k to be positive, we need only consider the
case where (a − b)(b − c)(c − a) > 0. Without loss of generality, we can require that
a < b < c. The desired value of k is given by

k = min
a,b,c≥0
a<b<c

fraca3 + b3 + c3 − 3abc(a− b)(b− c)(c− a)

Using the identity

a3 + b3 + c3 − 3abc =
1

2
(a+ b+ c)[(a− b)2 + (b− c)2 + (c− a)2]

we write

k = min
a≥0

s>t>0

(3a+ s+ t)[s2 + t2 + (s− t)2]

2st(s− t)

where s = c− a and t = b− a. From the above equation it is clear that a = 0 for the
minimum. Hence, letting c = bx, we have simply

k = min
x>1

x3 + 1

x(x− 1)

By elementary calculs the desired value of x is the real root, greater than 1, of the
quartic equation

x4 − 2x3 − 2x+ 1 = 0

The quartic equation can be factored to yield

[x2 + (
√

3− 1)x+ 1][x2 − (
√

3 + 1)x+ 1] = 0
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It follows that the desired value of k is given by

k =
α3 + 1

α(α− 1)

where α = 1
2
(1 +

√
3 + 4
√

12). An approximate numerical value is k
.
= 4.403669475

[[solved by a dozen others and the proposers. Followed by the following MSK note:]]

Editorial note. A simpler expression for k, as was noted by the proposers and several of

the solvers, is k =
√

9 + 6
√

3. D. Shanks and the proposers also noted that it follows

symmetrically that the smallest permissible value for the constant is −
√

9 + 6
√

3.

If a, b, c denote the sides of an arbitrary triangle, then the largest and smallest per-

missible values of k are ±
√

9 + 6
√

3. This follows from a duality relation established
by the first proposer (Duality in triangle inequalities, Ford Motor Company Preprint,
July 1971. Also see Notices Amer. Math. Soc., August 1971, p.782); i.e., if a, b, c are
the sides of a triangle, then there exist three nonnegative numbers x, y, z such that

x = s− a, y = s− b, z = s− c, 2s = a+ b+ c

and, conversely, for any three numbers x, y, z there exist sides of a triangle a, b, c and
here

a = y + z, b = z + x, c = x+ y

Then, corresponding to any inequality in x, y, z we have a corresponding inequality in
a, b, c and conversely, i.e.,

F (x, y, z) ≥ 0⇒ F (s− a, s− b, s− c) ≥ 0

G(a, b, c) ≥ 0⇒ G(y + z, z + x, x+ y) ≥ 0

SIAM Rev., 14(1972) 169.

[[An MSK editorial note which is worth repeating, since it bears on problem solving.
– R.]]

Editorial note. Gould also notes that he has never seen anything “essentially” new ob-
tained by lattice-point enumerations which could not be obtained from [the generalized
Vandermonde convolution]. This is analogous to the view that any integral which is
obtained by contour integration can also be obtained without it. However, it is always
advantageous to have more than one method for solving a class of problems. [M.S.K.]
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SIAM Rev., 15(1973) 220.

Problem 73-8, A Polynomial Diophantine Equation, by M. S. Klamkin (Ford Motor
Company).

Determine all real soltuions of the polynomial Diophantine equation

P (x)2 − P (x2) = x{Q(x)2 −Q(x2)} (1)

SIAM Rev., 16(1974) 99–100.

Solution by O. P. Lossers (Technological University, Eindhoven, the Netherlands).

From the given equation it follows that

P (x4)− x2Q(x4) = P 2(x2)− x2Q2(x2)

= {P (x2)− xQ(x2)}{p(x2) + xQ(x2)}

Letting F (x) = P (x2)− xQ(x2) we have

F (x2) = F (x)F (−x) (2)

Conversely, any solution of (1) may be obtained from a solution of (2) by taking

P (x) =
1

2

{
F (
√
x) + F (−

√
x)
}

Q(x) =
1

2x

{
−F (
√
x) + F (−

√
x)
}

Polynomial solutions of (2) may be written in the form

F (x) = C(x− α1)(x− α2) · · · (x− αn) (C is a constant)

Then
F (−x) = (−1)nC(x+ α1)(x+ α2) · · · (x+ αn)

so that

F (x)F (−x) = (−1)nC2(x− α1)(x+ α1)(x− α2)(x+ α2) · · · (x− αn)(x+ αn)

On the other hand, taking βi such that β2
i = αi (i = 1, . . . , n), we find

F (x2) = C(x− β1)(x+ β1)(x− β2)(x+ β2) · · · (x− βn)(x+ βn)

Therefore, in view of (2), excluding the trivial case C = 0, we obtain C = (−1)n and
(αi)

n
i=1 is a permutation of (βi)

n
i=1.
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Finite, squaring-invariant subsets of the complex plane can only contain 0 and roots
of unity of odd order. The irreducible polynomials corresponding to these roots are

λ0(x) = x, λk(x) =
∏

(2k−1,l)=1

[x− exp{2πil/(2k − 1)}], k =, 2, 3, . . .

(the cyclotomic polynomials). Since for all k = 1, 2, 3, . . . the set

[exp{2πil/(2k − 1)}](l,2k−1)=1

is squaring-invariant and the set of solutions of (2) is closed under multiplication, the
general polynomial solution of (2) is

F (x) = (−1)deg F

∞∏
k=0

(λk(x))
nk

the nk being non-negative integers, nk 6= 0 for a finite number of indices k. These
polynomials all have integer coefficients.

Also solved by the proposer who notes that one can give extensions by consider-
ing higher order roots of unity. For example, letting ω3 = 1, consider F (x3) =
F (x)F (ωx)F (ω2x), where F (x) = P (x3) + ωxQ(x3) + ω2x2R(x3).

[[Article:]]

M. S. Klamkin, Moving axes and the Principle of the Complementary Function, SIAM
Rev., 16(1974) 295–302; MR 50 #9094.
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SIAM Rev., 16(1974) 94.

Problem 74-5∗, On the norm of a matrix exponential, by J. C. Cavendish (General
Motors Research Laboratories).

The following problem arose in a study of discrete approximations to heat flow prob-
lems.

(A) Let A denote any n× n diagonally dominant matrix such that aii ≥ 0. Show that
‖e−tA‖∞ ≤ 1 for all t ≥ 0, where e−tA is the matrix exponential and ‖ · ‖∞ is the usual
maximum row sum norm.

(B) Conjecture. Let A denote any real n × n matrix whose eigenvalues all have non-
negative real parts. Then there exists a constant K, independent of n, such that
‖e−tA‖∞ ≤ K for all t ≥ 0.

SIAM Rev., 17(1975) 175.

Editorial comment by MSK. The most commonly used reference for proofs of

‖etA‖ ≤ etµ[A] for all t ≥ 0

where

µ[A] = lim
h→0+

‖I + hA‖ − 1

h

is the logarithmic form associated with ‖ · ‖, and of

µ∞[−A] = −min
t

Re aii −
n∑

j=1
j 6=i

|aij|


were W. A. Coppel, Stability and asymptotic behavior of Differential Equations, Heath,
Boston, 1965, pages 59 and 41. Several solvers pointed out that if A ∈ Cn,n is a matrix
whose eigenvalues have nonnegative real parts and whose pure imaginary eigenvalues
are simple roots of the minimum polynomial of A, then ‖e−tA‖∞ ≤ K(A) for all t ≥ 0,
where K(A) is independent of t but dependent on A and hence on n. However, part
(B) was meant to be an extension of part (A), in which the proposer was seeking a
characterization of the class TK of all real n×n matrices for which ‖e−tA‖∞ ≤ K for all
t ≥ 0 and A ∈ TK . A complete characterization of T1 was provided by J. C. Willems
(University of Groningen, Groningen, The Netherlands) and W. W. Meyer (General
Motors Research Laboratories), both of whom proved that ‖e−tA‖∞ ≤ 1 for all t ≥ 0
if and only if aii ≥

∑
j 6=i, 1 ≤ i ≤ n. It should be pointed out that the proofs given by

Willems and Meyer were not valid for Λ ∈ Cn,n.
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SIAM Rev., 16(1974) 258.

Problem 74-9, Bounds for the zero of a polynomial, by V. E. Hoggatt (San Jose
State University).

Determine upper and lower bounds for the positive zero of the polynomial equation

xr+1 − (kx)r − () − · · · − 1 = 0

(k > 1, r ≥ 1) whose difference → 0 as r →∞.

SIAM Rev., 17(1975) 691.

Editorial comment by MSK. The Lossers solution is more general then the others in
that k > 0; it also has the best lower bound

kr +
1

k
− {kr+2(kr2−1 + k−r−1)}−1

The problem appears in a different form in A. M. Ostrowski, Solution of Equations
and Systems of Equations, Academic Press, New York, 1966, pp. 102–103. However,
the corresponding difference of the upper and lower bounds do not → 0 as r →∞.

SIAM Rev., 16(1974) 547.

Problem 74-23∗, Bounds for the zero of a polynomial, An Optimal Strategy, by M. S. Klamkin
(University of Waterloo, Ontario, Canada).

A father, mother and son decide to hold a certain type of board game family tour-
nament. The game is a two-person one with no ties. Since the father is the weakest
player, he is given the choice of deciding the two players of the first game. The winner
of any game is then to play the person who did not play in that game, and so on. The
first player to win N games wins the tournament. If the son is the strongest player, it is
intuitive that the father will maximize his probability of winning the tournament if he
chooses to play in the first game and with his wife. Prove either that this strategy is,
indeed, optimal or that it is not. It is assumed that any player’s probability of winning
an individual game from another player does not change throughout the tournament.

The special case corresponding to N = 2 was set as a problem in the Third U.S.A.
Mathematical Olympiad, May 1974.

For another related problem,prove either that the previous strategy is still optimal or
it is not, if now the tournament is won by the first player who wins N consecutive
games. This latter problem is a generalization of a variant of a chess problem due to
the late Leo Moser (see M. Gardner, The Unexpected Hanging, Simon and Schuster,
New York, 1969, pp.171–172).
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COMBINATORICS

Counting problems: paths

SIAM Rev., 16(1974) 547.

Problem 75-1, by R. W. Allen

An optical fiber carries power in two modes represented by 0 and 1. The path of one
photon Is represented by an N -bit binary number. The sequence 0 1 or 1 0 is counted
as one transition. Thus the path 1 0 0 0 1 1 1 contains two transitions and three zeros.
Determine the number of paths S(N, T,M) that contain T transtions and M zeros.
Prove whether or not the following formula is valid for all N :

S(N, T,M) = 2H(N, T )

(
M − 1

U

)(
N −M − 1

U

)
where

H(2N, T ) =

(
N−1

V

)(
N−1

U

)
H(2N + 1, T ) =

(
2N
2V

)(
2N
T−1

)
and

U =

⌊
T − 1

2

⌋
V =

⌊
T

2

⌋
SIAM Rev., 18(1976) 300. Editorial note by M.S.K. Kleitman notes that the solution
to the analogous problem for any number of symbols where the number of transitions
from each symbol to each other one is given, can be obtained by similar reasoning to
the combinatorial solution along with the so-called B.E.S.T. theorem that relates the
number of Eulerian circuits in a graph to a minor of the determinant of a version of
its adjacency matrix.

A number of solvers noted that the problem is a known one in the theory of runs
and more general results exist. In particular, Bailar, Carlitz, Mallows and Marimont,
respectively, refer to:

M. Fisz. Probability Theory and Mathematical Statistics, John Wiley, New York, 1963;
Eq. 11.3.12;

Ann. Math. Statist., 11(1940) 147–167; 367–392;

Biometrika, 36(1949) 305–316; and

W. Feller, Introduction to Probability Theory and its Applications, John Wiley, New
York, 1950 pp. 56–58.
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ALGEBRA

Finite sums: exponentials

SIAM Rev., 17(1975) 68.

Problem 75-3, A power series expansion, by U. G. Haussmann (University of British
Columbis)

Last year, a former engineering student of ours wrote to the mathematics department
concerning a problem encountered in the electrical design for the appurtinent structures
of the Mica Dam on the Columbia River in British Columbia. These structures include
a spillway, low level outlets, intermediate level outlets, auxiliary service buildings and
a power intake structure.

The engineers obtained a function

f(u) =
exp(u+ nu) + exp(−nu)

1 + expu

where
coshu = 1 +

x

2

and where x is a ratio of resistances. Moreover, they suspected that if y = f [u(x)],
then

y(x) =
n∑

k=0

(
n+ k

2k

)
xk

Show that this is valid.

SIAM Rev., 18(1976) 303.

Editorial comment by MSK. Lossers gives the esplicit sum

n∑
k=0

(
n+ k

2k

)
xk =

2(2 + x− t)n

4 + x+ t
+

2(2 + x+ t)n

4 + x− t

where t2 = x2 + 4x. Byrd notes that the latter sum occurs in his paper, Expansion
of analytic functions in polynomials associated with the Fibonacci numbers, Fibonacci
Quart., 1(1963) 17, and that for x = 1, the sum reduces to the odd [ranking] Fibonacci
numbers F2n+1. Carlitz shows more generally that if

f(λ, u) = [e(λ+1)u − e−λu]/[eu + 1]

where λ is an arbitrary complex number and 2 coshu = 2 + t2, then

f(λ, u) =
∞∑

k=0

(
λ+ k

2k

)
t2k
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in some region about t = 0.

The other solutions used induction, generating functions, differentail equations and the
known expansions of

cos(2n+ 1)θ

cos θ
or

sinnθ

sin θ

NUMBER THEORY

Series: binomial coefficients

SIAM Rev., 17(1975) 168.

Problem 75-4∗, A combinatorial identity, by P. Barrucand (Université Paris IV,
France)

Let

A(n) =
∑

i+j+k=n

n!2

i!2j!2k!2

where i, j, k are integers ≥ 0, and let

B(n) =
n∑

m=0

(
n

m

)3

so that A(n) is the sum of the squares of the trinomial coefficients of rank n and B(n)
is the sum of the cubes of the binomial coeffients of rank n (A(n) = 1, 3, 15, 93, 639,
. . . ; B(n) = 1, 2, 10, 56, 346, . . . ).

Prove that

A(n) =
n∑

m=0

(
n

m

)
B(m)

SIAM Rev., 17(1975) 303–304.

Editorial note by MSK. Equivalently, one has to prove that

n∑
m=0

m∑
r=0

(
n

m

)(
m

r

)3

=
n∑

m=0

(
2m

m

)(
n

m

)2

For other properties, e.g., recurrences, integral representations, etc., the proposer refers
to his papers in Comptes Rendus Acad. Sci. Paris, 258(1964) 5318–5320 and 260(1965)
5439–5441 [not 5541]. He also notes that his solution is a tedious indirect one.

By equating the constant term in the binomial expansion on both sides of the identity

{1 + (1 + x)(1 + y/x)(1 + 1/y)}n =

{
1 +

1 + x

y

}n{
1 + y

(
1 +

1

x

)}n
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or an equivalent identity, the desired result was obtained by D. R. Breach (Uni-
versity of Canterbury, Christchurch, New Zealand), D. McCarthy (University of
Waterloo), D. Monk (University of Edinburgh, Scotland) and P. E. O’Neil (Uni-
versity of Massachusetts, Boston).

With a little more work, one can obtain a more general identity. Expanding the above
identity yields

n∑
r=0

r∑
i=0

r∑
j=0

r∑
k=0

(
n

r

)(
r

i

)(
r

j

)(
r

k

)
xi−jyj−k =

n∑
r=0

n∑
s=0

(
n

r

)(
n

s

)
ys−r

r∑
i=0

s∑
j=0

(
r

i

)(
s

j

)
xi−j

Equating the coefficients of xuyv on both sides gives

n∑
r=0

r∑
k=0

(
n

r

)(
r

k

)(
n

r

)(
r

k

)(
r

v + k

)(
r

v + u+ k

)
=

n∑
r=0

(
n

r

)(
n

r + v

) r+v∑
j=0

(
r

u+ j

)(
r + v

j

)
=

n∑
r=0

(
n

r

)(
n

r + v

)(
2r + v

r − u

)
Equivalent but more complicated versions of the latter identity were obtained by
L. Carlitz (Duke University) and D. J. Kleitman and Class 18.325 (Massachusetts
Institute of Technology). Also solved, using hypergeometric functions, by G. E. An-
drews (Pennsylvania State University), M. E. H. Ismail (University of Wisconsin),
O. G. Ruehr (Michigan Technological University); using probability by C. L. Mal-
lows (Bell Laboratoried, Murray Hill); and, using differential equations, the proposer
in a second solution establishes the equivalent identity∑ xnA(n)

n!
= ex

∑ xnB(n)

n!
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ALGEBRA

Inequalities: finite sums

SIAM Rev., 17(1975) 169.

Problem 75-5∗, A nonnegative form, by M. M. Gupta (Papua New Guinea University
of Technology, Lae, Papua New Guinea).

Suppose p and q are positive integers, p > q, and Z1, . . . , Zp are arbitrary real numbers.
Define

α = p−2q−2(p− q)−1

βp = (Z2 − 2Z1)
2 +

p−1∑
i=2

(Zi−1 − 2Zi + Zi+1)
2

and
Ip,q = −2q3αZ1Zp + 2p3αZ1Zq − 2αZ2

1 + ()βp

Show that Ip,q ≥ 0.

This problem arose in deriving discretization error estimates for the first biharmonic
boundary value problem in a rectangular region.

SIAM Rev., 18(1976) 764.

Editorial note by MSK. The proposer states that the result is easy to verify if q = 1
and that it also holds for q = 2, 3 and 4.
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ANALYSIS

hypergeometric functions

SIAM Rev., 17(1975) 685.

Problem 75-17∗, A series of hypergeometric functions, by H. M. Srivastava (Univer-
sity of Victoria, B.C., Canada).

Let

F

[
a : b, b′, · · · ; c, c′ · · · ;
d, d′, · · · ; e, e′, · · · ; x, y, z

]
=

∞∑
l,m,n=0

(a)l+m+n(b)l+m(b′)l+m · · · (c)l+n(c′)l+n · · ·
(d)l+m(d′)l+m · · · (e)l+n(e′)l+n · · ·

xl

l!

ym

m!

zn

n!

and

φ(x, y, z) =
∞∑

n=0

(λ)n

∏p
j=1(aj)n

∏r
j=1(αj)n

n!
∏q

j=1(bj)n

∏s
j=1(βj)n

[
xyz

(1− z)2

]n

·G

where

G = p+1Fq

[
λ+ n, a1 + n, · · · , ap + n;

b1 + n, · · · , bq + n;

xz

z − 1

]
× r+1Fs

[
λ+ n, α1 + n, · · · , αr + n;

β1 + n, · · · , βs + n;

yz

z − 1

]
Prove or disprove that

φ(x, y, z) = F

[
λ : a1, · · · , ap;α1, · · · , αr;

b1, · · · , bq; β1, · · · , βs;

xyz

a− z
xz

z − 1

yz

z − 1

]

SIAM Rev., 18(1976) 768.

Editorial note by MSK. Carlitz obtained the desired result as a special case of the
following more general identity:

Let a(m), α(m), b(m), β(m) denote arbitrary sequences of (complex) numbers. Put

φ(x, y, z) =
∞∑

n=0

(λ)na(n)α(n)

n!b(n)β(n)

(
xyz

(1− z)2

)n

·Gn

where

Gn =
∞∑
i=0

(λ+ n)ia(n+ i)/a(n)

i!b(n+ i)/b(n)

(
xz

z − 1

)i

×
∞∑

j=0

(λ+ n)jα(n+ j)/α(n)

j!β(n+ j)/β(n)

(
yz

z − 1

)j

Also put

F (x, y, z) =
∞∑

k,m,n=0

(λ)k+m+na(k +m)α(k + n)

k!m!n!b(k +m)β(k + n)

(
xyz

1− z

)k (
xz

z − 1

)m(
yz

z − 1

)n
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Then, by taking

a(n) =

p∏
i=1

(ai)n α(n) =

p∏
j=1

(αj)n

b(n) =

q∏
i=1

(bi)n β(n) =
s∏

j=1

(βj)n

it is easily verified that
φ(x, y, z) = F (x, y, z)

reduces to the stated identity.

ANALYSIS

Integrals: evaluations

SIAM Rev., 17(1975) 566.

Problem 75-12, An average distance, by H. J. Oser (National Bureau of Standards).

Evaluate the 4-fold integral

F =

∫ 1

0

∫ 0

−1

∫ 1/2

−1/2

∫ 1/2

−1/2

{
(x1 − x2)

2 + (y1 − y2)
2
}1/2

dx1 dx2 dy1 dy2

which gives the average distance between points in two adjacent unit squares.

SIAM Rev., 18(1976) 497.

Editorial note by MSK. The proposer notes that the problem was suggested by C. R. John-
son and that the result should be of interest to workers in transportation modeling and
similar fields..

SIAM Rev., 17(1975) 567–568.

Problem 75-15, An eigenvalue problem, by E. Wasserstrom (Israel Institute of Tech-
nology, Haifa, Israel).

Let

D =

d1 0 0
0 d2 0
0 0 d3

 T =

 2 −1 0
−1 2 −1
0 −1 2


where d1, d2 and d3 are positive and d3 ≤ d1. Show that if d3 < d1/3, then there are
two other positive diagonal matrices D1 and D2 such that D, D1 and D2 are distinct
but DT , D1T and D2T have the same eigenvalues. Show also that if d3 > d1/3 and D1

is a positive diagonal matrix distinct from D, then DT and D1T must have different
eigenvalues.
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Illustration. For the three matrices D = diag(5.5596, 1.4147, 1.5257),
D1 = diag(5.1030, 2.4288, 0.9682) and D2 = diag(2.9782, 4.6565, 0.8653), correct to the
given figures, the eigenvalues of DT , D1T and D2T are the same, i.e., λ1 = 1, λ2 = 4,
λ3 = 12. On the other hand, with D = diag(3.4530, 1.4584, 1.5887), the eigenvalues of
DT are λ1 = 1, λ2 = 4, λ3 = 8, and there is no other positive diagonal matrix D1 such
that the eigenvalues of D1T are the same.

Remark. This problem arises from the discretization of the inverse eigenvalue problem
d2y/dx2 = λρ(x)y, y(0) = y(1) = 0. For a given spectrum, λ, one is then required to
find the density finction ρ(x). (See B. M. Levitan & M. G. Gasymov, Determination
of a differential equation by means of two spectra, Uspehi Mat. Nauk., 19(1964) 3–63.)

SIAM Rev., 18(1976) 502–503.

Editorial note by MSK. The proposer’s solution is essentially a numerical one. It would
be desirable to give an analytic solution.

[Such a solution, by O. P. Lossers, follows.]
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ANALYSIS

Bessel functions

SIAM Rev., 17(1975) 686.

Problem 75-20, Limit of an integral, by M. L. Glasser (University of Waterloo,
Ontario, Canada).

Show that

lim
n→∞

n

∫ ∞

0

In(x)Jn(x)Kn(x) dx = 5−1/2

where, as usual, In, Jn, Kn are Bessel functions.

SIAM Rev., 18(1976) 772.

Editorial note by MSK. Also solved by D. E. Amos (Sandia Laboratories) and A. G. Gibbs
(Battelle Memorial Institute) who both showed that

lim
n→∞

∫ ∞

0

In(x)Jn(ax)Kn(bx) dx = 1
2
(1 + a2)−1/2

Procedures for obtaining the asymptotic behavior of this integral and more general
ones appeared in

M. L. Glasser & F. W. J. Olver, Asymptotic behaviour of integrals of Bessel functions
of high order, Utilitas Math., 12(1977) 225–239; MR 57 #16737.

Die Autoren beschäftigen sich mit zwei Methoden zur Beurteilung des asymptotischen
Verhaltens der uneigentlichen Integrale

U =

∫ ∞

0

Jν(ax)Iν(bx)Kν(bx)x
ρ−1 dx

und

V =

∫ ∞

0

Jν(ax)Yν(ax)Iν(bx)Kν(bx)x
σ−1 dx

für ν →∞. Jν , Yν , Iν , Kν sind wie üblich Bessel-Funktionene reeller Ordnung ν ≥ 0; ρ
und σ (reell oder komplex) und a > 0, b > 0 sind Konstanten. Bei der ersten Variante—
sie hat Bezug zu Untersuchungen von J. E. Kilpatrick, S. Katsura und Y. Inoue, Math.
Comput., 21(1967) 407–412; Zbl 154 415—werden U bzw. V in Zusammenhang ge-
bracht mit Integraldarstellungen vom Barnesschen Typ für die Meijersche G-Funktion.
Diese Transformation wurde gemacht, um die bekannte Asymptotik der hier vorkom-
menden Gammafunktionen ausnutzen zu können. Die zweite Methode stützt sich auf
asymptotische Entwicklungen der Zylinderfunktionen für grosse Werte ν nach Termen
von elementaren oder Airy-Funktionen. [Reviewed by F. Gotze]
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GEOMETRY

N-dimensional geometry: curves

SIAM Rev., 17(1975) 687.

Problem 75-21, n-dimensional simple harmonic motion, by I. J. Schoenberg (Uni-
versity of Wisconsin).

In Rn we consider the curve

Γ : : xi = cos(λit+ ai) i = 1, . . . , n −∞ < t <∞

which represents an n-dimensional simple harmonic motion entireely contained within
the cube U : −1 ≤ xi ≤ 1, i = 1, . . . , n. We want Γ to be truly n-dimensional and
will therefore assume without loss of generality that λi > 0 for all i. We consider the
open sphere

S :
n∑

i=1

x2
i < r2

and want the motion Γ to take place entirely outside of S, hence contained in the
closed set U −S. What is the largest sphere S such that there exist motions Γ entirely
contained in U − S ? Show that the largest such sphere S0 has the radius r0 =

√
n/2

and that the only motions Γ within U − S0 lie entirely on the boundary
∑
x2

i = r2
0 of

S0.

SIAM Rev., 18(1976) 773.

Comment by MSK. If, as usual, we consider the 2n-dimensional motion where the ve-
locities are the other n coordinates, then the [given] arguments show that the minimum
of

g(t) =
n∑

i=1

[cos2(λit+ ai) + λ2
i sin2(λit+ ai)] ≤

1

2

(
n−

n∑
i=1

λ2
i

)
< r2

0

Thus the 2n-dimensional problem has the same solution in the sense that all spheres
with radii < r0 have a Γ outside them, but the sphere with radius r0 does not. The
motions also need not be truly n-dimensional unless the λi are independent over the
rationals.
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NUMBER THEORY

Series: unit fractions

SIAM Rev., 18(1976) 118.

Problem 76-5∗, An arithmetic conjecture, by D. J. Newman (Yeshiva University)

To determine positive integers a1, a2, . . . , an such that

Sn =
n∑

i=1

1

ai

< 1

and Sn is a maximum, it is conjectured that at each choice one picks the smallest
integer still satisfying the inequality constraint. Is this conjecture true?

SIAM Rev., 19(1977) 155.

. . . for example, for n = 4 one would choose

1

2

1

3

1

7

1

43

Editorial note by MSK. P. Erdős notes that this problem was raised by Kellog in
1921 and solved by Curtiss (On Kellog’s Diophantine equation, Amer. Math. Monthly,
29(1922) 380–387). Curtiss shows that if {un} is defined by u1 = 1, uk+1 = uk(uk + 1)
(giving rise to the sequence 1, 2, 6, 42, 1806, . . . ) and if 1/Fn = 1 − Sn, then the
maximum finite value of Fn−1, for all positive values of a1, a2, . . . an−1 is un and also
there is but one set of the ai which give this maximum value, namely ak = uk+1, k = 1,
2, . . . , n− 1.

It would be of interest to solve the following extension of the problem: we wish the
stated conjecture to still be valid if the ai are further restricted to be members of a
given infinite sequence {bn} with

∑
1/bk = ∞. Characterize all such sequences {bk}.

In particular, is the conjecture valid for bk = 2k; for bk = 2k + 1, k = 1, 2, 3, . . . ?
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ANALYSIS

Differential equations: order n

SIAM Rev., 18(1976) 118.

Problem 76-6, An n-th Order Linear Differential Equation, by M. S. Klamkin (Uni-
versity of Waterloo).

Solve the differential equation

[x2n(D − a/x)n − kn]y = 0.

SIAM Rev., 19(1977) 155.

Editorial note by MSK. Most of the solutions reduced the equation simply to [x2nDn−
kn]u = 0 and then referred to Kamke’s Differentialgleichungen. Ortner also solved the
dual equation [xn(D− a/x)2n− kn]y = 0 in a similar fashion. More generally, it is just
as easy to solve the pair of equations

[x2n(D + φ′(x))n − kn]y = 0 [xn(D + φ′(x))2n − kn]y = 0

for by the exponential shift theorem, they reduce to

[x2nDn − kn]yeφ = 0 [xnD2n − kn]yeφ = 0

The latter pair can be solved in terms of solutions of first order equations by using the
known dual operational identities

x2nDn ≡ [x2D + (1− n)x]n xnD2n ≡ [xD2 + (1− n)D]n
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LINEAR ALGEBRA

Matrices: Hermitian matrices

SIAM Rev., 18(1976) 295.

Problem 76-8, A matrix inequality, by W. Anderson and G. Trapp (West Virginia
University).

Let A and B be Hermitian positive definite (HD) matrices. Write A ≥ B if A− B is
HD. Show that

A−1 +B−1 ≥ 4(A+B)−1

SIAM Rev., 19(1977) 331.

Editorial note by MSK. The theorem quoted by Moore follows from that of Lieb by
setting k = 2, C1 = λA, C2 = (1− λ)B, D1 = λI and D2 = (1− λ)I. Several solvers
noted that for the statement of the problem to be correct, the relation A ≥ B should
be defined to mean that A−B is Hermitian positive semi-definite (HSD).

[[Classroom Notes in Applied Mathematics.]]

M. S. Klamkin, On extreme length flight paths, SIAM Rev., 18(1976) 486–488; MR
57 #7291.

[[References include Problem 61-4 above;

the papers: M. S. Klamkin & D. J. Newman, Flying in a wind field, I, II, Amer. Math.
Monthly, 76(1969) 16–23, 1013–1019; MR 38 #5496, 40 #3951;

and the following:]]

Problem 926, Math. Mag., 48(1975) 51.

[[missing from our Research Collection, but presumably by Murray — Later: No! it’s
by Melvin F. Gardner, U of Toronto, so we don’t need to bother? — R.]]
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COMBINATORICS

Permutations

SIAM Rev., 18(1976) 491.

Problem 76-17∗, A Reverse Card Shuffle, by David Berman and M. S. Klamkin
(University of Waterloo).

The following problem, originating somewhere in England, was brought to our attention
by G. Cross.

A deck of n cards is numbered 1 to n in random order. Perform the following operations
on the deck. Whatever the number on the top card is, count down that many in the
deck and turn the whole block over on top of the remaining cards. Then, whatever the
number of the (new) top card, count down that many cards in the deck and turn this
whole block over on top of the remaining cards. Repeat the process. Show that the
number 1 will eventually reach the top.

Consider the following set of related and more difficult problems:

I. Determine the number N(k) of initial card permutations, so that the 1 first appears
on top after k steps of the process. In particular, show thaat N(0) = N(1) = N(2) =
(n− 1)! and that

N(3) =

{
(n− 1)!− 1

2
(n− 1)(n− 3)(n− 4)! n odd

(n− 1)!− 1
2
(n− 2)2(n− 4)! n even

(The method of the authors is apparently too unwieldy to determine N(k) for k > 3).
[[‘k > 2’ was printed – R.]]

2. Estimate the maximum number of steps it takes to get the 1 to the top.

3. For what n is there a unique permutation giving the maximum number of steps?

4. It is conjectured that the last step of a maximum step permutation leaves the cards
in order (i.e., 1, 2, . . ., n).

Computer calculations give the following partial results:
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Maximum Number of
n number of maximum

steps permutations

1 0 1
2 1 1
3 2 2
4 4 2
5 7 1
6 10 5
7 16 2
8 22 1
9 30 1

The first four steps of the maximum step permutation for n = 9 are:

Step Permutation

0 615 97 28 34
1 279 51 68 34
2 729 51 68 34
3 861 59 27 34

SIAM Rev., 19(1977) 740–741.

Editorial note. D. E. Knuth (Stanford University) notes that the card shuffle game
here was shown to him in 1973 by J. H. Conway (Cambridge University) who pro-
posed it and named it “topswaps”. In the next year Knuth included part 2 on a
take-home examination in the following form (also included is his solution):

Problem 3. Let π = π[1]π[2] · · ·π[n] be a permutation of {1, 2, . . . , n} and consider the
following algorithm:

begin integer array A[1 : n]; integer k
(A[1], . . . , A[n])← (π[1], . . . , πn);

loop: print (A[1], . . . , A[n]);
k ← A[1];
if k = 1 then go to finish;
(A[1], . . . , A[n])← (A[k], . . . , A1);
go to loop;

finish: end
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For example, when n = 9 and π = 314562687, the algorithm will print

3 1 4 5 9 2 6 8 7
4 1 3 5 9 2 6 8 7
5 3 1 4 9 2 6 8 7
9 4 1 3 5 2 6 8 7
7 8 6 2 5 3 1 4 9
1 3 5 2 6 8 7 4 9

and then it will stop.

Let m = m(π) be the total number of permutations printed by the above algorithm.
Prove that m [[mis?printed n in the original – RKG]] never exceeds the Fibonacci
number F n+1. (In particular, the algorithm always halts.)

Extra credit problem. Let Mn = max{m(π) | π a permutation of {1, . . . , n}}. Find the
best upper and lower bounds on Mn that you can.

Problem 3 solution. If array element A[1] takes on k distinct values during the (possibly
infinite) execution of the algorithm, we will show that m ≤ Fk+1 (hence m is finite).
This is obvious for k = 1, since k = 1 can occur only when π[1] = 1.

If k ≥ 2, let the distinct values assumed by A[1] be d1 < d2 < · · · < dk. Suppose that
A[1] = dk occurs first on the r th permutation, and let t = π[dk]. Then the (r + 1)st
permutation will have A[1] = t and A[dk] = dk. All subsequent permutations will also
have A[dk] = dk (they leave A[j] untouched for j ≥ dk), hence at most k− 1 values are
assumed by A[1] after the r th permutation has been passed. By induction, m−r ≤ Fk,
so m is finite and d1 = 1.

Interchanging dk with 1 in π produces a permutation π′ such that m(π′) = r, and
for which the values dk and t never appear in position A[1] unless t = 1. If t = 1
we have r ≤ Fk, since A[1] assumes at most k − 1 values when processing π′, hence
m = r + 1 ≤ F k+1. If t > 1 we have r ≤ Fk−1 since A[1] assumes at most k − 2 values
when processing π′ (note that t = dj for j < k) hence m ≤ Fk + r ≤ Fk+1.

Three hours of further concentration on this problem lead to the hypothesis that it is
difficult either to prove or to disprove the conjecture Mn = O(n); the upper bound
Fn+1 is exact only for n ≤ 5.

[The upper bound applies more generally to any algorithm that sets (A[1], . . . , A[k])←
(A[k], A[p2], . . . , A[pk−1], A[1]) when p2 . . . pk−1 is an arbitrary permutation of {2, . . . , k−
1}.

Computer calculations show that M6 = 11, M7 = 17, M8 = 23, M9 = 31, so Mn+1−Mn

may possibly increase without limit. This search is speeded up slightly by restricting
consideration to permutations without fixed points.
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The long-winded permutations on 7, 8, 9 elements are 3146752, 4762153; 61578324;
615972834.

When n ≥ 3 and 1 ≤ k ≤ 3, exactly (n − 1)! permutations π satisfy m(π) = k. It is
conjectured that exactly (n−1)! permutations π will satisfy “A[1] = n at some stage.”]

[[The sequence 0, 1, 2, 4, 7, 10, 16, 22, 30 is A000375 in OEIS and continues 38, 51,
65, 80, 101, 113, 139 — RKG]]

SIAM Rev., 20(1978) 856.

B. J. Hollingsworth (Pennzoil Company) notes that the conjecture in part 4 (see
Oct. 1977, p. 739) is false, as may be seen by the counterexample 416523 for n = 6.
After ten steps, one ends up with 143256 which is not in increasing order. The four
remaining “long-winded” permutations for n = 6, namely 365142, 456213,564132 and
415263, do end up as 123456.
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ANALYSIS

Integrals: gamma function

SIAM Rev., 19(1977) 146.

Problem 77-1∗, Percentiles for the gamma distribution, by R. A. Waller and M. S. Wa-
terman (Los Alamos Scientific Laboratory).

If 0 < ξ1 < ξ2 < 1 and 1 < b are fixed, consider solutions (λ, φ) of the system

f(λ, φ) =

∫ λ

0

e−yyφ−1

Γ(φ)
dy = ξ1

g(λ, φ) =

∫ bλ

0

e−yyφ−1

Γ(φ)
dy = ξ2

where 0 < λ and 0 < φ. Does this system always have a solution? If a solution
exists, is it unique? This problem arises in a procedure for determining gamma priors
in Bayesian reliability analysis. In this context, some pairs, (ξ1, ξ2), of interest are
(0.01,0.50), (0.01,0.95), (0.05,0.50), (0.05,0.95), (0.50,0.95) and (0.50,0.99).

SIAM Rev., 20(1978) 856.

Editorial note by MSK. Only an existence proof for this problem was given in the
Jan. 1978 issue. The following comment by I. W. Saunders (CSIRO Division of
Mathematics and Statistics, Canberra, Australia) establishes uniqueness:

Write ζ(φ; ξ) for the ξ-quartile of the gamma distribution with parameter φ, so that∫ ζ

0

e−yyφ−1 dy/Γ(φ) = ξ

Then we want to show that, when 1 > ξ2 > ξ1 > 0 and b > 1, the equation

η(φ; ξ2)/ζ(φ; ξ1) = b

has a unique solution φ.

Saunders & Moran 1 show that r(φ) = η(φ; ξ2)/ζ(φ; ξ1) is decreasing with φ. Since
ζφe−ζ < ξΓ(φ + 1) < ζφ it is easily shown that r(φ) → ∞ as φ → 0. Also, using the
central limit theorem, noting that the gamma distribution is the convolution of unit
exponential distributions, ζ(n; ξ) = n + O(

√
n), so that r(n) → 1 as n → ∞ for n an

integer. Hence, since r(φ) is decreasing, r(φ)→ 1 as φ→∞.

Thus the equation has a unique solution φ(b) for any b ∈ (1,∞).

REFERENCE

[1] I. W. Saunders & P. A. P. Moran, On the quantiles of the gamma and F distribu-
tions, J. Appl. Probability, 15(1978) 426–432; MR 58 #3153.
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ANALYSIS

Integrals: evaluations

SIAM Rev., 19(1977) 147.

Problem 77-3, A definite integral of N. Bohr, by P. J. Schweitzer (IBM Research
Center).

N. Bohr [1] investigated the integral

K =

∫ ∞

0

F (x)(F ′(x)− lnx) dx

where

F (x) =

∫ ∞

−∞

cosxy dy

(1 + y2)3/2

is related to a modified Bessel funcyion [2] and he numerically obtained the rough
approximate result K = −0.540. Find an exact expression for K.

REFERENCES

[1] Niels Bohr, Collected Works, Vol. 1, L. Rosenfeld, ed., North-Holland, Amsterdam,
1972, pp. 554–557.

[2] M. Abramowitz and I. Stegun, eds., Handbook of Mathematical Functions, Applied
Mathematics Series 55, U.S. Government Printing Office, National Bureau of Stan-
dards, 1964, Eq. 9.6.25.

SIAM Rev., 20(1978) 189–190.

Editorial note by MSK. Bohr’s comments on the evaluation of K are contained in a
letter which he wrote to his brother, Harald Bohr. Bohr first derives a series expansion
for F based on the fact that F satisfies the differential equation F ′′− (1/x)F ′−F = 0.
He also derives an asymptotic expansion for F . The, evidently, Bohr employs two series
representations in appropriate intervals and uses numerical integration techniques to
evaluate K. After what he describes as “some days of numerical drudgery” he obtains
K ≈ −0.540. The exact source of error in Bohr’s result is, perhaps, a subject for
historical speculation. Amos notes the interesting numerical fact that (4/π)G′(1) ≈
−0.54073, which fosters speculation to the effect that the numerical value quoted by
Bohr referes to only part of the integral defining K. In any case, it is worth noting that
Bohr’s basic approach is viable enough. With the aid of a computer, it is a relatively
easy matter to implement Bohr’s program and so obtain K ≈ −1.15063.
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ANALYSIS

Integrals: evaluations

SIAM Rev., 19(1977) 329.

Problem 77-8, A Definite Integral, by M. l. Glasser (University of Waterloo).

Prove that ∫ ∞

0

log |J0(x)|
x2

dx = −π
2

Editorial note. A class of such integrals has been treated by B. Berndt and the author
by complex integration.

Bruce C. Berndt & M. L. Glasser, A new class of Bessel function integrals, Aequationes
Math., 16(1977) 183–186; MR 57 #740.

Under appropriate conditions on a rational function f(x), the authors use the calculus
of residues to evaluate the principal value (PV) of

∫∞
−∞{Jν+1(x)/Jν(x)}f(x) dx, where

Jν(x) is the Bessel function of the first kind of order ν. An interesting special case is
PV

∫∞
0
{Jν+1(x)/xJν(x)} dx = π/2. In the latter, if ν = −1

2
, the integrand is (tanx)/x.

Also, PV
∫∞

0
{Jν+1(x)/x(x

2 + a2)Jν(x)} dx = πIν+1(a)/2a
2Iν(a).

SIAM Rev., 20(1978) 595.

comment by MSK
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GEOMETRY

Triangle inequalities: circumradius

SIAM Rev., 19(1977) 329.

Problem 77-9, A Triangle Inequality, by I. J. Schoenberg (University of Wisconsin).

Let Pi = (xi, yi), i = 1, 2, 3, x1 < x2 < x3, be points in the Cartesian (x, y)-plane and
let R denote the radius of the circumcircle Γ of the triangle P1P2P3 (R = ∞ if the
triangle is degenerate). Show that

1

R
< 2

∣∣∣∣ y1

(x1 − x2)(x1 − x3)
+

y2

(x2 − x3)(x2 − x1)
+

y3

(x3 − x1)(x3 − x2)

∣∣∣∣
unless both sides vanish, and that 2 is the best constant.

SIAM Rev., 20(1978) 400.

Editorial note by MSK. The proposer notes that the problem had arisen in determining
conditions that would ensure that an F (x) ∈ C[0, 1] is a linear function. He then lets
F (x1, x2, x3) be the 2nd order divided difference of F (x) where 0 ≤ x1 < x2 < x3 ≤ 1.
If F (x1, x2, x3) → 0 whenever x1, x2, x3 converge to a common limit l in [0,1], for all
l, then the inequality shows that the plane arc y = F (x) has Menger curvature zero at
all of its points. It then follows by a theorem of Menger that the arc is straight. Also,
the proposer in his proof establishes the equivalent interesting result:

If P1, P2, P3 are three distinct points on a parabola, then their circumcircle is larger
than the circle of curvature at its vertex.
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GEOMETRY

Triangle inequalities: sides

SIAM Rev., 19(1977) 329.

Problem 77-10, A Two Point Triangle Inequality, by M. S. Klamkin (University of
Alberta).

Let P and P ′ denote two arbitrary points and let A1A2A3 denote an arbitrary triangle
of sides a1, a2, a3. If Ri = PAi and R′i = P ′Ai, prove that

a1R1R
′
1 + a2R2R

′
2 + a3R3R

′
3 ≥ a1a2a3 (1)

and determine the conditions for equality. It is to be noted that when P ′ coincides
with P , we obtain a known polar moment of inertia inequality.

SIAM Rev., 20(1978) 400–401.

Solution by the proposer.

We start with the known identity for five arbitrary complex numbers

z − z1

z1 − z2

· z
′ − z1

z1 − z3

+
z − z2

z2 − z3

· z
′ − z2

z2 − z1

+
z − z3

z3 − z1

· z
′ − z1

z3 − z2

= 1 (2)

It now follows by the triangle inequality that

|z − z1| |z′ − z1| |z2 − z3|+ |z − z2| |z′ − z2| |z3 − z1|+ |z − z3| |z′ − z3| |z1 − z2|

≥ |z1 − z2| |z2 − z3| |z3 − z1| (3)

with equality if and only if each of the three terms on the left hand side of (2) are real.
Let z1, z2, z3, z, z

′ be the complex numbers corresponding to the points A1, A2, A3,
P , P ′ respectively, then (3) is equivalent to (1). The equality condition requires that

∠A2A1P = ∠P ′A1A3, ∠A1A2P = ∠P ′A2A3, ∠A2A3P = ∠P ′A3A1

[[This is as printed, but I’m suspicious about it. If we use it, would some hero check if
the following version is the correct one:

∠A2A1P = ∠P ′A1A3, ∠A3A2P = ∠P ′A2A1, ∠A1A3P = ∠P ′A3A2 ]]

Thus the two points P and P ′ must be isogonal conjugates with respect to the given
triangle. If P is the center of the inscribed circle of the triangle, then P ′ coincides with
P . If P is the center of the circumcircle, then P ′ is the orthocenter.

It is a known result (1) that if P and P ′ are foci of an ellipse inscribed in the triangle
A1A2A3, then we have the equality condition of inequality (1). The proof given was
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geometric. Fujiwara [2] using identity (2) easily establishes the equality condition of
inequality (1) that P and P ′ must be isogonal conjugates. The ellipse result of [1] also
follows easily from (2) by using the known general angle property of an ellipse that
two tangents to an ellipse from a given point make equal angles with the focal radii to
the given point.

Many other triangle inequalities can be obtained in a similar fashion. These are given
in a paper Triangle inequalities from the triangle inequality, submitted for publication.

[1] W. J. Miller, Mathematical Questions and Solutions from the Educational Times, 7, F. Hodgson,
London, 1876. Problem 210, p.43.

[2] M. Fujiwara, On the deduction of geometrical theorems from algebraic identities, Tôhoku Math.
J., 4(1913-1914) 75–77.

[[The paper mentioned in the last para. is more precisely:

M. S. Klamkin, Triangle inequalities from the triangle inequality, Elem. Math., 34(1979) 49–55; MR
80m:51013

The author obtains about 30 inequalities for the parts of a triangle by applying the basic inequality
|u| + |v| ≥ |u + v| to complex number identities arising by considering the triangle in the complex
plane, with an arbitrary point as origin. As observed, some of these are new, others have appeared
elsewhere [see O. Bottema, R. Ž. Dord̄ević, R. R. Janić, D. S. Mitrinović and P. M. Vasić, Geometric
inequalities, Wolters-Noordhoff, Groningen, 1969; MR 41 #7537)], and elsewhere.

Reviewed by H. T. Croft ]]

SIAM Rev., 21(1979) 257

comment by MSK..
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ALGEBRA

Inequalities: degree 3 [and 4]

SIAM Rev., 19(1977) 563.

Problem 77-12∗, Conjectured inequalities, by Peter Flor (University of Cologne,
West Germany).

Establish or disprove the following inequalities where all the variables are positive:

a3 + b3 + c3 + 3abc ≥ a2(b+ c) + b2(c+ a) + c2(a+ b)

39a3 + 15a(b2 + c2) + 20ad2 + 5bc(b+ c+ d) ≥ 10a2(b+ c) + 43a2d+ 39abc+ ad(b+ c)

5(a4 + b4 + c4 + d4) + 6(a2c2 + b2d2) + 12(a2 + c2)bd+ 12(b2 + d2)ac ≥
2(a3 + b3 + c3 + d3)(a+ b+ c+ d)+4(a+ c)(b+ d)(ac+ bd)+2(a2 + c2)(b2 + d2)+8abcd

Note that, obviously, the first two do not hold for all real values of the variables. The
situation for the third is the same: consider a = b = 1, c = d = −1. Further note that
on equating the variables, equality is obtained in all cases.

All three are particular cases of a general inequality which I published as a conjecture
ten years ago and on which no progress has been reported so far (see Bull. Amer. Math.
Soc., 72(1966), Research Problem 1, p. 30). Their proof might indicate a method for
attacking this old conjecture.

Editorial note. The proposer does have a proof of the first inequality.

Here is the BAMS Research Problem:

Peter Flor: Matrix theory

For any square matrix A, let per(A) denote the permanent of A and s(A) the sum of
the elements of A.

Prove or disprove the following statement: “IfM is any n×nmatrix of real nonnegative
numbers, and if k is any integer, 1 ≤ k ≤ n, then∑

(per(B)− per(C))(s(B)− s(C)) ≥ 0

where B and C range independently over the k × k submatrices of M .”

For the case of M being doubly-stochastic the statement reduces to a conjecture of
Holens (see [1]) which in turn would imply the affirmative solution of van der Waerden’s
famous problem on permanents (see e.g. [2]).

References

1. F. Holens, Two aspects of doubly stochastic matrices and the minimum of the
permanent conjecture, Canad. Math. Bull., 7(1964) 507–510.
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2. M. Marcus & M. Newman, On the minimum of the permanent of a doubly stochastic
matrix, Duke Math. J., 26(1959) 61–72.

SIAM Rev., 20(1978) 599.

Editorial note by MSK. The first inequality is a special case (n = 1) of an inequality
of Schur, i.e.,

an(a− b)(a− c) + bn(b− c)(b− a) + cn(c− a)(c− b) ≥ 0

COMBINATORICS

Graph theory: trees

SIAM Rev., 20(1978) 329.

Problem 77-15∗, A Conjectured Minimum Valuation Tree, by I. Cahit (Turkish Telecom-
munications, Nicosia, Cyprus).

[[Also published as E 2671∗ in Amer. Math. Monthly, 84(1977) 651, with a solution,
similar to Fan Chung’s below, by G. W. Peck (MIT) at 85(1978) 827, and a reference to
SIAM Rev. It is closely related to the notorious Kotzig-Ringel tree-labelling problem—
R.K.G.]]

Let T denote a tree on n vertices. Each vertex of the tree is labelled with distinct
integers from the set 1, 2, . . . , n. The weight of an edge of T is defined as the absolute
value of the difference between the vertex numbers at its endpoints. If S denotes the
sum of all the edge weights of T with respect to a given labelling, it is conjectured that
for a k-level complete binary tree, the minimum sum is given by

S
(k)
min = min

all labellings

∑
(i,j)∈T

|i− j| = (k − 1)2(k−1) (k > 1)

Examples of minimum valuation trees for k = 2, 3, 4 are given by
8

4 4 12

2 2 6 2 6 10 14

1 3 1 3 5 7 1 3 5 7 9 11 13 15

S
(2)
min = 2 S

(3)
min = 8 S

(4)
min = 24

Editorial note by Murray. A. Meir suggested the related problem of determining
min

∑
(i− j)2. More generally, one can consider max and min

∑
|i− j|m.
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SIAM Rev., 20(1978) 601–604.

Solution by F. R. K. Chung (Bell Laboratories). The conjecture is not true for k > 4.

The following labelling for the 5-level complete binary tree shows that S
(5)
min ≤ 60 < 4·24

16

12 24

4 1 20 25

2 6 9 14 18 21 27 29

1 3 5 7 8 10 13 15 17 19 22 23 26 28 30 31

We let Sk = S
(k)
min. It can be shown that

Sk = 2k(k/3 + 5/18) + (−1)k(2/9)− 2

Proof. The optimal labelling Lk for the k-level binary tree Tk satisfies the following
properties. The proof can be found in [1] or [2] or can be easily verified.

Property 1. The vertex labelled by 1 or n = 2k − 1 in Lk is a leaf (a leaf is a vertex of
valence 1).

Property 2. Let P denote the path connecting the two vertices labelled by 1 and n in
Lk. Let P have vertices v0, . . . , vt. Then the labelling of the vertices of P is monotone,
i.e.,

L(vi) < L(vi+1) for i = 0, . . . , t− 1

or
L(vi) > L(vi+1) for i = 0, . . . , t− 1

Property 3. In Tk we remove all edges of P . The resulting graph is a union of vertex
disjoint subtrees. Let T̃i denote the subtree which contains the vertex vi, i = 1, . . . ,
t − 1. Then for a fixed i, the set of labellings of vertices in T̃i consists of consecutive
integers. Moreover, the labelling on each T̃i is optimal.

Property 4. Let ṽ be the only vertex of Tk with valence 2. Then P passes through ṽ.

Property 5. Let T ′k denote the tree which contains Tk as a subtree and T ′k has one more
vertex than Tk, which is a leaf adjacent to ṽ. Then S(T ′k) = Sk + 2.

From properties 1 to 5, the following recurrence relation holds:

Sk = 2k−1 + 4 + Sk−1 + 2Sk−2 for k ≥ 4
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and S2 = 2, S3 = 8.

It can easily be verified by induction that

Sk = 2k(k/3 + 5/18) + (−1)k(2/9)− 2 �

If we consider k-level complete p-nary trees T p
k , some asymptotic estimates for Sp

k , the
minimum sum of all edge weights of T p

k over all labellings, have been obtained in [1]
and [2]. We will briefly discuss the case p = 3.

Let Tp(k, i) denote a k-level tree which has the root connected to i copies of a (k− 1)-
level p-nary tree. For example the graph

is T3(3, 2). Let Sp(k, i) denote the minimum value of the sum of all edge weights of
Tp(k, i) over all labellings of Tp(k, i).

It can be easily verified that

S3(k, 2) = 3S3(k − 1, 2) + 2 · 3k−2 for k ≥ 3

and S3(2, 2) = 2. Therefore

S3(k, 2) = 2(k − 1)3k−2 for k ≥ 2

In general it can be shown that for p odd,

Sp(k, 2) = k(p+ 1)pk−2/2 + (−2pk + 3pk−1 + pk−2 + p− 3)/(2(p− 1))

and
Sp(k, p− 1) = (k − 1)(p2 − 1)pk−2/4

The recurrence relation for S3
k is as follows: Let f(k) be the integer l satisfying

(l − 1)3l−2 + l + 1 ≤ k < l 3l−1 + l k ≥ 3

Then we have

S3
k = 3k−2(2k − 1/2)− 1/2 + k − f(k) + S3

k−1 for k ≥ 3

and S3
2 = 4.
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This complicated recurrence relation reveals the possible difficulty in getting an explicit
expression for Sp

k for general p.

REFERENCES

[1] M. A. Iordanskĭı, Minimal numberings of the vertices of trees, Soviet Math. Dokl.,
15(1974) 1311–1315

[2] M. A. Šěıdvasser, The optimal numbering of the vertices of a tree, Diskret. Analiz.,
17(1970) 56–74; MR bf45 #105.

Also solved by W. F. Smyth (Winnipeg, Manitoba) who sent a copy of a long paper,
A labelling algorithm for minimum edge weight sums of complete binary trees, which
had been submitted to Comm. ACM, whose interests were felt to be more diectly
related to the subject matter.

[[RKG couldn’t trace this paper. A MathSciNet search on “labelling algorithm” kielded
7 hits and on “labeling algorithm” 13. None had Smyth as an author. Maybe it was
rejected?]]

An abstract of the paper is as follows:

Given a K-level complete binary tree TK = (VK , EK) on 2K − 1 vertices and a set WK =
{N + 1, N + 2, . . . , N + 2K − 1} of integers, it is desired to label the vertices VK from the
set WK without replacement, in such a way that the sum SK =

∑
|n(u) − n(v)| taken

over all edges (u, v) ∈ EK is a minimum, where n(u) denotes the label assigned to vertex
u. The labelled tree is called a valuation tree and, corresponding to a minimum labelling,
a minimum valuation tree. An algorithm for this purpose is specified, with execution time
O(2K−1). An expression is derived for Smin

K and it is shown that in fact the algorithm achieves
this minimum. Connections to the minimum bandwidth and minimum profile problems are
outlined. Some open problems are stated.
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ANALYSIS

Differential equations: systems of equations

SIAM Rev., 19(1977) 736.

Problem 77-17, A system of second order differential equations, by L. Carlitz (Duke
University)

Solve the following system of differential equations:

F ′′(x) = F (x)3 + F (x)G(x)2

G′′(x) = 2G(x)F (x)2

where F (0) = G′(0) = 1, F ′(0) = G(0) = 0

SIAM Rev., 20(1978) 859.

Editorial note by MSK. Margolis, in her solution, first noted that it was easy to find
a solution F (x) = secx, G(x) = tanx and then establish uniqueness. The proposer
obtained the system of equations by considering generating functions associated with
up-down and down-up permutations of {1, 2, . . . , n}.
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STATISTICS

Covariance

SIAM Rev., 19(1977) 736–737.

Problem 77-18, An infinite summation, by A. M. Liebetrau (Johns Hopkins Univer-
sity).

Show that
∞∑

j=1

α−6
j

[
sinαj − sinhαj

cosαj + coshαj

]2

=
1

80

where the αj are the positive solutions to the equation

(cosα)(coshα) + 1 = 0

This identity follows from a problem in statistics, that of finding the distribution of a
certain functional of a Gaussian process η(t) with covariance kernel

E[η(t), η(u)] = K(t, u) =

{
tfrac23(3t2u− t3) 0 ≤ t ≤ u ≤ 1
tfrac23(3u2t− u3) 0 ≤ u ≤ t ≤ 1

SIAM Rev., 20(1978) 860–862.

Solution by the proposer.

In order to obtain the distribution of a certain random functional of a Poisson process
[2], it became necessary to solve the following eigenvalue problem: Express the positive
symmetric function

K(t, u) =

{
2
3
(3t2u− t3) 0 ≤ t ≤ u ≤ 1

2
3
(3u2t− u3) 0 ≤ u ≤ t ≤ 1

(1)

in the form
∞∑

j=1

λ−1
j fj(t)fj(u) (2)

where λj is an eigenvalue and fj(t) is the corresponding normalized eigenfunction of
the system

f(t) = λ

∫ 1

0

K(t, u)f(u) du

∫ 1

0

fj(t)fk(t) = δjk (3)

In (3) δjk is the Kronecker delta.
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Substitution of (1) into the first equation of (3) yields

f(t) =
2

3
λ

{∫ t

0

(3u2t− u3)f(u) du+

∫ 1

t

(3t2u− t3)f(u) du

}
(4)

Successive differentiation of (4) with respect to t yields

f (4)(t) = 4λf(t) = α4f(t) (5)

which is easily seen to have the solution

f(t) = c1e
−αt + c2e

αt + c3 cos(αt) + c4 sin(αt) (6)

for suitable constants c1, c2, c3, c4.

Boundary conditions for determining the cj are obtained from considering f(0), f ′(0),
f ′′(0) and f ′′′(0). Substitution of the appropriate derivatives of (6) into (4) produces
the following system of equations:

c1 + c2 + c3 = 0
c1 − c2 − c4 = 0 (7)
(α+ 1)e−αc1 + (1− α)eαc2 − (α sinα+ cosα)c3 + (α cosα− sinα)c4 = 0
e−αc1 − eαc2 − (sinα)c3 + (cosα)c4 = 0

Elimination of c1 and c2 from (7) yields, after some manipulation:

(coshα+cosα)c3 +(sinhα+sinα)c4 = 0 = (sinhα− sinα)c3 +(coshα+cosα)c4 (8)

The equations (8) have nontrivial solution if and only if

(coshα)(cosα) + 1 = 0 (9)

Being a covariance function, (1) is positive definite, so it is only necessary to consider
positive solutions to (9): let αj denote the j th smallest, so that λj = 1

4
α4

j , j = 1, 2,
. . . . From (7) and (9) it follows that

c3 =
cosαj + coshαj

sinαj − sinhαj

c4 := κjc4

c2 = −1
2
(c3 + c4) = −1

2
(κj + 1)c4

c1 = 1
2
(c4 − c3) = −1

2
(κj − 1)c4

Finally, c4 is chosen so that
∫ 1

0
f 2

j (t) dt = 1. A lngthy but elementary calculation yields

c4 = κ−1 =
sinαj − sinhαj

cosαj + cosαj

(10)
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hence

fj(t) = −1
2
(1− κ−1

j )e−αjt − 1
2
(1 + κ−1

j )eαjt + cos(αjt) + κ−1
j sin(αjt)

Now, by Mercer’s theorem on positive definite kernels, it follows (see Churchill [1] or
Riesz & Nagy [3], for example) that the series (2) converges absolutely and uniformly
to K(t, u) in the unit square. Thus∫ 1

0

∫ 1

0

K(t, u) dt du =
4

3

∫ 1

0

∫ u

0

(3t2u− t3) dt du =
1

5

=

∫ 1

0

∫ 1

0

∞∑
j=1

λ−1
j fj(t)fj(u) dt du =

∞∑
j=1

λ−1
j

∫ 1

0

∫ 1

0

fj(t)fj(u) dt du

=
∞∑

j=1

λ−1
j

[∫ 1

0

fj(t) dt

]2

=
∞∑

j=1

λ−1
j (2λ

−1/2
j κ−2

j ) (11)

= 2
∞∑

j=1

(
1
4
α4

j

)−3/2
κ−2

j = 16
∞∑

j=1

α−6
j κ−2

j

We conclude from (11) that

∞∑
j=1

α−6
j κ−2

j =
∞∑

j=1

α−6
j

[
sinαj − sinhαj

cosαj + coshαj

]2

=
1

80

where {αj}∞1 are the positive solutions to (9) and κ−1
j is given by (10). Moreover, since

(9) is an even function of α,

∞∑
j=−∞

α−6
j κ−2

j =
∞∑

j=−∞

α−6
j

[
sinαj − sinhαj

cosαj + coshαj

]2

=
1

40

where α−j = −αj.

REFERENCES

[1] R. V. Churchill, Fourier Series and Boundary Value Problems, McGraw-Hill, New
York, 1963.

[2] A. M. Liebetrau, Some tests of randomness based upon the second-order properties
of the Poisson process, Math. Sci. Tech. Report 249, The Johns Hopkins University,
Baltimore, 1976. [[Compare MR 57 #18000, 58 #8106 and 81d:62092.]]

[3] F. Riesz & B. Nagy, Functional Analysis, Ungar, New York, 1955.
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Editorial note by MSK. The proof can be simplified by noting from (4) that f(0) =
f ′(0) = 0 = f ′′(1) = f ′′′(1). This leads to a simpler set of equations for (7) and
(8). M. L. Glasser (Clarkson College of Technology) sketches a proof by contour
integrals for the related identities:

∞∑
j=1

α−3
j

{
sinαj − sinhαj

cosαj + coshαj

}
= 0

∞∑
j=1

(α4
j − λ4)−1 =

{
sinλ coshλ− sinhλ cosλ

1 + cosλ coshλ

}/
4λ3 |λ| < |alpha1

He also indicates that the original equation can be derived in this way, but since the
poles involved are second order, the calculations get messy.
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TRIGONOMETRY

Inequalities: cos

SIAM Rev., 19(1977) 737.

Problem 77-19∗, Two inequalities, by P. Barrucand (Université P. et M. Curie, Paris,
France).

Let

F1(θ) =
∞∑

n=1

cosn θ cosnθ − cos2n θ

n(1− 2 cosn θ cosnθ + cos2n θ)

F2(θ) =
∞∑

n=1
n≡1(2)

cosn θ cosnθ − cos2n θ

n(1− 2 cosn θ cosnθ + cos2n θ)

It is conjectured that F1(θ) and F2(θ) are negative for 0 < θ < π/2. The conjecture
was found by a computer computation.

SIAM Rev., 21(1979) 140.

Editorial note by MSK. W. Al Salam has shown that the conjectures are equivalent to
showing that

∞∏
k=1

|1− xkeikθ| < 1

and
∞∏

k=1

∣∣∣∣1 + xkeikθ

1− xkeikθ

∣∣∣∣ < 1

where x = cos θ and 0 < x < 1.

SIAM Rev., 22(1980) 509.

solution by MSK.
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ANALYSIS

Hermite interpolation

[[This item not necessarily connected with MSK]]

SIAM Rev., 20(1978) 182.

Problem 78-2, Two recurrence relations for Hermite basis polynomials, by J. C. Cavendish
and W. W. Meyer (General Motors Research Laboratories).

For p a positive integer, let Φk(x) denote a (2p + 1)-degree basis polynomial for
(2p + 1)-Hermite interpolation on 0 ≤ x ≤ 1. That is, for n, k = 0, 1, . . . , p

dnΦk

dxn

}
x=0

=

{
0 if n 6= k
1 if n = k

dnΦk

dxn

}
x=1

= 0

Establish the following two recurrence relations for any t ∈ [0, 1]:

tΦk−1(t)− kΦk(t) =
(2p− k + 1)!

p!(k − 1)!(p− k + 1)!
tp+1(1− t)p+1 (0 < k ≤ p)

Φk−1(t)− Φ′
k(t) =

(2p− k + 1)!

p!k!(p− k + 1)!
tp(1− t)p(p+ 1− kt) (0 < k ≤ p)

SIAM Rev., 21(1979) 144.

[[This item included by error. The comment was by Otto G. Ruehr, not MSK.]]
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ALGEBRA

Determinants

[[This item not necessarily connected with Murray. The editorial comment is by Cecil
C. Rousseau, not Murray.]]

SIAM Rev., 20(1978) .

Problem 78-3∗, A conjecture on determinants, by H. L. Langhaar and R. E. Miller
(University of Illinois).

A special case of a more general conjecture on determinants that has been corroborated
numerically by operations with random determinants generated by a digital computer
is expressed by the equation Ω = ∆n+1 in which ∆ = |a1b2 · · · qn−1rn| is any n th order
determinant and Ω is a determinant of order n(n+1)/2 constructed from the elements
of ∆ as follows: The first row of Ω consists of all terms that occur in the expansion of
(a1 + a2 + · · ·+ an)2. A similar construction applies for rows 2, 3, . . . , n. Row n + 1
consists of expressions that occur in the expansion of

(a1 + a2 + · · ·+ an)(b1 + b2 + · · ·+ bn)

A similar construction applies for the remaining rows. The letters in the columns in
Ω are ordered in the same way as the subscripts in the rows. Prove or disprove the
conjecture Ω = ∆n+1

Ω =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2
1 a2

2 · · · a2
n 2a1a2 2a1a3 · · · 2an−1an

b21 b22 · · · b2n 2b1b2 2b1b3 · · · 2bn−1bn
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
r2
1 r2

2 · · · r2
n 2r1r2 2r1r3 · · · 2rn−1rn

a1b1 a2b2 · · · anbn a1b2 + a2b1 a1b3 + a3b1 · · · an−1bn + anbn−1

a1c1 a2c2 · · · ancn a1c2 + a2c1 a1c3 + a3c1 · · · an−1cn + ancn−1

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
q1r1 q2r2 · · · qnrn q1r2 + q2r1 q1r3 + q3r1 · · · qn−1rn + qnrn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
SIAM Rev., 21(1979) 146.

Editorial note. The general conjecture referred to by the proposers is, in fact, the result
which is proved by [David] Cantor. Jordan and Taussky point out that the theorem
in question was proved by Schläfli in 1851 [2]. Other solvers noted that the theorem is
a well-known result in multilinear algebra (see, e.g., [1, Chap.2])

REFERENCES

[1] M. Marcus, Finite Dimensional Multilinear Algebra, Part i. Marcel Dekker, New
York, 1973.

[2] L. Schläfli, Über die Resultante eines Systems mehrerer algebraischen Gleichungen,
Denkschr. d. k. Akad. d. Wiss.(Wien) Math.-Naturw. Cl., iv(2)(1851) 1–54.
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NUMBER THEORY

Recurrences: arrays

SIAM Rev., 20(1978) 394.

Problem 78-6, A combinatorial identity, by Peter Shor (U.S.A. Mathematical Olympiad
Team, 1977).

A function S(m,n) is defined over the nonnegative integers by

(A)S(0, 0) = 1

(B)S(0, n) = S(m, 0) = 0 for m,n ≥ 1

(C)S(m+ 1, n) = mS(m,n) + (m+ n)S(m,n− 1)

Show that
m∑

n=1

S(m,n) = mm

SIAM Rev., 21(1979) 259–260.

Comment by A. Meir (University of Alberta).

By essentially the same inductive argument [as that of the proposer/solver] one can
show that the more general recursion relation

S(m+ 1, n) = (m+ z)S(m,n) + (m+ n)S(m.n− 1)

has a solution satisfying
m∑

n=1

S(m,n) = (m+ z)m

Editorial note by MSK. Ruehr notes that his method can be applied to Meir’s gener-
alization. The differential recurrence equation becomes

Fm+1 = [(m+ z) + x(m+ 1)]Fm + x2F ′m

whose solution is

Fm =
1

xm+1
e(m+z)/x

[
x3e−1/x d

dx

]m

xe−z/x

The final step then requires the identity

∞∑
n=1

(n+ z)nλne

n!
=

eλz

1− λ

which he also establishes.
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It would be of interest to determine all pairs of polynomials P (m,n), Q(m,n) (in
particular, linear ones) such that if

S(m+ 1, n) = P (m.n)S(m,n) +Q(m,n)S(m,n− 1)

and subject to conditions (A) and (B), then also

m∑
n=1

S(m,n) = mm

PROBABILITY

Geometry: point spacing

SIAM Rev., 20(1978) 394–395.

Problem 78-8, Average distance in a unit cube, by Timo Leip al a (University of
Turku, Turku, Finland).

Determine (a) the probability density, (b) the mean, and (c) the variance for the Euclid-
ean distance between two points which are independently and uniformly distributed in
a unit cube.

The numerical value of the mean is given in [1] and it is conjectured in [3] that an
explicit closed form expression for it does not exist. The probability distribution for
the distance in the interval [0,1] is given in [2].

REFERENCES

[1] R. S. Anderssen, R. P. Brent, D. J. Daley & P. A. P. Moran, Concerning
∫ 1

0
· · ·
∫ 1

0
(x2

1+

· · · + x2
k)

1/2 dx1 · · · dxk and a Taylor series method, SIAM J. Appl. Math., 30(1976)
22–30.

[2] É. Borel, Principes et Formules Classiques du Calcul des Probabilités, Gauthier-
Villars, Paris, 1925, pp. 88–90.

[3] D. J. Daley, Solution to problem 75-12, this Review, 18(1976) 498–499.

SIAM Rev., 21(1979) 263.

Editorial note by MSK. The mean distance is also found for a rectangular box in E2629
by T. S.Bolis & D. P. Robbins, Amer. Math. Monthly, 85(1978) 277–278.
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COMBINATORICS

Coloring problems: tournaments

SIAM Rev., 20(1978) 593.

Problem 78-11, Edge three-coloring of tournaments, by N. Megiddo (University of
Illinois).

We define an edge k-coloring of a tournament (i.e., a directed graph with a unique edge
between every pair of vertices) to be that of coloring the edges in k colors such that
every directed cycle of length n contains at least min(k, n) edges of distinct colors.

It can be easily seen that every tournament has a 2-coloring. Specifically, if the vertices
are numbered 1, . . . , m (m ≥ 2), then color every “ascending” edge black and every
“descending” edge white.

We shall show that for each k ≥ 4 there are tournaments which do not have k-colorings.
Given k ≥ 4, let m = k + 1 and consider a directed graph whose vertices are 1, . . . ,
m, m+ 1, . . . , 2m and whose edges are (i,m+ i) (i = 1, . . . , m) and (m+ j, i) (i = 1,
. . . , m, j = 1, . . . , m, i 6= j). Every pair of edges (i,m+ i), (j,m+ j) (1 ≤ i < j ≤ m)
lies on some cycle of length 4, namely (i,m+ i), (m+ i, j), (j,m+ j), (m+ j, i). Thus
in every k-coloring the edges (1,m + 1), (2,m + 2), . . . , (m, 2m) must have distinct
colors. This implies that there is no k-coloring for such graphs.

The remaining open question is: Does every tournament have a three-coloring? I
conjecture that it does.

SIAM Rev., 21(1979) 398.

—it Editorial note by MSK. G. K. Kristiansen (Roskilde, Denmark) gives a coun-
terexample, disproving the conjecture. It is the tournament T with vertices 1, 2, . . . , 9
that contains the directed edge (i, j) if and only f j− i = 1, 2, 4, 6 (mod 9). J. Moon
(University of Alberta) simplifies Kristiansen’s proof from one involving four cases to
one of two cases. Although it is straightforward it still is a tedious exercise to show that
T has no 3-coloring. L. L. Keener (University of Waterloo) described a construction
for a larger counterexample.
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GEOMETRY

N-dimensional geometry: inequalities

SIAM Rev., 20(1978) 856.

Problem 78-20, A Volume Inequality for a Pair of Associated Simplexes, by M. S. Klamkin
(University of Alberta).

The lines loining the vertices {Vi} i = 0, 1, . . . , n of a simplex S to its centroid G meet
the circumsphere of S again in points {V ′

i }, i = 0, 1, . . . , n. Prove that the volume of
simplex S ′ with vertices V ′

i is ≥ the volume of S.

SIAM Rev., 21(1979) 569–570.

Solution by the proposer.

Let Vi (V ′
i ) denote the volume of the simplex whose vertices are G and those of the

face Fi (F ′i ) of S (S ′) opposite Ai (A′i). It follows that

V ′
i

Vi

=
GAi

GA′i

∏ GA′j
GAj

where in the product here and subsequently (also sums), the index runs from 0 to n.
By the power of a point theorem for spheres,

GAi ·GA′i = R2 −OG2 = k

where R, O are the circumradius and circumcenter, respectively, of S. Also, Vi =
V/(n+ 1) where V = volume of S. Then,

V ′
i

V
=
knGA2

i∏
GA2

j

and

V ′ =
∑

V ′
i =

knV

n+ 1

∑
GA2

j∏
GA2

j

We now want to show that

kn

n+ 1

∑
GA2

j ≥
∏

GA2
j

By the arithmetic-geometric mean inequality, it suffices to establish the stronger in-
equality

kn

n+ 1

∑
GA2

j ≥
{∑

GA2
j

n+ 1

}n+1
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Actually the latter is an equality suince it is known tha

k =
∑

GA2
i /(n+ 1)

and which follows from (where Ai =
−−→
OAi)∑

i

∑
j

AiA
2
j =

∑
i

∑
j

(Ai −Aj) · (Ai −Aj)

= 2(n+ 1)2R2 − 2
∑

i

Ai ·
∑

j

Aj

= 2(n+ 1)2(R2 −OG2)

=
∑

i

∑
j

{(Ai −G)− (Aj −G)}2

= 2(n+ 1)
∑

GA2
i

V ′ = V if and only if GAi = constant or equivalently O and G coincide. For n = 2
thisimplies the triangle is equilateral. This special case is knownand is ascribed to
Janić [1]. For n = 3 the tetrahedron must be isosceles (opposite faces are congruent).

Also solved by L. Gerber (St. John’s University) who additionally poses the problem
of determining the limitof the volume (for n = 3) if the process is repeated indefinitely.

REFERENCE

[1] O. Bottema, R. Z. Djordjević, R. R. Janić, D. S. Mitrinović and P. M. Vasić, Geometric
Inequalities, Wolters-Noordhoff, Groningen, 1969.
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PROBABILITY

Density functions

SIAM Rev., 21(1979) 256.

Problem 79-6∗, A functional equation by L. B. Klebanov (Civil Engineering Insti-
tute, Leningrad, USSR)

Let f(x), g(x) be two probability densities on R1 with g(x) > 0. Suppose that the
condition ∫ ∞

−∞
(u− c)

n∏
j=1

f(xj − u)g(u) du = 0

holds for all x1, x2, . . . , xn such that
∑n

j=1 xj = 0 where n ≥ 3 and c is some constant.
Prove that

F9X) =
1√
2πσ

exp{−(x− a)2/2σ2}

Editorial note by MSK. This problem is related to a known theorem characterizing the
normal distribution, i.e., if∫ ∞

−∞
u

n∏
j=1

f(xj − u)g(u) du+

∫ ∞

−∞

n∏
j=1

f(xj − u)g(u) du = c1 + c2

n∑
j=1

xj

for all values of xj, then the density f must be a normal density (A. M. Kagan,
Y. V. Linnik & C. R. Rao, Characterization Problems in Mathematical Sciences, Wiley-
Interscience, New York, 1973, p. 480, Thm. B.2.1.) The proposer notes that he can
establish the result of his problem under further assumptions of regularity conditions.
However, the assertion of the problem as is may not be correct. Nevertheless, even a
proof of this would be of interest.
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ANALYSIS

Functions: differentiable functions

SIAM Rev., 21(1979) 257.

Problem 79-10∗, Credibility functions, by Y. P. Sabharwal and J. Kumar (Delhi
University, India).

Determine the general form of a function F (x) satisfying the following conditions for
x ≥ 0:

(a) 0 ≤ F (x) ≤ 1

(b) d
dx
F (x) > 0

(c) d
dx
{F (x)/x} < 0

These conditions arise in the construction of credibility formulas in casualty insurance
work [1], [2].

REFERENCES

[1] F. S. Perryman, Experience rating plan credibilities, Proc. Casualty Actuarial Soc.,
24(1937) 60 and 58(1971) 143.

[2] H. L. Seal, Stochastic Theory of a Risk Business, John Wiley, New York, 1969,
p. 83.

Editorial note by MSK. The proposers note that F (x) = x/(x + k) is a particular
solution. However, it isn’t difficult to extend this to F (x) = G(x)/(G(x) + k) where
G(x) is a nonnegative increasing concave function of x, e.g., G(x) = xα (0 < α ≤ 1),
ln(1 + x), etc.
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GEOMETRY

Triangle inequalities: medians and sides

SIAM Rev., 21(1979) 559.

Problem 79-19, A Triangle Inequality, by M. S. Klamkin (University of Alberta).

If a1, a2, a3 and m1, m2, m3 denote the sides and corresponding medians of a triangle,
respectively, prove that

(a2
1 + a2

2 + a2
3)(a1m1 + a2m2 + a3m3) ≥ 4m1m2m3(a1 + a2 + a3) (1)

SIAM Rev., 22(1980) 509–511.

Solution by the proposer.

To prove (1) as well as to give a dual inequality, we will use the known duality theorem
that

F (a1, a2, a3,m1,m2,m3) ≥ 0⇔ F

(
m1,m2,m3,

3a1

4
,
3a2

4
,
3a3

4

)
≥ 0 (2)

This follows immediately from the fact that the three medians m1, m2, m3 of any
triangle are themselves sides of a triangle with respective medians 3a1/4, 3a2/4, 3a3/4.
For a more general duality result, see [1].

We will now prove successively that∑
a2

1

∑
a1m1 ≥

∑
a1

∑
a2

1m1 ≥ 4m1m2m3

∑
a1 (3)

where the summations are to be understood as cyclic sums over the indices 1,2,3. The
right-hand inequality of (3) follows immediately from the known inequality

a2
1m1 + a2

2m2 + a2
3m3 ≥ 4m1m2m3 (4)

which was obtained by Bager [2] by first establishing its dual, i.e.,

4{a1m
2
1 + a2m

2
2 + a3m

2
3} ≥ 9a1a2a3 (5)

However, if we make the substitutions

4m2
1 = 2a2

2 + 2a2
3 − a2

1, etc.

we obtain
2
∑

a1

∑
a2

1 ≥ 3{3a1a2a3 +
∑

a3
1} (5′)

which was obtained by Colins in 1870 [3, p.13].
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To establish the left-hand inequality of (3), we expand out and collect terms to give∑
a1a2(a1 − a2)(m2 −m1) ≥ 0 (6)

The latter inequality is valid, since if a1 ≥ a2 ≥ a3 then m1 ≤ m2 ≤ m3. There is
equality in (1) if and only if the triangle is equilateral. However, if we allow degenerate
triangles, there is another case of equality:

(a1, a2, a3) = (2, 2, 0), (m1,m2,m3) = (1, 1, 2)

The given inequality (1) has the following nice geometric interpretation. Let the me-
dians of triangle A1A2A3 be extended to meet the circumcircle again in points A′1, A

′
2,

A′3. Then
Perimeter(A′1, A

′
2, A

′
3) ≥ Perimeter(A1A2A3) (7)

For a related result concerning the repetition of the above operation, see [4]. Another
related result due to Janić [3, p.90] is that

Area(A′1A
′
2A

′
3) ≥ Area(A1A2A3)

The latter result was extended to simplexes by the author (SIAM Rev., 21(1969) 569–
590).

From (2), the dual of (1) is

4(m2
1 +m2

2 +m2
3)(a1m1 + a2m2 + a3m3) ≥ 9a1a2a3(m1 +m2 +m3) (8)

There is equality if a1 = a2 = a3 or 2a1 = 2a2 = a3.

The author has also shown [3, p.90] that if the angle bisectors of a triangle A1A2A3

are extended to meet the circumcircle again in points A′1, A
′
2, A

′
3, then

Area(A′1A
′
2A

′
3) ≥ Area(A1A2A3)

We now also establish that

Perimeter(A′1A
′
2A

′
3) ≥ Perimeter(A1A2A3) (9)

In what follows O, I, R, r will denote the circumcenter, incenter, circumradius and
inradius, respectively, of A1A2A3. Let Ri = AiI, R

′
i = A′iI; then from the power of a

point property of circles,

RiR
′
i = R2 −OI2 = 2Rr (i = 1, 2, 3)

Then, by way of the law of cosines,

a′i =

{
2Rr

R1R2R3

}
aiRi
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(for more extensive properties of this transformation and related ones, see [5]). In-
equality (9) is now equivalent to

2Rr

R1R2R3

{a1R1 + a2R2 + a3R3} ≥ a1 + a2 + a3 (9′)

From the known relations

r = Ri sinAi/2 ai = 2R sinAi r = 4R
∏

sinAi/2

we can transform (9′) into the trigonometric form

cosAi/2 + cosA2/2 + cosA3/2 ≥ sinA1 + sinA2 + sinA3

or, equivalently, ∑
cosAi/2 ≥

∏
cosAi/2 (9′′)

Using the Arithmetic-Geometric Mean inequality, it suffices to prove that

(
√

3/2)3 ≥
∏

cosAi/2 (10)

Although (1)) is a known inequality [3, p.26], another proof follows immediately from
the concavity of log cosx/2.

Finally, it would be of interest to extend (7) and (9) to simplexes for which we consider
total edge length as the perimeter.
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[[as this fades into obscurity, I give the whole reference:

∗691-26-3. MURRAY S. KLAMKIN, Ford Motor Company, Dearborn, Michigan,
48121. Triangle inequalities via transformations.

In a previous paper, Oppenheim generates dual triangle inequalities for a triangle
A1A2A3 by reciprocation, inversion and isogonal conjugates with respect to an interior
pont P . Letting Ri = PAi, ai = side opposite Ai, hi = altitude from Ai, ri = distance
from P to ai, k = r1r2r3, K = R1R2R3, wi = angle bisector from P to ai, R

′
i = PA′i,
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etc., Oppenheim only considers the transformations of Ri, ri into R′i, r
′
i. Here, we ex-

tend the scope of the duality by showing that if F (ai, hi, Ri, ri, wi, R, r,∆) ≥ 0 is a valid
triangle inequality, then so is F (a′i, h

′
i, R

′
i, r

′
i, w

′
i, R

′, r′,∆′) ≥ 0 where (1) under recipro-
cation a′i = airiRi/2R, R′i = k/ri, r

′
i = k/Ri, ∆′ = k∆/2R, R′ = K/4R, h′i = khi/riRi,

r′ = 2k∆/
∑
airiRi; (2) under inversion a′i = aiRi, R

′
i = K/Ri, r

′
i = riRi, w

′
i = wiRi,

R′ = KR∆/∆′, h′i = hi∆
′/∆Ri, ∆′ = k∆/2R, r′ = 2k∆/

∑
airiRi; (3) under isogonal

conjugates R′i = 2∆riRi/k
∑
ai/ri, r

′
i = 2∆/ri

∑
ai/ri. Applying the latter trans-

formations singly and in sequence to known inequalities, we generate numerous dual
inequalities, many of them apparently are new. Additionally by specializing the point
P to be the circumcenter, incenter, orthocenter, centroid, symmedian point or one
of the Brocard points, we obtain easily other numerous inequalities. Again some of
these are well known and others are apparently new. In particular, the conjecture of
Stolarsky that

∑
ai/Ri ≥ a1a2a3/R1R2R3 is pransformed into

∑
aiR

2
i ≥ a1a2a3 by

inversion and is then easily proved. (Received November 1, 1971.) ]]

SIAM Rev., 22(1980) 99.

Problem 80-5∗, A Dice Problem, by M. S. Klamkin and A. Liu (University of Al-
berta).

Given n identical polhedral dice whose faces are numbered identically with arbitrary
integers:

(a) Prove or disprove that if the dice are tossed at random, the probability that the
sum of the bottom n face numbers is divisible by n is at least 1/2n−1.

(b) Determine the maximum probability for the previous sum being equal to k (mod n)
for k = 1, 2, . . . , n− 1.

In (a) the special case for n = 3 was set by the first author as a problem in the 1979
U.S.A. Mathematical Olympiad.

[[was a solution ever published ?]]
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SIAM Rev., 22(1980) 230.

Problem 80-10, Determinant of a Partitioned Matrix, by M. S. Klamkin, A. Sharma
and P. W. Smith (University of Alberta).

Let Di (i = 1, 2, . . . , n) denote k × k matrices, ars denote the r, s th term of an n× n
matrx A, and M denote the partitioned kn × kn matrix whose r, s th term (r, s =
1, 2, . . . , n) is the matrix arsDs. Prove that

|M | = |A|n
∏
|Di|

where |M | denotes the determinant of M , etc.

SIAM Rev., 23(1981) 259.

Solution by E. Deutsch (Polytechnic Institute of New York).

Let Ik denote the k×k identity matrix, let B be the partitioned kn×kn matrix whose
r, s th term arsIk and let D be the partitioned kn × kn matrix whose diagonal terms
are D1, . . . Dn and whose offdiagonal terms are equal to the k × k zero matrix. Then
it can be easily seen that M = BD and B = A ⊗ Ik, where ⊗ denotes the Kronecker
product. Now

|M | = |B| |D| = |A|k|Ik|n|D| = |A|k
∏
|Di|.

Also solved by [17 others] and the proposers.
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SIAM Rev., 22(1980) 364.

Problem 80-15, An Identity for Complex Numbers, by M. S. Klamkin and A. Meir
(University of Alberta).

Given that z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = 1 and

0 ≤ arg z1 ≤ arg z2 ≤ arg z3 ≤ π

prove that

(−z3z1+z1z2+z2z3)
{
|z2

3 − z2
1 |+ |z2

1 − z2
2 |+ |z2

2 − z2
3 |
}

= z2
2 |z2

3−z2
1 |+z2

3 |z2
1−z2

2 |+z2
1 |z2

2−z2
3 |

SIAM Rev., 23(1981) 395–396.

Solution by O. G. Ruehr (Michigan Technological University).

The identity can be rewritten in the form

I = (z1−z2)(z2−z3)|z2
3−z2

1 |+(z2−z3)(z1 +z3)|z2
1−z2

2 |+(z1 +z3)(z2−z1)|z2
2−z2

3 | = 0

Lemma. If |z| = |w| = 1 and 0 ≤ arg z ≤ argw ≤ π, then

izw|z2 − w2| = w2 − z2

Then, using the lemma, we have

I =
(z3 + z1)(z1 − z2)(z2 − z3)

iz1z2z3

{z2(z3 − z1)− z3(z1 + z2) + z1(z2 + z3)} = 0.

Also solved by [4 others] and the proposers using the same lemma as Ruehr.
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SIAM Rev., 24(1982) 340.

Problem 82-15, Flight in an Irrotational Wind Field, II, by M. S. Klamkin (University
of Alberta).

It is a known result (see Problem 61-4, SIAM Rev., 4(1962) 155) that if an aircraft
traverses a closed curve at a constant air speed with respect to the wind, the time taken
is always less when there is no wind, than when there is any bounded irrotational wind
field.

(i) Show more generally that if the wind field is kW (W bounded and irrotational
and k is a constant), then the time of traverse is a monotonic increasing function of
k (k ≥ 0).

(ii) Let the aircraft be subject to the bounded irrotational wind field Wi, i = 1, 2, and
let Ti denote the time of flight over the same closed path. If |W1| ≤ |W2| at every
point of the traverse, does it follow that T1 ≤ T2 ?

SIAM Rev., 25(1983) 407.

Solution by the proposer.

(i) Let the arc length s denote the position of the plane on its path and let w(s), θ(s)
denote, respectively, the speed and the direction of the wind with respect to the tangent
line to the path at position s. It is assumed that the wind field is continuous and that
1 > kw where the plane’s speed is taken as 1. By resolving kW into components along
and normal to the tangent line of the plane’s path, the aircraft’s ground speed is√

1− k2w2 sin2 θ + kw cos θ

and then the time of flight id given by

T (k) =

∮
ds√

1− k2w2 sin2 θ + kw cos θ

From Problem 61-4, it is known that T (k) ≥ T (0) with equality if and only if kW=0.
We now show that T (k) is a strictly convex function of k which implies the desired
result. Differentiating T (k) we get

dT

dk
= −

∮ {
w cos θ − kw2 sin2 θ√

1− k2w2 sin2 θ

}{√
1− k2w2 sin2 θ + kw cos θ

}−2

ds

Then T ′(0) = −
∮
w cos θ ds = 0 since W is irrotational. On differentiating again

T ′′ > 0 since the integrand consists of positive terms. Thus T (k) is strictly convex (for
W 6= 0).

(ii) The answer here is negative. Just consider two constant wind fields, both habving
the same wind speeds. Since the times of the traverses will in general be different, we
cannot have both T1 ≤ T2 and T2 ≤ T1.
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A problem related to part (i) is that the aircraft flies the same closed path twice with
the second time in the reverse direction. All the other conditions of the problem are
the same as before except that the wind field need not be irrotational. Then the total
time of flight is an increasing function of k (kW 6= 0). In this case if the aircraft only
flew one loop, the time of flight could be less than the time of flight without wind (just
consider a whirlwind). Here the total time of flight is

T (k) =

∮
ds√

1− k2w2 sin2 θ + kw cos θ
+

∮
ds√

1− k2w2 sin2 θ − kw cos θ

By the A.M.-G.M. inequality, the sum of the integrands is ≥ 2(1−k2w2)−1/2 ≥ 2 which
shows that T (k) ≥ T (0) with equality if and only if kW = 0. Then as before T ′′ > 0.
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SIAM Rev., 25(1983) 98.

Problem 83-5∗, An Isoperimetric Inequality, by M. S. Klamkin (University of Al-
berta).

Given that A1 is an interior point of the regular tetrahedron ABCD and that A2 is an
interior point of tetrahedron A1BCD, it is conjectured that

I.Q.(A1BCD) > I.Q.(A2BCD)

where the isoperimetric quotient of a tetrahedron T is defined by

I.Q.(T ) =
Vol(t)

[Area(T )]3/2

Also, one could replace Area3/2 by total edge length cubed.

Prove or disprove the conjecture and also consider the analogous problems in En for a
simplex for which there are many different isoperimetric quotients.

Editorial note. The 2-dimensional version of the problem was set by the proposer in
the 1982 U.S.A. Mathematical Olympiad.

SIAM Rev., 26(1984) 275–276.

Solution by the proposer.

Consider a tetrahedron T (PA1A2A3) with base A1A2A3 an equilateral triangle of side
2 as in Fig.1.

A1

A2

A3

B0B1

P
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Let PB0 = h be the altitude of T from P , PB1 = h1 the altitude of face PA2A3

from P , x1 = B1B0 (which is then ⊥ to A2A3) and similarly for the other two faces
having P as a vertex. The dihedral angle between the faces PA2A3 and A2A3A1 is
then ∠PB1B0 = α1, etc. Then

h = xi tanαi (i = 1, 2, 3) x1 + x2 + x3 =
√

3

Hence h =
√

3/
∑

cotαi and
Vol= V (T ) = 1/

∑
cotαi

Area = A(T ) =
√

3 + h1 + h2 + h3

or
A(T ) =

√
3 + h

∑
cscαi

Then, after some simplification.

I.Q.2 =
V 2

A3
=

1

3
√

3

∑
cotαi

(
∑

cotα1/2)3
=

F√
3

The desired result will now follow by showing that F is an increasing function in each
dihedral angle αi for the range

1

3
< cosαi < 1 or

√
2

3
< cos

αi

2
< 1

(Note that the dihedral angles must be > 0 and less than those for a regular tetrahe-
dron.)

It suffices to show ∂F/∂αi > 0. For convenience, we replace the αi by α, β, γ. Then
∂F/∂α > 0 is equivalent, after simplification, to

6
(
cos2 α

2

)
(cotα+ cot β + cot γ) >

(
cot

α

2
+ cot

β

2
+ cot

γ

2

)
Since 6 cos2(α/2) > 4, it suffices to show that

4(cotα+ cot β + cot γ) > cot
α

2
+ cot

β

2
+ cot

γ

2

or that 4 cotα > cot(α/2). The latter is equivalent to

2
(
tan

α

2

)(
1− 2 tan2 α

2

)
> 0

which follows since tan2(α/2) < 1
2
.
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SIAM Rev., 28(1986) 88–89.

Solution by Noam Elkies (Harvard University).

We extend the previous solution [26(1984) 275–276] for tetrahedra to simplexes. Let
S be a regular n-dimensional simplex of unit edge length and vertices AB1B2 . . . Bn.
Let S ′ be the simplex A′B1B2 . . . Bn where A′ is an interior point of S. We will show
that

[I.Q.(S ′)]n−1 =
[Vol.(S ′)]n−1

[Area(S ′)]n

is an increasing function of each of the base angles of S ′. By a base angle of S ′ we
mean the angle between the (n − 1)-dimensional face B0 opposite A′ and any other
(n−1)-dimensional face. By the vol. and area of S ′ we mean its n-dimensional content
and the sum of the (n − 1)-dimensional contents of all its faces, respectively (see
D. M. Y. Somerville, An Introduction to the Geometry of N Dimensions, Dover, New
York, 1958).

Let h0 be the altitude of a unit (n − 1)-dimensional regular simplex and V0 be the
(n − 2)-dimensional content of a unit (n − 2)-dimensional regular simplex. Then the
content of each (n− 1)-dimensional face of S = h0V0/(n− 1). Also let θ0 be the angle
between any two (n− 1)-dimensional faces of S. Since − cos θ0 is the inner product of
any two of the unit vectors V0, V1, . . ., Vn normal to the faces of S, we have as well
known that

∑
Vi = 0 and

cos θ0 = −V0 ·V1 =
−1

n(n+ 1)

∑
i6=j

Vi ·Vj =
1

n(n+ 1)

{∑
|Vi|2 −

∣∣∣∑Vi

∣∣∣2} =
1

n

Let B′
i be the face of S ′ opposite Bi, θ

′
i be the angle between B′

i and B0, and H ′ be
the altituse of S ′ from A′. Since A′ is an interior point of S, 0 < θ′i < θ0.

If P ′ is the projection of A′ on B0, the distance fromP ′ to the (n − 2)-dimensional
face of B0 opposit Bi is H ′ cot θ′i. Since B0 is regular, H ′ = ho/

∑
cot θ′i. Also, the

(n− 1)-dimensional content of B′
i is H ′V0(csc θ

′
i)/(n− 1). Thus,

Area(S ′) = AreaB0 +
∑

AreaBi =

(
V0

n− 1

)
(h+H ′

∑
csc θ′i)

=
V0h0

n− 1

∑
cot(θ′i/2)∑

cot θ′i
Vol(S ′) = V0h0H

′/(n(n− 1))

Consequently,

[I.Q.(S ′)]n−1 =
(n− 1)hn−2

0

nn−1V0

{∑
cot θ′i

}{∑
cot(θ′i/2)

}−n
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We now show that F (θ1, θ2, . . . , θn) ≡ {cot θi}{
∑

cot(θi/2)}−n is an increasing function
in each of the variables θi for 0 < θi < cos−1(1/n).

By symmetry, it suffices to show that ∂F/∂θ1 > 0. Here,{∑
cot(θi/2)

}n+1 ∂F

∂θ1

=
n

2
csc2(θ1/2)

{∑
cot θi

}
− csc2 θ1

{∑
cot(θi/2)

}
Clearly {

∑
cot(θi/2)}n+1 > 0, and furthermore

n

2
csc2(θ1/2)− (n+ 1) csc2 θ1 = csc2 θ1

{
2n cos2(θ1/2)− n− 1

}
=

n cos θ1 − 1

sin2 θ1

> 0

Since also

(n+ 1)
∑

cot θi −
∑

cot(θi/2) =
∑ n cos θi − 1

sin θi

> 0

it follows that ∂F/∂θ1 > 0.

Editorial note. There is a corresponding result for simplexes S ′′ which contain S. Let
A′′ be a point exterior to S such that the simplex S ′′ : A′′B1B2 . . . Bn covers S. It
then follows from the previous analysis that I.Q.(S ′′) is a decreasing function of each
of the base angles θ′i. Note that here θ′i > cos−1(1/n). [M.S.K.]
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SIAM Rev., 26(1984) 273.

Problem 84-13, A Minimum Value, by M. S. Klamkin (University of Alberta).

Determine the minimum value of

I =
(y − z)2 + (z − x)2 + (x− y)2

(x+ y + z)2
· (v − w)2 + (w − u)2 + (u− v)2

(u+ v + w)2

subject to ux+ vy + wz = 0 and all the variables are real.

SIAM Rev., 27(1985) 256.

Solution by Mark Kantrovitz (Secondary school student, Maimonides School, Brook-
line, MA).

By Cauchy’s inequality,∑
(y − z)2 ·

∑
(v − w)2 ≥

{∑
(y − z)(v − w)

}2

=
{∑

x ·
∑

u
}2

where thesums arecyclic over x, y, z and u, v, w. Thus I ≥ 1 with equality if and only
if

(y − z, z − x, x− y) = k(v − w,w − u, u− v).

Solution by T. M. Hagstrom (University of Wisconsin) and W. B. Jordan (Scotia,
NY).

Let P= xi + yj + zk, Q= ui + vj + wk, and R= i + j + k. Then

I =
(P×R)2

(P ·R2 ·
(Q×R)2

(Q ·R2 and |bfP ·Q = 0 (1)

If a is the angle between P and R, and b is the angle between Q and R, then I =
tan2 a tan2 b. In terms of a spherical triangle whose sides are a, b, c with c = π/2,
I = sec2C. Clearly the minimum value is 1, occurring for C = π.

B. D. Dore (University of Reading, Reading, UK) shows that the minimum value 1
follows immediately from (1) by replacing (P·R)2(Q·R)2 by its equivalent {(P×R) · (Q×R)}2.

Editorial note. In the second solution, we can just as well use three vectors in Rn,
i.e., P= (x1, x2, . . . , xn), Q= (u1, u2, . . . , un), R= (1, 1, . . . , 1). Also, (P×R)2 is to be
replaced by its equivalent [P2R2−(P·R)2], etc. J. A. Wilson (Iowa State University)
obtained this extension analytically. [M.S.K.]

Also solved by [18 others] and the proposer.
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SIAM Rev., 27(1985) 250.

Problem 85-10, An Identity, by M. S. Klamkin (University of Alberta) and O. G. Ruehr
(Michigan Technological University).

Let

S(x, y, z,m, n, r) ≡ xm+1

m!

n∑
j=0

r∑
k=0

yjzk(j + k +m)!

j!k!

Show that if x+ y + z = 1, then

S(x, y, z,m, n, r) + S(y, z, x, n, r,m) + S(z, x, y, r,m, n) = 1.

SIAM Rev., 28(1986) 243–244.

Solution by A. J. Bosch and F. W. Steutel (Eindhoven University of Technology).

First let x > 0, y > 0, z > 0 (and x+y+z = 1) and consider the following probabilistic
model.

Three urns labelled I, II and III contain m, n and r balls respectively. We perform
independent drawings by choosing I, II and III with probabilities x, y and z and taking
one ball from the urn chosen (without replacement). Let PII be the probability defined
by

PI = P (I is the first urn to be chosen when empty).

Then by elementary combinatorics we have

PI = x
n∑

j=0

r∑
k=0

(m+ j + k)!

m j!k!
xmyjzk

The probabilities P[II] and PIII are defined similarly. Since eventually an empty urn
will be chosen, we have PI + PII + PIII = 1. Finally, a polynomial in x and y that is
identically 1 for x > 0, y > 0, x+ y < 1 is also identically 1 without restriction.

Also solved by S. Lj. Damjanovi (TANJUG Telecommunication Center, Belgrade,
Yugoslavia), [3 others] and the proposers.

Editorial note: Both Damjanovic and the proposers found the generalization

n∑
i=1

xi

p1∑
m1=0

xm1
1

m1!

p2∑
m2=0

xm2
2

m2!
· · ·

pn∑
mn=0

xmn
n

mn!
δmi,pi

(m1 +m2 + · · ·+mn)! = 1 (∗)

using the generating function

n∑
i=1

xi

{
1∏n

j=1,j 6=i(1− uj)

}{
1

1−
∑n

s=1 usxs

}
=

1∏n
i=1(1− ui)

(∗∗)
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The assertion is proved by repeated use of the following elementary identities:

∞∑
p=0

up

p∑
m=0

xm

m!
(m+ k)! =

1

(1− u)
1

(1− xu)k+1

1

1− u

∞∑
q=0

vq

q∑
s=0

ys(s+ k)!

s!(1− xu)s+k+1
=

k!

(1− u)(1− v)(1− xu− yv)k+1

Finally to show that (∗∗) is an elementary algebraic identity, let

PN =
N∏

i=1

(1− u), LN =
N∑

i=1

xi, RN =
N∑

i=1

uixi

Then, if LN = 1, we have

1

PN

=
LN − 1 + 1−Rn

PN(1−RN)
=

N∑
i=1

xi(1− ui)

PN(1−RN)

=
N∑

i=1

xi

{
1∏N

j=1,j 6=i

(1− uj)

}{
1

1−
∑N

s=1 usxs

}

which is (∗∗).

A simpler derivation of (∗) can be easily obtained by extending the probabilistic argu-
ment in the featured solution to n urns.
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SIAM Rev., 27(1985) 446.

Problem 85-15∗, Extension of Routh’s Theorem to Spherical Triangles, by A. Sharma
and M. S. Klamkin (University of Alberta).

Routh [1] discovered that if the sides BC, CA, ABof a plane triangleABC are divided
at points L, M , N in the repective ratios λ : 1, µ : 1, ν : 1, the cevians AL, BM , CN
intersect to form a triangle whose area is

(λµν − 1)2

(λµ+ λ+ 1)(µν + µ+ 1)(νλ+ ν + 1)

yimrs that of ABC. Determine the analogous area ratio formula for a spherical triangle
(convex). Also, since it is unlikely that the area ratio here is independent of the sides of
the triangle, determine the extreme values of this ratio. Even a solution of the special
case BC = CA = AB, λ = µ = ν = 2 would be of interest.

REFERENCE

[1] H. S. M. Coxeter, Introduction to Geometry, John Wiley, New York, 1969, pp.211, 219–220.

Partial solution by W. B. Jordan (Scotia, New York).

Since there is apparently no simple formula in the general case for the area of the inner
triangle, we consider only the equilateral case.

2A

2a

a− w

a− w

B

C

K

w

d
m

Let the triangle have angles 2Aand sides 2a, split by the cevians into a−w and a+w.
Let the cevians intersect each other at an angle K and meet the sides at an angle C
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splitting 2A into B and 2A−B. Let m be the median. Then,

2 sinA cos a = 1, 2 cosA sin a = sinm,

cosK = − cosB cosC + sinB sinC cos(a− w),

cos 2A = − cosB cosC + sinB sinC cos d

Also,

cosK − cos 2A = sinB sinC (cos(a− w)− cos d) ,

cos d = cosm cosw,

cos(a− w)− cos d = tan a sin(a+ w),

and
sinB

sin(a− w)
=

sinC

sin 2a
=

sin 2A

sin d

so that

sinB sinC = sin(a− w) sin 2a sin2 2A/ sin2 d

cosK − cos 2A =
sin(a− w) sin 2a sin2 2A tan a sin(a+ w)

1− cos2m cos2w

=
1
2
sin2m(sec2 a cos2w − 1)

1− cos2m cos2w

The area of the original triangle is 6A − π; of the inner triangle 3K − π. Their ratio
is expressible by means of an arccosine.

[[The following solution appeared much later.]]

SIAM Rev., 38(1996) 319–320.

Solution by Zuo Quan-Ru (Yangzhou Teacher’s Colege, Jiangsu, China).

Theorem. Take the sphere to have unit radius and let the spherical triangle A1A2A3

have sides α1, α2, α3 (in radians). The arclengths A2A3, A3A1, A1A2 are divided by
the points B1, B2, B3 in the ratios λ1 : 1, λ2 : 1, λ3 : 1 respectively. Suppose A1B1

intersects A2B2 at C3, A2B2 intersects A3B3 at C1 and A3B3 intersects A1B1 at C2.
If the areas of spherical triangles A1A2A3 and C1C2C3 are δ and δ′ respectively, then

sin(δ′/2)

sin(δ/2)
=

(x12x23x31 − x13x32x21)
2
√

(1 + cosα1)(1 + cosα2)(1 + cosα3)√
(|c2||c3|+ c2 · c3)(|c3||c1|+ c3 · c1)(|c1||c2|+ c1 · c2)

(1)

where

xi,i+1 =
sin
(

αi

1+λi

)
sinαi

, xi,i−1 =
sin
(

λiαi

1+λi

)
sinαi

, xi±3,j±3 = xi,j
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and
ci = xi+1,ixi+2,iai + xi+1,ixi+2,iai+1 + xi+2,ixi+1,i+2ai+2

in which ai are unit vectors and ai · aj = cosαk with i, j, k taken cyclically.

Proof. Let
−−→
OAi = ai,

−−→
OBi = bi, (i = 1, 2, 3), where O is the center of the sphere so

|ai| = |bi| = 1. Since A1A2A3 is a nontrivial spherical triangle, {a1, a2, a3} is a linearly
inependent set. Thus we can assume det(a1, a2, a3) > 0. Then

bi = xi1a1 + xi2a2 + xi3a3

where x11 = x22 + x33 = 0

x12 =
sin

�
α1

1+λ1

�

sin α1
x13 =

sin
�

λ1α1
1+λ1

�

sin α1

x23 =
sin

�
α2

1+λ2

�

sin α2
x21 =

sin
�

λ2α2
1+λ2

�

sin α2

x31 =
sin

�
α3

1+λ3

�

sin α3
x32 =

sin
�

λ3α3
1+λ3

�

sin α3

This is because ai · bj = cos ÂiBj.

The plane OA2B2 and the plane OA3B3 intersect on the straight line OC1, whose
direction is

(a2 × b2)× (a3 × b3) = (a2, b2, b3)a3 − (a2, b2, a3)b3

= (x23x3a3 + x21b3)(a1, a2, a3)

= (x21x31a1 + x21x32a2 + x23x31a3)(a1, a2, a3)

and we obtain

c1 = x21x31a1 + x21x32a2 + x23x31a3

c2 = x31x12a1 + x32x12a2 + x32x13a3

c3 = x13x21a1 + x12x23a2 + x13x23a3

co-directional with
−−→
OC1,

−−→
OC2,

−−→
OC3, respectively. Then we have cos ĈiCj = ci ·

cj/|ci||cj|. From the area formula for a spherical triangle, we have

sin2(δ/2) =
1

2(1 + cosα1)(1 + cosα2)(1 + cosα3)

∣∣∣∣∣∣
1 cosα3 cosα2

cosα3 1 cosα1

cosα2 cosα1 1

∣∣∣∣∣∣
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and

sin2(δ′/2) =
1

2(1 + cos Ĉ2C3)(1 + cos Ĉ3C1)(1 + cos Ĉ1C2)

∣∣∣∣∣∣∣
1 cos Ĉ1C2 cos Ĉ1C3

cos Ĉ1C2 1 cos Ĉ2C3

cos Ĉ1C3 cos Ĉ2C3 1

∣∣∣∣∣∣∣
=

1
2(|c2||c3|c2 · c3)(|c3||c1|c3 · c1)(|c1||c2|c1 · c2)

∣∣∣∣∣∣
c1 · c1 c1 · c2 c1 · c3

c2 · c1 c2 · c2 c2 · c3

c3 · c1 c3 · c2 c3 · c3

∣∣∣∣∣∣
=

(a1,a2,a3)2

2(|c2||c3|c2 · c3)(|c3||c1|c3 · c1)(|c1||c2|c1 · c2)

∣∣∣∣∣∣
x21x31 x21x32 x23x31

x31x12 x32x12 x32x13

x11x21 x12x23 x13x23

∣∣∣∣∣∣
2

=
(x12x23x31 − x13x21x32)4

2(|c2||c3|c2 · c3)(|c3||c1|c3 · c1)(|c1||c2|c1 · c2)

∣∣∣∣∣∣
1 cos α3 cos α2

cos α3 1 cos α1

cos α2 cos α1 1

∣∣∣∣∣∣
So we have proved (1).
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SIAM Rev., 27(1985) 576.

Problem 85-26, Inequality for a Simplex, by M. S. Klamkin (University of Alberta).

If O, I, R denote the circumcenter, incenter, circumradius and inradius, respectively,
of an n-dimensional simples, prove that

R2 ≥ n2r2 +OI
2

and with equality if and only if the simplex is regular.

SIAM Rev., 28(1986) 579–580.

Solution by the proposer.

First we derive a more general inequality. Let Fi denote the content of the (n − 1)-
dimensional face opposite vertex Ai of a given simplex, i = 0, 1, . . . , n. If P is an
arbitrary point, then by Cauchy’s inequality,∑

Fi

∑
FiPAi

2 ≥
{∑

FiPAi

}2

(1)

and with equality if PA0 = PA1 = · · · = PAn, i.e., if P coincides with O. Letting P.
Ai, I denote the vectors from O to P , Ai, I respectively, we get∑

FiPAi
2

=
∑

Fi(P−Ai) · (P−Ai) =
∑

Fi(R
2 + P2 − 2P ·Ai)

= F
(
R2 + P2 − 2P ·

∑
FiAi

/∑
Fi

)
= F

(
R2 +OP

2 − 2P · I
)

(here F =
∑
Fi and I=

∑
FiAi/F ). Then, since 2P · I = P2 + I2 − (P− I)2

∑
Fi

∑
FiPAi

2
= F 2

(
R2 + PI

2 −OI2
)

Consequently, ∑
FiPAi ≤ F

{
R2 + PI

2 −OI2
}1/2

(2)

and with equality if and only if P coincides with O. Now if hi and ri denote the
distances from Ai and P , respectively, to the face Fi, PAi ≥ hi − ri. Thus,∑

FiPAi ≥
∑

Fi(hi − ri) =
∑

Fihi −
∑

Firi = (n+ 1)nV − nV = n2V (3)

where V is the volume of the simplex. Coupling (2) and (3) and using nV = rF , we
obtain

R2 ≥ n2r2 +OI
2 − PI2

(4)
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Finally, letting P coincide with I, we obtain the desired inequality

R2 ≥ n2r2 +OI
2

(5)

For equality, PAi = hi−ri for all i, or equivalently, the simplex is orthocentric with the
orthocentre coinciding with the circumcenter. This requires the simplex to be regular
since

A2
i = R2 and Ai · (Aj −Ak) = 0⇒ (Ai −Aj)

2 = (Ai −Ak)
2

for all i, j, k with i 6= j, k.
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SIAM Rev., 29(1987) 470-471.

Problem 87-15, An Optimum Multistage Rocket Design, by M. S. Klamkin (University
of Alberta).

In a recent paper [1] on optimization in multistage rocket design, Peressini reduced his
problem to minimizing the function

ln

{
M0 + P

P

}
=

n∑
i=1

{lnNi + ln(1− Si)− ln(1− SiNi)}

subject to the constraint condition

n∑
i=1

ci lnNi = vf (constant)

Here the Si and the ci are given structural factors and engine exhaust speeds, respec-
tively. He then obtains the necessary optimization equations using Lagrange multipli-
ers. These equations are then solved explicitly for the special case when Si = S, ci = c
for all i.

For the latter special case, show how to determine the minimum in a simpler fashion
without using calculus.

REFERENCE

[1] A. L.Peressini, Lagrange multipliers and the design of mutistage rockets, UMAP J., 7(1986)
249–262.

SIAM Rev., 30(1988) 508–509.

Solution by the proposer.

More generally, the Si need not be the same. Thus we wish to maximize P ≡
∏

(1−xi),
where xi = SiNi and where the product and sums here and subsequently are all from
i = 1 to n. Since

∑
lnNi = vf/c = constant, the Si are specified, tacitly 0 < xi < 1,

and our constraint condition is
∏
xi = constant.

Using the concavity of ln(1− x) for 0 < x < 1 and the A.M.-G.M. inequality, we have
that ∑

ln(1− xi) ≤ n ln(1−
∑

xi/n) ≤ n ln(1−
∏

x
1/n
i )

Thus the maximum is taken on for xi = SiN − i = constant or Ni = λ/Si, where
λn = evf /c

∏
Si. Finally,

Min(M0 + P )/P = evf /c(1− λ)−n
∏

(1− Si).
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Problem 88-5, Characterizations of Parabolic Motion, by M. S. Klamkin (University
of Alberta).

By a parabolic motion we mean the motion which ensues when a particle is projected
in a uniform gravitational field and is not subject to any other frictional forces. Equiv-
alently, the equations of motion are of the form x = at, y = bt+ ct2 and the trajectory
is a parabola.

Let RP and RQ be two tangents to the trajectory and let RT be a vertical segment
as in Fig. 1.

P

Q

R

T

x

y

Fig. 1

The following properties of the motion are known:

PR = VP t and RT = gt2/2 [1]

where VP is the speed of the particle at P and t is the time for the particle to go from
P to T .

PR/RQ = VP/VQ [2]

and it takes the particle the same time to go from P to T as from T to Q.

Show that either properties [1] or [2] characterize parabolic motion, i.e., if either [1] or
[2] holds for all points on a smooth trajectory, the motion must be parabolic.

SIAM Rev., 31(1989) 130-131.

Solution by Frank Mathis (Baylor University).

Let x = x(t) and y = y(t) be a smooth trajectory, i.e., x and y are continuously
differentiable functions of t. We may assume without loss of generality that there is
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an interval I containing zero with x′(t) > 0 for t in I. Select P , R and T as in Fig. 1
with coordinates (x(tP ), y(tP )), (x(tT ), yR) and (x(tT ), y(tT )), respectively, so that tP
and tT are in I. Then

VP =
√
x′(tP )2 + y′(tP )2 (1)

and the tangent line PR may be parameterized by

x = x(tP ) + x′(tP )s, y = y(tP ) + y′(tP )s

for 0 ≤ s ≤ (x(tT )− x(tP ))/x′(tP ). It follows that

yR = y(tP ) +
y′(tP )

x(tP )
[x(tT )− x(tP )] (2)

PR =
x(tT )− x(tP )

x′(tP )

√
x′(tP )2 + y′(tP )2 (3)

First we will assume that property [1] holds. By simple translations we may take
tP = x(tP ) = y(tP ) = 0. Set t = tT so that t is the time for the particle to go from P
to T . Then since PR = tVP , we have from (1) and (3) that

x(t) = x′(0)t (4)

Thus x is linear for any t in I. But then x′ is constant on I and so by the continuity
of x′, we may take I to be all of R.

Now since QR = 1
2
gt2, yR − y(t) = 1

2
gt2, and using (2) and (4), we find that

y(t) = y′(0)t− 1

2
gt2

Therefore, property [1] implies parabolic motion.

Next we assume property [2]. Let Q be as in Fig. 1 with coordinates (x(tQ), y(tQ)) and
tQ in I. Then as above we have

VQ =
√
x′(tQ)2 + y′(tQ)2

RQ =
x(tQ)− x(tT )

x′(tQ)

√
x′(tQ)2 + y′(tQ)2 (5)

yR = y(tQ) +
y′(tQ)

x′(tQ)
[x(tQ)− x(tT )]

Because the particle takes the same time to go from P to T as from T to Q, we may
set tT = t, tP = t− s and tQ = t+ s. Since PR/RQ = VP/VQ, we then have

x′(t+ s)[x(t)− x(t− s)]− x′(t− s)[x(t+ s)− x(t)] = 0 (6)
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This condition holds for all t and s with t± s in I. In particular, if we let t = s,

x′(2t) = x′(0)

[
x(2t)− x(t)
x(t)− x(0)

]
and it follows that x is at least twice differentiable for t in I, t 6= 0.

Returning to (6), we may now differentiate both sides with respect to s and then divide
by s to obtain

x′′(t+ s)

[
x(t)− x(t− s)

s

]
+ x′′(t− s)

[
x(t+ s)− x(t)

s

]
= 0

Then letting s→ 0 and using the continuity of x′′, we see that

2x′′(t)x′(t) = 0

But x′(t) > 0 for t in I. So x′′ must be identically zero for t in I, t 6= 0. Hence, using
the continuity of x′ as before, we conclude that x is linear for all t.

Finally, to show that y is quadratic in t, let us again set tP = x(tP ) = y(tP ) = 0 and
let t = tQ so that tT = t/2, x(tT ) = x′(0)t/2 and x(tQ) = x′(0)t. Then from (2) and
(5) we have

y′(0)
t

2
= yR = y(t)− y′(t) t

2

That is, y satisfies the differential equation

y′ =
2

t
y − y′(0)

which has the solution
y = y′(0)t+ ct2

where c is an arbitrary constant. Thus we conclude that property [2] also implies a
motion that is parabolic.

Also solved by Seshadri Sivakumar and the proposer.
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SIAM Rev., 30(1988) 504.

Problem 88-15, An Inverse Potential Problem, by M. S. Klamkin (University of Al-
berta).

The following is a known result and is given as a problem in [1]:

“Current enters an infinite plane conducting sheet at some point P and leaves at
infinity. A circular hole, which does not include P , is cut anywhere in the sheet. Show
that the potential difference between any two points on the edge of the hole is twice
what it was between the same two points before the hole was cut.”

(i) Show that the above result can be extended to a general two-dimensional flow of
an inviscid incompressible fluid.

(ii)∗ Prove or disprove that only a circular hole has this property.

(iii) Show that in three dimensions, the analogous result for a sphere does not hold
if the undisturbed flow is due to a source, but it does hold if the potential of the
undisturbed flow is a spherical harmonic of degree n.

REFERENCE

[1] W. R. Smythe, Static and Dynamic Electricity, McGraw-Hill, New York, 1939, p.253, #51.

SIAM Rev., 31(1989) 678–682.

Solution of (i) and (iii) by the proposer.

(i) Let f(z) denote the complex potential of the two-dimensional irrotational flow of
an inviscid incompressible fluid in the (x, y) plane and let all the singularities of f(z)
be a distance greater than a from the origin.

If a circular cylinder |z| = a is introduced into the flow, then by the Circle Theorem
of Milne-Thompson [1], the complex potential of the disturbed flow becomes f(z) +
f̄(a2/z̄). Letting f(z) = f(x+ iy) = u(x, y) + iv(x, y), we get

f̄(a2/z̄) = f̄(a2(x+ iy)/(x2 + y2))

= u(a2x/(x2 + y2), a2y/(x2 + y2))− iv(a2x/(x2 + y2), a2y/(x2 + y2))

Since the velocity potential is the real part of the complex potential and since for points
(x, y) on the circle |z| = a, a2x/(x2 +y2) = x and a2y/(x2 +y2) = y, we get the desired
result.

(iii) Let φ0(x, y, z) be the velocity potential of the irrotational flow of the incompressible
inviscid fluid. The flow may contain singularities, but it is assumed that they all lie
outside the sphere S : r2 = x2 + y2 + z2 = a2. Then, by the Sphere Theorem of Weiss
[2], if the sphere S is introduced into the flow, the flow is disturbed and its new velocity
potential becomes

φ0(x, y, z) + φ1(x, y, z)
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where

φ1(x, y, z) = (a/r)φ0(a
2x/r2, a2y/r2, a2z/r2)

− (2/ar)

∫ a

0

λφ0(λ
2x/r2, λ2y/r2, λ2z/r2) dλ

For a source m at the point f= (f, 0, 0), f > a, φ0 = m/|r − f |. This does not give
the analogous result that the potential difference across any two points of the sphere
is increased by a constant factor for the disturbed flow.

If the potential of the undisturbed flow is a spherical harmonic of degree n, φ0 =
Hn(x, y, z). It then follows that

φ1 = {n/(n+ 1)}{a2n+1/r2n+1}Hn(x, y, z)

Thus, in the disturbed flow, the potential difference across any two points on the sphere
is increased by the factor 1 + n/(n+ 1).

REFERENCES

[1] L. M. Milne-Thompson, The circle theorem and the cylinder theorem, Rev. Roumaine Math.
Pures Appl., 14(1969) 399–409.

[2] P. Weiss, On hydrodynamical images: Arbitrary irrotational flow disturbed by a sphere, Proc.
Cambridge Philos. Soc., 40(1944) 259–261.

Solution of (ii)∗ by Carl C. Grosjean (State University of Ghent, Belgium).

This problem may be examined with the technique of conformal mapping. First, a
typical example.

Let the infinite conducting plane, where a circular hole with radius R and center at
O′ has been cut out, be referred to an orthogonal frame O′x′y′. A second conducting
plane contains an orthogonal frame Oxy. Let

z′ = (z2 + c2)1/2, z′ = x′ + y′i, z = x+ yi (1)

with some positive real constant c as the conformal mapping relating (x, y) and (x′, y′)
to one another. We wish the circular edge x′2 + y′2 = R2 to be mapped on the oval of
Cassini:

(x2 + y2)2 + 2c2(x2 − y2) + c4 = 4c4

which constitutes the boundary between the convex and nonconvex curves comprised
in the bundle

(x2 + y2)2 + 2c2(x2 − y2) + c4 = λ4

where λ can take on any positive value greater than c. (The limit case λ = c yields
the lemniscate of Bernoulli.) This happens for 4c4 = R4. Hence (1) becomes

z′=(z2+ 1
2
R2)1/2

(2)
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and x′ and y′ show corresponding results.

When the point (x′, y′) runs over a circle with radius ρ ≥ R and center at O′ in the
(x′, y′)-plane, the point (x, y) describes a convex oval of Cassini with its focal points
on the y-axis at ±R/sqrt2.

If, in the (x′, y′)-plane, a point source of current is located at P ′((a2 + 1
2
R2)1/2, 0), with

a > R/
√

2, the disturbed potential is

Φ(x′, y′) = −C
2

ln
[
a2 + 1

2
R2 − 2

(
a2 + 1

2
R2
)1/2

x′ + x′2 + y′2
]

−C
2

ln
[
1− 2R2(a2+ 1

2
R2)1/2x′−R4

(a2+ 1
2
R2)(x′2)+y′2

]
, x′2 + y′2 ≥ R2

while if P ′ is mapped into P (x = a, y = 0), the ;potential becomes

Ψ(x, y) = − ln

{
a2 +

1

2
R2 − 2

(
a2 +

1

2
R2

)1/2

u(x, y)

+

[
(x2 + y2)2 +R2(x2 − y2) +

1

4
R4

]1/2
}

−C
2

ln

{
1−

2R2(a2 + 1
2
R2)1/2u(x, y)−R4

(a2 + 1
2
R2)[(x2 + y2)2 +R2(x2 − y2) + 1

4
R4]1/2

}

where (x2 +y2)2 +R2(x2−y2)− 3
4
R4 ≥ 0 and u(x, y) = Re(z2 + 1

2
R2)1/2. This potential

is singular at x = a, y = 0. At all other points of the plane, exterior to the oval edge, Ψ
is a solution of the (homogeneous) Laplace equation, and at any point on the edge, the
current component along the normal is equal to zero. At two arbitrarily chosen points
(x1, y1) and (x2, y2) on the oval edge, the ratio of the disturbed potential diffrence

Ψ(x1, y1)−Ψ(x2, y2) = C

{
ln

[
1−

√
2 sgnx

(a2 + 1
2
R2)1/2

(
3

2
R2 + x2 − y2)1/2 +

R2

a2 + 1
2
R2

]}∣∣∣∣∣
x2

x1

and the undisturbed potential difference

V (x1, y1)− V (x2, y2) =
C

2

[
ln

(
1− 2

x

a
+
x2 + y2

a2

)]∣∣∣∣x2

x1

could be equal to 2 if and only if the expression

1− (
√

2 sgnx/(a2 + 1
2
R2)1/2)(3

2
R2 + x2 − y2)1/2 + (R2/a2 + 1

2
R2)

1− 2(x/a) + (x2 + y2)/a2

were constant for all points (x, y) on the oval, which it is not. Thus the property that
holds for a circular hole does not hold for a hole bounded by an oval of Cassini.
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The generalization may be formulated as follows. Let

z′ = f(z), z′ = x′ + y′i, z = x+ yi (3)

be a conformal mapping with the following properties:

(a) The mapping is bijective at least between the part of the complex z′-plane char-
acterized by |z′| ≥ R and the part of the complex z-plane outside a closed curve CR

whose map in the z′-plane is the circle |z′| = R.

(b) When z′ runs over a circle with radius ρ ≥ R(> 0) and center at O′, the point
z describes a closed trajectory Cρ in the z-plane whereby Cρ1 lies entirely inside Cρ2

when ρ2 > ρ1.

For (b) to hold, f(z) should at least be continuous.

Let (3) then be rewritten as

x′ = Re f(x+ yi) ≡ u(x, y), y′ = Im f(x+ yi) ≡ v(x, y)

In this notation, the equation of Cρ reads

u2(x, y) + v2(x, y) = ρ2, ρ ≥ R

Assume the Cartesian (x, y)-plane to be an infinite conducting sheet and let electric
current enter at the point P (a, b) outside CR. The difference of the (unperturbed)
potentials existing at any two points (x1, y1) and (x2, y2) located on CR is

V (x1, y1)− V (x2, y2) =
C

2
{ln[(a− x2)

2 + (b− y2)
2]− ln[(a− x1)

2 + (b− y1)
2]}

with C some positive proportionality factor when V (x, y) is assumed to decrease with
increasing distance between (x, y) and (a, b).

Now, let a hole with edge CR be cut in the (x, y)-plane. Since CR is transformed into
the circle |z′| = R by (3), the disturbed potential Ψ(x, y) can be directly deduced from
the potential in the conducting (x′, y′)-plane resulting from the current that enters the
plane sheet at P ′(a′, b′),

a′ = u(a, b), b′ = v(a, b)

and is disturbed by the circular hole with edge |z′| = R. In this way, we find, on
the basis of the same principle as in the example, that the property of doubling the
potential difference at any two points of CR by cutting a hole bounded by that curve
holds if and only if

u2(a, b) + v2(a, b)− 2u(a, b)u(x, y)− 2v(a, b)v(x, y) +R2

a2 + b2 − 2ax− 2by + x2 + y2
(4)
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is a constant when the point (x, y) runs over the edge CR. A type of conformal mapping
for which this ratio is indeed a constant, so that the mentioned property exists, is the
linear transformation

z′ = (A+Bi)z +K + Li, A+Bi 6= 0 (5)

We easily verify that the ratio (4) is equal to A2 +B2 when (x, y) runs over CR, whose
map in the (x′, y′)-plane, deduced from (5), is |z′| = R. This is not astonishing because
CR is itself a circle.

For any (nondegenerate) circle

CR : x2 + y2 + 2mx+ 2ny +m2 + n2 = p2, p > 0 (6)

which we choose in the (x, y)-plane and which corresponds to |z′| = R in the (x′, y′)-
plane, infinitely many conformal mappings of the form (5) may be used.

We can show that (4) is a constant solely for all possible circular holes in the (x, y)-plane
for which P is lying outside, as follows. The numerator in (4) represents the square of
the distance between P ′ and some point Q′ on |z′| = R. Similarly, the denominator
represents the square of the distence between P and the corresponding point Q on
CR. Taking into account that conformal mapping conserves the angle between any two
directions, we see that (4) can only be a constant if the figure comprising CR, Q, P and
the straight line PQ in the (x, y)-plane differs only from that consisting of |z′| = R,
Q′, P ′ and the straight line P ′Q′ in the (x′, y′)-plane by a scale factor. Therefore CR

is a circle, and the scale factor between {CR, P} and {|z′| = R,P ′} is p/R, where pis
the radius of CR. The conclusion is: only the circular hole in an infinite conducting
plane sheet gas the “doubling” property.
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[[In the following problem, and at SIAM Rev., 32(1990) 308, and again at SIAM Rev.,
33(1991) 118, in the display after the quote, there is printed

∠A = ∠BOC, . . .

whereas surely it should be 2A ??]]
SIAM Rev., 31(1989) 320.

Problem 89-10, Three Particles Moving on a Circle, by Murray S. Klamkin (Uni-
versity of Alberta).

The following is a result ascribed to Newton:

“Three equal particles A, B, C move on the arc of a given circle in such a way that
their center of gravity remains fixed: prove that, in any position, their velocities are
as sin 2A : sin 2B : sin 2C.”

We note that we can deduce that the angles are given by

∠2A = ∠BOC, ∠2B = ∠COA, ∠2C = ∠AOB

where O is the center of the circle, and that the velocities are signed angular speeds.
Show, conversely, that if A, B, C are moving on a circle such that their angular speeds
are as sin ∠BOC : sin ∠COA : sin ∠AOB, respectively, then the centroid of A, B, C
remains fixed.

Given the circle, the centroid, and the position of A at any time, show how to find the
corresponding positions of B and C.

SIAM Rev., 32(1990) 308.

Solution by W. Weston Meyer (General Motors Research Laboratories).

The proposition holds true not only for circular orbits but for logarithmic spirals as
well. That is to say:

In polar coordinates, let Γa be the logarithmic spiral r = exp(aθ) and let
O be the origin r = 0. If A, B, C are moving on Γa such that their linear
speeds are as sin ∠BOC : sin ∠COA : sin ∠AOB, respectively, then the
centroid of A. B, C remains fixed.

We will geometrize in the complex plane, taking z = r exp(iθ). Spiral Γa is the locus
of

z = e(a+i)θ (−∞ < θ <∞)

and the speed of z, as a point moving along Γa, is

s(z) =

∣∣∣∣dzdθ
∣∣∣∣ θ̇ = |(a+ i)e(a+i)θ|θ̇ =⇒ ż =

(a+ i)

|a+ i|
eiθs(z)

where the dot accent signifies differentiation with respect to time.
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Let z1, z2, z3 be three points on Γa with centroid zc = 1
3
(z1 + z2 + z3). The velocity of

zc is expressible as

żc =
(a+ i)

3|a+ i|
[eiθ1s(z1) + eiθ2s(z2) + eiθ3s(z3)]

Abbreviating ωj = exp(iθj), assume that

s(zj) = sin(θl − θk) =
1

2i

(
ωj

ωk

− ωk

ωl

)
{(j, k, l) = (1, 2, 3), (2, 3, 1), (3, 1, 2)}

Then

żc =
(a+ i)

6i|a+ i|

[
ω1

(
ω3

ω2

− ω2

ω3

)
+ ω2

(
ω1

ω3

− ω3

ω1

)
+ ω3

(
ω2

ω1

− ω1

ω2

)]
≡ 0

We refer to the unit circle Γ0 in explaining how to locate B and C for a given centroid

G and a given A such that AG ≤ δ = (2− 2 ·OG2
)1/2:

Produce line AG half the distance AG beyond G to point A1 so that AG =
2 ·GA1. Construct a chord of Γ0 having A1 as its midpoint. This is side BC
of triangle ABC. If A1 coincides with O, then BC can be any diameter of
the circle. Otherwise, it is the unique chord through A1 perpendicular to
OA1.

If and only if AG = δ/2 will one of the other two points B, C coincide with A. But no
point of Γ0 lies at a distance less than δ/2 or greater than δ from G, unless OG > 1

3
.

Then an arc of Γ0 is inaccessible to A, B, C and there are two locations where two of
the points, moving in opposite directions, can coincide.

SIAM Rev., 33(1991) 118.

Editorial note: As a supplement to the previous solution we have the following related
results by W. Weston Meyer (General Motors Research Laboratories).

If A′, B′, C ′ move on a circle such that their angular speeds are as cot 1
2
∠A′ :

cot 1
2
∠B′ : cot 1

2
∠C ′, respectively, then the incircle of triangle A′B′C ′ re-

mains fixed.

We shall not prove this, but the converse, linking it to the result “ascribed to Newton”.
Our figure shows a triangle A′B′C ′ with circumscribed circle Γ′ and inscribed circle
Γ, the latter contacting A′B′C ′ in points A, B, C. Line segments AA′′, BB′′, CC ′′

are the altitudes of ABC, produced so as to be chords of Γ. They concur in point
H, the orthocenter of ABC. Since arcs B′′A and AC ′′ on Γ subtend equal angles at
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B and C, respectively (both angles are complementary to ∠A), it follows that A is
the midpoint of arc B′′C ′′, chord B′′C ′′ is parallel to the tangent B′C ′ and A′′A is
the bisector of ∠A′′. But each vertex of ABC has the same attributes, so triangles
A′′B′′C ′′ and A′B′C ′ are homothetic—similar with corresponding sides parallel—and
point H is the incenter of A′′B′′C ′′.

A

B

C

A′

B′

C ′

A′′

B′′

C ′′

HOO′

Γ

Γ′

Ψ

Fig. 1

Let us regard the two circles as fixed in position and size, Γ′ centred in O′, Γ centred
in O. A classic theorem [1, p.86] says that vertex A′ can fall anywhere on Γ′. Hence
it is possible for A′, B′, C ′ to move on Γ′ so that the incircle of A′B′C ′ remains Γ.
Homothecy and the fixation of Γ as circumcircle require A′′B′′C ′′ to move about a fixed
incircle as well. Point H is stationary. So is the centroid G of ABC which, according
to a celebrated theorem of Euler [1, p.101], lies one third of the way from O to H on
the line connecting this circumcenter of ABC to this orthocenter.
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We observe (perhaps in company with Newton) that for A, B, C to remain on Γ, while
G remains stationary, the velocities of A, B, C must parallel the vectors B′C ′, C ′A′,
A′B′, respectively, and match these vectors in summing to zero. Inevitably, then, the
speeds of A, B, C are as the sides of A′B′C ′:

s(A) : s(B) : s(C) : : |B′C ′| : |C ′A′| : |A′B′| (1)

Let t(X) signify the length of a tangent to circle Γ from an arbitrary point X. Since
the lengths of the sides of A′B′C ′ are

t(B′) + t(C ′), t(C ′) + t(A′), t(A′) + t(B′)

and the speeds of A, B, C are

s(B′′) + s(C ′′)

2
,

s(C ′′) + s(A′′)

2
,

s(A′′) + s(B′′)

2

by reason of the arc-bisection property (A the midpoint of B′′C ′′ and so forth), we
infer from (1) that

s(A′′) : s(B′′) : s(C ′′) : : t(A′) : t(B′) : t(C ′) (2)

Here, of course, A′′, B′′, C ′′ can be replaced by A′, B′, C ′. Moreover,

t(A′) · tan
1

2
∠A′ = t(B′) · tan

1

2
∠B′ = t(C ′) · tan 1

2
∠C ′ = the radius of Γ.

So, in conclusion,

s(A′) : s(B′) : s(C ′) : : cot
1

2
∠A′ : cot

1

2
∠B′ : cot

1

2
∠C ′ (3)

The arc-bisection property has another implication for ABC that may have escaped
Newton’s attention. Side CA, as bisector of ∠C ′′CB′′, is the mid-perpendicular of
the segment HB′′. In other words, B′′ is the mirror image of H in CA. The optical
distance from O to H, under reflection in CA, is the distance |OB′′|. But the envelope
of all such reflecting lines CA is an ellipse Ψ with O and H as foci, |OB′′| as major
axis. Thus, moving with fixed centroid, triangle ABC circumscribes the fixed ellipse
Ψ.

REFERENCE

[1] N. Altshiller-Court, College Geometry, Barnesand Noble, New York, 1952.
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[[At SIAM Rev., 32(1990) 141 there is the following:]]

Editor’s note. To liven up the problem section, we invite readers tosubmit “Quickies”
(preferably of an applied nature). Mathematical Quickies were initiated by C. W. Trigg
in 1950 when he was editor of the problem section in Mathematics Magazine. These
are problems that can be solved laboriously, but with proper insight and knowledge
can be disposed of quickly. The next problem is a Quickie. In subsequent issues, these
problems will not be identified as such except in their solutions appearing at the end
of the same problem section.

An Integral Inequality

Problem 90-5, by M. S. Klamkin (University of Alberta).

Prove that∫ ∞

0

(
1

a+ λ
+

1

b+ λ
+

1

c+ λ

)
dλ√

λ(a+ λ)(b+ λ)(c+ λ)
≥ 4

(abc)2/3

where a, b, c > 0.

[[then at p.154 of the same issue we find]]

Problem 90-5: Quickie.

Letting a, b, c, → a2, b2 c2, the inequality is equivalent to

S ≥ 4π(abc)2/3

where

S = π(abc)2

∫ ∞

0

(
1

a+ λ
+

1

b+ λ
+

1

c+ λ

)
dλ√

λ(a+ λ)(b+ λ)(c+ λ)

It is known [1] that S is the area of an ellipsoid of semi-axes a, b, c. The rest follows
from the known isoperimetric inequality that, for all three-dimensional bodies, the
maximum of Volume2/Surface3 is achieved for a sphere, whence

(4πabc/3)2

S3
≤ (4π/3)2

(4π)3

REFERENCE

[1] J. Edwards, A Treatise on the Integral Calculus, Chelsea, New York, p.843.

129



[[At SIAM Rev., 32(1990) 302 the Editor’s note is repeated, beneath the following
thinly disguised item:]]

Minimum Value of an Integral

Problem 90-10, by K. S. Murray (Brooklyn, NY).

Determine the minimum value of

I =

∫ 1

0

n
√
F ′(t)n + t′′′ dt

where F ′(t) ≥ 0, F (0) = a, F (1) = b, n is a constant greater than 1, and m is a
constant greater than or equal to zero.

SIAM Rev., 32(1990) 309.

Solution.

More generally, we will find the minimum of

J =

∫ 1

0

{F ′(t)n + A′(t)n}1/n dt

where additionally A(t) is given with A(0) = c, A(1) = d and A′(t) ≥ 0.

By Hölder’s inequality,

{F ′(t)n +A′(t)n}1/n ·{(b − a)n +(d − c)n}(n−1)/n ≥ {F ′(t)(b − a)n−1 +A′(t)(d − c)n−1}

Thus,

J ≥
∫ 1

0

{F ′(t)(b − a)n−1 + A′(t)(d − c)n−1} dt+ {(b − a)n + (d − c)n}(n−1)/n

or
J ≥ {(b − a)n + (d − c)n}1/n

There is equality if and only if F ′(t)/(b − a) = A′(t)/(d − c).

For the special case n = 2, the problem is equivalent to finding the minimum length
curve y = F (t), x = A(t), with endpoints (a, c) and (b, d).
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[[At SIAM Rev., 32(1990) 673–674 there’s a Quickie immediately followed by
its solution. Presumably the solution was intended to be held until the end of the
Solutions:]]

Cyclic Pursuit with Lead Angle

Problem 90-19, by M. S. Klamkin (University of Alberta).

Four bugs A, B, C, D, starting from the consecutive vertices of a unit square, pursue
each other cyclically with the same unit speeds. Bug A always heads directly for B
with a constant lead angle of R radians, and the same cyclically for the other bugs.
If π/2 ≥ R ≥ 0, show that the four bugs will meet simultaneously and determine the
length of time for this to occur.

[[solution follows immediately on p.674.]]

If we denote the positions of the four bugs by za, zb, zc, zd, respectively, in the complex
plane, the eqautions of motion are

ża = eiR(zb − za)/|zb − za|

etc., where · indicates differentiation with respect to time. We assume the initial
positions to be given by

za = eiπ/4 zb = iza zc = izb zd = izc

Since the equations are locally Lipschitz, the motion is unique and we find it by using
the symmetry of the configuration, i.e.,

za = reiθ zb = iza zc = izb zd = izc

We then obtain

ṙ + irθ̇ =
(i− 1)(cosR + i sinR)√

2
or

ṙ = − sin(R + π/4) rθ̇ = cos(R + π/4)

Thus

r = 1− t sin(R + π/4) θ = π/4− cot(R + π/4) ln(1− t sin(R + π/4))

It now follows that the four bugs meet simultaneously at the center of the initial square
in a time t = csc(R+ π/4). It is to be noted that for R = 0 or π/2 we have the classic
four bug cyclic pursuit problem. For R = π/4 the four bugs move on the diagonals of
the initial square directly to the center.

The results generalize for n bugs starting out on the n vertices of a regular n-gon.
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SIAM Rev., 33(1991) 474.

Point of Minimum Temperature

Problem 91-15∗, by M. S. Klamkin (University of Alberta).

A homogeneous convex centrosymmetric body with constant thermal properties is
initially at temperature zero and its boundary is maintained at a temperature Tb >
0. Prove or disprove that at any time t > 0, the point of minimum temperature
is the center. Also, prove or disprove that the isothermal surfaces are convex and
centrosymmetric. Note that the convexity of the isothermal surfaces will imply that
the center is the point of minimum temperature.

SIAM Rev., 34(1992) 120–121.

Extreme Gravitational Attraction

Problem 92-5∗, by M. S. Klamkin (University of Alberta).

It follows by symmetry that the inverse square law attraction of any uniform homoge-
neous regular polyhedron on a unit test particle at its centroid is zero.

(i) Determine the location of the test particle, within or on a regular polyhedron, in
particular the cube, which maximizes the attraction.

(ii) Consider the same problem (and also the minimum attraction) for a uniform ho-
mogeneous torus.

(iii) Determine the dimensions of a uniform homogeneous rectangular parallelepiped
of unit volume so that its attraction for a unit test particle located at the center of a
face is a maximum (minimum).

SIAM Rev., 38(1996) 515–520.

Solution by Carl C. Grosjean (University of Ghent, Ghent, Belgium).

(i) When a test particle is located inside a regular polyhedron or even any convex
body with constant mass density, there is an amount of cancellation between forces
exercised on it by the masses comprised in some elementary volumes belonging to non-
infinitesimal three-dimensional regions of the body. In the case that the test particle is
located at the centroid of a uniform homogeneous regular polyhedron, the cancellation
is perfect, as mentioned above; otherwise, it is only partial. For instance, consider in
E3 referred to a rectangular cartesian coordinate system Oxyz, the uniform homoge-
neous cube in −a ≤ x, y, z ≤ a (a > 0) and a test particle P at (b, 0, 0) whereby
0 < b < a, say. The the net attraction on P stems from the mass in the region
−a ≤ x ≤ 2b − a, −a ≤ y, z ≤ a. In general, since the test particle is exactly or ap-
proximately at the centroid of the volume in which cancellation of forces takes place,
this cancellation has two consequences:

132



(1) the net force on the test particle is caused by only a fraction of the mass present;

(2) all elementary parts of that mass fraction are located at some noninfinitesimal
distance, more or less far, from the test particle.

From this qualitative argument, it follows that the force exercised on an internal test
particle is always less than the force on a test particle located at a point of the surface
of the three-dimensional convex body, since in this case cancellation of forces stemming
from nonvanishing amounts of mass cannot occur.

In the case of the above-mentioned cube, the attractive force on a test particle of unit
mass at x = a, y = z = 0, is given by

f0,0 =
M

8a3

∫ a

−a

∫ a

−a

∫ a

−a

a− x
[(a− x)2 + y2 + z2]3/2

dxdydz

=
M

8a2

∫ 1

−1

dz′
∫ 1

−1

dy′
∫ 1

−1

1− x′

[(1− x′)2 + y′2 + z′2]3/2
dx′

=
M

2a2

∫ 1

0

dz′
∫ 1

0

[
1

(y′2 + z′2)1/2
− 1

(4 + y′2 + z′2)1/2

]
dy′

=
M

a2

[
ln(
√

2 + 1) +
π

2
−
∫ 1/

√
2

0

(5− 4t2)1/2

1− t2
dt

]

=
M

a2

[
π

2
+ ln

(
(
√

2 + 1)(
√

6− 1)√
5

)
− 2 arcsin

√
2

5

]
= 0.649224 . . .

M

a2

where M is the mass of the cube (with edge 2a). In this formula and those which
follow, the gravitational constant which is merely a proportinality factor, unimportant
within the present context, is left out.
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When the unit test particle is located at the vertex x = y = z = a, we get similarly

fa,a =
M
√

3

8a3

∫ a

−a

∫ a

−a

∫ a

−a

a− x
[(a− x)2 + (a− y)2 + (a− z)2]3/2

dxdydz

=
M

8a2

∫ 1

−1

dz′
∫ 1

−1

dy′
∫ 1

−1

1− x′

[(1− x′)2 + y′2 + z′2]3/2
dx′

=
M
√

3

8a2

∫ 2

0

∫ 2

0

∫ 2

0

u

(u2 + v2 + w2)3/2
dudvdw

=
M
√

3

8a2

∫ 2

0

dw

∫ 2

0

[
1

(v2 + w2)1/2
− 1

(4 + v2 + w2)1/2

]
dv

=
M
√

3

2a2

[
ln(
√

2 + 1) +
π

4
−
∫ 1/

√
2

0

(2− t2)1/2

1− t2
dt

]

=
M
√

3

2a2

[
ln(
√

2 + 1) +
π

12
− 1

2
ln(2 +

√
3)

]
= 0.419757 . . .

M

a2
< F0,0

When the unit test particle is located at (a, ηa, ζa) (0 < η, ζ < 1), the attractive force
is, in absolute value, equal to

fηa,ζa = (f 2
1 + f 2

2 + f 2
3 )1/2

in which

f1 =
M

8a2

∫ ζ+1

ζ−1

[
1

(v2 + w2)1/2
− 1

(4 + v2 + w2)1/2

]
dv

f2 =
M

8a2

∫ ζ+1

ζ−1

[
1

(u2 + (1− η)2 + w2)1/2
− 1

(u2 + (1 + η)2 + w2)1/2

]
du

f3 =
M

8a2

∫ η+1

η−1

[
1

(u2 + v2 + (1− ζ)2)1/2
− 1

(u2 + v2 + (1 + ζ)2)1/2

]
du

Because (v2 + w2)−1/2 − (4 + v2 + w2)−1/2 is infinite at u = v = w = 0 and decreases
toward zero approximately like 2/(v2 + w2)3/2 in all (v, w)-directions with growing
(v2 + w2), f1 decreases from 0.649224M/a2 to 0.242347M/a2. Similarly f2 and f3

increase from 0 to 0.242347M/a2. As a result, starting from η = ζ = 0, fηa,ζa at
first decreases slowly with growing η2 + ζ2, but suddenly decreases rather rapidly in a
neighborhood of η = ζ = 1. Qualitatively, his behavior can be ascribed to more matter
being present in the vicinity of the position (ηa, ζa) when η2 + ζ2 � 2, because then
(ηa, ζa) lies in a plane of the face at x = a relatively far from the edges, and this is
not the case when (ηa, ζa) is located close to a vertex. The same facts and reasoning
also hold for the uniform homogeneous regular polyhedrons other than the cube. In
the case of a tetrahedron with edge 2a, we have in absolute value
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– for the gravitational attraction at the center of a face[
√

6 ln(2 +
√

3) +
2π

3
√

3
− 2
√

6

3
ln(
√

3 +
√

2)

]
M

a2
= 2.56331 . . .

M

a2

– for the gravitational attraction at a vertex:

6
√

3
(π

3
− arctan

√
2
)M
a2

= 3
√

3

(
π

6
− arctan

√
2

4

)
M

a2
= 0.95485 . . .

M

a2

Similarly, in the case of an octahedrn with edge 2a, there comes

– at the center of a face: 1.07630 . . .M/a2,

– at a vertex:{√
2 ln[3(

√
2− 1)] + arctan

M

a2
= 0.64705 . . .

M

a2

}
To make the numerical coefficients for the tetrahedron, the cube and the octahedron
comparable to that corresponding to a point on the sphere, Dr. H. DeMeyer suggested
expressing all rsults in terms of ρV 1/3, where ρ is the constantmass density. In this
way, we find for the attractive force, still in absolute value,

– at a point on the sphere: (4π/3)2/3ρV 1/3 = 2.5985ρV 1/3

– at the center of a face of the tetrahedron: 2.4646ρV 1/3

– at a vertex of the tetrahedron: 0.9181ρV 1/3

– at the center of a face of the cube: 2.5969ρV 1/3

– at a vertex of the cube: 1.6790ρV 1/3

– at the center of a face of the octahedron: 2.6077ρV 1/3

– at a vertex of the octahedron: 1.5677ρV 1/3

Conclusion. The attraction is maximized at the centre of each face of any uniform
homogeneous regular polyhedron.

(ii) The same qualitative argument as expounded in (1), namely, that for masses ly-
ing in opposite locations with respect to a test particle there is cancellation between
attractive forces to some extent, can be made use of in the case of a torus. This ar-
gument and some considerations of symmetry lead to the conclusion that for a torus
with equation

(ρ−R)2 + z2 = a2 0 < a < R

in cylindrical coordinates
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– the maximum attraction is exercised on any point of the outer circle
ρ = R + a, z = 0

– the minimum attraction is exercised on any point of the inner circle
ρ = R− a, z = 0

In absolute value, the maximum attractive force is given by

FR+a =
2M

π2a2R

∫ R+a

R−a

ρ dρ

∫ π

0

dφ

∫ [a2−(ρ−R)2]1/2

0

(R + a− ρ cosφ) dz

[(R + a− ρ cosφ)2 + ρ2 sin2 φ+ z2]3/2

which can be reduced to a single integral depending on just one parameter α (= a/R).
Its integrand consists of two parts that involve complete elliptic integrals of the first
and third kinds. Also in absolute value, the minimum attractive force is represented
by

FR−a =
2M

π2a2R

∫ R+a

R−a

ρ dρ

∫ [a2−(ρ−R)2]1/2

0

(R− a− ρ cosφ) dz

[(R− a− ρ cosφ)2 + ρ2 sin2 φ+ z2]3/2

If we write FR+a = f(α)M/R2, then the minimum attractive force is

FR−a = −f(−α)
M

R2
= |f(−α)|M

R2

In the integral for FR+a the two parts represent positive expressions that add up; in
the case of FR−a they form a subtraction by virtue of the coefficient in front of the
second part being negative (−α instead of α). This reflects compensation of forces
stemming from the parts of the torus on either side of the tangent plane at the point
(R− a, 0, 0).

(iii) Let the space occupied by the parallelepiped with constant mass density ρ be
described by −a ≤ x ≤ a, −b ≤ y ≤ b, −c ≤ z ≤ c whereby 8abc = 1. In absolute
value, the attractive force acting on a unit test particle at the point x = a, y = z = 0
is given by

F (a, b, c) = ρ

∫ c

−c

dz

∫ b

−b

dy

∫ a

−a

(a− x) dx
[(a− x)2 + y2 + z2]3/2

= 4ρ

∫ c

0

dz

∫ b

0

[
1

(y2 + z2)1/2
− 1

(4a2 + y2 + z2)1/2

]
dy

Extremizing F (a, b, c) under the constraint 8abc = 1 can be effectuated with the help of
the Lagrange multiplier metho. This consists of constructing the function Φ(a, b, c, λ) =
F (a, b, c) + (8abc− 1)λ and setting its four partial derivatives equal to zero:
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∂F

∂a
+ 8bcλ = 0, ∂F

∂b
+ 8acλ = 0,

∂F

∂c
+ 8abλ = 0, 8abc− 1 = 9.

Explicitly, this gives

16ρa

∫ c

0

dz

∫ b

0

dy

(4a2 + y2 + z2)3/2
+ 8bcλ = 0

4ρ

∫ c

0

(
1

(b2 + z2)1/2
− 1

(4a2 + b2 + z2)1/2

)
dz + 8acλ = 0

4ρ

∫ b

0

(
1

(y2 + c2)1/2
− 1

(4a2 + y2 + c2)1/2

)
dy + 8abλ = 0

or, after taking the constraint into account,

4ρa

(
π − 2 arcsin

2ac

(4a2 + b2)1/2(b2 + c2)1/2
− 2 arcsin

2ab

(4a2 + c2)1/2(b2 + c2)1/2

)
= −λ

4ρb
{
ln[c+ (b2 + c2)1/2]− ln b− ln[c+ (4a2 + b2 + c2)1/2] + ln(4a2 + b2)1/2

}
= −λ

4ρc
{
ln[b+ (b2 + c2)1/2]− ln c− ln[b+ (4a2 + b2 + c2)1/2] + ln(4a2 + c2)1/2

}
= −λ

in which a should be replaced by 1/8bc. The elimination of λ by subtraction leads to
two transcendental equations. Setting c = µb so that a = 1/8b2µ, further simplification
is attained by putting 1/4b3µ = x and so the final form of the transcendental system
in µ and x reads

µ ln

(
(x2 + µ2)1/2[1 + (µ2 + 1)1/2]

µ[1 + (x2 + µ2 + 1)1/2]

)
= ln

(
(x2 + 1)1/2[µ+ (µ2 + 1)1/2]

µ+ (x2 + µ2 + 1)1/2

)

= x

[
π

2
− arcsin

µx

(µ2 + 1)1/2(x2 + 1)1/2
− arcsin

x

(µ2 + 1)1/2(x2 + µ2)1/2

]
(1)

In terms of µ and x, the edges of the parallelepiped areexpressed by

2a =

(
x2

4µ

)1/3

2b =

(
2

µx

)1/3

2c =

(
2µ2

x

)1/3

(2)

If (x, µ) is a positive solution of the transcendental system, such is also the case with
(x/µ, 1/µ) and the latter solution yields the same parallelepiped. Hence, in studying
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system (1), µ can be restricted to the interval (0,1]. Straightforward analysis shows
that, for any x > 0,

µ ln

(
(x2 + µ2)1/2[1 + (µ2 + 1)1/2]

µ[1 + (x2 + µ2 + 1)1/2]

)
> ln

(
(x2 + 1)1/2[µ+ (µ2 + 1)1/2]

µ+ (x2 + µ2 + 1)1/2

)
holds when 0 < µ < 1, whereas both sides are equal to

ln

(
(x2 + 1)1/2(1 +

√
2)

1 + (x2 + 2)1/2

)
(3)

when µ = 1. Hence, the first equality in system (1) can only hold for µ = 1, in which
case it is an identity. Consquently (1) reduces to one transcendental equation in x:

ln

(
(x2 + 1)1/2(1 +

√
2)

1 + (x2 + 2)1/2

)
= x

(
π

2
− 2 arcsin

x√
2(x2 + 1)1/2

)
= x arcsin

1

x2 + 1
(4)

As x increases from 0 onward,

– the left-hand side starts at zero and increases monotonically to ln(1+
√

2)
with a gradually decreasing slope,

– the right-hand side initially increases much faster than the left-hand side,
attains an absolute maximum around x = 0.9, and after that decreases
continuously towards 0.

Therefore (4) admits only one positive solution which must be calculated numerically.
The result with five significant decimals is x = 1.84935. In turn, this gives

2a = 0.94913, 2b = 2c = 1.02645 (5)

A verification can be carried out by calculating the attractive force on a unit test
particle located at (a, 0, 0) stemming from a rectangular parallelepiped with constant
mass density ρ characterized by −a ≤ x ≤ a, −b ≤ y, z ≤ b. The force has the value

F = ρ

∫ b

−b

dz

∫ b

−b

dy

∫ a

−a

a− x
[(a− x)2 + y2 + z2]3/2

dx

= 4ρ

[
aπ + 2b ln

(
√

2 + 1)[((4a2/b2) + 2)1/2 − 1]

((4a2/b2) + 1)1/2
− 4a arcsin

a
√

2/b

((4a2/b2) + 1)1/2

]
(6)

Note that this formula generalizes that for a cube worked out in (i). With (5) inserted
into it, one finds F = 2.59928ρ, to be compared with F = 2.59690ρ holding in the case
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of the cube with edge 2a = 1. The fact that (5) yields the maximum attraction can be
confirmed analytically by first replacing 2a by (x/2)2/3 and 2b by (2/x)1/3 in (6) ac-
cording to (2) with µ = 1, and after that by calculating the first and second derivatives
with respect to x. By setting the first derivative equal to zero, (4) is retrieved. By
inserting x = 1.84935 into the second derivative, a negative value isobtained confirming
the maximum.

Remark. That F = 2.59928ρ exceeds the value 2.59852ρ for the unit sphere is not
an error or a contradiction. Additional calulations prove that, for instance, for an
oblate ellipsoid with rotational symmetry and of unit volume, the maximum 2.65578ρ
is attained for the ratio of its axes equal to 0.71952.

I thank Dr. H. De Meyer for considerable computational assistance.
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SIAM Rev., 34(1992) 308.

A Set of Maxima Problems

Problem 92-8, by K. S. Murray (Brooklyn, N.Y.).

Determine the maximum values of (a) x2, (b) y2, (c) x2+y2, (d) x2+z2, (e) x2+y2+z2

and (f) x2 + y2 + z2 + w2 for all real x, y, z, w satisfying

x2 + y2 + z2 + w2 − xy − yz = k2 (1)

SIAM Rev., 34(1992) 323–324.

Problem 92-8 (Quickie).

(a) Since (1) can be written as

(2x− 3y)2/12 + (2z − y)2/4) + w2 + 2x2/3 = k2,

max x2 = 3k2/2

(b) Since (1) can be rewritten as

(x− y/2)2 + (z − y/2)2 + w2 + y2/2 = k2,

max y2 = 2k2

(c) We can write (1) in the form

(ax− by)2

2ab
+
(
z − y

2

)2

+ w2 +
(
1− a

2b

)
x2 +

(
3

4
− b

2a

)
y2 = k2.

Then,setting 1− a/2b = 3
4
− b/2a, we find that 1− a/2b = (7−

√
17)/8, so that

max (x2 + y2) = 8k2/(7−
√

17)/8 = (7 +
√

17)k2/4

(d) Since (1) can be rewritten as

(2y − x− z)2/4) + (x− z)2/4 + w2 + (x2 + z2)/2 = k2,

max (x2 + z2) = 2k2

(e) Since (1) can be rewritten as

(x− y/sqrt2)2

√
2

+
(z − y/sqrt2)2

√
2

+ w2 + (x2 + y2 + z2)

(
1− 1√

2

)
= k2
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max (x2 + y2 + z2) =
k2
√

2√
2− 1

= k2(2 +
√

2)

(f) Since in (e)

w2 + (x2 + y2 + z2)(1− 1/
√

2) =
w2

√
2

+ (x2 + y2 + z2 + w2)

(
1− 1√

2

)
,

max (x2 + y2 + z2 + w2) = k2(2 +
√

2)

Comments. Similarly, since max z2 = maxw2 and maxw2 = k2, it follows that the
figure whose equation is (1) is bounded, and so it must be a four-dimensional ellipsoid.
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Ellipsoid of Inertia of a Regular Simplex

Problem 93-3, by K. S. Murray (Brooklyn, N.Y.).

Prove that the ellipsoid of inertia about the centroid of a uniform regular simplex is a
sphere.

SIAM Rev., 35(1993) 141.

Problem 93-3 (Quickie).

Our proof is indirect. Assume that the ellipsoid of inertia which is unique is not a
sphere. Then, by considering the group of motions which take the simplex into itself,
we would generate a number of different ellipsoids of inertia. This gives the necessary
contradiction. The same proof applies to any uniform regular polytope.

[[Let me know if you want to use any of

SIAM Rev., 35(1993) 299–304.

This is Problem 92-6 by J.O.Fellman:

Maximum Value of a Shear Stress

a solution by Russell L. Mallett, and more than 2 pages of Editorial Note by M.S.K.]]

SIAM Rev., 35(1993) 642.

[[Another of Murray’s many disguises. Compare 92-5∗ at SIAM Rev., 34(1992) 120–121
above.]]

Maximum Gravitational Attraction

Problem 93-19∗, by K. M. Seymour (Toronto, Ontario).

It it conjectured that if a uniform ellipsoid is divided into two subsets such that the
gravitational attractive force between them is a maximum, then the two sets must be
congruent hemiellipsoids formed by a plane containing two of the axes of the ellipsoid.
Prove or disprove.

SIAM Rev., 36(1994) 660–661.

Comments by C. C. Grosjean (University of Ghent, Ghent, Belgium).

The problem can be treated in a semi-quantitative manner as follows. In mechanics it
occurs that one can characterize a rigid body by its mass and its center of mass, and
that these data suffice to calculate certain mechanical qualities, for instance, the force
exercised on the body by a homogeneous force field such as the earth’s gravitational
field taken locally in a comparatively small volume around a point of th earth’s surface.
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When a uniform ellipsoid is subdivided into two adjacent parts, one can acquire a
qualitative approximation of the gravitational attractive force between them by calcu-
lating:

F = γ
M1M2

R̄2
(1)

where γ is the gravitational constant, M1 and M2 represent the masses of the two parts
and R̄2 denotes the square of the distance between their centers of mass. The formula
would be rigorous if each part were collapsed into its center of mass. In the case of the
ellipsoid, M1 +M − 2 = M = (4π/3)abcρ where a > b > c are the three half-axes and
the constant ρ is the mass-density of the uniform ellipsoid.

The more symmetric[ally] the ellipsoid is divided, the smaller M1M2 and the larger R̄2

turn out to be. Because of M1 +M2 = M , the product M1M2 is at its maximum when
M1 = M2 = M/2, which is for instance the case when the ellipsoid is cut in half by a
plane passing through its center.

Now, to examine the behavior of R̄2, consider the ellipsoid with equation

x2

a2
+
y2

b2
+
z2

c2
= 1 a > b > c

in a rectangular cartesian frame of refrence and the plane x = f with f a constant
satisfying 0 < f < a. The mass and the center of mass of the part of the ellipsoid lying
between x = f and x = a are given by, respectively,

M1 =
ρπbc(a− f)2(2a+ f)

3a2
and y = z = 0, x =

3

4

(a+ f)2

2a+ f

Similarly the mass and the center of mass of the part of the ellipsoid lying between
x = −a and x = f are described by, respectively,

M2 =
ρπbc(a+ f)2(2a− f)

3a2
and y = z = 0, x = −3

4

(a− f)2

2a− f
Hence, when the ellipsoid is divided by means of x = f , the gravitational attractive
force between the two parts is approximately

F = γ
ρ2π2b2c2

9a4

(a− f)2(a+ f)2(2a+ f)(2a− f)[
3
4

(a+f)2

2a+f
+ 3

4
(a−f)2

2a−f

]2
= γ

M2

144a2

(
1− f 2

a2

)2(
4− f 2

a2

)3

(2)

Note that F increases from 0 to a largest value when f decreases from a to 0. For
f = 0, the local maximum is described within the present framework based upon (1)
by

F = γ
4M2

9a2
(3)
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When the ellipsoid is cut by the plane y = g, the force is described by the same formula
as (2) except that a is replaced by b and f by g. It is therefore also a function of g
which increases from 0 to

F = γ
4M2

9b2
(4)

when g decreases from b to 0. Since b < a, the ellipsoid cut in half by the Oxz-plane
yields a stronger force between the two halves than by cutting by means of the Oyz-
plane. When we let the plane which cuts the ellipsoid move from Oyz to Oxz by
rotation around O, the geometric center of the ellipsoid, F varies continuously fro (3)
to (4).

Finally, the same can be repeated with a plane z = h, where h decreases from c to 0.
A plane rotating around O from Oxz to Oxy gives rise to a force varying continuously
from (4) to

F = γ
4M2

9c2
(5)

since c < b. This is approximately the maximum force obtained via the formula (1).
The reasons for that maximum are: symmetry entails M1 = M2 = M/2 and the oblate
shapes of the two parts entail the smallest distance between the two centers of mass.

The approximation consisting of making use of the mass centers in (1) cannot be
too rough because the gravitational fields emanating from the two hemiellipsoids are
approximately homogeneous close to their flat side.

Conclusion . The maximal gravitational attractive force is produced by the two sets
being hemiellipsoids separated by the plane Oxy which is the plane containing the
largest symmetry axis and the symmetry axis of intermediate length of the ellipsoid
(OA of length a and OB of length b). Although the above treatment is based on
approximate formulas, the obtained solution is exact because no other symmetric sub-
division of the uniform ellipsoid can be imagined for which the quantities of matter
contained in the two subsets are on the average closer to one another, so as to give rise
to a stronger attractive force.

Remark. A completely exact treatment requires the evaluation of a number of difficult
multiple integrals of elliptic type.
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A Conjectured Heat Flow Problem

Problem 94-1∗, by M. S. Klamkin (University of Alberta).

Consider the unsteady heat flow problem

∂T/∂t = α
{
∂2T/∂x2 + ∂2T/∂y2 + ∂2T/∂z2

}
for a smooth, convex, homogeneous body that is initially at temperature 0 and whose
boundary is maintained at temperature 1 for all t > 0. If the point of the body at
minimum temperature for all t > 0 remains fixed, it is conjectured that the body must
be centrosymmetric about this point. Prove or disprove.

[[Compare Problem 91-15∗ at SIAM Rev., 33(1991) 474 above.]]

Solution by R. Gulliver & N. B. Willms (University of Minnesota).

In this note, we disprove Klamkin’s conjecture. We begin by examining the analytic
solution for the two-dimensional equilateral triangle. We show that the “cold spot”
for this body remains stationary, although the body is not centrosymmetric. The
symmetry properties of the equilateral triangle motivate us to construct a large class
of non-centrosymmetric, strictly convex bodies with analytic boundaries for which the
point of minimum temperature remains fixed in space for all time t > 0. In fact
we shall prove that if a body in Rn, n > 1, has n or more independent refection
symmetries, and is quasi-convex in the directions orthogonal to the hyperplanes of
reflective symmetry, then the point of minimum temperature will be the intersection
of the reflection hyperplanes, and will remain fixed for all time. Of course, if these
directions are mutually orthogonal, the the body will be centrosymmetrc about their
intersection point. Thus one way to weaken Klamkin’s conjecture would be to propose
that lack of movement over time of the “cold spot” implies that the body has at least
n hyperplanes of reflective symmetry. We feel, however, that this is still too strong.

We begin by rephrasing the problem. Let the function u : Ω× (0,∞)→ R be defined
by u = u(x, t) = 1− T (x, t/α). Then the problem

∂u
∂t

= ∆u (x, t) ∈ Ω× (0,∞) (1)
u(x, 0) = 1 x ∈ Ω (2)
u(x, t) = 0 x ∈ ∂Ω, t > 0 (3)

i.e., the problem corresponding to the conjecture, has a solution u ∈ C2[Ω × (0,∞)]
given by

u(x, t) =
∞∑
i=1

aie
−λitui(x) (4)
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where (λi, ui) are the eigenvalue-eigenvector pairs for the Dirichlet Laplacian in Ω. It is
well known that the eigenvaluesare positive and haveno accumulation point. Without
loss of generality, we shall takethe eigenfunctions to be orthonormal, and shalllabel the
eigenvalues in order of increasing magnitude with respect to multiplicity, i.e.,

0 < λ1 < λ2 ≤ λ3 ≤ · · · (5)

The coefficients in (4) must be chosen to satisfy the initial condition (2). Thus,

ai =

∫
Ω

ui(x) dx i = 1, 2, . . . (6)

As a consequance of the strong maximum principle for parabolic equations , the solution
u is positive in Ω for all time 0 < t <∞. Clearly, as t→∞ all heat is removed from the
body and the solution becomes constant: u ≡ 0. Moreover, for large time the solution
becomes increasingly dominated by the scaled shape of the first eigenfunction, u1,
corresponding to the simple eigenvalue λ1. Since the body was assumed to be convex,
we can conclude that u1 is log-concave,and therefore must have convex level setsand,
in particular, a unique critical point in Ω, a positive maximum. Thus, if the “hot
point” (the point of Ω for which u is maximized at a given time t > 0) moves spatially
over time, it must come to rest, as t → ∞, at the unique point where u1 attains its
maximum in Ω. We label this point PH .

Klamkin’s conjecture now becomes: if the problem (1)–(3) is overdetermined by the
requirement that the body’s “hot spot” remains stationary for all positive times, that
is,

{PH} = {ξ ∈ Ω | u(ξ, t) = max
x∈Ω

u(x, t), t > 0} (7)

then the only domains for which there exist solutions to the overdetermined problem
are centrosymmetric about PH . For completeness, we include the definition.

A body is centrosymmetric about a point P if for every point A on the
boundary. there exists another point A′ on the boundary such that P is
the midpoint of the line segment AA′.

The equilateral triangle does not possess centrosymmetry. Nevertheless, it has enough
symmetry for us to intuitively expect that the hot spot should remain at the triangle’s
center for all time. We now verify this expectation.

Let Ω ⊂ R2 be the equilateral triangle {(x, y) | 0 < y <
√

3 min(x, 1−x)}. Pinsky [1]
has compileda complete list of the eigenvalues/vectors for this domain, from which we
can construct the solution to (1)–(3) via(4). Let R be the rotation operator

R(x, y)→

(
1− x

2
− y
√

3

2
,
x
√

3

2
− y

2

)
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An eigenvalue ui is said to be symmetric if ui ◦R = ui. An eigenfunction is said to be
complex if ui ◦ R = e±2πi/3ui. Let D = {(x, y) | 0 < y < min(x, 1−x)/

√
3}. If ui is a

complex eigenfunction, then ui ◦R = σui where 1 + σ + σ2 = 0, so by (6),

ai = (1 + σ + σ2)

∫ ∫
D

ui(x, y) dxdy = 0

Hence complex eigenfunctions make no contribution to our solution. By [1, Corollaries
1 and 2, p.820], we find that the solution is

u(x, y, t) =

(
27

2

)1/4 ∞∑
k=1

e−16π2k2t/3

k
{sin(2πkd1) + sin(2πkd2) + sin(2πkd3)}

where d1, d2, d3 are the normalized altitudes of the point (x, y) ∈ Ω, i.e.,

d1 =
y√
3
, d2 = x− y√

3
, d3 = 1− x− y√

3
(9)

Clearly, the triangle’s center, d1 = d2 = d3 = 1/3, i.e., the point x = 1/2,y =
√

3/6, is
a critical point for each of the symmetric eigenfunctions, and hence of u for all t > 0.
We will be able to conclude that the “hot spot” remains stationary when we show that
the triangle’s center is the only critical point interior to Ω̄ for any positive time. To
do this, let a = 4π/

√
3 and define

ψ(x, t) =
∞∑

k=1

e−a2k2t cos(2πkx) (10)

Then a necessary and sufficient condition for (x, y) ∈ Ω to be a critical point of u given
by (8) is that

ψ(d1, t) = ψ(d2, t) = ψ(d3, t) (11)

We shall show, however, that for any fixed positive time, ψ decreases on [0,1/2]. Thus,
since ψ is symmetric about x = 1/2, fulfilling the requirement (11) can only be accom-
plished for d1 = d2 = d3 = 1/3, i.e., the triangle’s center.

To prove that ψ decreases on [0,1/2], we use some facts concerning theta functions [3,
pp.469–472]. The theta function

ϑ3(z, q) = 1 + 2
∞∑

n=1

qn2

cos(2nz)

has the product expansion

ϑ3(z, q) = G

∞∏
n=1

(1 + 2q2n−1 cos(2z) + q4n−2), G =
∞∏

n=1

(1− q2n)

147



Thus,
1

ϑ3

∂ϑ3

∂z
= −4 sin(2z)

∞∑
n=1

q2n−1

1 + 2q2n−1 cos(2z) + q4n−2

from which it is clear that ∂ϑ3/∂z < 0 for 0 < z < π/2. Since 2ψ(x, t) + 1 =
ϑ3(πx, e

−a2t), we see that for any fixed t > 0,

∂ψ

∂x
< 0, 0 < x < 1/2

We have shown that the equilateral triangle in R2 has a unique hot spot (the center)
for all positive time. We next consider general domains with the same property.

Theorem. it Let ω ⊂ Rn be a convex domain with C2 boundary, possessing n
independent (n− 1)-dimensional hyperplanes, Π1, Π2, . . ., Πn,of reflective symetry.
The the solution u : Ω × (0,∞) → R of the problem (1) − (3) assumes its maximum
for each fixed positive time only at the point of intersection of the hyperplanes, that
is, the point Π1 ∩ Π2 ∩ · · · ∩ Πn.

Our proof is based on the following result.

Lemma. Suppose that the domain Ω ⊂ Rn possessing C2 boundary is symmetric about
the hyperplane {xn = 0} and quasi-convex in the xn-direction. Then for all t > 0 the
solution u(·, t) of (1)− (3) satisfies

∂u

∂xn

< 0 forxn > 0 and
∂u

∂xn

> 0 forxn < 0.

Proof. Because of the uniqueness of solutions to the well-posed probkem (1)–(3), it
follows that u(x1, . . . , xn−1,−xn, t) = u(x1, . . . , xn−1, xn, t); as a consequence, ∂u

∂xn
= 0

on Ω ∩ {xn = 0}. By the paragolic boundary point lemma [2, Thm. 6, p.174], u(·, t)
has a negative outward normal derivative, ∂u

∂ν
, for each t > 0, and therefore ∂u

∂xn
≤ 0 on

∂Ω∪{xn = 0} (strictly negative on those portions of the boundary for which the normal
vector has a nonzero component in the xn direction; zero on any portions orthogonal
to the {xn = 0} hyperplane and, in particular, on the intersection set ∂Ω∩ {xn = 0}).

Thus ∂u
∂xn

is a solution of the heat equation (1) with initial values ∂u
∂xn

(x, 0) = 0, and
nonpositive boundary values on Ω+× [0,∞), where Ω+ is the subdomain Ω∩{xn > 0}.
By the strong maximum principle [1, Thm. 5, p.173], ∂u

∂xn
(x, 0) ≤ 0 on the whole

domain Ω+× (0,∞), and if ∂u
∂xn

(x0, t0) = 0 for some x0 in Ω+ and t0 > 0, then ∂u
∂xn
≡ 0

on Ω+ × [0,∞). The boundary condition (3) would then imply u ≡ 0 on Ω × (0,∞),
and the lemma follows from the assumed symmetry. �
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The proof of the theorem now follows by applying the lemma successively to each of
the n hyperplanes of symmetry, noting in each case that critical points of the solution
u(·, t) can only occur on the intersection of Ω with the hyperplane. Since the solution
u(·, t) is positive and smooth on Ω and vanishes on the boundary, a maximum must
therefore exist at the intersection point of the planes of symmetry for each positive
time.

Remarks. 1. The convexity of Ω may be weakened without changing the conclusion.
It is enough to assume that Ω is quasi-convex in directions orthogonal to each of the
planes, Π1, Π2, . . ., Πn, that is, that Ω intersects any line orthogonal to one of the
symmetry hyperplanes in an interval.

2. Centrosymmetry of Ω would follow from n orthogonal planes of symmetry which are
not centrosymmetric. For example, any domain Ω whose symmetry group coincides
with the symmetry group of the regular n-simplex (which is generated by the reflections
in n(n+1)/2 independent, nonorthogonal hyperplanes in Rn) has a stationary hot spot
by the theorem, provided that Ω is quasi-convex in directions orthogonal to n of these
planes.

3. The two-dimensional domain Ω = {(r, θ) | r ≤ 11 + cos(3θ)} is strictly convex,
noncentrosymmetric, and has a real analytic boundary. By the theorem, this do-
main possesses a unique, stationary hot spot for all positive time, in contradiction to
Klamkin’s conjecture.

4. In three dimensions, a prismatic bar with cross section as above has four planes
of symmetry, no three of which are mutually orthogonal. Rounding off the end in
a symmetric and (strictly) convex manner wiuld therefore provide another type of
counterexample to the conjecture.

5.. The proof of the theorem above follows immediately from the convexity of the
level sets of the solution u(·, t) for each fixed time t > 0 (see B. Kawohl’s sokution
below). However, the stronger conclusion contained in Remark 1 does not follow by
this technique.
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Editorial note. In the following solution, proposed by B. Kawohl, the problem has
been reformulated as (1)–(3) exactly as done by Gulliver & Willms.

The idea that Ω should be centrosymmetric is supported by the following physical
reasoning. Heat flows away from the hot spot in all directions towrds ∂Ω. If the rate
of heat flow in one direction is less than the rate of heat flow in the opposite direction,
then the hot spot is intuitively expected to drift away and move around as time goes
on. So we might expect the flux −∆u, the spatial gradient of u, to be the same in
opposite directions. Therefore, if the hot spot is stationary, it is not unreasonable to
suspect that u is symmetrically decreasing on each line through the hot spot.

A counterexample to centrosymmetry is provided for n = 2 by an equilateral triangle,
and for n = 3 by a regular tetrahedron. If there is objection to the fact that these
examples have nonsmooth boundaries, one can mollify the corners and edges.

The fact that u has a stationary hot spot for bodies with at least n reflection symmetries
follows easily from [3] as in [4]. Since the counerexamples are still symmetric, one might
modify Klamkin’s conjecture by removing the adjective “centro”.

Is the fact that u develops only one spatial maximum for convex domains surprising?
For nonconvex domains like barbells it is wrong, but for convex domains it has been
long known that v(x, t) = log u(x, t) is concave in x [2, 6]. Thus the level sets {x ∈ D |
u(x, t) ≥ c} of u are convex in space for every t > 0 and c ≥ 0.

A problem related to the above conjecture was osed by L. Zalcman [7] and solved
by G. Alessandrini [1]. Suppose that u solves (1)–(3) and that the level surfaces are
invariant with respect to the time variable t, in other words, for any z ∈ Ω and ti > 0
we have {x ∈ Ω | u(x, t1) = u(z, t1)} = {x ∈ Ω | u(x, t2) = u(z, t2)}. Suppose
furthermorethat ∂Ω is of class C2. Then Ω is a ball.

Another problem on hot spots which is still unsolved deals with Neumann rather than
Dirichlet conditions. I learned it from J. Rauch in 1979. Consider the heat equation
as in (1)–(3), but under the no-flux condition

∂u

∂n
(x, t) = 0 on ∂Ω× R+

and with nonconstant initial data

u(x, 0) = u0(x) in Ω

As t → ∞ the solution u tends to its average, but (generically with respect to initial
data)the hot spot moves to the boundary. More on this can be found in [5].
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Comment by the proposer. The paper by Alessandrini referred to above solves Problem
64-5∗ in the affirmative and in the more general case for n-dimensions.
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SIAM Rev., 36(1994) 107.
A Possible Characterization of Uniformly Accelerated Motion

Problem 94-10∗, by M. S. Klamkin (University of Alberta).

It is a known result that if a particle is projected upwards in a uniform gravitational
field with no resistance, then the product of the two times it takes to pass through
any point of its path is independent of the initial velocity of the projection. Prove
or disprove that this result cannot hold if additionally the particle was subject to a
resistance as some function of the velocity.

SIAM Rev., 37(1995) 249–250.

Solution by W. B. Jordan (Scotia, NY).

We use subscripts 0, 1, m, 2 to denote the start, the specified point on the upward leg,
the peak, and the specified point on the downward leg. Let f(v) be the acceleration
due to resistance. On the upward leg (v positive upward) dv/dt = −g − f so

t =

∫ v0

v

dv

g + f

and dy = v dt = v(dt/dv)dv = −v dv/(g + f) so

y =

∫ v0

v

v dv

g + f

Thus

ym =

∫ v0

0

v dv

g + f
= max height and tm =

∫ v0

0

dv

g + f

Now y = y1 when v = v1, so

t1 =

∫ v0

v1

dv

g + f
and y1 =

∫ v0

v1

v dv

g + f
(gives v1)

On the downward leg (v positive downward) dv/dt = g − f

t = tm +

∫ v

0

dv

g − f
and y = ym −

∫ t

tm

v dt = ym −
∫ v

0

v dv

g − f

Now y = y2 when v = v2, so

t2 =

∫ v0

0

dv

g + f
+

∫ v2

0

dv

g − f
and y2 = ym −

∫ v2

0

v dv

g − f
(gives v2)
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Let P = t1t2, the product to be examined. We have

dP

dv0

= t1
dt2
dv0

+ t2
dt1
dv0

dt1
dv0

=
1

g + f0

− 1

g + f1

dv1

dv0

0 =
dy1

dv0

=
v0

g + f0

− v1

g + f1

dv1

dv0

(gives dv1/dv0)

dt2
dv0

=
1

g + f0

+
1

g − f2

dv2

dv0

0 =
dy2

dv0

=
v0

g + f0

− v2

g − f2

dv2

dv0

(gives dv2/dv0)

so

(g + f0)
dP

dv0

=

(
1 +

v0

v2

)∫ v0

v1

dv

g + f
+

(
1− v0

v1

)[∫ v0

0

dv

g + f
+

∫ v2

0

dv

g − f

]
If f(v) < g the integrands can be expanded in powers of f . The leading term in the
expansion is

(g + f0)
dP

dv0

=
(v0 + v2)(v0 − v1)

g

(
1

v2

− 1

v1

)
If there is zero resistance, then f = 0, v1 = v2, dP/dv0 = 0 and the proposer’s “known
result” is verified. But for nonzero resistance v0 > v1 > v2, so dP/dv0 > 0 and the
product of the two times is no longer independent of v0.
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[[SIAM Rev., 36(1994) Number 3 is the first issue of SIAM Review that doesn’t have
Murray’s name at the head of the Problems Section — 35 1/2 years of continuous
editing!! Even so, as you can see below, it was not the end of his contributions!]]

SIAM Rev., 37(1995) 99.

Non-Symmetric Cyclic Pursuit on a Sphere

Problem 95-3∗, by M. S. Klamkin (University of Alberta).

Three bugs A, B, C, starting from the vertices of an arbitrary spherical triangle, pursue
each other cyclically at the same constant speeds, i.e., A always heads directly towards
B, while B heads towards C, and C heads towards A, along minor great circular arcs.
Prove or disprove that there is simultaneous capture. For the plane case, it is known
that there is simultaneous capture, and upper and lower bound are given for the time
to capture [1].

REFERENCE

[1] M. S. Klamkin & D. J. Newman, Cyclic pursuit or “the three bugs problem”, Amer. Math.
Monthly, 781971) 631–639.

[[Is it clear (true?) that the paths of the bugs are great circle arcs?? — Later: Is this
question answered in the following solution? RKG]]

SIAM Rev., 38(1996) 153–155.

Solution by H. E. DeMeyer and C. C. Grosjean (University of Ghent, Belgium).

From the six differential equations describing in spherical coordinates the instantaneous
motion of the three bugs on the sphere, one easily obtains by elementary trigonometric
calculations another set of six first-order differential equations expressing the rate of
change of the arcs a, b, c and the angles A, B, C of the spherical triangle with the
bugs as vertices. On the unit sphere and with the assumption that the bugs move at
unit velocity, whereby A heads towards B, B heads towards C, and C heads towards
A, the latter set of equations is

ȧ = −1− cosC ḃ = −1− cosA ċ = −1− cosB (1)

Ȧ = sin A cos b
sin b

− sin B
sin c

Ḃ = sin B cos c
sin c

− sin C
sin a

Ċ = sin C cos a
sin a

− sin A
sin b

(2)

The initial configuration of the bugs on the sphere is an arbitrary nondegenerate spher-
ical triangle, i.e., 0 < A, B, C < π and 0 < a, b, c < π. It is remarkable that (1) are
exactlythe same as those for the cyclic pursuit in the plane (a, b, c being then the sides
of the triangle), whereas (2) reduce to the corresponding equations in the plane by leav-
ing out the cosine-factors and by replacing the sines of the arcs by the corresponding
sides of the triangle.
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Due to this great similarity between the cyclic pursuit on the sphere and in the plane,
the prof of the mutual capyure of the bugs on the sphere can be largely inspired by
the proof for the mutual capture in the plane given by Klamkin and Newman (see [1]
in the problem). We first notice that on account of (1) the three arcs are decreasing
monotonically. Also, for all finite t, the three angles lie in ]0, π[. Indeed, if any angle
became 0 or π, then the bugs would be in three different positions on the same great
circle of the sphere. By the uniqueness for the system of differential equations (1)–(2),
these positions on a great circle could only be attained if the bugs were always moving
on that great circle, which contradicts the initial conditions.

Next we show that at least one of the arcs becomes zero in finite time. Indeed, let us
assume that none of the arcsbecome zero in finite time. Since the arcs are monotonically
decreasing they coverge to a nonnegative value, i.e.,

lim
t→∞

a = a∞ ≥ 0 lim
t→∞

b = b∞ ≥ 0 lim
t→∞

c = c∞ ≥ 0

From (1) it follows that
lim
t→∞

A = lim
t→∞

B = lim
t→∞

C = π

which yields a contradiction since initially A + B + C < 3π for any nondegenerate
spherical triangle, and the sum of the angles is decreasing monotonically, as can be
verified by taking the sum of (2).

Let t0 be the finite time at which an arc, say c, becomes zero first, i.e.,

c(t0) = 0 (3)

We will prove that the assumption

a(t0) > 0 and b(t0) > 0 (4)

leads to a contradiction, yielding mutual capture at t0 as the only valid alternative.

From (3) and (4) and on account of the monotonicity of c, it follows that for t sufficiently
close to t0, sin a/ sin b − sin b/ sin c < 0, and hence, by the application of the law of
sines, that

sinA

sin b
− sinB

sin c
< 0 (5)

Since sinA/ sin b > 0 for all t < t0, an even stronger inequality than (5) is obtained by
multiplying the first term by cos b. Hence, for t sufficiently close to t0, we have

sinA cos b

sin b
− sinB

sin c
< 0 (6)

It now follows from (2) that there exists a time t′ < t0 such that, from t′ onwards, A
is monotonically decreasing. Hence,

lim
t→t0

A exists and is < π (7)
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We next prove that limt→t0 B = 0. If a(t0) < π/2, then for t sufficiently close to t0 we
have sinA > sin a(t0) and from (2) it follows that

Ḃ − sinB cos c

sin c
= −sinC

sin a
> − 1

sin a(t0)
(8)

Thus, Ḃ > −1/ sin a(t0), so that B + t/ sin a(t0) is increasing. Since it is bounded by
π + to/ sin a(t0), the limit limt→t0 B exists and is finite. Integrating (8) from time zero
to time t0 we then obtain that the integral∫ t0

0

sinB cos c

sin c
dt (9)

converges. Similarly, if π/s ≤ a(t0) < π, then for all t < t0 we have sin a > sin a(0)
and it can be shown again that the integral (9) converges.

If we regard the monotone decreasing c as the new independent variable, we may use
(1) to change the integral (9) to∫ c(0)

0

sinB cos c

sin c

dc

1 + cosB
=

∫ c(0)

0

tan
B

2

dc

tan c

Since limt→t0 B is finite, the integrability of (tanB/2)/(tan c) around c = 0 requires
that limt→t0 B = 0.

Finally, we recall from (3)–(4) that eventually c is the smallest arc. Hence C is even-
tually the smallest angle, and consequently limt→t0 C = 0. Therefore, under the as-
sumptions (3)–(4) we have obtained

lim
t→t0

(A+B + C) < π

which gives a contradiction since for any nondegenerate spherical triangle A+B+C >
π, and in the limit the sum of the angles cannot be smaller than π. Consequently
there must be mutual capture of the bugs at time t0 if their initial configuration is
a nondegenerate spherical triangle. Since −3 < cosA + cosB + cosC < 3/2 for any
nondegenerate spherical triangle, we have from (1), −9/2 < ȧ+ ḃ+ ċ < 0, and a lower
bound of the time of capture t0 follows:

t0 >
2

9
a(0) + b(0) + c(0).
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SIAM Rev., 37(1995) 441–442.

[[Compare the very similar SIAM Rev., 36(1994) 107:
A Possible Characterization of Uniformly Accelerated Motion

Problem 94-10∗, by M. S. Klamkin (University of Alberta). above. R.]]

A Characterization of Uniformly Accelerated Motion

Problem 95-15, by M. S. Klamkin (University of Alberta).

It is a known result that if a particle moves along a straight line with constant accel-
eration, the space-average of the velocity over the distance of any segment is

2(v2
1 + v1v2 + v2

2)

3(v1 + v2)
(1)

where v1 and v2 are the velocities at the beginning and at the end of the segment.
Prove that this property characterizes uniformly accelerated motion, i.e., if a particle
moves along a straight line such that the space average of its velocity over any segment
is given by (1), then the motion is one of constant acceleration.

SIAM Rev., 38(1996) 526.

Solution by W. B. Jordan (Scotia, New York).

Let x = 0at v = v1, and let v2 = uv1. Then

2v1(u
2 + u+ 1)

3(u+ 1)
= v̄ =

1

x

∫ x

0

uv1 dx

so
3

2
u =

d

dx

(
x(u2 + u+ 1)

u+ 1

)
which reduces to

dx

x
=

2u du

u2 − 1

so x = C(u2 − 1) (C a constant). Then

a = a(x) =
dv2

dt
=
dv2

dx

dx

dt
= v2

dv2

dx
= v2

1u
du

dx
=

v2
1

2C
= constant.

Solution by Michael Renardy (Virginia Tech).

The condition can be written in the form

3(v(t1) + v(t2))

∫ t2

t1

v2 dt = 2(v(t1)
2 + v(t1)v(t2) + v(t2)

2)

∫ t2

t1

v dt
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Now diffrentiate three times with respect to t2 and set t2 = t1. The outcome of this
calculation is

v2v′′ = 0.

Hence v′′ = 0, i.e., the motion has constant acceleration.

Also solved by [5 others] and the proposer.

[[For completeness I mention that there’s a comment by Murray on pp.142–143 of
SIAM Rev., 40(1998) on a problem

Existence and Uniqueness for a Variational Problem

Problem 97-4∗ by Yongi Wang

A solution by Erik Verriest runs over pages 132–142.]]

[[From 40(1998) the SIAM Rev. discontinued its Problems and Solutions section, and
only Solutions (to past problems) appeared.]]
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Murray Klamkin, Miscellaneous

Richard K. Guy

June 22, 2006

This file updated 2006-05-23.

I note the appearance of

Branko Grünbaum & Murray S. Klamkin, Euler’s ratio-sum theorem and generaliza-
tions, Math. Mag., 79(2006) 122–130.

Inside the cover of the April, 2006 issue [of Math. Mag.] there appears:

Murray Seymour Klamkin was born in the United States. He received his under-
graduate degree in chemistry,servedfour yearsin the U.S. Army during WW2, and later
earned an M.S. in physics. In his career he worked both in industry and in universities,
and for several years was Chair of the Mathematics Department at the University of
Alberta in Edmonton. He is well-known to readers of Mathematics Magazine (and
many other journals) through his activities in Olympiads and in the problems sec-
tions. More details about the life and achievements of Klamkin can be found in the
eulogies published in Focus (November 2004, page 32) and in the Notes of the Canadian
Mathematical Society (November 2004, pages 19–20).

Grünbaum and Klamkin first met in 1967, at a CUPM conference in Santa Barbara.
They remained in contact over the years, but the present paper is their first joint
publication.
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The Focus article is on the same page as an In Memoriam for Howard Eves. It has a
photo of Murray and reads:

Murray Klamkin, 1921–2004

By Steven R. Dunbar

Murray Klamkin, prolific mathematical problem poser and solver, professor of mathe-
matics, and member of the MAA since1948. passed away on August 6, 2004 at the age
of 83. Murray Klamkin received a B.Ch.E. from the Cooper School of Engineering in
1942, then spent 4 years in the U.S. Army. After receiving an M.S. in Physics at the
Polytechnic Institute of Brooklyn in 1947, he spent 1947–48 studying mathematics at
Carnegie-Mellon. From there, he returned as an instructor to the Polytechnic Institute,
then held positions successively at AVCO Research, SUNY-Buffalo, the Universityof
Minnesota, Ford Motor Company, the University of Waterloo, and the University of
Alberta, where he was chair of the Departentof Mathematics from 1976 to 1981. Mur-
ray Klamkin is best known for editing the Problems columns of many journals: SIAM
Review, the Pi Mu Epsilon Journal, School Science and Mathematics Journal, Crux
Mathematicorum, the American Mathematical Monthly, Mathematics Magazine, and
most recently, Math Horizons. Klamkin is one of the three greatest contributors to
the SIAM Review Problems and Solutions Section. Murray also served the MAA as a
visiting lecturer, a comittee member, and on the Board of Governors.

Not surprisingly, he was also on the Putnam Competition Committee, and was in-
strumental in starting the USA Mathematical Olympiad. The standards he set as the
Chair of the USAMO Committee from 1972–85 and the coach of the USA Team at the
International Mathematical Olympiads from 975–1984 were significant to the contin-
ued success of the program. Under his leadership, the USA team delightfully surprised
the mathematics community by doing well despite having to compete against countries
that had been participating in the IMO since its beginning in 1959. In Steve Olson’s
recent book Count Down, Klamkin is quoted as saying “A lot of people were deadset
against it, they thought a US team would be crushed . . . .” In the 2001 IMO in Wash-
ington DC, he returned as an Honorary Member of the Problem Selections Committee
and a guest lecturerat the summer training program for the USA team.

Mathematicians and students of mathematics will long appreciate hiscreation of bril-
liantproblems and lucid solutions and the standardsthat he set. “The best prblems,”
he said, “are elegant in statement, elegant in result, and elegant in solution. Such
problems are not easy to come by.” Murray found them consistently and shared them
generously throughout his long and fruitful career.
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Here’s the article from the CMS Notes:

OBITUARY

Murray Seymour Klamkin (1921–2004)

by Andy Liu, University of Alberta

Let me first make it clear that this is not a eulogy. By my definition, a eulogy is an
attempt to make the life of the departed sound much better than it was. In the present
case, it is not only unnecessary, it is actually impossible. Murray Seymour Klamkin
had a most productive and fulfilling life, divided between industry and academia.

Of the early part of his life I know little except that he was born in 1921 in Brooklyn,
New York, where his father owned a bakery. This apparently induced in him his life
long fondness for bread. I read in his curriculum viae that his undergraduate degree
in Chemical Engineering was obtained in 1942 from the Cooper Union’s School of
Engineering. During the war he was attached to achemical warfareunit stationed in
Maryland, as his younger sister Mrs. Judith Horn informed me.

In 1947, Murray obtained a Master of Science degree from the Polytechnic Institute of
New York, and taught there until 1957 when he joined AVCO’s Research and Advanced
Development Division.

In 1962, Murray returned briefly to academia as a professor at SUNY, Buffalo, and then
became a visiting professor at the University of Minnesota. In 1965, he felt again the
lure of industry and joined Ford Motor Company as the Principal Research Scientist,
staying there until 1976

During all this time, Murray had been extremely active in the field of mathematics
problem solving. His main contribution was serving as editor of the problem section
of SIAM Review. He had a close working relation with the Mathematical Associa-
tion of America, partly arising from his involvement with the William Lowell Putnam
Mathematics Competition.

In 1972, the MAA started the USA Mathematical Olympiad, paving the way for the
country’s entry into the International Mathematical Olympiad in 1974, hosted by what
was still East Germany.

Murray was unable to obtain from Ford release time to coach the team. Disappointed,
he began to look elsewhere for an alternative career. This was what brought him to
Canada, at first as a Professor of Applied Mathematics at the University of Waterloo.
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However, it was not until the offer came from the University of Alberta that he made
up his mind to leave Ford. I did not know if Murray had been to Banff before, but he
must have visited this tourist spot during the negotiation period, fell in love withthe
place and closed the deal.

As Chair, Murray brought with him a management style from the private sector.
Apparently not everyone was happy with that, but he did light some fires under several
pairs of pants, and rekindled the research programs of the wearers.

Murray had always been interested in Euclidean Geometry. He often told me about
his high school years when he and a friend would challenge each other to perform
various Euclidean constructions. Although the Chair had no teaching duties at the
time, Murray took on a geometry class himself.

At the same time, Murray began editing the Olympiad Corner in Crux Mathematico-
rum, a magazine then published privately by Professor Leo Sauvé of Ottawa. It is now
an official journal of the Canadian Mathematical Society. Murray also introduced the
Freshmen and Ungergraduate Mathematics Competitions in the Department.

Geometry, mathematics competitions and Crux Mathematicorum were what brought
me to Murray’s attention. At the time, I was a post-doctoral fellow seeking employ-
ment, having just graduated from his Department. Thus I was ready to do anything,
and it happened that my interests coincided with those of Murray. I was holding of-
fice hours for his geometry class, helping to run the Department’s competitions and
assisting him in his editorial duty.

I remember being called into his office one day. He had just received a problem proposal
for Crux Mathematicorum. ‘Here is a nice problem,” he said, “but the proposer’s
solution is crappy. Come up with a nice solution, and I need it by Friday afternoon!”

As much as I liked problem-solving, I was not sure that I could produce results by
an industrial schedule. Nevertheless, I found that I did respond to challenges, and
although I was not able to satisfy him every time, I managed to do much better than
if I was left on my own, especially after I had got over the initial culture shock.

The late seventies were hard times for academics, with few openings in post-secondary
institutions. I was short-listed for every position offered by the Department, but always
came just short. Eventually, I went elsewhere for a year as sabbatical replacement.
Murray came over to interview me for a new position, pushed my appointment through
the Hiring Committee and brought me back in 1980.
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Murray had been the Deputy Leader for the USA National Team in the IMO since
1975. In 1981, USA became the host of the event, held outside Europe for the first
time. Sam Greitzer, the usual leader, became the chief organizer. Murray took over
as the leader, and secured my appointment as his Deputy Leader.

I stayed in that position for four years, and in 1982 made my first trip to Europe
because the IMO was in Budapest. This was followed by IMO 1983 in Paris, and
IMO 1984 Prague. I was overawed by the international assembly, but found that they
in turn were overawed by Murray’s presence. He was arguably the most well-known
mathematics problem-solver in thw whole world.

We both retired from the IMO after 1984, even though I would later return to it.
His term as Chair also expired in 1981. Thus our relationship became collegial and
personal. He and his wife Irene had no children, but they were very fond of company.
I found myself a guest at their place at regular intervals, and they visited my humble
abode a few times.

It wa during this period that I saw a different side of Murray. Before, I found him
very businesslike, his immense talent shining through his incisive insight and clinical
efficiency.

Now I found him a warm person with many diverse interests, including classical music,
ballroom dancing, adventure novels, kung-fu movies and sports, in particular basket-
ball.

Although Murray had been highly successful in everything he attempted, he will prob-
ably be remembered the most for his involvement in mathematics problem-solving and
competitions. He had authored or edited four problem books, and left his mark in every
major journal which had a problem section. He had received an Honorary Doctorate
from the University of Waterloo and was a Fellow of the Royal Society of Belgium. He
had won numerous prizes, and had some named after him.

Murray had enjoyed remarkably good health during his long life. It began to deteriorate
in September 2000 when he underwent a bypass operation. After his release from the
hospital, he continued to exert himself, walking up to his office on the sixth floor, and
skating in the West Edmonton Mall.

His heart valve gave in November, fortunately while he was already in hospital for
physiotherapy. He was in coma for some time. One day, when I visited him, he was
bleeding profusely from his aorta. The doctor indicated to me that he did not expect
Murray to last through the day.
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Somehow, the inner strength of Murray came through, and on my next visit, he was
fully conscious. He told me to make arrangements for his eightieth birthday party,
stating simply that he would be out of the hospital by that time. It was a good thing
that I took his words seriously, for he was out of the hospital by that time, ready to
celebrate.

One of the last mathematical commitments that he made was to edit the problem
section in the MAA’s new journal Math Horizons. During this difficult time, he asked
me to serve with him as joint-editor. Later, he passed the column onto me, but his
finger-prints were still all over the pages.

Now I have to try to fill his shoes without the benefit of his wisdom. His passing marks
the end of an era in mathematics competition and problem-solving. He will be deeply
missed.
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I now (2006-Feb-01) have Don Albers’s copy of Rabinowitz (& Bowron) 1975–1979,
from which I’ll add relevant items.

This is the (lost count!) of a number of files listing problems, solutions and other
writings of Murray Klamkin.

The easiest way to edit is to cross things out, so I make no apology for the proliferation
below. Just lift out what you want.

Problems which are in other files (e.g., Monthly, SIAM Rev., . . . ) are just referenced,
not typed out.

First I’ll go through Stanley Rabinowitz’s Index to Mathematical Problems 1980–1984

[[Stanley almost certainly has other files, because he was going to cover other periods
as well. Would it be a good idea to approach him about what he might be willing to
make available ?]]

I’ll note all the Murray entries, but will copy them out only if they are NOT one of

AMM Amer. Math. Monthly

(TY)CMJ (Two-Year) Coll. Math. J.

CRUX Crux Mathematicorum [[we should get rid of ‘Mayhem’ from the title, which
devalues the magazine.]]

MM Mathematics Magazine

SIAM SIAM Review

[[This is a useful step forward towards classification, if that is the way we are to go.
If I live long enough, and the enthusiasm doesn’t dwindle, and I get no advice to the
contrary, I may go over the earlier files (AMM, MM, SIAM, CMJ) and endeavor to
classify according to SR’s scheme. — R.]]

A first pass having been made, I’ll endeavor to run through again putting in the vol &
page numbers of the periodicals, which are:

MI The Mathematical Intelligencer

MSJ The Mathematics Student Journal

SSM School Science and Mathematics

CMB Canadian Mathematical Bulletin
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AMATYC The AMATYC Review

PME The Pi Mu Epsilon Journal

[[ The Foreword to the (Stanley Rabinowitz) book is by Murray — here it is.]]

FOREWORD

Throughout the centuries, from the time of the Sumerian and Babylonian civilizations
(roughly 2500 B.C.), one can find no end of mathematical problems and questions
— since problems and questions beget more problems and questions in an unending
cycle. These problems and questions are the lifeblood of mathematics. Smaller prob-
lems lead to larger problems, which in turn lead to substantial mathematical research.
For example, consider the mathematics produced during attempts to prove Fermat’s
last theorem — which in itself is not an important result, even if true. The follow-
ing metaphor, attributed to Allen Shields, is particularly apropos: “A mathematical
problem is a ‘jackpot’ which gains in value as more of us throw our quarters into it.”

Mathematical problems challenge and interest even those who are outside the profes-
sion. Just consider the large number of problems sections found in various journals,
magazines and newspapers throughout the world. Although there is much mathemat-
ical information sequestered in the immense problem literature, unfortunately there is
no easy way to access this material. Itis rarely reviewed and existing indexes are not
particularly useful.

In this regard, I am highly critical of the cavalier treatment with which some journals
treat their problem sections. For example, consider journals such as The American
Mathematical Monthly, Mathematics Magazine and The College Mathematics Journal.
All of these publications contain valuable and interesting problem sections. The yearly
problem indexes published by the first two journals only contain a listing of problem
numbers and their corresponding proposers and solvers and their page numbers. The
College Mathematics Journal does not include any yearly index at all. This is a sorry
state of affairs for any journal!

I would like to see (and so, I am sure, would others) at least a return to the indexing
system used in the first 19 volumes of The American Mathematical Monthly. Here
the indexes also included problem titles and were arranged by various fields, such as
Diophantine analysis, algebra, geometry, calculus, mechanics, averages and probability,
and miscellaneous. With modern computers and word processing programs, this should
be relatively easy to do.
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In order to remedy this very sad state of problem indexing, the author, who is an
ardent problemist, has taken on the very arduous task of producing a rather complete
index system forproblems published in a large number of different journals from 1980
through 1984. He also plans to publish similar works for the years 1975 through 19789,
1985 through 1989, etc.

Since it is not easy to classify a problem, the author has sorted each problem by topic
(e.g. Geometry/triangles; Analysis/series) and in almost all cases includes the com-
plete statement of each problem. This explicit representation of the sorted problems
together with the many other listings included, enables one to locate problems and
their solutions (if available) in a relatively easy fashion.

This is a must book for problemists as well as problem editors. I only wish it had been
available a long time ago.

Murray S. Klamkin
professor emeritus

University of Alberta
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ALGEBRA

Complex numbers

MM 1093 by M. S. Klamkin
Math. Mag., 53(1980) 112.

CRUX 830 by M. S. Klamkin

MI 83-10 5(1983) No.3, p.45 by K. S. Murray

If |kw + z|+ |w− z| = |kw− z|+ |w + z| wher w, z are complex numbers and k is real,
prove that either |kw + z| = |kw − z| or |kw + z| = |w + z|

MM Q666 by M. S. Klamkin
Math. Mag., 53(1980) 301, 305.

SIAM 80-15 by M. S. Klamkin and A. Meir
SIAM Rev., 22(1980) 364.
SIAM Rev., 23(1981) 395–396.

Factorization

MSJ 504 27(1979) No.1 p.5 by Murray S. Klamkin

Factor: x5 + y5 + (z − x− y)5 − z5

Functional equations: polynomials

PME 411 Pi Mu Epsilon J., 6(1977) 421 by R. S. Luthar

Find all polynomials P (x) such that

P (x2 + 1)− [P (x)]2 − 2xP (x) = 0

and P (0) = 1.

Pi Mu Epsilon J., 6(1978) 558. Solution by MSK.
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Identities

MI 83-7 5(1983) No.2 p.27 by M. S. Klamkin

If a + b + c = 0 and x + y + z = 0, prove that

4(ax + by + cz)3 − 3(ax + by + cz)(a2 + b2 + c2)(x2 + y2 + z2)

−2(b− c)(c− a)(a− b)(y − z)(z − x)(x− y)− 54abcxyz = 0

Inequalities: degree 2

CRUX 323 4(1978) 65 by Jack Garfunkel and M. S. Klamkin

If xyz = (1− x)(1− y)(1− z) where 0 ≤ x, y, z ≤ 1, show that

x(1− z) + y(1− x) + z(1− y) ≥ 3/4

[Crux, 4(1978) 255 has an MSK solution & comment]

Inequalities: exponentials

Amer. Math. Monthly, 81(1974) 660.

E 2483. Proposed by M. S. Klamkin, Ford Motor Company

See Monthly file

MM Q658 by M. S. Klamkin
CMB P261 by R. Schramm

[same problem submitted by 2 different people to two different places??]

Math. Mag., 52(1979) 114, 118.

Q 658. Submitted by M. S. Klamkin, University of Alberta

If a, b > 0, prove that ab + ba > 1.
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PME 378 by M. L. Glasser & M. S. Klamkin

Pi Mu Epsilon J., 6(1976) 306

Show that {
xx

(1 + x)1+x

}x

> (1− x) +

{
x

1 + x

}1+x

>
1

(1 + x)1+x

for 1 > x > 0.

AMM S6 Amer. Math. Monthly, 86(1979) 222. by M. S. Klamkin & A. Meir

Inequalities: finite products

AMM 6294 by Murray S. Klamkin
Amer. Math. Monthly, 87(1980) 309.

CMB P270 by M. S. Klamkin

Prove that

2nP

{
xn

1 + xn
2 + · · ·xn

n

n

}n−1

≥
n∏

i=1

{xn
i + P}

where P = x1x2 · · ·xn, xi ≥ 0, and there is equality if and only if xi is constant.

Inequalities: finite sums

CMB P248 Canad. Math. Bull., 19(1976) 121 by M. S. Klamkin

Let S = x1 + x2 + · · ·+ xn where xi > 0, T0 = 1/S and

Tr =
∑
sym

S − x1 − x2 − · · · − xr
−1 1 ≤ r ≤ n− 1

Prove that (n− r)2Tr/
(

n−1
r

)
is monotonically increasing in r from 0 to n− 1.

MM Q664 Math. Mag., 52(1979) 317, 323. by M. S. Klamkin

Inequalities: fractions

AMM E2603 Amer. Math. Monthly, 83(1976) 483. by M. S. Klamkin

MM Q608 Math. Mag., 47(1974) 52, 58. by M. S. Klamkin

MM Q618 Math. Mag., 47(1974) 117, 122. by M. S. Klamkin
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CRUX 413 5(1979) 47 by G. C. Giri

If a, b, c ≥ 0, prove that
1

a
+

1

b
+

1

c
≤ a8 + b8 + c8

a3b3c3

[MSK solution at 5(1979) 302 ]

Inequalities: radicals

CRUX 805 by M. S. Klamkin

MM Q688 by M. S. Klamkin
Math. Mag., 57(1984) 110, 115.

Maxima and minima

AMM E3573 See Amer. Math. Monthly, 83(1976) 54 in Monthly file.

CRUX 487 5(1979) 266 by Dan Sokolowski

If a, b, c and d are positive real numbers such that c2 + d2 = (a2 + b2)3, prove that

a3

c
+

b3

d
≥ 1

with equality if and only if ad = bc.

[MSK solution at Crux 6(1980) 259]

SIAM 84-13 by M. S. Klamkin
SIAM Rev., 26(1984) 273.
SIAM Rev., 27(1985) 256.

SSM 4009 84(1984) p.534 by M. S. Klamkin

Determine the maximum value of

|4(z8
1 + z8

2 + z8
3 + z8

4)− (z4
1 + z4

2 + z4
3 + z4

4)
2|

where z1, z2, z3 and z4 are complx numbers such that z1+z2+z3+z4 = z2
1+z2

2+z2
3+z2

4 =
0.
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AMM E2573 Amer. Math. Monthly, 83(1976) 54.

E 2573. Proposed by Murray S. Klamkin, University of Waterloo

Means

MM 1000 Math. Mag., 49(1976) 253.

1000. Proposed by Murray S. Klamkin, University of Waterloo

Polynomials: integer coefficients

CRUX 254 Crux Math., 3(1977) 155 by M. S. Klamkin

(a) If P (x) denotes a polynomial with integer coefficients such that

P (1000) = 1000, P (2000) = 2000, P (3000) = 4000

prove that the zeros of P (x) cannot be integers.

(b) Prove that there is no such polynomial if

P (1000) = 1000, P (2000) = 2000, P (3000) = 1000

Radicals: approximations

CRUX 207 by Ross Honsberger

Prove that 2r+5
r+2

is always a better approximation to
√

5 than r.

Comment & solution by Murray at Crux Math., 3(1977) 144
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Rate problems: cars

OSSMB 75-3 by Murray Klamkin & Rodney Cooper

Ontario Secondary School Math. Bull., 11(1975/1) 16.

Al leaves at noon and drives at constant speed back and forth from town A to town
B. Bob also leaves at noon, driving at 40 mph back and forth from town B to town
A on the same highway as Al. Al arrives at town B twenty minutes after first passing
Bob, whereas Bob arrives at town A 45minutes after first passing Al. At what time
do Al and Bob pass each other for the n th time?

Ontario Secondary School Math. Bull., 11(1975/2) 21. Solution by Murray Klamkin

Also at Ontario Secondary School Math. Bull., 12(1976/1) 16 ??

Solutions of equations: degree 2

CRUX 489 5(1979) 266 by V. N. Murty

Find all real numbers x, y and z such that

(1− x)2 + (x− y)2 + (y − z)2 + z2 =
1

4

[MSK solution at Crux 6(1980) 263]

Solution of equations: determinants

CRUX 398 4(1978) 284 by Murray S. Klamkin

Find the roots of the n× n determinantal equation∣∣∣∣ 1

xδrs + kr

∣∣∣∣ = 0

where δrs is the Kronecker delta.
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Solution of equations: radicals

CRUX 287 Crux Math., 3(1977) 251 by M. S. Klamkin

Determine a real value of x satisfying

√
2ab + 2ax + 2bx− a2 − b2 − x2 =

√
ax− a2 +

√
bx− b2

if x > a and b > 0.

[RKG thinks that this should be x > a, b > 0]

Sum of powers

CMB 332 26(1983) p.250 by M. S. Klamkin

For each positive integer n, let Sn = xn + yn + zn. Prove that

(x + y + z)Sp+1 ≥ 2(yz + zx + xy)Sp − 3xyzSp−1

where p is a positive integer and x, y, z are real numbers.

Systems of equations: sums of powers

AMM 6312 by M. S. Klamkin
Amer. Math. Monthly, 87(1980) 675.

Theory of equations

MM 1172 by M. S. Klamkin
Math. Mag., 56(1983) 177.

TYCMJ 208 by M. S. Klamkin
Two-Year Coll. Math. J., 13 No.1 (Jan., 1982) 65.
Two-Year Coll. Math. J., 14 No.3 (June, 1983) 261–262.
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ANALYSIS

Differential equations

CMB 331 26(1983) p.126 by M. S. Klamkin

Solve the differential equation

x4y′′ − (x3 + 2axy)y′ + 4ay2 = 0

CMB 340 26(1983) p.251 by M. S. Klamkin

Determine the general solution of the differential equation

{Dnxn+1/2Dn+1 − 2−2n−1}y = 0

[[The x-exponent looks ambiguous to me. — R.]]

Functions: continuous functions

CMB P281 Canad. Math. Bull., 22(1979) 519 by M. S. Klamkin

It is well know that if a, c ≥ 0, b2 ≤ 4ac then

ax2 + bxy + c2 ≥ 0 (1)

and
ax4 + bx2y2 + c4 ≥ 0 (2)

for all real x and y. Assume (that) a, b and c are continous functions of x and y.

(a) Given that b > 0, that a, c ≥ 0 and that (2) is valid for all real x and y, is it
necessary that b2 − 4ac ≥ 0 ?

(b) Given that a, c ≥ 0 and that (1) is valid for all real x and y is it necessary that
b2 − 4ac ≥ 0 ?
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Functions: dependent functions

CRUX 299 Crux Math., 3(1977) 298 by M. S. Klamkin

If

F1 = (−r2 + s2 − 2t2)(x2 − y2 − 2xy)− 2rs(x2 − y2 + 2xy) + 4rt(x2 + y2)

F2 = 2rs(x2 − y2 + 2xy) + (r2 + s2 − 2t2)(x2 − y2 − 2xy) + 4st(x2 + y2)

F3 = −2rt(x2 − y2 − 2xy)− 2st(x2 − y2 + 2xy) + (r2 + s2 + 2t2)(x2 + y2)

show that F1, F2 and F3 are functionally dependent and find their functional relation-
ship. Also, rreduce the five-parameter representation of F1, F2 and F3 to one of two
parameters.

Functions: differentiable functions

MI 84-12 6(1984) No.3 pp.28,37 by K. S. Murray

It has been stated in several texts that if the first approximation x0 is sufficiently close
to a root of F (x) then the successive approximants in the Newton-Raphson iteration
scheme xn+1 = xn − F (xn)/F ′(xn) will converge to that root. Prove or disprove that
result if F(x) is a function with a continuously turning tangent.

Integral inequalities

MM Q622 – See Math Mag file.

Integrals: evaluation

CRUX 88 1(1975) 85 by F. G. B. Maskell

Evaluate the indefinite integral

I =

∫
dx

3
√

1 + x3

[MSK comment at 5(1979) 48]
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Integrals: improper integrals

AMM 6440 by M. S. Klamkin, J. McGregor & A. Meir
Amer. Math. Monthly, 90(1983) 569.

CRUX 273 Crux Math., 3(1977) 226 by M. S. Klamkin

Prove that

lim
n→∞

∫ ∞

c

(x + a)n−1

(x + b)n+1
dx =

∫ ∞

c

(x + a)−1

x + b
dx (a, b, c > 0)

without interchanging the limit with the integral.

Maxima and minima: radicals

CRUX 358 4(1978) 161 by Murray S. Klamkin

Determine the maximum of x2y, subject to the constraints

x + y +
√

2x2 + 2xy + 3y2 = k (constant) x, y ≥ 0

[MSK solution at 5(1979) 84]

CRUX 347 4(1978) 134 by M. S. Klamkin

Determine the maximum value of

3

√
4− 3x +

√
16− 24x + 9x2 − x3 +

3

√
4− 3x−

√
16− 24x + 9x2 − x3

in the interval −1 ≤ x ≤ 1.

Maxima and minima: unit circle

MM Q662 — See Math Mag file.

Power series

MM 1100 by M. S. Klamkin & M. V. Subbarao
Math. Mag., 53(1980) 180.
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APPLIED MATHEMATICS

Airplanes

SIAM 82-15 by M. S. Klamkin
SIAM Rev., 24(1982) 340.
SIAM Rev., 25(1983) 407.

Physics: projectiles

AMM E2535 by M. S.Klamkin
Amer. Math. Monthly, 82(1975) 520–521.

20



COMBINATORICS

Card shuffling

MI 83-2 5(1983) No.1 p.59 by M. S. Klamkin & G. Moran

A deck of cards numbered 1 to N is shuffled. If the top card is numbered k, then
remove the k-th card (counted from the top) and place it on the top of the pile. This
process is repeated with the new top card and so on. Does the card numbered 1 always
come to the top ? When it does, determine the maximum number of moves this can
take.

Counting problems: jukeboxes

CRUX 280 by L. F. Meyers

A jukebox has N buttons.

(a) If the set of N buttons is subdivided into disjoint subsets, and a customer is required
to press exactly one button from each subset in order to make a selection, what is
the distribution of buttons which gives the maximum possible number of different
selections?

(b) What choice of n will allow the greatest number of selections if a customer, in
making a selection, may press any n distinct buttons out of the N ? How many
selections are possible then ?

[MSK comment at Crux 4(1978) 112]
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GAME THEORY

Selection games: arrays

OSSMB 75-2

A penny is placed at each vertex of a regular n-gon. The pennies are removed alter-
nately by two players, each move consisting of the withdrawal of a single penny or of
two pennies that occupy adjacent vertices. The player to take the last penny wins the
game. Determine a winning strategy for the second player.

Ontario Secondary School Math. Bull., 12(1976/1) 16. Solution by Murray Klamkin
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GEOMETRY

Billiards

NAvW 475 by I. J. Schoenberg

Let E be an ellipse and n be an integer greater than or equal to 3. We think of E
as the rim of a billiard table, the objective being to determine all closed billiard ball
paths Πn that are closed convex n-gons. This requires that, at each vertex of Πn, the
angle of incidence with E be equal to the angle of reflection. Prove the following:

(a) there is a 1-parameter family Fn of n-gons Πn inscribed in E with the reflection
property, the initial vertex of Πn being chosen arbitrarily on E.

(b) All these Πn are circumscribed to a fixed ellipse En confocal to E.

(c)All n-gons of the family Fn have the same (maximal) perimeter.

[MSK comment at Nieuw Archief voor Wiskunde 26(1978) 248

NAvW 476 by I. J. Schoenberg

Let E be an ellipse that we think of as the rim of a billiard table, the objective being to
determine all convex quadrilaterals Q = A1A2A3A4 that are closed billiard ball paths.
Equivalently, Q should have equal incidence and reflection angles at each

[MSK comment at Nieuw Archief voor Wiskunde 26(1978) 248

Conics

CRUX 520 by M. S. Klamkin

Constructions: lines

CRUX 488∗ 5(1979) 266 by Kesiraju Satyanarayana

Given a point P within a given angle, construct a line through P such that the segment
intercepted by the sides of the angle has minimum length.

[MSK solution at Crux 6(1980) 260]

23



Equilateral triangles: interior point

OSSMB 75-7 Ontario Secondary School Math. Bull., 11(1975/?) ??. by Maurice
Poirier

Given a point P interior to equilateral triangle ABC such that PA, PB, PC have
lengths 3, 4, 5 respectively, find the area of 4ABC.

Ontario Secondary School Math. Bull., 12(1976/1) 16. Check if there’s a solution by
Murray Klamkin

Inequalities: polygons

CRUX 506 by M. S. Klamkin

MM Q686 by M. S. Klamkin
Math. Mag., 56(1983) 240, 244.

Inequalities: quadrilaterals

CRUX 106 Crux Math., 2(1976) 6 by Viktors Linis

Prove that, for any quadrilateral with sides a, b, c, d

a2 + b2 + c2 ≥ 1

3
d2

[MSK solution at 2(1976) 78]

Lattice points: collinear points

CRUX 408∗ 5(1979) 16 by Michael W. Ecker

A zigzag is an infinite connected path in a Cartesian plane fromed by starting at the
origin and moving successively one unit right or up. Prove or disprove that for every
zigzag and for every positive integer k, there exist (at least) k collinear lattice points
on the zigzag.

[MSK solution at 5(1979) 295. No previous solution?]
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Maxima and minima: rectangles

CRUX 427 5(1979) 77 by G. P. Henderson

A corridor of width a intersects a corridor of width b to form an “L”. A rectangular
plate is to be taken along one corridor, around the corner and along the other corridor
with the plate being kept in a horizontal plane. Among all the plates for which this is
possible, find those of maximnum area.

[MSK comment at 6(1980) 49]

Maxima and minima: semicircles

OSSMB 76-4

A semicircle is drawn outwardly on chord AB of the unit circle with centre O. Prove
that the point P on this semicircle that sticks out of the given circle the farthest is on
the radius OD that is perpendicular to AB.

The farther AB is moved from the centre O, the smaller it gets, accordingly yielding
a smaller semicircle. Determine the chord AB that makes OC a maximum.

Ontario Secondary School Math. Bull., 12(1976/2) 22. Solution by Murray Klamkin

N-dimensional geometry

MI 84-9 6(1984) No.2 p.39 by Murray S. Klamkin

Determine the maximum volume of an n-dimensional simplex if at most r edges and
greater in length than 1 (for r = 1, 2, . . . , n−1).

N-dimensional geometry: inequalities

CMB P244 18(1975) 616 by P. Erdős & Murray Klamkin

Let P be anu point within or on a given n-dimensional simplex A1, A2, . . . , An+1. The
point P is “reflected” across each face of the simplex along rays parallel to the respective
medians to each face producing an associated simplex A′

1, A
′
2, . . . , A

′
n+1 (PA′

i is parallel
to the median from Ai and is bisected by the face opposite Ai). Show that

nn Volume(A′
1, A

′
2, . . . , A

′
n+1) ≤ 2n Volume(A1, A2, . . . , An+1)

with equality if and only if P is the centroid of the given simplex.
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SIAM 78-20 SIAM Rev., 20(1978) 329. by M. S.Klamkin

N-dimensional geometry: simplexes

AMM E2548 Amer. Math. Monthly, 82(1975) 756. by Murray S. Klamkin

CRUX 224 Crux Math., 3(1977) 65 by M.S. Klamkin

Let P be an interior point of an n-dimensional simplex with vertices A1, A2, . . . ,
An+1. Let Pi (1 = 1, 2, . . . , n + 1) denote points on AiP such that AiPi/AiP =
1/ni. Finally, let Vi be the volume of the simplex cut off from the given simplex by a
hyperplane through Pi parallel to the face of the given simplex opposite Ai. Determine
the minimum value of

∑
Vi and the location of the corresponding point P .

Murray solution at Crux Math., 3(1977) 203

Pentagons

CRUX 232 submitted by Viktors Linis

Given are five points A, B, C, D and E in the plane, together with the segments
joining all pairs of distinct points. The areas of the five triangles BCD, EAB, ABC,
CDE and DEA being known, find the area of the pentagon ABCDE.

Murray comment at Crux Math., 3(1977) 240

Polygons

AMATYC D-4 4(1983) No.2 p.63 by Murray S. Klamkin
SSM 4018 84(1984) p.626 by M. S. Klamkin

What is the largest number of reflex angles that can occur in a simple n-gon ?

[[Evidently same problem published in two places. — R.]]

Polygons: convex polygons

AMM E2514 by G. A.Tsintsifas

Amer. Math. Monthly, 83(1976) 200.

Area of a Convex Polygon

E 2514. Proposed by G. A. Tsintsifas, Thessaloniki, Greece
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Quadrilaterals: circumscribed quadrilateral

CRUX 189 by Kenneth S. Williams

If a quadrilateral circumscribes an ellipse, prove that the line through the midpoints
of its diagonals passes through the centre of the ellipse.

Evidently a Murray comment at Crux Math., 3(1977) 75

CRUX 199 by H. G. Dworschak

If a quadrilateral is circumscribed about a circle, prove that its diagonals and the two
chords joining the points of contact of opposite sides are all concurrent.

Evidently a Murray solution at Crux Math., 3(1977) 112

Squares: 2 squares

CRUX 464 5(1979) 200 by J. Chris Fisher and E. L. Koh

(a) If the two squares ABCD and AB′C ′D′ have the vertex A in common and are
taken with the same orientation, then the centres of the squares together with the
midpoints of BD′ and B′D are the vertices of a square.

(b) What is the analogous theorem for regular n-gons?

[MSK solution at Crux 6(1980) 186]

Triangle inequalities: angle bisectors and medians

PME 421 Pi Mu Epsilon J., 6(1978) 483 by Murray S. Klamkin

If F (x, y, z) is a symmetric, increasing function of x, y, z, prove that for any triangle
in which wa, wb, wc are the internam angle bisectors and ma, mb, mc the medians, we
have

F (wa, wb, wc) ≤ F (ma, mb, mc)

with equality if and only if the triangle is equilateral.

Pi Mu Epsilon J., 679 631, Solution by MSK
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Triangle inequalities: angles

AMM E2958 by M. S. Klamkin
Amer. Math. Monthly, 89(1982) 498.
Amer. Math. Monthly, 92(1985) 289.

CMJ 265 by M. S. Klamkin
Two-Year Coll. Math. J., 15 No.1 (Jan., 1984) 68.
Coll. Math. J., 16 No.4 (Sept., 1985) 310.

CRUX 908 by M. S. Klamkin

CRUX 958 by M. S. Klamkin

PME 394 Pi Mu Epsilon J., 6(1977) 366 by Erwin Just and Bertram Kabak

Prove that, if A1, A2, A3 are the angles of a triangle, then

s
3∑

i=1

sin2 Ai − 2
3∑

i=1

cos3 Ai ≤ 6

Pi Mu Epsilon J., 6(1978) 493. Solution by MSK.

Triangle inequalities: interior point

PME 410 Pi Mu Epsilon J., 6(1977) 420 by Murray S. Klamkin

If x, y, z are the distances of an interior point of a triangle ABC to the sides BC, CA,
AB, show that

1

x
+

1

y
+

1

z
≥ 2

r

where r is the inradius of the triangle.

Pi Mu Epsilon J., 6(1978) 557. [does vol # 6 spread over 1977 and 1978?] Solution
by MSK
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Triangle inequalities: medians and sides

MM Q638 by Murray S. Klamkin

See Math Mag file

Triangle inequalities: radii

MM 1043 by M. S. Klamkin

See Math Mag file

Triangle inequalities: sides

SIAM 77-10 by M. S. Klamkin

See SIAM Rev file.

Triangles: angle bisectors

MSJ 540 28(1980) No.1 p.2 by Murray S. Klamkin & A. Meir

Triangles: cevians

CRUX 485 5(1979) 265 by M. S. Klamkin

Given three concurrent cevians of a triangle ABC intersecting at a point P , we con-
struct three new points A′, B′, C ′ such that AA′ = k AP , BB′ = k BP , CC ′ = k CP ,
where k > 0, k 6= 1 and the segments are directed. Show that A, B, C, A′, B′, C ′ lie
on a conic if and only if k = 2.

CRUX 548 by M. S. Klamkin

Triangles: exradii

PME 540 7(1983) p.543 by M. S. Klamkin

If the radii r1, r2, r3 of the three escribed circles of a given triangle A1A2A3 satisfy the
equation (

r1

r2

− 1

) (
r1

r3

− 1

)
= 2

determine which of the angles A1, A2, A3 is the largest.
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Triangles: medians

AMM E2505 by Jack Garfunkel

Amer. Math. Monthly, 83(1976) 59–60.

Extended Medians of a Triangle

E 2505 [1974, 1111]. Proposed by Jack Garfunkel, Forest Hills High School, Flushing,
New York

Triangles: inscribed triangles

CRUX 210 Crux Math., 3(1977) 10 by Murray S. Klamkin

Let P , Q and R denote points on the sides BC, CA and AB respectively, of a given
triangle ABC. Determine all triangles ABC such that if

BP

BC
=

CQ

CA
=

AR

AB
= k (k 6= 0, 1

2
, 1)

then PQR (in some order) is similar to ABC.

Solution by Murray at Crux Math., 3(1977) 163

Triangles: medians

CRUX 383 4(1978) 250 by Daniel Sokolowsky

Let ma, mb and mc be respectively the medians AD, BE and CF of a triangle ABC
with centroid G. Prove that

(a) if ma : mb : mc = a : b : c, then 4ABC is equilateral;

(b) if mb/mc = c/b, then either (i) b = c or (ii) quadrilateral AEGY is cyclic;

(c) if both (i) and (ii) hold in (b), then 4ABC is equilateral.

[MSK solution at 5(1979) 174]
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LINEAR ALGEBRA

Determinants

SIAM 80-10 by M. S. Klamkin, A. Sharma & P. W. Smith
SIAM Rev., 22(1980) 230.
SIAM Rev., 23(1981) 259.

Matrices

CMJ 278 by M. S. Klamkin
Coll. Math. J., 15 No.3 (June, 1984) 267.
Coll. Math. J., 17 No.2 (Mar., 1986) 185–186.
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NUMBER THEORY

Approximations

CRUX 202 by Daniel Rokhsar

Prove that any real number can be approximated within any ε > 0 as the difference of
the square roots of two natural numbers.

Evidently a Murray solution at Crux Math., 3(1977) 137

Arithmetic progressions

TYCMJ 248 by M. S. Klamkin
Two-Year Coll. Math. J., 14 No.2 (Mar., 1983) 173.
Two-Year Coll. Math. J., 16 No.2 (Mar., 1985) 155–157.

Digit problems: arithmetic progressions

CRUX 378 4(1978) 226 by Allan Wm. Johnson Jr.

(a) Find four positive decimal integers in arithmetic progression, each having the prop-
erty that if any digit is changed to any other digit, the resulting number is always
composite.

(b)∗ Can the four integers be consecutive?

[MSK solution at 5(1979) 147]

Digit problems: base systems

OSSMB 75-6 Ontario Secondary School Math. Bull., 11(1975/?) ??. by Michael
Webster

Prove that
x1x2x3 . . . xn −

∑n
k=1 xk∑n−2

k=0(x1 + x2 + x3 + · · ·+ xn−k−1)Rk
= R− 1

where x1x2x3 . . . xn is an n-digit numeral, base R, n ≥ 2.

Ontario Secondary School Math. Bull., 12(1976/1) 16. Check if there’s a solution by
Murray Klamkin
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Digit problems: squares

MI 84-1 6(1984) No.1 p.32 by K. S. Murray

For which k are there arbitrar[il]y large squares containing exactly k even digits (base
10) ?

Digit problems: sum of digits

MM Q679 by M. S. Klamkin & M. R.Spiegel
Math. Mag., 55(1982) 300, 307.

Diophantine equations: radicals

CRUX 969 by M. S. Klamkin

Divisibility: factorials

MM 1089 by M. S. Klamkin
Math. Mag., 53(1980) 49.

Fractional parts

CRUX 269 by Kenneth M. Wilke

Let (
√

10) denote the fractional part of
√

10. Prove that for any positive integer n
there exists a positive integer In such that

(
√

10)n =
√

In + 1−
√

In

[There’s reputedly an MSK comment at Crux 4(1978) 81]

Normal numbers

CMB R6 25(1982) p.126 by Murray Klamkin

Is the number, whose decimal expansion

0.248163264128256 . . .

is obtained by juxtaposing the powers of 2, normal ?
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Powers

MSJ 565 28(1981) No.6 p.2 by Murray Klamkin

Can one find triplets (a, b, c) of real numbers such that none of the three numbers is
the cube of an integer but

an/3 + bn/3 + cn/3

is integral for every positive integer n ?

Primes: generators

OSSMB 75-4 Ontario Secondary School Math. Bull., 11(1975/?) ??

Prove that, for all integers x, x2 + x + 41 is never divisible by any natural number
between 1 and 41.

Ontario Secondary School Math. Bull., 12(1976/1) 16. Check if there’s a solution by
Murray Klamkin

Pythagorean triples: odd and even

CRUX 460 5(1979) 167 by Clayton W. Dodge

Can two consecutive integers ever be the sides of a Pythagorean triangle? Show how
to find all such Pythagorean triangles.

[MSK solution at Crux 8(1980) 160]

Series: inequalities

CRUX 459 5(1979) 167 by V. N. Murty

If n is a positive integer, prove that

∞∑
i=1

1

k2n
≤ π2

8
· 1

1− 2−2n

[MSK solution at Crux 6(1980) 158]
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Square roots

PME 427 Pi Mu Epsilon J., 6(1978) 539 by Jackie E. Fritts

If a, b, c and d are integers, with u =
√

a2 + b2, v =
√√

(a− c)2 + (b− d)2 and

w =
√

c2 + d2, then prove that√
(u + v + w)(v + w − u)(w + u− v)(u + v − w)

is an even integer.

PME 427 Pi Mu Epsilon J., 7(1979) 63. Solution by MSK
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PROBABILITY

Dice problems

SIAM 80-5 by M. S. Klamkin & A. Liu
SIAM Rev., 22(1980) 99.
SIAM Rev., 22(1980) 230.

Inequalities

MSJ 545 28(1980) No.2 p.2 by Murray S. Klamkin

Given that each random triplet of integers (x, y, z) with 1 ≤ x, y, z ≤ n is equally
likely, determine the probability that

x− y

x + y
+

y − z

y + z
+

z − x

z + x
> 0

CRUX 484 5(1979) 265 by Gali Salvatore

Let A and B be two independent events in a sample space, and let XA, XB be their
characteristic functions. If F = XA + XB, show that at least one of the three numbers

a = P (F = 2), b = P (F = 1), c = P (F = 0)

is not less than 4/9.

[MSK solution at Crux 6(1980) 253]

[MSK comment at Crux 6(1980) 285]

Selection problems: sums

MATYC 122 The MATYC Journal 12(1978) 253 by Gene Zirkel

A sequence of real numbers x1, x2, x3, . . . xn are picked at random from the interval
[0,1]. This random selection is continued until their sum exceeds one and is then
stopped. It is known that the expectated number of reals chosen is given by E(n) = e.

What is the expected value of n if we instead continue until the sum exceeds two ?

[MSK solution at The MATYC Journal 13(1979) 217]
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Selection problems: unit interval

PME 429 Pi Mu Epsilon J., 6(1978) 540 by Richard S. Field

Let P denote the product of n random numbers selected fro the interval (0,1). Is the
expected value of P greater or less the expected value of the nth power of a single
number randomly selected from the interval (0,1) ?

Pi Mu Epsilon J., 7(1979) 65. Solution by MSK
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RECREATIONAL MATHEMATICS

Logic puzzles: incomplete information

CRUX 400 4(1978) 284 by Andrejs Dunkels

In the false bottom of a chest which had belonged to the notorious pirate Captain
Kidd was found a piece of parchment with instructions for finding atreasure buried on
a certain island. The essence of the directions was as follows.

“Start from the gallows and walk to the white rock, counting your paces. At the rock
turn left through a right angle and walk the same number of paces. Mark the spot
with your knife. Return to the gallows. Count your paces to the black rock, turn right
through a right angle and walk the same distance. The treasure is midway between
you and the knife.”

However, when the searchers got to the island they found the rocks but no trace of
the gallows remained. After some thinking they managed to find the treasure anyway.
How?

[RKG posed this problem, set in Bermuda, using a stone marked for Ferdinand &
Isabella and some other landmark, and a tree that no longer existed, more than 50
years ago. MSK solution at 5(1979) 243]

Polyominoes: maxima and minima

CRUX 429 5(1979) 77 by M. S. Klamkin & A. Liu

On a 2n by 2n board we place n×1 polyominoes (each covering exactly n unit squares
of the board) until no more n × 1 polyominoes can be accommodated. What is the
maximum number of squares that can be left vacant?

[This problem is a generalization of the next one. Solution by MSK at Crux 6(1980)
51]

CRUX 282 by Erwin Just & Sidney Penner

On a 6× 6 board we place 3× 1 trominoes until no more trominoes can be accommo-
dated. What is the maximum number of squares that can be left vacant?

[ MSK comment at Crux 4(1978) 115]
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SOLID GEOMETRY

Analytic geometry

Amer. Math. Monthly, 84(1977) 218–219.

Volume and Surface Area of a Solid

.

E 2563 [1975, 937]. Proposed by J. Th. Korowine, Athens, Greece

Let f1 and f2 be n0n-negative periodic functions of period 2π and let h > 0. Let P1(θ)
and P2(θ) be the points whose cylindrical coordinates are (f1(θ), θ, 0) and (f2(θ), θ, 0)
respectively. Find integrals for the volume and surface area of the solid bounded by
the planes z = 0, z = h and the lines P1(θ)P2(θ).

Solution by M. S. Klamkin, University of Waterloo, Ontario, Canada.

Paper folding

CRUX 375 4(1978) 225 by M. S. Klamkin

A convex n-gon P of cardboard is such that if lines are drawn parallel to all the sides at
distances x from them so as to form within P another polygon P ′, then P ′ is similar to
P . Now let the corresponding consecutive vertices of P and P ′ be A1, A2, . . . , An and
A′

1, A′
2, . . . , A′

n respectively. From A′
2, perpendiculars A′

2B1, A′
2B2 are drawn to A1A2,

A2A3 respectively, and the quadrilateral A′
2B1A2B2 is cut away, Then quadrilaterals

formed in a similar way are cut away from all the other corners. The remainder is
folded along A′

1A
′
2, A′

2A
′
3, . . . , A′

nA
′
1 so as to form an open polygonal box of base

A′
1A

′
2 · · ·A′

n and of height x. Determine the maximum volume of the box and the
corresponding value of x,

[Crux, 5(1979) 142 has MSK’s solution]
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Polyhedra: combinatorial geometry

OSSMB 75-8 Ontario Secondary School Math. Bull., 11(1975/2) 18 by Murray
Klamkin

Show that in every simple polyhedron there always exist two pairs of faces that have
the same number of edges.

Ontario Secondary School Math. Bull., 12(1976/1) 16. Check if there’s a solution by
Murray Klamkin

Regular tetrahedra

SIAM 83-5 by M. S. Klamkin
SIAM Rev., 25(1983) 98.
SIAM Rev., 26(1984) 275–276.

Spherical geometry

MM Q685 by M. S. Klamkin
Math. Mag., 56(1983) 178, 182.

AMM E2981 by Murray S. Klamkin
Amer. Math. Monthly, 90(1983) 54.
Amer. Math. Monthly, 93(1986) 300–302.

Tetrahedra

AMM E2962 by M. S. Klamkin
Amer. Math. Monthly, 92(1985) 433–434.
Amer. Math. Monthly, 90(1983) 569.

Tetrahedra: faces

CRUX 478 5(1979) 229 by Murray S. Klamkin

Prove that if the circumcircles of the four faces of a tetrahedron are mutually congruent,
then the circumcenter O of the tetrahedron and its incenter I coincide.

[MSK comments at 11(1985) 189 and at 13(1987) 151]
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CRUX 330 4(1978) 67 by M. S. Klamkin

It is known that if any one of the following three conditions holds for a given tetrahedron
then the four faces of the tetrahedron are mutually congruent (i.e., the tetrahedron is
isosceles):

1. The perimeters of the four faces are mutually equal.

2. The areas of the four faces are mutually equal.

3. The circumcircles of the four faces are mutually congruent.

Does the condition that the incircles of the four faces be mutually congruent also imply
that the tetrahedron be isosceles?
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TRIGONOMETRY

Approximations

TYCMJ 261 by M. S. Klamkin
Two-Year Coll. Math. J., 14 No.5 (Nov., 1983) 439.
Coll. Math. J., 16 No.4 (Sept., 1985) 306–307.

Identities

CMJ 282 by M. S. Klamkin & Gregg Patruno
Coll. Math. J., 15 No.4 (Sept., 1984) 346–347.
Coll. Math. J., 17 No.3 (June, 1986) 250–251.

Inequalities

MM 1137 by M. S. Klamkin
Math. Mag., 55(1982) 44.

Infinite series

CRUX 235 by Viktors Linis

Prove Gauss’s Theorema elegantissimum : If

f(x) = 1 +
1

2
· 1

2
x2 +

1

2
· 1

2
· 3

4
· 3

4
x4 +

1

2
· 1

2
· 3

4
· 3

4
· 5

6
· 5

6
x6 + · · ·

show that

sin φf(sin φ)f ′(cos φ) + cos φf(cos φ)f ′(sin φ) =
2

π sin φ cos φ

Murray solution at Crux Math., 3(1977) 258

Maxima and minima

MM 1107 by M. S. Klamkin
Math. Mag., 53(1980) 300.
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Solution of equations

SSM 4017 84(1984) p.626 by M. S. Klamkin
AMATYC D-3 4(1983) No.2 p.63 by Murray S. Klamkin

Determine all values of x ∈ [0, 2π) such that

81 sin10 x + cos10 x = 81/256

[[another duplicate ? — R.]]

Triangles

CRUX 493 5(1979) 291 by R. C. Lyness

(a) Let A, B and C be the angles of a triangle. Prove that there are positive x, y and
z, each less than 1/2, simultaneously satisfying

y2 cot
B

2
+ 2yz + z2 cot

C

2
= sin A

z2 cot
C

2
+ 2zx + x2 cot

A

2
= sin B

x2 cot
A

2
+ 2xy + y2 cot

B

2
= sin C

(b) In fact, 1/2 may be replaced by a smaller k > 0.4. What is the least value of k ?

[MSK comment at Crux 7(1981) 51]
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There follow a few items which need completion:

NAvW 377 Nieuw Archief voor Wiskunde, 23(1975) 90. Solution by Murray.

OSSMB 74-12 Ontario Secondary School Math. Bull., 11(1975/1) 24.

Comment by Murray Klamkin

PME 313 Pi Mu Epsilon J., 6(1975) 109. Solution by MSK.
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Suggestions concerning Murray Klamkin volume

Richard K. Guy

June 22, 2006

This file is being [has been, 2006-05-31] continuously amended. To save having several
editions, I’ll just try to remember to keep the date here current:

Wed 2006-05-31

In fact, I’ll freeze the following. Skip through to next —–

I earlier (2005-02-04) wrote the following, which needs editing into the main part of
this document:

the book should commemorate the whole of Murray’s contribution to the
problem scene.

As an indication, Rabinowitz‘s 1980–84 Index pp.352–353 lists about 200
problems from AMATYC, AMM, CMB, CMJ, Crux, MI, MM, MSJ, PME,
SIAM, TYCMJ.

There may be more than a thousand problems in all. These should be
sifted, with just the best of each type appearing, but we could also do
quite a bit of ‘See also’ and ‘Compare’, so that the keen student can access
almost all of Murray’s work.

I think that they could be fairly easily classified into sections, since Mur-
ray concentrated on a comparatively small number of themes – though I
shall no doubt be pleasantly surprised by the diversity when it comes to
the actual event. Quickies would be in a separate section, but might be
numerous enough to require subdivision. Perhaps we should also have a
section for problems by other setters where Murray’s solution was selected
for publication by the editors.
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. . . and on 2005-03-03:

I’m quite vague about the probable format of the volume – perhaps everyone
else is too?

Classify chronologically? by source? by topic? by problem type? by none
of the above

how complete are the solutions to be? All at the end, or with the problems?

What sort of indexes? references?

. . . . . . . . . . . .

This file [[SIAM Review]] has only been very lightly proof-read. It contains
some classic stuff, stimulated by Murray.

Iso Schoenberg on splines.

Shanks & Atkin on 3x+1 relatives.

Knuth on Conway’s ‘Topswaps’

... ... ...

I can produce similar (though not so long, I hope!) files for the Monthly,
Math Mag, Coll Math J, etc.

[[These have been produced. The Monthly file is longer, and others are
comparable in length.]]

Perhaps Andy is better qualified and prepared than I to do Math Horizons
? E.g., he knows most of Murray’s many aliases, and he may have most of
it in LATEXalready.

and, in a message to Jon Borwein, 2005-03-28:

Of course, the LaTeX files are best to work from from the editing and
production point of view but are not so legible. Will Beverly Ruedi have
any part in the process? She is excellent at her job and I’ve already worked
with her on three books.

I will also send you a list of suggestions, queries, comments, etc. that I’m
compiling. Better to discuss these with just one person at first.

I must enquire of the Strens collection to see if there’s any correspondence
twixt Charles Trigg & Murray.

[[I set Polly Steele on investigating this on 2005-06-01]]
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—–

The original file starts here. Entries have been added to it on an ongoing basis.

1. Collect all references at end in a separate bibliography, to save space and gain
consistency. Note: I have occasionally, but not at all consistently, changed the
format of references to that of MR, and sometimes added the MR number. This
will save space, and avoid ‘et al’ and other abbreviations.

2. Classify all problems by subject and/or keywords and exhibit in an index. This
would enable us to publish all of Murray’s problems, even if some were merely
a reference to a journal. [2005-06-28: this can perhaps be done using Stanley
Rabinowitz’s classification.]

3. Agree on an orthography and typography which will be consistent throughout
the volume. Trouble is one will have to alter some of the original statements.
This could be explained in the Preface.

4. Perhaps include a glossary of Cauchy-Schwarz inequality, Brun-Minkowski in-
equality, Bernoulli’s inequality, Hölder’s inequality, Schwarz-Buniakowski inequal-
ity, Minkowski’s inequality, Jensen’s inequality, power mean inequality, rearrange-
ment inequality, Ptolemy’s inequality, Muirhead’s inequality, the majorization in-
equality, Heron’s inequality, Lagrange’s identity, Chebyshev’s inequality, formula
of Faà di Bruno, Pedoe’s inequality, etc., etc.

Choices (my preference first – though in one or two I’m fairly ambivalent— consistency
is more important than any one person’s particular fad). Note that these choices ought
to be made, since I’ve almost always copied verbatim. We can say in the Preface that
there has been occasional minor editing from the original in order to attain consistency.

[[items in 2nd & 3rd cols (and the 1st) are taken from the actual text in journals.]]
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well-known well known
nonnegative non-negative non negative
nonintegers non-integers non integers
nonzero non-zero non zero
nonacute(?) non-acute
nonobtuse(?) non-obtuse
midpoint mid-point
endpoint end-point
insoluble unsolvable insolvable
centre center
centred centered
analog analogue
integer(adj.) integral
moduli(pl.) modules (pl. of ‘modulus’ !)
proved(pp.) proven(=tested)
formulas formulae
the ai the ai s ais [sic]
?? (reword?) gotten
zeroes zeros
A, B and C A, B, and C
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Pappus’s Pappus’ Pappu’s [sic]
Leibniz’s Leibniz Leibniz’
Descartes’s rule Descartes’ rule
Chebyshev Chebychev, etc.
L’Hôpital’s rule l’Hospital’s Rule
right side right-hand side r.h.s., etc.
minor semi-axis semi-minor axis
vertical semi-angle semi-vertical angle
arccos cos−1

ln x log x

(ln x)k lnk x
ln ln ln x ln3 x ln3 x
one-parameter one parameter
angle-bisector angle bisector
cross-section cross section
vector triple product triple vector product
cannot can not can’t
North, etc. north, etc.
Hölder’s inequality Hölder’s Inequality
Cauchy-Schwarz inequality Cauchy-Schwarz Inequality
Fermat’s principle Fermat’s Principle
arithmetic-geometric Arithmetic-Geometric AM-GM
counterexamples counter-examples
integer-valued integer valued
(log x)2 log2 x
p.73 p. 73 Page 73
if and only if iff
partitioned divided
semiperimeter ? semi-perimeter
294001 (> 3 digits) 294,001 294 001
Smith & Jones S. and J. (joint work)
bc + ca + ab ab + bc + ca ab + ac + bc
edges sides (of n-gon)
faces sides (of polyhedron)
cancelled canceled
bracketted bracketed
simplexes simplices
m ⊥ n (m, n) = 1
onto on to
Editors’ note. Editor’s Note: (etc.)
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Typographical points;

1. I apologize for the inept placing of formula labels. There are two problems: (a)
I prefer them on the right, whereas the places I’m copying from are variable. (b)
I don’t know how to reset the counter to (1) each time I start a new item.

2. We should standardize or omit names and addresses of individuals, although it’s
interesting to see the changes down the years.

3. Sometimes there’s a Remark and sometimes there’s a Remark.

4. Should book titles be capitalized ? E.g., Theory and Application of Infinite Series,
rather than Theory and application of infinite series. And, indeed, shd they be
italicized ?

5. I haven’t punctuated displayed formulas. The idea of punctuation is to advise
the reader where to pause, and displaying does just that. She shouldn’t have to
puzzle over the difference between∑

i′
xi′ and

∑
i

xi,

should she ?
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