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General Topology





Selected ordered space problems

Harold Bennett and David Lutzer

1. Introduction

A generalized ordered space (a GO-space) is a triple (X, τ,<) where (X,<)
is a linearly ordered set and τ is a Hausdorff topology on X that has a base of
order-convex sets. If τ is the usual open interval topology of the order <, then we
say that (X, τ,<) is a linearly ordered topological space (LOTS). Besides the usual
real line, probably the most familiar examples of GO-spaces are the Sorgenfrey
line, the Michael line, the Alexandroff double arrow, and various spaces of ordinal
numbers. In this paper, we collect together some of our favorite open problems
in the theory of ordered spaces. For many of the questions, space limitations
restricted us to giving only definitions and references for the question. For more
detail, see [7]. Notably absent from our list are problems about orderability, about
products of special ordered spaces, about continuous selections of various kinds,
and about Cp-theory, and for that we apologize. Throughout the paper, we reserve
the symbols R,P, and Q for the usual sets of real, irrational, and rational numbers
respectively.

2. A few of our favorite things

The most important open question in GO-space theory is Maurice’s problem,
which Qiao and Tall showed [16] is closely related to several other old questions of
Heath and Nyikos [7]. Maurice asked whether there is a ZFC example of a perfect
GO-space that does not have a σ-closed-discrete dense subset. A recent paper [9]
has shown that a ZFC example, if there is one, cannot have local density ≤ ω1,
and what remains is:

Question 1. Let κ > ω1 be a cardinal number. Is it consistent with ZFC that any 1?

perfect GO-space with local density ≤ κ must have a σ-closed-discrete dense set?
Equivalently, is it consistent with ZFC that every perfect non-Archimedean space
with local density ≤ κ is metrizable? Is it consistent with ZFC that every perfect
GO-space with local density ≤ κ and with a point-countable base is metrizable?

Question 2 (The GO-embedding problem). Let κ > ω1 be a cardinal number. 2?

Is it consistent with ZFC that every perfect GO-space X with local density ≤ κ
embeds in some perfect LOTS? (Note: the embedding map h is not required to be
monotonic and h[X ] is not required to be open, or closed, or dense, in the perfect
LOTS.)

Let M be the class of all metric spaces. A space X is cleavable over M [1] if
for each subset A ⊆ X , there is a continuous fA from X into some member of M
such that fA(x) 6= fA(y) for each x ∈ A and y ∈ X\A. The property cleavable over
S is analogously defined, where S is the class of all separable metrizable spaces. It

3



4 1. SELECTED ORDERED SPACE PROBLEMS

is known [2] that the following properties of a GO space X are equivalent: (a) X
is cleavable over M; (b) X has a weaker metrizable topology; (c) X has a Gδ-
diagonal; (d) there is a σ-discrete collection C of cozero subsets of X such that if
x 6= y are points of X , then some C ∈ C has |C ∩ {x, y}| = 1.

For a GO-space X with cellularity ≤ c, each of the following is equivalent to
cleavability of X over S: (a) X has a weaker separable metric topology; (b) X has
a countable, point-separating cover by cozero sets; (c) X is divisible by cozero sets ,
i.e., for each A ⊆ X , there is a countable collection CA of cozero subsets of X with
the property that given x ∈ A and y ∈ X \A, some C ∈ CA has x ∈ C ⊆ Y \ {y}.
However, for each κ > c there a LOTS X that is cleavable over S and has c(X) = κ
(Example 4.8 of [2]). Therefore we have:

Question 3. Characterize GO-spaces that are cleavable over S without imposing3?

restrictions on the cardinal functions of X.

Question 4. Characterize GO-spaces that are divisible by open sets (in which4?

the collection C mentioned in (c) above consists of open sets, but not necessarily
cozero-sets).

Question 5. Characterize GO spaces that are cleavable over R, i.e., in which the5?

cleaving functions fA can always be taken to be mappings into R.

Cleavability over P and Q has already been characterized in [2]. For compact,
connected LOTS, see [11].

Question 6. Arhangelskii has asked whether a compact Hausdorff space X that6–7?

is cleavable over some LOTS (or GO-space) L must itself be a LOTS. What if X
is zero-dimensional?

Arhangelskii proved that if a compact Hausdorff space X is cleavable over
R, then X is embeddable in R. Buzyakova [11] showed the same is true if R is
replaced by the lexicographic product space R× {0, 1}.
Question 7 (Buzyakova). Is a compact Hausdorff space X that is cleavable over8?

an infinite homogeneous LOTS L must be embeddable in L?

A topological space X is monotonically compact (resp., monotonically Lin-
delöf ) if for each open cover U it is possible to choose a finite (resp., countable)
open refinement r(U) such that if U and V are any open covers of X with U refining
V , then r(U) refines r(V). It is known that any compact metric space is mono-
tonically compact and that any second countable space is monotonically Lindelöf
and that any separable GO-space is hereditarily monotonically Lindelöf [10].

Question 8. Is every every perfect monotonically Lindelöf GO-space separable?9–12?

Is every hereditarily monotonically Lindelöf GO-space separable? If there is a
Souslin line, is there a compact Souslin line that is hereditarily monotonically
Lindelöf and is there is a Souslin line that is not monotonically Lindelöf?

Question 9. If Y is a subspace of a perfect monotonically Lindelöf GO-space X,13?

must Y be monotonically Lindelöf?
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Question 10. (a) Is the lexicographic product space X = [0, 1]×{0, 1} monoton- 14–16?

ically compact? (b) If X is a first-countable compact LOTS, is X monotonically
Lindelöf? (c) If X is a first-countable monotonically compact LOTS, is X metriz-
able?

Studying properties of a space X off of the diagonal means studying properties
of the space X2 \∆. For example one can show that a GO-space X is separable
if and only c(X2 \∆) = ω.

Question 11 ([6]). Is it true that a GO-space is separable if X2 \∆ has a dense 17–18?

Lindelöf subspace? If X is a Souslin space, can X2 \ ∆ have a dense Lindelöf
subspace?

Question 12. In ZFC, is there a non-metrizable, Lindelöf LOTS X that has a 19?

countable rectangular open cover of X2 \∆ (i.e., a collection {Un × Vn : n < ω}
of basic open sets in X2 with

⋃{Un × Vn : n < ω} = X2 \∆)?

Under CH or b = ω1 the answer to Question 12 is affirmative [5].

Question 13. Suppose X is a LOTS that is first-countable and hereditarily para- 20–21?

compact off of the diagonal (i.e., X2 \ ∆ is hereditarily paracompact). Must X
have a point-countable base? Is it possible that a Souslin space can be hereditarily
paracompact off of the diagonal?

We note that if one considers GO-spaces rather than LOTS in Question 13,
then there is a consistently negative answer. Under CH, Michael [15] constructed
an uncountable dense-in-itself subset X of the Sorgenfrey line S such that X2

is Lindelöf. Because S2 is perfect, X2 is perfect and Lindelöf, i.e., hereditarily
Lindelöf. But X cannot have a point-countable base.

Let PS be the set of irrational numbers topologized as a subspace of the Sor-
genfrey line. It is known [8] that X is domain-representable, being a Gδ-subset
of the Sorgenfrey line. In fact, the Sorgenfrey line is representable using a Scott
domain [12].

Question 14. Is the Gδ subspace PS of S also Scott-domain-representable? 22?

Question 15 (Suggested by R. Buzyakova). Suppose X is a GO-space that is 23?

countably compact but not compact and that compact subset of X is a metrizable
Gδ-subspace of X. Must X have a base of countable order [18]?

Mary Ellen Rudin [17] proved that every compact monotonically normal space
is a continuous image of a compact LOTS. Combining her result with results of
Nikiel proves a generalized Hahn–Mazurkiewicz theorem, namely that a topolog-
ical space X is a continuous image of a compact, connected LOTS if and only if
X is compact, connected, locally connected, and monotonically normal.

Question 16. Is there an elementary submodels proof of the generalized Hahn– 24?

Mazurkiewicz theorem above?

A spaceX is weakly perfect if for each closed subset C ⊆ X there is aGδ-subset
D of X with D ⊆ C = clX(D).
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Question 17 ([3]). Suppose Y is a subspace of a weakly perfect GO-space X.25?

Must Y be weakly perfect?

Question 18 ([4]). Suppose that X is a Lindelöf GO-space that has a small26?

diagonal and that can be p-embedded in some LOTS. Must X be metrizable?

Question 19 ([13]). Let < be the usual ordering of R. For which subsets X ⊆ R27–28?

is there a tree T and linear orderings of the nodes of T so that (a) no node of T
contains an order isomorphic copy of (X,<), and (b) (X,<) is order isomorphic
to the branch space of T? (Both R and P are representable in this way, but Q is
not.) Which Fσδ-subsets of R are order isomorphic to the branch space of some
countable tree?

An Aronszajn line is a linearly ordered set that has cardinality ω1, contains
no order-isomorphic copy of ω1, no copy of ω1 with the reverse order, and no order
isomorphic copy of an uncountable set of real numbers. Such things exist in ZFC.

Question 20 ([14]). Can an Aronszajn line be Lindelöf in its open interval29–30?

topology without containing a Souslin line? If an Aronszajn line has countable
cellularity in its open interval topology, must the Aronszajn tree from which the
line comes contain a Souslin tree?

Question 21 (Gruenhage and Zenor). Suppose X is a LOTS with a σ-closed-31?

discrete dense set and a continuous function Ψ: (X2 \∆) × X → R such that if
x 6= y are points of X, then Ψ(x, y)(x) 6= Ψ(x, y)(y). (Note that this is weaker
than the existence of a continuous separating family.) Must X be metrizable?

References
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Problems on star-covering properties

Maddalena Bonanzinga and Mikhail Matveev

Introduction

In this chapter we consider some questions about properties defined in terms
of stars with respect to open covers. If U is a cover of X , and A a subset of
X , then St(A,U) = St1(A,U) =

⋃{U ∈ U : U ∩ A 6= ∅}. For n = 1, 2, . . . ,
Stn+1(A,U) = St(Stn(A,U),U). Even if many properties can be characterized in
terms of stars (thus, paracompactness is equivalent to the requirement that every
open cover has an open star refinement ([5], Theorem 5.1.12), and normality
is equivalent to the requirement that every finite open cover has an open star
refinement ([5], 5.1.A and 5.1.J)) we concentrate mostly on properties specifically
defined by means of stars.

All spaces are assumed to be Tychonoff unless a weaker axiom of separation
is indicated. If A is an almost disjoint family of infinite subsets of ω, then Ψ(A)
denotes the associated Ψ-space (see for example [25] or [3]). The reader is refereed
to [24] for the definitions of small uncountable cardinals such as b, d or p.

Compactness-type properties

A space X is starcompact [6] if for every open cover U there is a finite A ⊂ X
such that St(A,U) = X . More generally, X is n-starcompact (where n = 1, 2, . . . )
if for every open cover U there is a finite A ⊂ X such that Stn(A,U) = X ;
X is n 1

2 -starcompact if for every open cover U there is a finite O ⊂ U such
that Stn(

⋃O,U) = X . This terminology is from [14]; in [25], n-starcompact
spaces are called strongly n-starcompact, and n 1

2 -starcompact spaces are called
n-starcompact. A Hausdorff space is starcompact iff it is countably compact [6];
a Tychonoff space is 2 1

2 -starcompact iff it is pseudocompact [25]. In general, none

of the implications (countably compact) ⇒ 1 1
2 -starcompact ⇒ 2-starcompact ⇒

pseudocompact can be reversed (see [25], [14] for examples), but in special classes
of spaces situation may be different.

Question 1 ([18], Problem 3.1). Is every 1 1
2 -starcompact Moore space compact? 32?

Under b = c, the answer is affirmative [18].

Question 2 ([23]). Does there exist a CCC pseudocompact space which is not 33?

2-starcompact?

One can specify the previous question in this way:

Question 3. Does there exist a pseudocompact topological group which is not 34?

2-starcompact?

Indeed, every pseudocompact topological group is CCC.

9



10 2. PROBLEMS ON STAR-COVERING PROPERTIES

Lindelöf-type properties and cardinal functions

A space X is called star-Lindelöf if for every open cover U there is a countable
A ⊂ X such St(A,U) = X . More generally, the star-Lindelöf number of X is
st-L(X) = min{τ : for every open cover U there is A ⊂ X such that |A| ≤ τ and
St(A,U) = X}. It is easily seen that for a T1 space X , st-L(X) ≤ e(X), this is
the reason why the star-Lindelöf number is also called weak extent [7]. In [25],
star-Lindelöf spaces are called strongly star-Lindelöf.

A Tychonoff star-Lindelöf space can have arbitrarily large extent, but the
extent of a normal star-Lindelöf space can equal at most c, [15]; alternative proofs
were later given by W. Fleissner (unpublished) and in [9]. Consistently, even a
separable normal space may have extent equal to c [10] (obviously, a separable
space is star-Lindelöf), however these questions remain open:

Question 4 ([10]).35–36?

(1) Does there exist in ZFC a normal star-Lindelöf space having uncountable
extent? . . . having extent equal to c?

(2) Is there, in ZFC or consistently, a normal star-Lindelöf space having a
closed discrete subspace of cardinality c?

The next question is a natural generalization of the discussion of closed discrete
subspaces.

Question 5. Which Tychonoff (normal) spaces can be represented as closed37–38?

subspaces of Tychonoff (normal) star-Lindelöf spaces?

As noted by Ronnie Levy, every locally compact space is representable as a
closed subspace of a Tychonoff star Lindelöf space. This follows from the fact that
2κ \ {point} is star-Lindelöf for every κ [9].

Say that X is discretely star-Lindelöf if every open cover U there is a count-
able, closed and discrete subspace A ⊂ X such St(A,U) = X .

Question 6. How big can be the extent of a normal discretely star-Lindelöf space?39–40?

Can it be uncountable within ZFC?

A Ψ-space is a consistent example [15].

Paracompactness-type properties

A space X is called sr-paracompact (G.M. Reed, [18]) if for every open cover
U , the cover {St({x},U) : x ∈ X} has a locally finite open refinement.

More information on sr-paracompactness can be found in [18].
These properties were introduced by V.I. Ponomarev: X is n-sr-paracompact

(where n = 1, 2, . . . ) if for every open cover U , the cover {Stn({x},U)x ∈ X} has
a locally finite open refinement; X is n+ 1

2 -sr-paracompact if for every open cover
U , the cover {Stn(U,U) : U ∈ U} has a locally finite open refinement.

Question 7 (V.I. Ponomarev). For which n one can construct an n-sr-paracompact41?

Tychonoff space which is not (n − 1
2 )-sr-paracompact? (Here n is either 2, 3, . . .

of the form m+ 1
2 where m = 1, 2, . . . ).
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Property (a)

A space X has property (a) (or is an (a)-space) if for every open cover U and
for every dense subspace D ⊂ X , there is a closed in X and discrete E ⊂ D such
that St(E,U) = X [13].

For countably compact spaces, “closed and discrete” means “finite”; a space
X is called acc (which is abbreviation for absolutely countably compact) if for
every open cover U and for every dense subspace D ⊂ X , there is a finite E ⊂ D
such that St(E,U) = X [11]. Replacing “finite” with “countable” provides the
definition of absolute star Lindelöfness [1].

In many ways property (a) is similar to normality [13], [19], [8], [16] even
if there are exceptions, thus every Tychonoff space can be embedded into a Ty-
chonoff (a)-space as a closed subspace [12] while normality is a closed-hereditary
property. Regular closed subspaces of (a)-spaces are discussed in [20]. A normal
countably compact space need not be acc [17]. Every monotonically normal space
has property (a) [19].

Here is one parallel with normality: if X is a countably paracompact (a)-
space, and Y a compact metrizable space, then X×Y has property (a) as well [8].
A space X is called (a)-Dowker if X is has property (a) while X × (ω + 1) does
not [13].

Question 8 ([8]). Do (a)-Dowker spaces exist? 42?

Another parallel with normality is the restriction on cardinalities of closed
discrete subspace. The classical Jones lemma says that if D is a dense subspace,
and H a closed discrete subspace in a space, then 2|H| ≤ 2|D|. The situation
with normality replaced by property (a) is discussed in [13], [22], [21], [4], [3]. A
separable (a)-space cannot contain a closed discrete subspace of cardinality c [13].

Question 9 ([4]). Is it consistent that there is an (a)-space X having a closed 43–44?

discrete subspace of cardinality κ+ so that κ = d(X) and 2κ < 2κ+

? In partic-
ular, is it consistent with 2ω < 2ω1 that a separable (a)-space may contain an
uncountable closed discrete subspace?

Question 10 ([4]). Is it consistent that there is an (a)-space X having a closed 45–46?

discrete subspace of cardinality κ+ so that κ = c(X)χ(X) and 2κ < 2κ+

? In
particular, is it consistent with 2ω < 2ω1 that a first countable CCC (a)-space may
contain an uncountable closed discrete subspace?

An interesting special case of the problem under consideration is property (a)
for Ψ-spaces. It is easily seen that if A is a maximal almost disjoint family, then
Ψ(A) is not an (a)-space. If |A| < p then Ψ(A) is an (a)-space, and there is
a family A of cardinality p such that Ψ(A) is an (a)-space [22]. The question
whether p can be substituted by d remains open [3]. A characterization of families
A for which Ψ(A) is an (a)-space is given in [22]; it is shown in [4] that if there
is an uncountable A for which Ψ(A) is an (a)-space, then there is a dominating
family of cardinality c in ω1ω. The question is open whether the converse is true.
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Question 11 ([3]). Must Ψ(A) be an (a)-space if it is normal or countably para-47?

compact?

Here is another instance of the general problem:

Question 12 (Attributed to P. Szeptycki in [3]). Is there a characterization of48?

those subspaces X of R for which the subspaces of the Niemytzki plane obtained
by removing the points outside of X in the bottom line are (a)-spaces?

The analogy between normality and property (a) suggests also these questions:

Question 13. Characterize Tychonoff spaces X for which the product X × βX49–50?

is an (a)-space (or an acc space).

Question 14. How big can be the extent of a star-Lindelöf (a)-space?51?

The first question is motivated by Tamano theorem ([5], 5.1.38), the second
one by the results on the extent of normal star-Lindelöf spaces mentioned above.

Naturally, Question 13 has this modification: characterize Tychonoff spaces
X for which the product X × cX is an (a)-space (or an acc space) for every
compactification cX . It is easily seen that ω1 × (ω1 + 1) is not acc [11]. Some
positive results can be found in [26]; thus, the product of an acc space and a
compact sequential space is acc.

Acknowledgment. The authors express gratitude to Ronnie Levy, Samuel
Gomes Da Silva and Paul Szeptycki for useful discussions.
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Function space topologies

Dimitris N. Georgiou, Stavros D. Iliadis and Frédéric Mynard

1. Splitting and admissible topologies

Let Y and Z be two fixed topological spaces. By C(Y, Z) we denote the set
of all continuous maps from Y to Z. If t is a topology on the set C(Y, Z), then
the corresponding topological space is denoted by Ct(Y, Z).

Let X be a space. To each map g : X × Y → Z which is continuous in y ∈ Y
for each fixed x ∈ X , we associate the map g∗ : X → C(Y, Z) defined as follows:
for every x ∈ X , g∗(x) is the map from Y to Z such that g∗(x)(y) = g(x, y), y ∈ Y .
Obviously, for a given map h : X → C(Y, Z), the map h� : X × Y → Z defined
by h�(x, y) = h(x)(y), (x, y) ∈ X × Y , satisfies (h�)∗ = h and is continuous in y
for each fixed x ∈ X . Thus, the above association (defined in [19]) between the
mappings from X ×Y to Z that are continuous in y for each fixed x ∈ X, and the
mappings from X to C(Y, Z) is one-to-one.

In 1946, R. Arens [2] introduced the notion of an admissible topology: a
topology t on C(Y, Z) is called admissible (1) if the map e : Ct(Y, Z) × Y → Z,
called evaluation map, defined by e(f, y) = f(y), is continuous.

In 1951, R. Arens and J. Dugundji [1] introduced the notion of a splitting
topology: a topology t on C(Y, Z) is called splitting if for every space X , the
continuity of a map g : X × Y → Z implies the continuity of the map g∗ : X →
Ct(Y, Z) (2). They also proved that a topology t on C(Y, Z) is admissible if and
only if for every space X , the continuity of a map h : X → Ct(Y, Z) implies that
of the map h� : X × Y → Z (3). If in the above definitions it is assumed that the
space X belongs to a fixed class A of topological spaces, then the topology t is
called A-splitting or A-admissible, respectively (see [25]). We call two classes of
spaces A1 and A2 equivalent , in symbols A1 ∼ A2, if a topology t on C(Y, Z) is
A1-splitting if and only if t is A2-splitting and t is A1-admissible if and only if t
is A2-admissible (see [25]).

Each topology τ on a set X defines a topological convergence class , denoted
here by C(τ), consisting of all pairs (F , s) where F is a filter on X converging
topologically to s ∈ X . A filter F on C(Y, Z) converges continuously to a function
f if e(F × G) (where e : C(Y, Z) × Y → Z is the evaluation map) converges to
f(x) in Z whenever G is a filter convergent to x in X (4). By C∗ we denote the

1Such a topology is called jointly continuous or conjoining by some authors.
2In [1] such a topology is called proper.
3For the notions of splitting and admissible topologies see also the books [16], [17], and

[36].
4Continuous convergence can alternatively be described in terms of convergence of nets in

C(X, Z), as given by O. Frink (see [20] and [32]): a net S = {fλ, λ ∈ Λ} in C(Y, Z) converges
continuously to f ∈ C(Y, Z) if and only if for every y ∈ Y and for every open neighborhood W
of f(y) in Z there exists an element λ0 ∈ Λ and an open neighborhood V of y in Y such that
for every λ ≥ λ0, we have fλ(V ) ⊆ W . Notice that this is the description used in [1].

15
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class of all pairs (F , f) such that F is a filter on C(Y, Z) converging continuously
to f ∈ C(Y, Z). In general, the class C∗ is not a topological convergence class
(e.g., [1]). The topological modification of the continuous convergence, denoted
here by t(C∗), is obtained in a standard way, that is, a subset U of C(Y, Z) is open
in t(C∗) if U ∈ F whenever (F , f) ∈ C∗ (5). See [4], [3] for details on continuous
convergence.

It is well known (e.g., [1]) that a topology t on C(Y, Z) is splitting if and
only if C∗ ⊆ C(t). Also, a topology t on C(Y, Z) is admissible if and only if
C(t) ⊆ C∗. Using the above characterizations, one can prove the following results
(1–4) concerning topologies on C(Y, Z):

(1) Each splitting topology is contained in each admissible topology [1].
(2) The topology t(C∗) is the greatest splitting topology.
(3) The intersection of all admissible topologies coincides with the greatest

splitting topology (see [42] and [18]).
(4) A topology t is simultaneously splitting and admissible if and only if C∗

is a topological convergence class, if and only if C(t) = C∗ (see [1]).
(5) There exist Y and Z such that the greatest splitting topology is not

admissible and, therefore, there does not always exists a simultaneously
splitting and admissible topology. For example, such spaces are Y = Q
and Z = R, where Q is the set of rational numbers and R is the set of
real numbers with the usual topology (see [19] and [2]).

(6) If Z is a Ti-space, i = 0, 1, 2, then Ct(C∗)(Y, Z) is a Ti-space (see [16]).

Also, it is known that (see [25]):

(7) For every class A of spaces, there exists the greatest A-splitting topology
which is denoted by t(A).

(8) If t is an A-splitting and A-admissible topology and Ct(Y, Z) ∈ A, then
t = t(A).

(9) There exists a space X such that A ∼ T , where T is the class of all
spaces and A the singleton {X}. Therefore, t(C∗) = t({X}).

(10) Let A be the class of spaces consisting of the Sierpiǹski space and all
completely regular spaces with only one non-isolated point. ThenA ∼ T .
Therefore, t(C∗) = t(A).

Problem 1 (See [1]). Characterize the greatest splitting topology t(C∗) on C(Y, Z)52?

directly in terms of the topological structures of Y and Z.

Problem 2. Is the space Ct(C∗)(Y, Z) regular (respectively, Tychonoff) in the53–54?

case where Z is regular (respectively, Tychonoff)?

Problem 3 (See [25]). Characterize, in terms of the topological structures of Y55?

and Z, spaces X such that the singleton {X} is equivalent to a well-known (or
given) class of spaces.

In particular,

5In terms of nets, a subset U of C(Y, Z) is open in t(C∗) if and only if for every pair
({fλ, λ ∈ Λ}, f) ∈ C∗, where f ∈ U , there exists λ0 ∈ Λ such that fλ ∈ U , for every λ ≥ λ0.



2. THE GREATEST SPLITTING, COMPACT OPEN, AND ISBELL TOPOLOGIES 17

Problem 4. Characterize, in terms of the topological structures of Y and Z, 56?

spaces X such that {X} ∼ T .

Problem 5. Characterize classes A of spaces such that Ct(A)(Y, Z) ∈ A. 57?

Problem 6. Characterize classes A of spaces such that t(A) is A-admissible and 58?

Ct(A)(Y, Z) ∈ A.

See [25] and [23] for more information and problems concerning A-splitting
and A-admissible topologies.

2. The greatest splitting, compact open, and Isbell topologies

In this paper, by a compact space we mean a space such that each open cover
has a finite subcover. Also, by a locally compact space we mean a space such
that each point of it has an open neighborhood with compact closure. In these
definitions we do not assume any separation axiom.

The compact open topology on C(Y, Z), denoted here by tco, was defined by
R.H. Fox in 1945 (see [19]): a subbasis for tco is the family of all sets of the form

(K,U) = {f ∈ C(Y, Z) : f(K) ⊆ U},
where K is a compact subset of Y and U is an open subset of Z. It is well known
that:

(1) The compact open topology is always splitting (see [19] and [1]).
(2) If Y is a regular locally compact space (and, therefore, Y is a T1-space),

then the topology tco is admissible (see [19], [2], and [1]). In this case (as
observed in [1]), the compact open topology coincides with the greatest
splitting topology.

(3) If Z is regular (respectively, Tychonoff), then the space Ctco(Y, Z) is
regular (respectively, Tychonoff) (see [2] and [16]).

In 1972, D. Scott defined a topology on a partially ordered set L which is
known as the Scott topology (see, for example, [27]). If L is the set O(Y ) of all
open sets of the space Y partially ordered by inclusion, then the Scott topology
coincides with a topology defined in 1970 by B.J. Day and G.M. Kelly (see [10]):
a subset H of O(Y ) is an element of this topology (that is, the Scott topology)
if and only if: (α) the conditions U ∈ H, V ∈ O(Y ), and U ⊆ V imply V ∈ H,
and (β) for every collection of open sets of Y , whose union belongs to H, there are
finitely many elements of this collection whose union also belongs to H. In [14]
the elements of the Scott topology are called compact families.

The Isbell topology on C(Y, Z), denoted here by tIs, was defined by J.R. Isbell
in 1975 (see [31], [36], and [27]): a subbasis for tIs is the family of all sets of the
form

(H, U) = {f ∈ C(Y, Z) : f−1(U) ∈ H},
where H is an element of the Scott topology on O(Y ) and U is an open subset of
Z (see [33]).
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Problem 7 (See [34] for the case of regular spaces). Is the space CtIs(Y, Z) regular59–60?

(respectively, Tychonoff) when Z is a regular (respectively, Tychonoff) space?

A subset B of a space X is called bounded or relatively compact (see, for
example, [34]) if every open cover of X contains a finite subcover of B. A space
X is called corecompact if for every open neighborhood U of a point x ∈ X there
exists an open neighborhood V ⊆ U of x such that V is bounded in the space U .
(These spaces were introduced by various authors under different names: quasi-
locally compact spaces in [45], spaces with property C in [10], semi-locally bounded
spaces in [31], CL-spaces in [28], and corecompact spaces in [29]). It is known
that:

(1) The compact open topology is contained in the Isbell topology (see, for
example, [36]), that is, tco ≤ tIs.

(2) The Isbell topology is always splitting (see, for example, [36], [34], and
[43]), that is, tIs ≤ t(C∗).

(3) Let S = {0, 1} with the topology {∅, {0, 1}, {0}} be the Sierpiǹski space.
The set C(Y,S) can be identified with O(Y ) (via the indicator functions
of open sets). Then, the Isbell topology on C(Y,S) is the Scott topology
on O(Y ), and tIs = t(C∗) for Z = S (see [10], [41], and [43]). If C(Y,S)
is identified with the set C(Y ) of closed subsets of Y, then the Isbell
topology becomes the upper Kuratowski topology (see [14]).

(4) The space Y is corecompact if and only if the Isbell topology on C(Y, Z)
is admissible, if Z = S (see, [29], [34], and [43]), or if Z is any topological
space containing S as a subspace (see [43]).

The notion of a consonant space and some of its properties were introduced
in [14]. The following equivalent conditions can serve as a definition of consonant
spaces:

(a) Y is consonant;
(b) The compact open topology coincides with the Isbell topology on C(Y,S);
(c) The compact open topology coincides with the Isbell topology on C(Y, Z)

for every space Z.

A space Y is called Z-consonant if the compact open topology coincides with
the Isbell topology on C(Y, Z) (6). Notice that consonance coincides with S-
consonance.

Problem 8. For what spaces Z does Z-consonance imply consonance? In par-61–62?

ticular, is it the case if Z is locally finite and contains S? If Z is an Alexandroff
space (that is, a space each point of which has a minimal open neighborhood)?

A space Y is called Z-concordant if the Isbell topology coincides with the
greatest splitting t(C∗) topology on C(Y, Z). A space Y is called concordant if it
is Z-concordant for every space Z. Of course, every space is S-concordant.

6This name was used for a different notion in [39], namely for what we call Z-harmonic in
the present paper.
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Problem 9. For what Z is the condition of Z-concordance trivial (satisifed by 63–66?

every topological space)? In particular, is it the case when Z is a finite space?
A locally finite space? An Alexandroff space? A space containing the Sierpiǹski
space?

Problem 10. Is there a Z such that Z-concordance implies concordance? 67?

Note that if Y is corecompact (and Z is an arbitrary space), then the Isbell
topology on C(Y, Z) is admissible (e.g., [34] and [43]) and, therefore, coincides
with the greatest splitting topology. Hence, corecompact spaces are concordant. A
space Y is called Z-harmonic if it is both Z-consonant and Z-concordant. A space
Y is called harmonic if it is Z-harmonic for every space Z. Note that regular locally
compact spaces are harmonic (e.g., [1]). Consonance is a well-studied notion for
which most questions have been solved. For instance it is known that:

(1) A topological space Y is consonant if and only if every compact family
is compactly generated. (A compact family H of open subsets of Y is
called compactly generated (see [14]) if there exists a family K of compact
subsets of Y such that H coincides with the set of all open subsets of Y
containing an element of K.)

(2) Every Čech complete (that is, a Tychonoff space which is a Gδ-subset of
one of its compactifications), every locally Čech complete, every regular
kω-space (that is, a space X for which there is a countable family {Ki :
i ∈ ω} of compact subsets such that C ⊆ X is closed if and only if
C∩Ki is closed in Ki for every i ∈ ω), and every regular locally kω-space
are consonant. In particular, every complete metric space is consonant
(see [14], [40]).

(3) There exist non-consonant hereditarily Baire separable metric spaces,
Fσ-discrete metric spaces, regular σ-compact analytic first countable
spaces (see [6]). The Sorgenfrey line and the set of rationals are not
consonant (see [5], [8]).

(4) The consonant spaces are exactly Q-covering images of regular locally
compact spaces, where f : X → Y is called Q-covering (see [7]) if for
every compact family HY on Y , there exists a compact family HX on X
such that U ∈ HY whenever U is open in Y and f−1(U) ∈ HX .

However, the following problem remains:

Problem 11 (See [6]). Is there in ZFC a metrizable consonant topological space 68?

which is not completely metrizable? (There are consistent such examples; see [6].)

In contrast, very little is known on Z-consonance and Z-concordance for a
general Z. However, we know:

(1) If Y is a completely regular and R-harmonic space, then Y is consonant
(see [13], [39]). But the converse is false:

(2) The space Nω is consonant (in particular N-consonant) but not N-concordant,
hence not N-harmonic [18]. Similarly, Rω is consonant (in particular R-
consonant), but not R-concordant, hence not R-harmonic [22].
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(3) Let P be a disjoint sum of countably many spaces Qi. Then Pω is not
P -harmonic (see [22]). If the spaces Qi are moreover Čech complete, Pω

is not even P -concordant (see [22]).

The (too) general problem is of course to characterize Z-consonance, Z-
concordance and Z-harmonicity of a space Y in terms of the topologies of Y
and Z. In particular:

Problem 12. Find sufficient conditions for R-harmonicity, R-consonance, and69?

R-concordance.

Problem 13. Find completely regular R-harmonic spaces that are not locally70–72?

compact (or not even of point-countable type or not even a q-space (in the sense
of E. Michael; see [37])).

Problem 14. Under what conditions on Y and Z, does Z-harmonicity of Y imply73?

that Y is consonant?

Problem 15. Is there a completely regular space that is R-concordant but not74?

consonant?

Problem 16. For a given Z, under what condition on Y does:75–77?

(1) Z-consonance of Y imply that Y is consonant?
(2) Z-concordance of Y imply that Y is concordant?
(3) Z-harmonicity of Y imply that Y is harmonic?

Problem 17. Find a class of maps Q such that X is R-harmonic (R-consonant,78–80?

R-concordant) if and only if there exists a map f : Z → X of Q with Z regular
locally compact.

[15], [25], [26], [24], [12], [11], [39], [38], and [44] are other papers related
to these questions.
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[18] M. Escardó, J. Lawson, and A. Simpson, Comparing Cartesian closed categories of (core)

compactly generated spaces, Topology Appl. 143 (2004), no. 1-3, 105–145.
[19] R. H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945), 429–432.
[20] O. Frink, Jr., Topology in lattices, Trans. Amer. Math. Soc. 51 (1942), 569–582.
[21] D. N. Georgiou and S. D. Iliadis, On finest splitting and admissible topologies for some

function spaces, Sumbitted for publication.
[22] D. N. Georgiou and S. D. Iliadis, On the compact open and finest splitting topologies, To

appear in Top. Appl.
[23] D. N. Georgiou and S. D. Iliadis, Some problems concerning splitting and admissible topolo-

gies, Questions Answers Gen. Topology 23 (2005), no. 2, 101–105.
[24] D. N. Georgiou, S. D. Iliadis, and B. K. Papadopoulos, On dual topologies, Topology Appl.

140 (2004), no. 1, 57–68.
[25] D. N. Georgiou, S. D. Iliadis, and B. K. Papadopulos, Topologies of function spaces, Zap.

Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 208 (1993), no. Issled. po
Topol. 7, 82–97, 220.

[26] D. N. Georgiou and B. K. Papadopoulos, A note on the finest splitting topology, Questions
Answers Gen. Topology 15 (1997), no. 2, 137–144.

[27] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, Continuous
lattices and domains, Encyclopedia of Mathematics and its Applications, vol. 93, Cambridge
University Press, Cambridge, 2003.

[28] K. H. Hofmann, Continuous lattices, topology and topological algebra, Topology Proc. 2
(1977), no. 1, 179–212 (1978).

[29] K. H. Hofmann and J. D. Lawson, The spectral theory of distributive continuous lattices,
Trans. Amer. Math. Soc. 246 (1978), 285–310.

[30] S. D. Iliadis and B. K. Papadopoulos, The continuous convergence on function spaces,
Panamer. Math. J. 4 (1994), no. 3, 33–42.

[31] J. R. Isbell, Function spaces and adjoints, Math. Scand. 36 (1975), no. 2, 317–339.
[32] C. Kuratowski, Sur la notion de limite topologique d’ensembles, Ann. Soc. Polon. Math. 21

(1948), 219–225 (1949).
[33] P. Th. Lambrinos, The bounded-open topology on function spaces, Manuscripta Math. 36

(1981/82), no. 1, 47–66.
[34] P. Th. Lambrinos and B. Papadopoulos, The (strong) Isbell topology and (weakly) contin-

uous lattices, Continuous lattices and their applications (Bremen, 1982), Lecture Notes in
Pure and Appl. Math., vol. 101, Dekker, New York, 1985, pp. 191–211.

[35] J. D. Lawson and M. Mislove, Problems in domain theory and topology, Open problems in
topology, North-Holland, Amsterdam, 1990, pp. 349–372.

[36] R. A. McCoy and I. Ntantu, Topological properties of spaces of continuous functions, Lecture
Notes in Mathematics, vol. 1315, Springer, Berlin, 1988.

[37] E. Michael, A quintuple quotient quest, General Topol. Appl. 2 (1972), 91–138.
[38] F. Mynard, Coreflectively modified continuous duality applied to classical product theorems,

Appl. Gen. Topol. 2 (2001), no. 2, 119–154.
[39] F. Mynard, First-countability sequentiality and tightness of the upper Kuratowski conver-

gence, Rocky Mountain J. Math. 33 (2003), no. 3, 1011–1038.



22 3. FUNCTION SPACE TOPOLOGIES

[40] T. Nogura and D. Shakhmatov, When does the Fell topology on a hyperspace of closed sets
coincide with the meet of the upper Kuratowski and the lower Vietoris topologies?, Topology
Appl. 70 (1996), no. 2-3, 213–243.

[41] B. K. Papadopoulos, Proper topologies on the set SY , Glas. Mat. Ser. III 23(43) (1988),
no. 1, 143–146.

[42] H. Render, Nonstandard topology on function spaces with applications to hyperspaces, Trans.
Amer. Math. Soc. 336 (1993), no. 1, 101–119.

[43] F. Schwarz and S. Weck, Scott topology, Isbell topology, and continuous convergence, Con-
tinuous lattices and their applications (Bremen, 1982), Lecture Notes in Pure and Appl.
Math., vol. 101, Dekker, New York, 1985, pp. 251–271.

[44] D. Scott, Continuous lattices, Toposes, algebraic geometry and logic (Halifax, N.S., 1971),
Lecture Notes in Math., vol. 274, Springer, Berlin, 1972, pp. 97–136.

[45] A. J. Ward, Problem, Proceedings of the International Symposium on Topology and its
Applications, (Herger-Novi 1968) (D. R. Kurepa, ed.), Beograd, 1969, p. 352.

[46] P. Wilker, Adjoint product and hom functors in general topology, Pacific J. Math. 34 (1970),
269–283.



Spaces and mappings: special networks

Chuan Liu and Yoshio Tanaka

Introduction

It has been over 40 years after Arhangel’skii [1] published the seminal paper
“Mappings and Spaces”. The problems in the paper stimulated many develop-
ments in General Topology. Some of these problems have been solved, and some
are still open. In this chapter, we shall survey some results on various generaliza-
tion of metric spaces and their quotient spaces in terms of k-networks, weak bases,
and weak topologies. We pose some related problems that are interesting to the
authors.

A collection P of subsets of a space X is a network (or net) for X if, whenever
x ∈ U with U open, there is P ∈ P with x ∈ P ⊂ U . A space is a σ-space if it
has a σ-locally finite network, and a cosmic space if it has a countable network.
k-networks are particularly useful special networks. Recall that P is a k-network
if, whenever K ⊂ U with K compact and U open, there is a finite P ′ ⊂ P with
K ⊂ ⋃P ′ ⊂ U . A base is a k-network. A space is an ℵ-space if it has a σ-locally-
finite k-network, and an ℵ0-space if it has a countable k-network.

k-networks have played an important role in the study of various kinds of
quotient spaces of metric spaces and of generalized metric spaces and their metriz-
ability. For related surveys, see [29, 31, 73, 76, 78], etc. Readers may refer to
[9, 10, 19] for unstated definitions and terminology in this paper.

All spaces are regular T1-spaces, and maps are continuous surjections.

Mappings

A collection P of subsets of a space X is point-countable (resp. compact-
countable; star-countable) if each point (resp. compact subset; member in P)
meets only countably many elements of P . “Point-finite” or “compact-finite” are
defined similarly. A family P = {Aα : α ∈ I} is closure-preserving (abbr. CP) if for

any J ⊂ I ,
⋃{Aα : α ∈ J}= ⋃{Aα : α ∈ J}. P is hereditarily closure-preserving

(abbr. HCP) if for any J ⊂ I , {Bα : Bα ⊂ Aα, α ∈ J} is closure-preserving.
A cover P of X is a cs-network (resp. cs*-network) if, whenever L is a con-

vergent sequence with the limit point x such that L∪{x} ⊂ U with U open in X ,
then for some P ∈ P , x ∈ P ⊂ U , and L is eventually (resp. frequently) in P .

A space X is determined by a cover P [20], if X has the weak topology with
respect to P ; that is, G ⊂ X is open in X if G ∩ P is open in P for each P ∈ P .
Here, we can replace “open” by “closed”. For basic properties of weak topologies,
see [9, 73, 80]. A space is sequential (resp. a k-space) if it is determined by
compact metric subsets (resp. compact subsets). As is well-known, sequential
spaces (resp. k-spaces) are characterized as quotient images of (locally compact)
metric spaces (resp. locally compact spaces). A k-space X is sequential if each
point of X is a Gδ-set [48], or X has a point-countable k-network [20]. A space is

23
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Fréchet (or Fréchet–Urysohn) if whenever A ⊂ X with x ∈ A, there is a sequence
in A converging to the point x. Fréchet spaces are sequential.

Let f : X → Y be a map. Then f is an s-map (resp. compact map; Lindelöf ;
countable-to-one) if each fiber f−1(y) is separable (resp. compact; Lindelöf; count-
able). Also, f is a compact-covering map if each compact subset of Y is an image
of some compact subset of X .

In 1966, Michael [47] characterized quotient (compact-covering) images of
separable metric spaces as k-and-ℵ0-spaces. In [1], Arhangel’skii posed an impor-
tant problem: “How does one characterize, in intrinsic terms, quotient s-images of
metric spaces?” Hoshina [23], Gruenhage, Michael and Tanaka [20] gave charac-
terizations for this problems, and other topologists gave many characterizations for
various kinds of quotient images of metric spaces. In 1987, Tanaka [72] obtained
a concise characterization by means of cs*-networks: A space X is a quotient
s-image of a metric space iff X is a sequential space with a point-countable cs*-
network. On the other hand, Michael and Nagami [50] posed a classical problem
related to quotient s-images of metric spaces: “Is a quotient s-image of a met-
ric space a quotient, compact-covering s-image of a metric space?” Michael [49]
showed that a space X is a quotient, compact-covering s-image of a metric space if
X is a k-space with a point-countable closed k-network. Lin and Liu [33] showed
that the same result also holds if X is a sequential space with a point-countable
cs-network. Assuming the existence of the σ′-set (in [61]), Chen [6] constructed a
quotient s-image of a metric space that is not a quotient, compact-covering s-image
of a metric space. He also constructed a Hausdorff counterexample in [5].

Problem 1. Let X be a quotient s-image of a metric space. If X is Fréchet, is81?

X a compact-covering s-image of a metric space ?

Let us recall canonical quotient spaces, the sequential fan Sω and the Arens’
space S2. For an infinite cardinal α, Sα is the space obtained from the topological
sum of α many convergent sequences by identifying all limit points. While, S2

is the space obtained from the topological sum of {Ln : n < ω}, Ln are the
convergent sequence {1/n : n ∈ N} ∪ {0}, by identifying each 1/n ∈ L0 with
0 ∈ Ln (n ≥ 1).

The space Sω1
is a Fréchet space which has a point-countable k-network, but

does not have any point-countable cs*-network (in view of [71]). A quotient s-
image of a metric space has a point-countable k-network, and contains no copy
of Sω1

in view of [20], also it has a point-countable cs*-network, but the authors
don’t even know whether the answer of the following problem is positive among
sequential spaces. If the answer is positive, then so is the answer to [20, Ques-
tion 10.2].

Problem 2. Let X be a Fréchet space with a point-countable k-network. If X82?

contains no closed copy of Sω1
, does X have a point-countable cs*-network?

A collection B =
⋃{Bx(n) : x ∈ X,n ∈ N} of subsets ofX is an ℵ0-weak base if

(a) for each n, x ∈ X , Bx(n) is closed under finite intersections with x ∈ ⋂Bx(n),
and (b) U ⊂ X is open iff for each x ∈ U , n ∈ N , there is Bx(n) ∈ Bx(n)
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with x ∈ Bx(n) ⊂ U . A space X is ℵ0-weakly first-countable [67] (or weakly
quasi-first-countable [64]) if the Bx(n) is countable for each x ∈ X,n ∈ N . If
Bx(n) = Bx(1) for each x ∈ X,n ∈ N , the collection B is a weak base as defined by
Arhangel’skii [1], andX is weakly first-countable (or, g-first countable [65]) if Bx(1)
is countable for each x ∈ X . A space X is symmetric (or symmetrizable) [1], if
there is a real-valued function d defined on X×X such that (a) d(x, y) = d(y, x) ≥
0, here d(x, y) = 0 iff x = y, and (b) U ⊂ X is open iff for each x ∈ U , {y ∈
X : d(x, y) < 1/n} ⊂ U for some n ∈ N . A first-countable space or a symmetric
space is weakly first-countable, and a weakly first-countable space is ℵ0-weakly
first-countable, hence sequential [64]. A space X is g-metrizable (resp. g-second
countable) [65] if it has a σ-locally finite weak base (resp. a countable weak base).
The space S2 is g-second countable, but not Fréchet. The space Sω is a Fréchet
space with a countable ℵ0-weak base, but it is not g-first countable. A g-metrizable
space is symmetrizable, and a Fréchet g-metrizable space is metrizable [65].

Problem 3. Let X be a Fréchet space with a σ-locally finite ℵ0-weak base. Is X 83?

a closed countable-to-one image of a metric space?

Lašnev [26] gave the first characterization for closed images of metric spaces.
Foged [12] characterized Lašnev spaces (= closed images of metric spaces) as
Fréchet spaces with a σ-HCP k-network. A space is a Fréchet ℵ-space iff it is a
closed s-image of a metric spaces [17, 27]. Liu [35] characterized an ℵ0-weakly
first-countable Lašnev space X as a closed, σ-compact image (i.e., each fiber is σ-
compact) of a metric space. The above problem is equivalent to a question whether
every closed, σ-compact image of a metric space is a closed countable-to-one image
of a metric space.

A space X is stratifiable (or an M3-space) if for each open subset U of X , there
is a sequence {S(U, n) : n ∈ N} of open subsets such that (a) U =

⋃{S(U, n) :

n ∈ N} =
⋃{S(U, n) : n ∈ N}, and (b) if U ⊂ V , then S(U, n) ⊂ S(V, n) for all

n ∈ N .
If in the above definition the sets S(U, n) are required to be closed instead

of open, then X is semi-stratifiable [7]. X is k-semistratifiable [45] if whenever
C ⊂ U with C compact and U open in X , C ⊂ S(U, n) for some n ∈ N . An M3-
space, or a space with a σ-CP k-network is k-semistratifiable. A k-semistratifiable
space is a σ-space [16], and a σ-space is semi-stratifiable. A classical problem
whether a space with a σ-CP base (= M1-space) is equivalent to a space with a
σ-cushioned pair-base (= M3-space) remains open. A space with a σ-CP network
(= σ-space) need not be equivalent to a space with a σ-cushioned pair-network
(= semi-stratifiable space); see [19]. A k-semistratifiable space is equivalent to a
space with a σ-cushioned pair-k-network [14, 15].

Problem 4. Is a Fréchet M3-space (hence, M1-space) with a point-countable k- 84?

network a Lašnev space?

A Lašnev space is a Fréchet M3-space with a point-countable k-network. A
positive answer to the above problem implies an affirmative answer to Junnila and
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Yun’s question [25]: “Is every Fréchet M3-space with a point-countable closed k-
network an ℵ-space ?”

In view of Foged’s characterization for Lašnev spaces, can we generalize this
to g-metrizable domains? Every closed image of an ℵ-space, in particular, g-
metrizable space, has a σ-HCP k-network [72]. But, for the converse, the authors
don’t even know whether a k-and-ℵ0-space is a closed image of a g-second count-
able space.

Problem 5. Is a k-space with a σ-HCP k-network characterized as a a closed85?

image of a g-metrizable space?

k-networks and weak bases

A Fréchet k-semistratifiable space is an M3-space with a σ-CP k-network [14,
15].

Problem 6 ([14]). Does a k-semistratifiable space have a σ-CP k-network?86?

A paracompact space with a σ-locally countable k-network is an ℵ-space. But,
a g-metrizable (hence, k-semistratifiable) space need not be normal [13].

Problem 7 ([31]). Is a k-and-k-semistratifiable space with a σ-locally countable87?

k-network an ℵ-space?
A space X is a g-metrizable space iff X is a weakly first-countable ℵ-space [11]

iff X is a weakly first-countable space with a σ-HCP k-network [28, 74] iff X has a
σ-HCP weak base [38] iffX has a σ-compact-finite weak base by closed subsets [36]
iff X is a k-space with a σ-HCP k-network and contains no closed copy of Sω [39].

Problem 8.88–89?

(1) Let X be a k-space with a σ-locally countable k-network. If X contains
no closed copy of Sω, does X have a σ-locally countable weak base?

(2) ([31]) Does a k-and-ℵ-space have a σ-CP weak base?

For (1) in the above problem, it is positive if the k-network is σ-locally finite,
and X has a σ-locally countable base if X contains no closed copy of Sω and
no S2, in particular, X is first-countable. A weakly first-countable space (hence,
it contains no copy of Sω) with a σ-compact-finite k-network need not have a
point-countable weak base [34].

Problem 9. Let X be a weakly first-countable space. Is any weak base for X a90?

k-network?

Liu [38] showed that not every weak base is a k-network. But, in most cases,
a weak base is a k-network. Among spaces whose every compact subset is Fréchet
(e.g., spaces whose points are Gδ-sets), any weak base is a k-network [76]. The
authors don’t even know whether a weak base is a k-network among sequential
spaces.

Problem 10. Let Y be an open and closed image of a (compact) weakly first-91?

countable space. Is Y weakly first-countable?
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A compact symmetrizable space is metrizable [1], but a compact weakly first-
countable space need not be first-countable under CH [24].

It was asked in [75] whether a weak first-countability (or symmetrizability) is
preserved by open and closed maps. If every point of the domain is a Gδ-set, weak
first-countability and symmetrizability are preserved by open and closed maps [75].
A perfect image of a first-countable symmetrizable space need not be weakly first-
countable. Liu and Lin [40] showed that an open (resp. open compact) image
of a countable g-second countable space (resp. symmetrizable space) need not be
weakly first-countable. A similar counterexample is also obtained by Sakai [59].

Problem 11. Is a space with a σ-compact-finite weak base g-metrizable? 92?

A space with a σ-compact-finite weak base by closed subsets is g-metrizable.
Under CH, a separable space with a σ-compact-finite weak base is g-metrizable [37],
but the authors don’t know whether this is true in ZFC.

A space is meta-Lindelöf if every open cover has a point-countable open re-
finement.

Problem 12. Let X be a space with a σ-compact-finite weak base (generally, a 93–94?

k-space with a σ-compact finite k-network). Is X meta-Lindelöf, or a σ-space ?

The above problem for the parenthetic part was posed in [43]. For this prob-
lem, if X is a quotient Lindelöf image of a locally ω1-compact1 (in particular, if X
is locally ω1-compact), then X is a paracompact σ-space. If the character χ(X)
of X is less than or equal to ω1 (e.g., X is locally separable under CH), then X is
hereditarily meta-Lindelöf . A k-space with a σ-HCP k-network, in particular, a
g-metrizable space is hereditarily meta-Lindelöf [58]. Lin [32] improved this result
by showing that a k-and-k-semistratifiable space is hereditarily meta-Lindelöf.

Problem 13. Let X be a space with σ-compact-finite weak base. Is X k-semistratifiable,95?

or every point of X a Gδ-set?

Spaces determined or dominated by certain covers

For a cover P of a space X , let us call P a determining cover [68] if X
is determined by P . An open cover is a determining cover. A spaces with a
determining cover by sequential spaces (resp. k-spaces) is a sequential space (resp.
k-space). For a closed cover F of a space X , X is dominated by F [46] if F is a
CP cover, and any P ⊂ F is a determining cover of the union of P . Let us call
the closed cover F a dominating cover [68]. A HCP closed cover, or an increasing
determining closed cover {Fn : n ∈ N} is a dominating cover. A CW-complex has
a dominating cover by compact metric spaces. A space with a dominating cover
by paracompact spaces (resp. normal spaces) is paracompact (resp. normal) [46,
52], and similar presevations also hold for M3-spaces [3], σ-spaces [69], etc. For
summaries on determining or dominating covers in terms of their preservations by
maps, subsets, or products, see [68]. A space with a point-countable determining

1A space X is ω1-compact if any uncountable subset has an accumulation point in X.
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cover by k-and-ℵ-spaces, generally, a quotient Lindelöf image of a k-and-ℵ-space
has a point-countable k-network [72], and a space with a dominating cover by
ℵ-spaces has a σ-CP k-network [78]. A space with a point-finite determining
cover by metric spaces, generally, a quotient compact image of a metric space is
symmetric.

We shall recall a classical problem of whether closed subsets (or points) in a
symmetric space X are Gδ-sets, which was raised in 1966 by E. Michael. (For
some questions on symmetric spaces, see [4], etc.). Michael’s problem is positive
(actually, X is hereditarily Lindelöf) if X is ω1-compact [55], and is also positive
(points in X are Gδ-sets) if χ(X) ≤ ω1 [66]. The problem below was posed around
1980 by Y. Tanaka. The answer to (a) and (c) of this problem are negative underX
being Hausdorff [2]. In 1978, Davis, Gruenhage and Nyikos [8] answered Michael’s
problem negatively. They gave a symmetric space X which has a point-finite
determining closed cover by metric spaces (thus, X is a quotient compact image
of a metric space), but X is not countably metacompact, thus X has a closed
set which is not a Gδ-set, and it is not submetacompact (= θ-refinable) (also,
see [19]), and they gave also a Hausdorff symmetric space which has a point-finite
determining closed cover by metric spaces, but it has a point which is not a Gδ-
set. A separable space with a point-finite determining cover by compact metric
spaces need not be normal, or meta-Lindelöf [20]. Also, every first-countable
space with a point-finite determining closed and open cover by metric spaces need
not be normal. Let X be a space with a point-countable determining cover by
cosmic spaces (e.g., X is a quotient s-image of a locally separable metric space),
or a space with a point-countable determining closed cover by σ-spaces. Then,
points of X are Gδ-sets if χ(X) ≤ ω1, and X is a σ-space if X is ω1-compact, or
submetacompact with χ(X) ≤ ω1.

Problem 14. Let X be a quotient compact image of a locally compact metric96–99?

space (equivalently, a space with a point-finite determining cover by compact metric
subsets).

(a) Is each closed subset of X a Gδ-set?
(b) Is each point of X a Gδ-set?
(c) Is X a subparacompact space (or, σ-space)?

Let X be a k-space. When X has a star-countable k-network, X has a dom-
inating cover by ℵ0-spaces [60], so X is a paracompact σ-space. When X has a
σ-HCP k-network, generally, X is a k-semistratifiable space, X is meta-Lindelöf.
When X is a topological group with a point-countable k-network, then X is metriz-
able if the sequential order of X is countable [63]. When X is a topological group
with a point-countable k-network (or a point-countable determining cover) by
cosmic spaces, X is the topological sum of cosmic spaces [42]. A space X has a
σ-compact-finite k-network if X has a star-countable or σ-HCP k-network, or X
has a dominating cover by spaces with a σ-compact-finite k-network [43] (or [78]).
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Problem 15. Let G be a topological group which is a k-space with a σ-compact- 100–101?

finite k-network, or a point-countable determining cover by metric spaces. Is G
paracompact (or, meta-Lindelöf ) ?

A space X is an A-space [51], if, whenever {An : n ∈ N} is a decreasing

sequence with x ∈ An \ {x} for all n ∈ N , there exist Bn ⊂ An such that
⋃{Bn :

n ∈ N} is not closed in X , and X is an inner-closed A-space if the Bns are closed
in X . A weakly first-countable space is an A-space, and a countably bi-quasi-k-
spaces (of [48]) is an inner-closed A-space [51]. In terms of the spaces Sω and S2,
let us review some results stated in [78] mainly. Let X be a sequential space. Then
X is an A-space iff it contains no (closed) copy of Sω. When points of X are Gδ-
sets, or X has a point-countable k-network, X is Fréchet iff it contains no (closed)
copy of S2. Let X be a k-space with a point-countable k-network. Then X has a
point-countable base iff X contains no closed copy of Sω and no S2, equivalently,
X is an inner-closed A-space. When X is symmetric, X has a point-countable base
(equivalently, X is developable [22]) iff X is Fréchet. A k-space X is metrizable
if X is an M -space with a point-countable k-network, or an inner-closed A-space
having a point-countable k-network by separable subsets or a σ-compact-finite
k-network. For a space X having a dominating cover by metric spaces or a point-
countable determining cover by locally separable metric spaces, X is metrizable
if it is an inner-closed A-space. Let G be a topological group (thus, G contains a
closed copy of Sω iff it contains a closed copy of S2). Then G is metrizable if it
is a weakly first-countable space [56], or a k-and-A-space (or Fréchet-space) with
a point-countable k-network. For a topological group G having a dominating or
point-countable determining closed cover P by bi-sequential spaces (of [48]) (e.g.,
first-countable spaces), G is metrizable if G is a Fréchet space or an A-space. If in
the above statement the cover P is a point-countable determining cover, the points
are Gδ-sets, and G is an A-space then G is again metrizable. G is also metrizable
if the cover P is a point-finite determining cover [57]. For the following problem,
it is positive if P is point-finite or closed in (a), and so is if all elements of P are
metric, or cosmic in (b).

Problem 16. Let X be a space with a point-countable determining cover P. If 102?

the following (a) or (b) holds, is X metrizable?

(a) X is paracompact first-countable, and the elements of P are metric.
(b) X is a topological group which is an A-space, and the elements of P are

first-countable spaces, ([57]).

Products of k-spaces having certain k-networks

k-networks are countably productive [20]. Weak bases need not be produc-
tive, but these are (countably) productive if the product spaces are sequential.
Symmetric spaces (resp. sequential spaces) are countably productive if the prod-
uct spaces are k-spaces [56] (resp. [68]). A pair (X,Y ) of spaces satisfies the
Tanaka condition [29, 31] if one of the following holds: (a) both X and Y are
first-countable, (b) either X or Y is locally compact, and (c) both X and Y are
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locally kω-spaces. Here, a space X is a kω-space if it has a countable determining
cover by compact subsets (equivalently, X is a quotient image of a locally com-
pact Lindelöf space). Every space with a countable determining closed cover by
locally compact subsets is locally kω [77]. For a pair (X,Y ) satisfying the Tanaka
condition, X × Y is a k-space, assuming X is a k-space for Y being locally com-
pact, and vice versa in (b). Tanaka [70] proved that for k-and-ℵ-spaces X,Y , the
product X ×Y is a k-and-ℵ-spaces iff (X,Y ) satisfies the Tanaka condition. Gru-
enhage [18] proved that a set-theoretic axiom b = ω1 (i.e., BF(ω2) is false) weaker
than CH is equivalent to the statement that for Lašnev spaces X,Y , the product
X × Y is a k-space iff (X,Y ) satisfies the Tanaka condition. Liu and Tanaka [44]
improved Gruenhage’s result by showing the result is valid for k-spaces with a
compact-countable k-network. Lin and Liu [33] proved that for sequential spaces
X,Y with a point-countable cs-network (e.g., X,Y are k-and-ℵ-spaces), X × Y is
a sequential space iff (X,Y ) satisfies the Tanaka condition, and they gave a coun-
terexample that under b > ω1, there exist quotient finite-to-one images X,Y of
locally compact metric spaces with X × Y sequential, but (X,Y ) does not satisfy
the Tanaka condition. Under CH, Shibakov [62] also obtained a counterexample
for spaces with a point-countable closed k-network. Tanaka [77] gave analogous
characterizations forX×Y to be a k-space ifX,Y have point-countable k-networks
such that σ-compact closed subsets are ℵ0-spaces (e.g., spaces with a compact-
countable k-network, or spaces with a point-countable cs-network) in terms of
Tanaka condition, and X2 is a k-space iff X is first-countable or locally kω.

Problem 17.103?

(1) Let X be a quotient s-image of a metric space, in particular let X be
a space with a point-countable determining cover by (compact) metric
subsets. If X2 is a k-space, is X first-countable or locally kω?

(2) Let X be a k-space with a point-countable k-network. What is a necessary
and sufficient condition for X2 to be a k-space?

A bi-k-space [48] is a generalization of first-countable spaces and locally com-
pact spaces. For sequential spaces X,Y which are closed images of paracompact
bi-k-spaces, Gruenhage’s result remains valid, but replace “first-countable” by “bi-
k” in the Tanaka condition, and X2 is a k-space iff X is bi-k or locally kω [79].
(Some questions on products of k-spaces were posed in [79]). For a sequential
space X and a bi-k-space Y , X×Y is a k-space iff X is a Tanaka space 2 (in [54]),
or Y is locally countably compact (cf. [53, 54]). For products of weak topologies,
see [81, 68].

For a space X with a point-countable determining cover by cosmic spaces,
χ(X) ≤ 2c, c = 2ω. But, for each α ≥ ω, there is a symmetric space X with a
point-finite determining closed cover by metric spaces such that χ(X) > α, and
χ(X) > c when we replace “metric spaces” by “compact metric spaces”. Let

2A space X is a Tanaka space if for a decreasing sequence {An : n ∈ N} with x ∈ An \ {x}
for all n ∈ N , there exist xn ∈ An such that the sequence {xn : n ∈ N} converges to some point
in X.



PRODUCTS OF k-SPACES HAVING CERTAIN k-NETWORKS 31

X be a space with a point-countable k-network. When X2 is a k-space, X is
first-countable or locally σ-compact (in view of [77]), thus χ(X) ≤ c. When Xω

is a k-space, X is first-countable [30, 44]. Now, let X be a symmetric space
having property (∗): any separable closed subset is a space whose points are Gδ-
sets. A symmetric space has (∗) under CH, or it is meta-Lindelöf or collectionwise
Hausdorff3. When X2 is a k-space, χ(X) ≤ 2c. When Xω is a k-space, X is first-
countable. The authors don’t know whether a symmetric space Y which contains
no (closed) copy of the space S2 is first-countable (here, Y is first-countable when
Y has (∗)). If this is positive, then the above results hold without (∗).
Problem 18. 104–105?

(1) Let X2 be a symmetric space. Is χ(X) ≤ c (or χ(X) ≤ 2c)?
(2) Let Xω be a symmetric space. Is X first-countable?

A space X has countable tightness if whenever x ∈ A, there is a countable
subset C ⊂ A with x ∈ C. A space has countable tightness iff it has a determining
cover by countable subsets [48]. A sequential space or a hereditarily separable
space has countable tightness. For spaces X,Y having countable tightness, if
X × Y is a k-space, then X × Y has countable tightness, and the converse holds
when X,Y have a dominating cover by locally compact spaces. While, for a closed
map f : X → Y with X strongly collectionwise Hausdorff, let Y 2 have countable
tightness, then each boundary ∂f−1(y) is c-compact (ω1-compact if Y is sequen-
tial) [21]. Every product of spaces with a countable determining cover by locally
separable metric subsets has countable tightness. But a product of a space with a
point-finite determining cover (or a dominating cover) by ω1 many compact metric
subsets does not have countable tightness. Liu and Lin [41] proved that the axiom
b = ω1 is equivalent to the assertion that for k-spaces X,Y with a point-countable
k-network by cosmic subsets (e.g., X,Y have a point-countable determining cover
by locally separable metric subsets), X×Y has countable tightness iff one of X,Y
is first-countable, or both X,Y are locally cosmic, and X2 has countable tightness
iff X is locally cosmic. They also showed that the axiom is equivalent to the as-
sertion that for spaces X,Y with a dominating cover by metric subsets, if X × Y
has a countable tightness, then one of X,Y is first-countable, or both X,Y have
a countable dominating cover by metric subsets (equivalently, X,Y are ℵ-spaces).
The converse of this assertion holds if the answer to (1) in the following problem
is positive.

Problem 19. 106–107?

(1) Let X be a space with a countable determining closed cover by metric
subsets. Does X2 have countable tightness?

(2) Let X be a k-space with a point-countable k-network, in particular, let
X be a (Fréchet) space with a point-countable (countable) determining

3A space X is (strongly) collectionwise Hausdorff if whenever {xα : α ∈ A} is a closed
discrete subset of X, there is a (discrete) disjoint collection {Uα : α ∈ A} of open subsets with
xα ∈ Uα.
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closed cover by metric subsets. What is a necessary and sufficient con-
dition for X2 to have countable tightness?

References
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Extension problems of real-valued continuous
functions

Haruto Ohta and Kaori Yamazaki

1. Introduction

By a space we mean a completely regular T1-space. A subset A of a space X is
said to be C-embedded in X if every real-valued continuous function on A extends
continuously over X , and A is said to be C∗-embedded in X if every bounded
real-valued continuous function on A extends continuously over X . The aim of
this paper is to collect some open questions concerning C-, C∗-embeddings and ex-
tension properties which can be described by extensions of real-valued continuous
functions.

Let N, Q, R and I denote the sets of natural numbers, rationals, reals, and
the closed unit interval, respectively, with the usual topologies. Let ω be the
first infinite cardinal. For undefined terms on generalized metric spaces, see [8].
General terminology and notation will be used as in [5].

2. C-embedding versus C∗-embedding

This section overlaps partly with the survey [27]; here, we update information
about status of the questions and add some new questions. It is not difficult to
construct an example of a closed set which is C∗-embedded but not C-embedded
(for example, see [25, Construction 2.3]). It is, however, interesting to ask if
C∗-embedding implies C-embedding under certain circumstances.

Question 1. Is every C∗-embedded subset of a first countable space C-embedded? 108?

Note that every C∗-embedded subset of a first countable space is closed.
Kulesza–Levy–Nyikos [17] proved that if b = s = c, then there exists a maxi-
mal almost disjoint family R of infinite subsets of N such that every countable
set of nonisolated points of the space N ∪ R is C∗-embedded. Since every set
of nonisolated points of N ∪ R is discrete and N ∪ R is pseudocompact, those
countable sets are not C-embedded. Thus, Question 1 has a negative answer un-
der b = s = c, but it remains open whether there exists a counterexample in
ZFC. Kulesza–Levy–Nyikos [17] also proved that, assuming the Product Measure
Extension Axiom (PMEA), there exists no infinite discrete C∗-embedded subset
of a pseudocompact space of character less than c. Since every C∗- but not C-
embedded subset contains an infinite discrete C∗-embedded subset, this implies
that no pseudocompact space, in particular, no space N ∪ R, can be a counterex-
ample to Question 1 under PMEA (see [16] for related results). On the other hand,

Research of the second author is partially supported by the Ministry of Education,
Science, Sports and Culture, Grant-in-Aid for Young Scientists (B), No. 16740028.
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by Tietze’s extension theorem, no normal space can also be a counterexample to
Question 1. Thus, it is natural to ask if typical examples of first countable, non-
normal spaces contain C∗-embedded subsets which are not C-embedded. In [27]
the first author proved that every C∗-embedded subset of the Niemytzki plane NP
is C-embedded and asked the following questions, which have been unanswered as
yet.

Question 2. Is every C∗-embedded subset of the square S2 of the Sorgenfrey line109?

C-embedded in S2?

Question 3. Is every C∗-embedded subset of the product RQ×Nω of the Michael110?

line with the space of irrationals C-embedded in RQ × Nω?

It was proved in [27] that if a space X contains a pair of disjoint closed sets,
one of which is countable discrete, which cannot be separated by disjoint open
sets, then the absolute E(X) of X contains a closed C∗-embedded subset which
is not C-embedded. Hence, the absolutes E(NP), E(S2) and E(RQ × Nω) of the
Niemytzki plane, the Sorgenfrey plane and Michael’s product space, respectively,
contain C∗- but not C-embedded closed sets.

Another interesting case of the relationship between C∗- and C-embeddings
is a closed rectangle in a product. Indeed, the next question asked in [27] and the
one after next are still open.

Question 4. Let A be a C-embedded closed subset of a space X and Y a space111?

such that A×Y is C∗-embedded in X×Y . Then, is A×Y C-embedded in X×Y ?

Question 5. Let A (resp. B) be a C-embedded closed subset of a space X (resp. Y )112?

such that A×B is C∗-embedded in X×Y . Then, is A×B C-embedded in X×Y ?

It is known that the answer to Question 4 (resp. 5) is positive in each of the
following cases (1)–(4) (resp. (5) and (6)):

(1) Y is the product of a σ-locally compact (i.e., the union of countably
many locally compact closed subspaces), paracompact space with a met-
ric space ([27, Corollary 4.10]). In particular, Y is either σ-locally com-
pact, paracompact ([44, Theorem 1.1]) or a metric space ([10, Theo-
rem 1.1]).

(2) Y ≈ Y 2 and Y contains an infinite compact set ([15, Theorem 2.1]).
(3) X is a normal P -space and Y is a paracompact Σ-space ([44, Theo-

rem 1.2]).
(4) X is a normal weak P (ω)-space and Y is K-analytic ([43, Theorem 4.2]).
(5) Y is locally compact and paracompact (combine [20, Theorem 4] with [44,

Theorem 1.1]).
(6) Y is a metric space (combine [10, Theorem 1.1] with [37, Theorem 4]).

Question 4 is a special case of Question 5, and the authors do not know if
the answer to Question 5 is positive in each of the cases (1)–(4) above. As for
another candidate for positive cases, the following question naturally arises; the
case where Y is a paracompact M -space was asked by Gutev and the first author
in [10, Problem 1].
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Question 6. Is an answer to Question 4 positive if either the space X or Y is 113?

assumed to be a paracompact M -space (or equivalently, a paracompact p-space)?

Recall from [12] that a subset A of a space X is said to be Uω-embedded in
X if for every real-valued continuous function g on A there exists a real-valued
continuous function f on X such that g(x) ≤ f(x) for each x ∈ A (see [10,
Lemma 2.5]). It is known that A is C-embedded in X if and only if A is C∗- and
Uω-embedded in X , i.e., C = C∗ + Uω. Gutev and the first author [10] proved
that if A is a C-embedded subset of a space X and Y is a metric space, then
A× Y is C∗-embedded in X × Y if and only if A× Y is Uω-embedded in X × Y .
Neither the ‘if’ part nor the ‘only if’ part of this result is known to be true for any
generalized metric spaces Y . In particular, the following question is open (see [10,
Problems 1 and 2] for related questions).

Question 7. Let A be a C-embedded subset of a space X and Y a stratifiable 114–115?

space.

(i) Is A×Y C∗-embedded in X ×Y provided that A×Y is Uω-embedded in
X × Y ?

(ii) Is A×Y Uω-embedded in X ×Y provided that A×Y is C∗-embedded in
X × Y ?

Next, we turn to questions on infinite products. For an infinite cardinal γ, let
us consider the following condition p(γ).

p(γ): For every collection of pairs (Xα, Aα), α < γ, of a space Xα and its closed
subset Aα with |Aα| > 1, if the product A =

∏
α<γ Aα is C∗-embedded

in the product X =
∏

α<γ Xα, then A is C-embedded in X .

Question 8. Is p(ω) true? 116?

Note that:

(i) A positive answer to Question 5 answers Question 8 positively, and
(ii) if p(ω) is true, then p(γ) is true for all infinite cardinals γ.

Before showing these, let us agree a notation. For spaces Yα, α < γ, andM ⊆ γ, we
write Y (M) =

∏
α∈M Yα. The latter fact (ii) is obvious, since every uncountable

product
∏

α<γ Yα can be considered as the countable product
∏

n<ω Y
(In) by

dividing γ into countably many nonempty sets In, n < ω. To show the former
fact (i), let Xi, i < ω, be spaces and Ai ⊆ Xi with |Ai| > 1 for each i < ω, and
assume that the product A =

∏
i<ω Ai is C∗-embedded in X =

∏
i<ω Xi. Divide

ω into two infinite sets I and J , and take an infinite compact set K ⊆ A(J).
Then, A(I) ×K is C∗-embedded in X(I) ×K, because A(I) ×K is C∗-embedded
in A = A(I) × A(J) by [37, Theorem 3] and A is C∗-embedded in X . Hence, it
follows from [23, Lemma 2.8] that A(I) is C-embedded in X(I). Similarly, A(J)

is C-embedded in X(J). Consequently, if Question 5 has a positive answer, then
A = A(I) ×A(J) is C-embedded in X = X(I) ×X(J), and hence, we have p(ω).
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The authors do not know if the converse of (i) is also true; however, they
conjecture that the answer to Question 5 is negative but that to Question 8 is
positive.

As was remarked in [10], we often find an interesting relationship between
C∗- and Uω-embedding which is parallel to that between normality and countable
paracompactness. For example, the result stated before Question 7 above is paral-
lel to the theorem of Morita–Rudin–Starbird (see [34]) asserting that, for a normal
countably paracompact space X and a metric space Y , the normality of X × Y
is equivalent to the countable paracompactness of X × Y . Thus, the questions
we discuss in this section can be considered as relativizations of questions on the
relationship between normality and countable paracompactness. In this aspect,
the following questions are inspired by theorems of Nagami [24, Corollary 1.6] and
Zenor [50, Theorem A].

Question 9. For each i < ω, let Xi be a space and Ai a closed subset of Xi with117?

|Ai| > 1. Assume that the product A =
∏

i<ω Ai is Uω-embedded in the product
X =

∏
i<ω Xi and

∏
i≤nAi is C-embedded in

∏
i≤n Xi for each n < ω. Is, then,

A C-embedded in X?

For an infinite cardinal γ, a subset A is said to be P γ-embedded in X if for
every normal cover U of A with |U| ≤ γ, there exists a normal cover V of X such
that {V ∩ A : V ∈ V} refines U . It is known that A is P ω-embedded in X if
and only if A is C-embedded in X , i.e., P ω = C. For more information about
P γ-embedding, see [1] and [13].

Question 10. For each i < ω, let Xi be a space and Ai a closed subset of Xi with118?

|Ai| > 1. Let γ be an infinite cardinal. Assume that the product A =
∏

i<ω Ai

is C∗-embedded in the product X =
∏

i<ω Xi and
∏

i≤n Ai is P γ-embedded in∏
i≤nXi for each n < ω. Is, then, A P γ-embedded in X?

A positive answer to Question 8 answers Question 10 positively. To show
this, we need a definition from [21] and [26]. A collection U of subsets of X is
uniformly locally finite in X if there exists a normal cover V of X such that each
member of V intersects at most finitely many members of U . Now, it suffices
to show that for every collection of pairs (Xi, Ai), i < ω, of a space Xi and its
closed subset Ai with |Ai| > 1, if A =

∏
i<ω Ai is C-embedded in X =

∏
i<ω Xi

and A(n+1) =
∏

i≤n Ai is P γ-embedded in X(n+1) =
∏

i≤nXi for each n < ω,

then A is P γ-embedded in X . Let U be a normal cover of A with |U| ≤ γ.
We may assume that U is a uniformly locally finite cozero-set cover of A, since
every normal cover has a uniformly locally finite cozero-set refinement (see [21,
Proposition 4.2]). For each U ∈ U , there exists a cozero-set G(U) in X such that
G(U)∩A = U . Pick up ai ∈ Ai for each i < ω. For every n < ω and every U ∈ U ,
define Vn(U) = {(x0, x1, · · · , xn) ∈ A(n+1) : (x0, x1, · · · , xn, an+1, an+2, · · · ) ∈ U}.
Since {Vn(U) : U ∈ U} is a uniformly locally finite cozero-set cover of A(n+1) and
A(n+1) is P γ-embedded in X(n+1), it follows from [47, Theorem 1.3] that there
exists a locally finite cozero-set cover {Hn(U) : U ∈ U} of X(n+1) such that
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Hn(U) ∩ A(n+1) = Vn(U) for each U ∈ U . Set H = {p−1
n (Hn(U)) ∩ G(U) : U ∈

U , n < ω}, where each pn : X → X(n+1) is the projection. Then,
⋃H is a cozero-

set in X containing A, because H is σ-locally finite. Since A is C-embedded in
X , by [7, Theorem 1.18] there exists a cozero-set G in X such that A ∩ G = ∅
and

⋃H ∪ G = X . Finally, putting H1 = H ∪ {G}, we obtain a σ-locally finite
cozero-set cover (and hence, a normal cover) H1 of X such that {H ∩A : H ∈ H1}
refines U . Hence, A is P γ-embedded in X .

3. π-embedding and πZ-embeddings

In this section, let A denote a subset of a space X and γ an infinite cardinal.
We are concerned with extension properties which can be described by extensions
of real-valued continuous functions via product spaces. More precisely, for a class
Z of spaces, we say that A is πZ -embedded in X if A × Y is C∗-embedded in
X×Y for every Y ∈ Z (see [31]). When Z is the class of all spaces, πZ -embedded
subsets are called π-embedded omitting Z . Particularly interesting cases are when
Z is one of the following classes:

Cγ = the class of all compact spaces Y with w(Y ) ≤ γ,

M = the class of all metric spaces,

P = the class of all paracompact M -spaces.

Morita–Hoshina [23] and Przymusiński [29] proved the following theorem which
shows that P γ = πCγ

= π{Iγ} and C = πCω
= π{Iω}.

Theorem 1 (Morita–Hoshina and Przymusiński). Let A be a subset of a space X
and γ an infinite cardinal. Then, the following are equivalent :

(1) A is P γ-embedded in X,
(2) A× Y is C∗-embedded in X × Y for every Y ∈ Cγ ,
(3) A× Iγ is C∗-embedded in X × Iγ .

A question that naturally arises after Theorem 1 is what extension property
can be expressed as πZ -embedding for some class Z . This is the motivation of the
next two questions. Following [4], we write Y ∈ AE(X,A) if any map f : A → Y
extends continuously over X , and by AR we mean an absolute retract for the
class of metrizable spaces. Morita [19] and Przymusiński [29] proved that A is
P γ-embedded in X if and only if Y ∈ AE(X,A) for all complete ARs Y with
w(Y ) ≤ γ. By contrast, Sennott [35] defined A to be Mγ-embedded in X if
Y ∈ AE(X,A) for all ARs Y with w(Y ) ≤ γ. It is known ([36], [41]) that every
πM- and P γ-embedded subset is Mγ-embedded, but the converse is not true as
we state below.

Question 11. For every infinite cardinal γ, does there exist a class Zγ of spaces 119?

such that for every pair (X,A) of a space X and its closed subspace A, A is
Mγ-embedded in X if and only if A is πZγ

-embedded in X?

Dydak [3] defined A to be P γ(locally finite)-embedded (resp. P γ(point-finite)-
embedded) in X if every locally finite (resp. point-finite) partition of unity α on A
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with |α| ≤ γ extends to a locally finite (resp. point-finite) partition of unity on X .
The second author [48] showed that for every γ, there exists a class Zγ of spaces
such that P γ(locally finite) = πZγ

, where the case of γ = ω was essentially due to
Przymusiński [32]. Thus, every π-embedded subset is P γ(locally finite)-embedded
for every γ. The authors proved in [28] that A is P γ(point-finite)-embedded in
X if and only if Y ∈ AE(X,A) for all σ-complete ARs Y with w(Y ) ≤ γ. Hence,
P γ(point-finite)-embedding is located between Mγ- and P γ-embeddings. Now, it
will be natural to ask the following question.

Question 12. For every infinite cardinal γ, does there exist a class Zγ of spaces120?

such that for every pair (X,A) of a space X and its closed subspace A, A is
P γ(point-finite)-embedded in X if and only if A is πZγ

-embedded in X?

Sennott [36] showed that Theorem 1 above remains true if the class Cγ is re-
placed by the class Lγ of locally compact, paracompact spaces Y with w(Y ) ≤ γ.
Since P γ-embedding is defined in terms of normal covers of A and X only, Theo-
rem 1 can be considered as an internal characterization of πCγ

-embedded subsets
and πLγ

-embedded subsets. Gutev and the first author [10] gave an internal char-
acterization of πM-embedded subsets, and the second author [43] gave an internal
characterization of πCM-embedded subsets, where CM is the class of complete
metric spaces. However, no internal characterization of πP -embedded subsets is
known, in particular, the following question asked by Waśko [41, Problem 1.10] is
unanswered.

Question 13 (Waśko). Characterize those spaces whose every closed set is πP -121?

embedded.

A subset A is said to be P -embedded in X if A is P γ-embedded in X for every
γ. M -, P (locally finite)- and P (point-finite)-embeddings are defined similarly. It
is known that closed subsets of spaces in enough wide classes are P (locally finite)-
or πP -embedded. For example, every closed set in a collectionwise normal, count-
ably paracompact space is P (locally finite)-embedded (see [33, Theorem 2]), and
every closed set in a paracompact, perfectly normal space (or more generally, a
paracompact P -space in the sense of Morita [18]) X is πP -embedded since X ×Y
is normal for every paracompact M -space Y (see [18, Theorem 6.5]). By contrast,
little seems to be known about π-embedding. Starbird [37] proved that every
compact subset of a space is π-embedded, and Michael proved that every closed
set in a metric space is π-embedded (see [37, Theorem 4]), while a closed set in
the product of a compact space with a metric space need not be π-embedded (see
the example (5) below). The positive results by Starbird and Michael have been
generalized to two directions. Morita [20] generalized Starbird’s result by proving
that every locally compact, paracompact, P -embedded subset A of a space X is
π-embedded in X . He also proved that the set Q is not π-embedded in the Michael
line RQ, which shows that local compactness of A cannot be weakened to σ-local
compactness in his result. The following questions, however, remain open.

Question 14 (Hoshina [14]). If X is the image of a locally compact, paracompact122?

space under a closed continuous map, then is every closed set of X π-embedded?



3. π-EMBEDDING AND πZ -EMBEDDINGS 41

π //

��

P (locally finite)
/

(1)(3)(5)(6)

pp

��

\u
uuuuuuuuuu

(1)

zzuuuuuuuuuuuπP

−(5)

II

��
πM + P

��

−(7)

II

// M

\ooooooo

(2)(6)
wwoooooo

///
(2)(6)

qq

\kkkkkkkkkkkkkkkkkkkkk

(2)

55kkkkkkkkkkkkkkkkkk

P (point-finite) ///
(3)

rr
P

−(2)

RR

��

/
(1)

pp

πM

−(4)

JJ

\dddddddddddddddddddddddddddd

(4)

11ddddddddddddddddddddddddddddd

// C
/

(1)(2)(3)(6)

nn

−(4)

UU

Figure 1. Extension properties between π- and C-embeddings.

Question 15. Is every closed set of a σ-locally compact, paracompact space π- 123?

embedded?

In [40, Example 1.1] van Douwen constructed an example of a locally compact,
collectionwise normal, submetrizable space Λ such that the product Λ×Nω is not
normal. It is worth noting that the space Λ contains a closed set which is not M -
embedded (and hence, not π-embedded), because if all closed subsets of Λ were
M -embedded, then Λ is perfectly normal by [35, Corollary 5], and consequently,
Λ× Nω must be normal. As another direction, Fujii [6] proved that every closed
set of a stratifiable space is π-embedded, and Stares [38] generalized this to closed
sets of spaces called decreasing (G) spaces. The notion of a decreasing (G) space
goes back to [2] and defined explicitly in [39].

Question 16 (Fujii). Is every closed set of a paracompact σ-space π-embedded? 124?

Fujii [6] also studied the problem what generalized ordered space has the
property that every closed set is π-embedded, and proved that a locally compact,
generalized ordered space is the case. Gruenhage, Hattori and the first author [9]
determined π-embedded subsets of generalized ordered spaces, and showed that a
separable (and hence, perfectly normal), Čech-complete, paracompact, generalized
ordered space can have a non π-embedded subset. See also [11, 22, 30] for related
topics.

The diagram in Figure 1 illustrates the relationship among the extension prop-
erties discussed in this section, where A→ B means that everyA-embedded subset
is B-embedded, and A8(i) B means that the example (i) listed below shows that
not all B-embedded subsets are A-embedded. For the proof of each implication,
see [3], [14] and [41].

(1) The set Q of rationals in the Michael line RQ is P (locally finite)-embedded
in RQ because RQ is paracompact, while Q is neither πM-embedded
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([20]) nor Pω(point-finite)-embedded ([49, Corollary 3.3]). An example
of a paracompact space having a non-P ω(point-finite)-embedded closed
subset was first given by Dydak [3, Example 12.14].

(2) Przymusiński and Wage [33, Example 3] constructed an example of a
collectionwise normal space Z with a closed set K which is not P ω(locally
finite)-embedded. The second author proved in [48, Corollary 2.5] that
every πMω

-embedded set, where Mω is the class of all separable metric
spaces, is Pω(locally finite)-embedded (see Przymusiński [32] for a closed
set of a normal space). Hence, the set K is not πMω

-embedded in Z.
The authors [28] proved that all closed subsets of the space Z are M -
embedded.

(3) The Bernstein set A in the space RA is P (point-finite)-embedded but
not Mω-embedded ([28, Example 3.4]). Similarly to the Michael line, A
is P (locally finite)-embedded in RA.

(4) Every closed subset of a perfectly normal space X is πM-embedded,
since X ×M is normal for every metric space M . Hence, a perfectly
normal, non-collectionwise normal space contains a closed set which is
πM-embedded but not P -embedded (for example, see [5, Problem 5.5.3]).

(5) Waśko [41, Example 1.7] proved that the product space βN × Nω con-
tains a closed set X which is not π-embedded. Since the product of
βN × Nω with a paracompact M -spaces is paracompact, the set X is
πP -embedded. For a simpler example, see [9, Example 1].

(6) Waśko [41, Example 2.5] constructed an example of a Lindelöf space hav-
ing a zero-set Y which is not πM-embedded. The set Y is M -embedded,
since P -embedded zero-sets are M -embedded (see [35, Corollary 1]).

(7) Waśko [42] constructed an example of a πM- and P -embedded subset
which is not πP -embedded.

Concerning the diagram in Figure 1 there remain the following two questions,
which were first asked by the second author [46, Problems 3.6.5 and 3.6.6].

Question 17. Is every πM- and P -embedded subset P (locally finite)-embedded?125?

Question 18. Is every πP -embedded subset P (locally finite)-embedded?126?

4. Miscellaneous questions

In this section, we give two questions which particularly interest the authors.
The first one was asked by the second author [45, 46] and was asked again in [28].

Question 19. For every uncountable cardinal γ, if A is P γ- and Pω(locally finite)-127?

embedded in X, then is A P γ(locally finite)-embedded in X?

Przymusiński–Wage [33] called a normal space X (functionally) Katětov if for
every closed subset A of X every locally finite open (cozero-set) cover of A can be
extended to a locally finite open cover of X , and called X countably (functionally)
Katětov if it satisfies the same condition with coverings assumed to be countable.
They proved that a space X is functionally Katětov if and only if every closed set
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in X is P (locally finite)-embedded in X , and X is countably functionally Katětov
if and only if every closed set in X is P ω(locally finite)-embedded in X (see [45,
46, 48] for more about this topic in general context). Thus, a positive answer
to Question 19 implies that every collectionwise normal, countably functionally
Katětov space is functionally Katětov. A question whether every collectionwise
normal, countably Katětov space is Katětov is also open (see [33, Question 3]).
The authors [28] proved that a similar question to Question 19 for P γ(point-finite)-
embedding has a positive answer.

Question 20 (Dydak [3]). For every infinite cardinal γ, if A is P γ(point-finite)- 128?

embedded in X, then is A× I P γ(point-finite)-embedded in X × I?

The second author [45] proved that the answer to a similar question to Ques-
tion 20 for P γ(locally finite)-embedding is positive. The authors [28] proved that
Question 20 is equivalent to the following question: For every infinite γ, does every
P γ-embedded subset A of a space X satisfying condition (b) satisfy (a) below?

(a) For every subset B of X , which is the inverse image of an analytic set in
a metric space M under a continuous map f : X →M , with B ∩A = ∅,
there exists a cozero-set U in X such that B ⊆ U and U ∩ A = ∅.

(b) For every subset B of X , which is the intersection of countably many
cozero-sets in X , with B ∩ A = ∅, there exists a cozero-set U in X such
that B ⊆ U and U ∩A = ∅.

They showed in [28] that assuming the continuum hypothesis (CH) there exists
a P -embedded subset satisfying (b) but not (a). Thus, the answer to Question 20
is negative under CH, but it is still open whether there exists an example in ZFC.
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[32] T. C. Przymusiński, A solution to a problem of E. Michael, Pacific J. Math. 114 (1984),

no. 1, 235–242.
[33] T. C. Przymusiński and M. L. Wage, Collectionwise normality and extensions of locally

finite coverings, Fund. Math. 109 (1980), no. 3, 175–187.
[34] M. E. Rudin and M. Starbird, Products with a metric factor, General Topology and Appl.

5 (1975), no. 3, 235–248.
[35] L. I. Sennott, On extending continuous functions into a metrizable AE, General Topology

and Appl. 8 (1978), no. 3, 219–228.
[36] L. I. Sennott, Some remarks on M-embedding, Topology Proc. 3 (1978), no. 2, 507–520

(1979).
[37] M. Starbird, Extending maps from products, Studies in topology (Charlotte, NC, 1974),

Academic Press, New York, 1975, pp. 559–564.
[38] I. S. Stares, Extension of functions and generalized metric spaces, D.Phil. thesis, Oxford

University, 1994.
[39] I. S. Stares, Concerning the Dugundji extension property, Topology Appl. 63 (1995), no. 2,

165–172.



REFERENCES 45

[40] E. K. van Douwen, A technique for constructing honest locally compact submetrizable ex-
amples, Topology Appl. 47 (1992), no. 3, 179–201.
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LΣ(κ)-spaces

Oleg Okunev

All spaces are assumed to be Tychonoff (= completely regular Hausdorff). We
use terminology and notation as in [2].

A multivalued mapping from a set X to a set Y is a mapping that assigns
to each point of X a subset of Y (not necessarily non-empty). For a multivalued
mapping p : X → Y and a set A in X the image of A under p is p(A) =

⋃{p(x) :
x ∈ A}. A multivalued mapping p : X → Y is compact-valued if all images of
points are compact, and is upper semicontinuous if for every open set V in Y , the
set {x ∈ X : p(x) ⊂ V } is open. It is easy to verify that a composition of compact-
valued upper semicontinuous mappings is compact-valued upper semicontinuous.

It is not difficult to prove also that compact-valued upper semicontinuous
mappings are exactly compositions of continuous mappings, inverses of closed
embeddings and inverses of perfect mappings (see, e.g., Proposition 1.1 in [3];
thus the phrase “Y is an image of X under a compact-valued upper semicontinuous
mapping” may be viewed as an abbreviation for “Y is a continuous image of a
closed subset of a perfect preimage of X”, or ”Y is a continuous image of a
closed subset of the product of X with a compact space” (see [3] for details).
In particular, Lindelöf Σ-spaces are exactly images under compact-valued upper
semicontinuous mappings of second countable spaces [1].

The main theorem in [5] says that t-equivalent spaces (that is, spaces whose
spaces of continuous functions with the topology of pointwise convergence are
homeomorphic) are related via finite-valued upper semicontinuous mappings. Hence
the idea of looking at the classes of spaces that may be obtained from second count-
able spaces by applying compact-valued upper semicontinuous mappings with ad-
ditional restrictions on the images of points. Anyway, the classes of all spaces
that may be obtained as images of second-countable spaces under finite-valued or
metrizable-compact-valued upper semicontinuous mappings appear quite natural.
Thus, the following definition [3]:

Let κ be a cardinal (finite or infinite). A spaceX is an LΣ(≤κ)-space if there is
a second-countable space M and a compact-valued upper semicontinuous mapping
p : M → X such that p(M) = X and w(p(x)) ≤ κ for every x ∈ X (w(p(x)) is the
weight of p(x)). A space X is an LΣ(κ)-space if it is an LΣ(≤κ)-space and is not
an LΣ(≤λ)-space for any λ < κ.

A space X is an LΣ(< κ)-space if there is a second-countable space M and a
compact-valued upper semicontinuous mapping p : M → X such that p(M) = X
and w(p(x)) < κ for every x ∈ X .

Of course, for finite κ the definition says really that the images of points
under p have at most κ points. The class LΣ(<ω) is the class of all images of
second countable spaces under finite-valued upper semicontinuous mappings. The
definitions also admit natural reformulations in terms of networks modulo compact
covers in the spirit of the seminal article of K. Nagami [4]; see [3].

47
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Obviously LΣ(≤1)-spaces are exactly the spaces with a countable network.
Surprisingly, the class of LΣ(2)-spaces is already rich enough to include the Double
Arrow space, the one-point compactification A(c) of the discrete space of cardinal-
ity c, and all one-point compactifiations of all Ψ-like spaces [3]. It is easy to see
that the classes LΣ(≤κ) are invariant with respect to closed subspaces, continuous
images, countable unions, and, for infinite κ, countable products. For κ ≥ c, the
class LΣ(≤κ) coincides with the class of all Lindelöf Σ-spaces of cardinality ≤ κ.

Some classes similar to LΣ(≤ω) were studied by M. Tkačenko [6], and by
V. Tkachuk, who proved, in particular, that all Eberlein compacta of cardinality
≤ c are LΣ(≤ω)-spaces [7].

A few natural questions about the classes LΣ(ω) and LΣ(n) are resolved in [3];
however, many more remain open and appear quite interesting.

It is shown in [3] that for every n ∈ ω, the space A(ω1)n is an LΣ(n+1)-space,
but A(ω2)2 is not an LΣ(3)-space (thus, it is an LΣ(4)-space if ω2 ≤ c). However,
for many individual spaces it remains unclear what LΣ-classes they belong to.

Problem 1. Let X be the Double Arrow space. Is it true that X × X is an129?

LΣ(4)-space?

Problem 2. Let X be a linearly ordered LΣ(n)-space. Must X×X be an LΣ(n2)-130?

space?

Problem 3. Let A be an almost disjoint family of subsets of ω of cardinality ω1,131?

and let X be the one-point compactification of the Ψ-like space corresponding to
A. Can X ×X be a LΣ(3)-space? Can X ×X be a LΣ(4)-space?

It is easy to see that the free topological group of an LΣ(n)-space, n ≥ 2, is
an LΣ(<ω)-space without a countable network.

Problem 4. Let G be a topological LΣ(≤n)-group for some n ∈ ω. Must G have132?

a countable network?

Problem 5. Suppose Cp(X) is an LΣ(≤n)-space for some n ∈ ω. Must X have133?

a countable network?

As mentioned above, V. Tkachuk proved in [7] that every Eberlein compact
space of cardinality ≤ c is an LΣ(≤ω)-space; on the other hand, not all Corson
compacta are LΣ(≤ω) [3].

Problem 6. Are all Rosenthal compact spaces LΣ(≤ω)?134?

Problem 7. Assume MA(ω1). Is it true that every scattered compact space of135?

cardinality ω1 and height n, n ∈ ω, belongs to LΣ(≤n+ 1)?

A positive answer to Problem 7 for n = 3 is proved in [3].
All examples of LΣ(n)-spaces that the author knows are finite unions of sub-

spaces that admit continuous bijections onto second-countable spaces.

Problem 8. Let n ∈ ω. Is it true that every LΣ(≤n)-space is a union of ≤ n136?

subspaces that admit continuous bijections onto second-countable spaces?
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Problem 9. Let n ∈ ω. Is it true that every LΣ(≤n)-space is a union of finitely 137?

many subspaces that admit continuous bijections onto second-countable spaces?

Problem 10. Is it true that every LΣ(<ω)-space is a union of countably many 138?

subspaces that admit continuous bijections onto second-countable spaces?

It is proved in [3] that LΣ(≤ω)-spaces have no uncountable free sequences; in
particular, every compact LΣ(≤ω)-space has countable tightness. On the other
hand, [3] contains an example that shows that σ-compact LΣ(<ω)-spaces may
have arbitrary tightness.

Problem 11. Let X be an LΣ(n)-space for some n ∈ ω. Can X have uncountable 139?

tightness?

It is immediate from the main theorem in [5] that the class LΣ(<ω) is pre-
served by the t-equivalence relation; the reason is that this class is invariant with
respect to images under finite-valued upper semicontinuous mappings.

Problem 12. Let X and Y be t-equivalent spaces and suppose X is an LΣ(≤ω)- 140?

space. Must Y be a an LΣ(≤ω)-space?

Problem 13. Let X be an LΣ(≤ω)-space and let p : X → Y be a finite-valued 141?

upper semicontinuous mapping such that p(X) = Y . Must Y be an LΣ(≤ω)-space?

Problem 14. Let X be an LΣ(≤ω)-space and let p : X → Y be an upper semi- 142?

continuous mapping such that p(X) = Y and p(x) is compact metrizable for every
x ∈ X. Must Y be an LΣ(≤ω)-space?

An interesting particular case of Problem 13 was pointed out by C. Paniagua
Ramı́rez:

Problem 15. Let X be an LΣ(≤ω)-space. Must the Alexandroff double of X be 143?

an LΣ(≤ω)-space?

A negative answer to Problem 15 would yield negative answers to Problems 12–
14.

Problem 16. Is the class of compact spaces in LΣ(<ω) absolute? 144?

It is proved in [3] that the closely related class of KLΣ(<ω)-spaces is abso-
lute; a space X is called a KLΣ(<ω)-space if it is the image under a finite-valued
upper semicontinuous mapping of a metrizable compact space. The classes of com-
pact LΣ(<ω)-spaces and KLΣ(<ω)-spaces are different: every KLΣ(≤ω)-space
is Fréchet. This is essentially proved in [7], while the one-point compactification
of a Mrówka space is a compact space in LΣ(2) without the Fréchet property.

M. Tkačenko asked in [6] (in a different terminology) whether every compact
LΣ(≤ω)-space has a dense metrizable subspace. It is shown in [3] that every
KLΣ(<ω)-space has a dense metrizable subspace, and, on the other hand, that
the negation of MA(ω1) implies the existence of a the following is essentially what
remains of the original question of M. Tkačenko:
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Problem 17. Does there exist in ZFC a compact LΣ(≤ω)-space without a dense145?

metrizable subspace?

Problem 18. Does there exist in ZFC a KLΣ(≤ω)-space without a dense metriz-146?

able subspace?
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Appl., To appear.
[4] K. Nagami, Σ-spaces, Fund. Math. 65 (1969), 169–192.
[5] O. Okunev, Tightness of compact spaces is preserved by the t-equivalence relation, Comment.

Math. Univ. Carolin. 43 (2002), no. 2, 335–342.
[6] M. G. Tkachenko, P -approximable compact spaces, Comment. Math. Univ. Carolin. 32

(1991), no. 3, 583–595.
[7] V. V. Tkachuk, A glance at compact spaces which map “nicely” onto the metrizable ones,

Topology Proc. 19 (1994), 321–334.



Problems on (ir)resolvability

Oleg Pavlov

Introduction. Resolvability hierarchy

A topological space is calle τ -resolvable (resolvable if τ = 2) if it contains τ
disjoint dense subsets. Clearly, X cannot be τ -resolvable if τ > ∆(X), where the
dispersion character ∆(X) is the minimal cardinality of a nonempty open subset
of X . If X is ∆(X)-resolvable, then it is called maximally resolvable. Although
all known natural examples of topological spaces are maximally resolvable, quite
a few methods are known for constructing spaces that are irresolvable, that is,
not resolvable (or have even stronger irresolvability properties as defined below).
The main problem is to endow these spaces with interesting additional properties.
The converse line of research is to describe classes of spaces that only contain
resolvable (ω-resolvable, maximally resolvable) spaces, or spaces resolvable in some
other sense.

Given a topological property P , a space (X, τ) is called maximal P if (X, τ)
has P but (X, τ ′) does not have it for any stronger topology τ ′. A space that is
maximal with respect to being dense in itself is simply called maximal . Maximality
implies irresolvability, and there are a few properties in between. For example, X
is an MI-space if X is dense in itself and every dense subset of X is open. X is
an SI-space (or strongly irresolvable, or hereditarily irresolvable) if X is dense in
itself and does not contain resolvable subsets. X is open-hereditarily irresolvable
if every nonempty open subset is irresolvable1.

We focus on resolvability in three classes of spaces: connected, with Baire
property, and homogeneous, as well as on structure resolvability. All considered
spaces contain more than one point!

Resolvability of connected spaces

A typical method of constructing an irresolvable (MI-, maximal) space X
involves refining the topology of another space Y . In fact, it is often possible to
refine the topology of Y in such a way that X is an MI-space and for a natural
condensation f : X → Y and every regular open set U ⊆ X , the image f(U) is
open in Y . In particular, if Y is connected, then so is X . This method is not
useful for producing a regular X since f , as defined above, is a homeomorphism

1It is required by the definition that an MI-space is dense in itself. It turns out that X is
an MI-space if and only if X is dense in itself and every subset of X is an intersection of an open
and a closed set. Spaces that have the latter property (not necessarily dense in themselves) are
called submaximal , see Bourbaki. There is a tendency of late to replace the term “MI-space”
with “submaximal” (that is, to require that a submaximal space is dense in itself). We will
use more traditional term “MI-space”, however, as it is both well-established and goes back to
Hewitt. Also, some authors call an open hereditarily irresolvable space an SI-space.
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if X is regular. Indeed, the following problem is one of the most central in the
resolvability theory:

Question 1. Is there an infinite regular connected irresolvable space?147?

Comfort and Garćıa-Ferreira posed a similar question for Tychonoff spaces, in
[9, Question 8.13]. Yaschenko noted that every infinite Tychonoff locally connected
space is c-resolvable; Costantini proved in [13] that every infinite regular locally
connected space is ω-resolvable. For relevant Hausdorff examples, see [38], [2],
[51], [17], and [28].

We established in [39] that if a regular space X is of countable extent and
∆(X) ≥ ω2, then X is ω-resolvable. In particular, an infinite connected Lindelöf
space is ω-resolvable if the negation of CH is assumed.

Question 2. Is there an infinite connected Lindelöf irresolvable space?148?

Question 3. Is there an infinite regular connected MI-space?149?

The latter problem is due to Arhangel’skĭı and Collins [5]. They showed that
for small spaces the answer is negative.

El’kin proved in [17] that for every infinite cardinal κ there exists a maximal
connected Hausdorff space of dispersion character κ. It was shown in [22] and
[51] that there is a connected topology on the real line that is maximal connected.
However, the following old problems (see the above mentioned papers) remain
open:

Question 4. Is there an infinite regular connected space that is maximal con-150?

nected?

Question 5. Is there a regular connected topology on the real line that is finer151?

than the usual topology and also maximal connected?

Question 6. Is there an infinite maximal regular connected space?152?

Question 7. Is there a maximal regular connected topology on the real line that153?

is finer than the usual topology?

Baire property and a problem of Katětov

Katětov asked in [27] whether there exists a Hausdorff dense in itself space
X such that every real-valued continuous function on X is continuous at some
point. Malykhin noted in [33] that this problem has the affirmative solution if
and only if there exists a Hausdorff Baire irresolvable space. Kunen, Szymanski
and Tall established in [30] and [31] that the existence of such a Baire space (and
also of a zero-dimensional open hereditarily irresolvable Baire space) is equicon-
sistent with the existence of a measurable cardinal. Since every irresolvable space
contains a nonempty open SI-subspace, this means that the existence of either a
Hausdorff or zero-dimensional SI Baire space is equiconsistent with the existence
of a measurable cardinal. It is easy to see that the topology of any Hausdorff open
hereditarily irresolvable Baire space can be refined to the topology of a Hausdorff
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Baire space that is maximal. On the other hand, every regular nodec (let alone
submaximal) Baire space is scattered according to [5, Theorem 7.7].

While Hausdorff countably compact irresolvable (not Baire) spaces exist in
ZFC, see [35] and [39], the existence of regular irresolvable feebly compact (every
locally finite family of open sets is finite) or Tychonoff irresolvable pseudocompact
spaces have not been established even consistently.

Question 8. Is there an infinite regular feebly compact irresolvable space? 154?

Question 9. Is there an infinite Tychonoff pseudocompact irresolvable space? 155?

The latter question was posed by Comfort and Garćıa-Ferreira in [10].

Question 10. Is there an infinite regular connected feebly compact irresolvable 156?

space?

Question 11. Is there an infinite Tychonoff connected pseudocompact irresolvable 157?

space?

Question 12 (Gruenhage). Is there a regular open hereditarily resolvable Baire 158?

topology on the set ω1?

Bolstein proved in [7] (also see [20] and [52]) that there exists a real-valued
function (that can even be chosen to have a countable range) on X that is discon-
tinuous at every point if and only if X is almost resolvable, that is, if and only if X
is a countable union of subsets with empty interiors. Malykhin attempted in [33]
to prove that every dense in itself space is almost resolvable (and hence, to an-
swer Katětov’s question in the negative) if a Kurepa family exists on every regular
cardinal; see discussion in [5]. We mimicked Malykhin’s method by using Ulam
matrices and showed that every dense in itself ccc space is a union of countably
many subsets with empty interior under CH, and every ccc space of cardinality
ω1—in ZFC.

Question 13. Is there a combinatorial principle that implies that every dense in 159?

itself space is almost resolvable?

Groups and homogeneous spaces

There are many interesting results and questions about resolvability in the
class of all topological groups. It is known that if a dense in itself countable
topological group or abelian topological group is not resolvable, then it contains a
countable open Boolean subgroup, and, further, there is a P -point in ω∗. Hence,
consistently, every dense in itself countable topological group and abelian topo-
logical group is ω-resolvable. Since there is a countable topological group that is
a maximal space if p = c (a brilliant example of Malykhin [34], also see [37]), the
existence of either a topological group that is a maximal space or an irresolvable
topological group is consistent and independent from the axioms of ZFC.

The next question is due to Malykhin.
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Question 14. Is there an irresolvable (SI-, MI-) topological group of uncountable160?

dispersion character?

Such a group must be nonabelian.

Question 15. Is there an irresolvable topological group in ZFC?161?

Protasov [44] constructed a countable regular homogeneous maximal space,
and also Hausdorff homogeneous maximal spaces of arbitrary dispersion character.

Question 16 (Protasov [44]). Is there a regular left-group of an uncountable162?

dispersion character that is a maximal space?

A space is maximal if and only if it is both an MI-space and extremally
disconnected. Every MI-space (in particular, every maximal space) is nodec (every
nowhere dense subset is discrete), see [23]. The following two old problems are
still open (see [3], [4], [5], and [41]):

Question 17. Is there a dense in itself extremally disconnected topological group163?

in ZFC?

Note that, consistently, every countable discrete subset of an extremally dis-
connected topological group is closed [58].

Question 18. Is there a dense in itself nodec topological group in ZFC?164?

Under MA, every countable abelian group admits a nondiscrete nodec topology
according to [55] and [40, Chapter 2].

El’kin proved in [15] that a space X is maximal if and only if for every x ∈ X ,
the set of all pierced open neighborhoods {U \{x} : U ∈ τ(x)} of x forms a base of
an ultrafilter on X . Hence, if a maximal space has a uncountable pseudocharacter
at some point, then this pseudocharacter is an Ulam-measurable cardinal, and the
cardinality of X is Ulam-measurable as well.

Question 19. Is there a maximal topological space of a uncountable pseudochar-165–166?

acter? A homogeneous one?

Comfort and van Mill [12] called a topological group G absolutely resolvable if
it contains two disjoint subsets that are dense in every group topology on G; G is
strongly resolvable if it is resolvable in every nondiscrete group topology. Clearly,
every absolutely resolvable topological group is strongly resolvable. The authors
of [12] proved that an abelian topological group is strongly resolvable whenever
it does not contain a countable Boolean subgroup (see [59] for a generalization)
and posed the following problem:

Question 20. Characterize algebraically the absolutely resolvable groups.167?

Compactness, products, miscellaneous questions

Many compactness-type properties imply maximal resolvability of a space.
For example, every Hausdorff k-space is maximally resolvable [46]. The following
question is due to Malykhin.
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Question 21. Is every Lindelöf space of an uncountable dispersion character re- 168?

solvable?

The answer is positive if the dispersion character is at least ω2 according
to [39]. Also, it was recently established in [26] that every hereditarily Lindelöf
space of uncountable dispersion character is maximally resolvable.

It is not hard to construct a Hausdorff countably compact irresolvable space,
see [35] and [39]. On the other hand, every regular countably compact space is
ω1-resolvable, see [47]. The following question is due to Comfort:

Question 22. Is every Tychonoff countably compact space 2ω-resolvable? Maxi- 169–170?

mally resolvable?

This question is open in the class of all regular spaces as well.
Bešlagić and Levy [6] established that the existence of dense in themselves

(Tychonoff, zero-dimensional) infinite spaces X and Y such that X × Y is irre-
solvable is equiconsistent with the existence of a measurable cardinal. On the
other hand, Malykhin [32] observed that X × Y is resolvable whenever X and
Y are dense in themselves isodyne2 spaces of equal cardinality. He constructed a
countable T1 space X such that X ×X is not 4-resolvable3.

Question 23. Is there a Hausdorff (regular) isodyne dense in itself space X such 171–172?

that X ×X is not ω-resolvable? Is there such a countable space?

Question 24. Is there a T1 (Hausdorff, regular) isodyne dense in itself space X 173–174?

such that X ×X is not 3-resolvable? Is there such a countable space?

There are no metamathematical reasons to expect that X is κ+-resolvable if
X is κ-resolvable. There are no metamathematical reasons not to expect that X is
λ-resolvable if λ is a limit cardinal and X is κ-resolvable for every κ < λ. Indeed,
the statement “X is λ-resolvable if λ is a limit cardinal and X is κ-resolvable
for every κ < λ” has been proved for all limit λ that are regular or of countable
cofinality, see [24], [48], and [25].

Question 25 ([25]). Is X λ-resolvable if λ is a singular cardinal of uncountable 175–176?

cofinality and X is κ-resolvable for every κ < λ? Is it true for λ = ℵω1
?

Structure resolvability

One of the ways to generalize resolvability concepts is to allow disjoint dense
sets to have nonempty, albeit small, intersections4. This leads to completely new

2A space X is called isodyne if ∆(X) = |X|. It is easy to see that every dense in itself
countable T1 space is isodyne.

3Malykhin used a characterization of k-resolvable, not k + 1-resolvable spaces in terms
of ultrafilters. There are similar useful characterizations, also due El’kin [15] and [16], for
irresolvable and SI-spaces. Namely, a dense in itself space X is irresolvable iff its topology
contains a base for an ultrafilter on X; X is an SI-space iff every free ultrafilter of open sets
forms a base for an ultrafilter on X. Schröder [49] removed the requirement of being dense in
itself from some of these characterizations.

4In most considered cases, the intersections must be elements of certain ideal of small sets.
See [14] for an introductory study of resolvability modulo an ideal.
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effects, such as a space X admitting greater than ∆(X) many subsets that are
disjoint modulo small sets. To this end, Malykhin [36] called a space X extrare-
solvable if there is a family D of dense subsets of X such that (i) |D| > ∆(X), and
(ii) the intersection of every two elements of D is nowhere dense in X . Comfort and
Garćıa-Ferreira called a space X strongly extraresolvable if condition (ii) in the def-
inition of extraresolvability is replaced with a stronger one: |D0 ∩D1| ≤ nwd(X),
for every distinct D0, D1 ∈ D. Here nwd(X), the nowhere density number of X
is the smallest cardinality of a subset of X that is not nowhere dense in X . The
following two questions were posed in [10] and [21]

Question 26. Is there an extraresolvable space that is not maximally resolvable?177–178?

A strongly extraresolvable space?

The authors of [11] gave a consistent positive solution to the first part of the
question.

Question 27. Is there a compact first countable extraresolvable space in ZFC?179?

The latter question is due to Alas. Under CH, a dense in itself space is extrare-
solvable if it is countably tight and nwd(X) is uncountable, see [21]. In particular,
any Suslin line is extraresolvable in a model of CH. On the other hand, compact
metric spaces and compact topological groups are not extraresolvable.

A powerful method for constructing examples with numerous applications
was introduced in [25] (also, see [11]). In particular, for every cardinal λ there
exists a Tychonoff λ-resolvable space that is not λ+-extraresolvable (hence, not
λ+-resolvable).

Literature

The systematic study of resolvability began with works of Hewitt [23] and
Katětov [27]. Many fundamental results were discovered by El’kin and Malykhin
in the 1970s. Also, substantial advances in understanding maximal Hausdorff
connected spaces were made in [22], [51], and [17]. [8] is a comprehensive survey
of that time of maximal properties; see [29] for further references. More recently,
important results regarding Baire spaces were obtained in [30], [31], and [50],
and, regarding groups, in several papers of Protasov ([42], [44],[43], [40], [45])
and Zelenyuk ([54], [55], [56], [57], [59]); also see [12] and the survey [41]. The
article [5] jump-started the study of submaximal and MI-spaces. More references
on structure resolvability and applications of independent families (which became
a ubiquitous tool for constructing spaces with resolvability type properties) can
be found in [11]. Several old difficult resolvability problems were solved in [25]
and [26].

So far, ZFC regular maximal spaces have been constructed by van Douwen [53]
(a countable one), El’kin in [18] and [19] (of arbitrary dispersion character), Pro-
tasov [45] (a homogenous one), and by the authors of [1]. Any construction with
new properties will certainly be of interest.
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[3] A. Arhangelski, Groupes topologiques extrémalement discontinus, C. R. Acad. Sci. Paris

Sér. A-B 265 (1967), A822–A825.
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[10] W. W. Comfort and S. Garćıa-Ferreira, Strongly extraresolvable groups and spaces, Topology

Proc. 23 (1998), no. Summer, 45–74 (2000).
[11] W. W. Comfort and W. Hu, Resolvability properties via independent families, 2006, To

appear.
[12] W. W. Comfort and J. van Mill, Groups with only resolvable group topologies, Proc. Amer.

Math. Soc. 120 (1994), no. 3, 687–696.
[13] C. Costantini, On the resolvability of locally connected spaces, Proc. Amer. Math. Soc. 133

(2005), no. 6, 1861–1864.
[14] J. Dontchev, M. Ganster, and D. Rose, Ideal resolvability, Topology Appl. 93 (1999), no. 1,

1–16.
[15] A. G. El’kin, Ultrafilters and irresolvable spaces, Vestnik Moskov. Univ. Ser. I Mat. Mekh.

24 (1969), no. 5, 51–56.
[16] A. G. El’kin, k-resolvable spaces that are not maximally resolvable, Dokl. Akad. Nauk SSSR

195 (1970), 274–277.
[17] A. G. El’kin, Maximal connected Hausdorff spaces, Mat. Zametki 26 (1979), no. 6, 939–948,

974.
[18] A. G. El’kin, Regular maximal spaces, Mat. Zametki 27 (1980), no. 2, 301–305, 320.
[19] A. G. El’kin, Some topologies on an infinite set, Uspekhi Mat. Nauk 35 (1980), no. 3(213),

179–183, International Topology Conference (Moscow State Univ., Moscow, 1979).
[20] J. Foran and P. Liebnitz, A characterization of almost resolvable spaces, Rend. Circ. Mat.

Palermo (2) 40 (1991), no. 1, 136–141.
[21] S. Garcia-Ferreira, V. I. Malykhin, and A. H. Tomita, Extraresolvable spaces, Topology

Appl. 101 (2000), no. 3, 257–271.
[22] J. A. Guthrie, H. E. Stone, and M. L. Wage, Maximal connected expansions of the reals,

Proc. Amer. Math. Soc. 69 (1978), no. 1, 159–165.
[23] E. Hewitt, A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309–333.
[24] A. Illanes, Finite and ω-resolvability, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1243–1246.



58 7. PROBLEMS ON (IR)RESOLVABILITY

[25] I. Juhász, L. Soukup, and Z. Szentmiklóssy, D-forced spaces: a new approach to resolvability,
Topology Appl. (2006).
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[41] I. V. Protasov, Algebra in the Stone–čech compactification: application to topologies on

group, Preprint.
[42] I. V. Protasov, Partitions of direct products of groups, Ukräın. Mat. Zh. 49 (1997), no. 10,
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Topological games and Ramsey theory

Marion Scheepers

Introduction

As of now (2005) it has been thirty years since Telgarsky’s paper on spaces
defined by topological games [73], nearly seventy years since Rothberger’s intro-
duction of the Rothberger property in [48], seventy years since the explicit intro-
duction of the Banach–Mazur game [1], 75 years since Ramsey’s theorem [46],
and 80 years since Hurewicz’s paper on the Menger basis property [35] and more
than 85 years since Borel’s introduction of strong measure zero sets [10].

Here I describe a number of questions about topological games inspired by
these sources. This problem survey is neither comprehensive, nor exhaustive: In
particular, only problems related to the classical selection principle S1(·, ·) are
featured. I have completely neglected surveying problems from the important se-
lection principles Sfin(·, ·), selective screenability and several others. Moreover, I
did not venture into the equally important areas of relativized selection princi-
ples, star selection principles, or selection principles in algebraic structures with
a compatible topology. Much more could have been written and asked about the
Banach–Mazur game and several important related games, and much more could
have been reported and asked about set-picking games. And virtually nothing has
been explicilty said or asked about the behavior of topological games under various
topological constructions. Clearly this is an important topic, and there is much
about it in the literature. In the interest of space I have selected a few problems
and attempted to sketch a context for these which would be suggestive enough to
lead the reader’s imagination to the vast unexplored, and likely yet unimagined
areas of game theory, selection principles and Ramsey theory in mathematics.

Notation. A denotes the closure of A. |A| denotes the cardinality of A. For
a positive integer n, [A]n denotes the set {S ⊆ A : |S| = n}. The symbol [A]<ℵ0

denotes the collection of finite subsets of A. The symbol A ⊂ B means A is a
subset of B, but is not equal to B; A ⊆ B allows for the possibility that A and B
are equal. For a property P and a space X , the symbol X |= P denotes that the
space X has the property P . For a set A the symbol <ωA denotes the set of finite
sequences with terms from A.

Acknowlegement. A paper which surveys a number of open problems from
an area of mathematics obviously will draw heavily on the literature and expe-
rience of other workers in these areas. Readers familiar with Fred Galvin, Gary
Gruenhage or Rasti Telgársky, will recognize in this paper my large intellectual
debt to these three mathematicians who have greatly contributed to the enjoyment
of the mathematics I describe here.
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1. Basic concepts

Consider the following: Two players, named ONE and TWO, will play a game.
Two sets, A and B are given. One of the rules of the game is: ONE’s moves in the
game will be to choose, when it is ONE’s turn, an element of A; TWO’s moves in
the game will be to choose, whenever it is TWO’s turn, an element of B. Some
restrictions may apply as to what choices of elements of A or B are legal for either
player. Such restrictions must be specified as part of the rules of the game. The
assumption is that no restrictions apply, unless they are explicitly stated among
the rules of the game. When there are restrictions, the rule is that the first player
to not obey the restrictions loses, and the game stops when such a “bad” move
is made by a player. Another rule of the game is: The game will have infinitely
many innings, one inning per positive integer. In the n-th inning ONE first makes
a move by choosing an On ∈ A, and TWO then responds by choosing a Tn ∈ B.
In this way the players construct a sequence

O1, T1, O2, T2, . . . , On, Tn, . . .

Such a sequence is said to be a play of the game.
A rule is needed to define who wins, and who loses a play of the game in

which the players followed all stated restrictions. One way to give such a rule is
to specify a set Σ of sequences where the odd-numbered entries of the sequence
are elements of A, and the even numbered entries are elements of B, and to then
declare one of the players as the winner if the play of the game is a member of Σ.

The most important concept related to the notion of an infinite game is the
notion of a strategy. A perfect information strategy for player ONE is a function F
whose domain is the set of finite sequences of elements of B, including the empty
sequence 〈〉, and whose values are members of A. A play of the game is said to be
an F -play if:

(1) O1 = F (〈〉) and
(2) For each n, On+1 = F (T1, . . . , Tn).

Analogously, a perfect information strategy for player TWO is a function G
whose domain is the set of finite nonempty sequences of elements of A. A play of
the game is said to be a G-play if for each n, Tn = G(O1, . . . , On).

A perfect information strategy uses the entire history of the opponent’s moves
to compute the move the player should make next. Since perfect information
strategies are by far the most commonly considered ones in the literature, we shall
adopt the convention that “strategy” means “perfect information strategy”. For
other types of strategies we will use explicit terminology to indicate the type of
strategy considered.

A strategy F for ONE is a winning strategy if ONE wins each F -play in which
both players followed all rules. A strategy G for TWO is a winning strategy if
TWO wins each G-play in which both players followed all rules. A game is said
to be determined if one of the players has a winning strategy. Else, the game is
said to be undetermined.
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Even though each play of a game results in a win for one or the other of the
players, this does not mean the game is determined. To prove determinacy of a
game one must show the existence of a winning strategy for one of the players.
Thus the statement that a player does not have a winning strategy is formally
weaker than the statement that the opponent does have a winning strategy. In
the literature a number of very good theorems have been missed by authors who
did not make this distinction.

Two games, say P and P ′, are equivalent if:

• ONE has a winning strategy in P if, and only if, ONE has a winning
strategy in P ′, and

• TWO has a winning strategy in P if, and only if, TWO has a winning
strategy in P ′.

And two games, P and P ′, are dual if:

• ONE has a winning strategy in P if, and only if, TWO has a winning
strategy in P ′, and

• TWO has a winning strategy in P if, and only if, ONE has a winning
strategy in P ′.

2. S1(A,B) and G1(A,B)

For an infinite set S let A and B be collections whose members are families of
subsets of S. The symbol S1(A,B) denotes the statement:

For each sequence (An : n < ∞) there is a sequence (bn : n <
∞) such that for each n, bn ∈ An, and the set {bn : n ∈ ∞} ∈ B.

S1(A,B) is an example of a selection principle.
In the game G1(A,B) two players, ONE and TWO, play an inning per positive

integer. In the n-th inning ONE first chooses an On ∈ A, and then TWO responds
with a Tn ∈ On. A play O1, T1, . . . , On, Tn, . . . is won by TWO if {Tn : n <∞} ∈
B; else, ONE wins. If ONE has no winning strategy in G1(A,B) then S1(A,B)
holds. The converse implication is not always true. When it is true, this gives a
powerful tool to analyse the selection principle.

2.1. The point-picking games. Several mathematicians have introduced
examples of “point-picking” games. In these games a topological space X and a
subset H of X are given. ONE picks in the n-th inning a nonempty open subset
On of X such that H ⊂ On, and TWO picks an element xn ∈ On. ONE is declared
the winner if TWO’s chosen set of points has an appropriate property.

2.1.1. Berner–Juhász-style point-picking games. We assume for these games
that all spaces are T3, and have no isolated points. In [7] Berner and Juhász
consider such games where H = ∅, and the four properties “dense”, “dense in
itself”(i.e., has no isolated points), “somewhere dense” and “not discrete” (i.e.,
clusters at some point). We discuss here the game for exactly one of these prop-
erties: “dense”. In the notation of [7] the game GD

ω (X) is the game where ONE
wins if TWO’s chosen set of points {xn : n < ∞} is dense in X , and TWO wins
otherwise. Define the following family, D := {D ⊂ X : D is dense}.
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Using the techniques of [65] one can prove that GD
ω (X) and G1(D,D) are dual

games. The π-weight of a space X , denoted π(X), is the minimal cardinality of
a family U of nonempty open subsets of X such that for each nonempty open set
V ⊂ X there is a U ∈ U with U ⊆ V . Here is what is known for player TWO in
the dual game (Theorem 2.1 of [7]):

Theorem 1 (Berner–Juhasz). Let X be a T3-space with no isolated points. TWO
has a winning strategy in G1(D,D) if, and only if, π(X) = ℵ0.

The hereditary density of X , denoted δ(X), is the least infinite cardinal κ
such that each dense subset of X contains a dense subset of cardinality at most
κ. Since ONE has an obvious winning strategy in the game G1(D,D) if δ(X) >
ℵ0, the only interesting situation regarding winning strategies for ONE is when
π(X) > ℵ0 = δ(X):

Problem 1 (Berner–Juhasz). Is there in ZFC an example of a T3 topological space180?

X for which the game G1(D,D) is undetermined?

Here is a summary of attacks on this still open problem.

Attack 1: Axiom ♦ and HFD spaces. In [7] an HFD space in which
neither player has a winning strategy is constructed using the axiom ♦. It was
shown in [65] that every HFD satisfies S1(D,D). And in [7] also, using CH, an
HFD space is constructed for which ONE has a winning strategy in G1(D,D).
Thus, for HFDs the property S1(D,D) is not equivalent to ONE not having a
winning strategy in G1(D,D).

Attack 2: p = c and irresolvable spaces. A second interesting attack
on this problem came from Dow and Gruenhage, [15]: A space is irresolvable if
no two dense subsets of it are disjoint. A little bit is known about irresolvable
spaces in this connection. For a family A of sets, the symbol Split(A,B) denotes
the statement that for each A ∈ A there are elements B1 and B2 of B such that
B1 ∩ B2 = ∅, and B1 ∪ B2 ⊂ A.

Theorem 2 ([65]). Let X be a T3-space. Each of the following implies that X
satisfies Split(D,D).

(1) TWO has a winning strategy in G1(D,D) on X.
(2) ONE has no winning strategy in G1(D,D) on X2.

Theorem 2 immediately implies that for an irresolvable T3-space X , TWO
has no winning strategy in G1(D,D) on X , and ONE has a winning strategy in
G1(D,D) on X2. Dow and Gruenhage prove

Theorem 3 (Dow-Gruenhage). If there is a countable T3-space which is irresolv-
able, and for which ONE has no winning strategy in G1(D,D), then there is a
semi-selective filter which is a countable intersection of ultrafilters on N.

They prove, on the one hand, that it is consistent that there are no such
semi-selective filters, and thus that for every countable T3-irresolvable space X ,
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ONE has a winning strategy in G1(D,D) on X . And on the other hand they show
that p = c, i.e., MA(σ-centered), implies the existence of a countable irresolvable
T3-space for which ONE has no winning strategy in G1(D,D).

For irresolvable spaces the following problem is open:

Problem 2. Let X be a countable irresolvable T3-space with δ(X) = ℵ0. Does it 181?

satisfy S1(D,D) if, and only if, ONE has no winning strategy in G1(D,D)?

And for an irresolvable T3-space X with δ(X) = ℵ0, and with no isolated
points, we have π(X) ≥ r, the reaping number, see for example Proposition 34
of [65]. By the example in [72] we also know that there are such irresolvable
spaces X for which π(X) ≤ i, the minimal cardinality for a maximal independent
family on N. Let the irresolvability number be the greatest cardinal number κ such
that for each irresolvable T3 topology on N with no isolated points, the π-weight
is at least κ. Thus:

r ≤ irresolvability number ≤ i.

Problem 3. Is the irresolvability number equal to r? 182?

Attack 3: cov(M) and function spaces. Let M denote the ideal of first
category subsets of the real line. By the Baire category theorem, the real line is
not covered by countably many first category subsets. Thus cov(M), the least
cardinality of a family of first category subsets of the real line covering the real
line, is uncountable.

Theorem 4 (Juhász). For any cardinal κ ≥ ℵ0, the following are equivalent:

(1) In each T3-space X with δ(X) = ℵ0 and π(X) ≤ κ, ONE has no winning
strategy in G1(D,D).

(2) κ < cov(M).

Thus by Theorem 1 and Theorem 4: If ℵ1 < cov(M) then there are exam-
ples of T3-spaces for which neither player has a winning strategy in the game
G1(D,D)—take a T3-topology on N such that π(N) = ℵ1. The inequality ℵ1 <
cov(M) is known to be independent of ZFC. There are well-studied examples of
spaces which can be used to give such examples, and which display a connection
of these games with Ramsey theory (to be discussed later). The study of these
examples also give a new and illuminating proof of Theorem 4. Namely, consider
Cp(X) for a separable metric space X . An open cover U for X is said to be an
ω-cover if X is not in U , but for each finite subset F of X there is a U ∈ U such
that F ⊆ U . Define Ω := The collection of Ω-covers of X .

Theorem 5 ([65], Theorem 13). For a separable metric space X the following
are equivalent:

(1) X has property S1(Ω,Ω).
(2) ONE has no winning strategy in the game G1(Ω,Ω) on X.
(3) Cp(X) has property S1(D,D).
(4) On Cp(X), ONE has no winning strategy in the game G1(D,D).
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The hypothesis that X is a separable metric space cannot be weakened to X
being a Tychonoff space. A Tychonoff space X of R. Pol [45] satisfies S1(Ω,Ω),
see Proposition 15 of [65], but Cp(X) does not satisfy S1(D,D).

In conclusion to the survey of Problem 1, note that by Theorems 5 and 6
of [65] we may restrict attention to countable spaces X , and thus we may assume
that we are considering T3 topologies on the set of positive integers, N.

2.1.2. Gruenhage-style point-picking games. In a series of papers [29], [30]
and [31] Gruenhage considers for H 6= ∅ the following winning conditions for
player ONE: TWO’s set of points “converges to H”, or “clusters at H”. We will
discuss here only the case when H is a one-element set. We first discuss the game
where TWO’s set of chosen points converge to H; the game which requires that
TWO’s chosen points cluster at H is discussed after that.

When TWO’s set of points converge.

In Gruenhage’s notation G({x}, X) denotes the game where ONE wins if
TWO’s chosen set of points {xn : n ∈ ∞} converges to x. To describe this game
in terms of the game G1(A,B), fix an x ∈ X and define the following families

Ωx := {D ⊂ X : x ∈ D \D}
Γx := {D ⊂ X : For each neighborhood U of x, D \ U is finite}

Thus, Ωx is the collection of subsets of X clustering at x. Using the techniques
of [65] one can prove that G({x}, X) and G1(Ωx,Γx) are dual games. This game,
though in the same family of ideas, is quite different from the Berner–Juhasz style
point picking game: There are several known ZFC examples of spaces X for which
the game G1(Ωx,Γx) is undetermined at some x ∈ X . Some of these are surveyed
in Gruenhage’s survey paper [28]. And the existence of winning strategies for
TWO in the game G1(Ωx,Γx) have been shown to have deep connections with
several important concepts. We first briefly survey the game from the point of
view of player ONE, and then discuss it from the point of view of player TWO.

The tightness of X at x, denoted by t(X, x), is the least cardinal κ such
that each subset A of X with x ∈ A contains a subset B with |B| ≤ κ, and
x ∈ B. X has countable tightness at x if t(X, x) = ℵ0. The tightness of X is
t(X) = sup{t(X, x) : x ∈ X}. X is a countably tight space if t(X) = ℵ0.

The minimal cardinality of a neighborhood base for a point x of a space X is
denoted χ(X, x). A space is discrete if for all x ∈ X we have χ(X, x) = 1. And a
space is first countable if for each x ∈ X we have χ(X, x) ≤ ℵ0.

Theorem 6. For an infinite cardinal number κ the following are equivalent:

(1) κ < p.
(2) For each T1-space X with t(X) = ℵ0, for each point x ∈ X such that

χ(X, x) = κ, ONE has no winning strategy in the game G1(Ωx,Γx).

According to the following theorem it suffices to study the existence of winning
strategies of ONE in G1(Ωx,Γx) with respect to topologies on N, the set of positive
integers.
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Theorem 7 (Sharma). Let X be a space of countable tightness. Then at some
x ∈ X ONE has a winning strategy in G1(Ωx,Γx) if, and only if, there is a
countable subspace Y of X such that x ∈ Y and ONE has a winning strategy in
G1(Ωx,Γx) played in Y .

Sharma further proved in [71] the following satisfying result that studying
winning strategies of ONE amounts to studying the selection principle.

Theorem 8 (Sharma). For a point x ∈ X, the following are equivalent:

(1) ONE has no winning strategy in the game G1(Ωx,Γx).
(2) X has property S1(Ωx,Γx).

Fix a topological space X and a non-isolated point x ∈ X . A collection P of
nonempty subsets of X is said to be a π-network at x if there is for each open set
U ⊂ X with x ∈ U , a P ∈ P with P ⊆ U and x 6∈ P . And P is said to converge to
x if P is infinite and for each open neighborhood U of x the set {P ∈ P : P 6⊆ U}
is finite. We shall use the following notation:

Πx := {F ⊂ [X ]<ℵ0 : F is a π-network at x},
Cx := {F ∈ Πx : F converges to x}.

According to Reznichenko and Sipacheva X is Fréchet–Urysohn for finite sets
at x if each element of Πx contains a subset which is an element of Cx [47] and
according to Dow and Stepran̄s X is said to be groupwise Fréchet [16]. By results
of [47] and [33], X has this property at x if, and only if, it satisfies the selection
principle S1(Πx,Cx).

To translate this to our current arena, define for a space X the Pixley–Roy
space over X , denoted PR(X): The underlying set for PR(X) is [X ]<ℵ0 . The
topology on PR(X) is defined by declaring the following neighborhood bases for
elements of PR(X). Let F ∈ PR(X) as well as an open set U ⊃ F be given. Then
[F,U ] := {G ∈ PR(X) : F ⊆ G ⊆ U} is a neighborhood of F . For each x ∈ X we
have the following correspondences between:

(1) Ω{x} for PR(X), and Πx:
(a) (F ∈ Πx)⇔ ({{x} ∪ F : F ∈ F} ∈ Ω{x}).
(b) (A ∈ Ω{x})⇔ ({F \ {x} : F ∈ A} ∈ Πx).

(2) Γ{x} for PR(X), and Cx:
(a) (F ∈ Cx)⇔ ({{x} ∪ F : F ∈ F} ∈ Γ{x}).
(b) (A ∈ Γ{x})⇔ ({F \ {x} : F ∈ A} ∈ Cx).

Then evidently X has property S1(Πx,Cx) if, and only if, PR(X) has property
S1(Ω{x},Γ{x}). And then by Sharma’s theorem we have that this is equivalent
to ONE not having a winning strategy in the game G1(Ω{x},Γ{x}) on PR(X).
Compare this remark with Theorem 17 of [33]. One of the fundamental open
questions regarding this example is

Problem 4 (Gruenhage-Szeptycki). Is there a ZFC example of a countable but not 183?

first countable space X such that ONE has no winning strategy in G1(Ω{x},Γ{x})
at each x ∈ X?
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As explained in [33], a positive solution to this problem would also give a
positive solution in ZFC to an old question of Malykhin: Is there a countable
topological group which is Fréchet–Urysohn, but not metrizable?

The following is another important example in relating Gruenhage’s game to
other areas of the field of selection principles. An open cover of a topological space
is said to be a γ-cover if it is infinite, and each infinite subset of it covers the space.
Define Γ is the collection of open γ-covers of X .

The following theorem contains contributions from a number of people. The
constant function with value zero is denoted 0.

Theorem 9. Let X be a Tychonoff space. The following are equivalent:

(1) Cp(X) satisfies S1(Ω0,Γ0).
(2) On Cp(X) ONE has no winning strategy in the game G1(Ω0,Γ0).
(3) X has property S1(Ω,Γ).
(4) On X ONE has no winning strategy in G1(Ω,Γ).

The equivalence of 1 and 3 is from [27]. The equivalence of 1 and 2 can be
derived from Sharma’s theorem 8. And the equivalence of 3 and 4 can be derived
from Theorem 3.4 of [40].

Now we discuss player TWO. A space is said to be metalindelöf if every
open cover has an open point-countable refinement covering the space. Assume
that we are working with a space X which is locally compact, non-compact and
Hausdorff. Then X has a one-point compactification X∗. Let the symbol ∞
denote the additional point such that X∗ = X ∪{∞}. Neighborhoods of ∞ are of
the form (X \C) ∪ {∞} where C ⊂ X is compact. The following beautiful result
is from [30]:

Theorem 10 (Gruenhage). For a non-compact, locally compact Hausdorff space
X with t(X) = ℵ0 the following are equivalent:

(1) On X∗ TWO has a winning strategy in G1(Ω∞,Γ∞).
(2) X is metalindelöf.

It is not known to what extent t(X) = ℵ0 is necessary:

Problem 5 (Gruenhage). Can there be a locally compact Hausdorff space which is184?

not metalindelöf, and yet TWO has a winning strategy in the game G1(Ω∞,Γ∞)?

In [28, Question 3.7], Gruenhage suggests as candidate for solving Problem 5
open, non-metalindelöf subsets of β(ω) \ ω.

The following result also illustrates the importance of the concepts being sur-
veyed here. A compact space X is Corson compact if there is an infinite cardinal
number κ such that X is homeomorphic to a subspace of {f ∈ Rκ : {α < κ :
f(α) 6= 0} is countable}. For X a set, let X∆ denote the set X2 \{(x, x) : x ∈ X}.
If X is compact, then X∆ is locally compact.

Theorem 11 (Gruenhage). For a compact space X the following are equivalent:

(1) X is Corson compact.
(2) On X∗∆ TWO has a winning strategy in G1(Ω∞,Γ∞).
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(3) Every subspace of X2 is metalindelöf.

A result of [27] together with a result of Galvin gives:

Theorem 12 (Gerlits-Nagy, Galvin). For a first countable T3 1
2

space X the fol-

lowing are equivalent:

(1) TWO has a winning strategy in G1(Ω0,Γ0) on Cp(X).
(2) X is countable.

The product theory for spaces in which the game G1(Ωx,Γx) is undetermined
is not well understood. Several ZFC examples of spaces X and Y are known for
which ONE does not have a winning strategy in the game G1(Ωx,Γx) at any x in
either of X or Y , but ONE has a winning strategy in G1(Ω(x,y),Γ(x,y)) at some
point of X × Y . As to finite powers: Nogura proved in [41] the following nice
result.

Theorem 13 (Nogura). If for each n ONE has no winning strategy in G1(Ωx,Γx)
at any x ∈ Xn, then ONE has no winning strategy in G1(Ωx,Γx) at any x ∈ Xω.

But the following problem is apparently unsolved:

Problem 6 (Gruenhage). Is there in ZFC for each n > 1 a space X such that in 185?

Xn ONE has no winning strategy in G1(Ωx,Γx) at any x ∈ Xn, but there is an
x ∈ Xn+1 such that ONE has a winning strategy in G1(Ωx,Γx)?

A ZFC example is known for n = 1.

When TWO’s set of points cluster.

In p. 345 of [29] Gruenhage mentions the following modification of the game
G({x}, X): ONE and TWO play as before, but the winning condition is different:
ONE wins if the set of points {xn : n < ∞} chosen by TWO clusters at x. This
means that each neighborhood of x contains an xn 6= x. We may assume that
x is not an isolated point in X . Furthermore, we may assume that TWO never
chooses an xn = x. Let us denote this game by Gcl({x}, X).

Techniques of [65] show that Gcl({x}, X) and G1(Ωx,Ωx) are dual games. M.
Sakai introduced the notion of countable strong fan tightness in [49]: A space
X has countable strong fan tightness at x ∈ X if S1(Ωx,Ωx) holds. Arguments
similar to Sharma’s show that it suffices to study existence of winning strategies
for player ONE in the game G1(Ωx,Ωx) with respect to topologies on N. But
countable strong fan tightness is not equivalent to ONE not having a winning
strategy in the corresponding game (see pp. 250–251 of [60]):

Theorem 14. There is a T1 topology τ on N such that (N, τ) has S1(Ω1,Ω1), and
yet ONE has a winning strategy in G1(Ω1,Ω1).

For nice topological spaces the equivalence is restored. For example:

Theorem 15. For T3 1
2
-space X the following are equivalent:

(1) Cp(X) has property S1(Ωo,Ωo).
(2) ONE has no winning strategy in the game G1(Ωo,Ωo).
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(3) X has property S1(Ω,Ω).
(4) ONE has no winning strategy in the game G1(Ω,Ω) played on X.

The equivalence of 1 and 3 is from [49], and the equivalence with the other
statements is obtained in [60].

Theorem 16. For an infinite cardinal number κ, the following are equivalent:

(1) κ < cov(M).
(2) For each T1-space X with t(X) = ℵ0 and for each x ∈ X such that

χ(X, x) = κ, ONE has no winning strategy in G1(Ωx,Ωx).

In p. 345 of [29] Gruenhage points out that TWO has a winning strategy in
G1(Ωx,Γx) if, and only if, TWO has a winning strategy in G1(Ωx,Ωx), but that the
situation for player ONE is different. There are several examples illustrating this.
For example, work of Gerlits and Nagy, of Sakai and others can be used as follows
to illustrate this: Consider Cp(X) for sets X of real numbers. By Theorem 9,
Cp(X) |= S1(Ω0,Γ0) if, and only if, X |= S1(Ω,Γ). But by Theorem 15 Cp(X) |=
S1(Ω0,Ω0) if and only if X |= S1(Ω,Ω). And in [37] we use the Continuum
Hypothesis to construct a Lusin X such that X |= S1(Ω,Ω) + ¬S1(Ω,Γ).

Recall that a space is a Fréchet space if for each nonempty subset A, a point
x is in the closure of A if, and only if, there is a sequence in A converging to x.
By a result of Gerlits and Nagy, Cp(X) being Fréchet is equivalent to Cp(X) |=
S1(Ω0,Γ0). In general S1(Ωx,Γx) at each x ∈ X implies that X is Fréchet, but
the converse is not true. One might inquire if S1(Ωx,Ωx) at each x, plus being a
Fréchet space, implies that S1(Ωx,Γx) holds at each x. Hrušak proved in [34] that
it is consistent relative to the consistency of ZFC that there are counter examples:

A family J of subsets of ω is a free ideal if ω = ∪J , J is closed under finite
unions, subsets of elements of J are elements of J , and ω is not a member of J .
The free ideal J is said to be +-Ramsey if for every family T ⊂ <ωω which has
the property that for each σ ∈ T the set {n : σ _ (n) ∈ T} is not a member of
J , there is a function f : ω → ω such that {f(n) : (f(0), . . . , f(n)) ∈ T} is not a
member of J .

Given any free ideal J on ω, endow the set ω∪{∞} with a topology as follows:
Declare each element of ω to be an isolated point, and declare neighborhoods of
∞ to be all sets of the form {∞} ∪ J where ω \ J is in J . The symbol X(J )
denotes this space.

Almost disjoint families are often used as sources for free ideals on ω. A family
A of infinite subsets of ω is almost disjoint if the intersection of any two distinct
elements of A is finite. Call an infinite almost disjoint family A a covering almost
disjoint family of ω = ∪A. Subsets of unions of finite subfamilies of a covering
almost disjoint family A form a free ideal on ω. Let J (A) denote this free ideal.

Every almost disjoint family is contained in a maximal one. If B is a maximal
almost disjoint family then ω \ ∪B is finite, we may assume this is empty, and
thus that B is a covering almost disjoint family. Hrušak showed that if there is a
maximal almost disjoint family B such that J (B) is +-Ramsey, then there exists a
corresponding almost disjoint family A such that X(J (A)) is a Fréchet space and
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ONE has no winning strategy in G1(Ω∞,Ω∞), but ONE has a winning strategy
in G1(Ω∞,Γ∞).

It is consistent relative to the consistency of ZFC that there is a maximal
almost disjoint family B on ω such that J (B) is +-Ramsey. It is an open problem
whether such a maximal almost disjoint family can be found in ZFC.

Problem 7 (Hrušak). Is there in ZFC a maximal almost disjoint family B on ω 186?

such that J (B) is +-Ramsey?

In [28] Gruenhage finds in ZFC examples of almost disjoint familiesA such that
the spacesX(J (A)) are Fréchet and ONE has no winning strategy in G1(Ω∞,Ω∞),
but ONE has a winning strategy in G1(Ω∞,Γ∞).

2.2. Modifications of the point-picking games. There are several very
interesting modifications of point-picking games. Instead of having TWO pick a
point from ONE’s open set, TWO may choose certain types of subsets of ONE’s
open sets. We now briefly survey two of these modifications and selected open
problems.

2.2.1. TWO chooses nonempty compact sets.

When TWO’s selected sets converge

Let X be a locally compact, non-compact Hausdorff space with one-point
compactification X∗ = X ∪ {∞}. Consider the generalization of G({∞}, X∗)
where for each n, in inning n ONE chooses an open set On containing ∞, and
TWO chooses a nonempty compact subset Tn of X such that Tn ⊂ On. ONE wins
a play O1, T1, . . . , On, Tn, . . . if for each open set O containing ∞, all but finitely
many Tn are subsets of O. Gruenhage introduced this game in the following guise
in [31], denoted there G∗(X): Players ONE and TWO play an inning per positive
integer. In the n-th inning ONE first chooses a compact subset On of X , and then
TWO responds by choosing a compact subset Tn of X such that On ∩ Tn = ∅. A
play (O1, T1, . . . , On, Tn, . . . ) is won by ONE if {Tn : n < ∞} is a locally finite
family of compact subsets of X . Else, TWO wins.

To discuss the beautiful duality theory that is emerging for this example, we
introduce the following concepts and notation: Let R be a collection of nonempty
subsets of a set S. A family F of nonempty subsets of S is said to be R-avoiding
if there is for each R ∈ R an F ∈ F such that R ∩ F = ∅. If S is a non-compact
topological space and R is the collection of nonempty compact subsets of S, then
a R-avoiding family is also said to be compact-avoiding. Let Cpt(X) denote the
collection of compact nonempty subsets of X .

Ω∗∞ := {F ⊂ Cpt(X) : F is compact-avoiding}
Γ∗∞ := {F ∈ Ω∗∞ : F is locally finite}

A family of nonempty subsets of a space is said to be discrete if each element
of the space has a neighborhood which has nonempty intersection with at most one
member of the family. It is easy to see that elements of Γ∗∞ are families of compact
subsets of X converging to ∞. It can also be shown that for locally compact non-
compact Hausdorff spaces, S1(Ω∗∞,Γ

∗
∞) implies: For each sequence (An : n <∞)
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of elements of Ω∗∞ there is a sequence (Cn : n < ∞) such that for each n we
have Cn ∈ An, and {Cn : n < ∞} is a discrete family converging to ∞. Indeed,
one may even show there is a sequence of such Cn together with corresponding
neighborhoods Un of Cn (in X) such that {Un : n <∞} is a discrete family of sets
converging to ∞. Thus, by Theorem 2.3 of [32], for a locally compact Hausdorff
space S1(Ω∗∞,Γ

∗
∞) on X∗ is exactly the moving off property on X . In [3] we proved

G∗(X) and G1(Ω∗∞,Γ
∗
∞) are dual games. Thus Theorem 5 of [31] translates to

Theorem 17 (Gruenhage). For a non-compact, locally compact T2-space X, the
following are equivalent:

(1) TWO has a winning strategy in G1(Ω∗∞,Γ
∗
∞).

(2) X is paracompact.

As to the situation for player ONE we have the following: For a topological
space X the symbol Ck(X) denotes the space of continuous real-valued functions
with the following topology: For f ∈ C(X), for K ⊂ X compact, and for ε > 0,
[f,K, ε] = {g ∈ C(X) : (∀x ∈ K)(|f(x)− g(x)| < ε)}. The sets of the form [f,K, ε]
form a basis for a topology on C(X), and Ck(X) denotes this space endowed with
the compact-open topology. The symbol Co(X) denotes the following subspace of
Ck(X):

Co(X) := {f ∈ C(X) : (∀ε > 0)({x ∈ X : |f(x)| ≥ ε} is compact)}.
Theorem 18. For a locally compact space X the following are equivalent:

(1) Co(X) satisfies S1(Ωo,Γo).
(2) ONE has no winning strategy in the game G1(Ωo,Γo) on Co(X).
(3) ONE has no winning strategy in the game G1(Ω∗∞,Γ

∗
∞) on X.

(4) X satisfies S1(Ω∗∞,Γ
∗
∞).

The equivalence of 1 and 2 follows from Sharma’s Theorem, Theorem 8. The
equivalence of 3 and 4 appeared in [32] and independently in [3]. The equivalence
of 1 and 4 appeared implicitly in [42]. We will later discuss rather surprising
equivalences of the statements in Theorem 18 with completeness properties of the
space Ck(X). And now we have the following open problem stated in slightly
different form [32]:

Problem 8 (Gruenhage–Ma). Is there a ZFC example of a locally compact T4-187?

space in which the game G1(Ω∗∞,Γ
∗
∞) is undetermined?

When TWO’s selected sets cluster

For the above example we have the following from [51] for player ONE:

Theorem 19. For non-compact, locally compact T2-spaces X the following are
equivalent:

(1) Co(X) satisfies S1(Ω0,Ω0).
(2) ONE has no winning strategy in the game G1(Ω0,Ω0) on Co(X).
(3) ONE has no winning strategy in the game G1(Ω∗∞,Ω

∗
∞) on X.

(4) X satisfies S1(Ω∗∞,Ω
∗
∞).
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Problem 9. Characterize those non-compact, locally compact Hausdorff spaces 188?

for which ONE has no winning strategy in the game G1(Ω∗∞,Ω
∗
∞).

Experience suggests that this is an important class of spaces.
2.2.2. TWO selects nonempty open sets. In [13] Daniels, Kunen and Zhou

consider the following game G(X): In the n-th inning ONE chooses a nonempty
open set On ⊂ X , and TWO responds with a nonempty open set Tn ⊂ On. They
play an inning per positive integer. ONE wins a play O1, T1, . . . , On, Tn, . . . if⋃

n<∞ Tn is dense in X . Else, TWO wins. The following families of open sets are
naturally associated with this game.

D := {U :
⋃
U is dense and each set in U is open but not dense}

DΩ := {U ∈ D : For each finite family of nonempty open sets F
there is a U ∈ U such that for each V ∈ F , U ∩ V 6= ∅ and U not dense}

Using Theorem 4.1 of [13] and Lemma 13 of [69] one sees that G(X) and
G1(D,D) are equivalent games. The cellularity of X , denoted c(X), is the min-
imal cardinal κ such that each pairwise disjoint family of open subsets of X has
cardinality at most κ. Each element of D has a countable subset in D if, and only
if, X has countable cellularity. Thus S1(D,D) implies c(X) = ℵ0. By Theorem
14 of [69]:

Theorem 20. A topological space satisfies S1(D,D) if, and only if, ONE has no
winning strategy in the game G1(D,D).

It was shown in [69] that if each finite power of a space has S1(D,D), then
the space has S1(DΩ,DΩ) (in fact, ONE has no winning strategy in the game
G1(DΩ,DΩ)). The converse is not true: W. Just (unpublished) constructed from
♦ a Souslin line L which has property S1(DΩ,DΩ). Since S1(DΩ,DΩ) implies
S1(D,D), and since S1(D,D) implies c(X) = ℵ0, L2 does not have property
S1(D,D).

Problem 10. Is there a space with property S1(D,D), but not S1(DΩ,DΩ)? 189?

The existence of topological spaces solving Problem 10 is not provable in
ZFC, [50].

Theorem 21. Martin’s Axiom implies: If a space has property S1(D,D), then all
of its finite powers have property S1(DΩ,DΩ).

Problem 11. Is there a space with S1(DΩ,DΩ), and yet ONE has a winning 190?

strategy in the game G1(DΩ,DΩ)?

Problem 12. Is it consistent that there are Souslin lines, but no Souslin line has 191?

property S1(DΩ,DΩ)?

The following result from [69] concludes this brief survey of G1(D,D):

Theorem 22. For an infinite cardinal number κ the following are equivalent:

(1) κ < cov(M).
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(2) For each T1-space X with c(X) = ℵ0 and π(X) = κ, ONE has no winning
strategy in the game G1(D,D).

2.3. The set-picking games. Several mathematicians have introduced ex-
amples of “set-picking” games. In these games a topological spaceX is given. ONE
picks in the n-th inning a point xn ∈ X and TWO picks a subset Tn of X such
that xn ∈ Tn. ONE is declared the winner if TWO’s family of sets {Tn : n <∞}
has an appropriate property.

2.3.1. Galvin–Telgársky style set-picking games. We now assume that all spaces
are Lindelöf, and have no isolated points. In the early 1970s Galvin, and indepen-
dently Telgàrsky, introduced the following game, known as the point-open game,
for a topological space X : Players ONE and TWO play an inning per positive
integer. In the n-th inning ONE first chooses a point, xn from X . TWO responds
by choosing an open set Un with xn ∈ Un. The play x1, U1, x2, U2, . . . is won by
ONE if {Un : n ∈ ∞} is a cover of X . Else, TWO wins. Some of Galvin’s results
were published in [24], and Telgàrsky’s results were subsumed in [73]. Define O
is the collection of open covers of the space X .

Theorem 23 (Galvin). For any topological space the point-open game and the
game G1(O,O) are dual to each other.

Interestingly, Rothberger introduced the selection principle S1(O,O) forty
years earlier in [48]. And in [44] Pawlikowski proves:

Theorem 24 (Pawlikowski). A topological space has property S1(O,O) if, and
only if, ONE has no winning strategy in the game G1(O,O).

In [24] Galvin, and in Theorem 6.3 of [73] Telgàrsky proves: If X is a Lindelöf
space in which each element is an intersection of countably many open sets, then
TWO has a winning strategy in G1(O,O) if, and only if, X is countable.

2.3.2. Tkachuk style set-picking games. In [76] Tkachuk introduced two more
set-picking games, denoted by Ω and Θ. The players ONE and TWO play an
inning per positive integer.

The game Θ.

In the game Θ ONE chooses in inning n an xn ∈ X , and TWO responds with
an open set Un such that xn ∈ Un. A play x1, U1, x2, U2, . . . , xn, Un, . . . is won by
ONE if {Un : n ∈ ∞} has a dense union in X . Else, TWO wins.

In Theorem 3.3 of [76] Tkachuk proves: The games Θ and G1(O,D) are dual to
each other. The corresponding selection principle S1(O,D) was considered several
years earlier by Daniels in [11]. She considered it for Pixley–Roy hyperspaces over
sets of real numbers and called this property weakly C′′. For Pixley–Roy spaces
the following things are known:

Theorem 25. For a set X of real numbers the following are equivalent:

(1) PR(X) |= S1(O,D).
(2) PR(X) |= ONE has no winning strategy in G1(O,D).
(3) PR(X) |= S1(D,D).
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(4) PR(X) |= ONE has no winning strategy in G1(D,D).
(5) PR(X) |= S1(DΩ,DΩ).
(6) PR(X) |= ONE has no winning strategy in G1(DΩ,DΩ).
(7) X |= S1(Ω,Ω).
(8) ONE has no winning strategy in G1(Ω,Ω).
(9) For each n, Xn |= S1(O,O).

(10) For each n ONE has no winning strategy in G1(O,O) on Xn.

The equivalence of 1 and 9 was given in [11]; the equivalence of 7 and 9 is from
[49]. The equivalence of 9 and 10 is from Pawlikowski’s Theorem. The equivalence
of 7 and 8 is from [60]. The other equivalences are from [69]. This establishes
a connection between this set-picking game, the point-open game, and the earlier
discussed modification of the point-picking games.

In [64] this game and selection principle were connected with Borel’s classical
notion of strong measure zero. According to Borel a metric space X has strong
measure zero if there is for each sequence (εn : n ∈ ∞) of positive reals a partition
X =

⋃
n∈∞Xn such that each Xn has diameter less than εn. Borel conjectured

that only countable sets of real numbers have this property. Borel’s Conjecture was
shown to be independent of ZFC. In [64] each dense subset X of the unit interval
was associated with a corresponding compact subspace T(X) of the Alexandroff
double of the unit interval, [0, 1].

Theorem 26. For a dense subset X of [0, 1] the following are equivalent:

(1) X has Borel strong measure zero.
(2) T(X) has the property S1(O,D).
(3) ONE has no winning strategy in G1(O,D).

It was also shown in [64] that TWO has a winning strategy in G1(O,D) on
T(X) if, and only if, X is countable.

The game Ω.

In this game ONE chooses in inning n an xn ∈ X , and TWO responds with
an open set Un such that xn ∈ Un. A play x1, U1, x2, U2, . . . , xn, Un, . . . is won by
ONE if {Un : n ∈ ∞} has a dense union in X . Else, TWO wins. Define

K := {U ∈ D : X =
⋃
{U : U ∈ U}},

KΩ := {U ∈ K : For each finite F ⊂ X there is a U ∈ U with F ⊂ U}.
In Theorem 3.3 of [76] Tkachuk proves that the games Ω and G1(K,D) are

dual to each other. The game G1(K,D) is further analysed in [69], where the
following two results are proven: A space is weakly Lindelöf if each open cover
contains a countable subset with dense union. Call a space weakly K-Lindelöf if
each element of K has a countable subset with dense union.

Theorem 27. For an infinite cardinal number κ the following are equivalent:

(1) κ < cov(M).
(2) For each T3-space which is weakly K-Lindelöff and has π-weight κ, ONE

has no winning strategy in the game G1(K,D).
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(3) For each T3-space which is weakly Lindelöf and has π-weight κ, ONE has
no winning strategy in the game G1(O,D).

Theorem 28. For any T3 1
2
-space with cellularity at least unif(SMZ), ONE has

a winning strategy in the game G1(K,D).

Theorem 28 suggests defining the cardinal number j by:

j is the least cardinal number κ such that for any T3 1
2
-space

with cellularity at least κ, ONE has a winning strategy in the
game G1(K,D).

Theorems 27 and 28 show cov(M) ≤ j ≤ unif(SMZ). It is known to be consistent
that these lower- and upper-bounds on j are not equal. Thus:

Problem 13. Is j a specific one of the cardinals cov(M) or unif(SMZ)?192?

The selection principle S1(K,K) and corresponding game G1(K,K) are con-
sidered in [67]. We say that a space X is K-Lindelöf if each element of K has
a countable subset which is in K. Also, recall that a set of real numbers is a
Lusin set if it is uncountable, but its intersection with each nowhere dense set is
countable. The following is proved in [67]:

Theorem 29. For an uncountable set X of real numbers the following are equiv-
alent:

(1) S1(K,K) holds.
(2) ONE has no winning strategy in G1(K,K).
(3) X is K-Lindelöf.
(4) X is a Lusin set.

Call a space KΩ-Lindelöf if each element of KΩ has a countable subset which
is in KΩ. Each set of reals which is KΩ-Lindelöf is K-Lindelöf, and thus a Lusin
set. W. Just proved that the converse is false in a strong sense: If there is a
Lusin set at all, then there is one which is not KΩ-Lindelöf. Thus, the Continuum
Hypothesis implies there is a Lusin set which does not satisfy S1(KΩ,KΩ). But in
[67] it is shown that ♦ implies that there is a Lusin set which satisfies S1(KΩ,KΩ).
The ease with which Lusin sets without S1(KΩ,KΩ) are obtained suggests:

Problem 14. Is it consistent that there are Lusin sets, but none is KΩ-Lindelöf?193?

2.4. Further restrictions on ONE. In [77] Tsaban initiated an investiga-
tion of the following scenario: Instead of being given a family A and a family B,
one is given a sequence (An : n < ∞) of families, as well as the family B. The
game G1(An : n <∞,B) is played as before, except that in the n-th inning ONE
must choose a set On ∈ An, and TWO responds with Tn ∈ On. A play is won
by TWO if {Tn : n < ∞} is a member of B; else, ONE wins. The corresponding
selection principle S1(An : n <∞,B) states that for each sequence (On : n <∞)
such that for each n we have On ∈ An, there is a sequence (Tn : n <∞) such that
for each n we have Tn ∈ On, and {Tn : n <∞} ∈ B.
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This innovation poses several new challenges. Here is a sample game-theoretic
problem: For a fixed integer n, an open cover U of a space X is said to be an n-
cover if there is for each n-element subset F of X a set U ∈ U such that F ⊆ U ,
and X is not a member of U . Define Ω[n] is the collection of open n-covers of X .

It is evident that for each n we have Ω ⊆ Ω[n+1] ⊆ Ω[n]. According to Galvin
and Miller [25] a set of real numbers is a strong γ-set if there is an increasing
sequence (kn : n < ∞) of positive integers such that S1(Ω[kn] : n < ∞,Γ) holds.
It is not hard to see that S1(Ω[kn] : n <∞,Γ) holds if, and only if, S1(Ω[n] : n <
∞,Γ) holds [77].

Problem 15 (Tsaban). Does S1(Ω[n] : n <∞,Γ) imply that ONE has no winning 194?

strategy in the game G1(Ω[n] : n <∞,Γ)?

3. Banach–Mazur games

The famous Banach–Mazur game made its debut as Problem 43 in The Scot-
tish Book [1]. This game is an example of the general class of descending chain
games, and is defined as follows on topological space X : In the first inning
ONE first chooses a nonempty open subset O1 of X ; then TWO responds with a
nonempty open set T1 ⊆ O1. In the (n+1)-th inning ONE chooses a nonempty
open set On+1 ⊆ Tn, and TWO responds with a nonempty open set Tn+1 ⊆ On+1.
A play

O1, T1, O2, T2, . . . , On, Tn, . . .

is won by TWO if
⋂

n<∞ Tn 6= ∅; otherwise, ONE wins. This game will be denoted
BM(X).

Recall that a space is a Baire space if the intersection of any countable family
of dense open subses of X is dense. The following is a well-known fact about
BM(X):

Theorem 30. Let X be a topological space.

(1) ONE has a winning strategy in BM(X) if, and only if, X has a nonempty
open subset which is of the first category in itself.

(2) If TWO has a winning strategy in BM(X), then all powers of X are,
even in the box topology, are Baire spaces.

(3) If TWO has a winning strategy in BM(X), then for any Baire space Y ,
X × Y is a Baire space.

Part 1 is due to Banach and was given the current general form by Oxtoby.
Parts 2 and 3 are from [79].

In Problem 67 of [1] Banach proposes another game in the same spirit, which
was generalized to its present form by Galvin in the 1970s: Galvin’s generalization
is as follows: Let S be an uncountable set and let J be a free ideal on S. ONE
starts the game by choosing a set O1 ⊂ S with O1 6∈ J . TWO responds by
choosing a set T1 ⊆ O1 with T1 6∈ J . In general, with O1, T1, . . . , On, Tn chosen,
ONE chooses in inning n + 1 a set On+1 ⊆ Tn with On+1 6∈ J , and then TWO
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responds with Tn+1 ⊆ On+1 and Tn+1 6∈ J , and so on. A play

O1, T1, O2, T2, . . . , On, Tn, . . .

is won by TWO if
⋂

n<∞ Tn 6= ∅; otherwise, ONE wins. This is the Banach–Galvin
game, denoted BG(J).

And we also introduce a third game, the Galvin–Ulam game: Let S be an
infinite set and let κ ≥ 2 be a cardinal number. The game GU(S, κ) proceeds as
follows: In the first inning, ONE partitions S into at most κ disjoint pieces. Then
TWO responds by choosing one of these pieces, say T1, and partitions T1 into at
most κ disjoint pieces. This completes inning 1. Then ONE opens the second
inning by choosing one of the pieces of TWO’s partition of T1, say O1, and ONE
partitions O1 into at most κ disjoint pieces. Then TWO responds by choosing
one of these pieces, say T2, and partitions T2 into at most κ disjoint pieces, and
so on. The players play an inning per positive integer in this way, producing a
sequence T1, O1, . . . , Tn, On, . . . . Player ONE wins if

⋂
n<∞ Tn 6= ∅, and else TWO

wins. This game is denoted GU(S, κ). Ulam’s original game, described in [78],
was GU(S, 2), and he asked if TWO has a winning strategy in GU(ω1, 2).

These three games are related as follows:

Theorem 31 (Baumgartner). If there is a free ideal J on an infinite set S such
that TWO has a winning strategy in the game BG(J), then ONE has a winning
strategy in the game GU(S,ℵ0).

Theorem 32 (Galvin). Let λ be an infinite cardinal number. If there is a set
S of cardinality κ such that ONE has a winning strategy in the game GU(S, λ),
then: For every topological space X with π(X) ≤ λ, if Xκ is, in the box topology,
a Baire space, then TWO has a winning strategy in the game BM(X).

Taking Theorems 31 and 32 together we obtain

Corollary 33. If there is a free ideal J on an infinite set S such that TWO has
a winning strategy in the game BG(J), then for any space X with π(X) = ℵ0 the
following are equivalent:

(1) TWO has a winning strategy in BM(X).
(2) X |S| is, in the box topology, a Baire space.

The equivalence of 1 and 2 in this corollary gives a very elegant characteri-
zation of countable weight spaces for which TWO has a winning strategy in the
Banach Mazur game. This brings us to the following conjecture of Galvin:

Conjecture 1 (Galvin). There is for each infinite cardinal number λ a cardinal195?

number κ such that the following are equivalent for each space of π-weight λ:

(1) TWO has a winning strategy in BM(X).
(2) Xκ is a Baire space in the box topology.

The status of this conjecture is as follows:
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Theorem 34 (Gray, Solovay). If “ZFC + there is an infinite set S such that ONE
has a winning strategy in the game GU(S,ℵ0)” is consistent, then “ZFC + there
is an uncountable measurable cardinal” is consistent.

Theorem 35 (Magidor). If “ZFC + there is an uncountable measurable cardinal”
is consistent, then “ZFC + there is an infinite set S such that ONE has a winning
strategy in the game GU(S,ℵ0)” is consistent.

Thus, the hypothesis to Baumgartner’s theorem is consistent relative to the
consistency of ZFC plus the existence of a measurable cardinal. In a personal
communication (1995) Magidor explained to me a proof of the fact that if “ZFC

+ there is a proper class of measurable cardinals” is consistent, then “ZFC +
Galvin’s Conjecture” is consistent. But it may be that Galvin’s conjecture is
simply a theorem of ZFC: Currently there is no evidence to the contrary.

The theory of the Banach–Mazur game is also intimately related to point-
picking and set-picking games. One of the avenues between the Banach–Mazur
game and these games is via the spaces Ck(X) and C0(X) associated with X .
Namely, there are the following two theorems:

Theorem 36 (Ma). Let X be a non-compact locally compact T3-space. The fol-
lowing are equivalent:

(1) TWO has a winning strategy in BM(Ck(X)).
(2) TWO has a winning strategy in G1(Ω∗∞,Γ

∗
∞).

(3) X is paracompact.

It follows from Ma’s theorem and Galvin’s Conjecture that for every locally
compact T2-space X , if a sufficiently large box-topology power of Ck(X) is a Baire
space, then X is paracompact. The consistency results on Galvin’s Conjecture
suggest that the successor of the π-weight of Ck(X) would be a sufficiently large
power. Thus:

Problem 16. Is it true for each locally compact T2-space that if the box-topology 196?

power of π(Ck(X))+ copies of Ck(X) is Baire, then X is paracompact?

Theorem 37 (Gruenhage–Ma). Let X be a non-compact locally compact T3-space.
The following are equivalent:

(1) ONE has no winning strategy in BM(Ck(X)).
(2) ONE has no winning strategy in G1(Ω∗∞,Γ

∗
∞).

(3) X satisfies S1(Ω∗∞,Γ
∗
∞).

(4) Co(X) satisfies S1(Ωo,Γo).
(5) ONE has no winning strategy in the game G1(Ωo,Γo) on Co(X).

In Theorem 37 the equivalence of 1, 2 and 3 is due to Gruenhage and Ma,
while 4 is due to Nyikos, and the equivalence of 4 and 5 follows from Sharma’s
Theorem. Not all the implications in Theorems 36 and 37 require that X be locally
compact.

Problem 17 (Gruenhage). For T3 1
2
-spaces, is it true that: 197–198?
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(1) ONE has no winning strategy in BM(Ck(X)) if, and only if, ONE has
no winning strategy in G1(Ω∗∞,Γ

∗
∞)?

(2) TWO has a winning strategy in BM(Ck(X)) if, and only if, TWO has
a winning strategy in G1(Ω∗∞,Γ

∗
∞)?

Thus, the following is an alternative formulation of Problem 8

Problem 18 (Gruenhage–Ma). Are there locally compact T4-spaces X for which199?

BM(Ck(X)) is undetermined?

4. The length of games

The game G1(A,B) as described before has an inning per positive integer;
that is, it is of length ω. In those examples where ONE does not have a winning
strategy, one could ask if TWO would have a winning strategy if the game were
allowed to run for more innings. Let α be an infinite ordinal number. Then
Gα

1 (A,B) is the following modification of G1(A,B): Players ONE and TWO play
an inning per ordinal γ < α. In the γ-th inning ONE first chooses Oγ ∈ A and
then TWO responds with Tγ ∈ Oγ . A play

O0, T0, . . . , Oγ , Tγ , . . .

is won by TWO if {Tγ : γ < α} is in B; else, ONE wins.
For a space X for which the selection hypothesis S1(A,B) holds, define:

(1) tpS1(A,B)(X) = min{α : TWO has a winning strategy in Gα
1 (A,B)}.

(2) SPS1(A,B)(X) = {tpS1(A,B)(Y ) : Y ⊆ X}.
Then tpS1(A,B)(X) is the S1(A,B)-type of X and SPS1(A,B)(X) is the S1(A,B)-

spectrum of X . In [12] Daniels and Gruenhage initiate a study of SPS1(O,O)(R),
the S1(O,O)-spectrum of the real line. In [4] Baldwin proves:

Theorem 38 (Baldwin, CH). SPS1(O,O)(R) ⊇ ω ∪ {α ≤ ω1 : α a limit ordinal}.
On the other hand, the Borel Conjecture implies that SPS1(O,O)(R) = ω+ 1∪

{ω1}. Also MA(σ-centered) + ¬CH implies that SPS1(O,O)(R) = ω+ 1∪ {ω1}, see
Theorem 7 of [12]. In [70] I conjectured

Conjecture 2. In ZFC, SPS1(O,O)(R) ⊆ ω ∪ {α ≤ ω1 : α a limit ordinal}.200?

Thus: Borel’s Conjecture implies that SPS1(O,O)(R) is as small as possible, and
by Conjecture 2 CH implies that SPS1(O,O)(R) is as large as possible. It would be
very interesting if there were axiomatic circumstances under which SPS1(O,O)(R)
is neither of these possibilities.

Problem 19. Is the following consistent relative to the consistency of ZFC?201?

ω + 1 ∪ {ω1} ⊂ SPS1(O,O)(R) ⊂ ω ∪ {α ≤ ω1 : α a limit ordinal}.
There are, in ZFC, topological spaces X for which tpS1(O,O)(X) is an infinite

successor ordinal.

Theorem 39. For each ordinal α ≤ ω ·2 there is a topological space Xα such that
tpS1(O,O)(Xα) = α.
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Conjecture 3. There exists a space X for which SPS1(O,O)(X) = ω1 + 1. 202?

In [7] Berner and Juhasz initiated the investigation of tpS1(D,D)(X) for topo-

logical spaces X . In [66] I prove

Theorem 40. For a set Xof real numbers we have the following:

tpS1(D,D)(Cp(X)) = tpS1(Ω,Ω)(X) = tpS1(Ωo,Ωo)(Cp(X)).

The advantage of this theorem is that it allows for an “instant transfer of
information” regarding game-length properties among the three different games
Gα

1 (D,D), Gα
1 (Ω,Ω) and Gα

1 (Ωx,Ωx).
Then it is shown in [66] that the Continuum Hypothesis implies {1, ω, ω2, ω1} ⊆

SPS1(Ω,Ω)(R). Borel’s Conjecture implies that SPS1(Ω,Ω)(R) = {1, ω, ω1}.
Conjecture 4. The Continuum Hypothesis implies 203?

SPS1(Ω,Ω)(R) = {ωα : 0 ≤ α < ω1} ∪ {ω1}.
One might think that Theorem 38 and some relationship between tpS1(O,O)(X)

and tpS1(Ω,Ω)(X) might be used to give a proof of Conjecture 4. But there is a

catch: It can happen that tpS1(O,O)(X) = ω · 2 < ω1 = tpS1(Ω,Ω)(X). In [80]
Zapletal proves that it is consistent with CH that there is for each ordinal α < ω1

a subset Xα of the real line, equipped with a refinement of the usual topology,
such that tpS1(D,D) = ωα. This does not quite prove Conjecture 4.

Besides a few isolated results that I did not mention here, this is just about
the extent to which SPS1(A,B)(X) and tpS1(A,B) has been studied. My motive

behind introducing the several examples of S1(A,B) before is to give the reader
some suggestion of how much is still to be investigated.

5. Memory restrictions on the winning player.

Consider a two-player game of length ω in which one of the players has a
winning strategy. As was described earlier, a winning strategy uses as information
all preceding moves of the opponent to determine the next move of a player. These
are also called perfect information winning strategies. But what if a player has a
limited memory capacity?

This natural question has been considered often enough that some standard
terminology has evolved for certain types of memory limited strategies. For exam-
ple, a strategy of a player which uses only the most recent move of the opponent
is said to be a tactic. Fix a positive integer k. A strategy which uses the most
recent ≤ k moves of the opponent as only information is said to be a k-tactic.

Thus, if we are talking about player ONE, a strategy F would be a k-tactic
for ONE if it is a function with domain the set of finite sequences of length at
most k of legal moves of player TWO, including the empty sequence, and with
range the set of legal moves of ONE: Thus ONE would use F as follows to play
the game: In inning 1, ONE plays F (∅) = O1; With T1 TWO’s response in inning
1, ONE plays F (T1) = O2 in inning 2, and so on. In general, in the (j+1)-th
inning ONE plays Oj+1 = F (T1, . . . , Tj) for j ≤ k, and for later innings ONE
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plays Oi+k+1 = F (Oi+1, . . . , Oi+k). The notion of a k-tactic for TWO s defined
similarly. A k-tactic F for a player is a winning k-tactic if each play of the game
during which the player used F , is won by that player. In this terminology, a
tactic is a 1-tactic.

Fleissner and Kunen [23] observed that in the Banach–Mazur game on a
space, ONE has a winning (perfect information) strategy if, and only if, ONE has
a winning 1-tactic. G. Debs [14] discovered an example of a topological space
in which TWO has a winning perfect information strategy in the Banach–Mazur
game, but not a winning 1-tactic. In all known examples of this phenomenon,
TWO actually has a winning 2-tactic. Telgársky conjectured [75]:

Conjecture 5 (Telgársky). There is for each k a topological space Xk such that204?

TWO has a winning (k+1)-tactic in the Banach–Mazur game, but not a winning
(k+1)-tactic.

One of the consequences of Telgársky’s conjecture is that there should exist a
topological space in which TWO has a winning perfect information strategy in the
Banach–Mazur game, but there is no k for which TWO has a winning k-tactic.
No such examples are known.

Problem 20. Is there a topological space X such that TWO has a winning perfect205?

information strategy in BM(X), but there is no k such that TWO has a winning
k-tactic in BM(X)?

Progress on either of these problems would of course be progress on the fol-
lowing:

Problem 21. Is there a topological space X such that TWO has a winning perfect206?

information strategy in BM(X), but does not have a winning 2-tactic?

A strategy for a player is said to be a Markov strategy if it takes as input only
the most recent move of the opponent and the number of the inning in progress.
Thus, F is a Markov strategy for ONE if O1 = F (∅, 1), O2 = F (T1, 2), . . . ,
On+1 = F (Tn, n+ 1), and so on. And F is a Markov strategy for TWO if for each
n, Tn = F (On, n). A Markov k-tactic is a strategy which uses the inning number
as well as at most the k most recent moves of the opponent. The following is
known for the Banach–Mazur game:

Theorem 41. Let X be a topological space. If TWO has a winning Markov k-
tactic in BM(X), then TWO has a winning k-tactic in BM(X).

The case k = 1 is due to Galvin and Telgársky [26], and the case when k > 1
is due to Bartoszyński, Just and Scheepers [5].

Debs’ example is of the kind where from a given topology τ on an appropriate
space X , and from a free ideal J on X one defines τJ to be the set {U \M : U ∈
τ and M ∈ J}. Under appropriate conditions τJ is a topology. Debs’ example is
of the form (X, τJ ). This motivated considering the following situation: Let J be
a free ideal on a set S, and let 〈J〉 be its σ-completion. Then S has a T1 topology
for which J is exactly the ideal of nowhere dense sets, and 〈J〉 is the σ-ideal of first
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category (= meager) sets. Consider the game MG(J) (the monotonic game on
J), an example of a meager-nowhere dense game in which in the n-th inning ONE
first chooses a meager set On, and then TWO responds with a nowhere dense set
Tn. ONE must further obey the rule that for each n, On ⊂ On+1 but On+1 6= On.
A play (O1, T1, . . . , On, Tn, . . . ) is won by TWO if

⋃
n<∞On ⊆

⋃
n<∞ Tn; else

ONE wins. A standard diagonalization argument shows that TWO has a winning
strategy in MG(J). The question is if TWO has a winning strategy relying on
less than perfect information. It can be shown that TWO has a winning 1-tactic
if, and only if, J = 〈J〉. And there are examples where TWO does not have a
winning 1-tactic, but does have a winning 2-tactic. There are also examples where
TWO does not have a winning 2-tactic in MG(J), while it is independent of ZFC

whether TWO has a winning k-tactic for some k > 2. In all examples where it
could be shown that if TWO has a winning k-tactic for some k, then indeed TWO
has a winning 3-tactic. Thus:

Conjecture 6 (3-tactic conjecture). For every free ideal J , if TWO has a winning 207?

k-tactic in MG(J), then TWO has a winning 3-tactic in MG(J).

It is not even known if the 3-tactic conjecture is consistent.
The countable-finite game on a set S is the game MG(J) where J = [S]<ℵ0 .

For this example Koszmider proved in [39] that when |S| < ℵω then TWO has
a winning 2-tactic in MG(J), and he proved that it is consistent that TWO has
a winning 2-tactic in MG(J) for all sets S. The following conjecture might be
simply a ZFC theorem:

Conjecture 7 (Countable-Finite conjecture). For every infinite set S, TWO has 208?

a winning 2-tactic in the countable-finite game on S.

A strategy F for player TWO is a coding strategy if TWO uses it as follows to
play: T1 = F (O1, ∅), and for all n, Tn+1 = F (On+1, Tn). Thus TWO remembers
the most recent move by ONE and by TWO when deciding how to play next.

Theorem 42 (Galvin–Telgársky). If TWO has a winning strategy in BM(X),
then TWO has a winning coding strategy in BM(X).

If in MG(J) we relax the requirements on ONE, and only require that ONE
plays in each inning so that On ⊆ On+1, we obtain the game WMG(J) (the
weakly monotonic game), where still TWO wins if

⋃
n<∞On ⊆

⋃
n<∞ Tn. The

Generalized Continuum Hypothesis (GCH) implies that for every free ideal on an
infinite set S, TWO has a winning coding strategy in WMG(J). There is evidence
to suggest that the additional hypothesis GCH is not needed. Thus:

Conjecture 8 (Coding Strategy Conjecture). For each free ideal J on an infinite 209?

set S, TWO has a winning coding strategy in WMG(J).

Quite a bit more information about meager-nowhere dense games can be ob-
tained from [54, 53, 55, 56, 57, 59, 5, 52].

Winning strategies of limited memory are of intrinsic interest, but often have
very nice applications. To illustrate this, consider the following two beautiful
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results of Gruenhage: A space is said to be metacompact if every open cover has
an open point-finite refinement covering the space. And a space is σ-metacompact
if every open cover has an open refinement which covers the space and is a union
of countably many point-finite families.

Theorem 43 (Gruenhage). For a locally compact, non-compact space X the fol-
lowing are equivalent:

(1) TWO has a winning 1-tactic in G1(Ω∞,Γ∞) on X∗.
(2) X is metacompact.

Theorem 44 (Gruenhage). For a locally compact space X the following are equiv-
alent:

(1) TWO has a winning Markov 1-tactic in G1(Ω∞,Γ∞) on X∗.
(2) X is σ-metacompact.

A compact space X is Eberlein compact if there is an infinite cardinal number
κ such that X is homeomorphic to a subspace of {f ∈ Rκ : (∀ε > 0)({α < κ :
|f(α)| > ε} is finite)}.
Corollary 45 (Gruenhage). Let X be a compact space. The following are equiv-
alent;

(1) TWO has a winning Markov strategy in G1(Ω∗∞,Γ
∗
∞) on X∗∆.

(2) X is Eberlein compact.

6. Ramsey Theory

In [46] F.P. Ramsey published the now famous Ramsey Theorem: For any
infinite set S, for any positive integers m and n, and for any function f : [S]n →
{1, . . . ,m}, there is an infinite set B ⊆ A and an i ∈ {1, . . . ,m} such that f is
constant, of value i, on [B]n.

This result and inventiveness of several mathematicians has lead to the field
now known as Ramsey Theory. Ramsey Theory shows up in many contexts in
Mathematics, and it is also intimately related to selection principles and their
corresponding games. Though several instances of selection principles have been
characterized by Ramseyan theorems, much is still to be discovered about this
connection. We briefly survey what is known about Ramsey theory in the context
of the selection principle S1(A,B) and mention a few specific problems. In all
cases the game G1(A,B) plays a central role in characterizing a selection principle
by a Ramseyan theorem.

6.1. The partition relation A → (B)n
k . Let an infinite set S and families

A and B be given as before. For positive integers m and n, the symbol A → (B)n
k

denotes the statement that for each A ∈ A, and for each function f : [A]n →
{1, . . . , k}, there is an i ∈ {1, . . . , k} and a set B ∈ B such that B ⊆ A, and f is
constant of value i on [B]n.

The simplest possible case for this partition relation, namely for positive inte-
ger k, A → (A)1k , is also known as the pigeonhole principle. Now not all elements
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of A may have the property that when partitioned into two pieces, at least one of
the pieces is again in A. We use a special symbol to denote this subcollection of
A, namely AΩ = {A ∈ A : For any partition A = A1 ∪ A2, A1 ∈ A or A2 ∈ A}.

For many of the A we have considered here, A = AΩ, but also for many others
considered here, A 6= AΩ. For example, when A ∈ {Γx,Ωx,Γ,Ω,DΩ,KΩ}, then
A = AΩ. A subcollection of A for which the Ramseyan partition relation is trivial
is the collection AΓ = {A ∈ A : For any infinite subset B ⊆ A we have B ∈ A}.
For A ∈ {Γx,Γ}, we have A = AΓ. By Ramsey’s Theorem we have for any
family A for which AΓ is nonempty, that for all m and n the partition relation
AΓ → (AΓ)n

k holds. Already the partition relation AΩ → (AΓ)22 gives significant
new information. It is namely equivalent with the statement that each element of
AΩ has a subset which is an element of AΓ. For A = Ωx for the point x in the
topological space X , AΓ = Γx, and so the partition relation characterizes being
Fréchet–Urysohn at the point x. Partition relations of the form AΩ → (B)n

k for
B ⊂ A \ AΓ are much harder to come by, and give much more information.

Here are some examples where equivalence between the selection principle and
the corresponding Ramseyan partition relation have been established. Here, X is
a topological space.

Selection Principle Ramseyan partition relation Source
X |= S1(O,O) (∀k)(Ω→ (O)2k) [68]
X |= S1(Ω,Ω) (∀n)(∀k)(Ω → (Ω)n

k ) [58] and [37]
X |= S1(Ω,Ωgp) (∀n)(∀k)(Ω → (Ωgp)n

k ) [38]
X |= S1(Λ,Ogp) (∀k)(Ω→ (Ogp)2k) [38]
X |= S1(Λ,Owgp) (∀k)(Ω→ (Owgp)2k) [2]
X |= S1(D,D) (∀n)(∀k)(DΩ → (DΩ)n

k ) [50]
Cp(X) |= S1(Ωo,Ωo) (∀n)(∀k)(Ωo → (Ωo)n

k ) [60]
Cp(X) |= S1(Ωo,Ω

gp
o ) (∀n)(∀k)(Ωo → (Ωgp

o )n
k ) [38]

Very little is known about the partition relation KΩ → (K)2n. In [67] it is
shown for uncountable sets of real numbers X :

(1) If X is KΩ-Lindelöf then for each n, KΩ → (K)2n.
(2) KΩ → (K)22 implies that X is a Lusin set.

Problem 22. Could there be a Lusin set which does not satisfy the partition 210?

relation KΩ → (K)22?

Problem 23. Could there be a Lusin set which satisfies the partition relation 211?

KΩ → (K)22, but which is not KΩ-Lindelöf?

6.2. Polarized partition relations. Let k be a positive integer and let
A1,A2, B1,1,B2,1, . . . ,B1,k and B2,k be collections of subsets of an infinite set S.

Then the the symbol
(A1

A2

)
→
(
B1,1 ... B1,k

B2,1 ... B2,k

)1,1

denotes the polarized partition

relation, defined as follows: For each A1 ∈ A1, for each A2 ∈ A2 and for each
f : A1 × A2 → {1, . . . , k} there are an i ∈ {1, . . . , k} and sets B1 ⊆ A1 and
B2 ⊆ A2 such that B1 ∈ B1,i, B2 ∈ B2,i, and {f(x, y) : (x, y) ∈ B1 ×B2} = {i}.
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The polarized partition relation was introduced in Section 9 of [22] thoroughly
studied in [19] for ordinals. Another class of partition relations known as the
square-bracket partition relations was introduced in Section 18 of [20]. These three
classes of partition relations were considered mostly in connection with cardinal or
ordinal numbers, although the ordinary partition relation and the square bracket
relation have also been extensively studied in the theory of ultrafilters (see for
example [6, 8, 9]) and the theory of linear order types (see for example [21] and
[18]). We discuss here a hybrid of the polarized and of the square bracket relation
(hinted at on p. 59 of [17]) in connection with certain open covers of topological
spaces.

This partition relation is defined as follows: Let A1,A2,B1 and B2 be col-
lections of subsets of the set S and let k and ` be positive integers. Then the

symbol
(A1

A2

)
→
[B1

B2

]1,1

k/<`
denotes the statement that for each A1 ∈ A1, for

each A2 ∈ A2 and for each f : A1 × A2 → {1, . . . , k} there are sets B1 ⊆ A1,
B2 ⊆ A2, and J ⊆ {1, . . . , k} such that B1 ∈ B1, B2 ∈ B2, |J | ≤ ` and
{f(x, y) : (x, y) ∈ B1 ×B2} ⊆ J .

Theorem 46. If X has property S1(Ω,Ω), then ( Ω
Ω )→ [ Ω

Ω ]
1,1

k/<3 holds.

Problem 24. Does the polarized partition relation characterize S1(Ω,Ω)?212?
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Selection principles and special sets of reals

Boaz Tsaban

1. Introduction

The field of Selection Principles in Mathematics started with Scheepers’ iden-
tification and classification of common prototypes for selection hypotheses appear-
ing in classical and modern works. For surveys of the field see [46, 26, 57].

The main four prototypes in the field are defined as follows. Fix a topological
space X , and let A and B each be a collection of covers of X . Following are
properties which X may or may not have [41].(

A

B

)
: Every member of A has a subset which is a member of B.

S1(A ,B): For each sequence {Un}n∈N of members of A , there exist mem-
bers Un ∈ Un, n ∈ N, such that {Un : n ∈ N} ∈ B.

Sfin(A ,B): For each sequence {Un}n∈N of members of A , there exist finite
subsets Fn ⊆ Un, n ∈ N, such that

⋃
n∈N Fn ∈ B.

Ufin(A ,B): For each sequence {Un}n∈N of members of A which do not
contain a finite subcover, there exist finite subsets Fn ⊆ Un, n ∈ N, such
that {⋃Fn : n ∈ N} ∈ B.

When A and B vary through topologically significant collections, we obtain
properties studied in various contexts by many authors. We give some examples.

Fix a topological space X , and let O denote the collection of all open covers of
X . In the case of metric spaces, Sfin(O,O) is the property shown by Hurewicz [23]
to be equivalent to Menger’s basis property [32], and S1(O,O) is Rothberger’s
property traditionally known as C ′′ [38], a property related to Borel’s strong
measure zero [11].

Considering special types of covers we obtain additional properties. Hence-
forth, by cover of X we mean a nontrivial one, i.e., such that X itself is not a
member of the cover. An open cover U of X is an ω-cover if X /∈ U and for each
finite F ⊆ X , there is U ∈ U such that F ⊆ U . U is a γ-cover of X if it is infinite
and for each x ∈ X , x is a member of all but finitely many members of U . Let
Ω and Γ denote the collections of all ω-covers and γ-covers of X , respectively.
Then Ufin(O,Γ) is the Hurewicz property [24], and S1(Ω,Γ) is the Gerlits–Nagy
γ-property, introduced in the context of function spaces [18]. Additional proper-

ties of these types were studied by Arhangel’skĭi, Sakai, and others. Some of the
properties are relatively new.

The field of selection principles studies the interrelations between all properties
defined by the above selection prototypes as well as similar ones, and properties
which do not fall into this category but that can be related to properties which
do.

Supported by the Koshland Fellowship.
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92 9. SELECTION PRINCIPLES AND SPECIAL SETS OF REALS

In its broadest sense, the field (and even just its problems) cannot be sur-
veyed in a single book chapter. We will restrict attention to its part dealing with
sets of real numbers.1 Even there, we omit several important topics. Two of
them—topological Ramsey theory and topological game theory—are discussed in
Scheepers’ chapter.

While all problems we mention are about sets of real numbers, some of them
deal with sets of reals not defined by selection principles, and belong to the more
classical era of the field. Naturally, we usually mention problems we are more
familiar with.

The references we give are usually an accessible account of the problem or
related problems, but not necessarily the original source (which is usually cited in
the given reference). In fact, most of the problems have been around much before
being documented in a publication. Thus, most of the problems posed here should
be considered folklore.

The current chapter is a comprehensively revised and updated version of our
earlier survey [54].

2. The Scheepers Diagram Problem

Each of the properties mentioned in Section 1, where A ,B range overO,Λ,Ω,Γ,
is either void or equivalent to one in the following diagram (where an arrow denotes
implication) [41, 25].

Ufin(O,Γ) // Ufin(O,Ω) // Sfin(O,O)

Sfin(Γ,Ω)

55jjjjjj

S1(Γ,Γ) //

55kkkkkkkkkkkkkkkkkkkkk

S1(Γ,Ω) //

55kkkkkk

S1(Γ,O)

77ooooooooooooooooo

Sfin(Ω,Ω)

OO

S1(Ω,Γ) //

OO

S1(Ω,Ω)

OO

//

55kkkkkk

S1(O,O)

OO

Figure 1. The Scheepers Diagram

Almost all implications which do not appear in Figure 1, and are not compo-
sitions of existing implications, are not provable: Assuming CH, there are sets of
reals witnessing that [25]. Only the following two implications remain unsettled.

Problem 2.1 ([25]).213–214?

(1) Is Ufin(O,Ω) = Sfin(Γ,Ω)?
(2) And if not, does Ufin(O,Γ) imply Sfin(Γ,Ω)?

1This includes separable zero-dimensional metric spaces, since such spaces are homeo-
morphic to subsets of the irrational numbers.
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By Borel cover of X we mean a cover of X consisting of Borel subsets of
X . Let B,BΩ,BΓ denote the collections of countable Borel covers, ω-covers, and
γ-covers of X , respectively. Since we are dealing with sets of reals, we may assume
that all open covers we consider are countable [55]. It follows that when A ,B
range over B,BΩ,BΓ we get properties stronger than the corresponding ones when
A ,B range over O,Ω,Γ. In the Borel case, more equivalences are known and the
following diagram is complete [47].

S1(BΓ,BΓ) // S1(BΓ,BΩ) // Sfin(B,B)

Sfin(BΩ,BΩ)

OO

S1(BΩ,BΓ) //

OO

S1(BΩ,BΩ) //

OO

S1(B,B)

OO

Figure 2. The Scheepers Diagram in the Borel case

In particular, the answer to the Borel counterpart of Problem 2.1 is positive.
Problem 2.1 can be reformulated in terms of topological properties of sets

generating Borel non-σ-compact groups [69]. This is related to the following
problem.

Problem 2.2 ([69]). Can a Borel non-σ-compact subgroup of a Polish group be 215?

generated by a subspace satisfying Ufin(O,Γ)?

A set X ⊆ R satisfies Ufin(O,Γ) if, and only if, for each Gδ G ⊆ R containing
X , there is a σ-compact F ⊆ R with X ⊂ F ⊂ G [25].

Problem 2.3 ([66]). Assume that X ⊆ B ⊆ R, B is Borel, and X satisfies 216–217?

Ufin(O,Γ). Must there be a σ-compact F with X ⊂ F ⊂ B? What if B is Fσδ?

A positive answer for the first part of Problem 2.3 implies a negative answer
for Problem 2.2. A positive answer for its second part implies a positive answer
for Problem 2.1(2).

3. Examples without special set theoretic hypotheses

3.1. Dichotomic examples. Let J be a property of sets of reals. Some-
times there is a set theoretic hypothesis P independent of ZFC, that can be used
to construct an X ∈ J , and such that its negation ¬P also implies the existence
of some Y ∈ J (possibly on trivial grounds). In this case, the existence of an
X ∈ J is a theorem of ZFC.

The hypotheses used in the dichotomic arguments are often related to combi-
natorial cardinal characteristics of the continuum. See [10] for a survey of these.
The critical cardinality of a nontrivial family J of sets of reals is

non(J ) = min{|X | : X ⊆ R, /∈ J }.
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Figure 3 indicates the critical cardinalities of the properties in the Scheepers dia-
gram 1 (we use M for the ideal of meager sets of reals). The critical cardinalities
in the Borel case are equal to those in the open case.

b // d // d

d

66nnnnnnnnn

b //

66nnnnnnnnnnnnnnnnnnnn
d //

66nnnnnnnnn
d

88qqqqqqqqqqqqqqqq

d

OO

p //

OO

cov(M)

OO

//

77ooooooo

cov(M)

OO

Figure 3. Critical cardinalities in the Scheepers Diagram

Dichotomic arguments imply the existence (in ZFC) of a set of reals X satisfy-
ing S1(Γ,Γ) such that |X | = t [42], and a set of reals satisfying Sfin(Ω,Ω) such that
|X | = cf(d) [64]. Now, non(S1(Γ,Γ)) = b, non(Sfin(Ω,Ω)) = d, and it is consistent
that b > t and d > cf(d). Thus, these existence results are not satisfactory.

Problem 3.1 ([9]). Does there exist (in ZFC) a set of reals X satisfying S1(Γ,Γ)218?

such that |X | = b?

Problem 3.2 ([64]). Does there exist (in ZFC) a set of reals satisfying Sfin(Ω,Ω)219?

such that |X | = d?

3.2. Direct constructions. Constructions which do not appeal to a di-
chotomy are philosophically much more pleasing.

There is a direct construction of a set of reals H satisfying Ufin(O,Γ) such that
|H | = b (and such that H does not contain a perfect set) [7]. All finite powers of
this set H satisfy Ufin(O,Γ) [9]. In fact, H can be chosen as a subgroup or even
a subfield of R [59, 64]. There is also a direct construction of a set of reals M
satisfying Sfin(O,O) but not Ufin(O,Γ), such that |M | = d [64].

Problem 3.3 ([64]). Is there a direct (non-dichotomic) construction of a set of220?

reals M satisfying Sfin(Ω,Ω) but not Ufin(O,Γ)?

3.3. The Borel case. Let J be a property of sets of reals. Borel’s Conjecture
for J is the statement “All elements of J are countable”. For all but three of the
properties in the Borel case, Borel’s Conjecture is consistent.

Problem 3.4 ([36]). Is Borel’s Conjecture for Sfin(B,B) consistent?221?

This is the same as asking whether it is consistent that each uncountable set
of reals can be mapped onto a dominating subset of NN by a Borel function [47].
Problem 3.4 is also open for S1(BΓ,BΩ).



4. EXAMPLES FROM CH OR MA 95

Problem 3.5 (Magidor). Is Borel’s Conjecture for Sfin(B,B) equivalent to Borel’s 222?

Conjecture for S1(BΓ,BΩ)?

Problem 3.6 ([47]). Is Borel’s Conjecture for Sfin(BΩ,BΩ) consistent? 223?

4. Examples from CH or MA

Consider the Borel case (Figure 2). For each set of reals X , we can put “•”
in each place in the diagram where the property is satisfied, and “◦” elsewhere.
There are 14 settings consistent with the arrows in the diagram, and they are all
listed in Figure 4.

◦ ◦ ◦
◦

◦ ◦ ◦

(a)

◦ ◦ •
◦

◦ ◦ ◦

(b)

◦ ◦ •
◦

◦ ◦ •

(c)

◦ • •
◦

◦ ◦ ◦

(d)

◦ • •
◦

◦ ◦ •

(e)

◦ • •
•

◦ ◦ ◦

(f)

◦ • •
•

◦ ◦ •

(g)

◦ • •
•

◦ • •

(h)

• • •
◦

◦ ◦ ◦

(i)

• • •
◦

◦ ◦ •

(j)

• • •
•

◦ ◦ ◦

(k)

• • •
•

◦ ◦ •

(l)

• • •
•

◦ • •

(m)

• • •
•

• • •

(n)

Figure 4. The consistent settings

Setting (a) is realized by R \Q, i.e. NN.
Assume CH. Settings (c),(h), and (i) were realized in [25], Setting (k) was

realized in [59], and Setting (n) was realized in [37, 12, 35]. To realize Setting (b),
take a set L as in Setting (c) and a set S as in Setting (i), and take X = L∪S. As
Sfin(B,B) is additive, X satisfies this property. But since S1(BΓ,BΩ) and S1(B,B)
are hereditary for subsets [9], X does not satisfy any of these. It seems that using
forcing-theoretic arguments similar to those of [12], we can realize Settings (f)
and (m).

Problem 4.1. Does CH imply a realization of the settings (d),(e),(g),(j), and 224–228?

(l)?

All constructions mentioned above can be carried out using MA. Except per-
haps Setting (n).

Problem 4.2 ([35]). Does MA imply the existence of an uncountable set of reals 229?

satisfying S1(BΩ,BΓ)?
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5. The δ-property

For a sequence {Xn}n∈N of subsets of X , define lim inf Xn =
⋃

m

⋂
n≥mXn.

For a family F of subsets of X , L(F) denotes its closure under the operation
lim inf. X has the δ-property [18] if for each ω-cover U of X , X ∈ L(U).

Clearly,
(
Ω
Γ

)
implies the δ-property. S1(Ω,Γ) =

(
Ω
Γ

)
[18].

Problem 5.1 ([18]). Is the δ-property equivalent to
(
Ω
Γ

)
?230?

Miller points out that, as a union of an increasing sequence of sets with the
δ-property has again the δ-property, a negative answer to the following problem
implies a negative answer to Problem 5.1.

Problem 5.2 ([35]). Does every union of an increasing sequence {Xn}n∈N of sets231?

satisfying
(
Ω
Γ

)
satisfy

(
Ω
Γ

)
?

The answer is positive in the Borel case [59].

6. Preservation of properties

6.1. Heredity. A property of sets of reals is hereditary if for each set of
reals X satisfying the property, all subsets of X satisfy that property. None of the
selection hypotheses involving open covers is provably hereditary [9]. However, the
property S1(B,B) as well as all properties of the form Π(BΓ,B) are hereditary [9]
(but S1(BΩ,BΓ) is not [35]).

Problem 6.1 ([9, 35]). Is S1(BΩ,BΩ) or Sfin(BΩ,BΩ) hereditary?232–233?

All properties in the Scheepers diagram 1, except for the following two, are
known to be hereditary for Fσ subsets‘[62].

Problem 6.2 ([62]). Are Sfin(Γ,Ω) and S1(Γ,Ω) hereditary for Fσ subsets?234–235?

The Borel versions of all properties are hereditary for arbitrary Borel sub-
sets [47].

6.2. Finite powers. S1(Ω,Γ), S1(Ω,Ω), and Sfin(Ω,Ω) are the only proper-
ties in the open case which are preserved under taking finite powers [25].

Problem 6.3 ([47]). Is any of the classes S1(BΩ,BΩ) or Sfin(BΩ,BΩ) preserved236–237?

by finite powers?

Assume that X satisfies S1(BΩ,BΩ) and Y ⊆ X . If S1(BΩ,BΩ) is preserved by
finite powers, then Xk satisfies S1(BΩ,BΩ), and in particular S1(B,B), for all k.
As S1(B,B) is hereditary, Y k satisfies S1(B,B) for all k. It follows that Y satisfies
S1(BΩ,BΩ) [47]. Similar assertions for Sfin(BΩ,BΩ) and Sfin(B,B) also hold [47].
Thus, a positive answer to Problem 6.3 implies a positive answer to Problem 6.1.

Problem 6.4 ([47]). Is S1(BΩ,BΓ) preserved by finite powers?238?

The corresponding problems for the other classes are settled in the nega-
tive [47].
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6.3. Products. Some positive results are available for products of sets. E.g.,
if X,Y ⊆ R have strong measure zero and X also satisfies Ufin(O,Γ), then X × Y
has strong measure zero [43].

Problem 6.5 ([43]). Assume that X,Y ⊆ R satisfy S1(O,O), and X also satisfies 239?

Ufin(O,Γ). Does it follow that X × Y satisfies S1(O,O)?

It is not even known whether a positive answer follows when X satisfies
S1(Ω,Γ).

The following problem withstood considerable attacks by several mathemati-
cians. The property in it is equivalent to the Gerlits–Nagy (∗) property, and is
also equivalent to S1(Ω,Oγ-gp) [28].

Problem 6.6. Is Ufin(O,Γ) ∩ S1(O,O) preserved by finite products? 240?

A positive answer here implies a positive answer to Problem 6.5. It is not
even known whether Ufin(O,Γ) ∩ S1(O,O) preserved by finite powers.

None of the properties in Figure 1 is provably preserved by finite products [44,
47, 8, 55]. Borel’s conjecture implies a consistently positive answer for S1(O,O)
and below it.

Problem 6.7 (Scheepers). Is any of the Sfin or Ufin type properties in the Scheep- 241?

ers diagram 1 consistently preserved by finite products?

A natural place to check Problem 6.7 for Sfin(O,O) is Miller’s model (in which,
by the way, Ufin(O,Ω) = Sfin(O,O) [71, 62]).

Assume that Y has Hausdorff dimension zero. The assumption thatX satisfies
S1(Ω,Γ) does not imply that X ×Y has Hausdorff dimension zero. However, if X
satisfies S1({On}n∈N,Γ),2 then X × Y has Hausdorff dimension zero [68].

Problem 6.8 ([68]). Assume that |X | < p. Is it true that for each Y with 242?

Hausdorff dimension zero, X × Y has Hausdorff dimension zero?

Problem 6.9 (Krawczyk). Is it consistent (relative to ZFC) that there are un- 243?

countable sets of reals satisfying S1(Ω,Γ), but for each such set X and each set Y
with Hausdorff dimension zero, X × Y has Hausdorff dimension zero?

6.4. Unions. The question of which of the properties in Figure 1 is provably
preserved under taking finite or countable unions (i.e., is additive or σ-additive)
is completely settled. Some of the classes which are not provably additive are
consistently additive [50].

Problem 6.10 ([50]). Is Sfin(Ω,Ω) consistently additive? 244?

The problem is also open for S1(Γ,Ω) and Sfin(Γ,Ω).

Problem 6.11 ([50]). Is Sfin(BΩ,BΩ) consistently additive? 245?

2
S1({On}n∈N, Γ) is the strong γ-property [17, 58]: For each sequence {Un}n∈N where for

each n, Un is an open n-cover of X (i.e., each F ⊆ X with |F | ≤ n is contained in some member
of Un), there are Un ∈ Un, n ∈ N, such that {Un : n ∈ N} is a γ-cover of X.
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In some cases, there remains the task to determine the exact additivity num-
ber. The additivity number of a nontrivial family J of sets of reals is

add(J ) = min{|F| : F ⊆ I and
⋃
F /∈ J }.

max{b, g} ≤ add(Sfin(O,O)) ≤ cf(d), h ≤ add(S1(Γ,Γ)) ≤ b, and add(N ) ≤
add(S1(O,O)) [50].

Problem 6.12 ([50]). Is add(Sfin(O,O)) = max{b, g}?246?

Problem 6.13 ([45]). Is add(S1(Γ,Γ)) = b?247?

The answer for the Borel version of Problem 6.13 is positive.

Problem 6.14 ([6]). Is it consistent that add(N ) < add(S1(O,O))?248?

Problem 6.13 is related to Problem 9.1 below.
Another type of problems is exemplified by the following problem. It is easy

to see that if X satisfies S1(Ω,Γ) and D is countable, then X∪D satisfies S1(Ω,Γ).

Problem 6.15 (Miller, Tsaban). Assume that X satisfies S1(Ω,Γ) and |D| < p.249–250?

Does X ∪D satisfy S1(Ω,Γ)? Is it true under MA when |D| = ℵ1?

Recently, Jordan proved that for each D, the following are equivalent:

(1) X ∪D satisfies S1(Ω,Γ) for each X satisfying S1(Ω,Γ);
(2) X ×D satisfies S1(Ω,Γ) for each X satisfying S1(Ω,Γ).

7. Modern types of covers

7.1. τ-covers. Recall that by “cover of X” we mean one not containing X
as an element. U is a large-cover of X if each x ∈ X is covered by infinitely
many members of U . It is a τ -cover of X if, in addition, for each x, y ∈ X , either
{U ∈ U : x ∈ U, y /∈ U} is finite, or else {U ∈ U : y ∈ U, x /∈ U} is finite [51]. Let
T denote the collection of open τ -covers of X . Then Γ ⊆ T ⊆ Ω.

The most important problem concerning τ -covers is the following.

Problem 7.1 ([52]). Is
(
Ω
Γ

)
=
(
Ω
T

)
?251?

This problem is related to many problems posed in [51, 53, 55, 58, 68, 35],

etc. The best known result in this direction is that
(
Ω
T

)
implies Sfin(Γ,T) [53].

To state a modest form of Problem 7.1, note that if
(
Ω
T

)
implies Sfin(T,Ω),

then
(
Ω
T

)
= Sfin(Ω,T).

Problem 7.2 ([53]). Is
(
Ω
T

)
= Sfin(Ω,T)?252?

Problem 7.3 (Scheepers). Does S1(Ω,T) imply Ufin(O,Γ)?253?

There are many more problems of this type, and they are summarized in [33].
Not much is known about the preservation of the new properties under set

theoretic operations. Miller [35] proved that assuming CH, there exists a set of
reals X satisfying S1(BΩ,BΓ) and a subset Y of X such that Y does not satisfy
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(
Ω
T

)
. Together with the remarks preceding Problem 6.1, we have that the only

classes (in addition to those in Problem 6.1) for which the heredity problem is not
settled are the following ones.

Problem 7.4 ([9]). Is any of the properties S1(BT,BΓ), S1(BT,BT), S1(BT,BΩ), 254–259?

S1(BT,B), Sfin(BT,BT), or Sfin(BT,BΩ), hereditary?

Here are the open problems regarding unions.

Problem 7.5 ([50]). Is any of the properties S1(T,T), Sfin(T,T), S1(Γ,T), 260–269?

Sfin(Γ,T), and Ufin(O,T) (or any of their Borel versions) additive?

It is consistent that Ufin(O,Γ) = Ufin(O,T), and therefore Ufin(O,T) is con-
sistently σ-additive [70]. S1(T,T) is preserved under taking finite unions if, and
only if, S1(T,T) = S1(T,Γ) [33].

Here are the open problems regarding powers.

Problem 7.6. Is any of the properties preserved under taking finite powers? 270?

(1) S1(Ω,T), or Sfin(Ω,T),
(2) S1(T,Γ), S1(T,T), S1(T,Ω), Sfin(T,T), or Sfin(T,Ω),

Most of these problems are related to Problem 7.1.
A solution to any of the problems involving τ -covers must use new ideas, since

this type of covers is not as amenable as the classical ones. In [53] it is shown
that if we use an amenable variant of τ -covers (called τ ∗-covers, see below), then
most of the corresponding problems can be solved.

7.2. τ∗-covers. Y ⊆ [N]ℵ0 is linearly refinable if for each y ∈ Y there ex-

ists an infinite subset ŷ ⊆ y such that the family Ŷ = {ŷ : y ∈ Y } is linearly
(quasi)ordered by ⊆∗. A cover U = {Un : n ∈ N} of X is a τ∗-cover of X if it is
large, and the family of all sets {n : x ∈ Un}, x ∈ X , is linearly refinable. T∗ is
the collection of all countable open τ∗ covers of X .

Every analytic space satisfies
(
T
Γ

)
[51].

Problem 7.7 ([53]). Does {0, 1}N satisfy
(
T∗

Γ

)
? 271?

7.3. Groupable covers. Groupability notions for covers appear naturally
in the studies of selection principles [27, 28, 2, 56].

A cover U of X is multifinite if there exists a partition of U into infinitely
many finite covers of X .

Let ξ be γ, τ , or ω. A cover U of X is ξ-groupable if it is multifinite, or
there is a partition of U into finite sets, U =

⋃
n∈N Fn, such that {⋃Fn}n∈N is

a ξ-cover of X . Denote the collection of ξ-groupable open covers of X by Oξ-gp .
Then Oγ-gp ⊆ Oτ-gp ⊆ Oω-gp .

Sfin(O,O) = Sfin(Ω,O) [41], Ufin(O,Γ) = Sfin(Ω,Oγ-gp) [28], and Ufin(O,Ω) =
Sfin(Ω,Oω-gp) [2]. A positive answer to the following problem is consistent [70].

Problem 7.8. Is Ufin(O,T) = Sfin(Ω,Oτ-gp)? 272?
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S1(Ω,Oω-gp) is strictly stronger than S1(O,O) [58]. S1(Ω,Oω-gp) = Ufin(O,Ω)∩
S1(O,O) [58], so the following problem can also be stated in classical terms.

Problem 7.9 ([2]). Is S1(Ω,Ω) = S1(Ω,Oω-gp)?273?

Ufin(O,Γ) =
(

Λ
Oγ-gp

)
[56]. Zdomskyy proved that a positive answer to the

following problem follows from NCF.

Problem 7.10. Is Ufin(O,Ω) =
(

Λ
Oω-gp

)
?274?

8. Splittability

Assume that A and B are collections of covers of a space X . The following
property was introduced in [41], in connection to Ramsey Theory.

Split(A ,B):: Every cover U ∈ A can be split into two disjoint subcovers
V and W , each containing an elements of B.

If we consider this prototype with A ,B ∈ {Λ,Ω,T,Γ}, we obtain 16 prop-
erties, each of which being either trivial or equivalent to one in Figure 5. In this
diagram, the dotted implications are open. The implication (1) in this diagram
holds if, and only if, its implication (2) holds, and if (1) (and (2)) holds, then (3)
holds, either.

Split(Λ,Λ) // Split(Ω,Λ) // Split(T,T)

Split(Ω,Ω)

OO

Split(Ω,T)

OO

(1)

))

(2)

yy

(3)

cc

Split(Ω,Γ)

OO

55kkkkkkk
// Split(T,Γ)

OO

Figure 5

Problem 8.1 ([55]).275–276?

(1) Does Split(Ω,T) imply Split(T,Γ)?
(2) And if not, then does Split(Ω,T) imply Split(Λ,Λ)?

The product of a σ-compact X with Y satisfying Ufin(O,B) (B ∈ {O,Ω,Γ})
satisfies Ufin(O,B) [62, 50].

Problem 8.2 (Zdomskyy). Assume that X is compact and Y satisfies Split(Λ,Λ).277?

Does X × Y satisfy Split(Λ,Λ)?

Problem 8.2 is also open for the other splitting properties.

Problem 8.3 ([50]). Improve the lower bound or the upper bound in the inequality278?

ℵ1 ≤ add(Split(Ω,Λ)) ≤ c.
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Problem 8.4 ([50]). Can the lower bound u on add(Split(T,T)) be improved? 279?

All problems below are settled for the properties which do not appear in them.

Problem 8.5 ([55]). Is Split(Λ,Λ) additive? 280?

Split(Λ,Λ) is consistently additive [71, 50].

Problem 8.6 ([55]). Is any of the properties Split(BΩ,BΛ), Split(BΩ,BΩ), Split(BT,BT),281–284?

and Split(BT,BΓ) hereditary?

Problem 8.7 ([55]). Is any of the properties Split(Ω,Ω), Split(Ω,T), or Split(T,T) 285–287?

preserved under taking finite powers?

9. Function spaces and local-global principles

Let X be a topological space, and x ∈ X . A subset A of X converges to x,
x = limA, if A is infinite, x /∈ A, and for each neighborhood U of x, A \ U is
finite. Consider the following collections: Ωx = {A ⊆ X : x ∈ cl(A) \ A} and
Γx = {A ⊆ X : |A| = ℵ0 and x = limA}. Γx ⊆ Ωx. The following implications
hold, and none further [4].

S1(Γx,Γx) // Sfin(Γx,Γx) // S1(Γx,Ωx) // Sfin(Γx,Ωx)

S1(Ωx,Γx)

OO

// Sfin(Ωx,Γx)

OO

// S1(Ωx,Ωx)

OO

// Sfin(Ωx,Ωx)

OO

In the current section, when we write Π(Ax,Bx) without specifying x, we mean
(∀x)Π(Ax,Bx). Sfin(Ωx,Ωx) is Arhangel’skǐi’s countable fan tightness, and S1(Ωx,Ωx)
is Sakai’s countable strong fan tightness. S1(Γx,Γx) and Sfin(Γx,Γx) are Arhangel’skǐi’s
properties α2 and α4, respectively.

In the remainder of this section, X will always denote a subset of R \Q. The
set of all real-valued functions on X , denoted RX , is equipped with the Tychonoff
product topology. Cp(X) is the subspace of RX consisting of the continuous
real-valued functions on X . The topology of Cp(X) is known as the topology of
pointwise convergence. The constant zero element of Cp(X) is denoted 0.

For some of the pairs (A ,B) ∈ {Ω,Γ}2 and Π ∈ {S1, Sfin}, it is known that
Cp(X) satisfies Π(A0,B0) if, and only if, X satisfies Π(A ,B) (see [46] for a
summary).

Fremlin’s s1 for X and Bukovský’s wQN for X are equivalent to S1(Γ0,Γ0)
for Cp(X) [45, 15]. In a manner similar to the observation made in Section 3
of [45], a positive solution to Problem 6.13 should imply a positive solution to the
following problem.

Problem 9.1 ([16]). Assume that κ < b, and for each α < λ, Cp(Xα) satisfies 288?

S1(Γ0,Γ0). Does Cp(
⋃

α<κXα) satisfy S1(Γ0,Γ0)?

If X satisfies S1(Γ,Γ), then Cp(X) satisfies S1(Γ0,Γ0) [45].

Problem 9.2 ([45]). Is S1(Γ0,Γ0) for Cp(X) equivalent to S1(Γ,Γ) for X? 289?
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If the answer is positive, then Problems 6.13 and 9.1 coincide. There are
several partial solutions to Problem 9.2: First, if Cp(X) is hereditarily S1(Γ0,Γ0),
then X satisfies S1(Γ,Γ) [20]. Second, S1(Γ0,Γ0) for Cp(X) is equivalent to
cl(S)1(Γ,Γ) for X , where cl(S)1 is like S1 with the following additional restriction
on the given γ-covers Un: For each n, the family of closures of the elements of Un+1

refines Un [14]. Finally, S1(Γ0,Γ0) for Cp(X) is equivalent to S1(CΓ, CΓ) for X ,
where CΓ is the collection of clopen γ-covers of X [39]. This reduces Problem 9.2
to the question whether S1(Γ,Γ) = S1(CΓ, CΓ).

The following also seems to be open.

Problem 9.3 (Scheepers). Is S1(Γ0,Ω0) for Cp(X) equivalent to S1(Γ,Ω) for X?290?

S1(Γ0,Ω0) for Cp(X) is equivalent to S1(CΓ, CΩ) for X , where CΩ is the col-
lection of clopen ω-covers of X [39], so we really want to know whether S1(Γ,Ω) =
S1(CΓ, CΩ).

A topological space Y is κ-Fréchet if it satisfies
(
O(Ωx)

Γx

)
, where O(Ωx) is the

family of elements of Ωx which are open.

Problem 9.4 ([40]). What is the minimal cardinality of a set X ⊆ R such that291?

Cp(X) does not satisfy
(
O(Ωx)

Γx

)
?

The answer is at least b [40].
There are many additional important questions about these and related kinds

of local-global principles. Some of them are surveyed in [19].

10. Topological groups

Let Onbd denote the covers of G of the form {g · U : g ∈ G}, where U is
a neighborhood of the unit element of G. Okunev has introduced the property
Sfin(Onbd,O), traditionally called o-boundedness or Menger-boundedness. Let Ωnbd

denote the covers of G of the form {F ·U : F ∈ [G]<ℵ0}, where U is a neighborhood
of the unit element of G, such that for each F ∈ [G]<ℵ0 , F · U 6= G. Kočinac
has introduced S1(Ωnbd,Ω), S1(Ωnbd,Γ), and S1(Onbd,Onbd), traditionally called
Scheepers-boundedness, Hurewicz-boundedness, and Rothberger-boundedness.

The relations among these boundedness properties and their topological coun-
terparts were studied in many papers, see [21, 22, 30, 59, 60, 3, 1, 69, 31], and
references therein. In particular, the following diagram of implications is complete.

S1(Ωnbd,Γ) // S1(Ωnbd,Ω) // Sfin(Onbd,O)

S1(Onbd,Onbd)

OO

Sfin(Onbd,O) is not provably preserved under cartesian products [60, 29, 59].

Problem 10.1 (Tkačenko). Are there, in ZFC, groups G,H satisfying Sfin(Onbd,O)292?

such that G×H does not satisfy Sfin(Onbd,O)?
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A topological group G satisfies S1(Ωnbd,Ω) if, and only if, all finite powers of
G satisfy Sfin(Onbd,O) [3]. Thus, the case where G = H in Problem 10.1 is related
to the following problem.

Problem 10.2 ([31]). Is S1(Ωnbd,Ω) = Sfin(Onbd,O) for separable metrizable 293?

groups? Specifically:

(1) Does CH imply the existence of a separable metrizable group G satisfying
Sfin(Onbd,O) but not S1(Ωnbd,Ω)?

(2) Is it consistent that Sfin(Onbd,O) = S1(Ωnbd,Ω) for separable metrizable
groups?

If G is analytic and does not satisfy S1(Ωnbd,Γ), then G2 does not satisfy
Sfin(Onbd,O). Thus, for analytic groups, S1(Ωnbd,Γ) = S1(Ωnbd,Ω) [65]. Moreover,
for analytic abelian groups, Sfin(Onbd,O) = S1(Ωnbd,Γ) [65]. For general analytic
groups this is open.

Problem 10.3 ([65]). Is there an analytic group satisfying Sfin(Onbd,O) but not 294?

S1(Ωnbd,Γ)?

It seems that ZN for boundedness properties of topological groups is like R for
topological and measure theoretic notions of smallness [31]. Thus, unless otherwise
indicated, all of the problems in the remainder of this section are concerning
subgroups of ZN.

Say that G ≤ ZN is bounded if {|g| : g ∈ G} is bounded (with respect to ≤∗).
For subgroups of ZN:

(1) G satisfies S1(Ωnbd,Γ) if, and only if, G is bounded [1].
(2) G satisfies S1(Onbd,Onbd) if, and only if, G has strong measure zero [3].

Problem 10.4 ([31]). Is it consistent that there is G ≤ ZN such that G has strong 295?

measure zero, is unbounded, and does not satisfy Sfin(O,O)?

Problem 10.5 ([31]). Is it consistent that there is G ≤ ZN such that G has 296?

strong measure zero and satisfies Sfin(O,O), but is unbounded and does not satisfy
S1(O,O)?

Some open problems involve only the standard covering properties. The fol-
lowing problem is related to Problem 3.2.

Problem 10.6 ([59]). Is there (in ZFC) a group G ≤ ZN of cardinality d satisfying 297?

Sfin(O,O)?

Problem 10.7 ([59]). Does CH imply the existence of a a group G ≤ ZN of 298?

cardinality c satisfying S1(BΩ,BΓ), or at least S1(Ω,Γ)?

Some approximations to Problem 10.7 are given in [59]: CH implies the ex-
istence of groups satisfying S1(BΩ,BΩ) and of groups satisfying S1(BΓ,BΓ) in all
finite powers. The answer for Problem 10.7 is positive if it is for 5.2. It is also
positive for the property (δ). To get a complete positive answer, it suffices to
construct a set X ⊆ ZN such that all finite power of X satisfy S1(BΩ,BΓ). Thus,
it suffices to have a positive answer for Problem 6.4.

Finally, recall Problem 2.2, and see the other problems in [69].
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11. Cardinal characteristics of the continuum

We mention here several problems in the field which are connected to selection
principles.

The main open problem in the field is the Minimal Tower Problem. This
problem has motivated the study of τ -covers.

Problem 11.1 ([67]). Is it consistent that p < t?299?

Shelah is currently working on a possible positive solution to this problem.
The study of τ∗-covers, a variant of τ -covers, led to the following problem. A

family F ⊆ [N]ℵ0 is linearly refinable if for each A ∈ F there exists an infinite

subset Â ⊆ A such that the family F̂ = {Â : A ∈ F} is linearly (quasi)ordered
by ⊆∗. p∗ is the minimal size of a centered family in [N]ℵ0 which is not linearly
refinable.

p = min{p∗, t}, and p∗ ≤ d [53].

Problem 11.2 ([53, 48]). Is p = p∗?300?

A family A ⊆ ([N]ℵ0)N is a τ -family if for each n, {A(n) : A ∈ A} is linearly
ordered by ⊆∗. A family A ⊆ ([N]ℵ0)N is o-diagonalizable if there is g ∈ NN such
that (∀A ∈ A)(∃n) g(n) ∈ A(n). Let od denote the minimal cardinality of a τ -
family which is not o-diagonalizable. non(S1(T,O)) = od [33]. od is the “tower
version” of cov(M): If we replace “linearly ordered by ⊆∗” by “centered” in the
definition of od, then we obtain cov(M). Thus, cov(M) ≤ od. If cov(M) = ℵ1,
then od = ℵ1 either [33].

Problem 11.3 ([33]). Is it consistent that cov(M) < od?301?

Another variant of the minimal tower problem is the following. For a cardinal
number κ > 1 (finite or infinite), define pκ to be the minimal cardinality of a
centered subset of [N]ℵ0 which cannot be partitioned into less than κ sets each
having a pseudo-intersection.

It is easy to see that p = p2 = p3 = · · · = pℵ0
, and pt = t. It turns out that

p = pℵ1
[49]. We get a hierarchy of cardinals between p and t:

p = pℵ1
≤ pℵ2

≤ · · · ≤ pt = t.

Problem 11.4. Is pp = t?302?

Finally, consider the following Ramsey-theoretic cardinal: For a subset Y of
NN and g ∈ NN, we say that g avoids middles in Y if:

(1) for each f ∈ Y , g 6≤∗ f ;
(2) for all f, h ∈ Y at least one of the sets {n : f(n) < g(n) ≤ h(n)} and
{n : h(n) < g(n) ≤ f(n)} is finite.

add(X,D) is the minimal cardinality κ of a dominating Y ⊆ NN such that for each
partition of Y into κ many pieces, there is a piece such that no g avoids middles
in that piece. This cardinal is studied in [48].

Problem 11.5 ([48]). Is cov(M) ≤ add(X,D)?303?
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12. Additional problems and other special sets of reals

If a set of reals X satisfies Sfin(O,O), then for each continuous image Y of X
in NN, Y is not dominating, that is, the set G = {g ∈ NN : (∃f ∈ Y ) g ≤∗ f} is
not equal to NN [23]. In fact, G satisfies Sfin(O,O) [63].

If X satisfies Ufin(O,Ω), then for each continuous image Y of X in NN, {g ∈
NN : (∃k)(∃f1, . . . , fk ∈ Y ) g ≤∗ max{f1, . . . , fk}} is not comeager [62].

Problem 12.1 ([62]). Assume that X satisfies Ufin(O,Ω). Does it follow that 304?

G = {g ∈ NN : (∃k)(∃f1, . . . , fk ∈ Y ) g ≤∗ max{f1, . . . , fk}} satisfies Ufin(O,Ω)?

We now give a short selection of problems on special sets of reals. See [34] or
the cited references for the definitions.

X ⊆ R is a ν-set if for each Y ⊆ X which is nowhere dense in X , Y is
countable (i.e., X is Luzin relative to itself). Every continuous image of a ν-set
has the property assumed in the following problem.

Problem 12.2 ([13]). Assume that X ⊆ R, and for each Y ⊆ X, Y is concen- 305?

trated on a countable subset of Y . Does it follow that X is a continuous image of
a ν-set?

Problem 12.3 ([5]). Is it consistent that cov(M) = ℵ1 < c = ℵω1
, and there is a 306?

c-Luzin set (i.e., L with |L| = c and |L ∩M | < c for all meager M ⊆ R)?

Problem 12.4 ([5]). Assume that every strong measure zero set of reals is meager- 307?

additive. Does Borel’s Conjecture follow?

The assumption in the last problem implies that cov(M) = non(SMZ) <
cof(M).

If X,Y ⊆ {0, 1}N are meager-additive, then X×Y is a meager-additive subset
of {0, 1}N ×{0, 1}N. The same is true for null-additive subsets of {0, 1}N. For the
real line this is open.

Problem 12.5 ([61]). Assume that X,Y ⊆ R are meager- (respectively, null-) 308–309?

additive. Does it follow that X × Y is meager- (respectively, null-) additive?

Weiss proved that every meager-additive subset of the Cantor space, when
viewed as a subset of R (where each f ∈ {0, 1}N is identified with

∑
n f(n)/2n),

is meager-additive (with respect to the usual addition in R); and similarly for
null-additive.

Problem 12.6 ([61]). Assume that X ⊆ R is meager- (respectively, null-) addi- 310–311?

tive, and X ⊆ [0, 1]. Does it follow that X is meager- (respectively, null-) additive
when viewed as a subset of {0, 1}N?

For a set H , define Hx = {y : (x, y) ∈ H}.
Problem 12.7 (Bartoszyński). Assume that X ⊆ NN is nonmeager and Y ⊆ NN

312?

is dominating. Is there a Borel set H ⊆ NN × NN such that every meager set is
contained in Hx for some x ∈ X ∪ Y ?
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Part 2

Set-theoretic Topology





Introduction: Twenty problems in set-theoretic
topology

Michael Hrušák and Justin Tatch Moore

Every healthy mathematical discipline needs a short and concise list of its
central problems to maintain its focus. These problems are presumably hard to
solve and indicative of the major directions in the field. Ideally, the problems
themselves form these directions. In the case of set-theoretic topology, such prob-
lems have always been there. However, over the course of the years these problems
may have shifted out of focus.

When we were asked to edit the set theoretic topology section of this book,
we decided to do things a little differently. While the first book has been widely
successful, merely mimicking the old format did not seem quite the approach
we wanted. Rather than compiling a list of completely new problems, we have
revisited old ones.

We have assembled a list of 20 major problems in the area, which grew out
of discussions we have had at various conferences in 2004 and 2005. While the
list is biased by our personal preferences, we have tried to correct this somewhat
by discussing it with a number of premier researchers in the area of set-theoretic
topology and incorporating their suggestions.

The subsequent articles in this section are strongly inspired by the list, even
though they do not exactly follow it; a short article written by a specialist in
the area dedicated to one of these “classical problems” containing motivation,
historical background and references as well as a list of related questions and test
problems.

Problem 1 (Efimov). Does every infinite compact space either contain a conver-
gent sequence or a copy of βN?

Problem 2 (Arhangel’skii–Franklin). Is there a finite bound on the sequential
order of compact sequential spaces?

Problem 3 (Fremlin). Does every perfectly normal compact space admit an at
most 2-to-1 map onto a metric space?

Problem 4 (Gruenhage). Does the class of uncountable first countable spaces
have a basis consisting of a set of reals with the separable metric, the discrete, and
the Sorgenfrey topologies?

Problem 5 (van Douwen). Do all compact homogeneous spaces have cellularity
at most c?

The first listed author gratefully acknowledges support received from a CONACyT
grant 46337-F and a PAPIIT grant IN106705. The second author gratefully
acknowledges support received from an NSF grant DMS–0401893.
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Problem 6 (W. Rudin). Does every infinite compact homogeneous space contain
a convergent sequence?

Problem 7 (Howes–Mǐsčenko). Is there a linearly Lindelöf, non-Lindelöf normal
space?

Problem 8 (M.E. Rudin). Is there a normal space of cardinality ℵ1 whose product
with [0, 1] is not normal?

Problem 9 (Malykhin). Is every separable Fréchet group metrizable?

Problem 10 (Arhangel’skii). Is there a non-discrete extremally disconnected topo-
logical group?

Problem 11 (Dow). Is every extremally disconnected image of N∗ separable?

Problem 12 (Szymański). Can ω∗ and ω∗1 be homeomorphic?

Problem 13 (Scarborough–Stone). Is every product of sequentially compact spaces
countably compact?

Problem 14 (van Douwen). Is every Lindelöf space a D-space?

Problem 15 (Ceder). Are all stratifiable spaces M1?

Problem 16 (Nyikos). Is there a separable, countably compact, first countable
space which is not compact?

Problem 17 (Hušek). Is every compact space with a small diagonal metrizable?

Problem 18 (van Mill–Wattel). Is every space which admits a continuous weak
selection weakly orderable?

Problem 19 (Erdös–Shelah). Is there a completely separable MAD family?

Problem 20 (Michael). Is there a Lindelöf space which has a non-Lindelöf product
with the space of irrationals?

We do not include any definitions nor bibliography on most of these problems
as they are to be treated in the subsequent articles by specialist and/or are well
known and had been dealt with in the previous Open problems book. The only
exceptions to this rule are Problem 10 and Problem 17.

The notion of small diagonal was introduced, and Problem 17 was formulated
by M. Hušek in [2]. We do not feel the need to elaborate more on this problem
as G. Gruenhage in a recent and easily available paper [1] not only proves new
relevant results, but also surveys old results and provides test questions as well as
extensive bibliography on the subject.

We will, however, say a few words about Problem 10. Recall that a topolog-
ical space is extremally disconnected if the closures of any two disjoint open sets
are disjoint. The first example of a non-discrete (countable) extremally discon-
nected topological group was constructed using CH by Sirota in 1969 [5]. In 1972,
A. Louveau [3] showed that the existence of a selective ultrafilter on ω is sufficient
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for Sirota’s example. Recently, Y. Zelenyuk [6] showed that the existence of a
countable non-discrete extremally disconnected topological group implies the ex-
istence of a P -point in ω∗, hence, it is undecidable in ZFC whether every countable
extremally disconnected topological group is discrete. Malykhin in [4] showed that
each (non-discrete) extremely disconnected topological group has an open Boolean
subgroup, According to P. Simon, it is also an open question, whether there is (even
consistently) a non-discrete extremally disconnected topological group of size ℵ1.

Finally, we would like to thank to all of “the interviewed”, most of all Alan
Dow and Gary Gruenhage, for helping us compose the list, to all the contributors
for their articles and timely submissions, and to Elliott Pearl for putting all of this
together.

Enjoy!
Michael Hrušák and Justin Tatch Moore
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Thin-tall spaces and cardinal sequences

Joan Bagaria

1. Introduction

Recall that the α-Cantor–Bendixson derivative of a topological space X , de-
noted by Xα, is defined inductively on the ordinals α as follows: X0 = X , Xα+1

is the set of accumulation points of Xα, and for limit α, Xα =
⋂{Xβ : β < α}.

The height of X , denoted by ht(X), is the least α such that Xα = Xα+1.
Let Iα(X) = Xα \ Xα+1 be the αth level of X . Thus, Iα(X) is the set of

isolated points of the subspace Xα = X \ {Iβ(X) : β < α}.
The cardinal sequence of X is CS(X) = 〈|Iβ(X)| : β < ht(X)〉.
X is scattered if and only if Xα = ∅ for some ordinal α. Thus, if X is scattered,

then ht(X) is the first ordinal α such that Iα(X) is empty.
Note that the height of a space X is the same as the height of the scattered

subspace Y =
⋃

α<ht(X) Iα(X). Moreover, Iα(Y ) = Iα(X), for all α < ht(X) =

ht(Y ). Thus, to study the possible heights and cardinal sequences of an arbitrary
topological space, one may restrict the study, without loss of generality, to the
class of scattered spaces.

Notice that if X is Hausdorff, then each level Iα(X) is infinite, except, maybe,
for the last one. If, moreover, X is compact, then ht(X) is a successor ordinal and
the last level must be finite.

The width of a scattered space X , denoted by wd(X), is the supremum of the
cardinalities of the levels of X . Thus, wd(X) is always a cardinal. X is thin-tall
if wd(X) < ht(X).

In this note we are concerned with a series of problems regarding the existence
of Hausdorff scattered spaces of a given height and with a given cardinal sequence.
Notice that if X is scattered, Hausdorff, locally-compact, but not compact, then
by taking the one-point compactification we obtain a compact space with the
same cardinal sequence, except for the last level, which contains only one point.
Thus, instead of looking at compact spaces, it makes more sense to concentrate
on Locally-Compact Scattered Hausdorff spaces, henceforth LCS spaces, for then
we can avoid having to mention all the time the last finite level.

1.1. Limitations. There are strong limitations on the height and the cardi-
nal sequence a space can have. The main one is the following:

Lemma 1.1. Suppose κ is an infinite cardinal. If X is a regular scattered space
such that |Iα(X)| ≤ κ for some α < ht(X), then |Xα| ≤ 2κ.

Proof. Fix α < ht(X) with |Iα(X)| ≤ κ. For each x ∈ Iβ(X), β > α,
there is a closed neighborhood U of x such that U ∩ Iβ(X) = {x}. Thus, x is
the unique point in Iβ(X) that belongs to the closure of U ∩ Iα(X). This shows
that every point in Xα is uniquely determined by some subset of Iα(X). Hence,
|Xα| ≤ 2κ. �

115



116 11. THIN-TALL SPACES AND CARDINAL SEQUENCES

So, for instance, if the Continuum Hypothesis (CH) holds, then there cannot
be any regular scattered space (hence no LCS space) X with at least one countable
level α and |Xα| > ℵ1.

It has been recently shown by I. Juhász, S. Shelah, L. Soukup, and Z. Szent-
miklóssy [7] that for scattered spaces that are regular or zero-dimensional, all car-
dinal sequences are possible, subject only to the restriction imposed by Lemma 1.1
above.

In the case of LCS spaces, a further limitation is given by the following Lemma,
which makes the study of the cardinal sequences of those spaces much more diffi-
cult, and therefore interesting.

Lemma 1.2. If X is an LCS space with CS(X) = 〈κα : α < η〉, then:

(1) κα+1 ≤ κℵ0
α , for all α+ 1 < η.

(2) If δ < η is a limit ordinal of cofinality λ and C is a sequence of order-type
λ converging to δ, then κδ ≤

∏{κα : α ∈ C}.

Proof. (1) Given a point x ∈ Iα+1(X), let U be a compact neighborhood
of x with Iα+1(X) ∩ U = {x}. Fix any countable infinite sequence S contained
in U ∩ Iα(X). Then, by compactness of U , S converges to x. This shows that
every point in Iα+1(X) is uniquely determined by a countable sequence of points
in Iα(X). Hence, κα+1 ≤ κℵ0

α .
(2) Given x ∈ Iδ(X), let U be a compact neighborhood of x with Iα+1(X)∩U =

{x}. For each α ∈ C, pick a point xα ∈ U ∩ Iα(X). Then, by compactness of
U , the sequence {xα : α ∈ C} converges to x. Thus, every point in Iδ(X) is
uniquely determined by an element of the product

∏{Iα(X) : α ∈ C}. Hence,
κδ ≤

∏{κα : α ∈ C}. �

As a corollary we have that if X is a LCS space with cardinal sequence 〈κα :
α < η〉, then for every α < β < ω1, κβ ≤ κℵ0

α .

2. Spaces of countable height

The problem of building LCS spaces with a given cardinal sequence was com-
pletely solved by La Grange [12] for spaces of countable height. The limitations
imposed by Lemma 1.2 above characterize all the possible sequences. Namely, if
θ = 〈κα : α < η〉 is any sequence of infinite cardinals, with η countable, then there
exists an LCS space with cardinal sequence θ if and only if for every α < β < η,
κβ ≤ κℵ0

α .
It is easy to see that any uncountable cardinal κ endowed with the order

topology is an example of a LCS space whose cardinal sequence has length κ and
all levels are of cardinality κ.

Furthermore, J.C. Mart́ınez [18] has recently shown that for every sequence
θ = 〈κα : α < η〉 of infinite cardinals such that all cardinals in the sequence are
greater or equal that the cardinality of η, it is always possible to force an LCS
space with cardinal sequence θ.



3. SPACES OF HEIGHT < ω2 117

Thus, the interesting problem is to build LCS spaces of uncountable height
in which at least one of the levels has cardinality less that the cardinality of the
height of the space. In particular, thin-tall LCS spaces.

3. Spaces of height < ω2

In 1968, R. Telgársky asked if there exists a thin-tall LCS space. After some
positive results using extra set-theoretic hypotheses, the problem was solved by
M. Rajagopalan [19] by building a space of height ω1 and countable width. A
simpler proof was provided by I. Juhász and W. Weiss [9], who also showed that
for every uncountable ordinal α < ω2 there is a LCS space of height α with all
levels countable.

Further, I. Juhász and W. Weiss have obtained a complete characterization of
the cardinal sequences of LCS spaces of height ω1, namely, they are all possible,
with the only restriction imposed by Lemma 1.2.

Theorem 3.1 (I. Juhász and W. Weiss [9]). Let θ = 〈κα : α < ω1〉. Then there
is a LCS space X with CS(X) = θ iff for every α < β < ω1, κβ ≤ κℵ0

α .

Since the condition that for every α < β < ω1, κβ ≤ κℵ0
α can be easily forced,

we have as a corollary that for height ω1 an LCS space with any cardinal sequence
can always be forced, a result that was first proved by J.C. Mart́ınez in [14]. So,
the question is what happens at heights > ω1.

Let us also mention that A. Dow and P. Simon [5] show that there exist
2ℵ1 -many, the largest possible number, of LCS spaces of width ω and height ω1.

In view of Lemmas 1.1 and 1.2, the following is the best possible absolute
result, i.e., not depending on cardinal arithmetic, about the existence of LCS-
spaces of height < ω2 with arbitrary cardinal sequences:

Theorem 3.2 (J. Bagaria [1] and J.C. Mart́ınez [15], independently). Let η < ω2,
and let θ = 〈κα : α < η〉 be a sequence of infinite cardinals such that for every
α < η, κα ≤ ω1. Then, there exists an LCS space with cardinal sequence θ.

It follows from [10] (see also [2, Theorem 3.2]), that Theorem 3.2 above cannot
be extended to sequences of length ω1 + 1. Indeed, it is consistent with ZFC that
there is no LCS space of height ω1+1 whose levels have all cardinality≤ ω1, except
for the last one, which has cardinality ω2. This explains the condition imposed in
the following Theorem on the levels of uncountable cofinality. Juhász and Weiss
have conjectured that this is the best possible result (in ZFC) on cardinal sequences
for LCS spaces of height < ω2.

Theorem 3.3 (I. Juhász and W. Weiss [9]). Let η < ω2, and let θ = 〈κα : α < η〉
be a sequence of cardinals such that for each α < β < η, κβ ≤ κω

α, and κα ≤ ω1

whenever cf(α) = ω1. Then there is a LCS space X with CS(X) = θ.

A complete characterization of cardinal sequences for LCS spaces of height
η < ω2 has been obtained under GCH by I. Juhász, L. Soukup, and W. Weiss [8].
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4. Spaces of height ω2

The existence of a LCS space of height ω2 and countable width requires
the negation of CH (see Lemma 1.1), but it does not follow from it. Indeed,
W. Just [10] showed that by adding ω2 Cohen reals over a model of CH there
is no such space in the forcing extension. Further, in [2] it is shown that the
non-existence of such a space is consistent with Martin’s Axiom (MA) and the
continuum large. More surprisingly, I. Juhász, S. Shelah, L. Soukup, and Z. Szent-
miklóssy [7] have recently proved that after adding Cohen reals to a model of CH

every LCS space has at most ω1-many countable levels. Therefore, there is no
hope of extending the results stated in the previous section (Theorems 3.1 and
3.3) to LCS spaces of height ≥ ω2.

The problem of the consistency of the existence of a LCS space of height ω2

and countable width was solved in 1987 by J. Baumgartner and S. Shelah [2] in
a groundbreaking work. They show that such a space can always be forced (see
Section 7 for more details).

Theorem 4.1 (J. Baumgartner and S. Shelah [2]). There is a σ-closed∗ccc forcing
notion that forces a LCS space of height ω2 and countable width.

A slight modification of the Baumgartner–Shelah construction (see [1]) yields
that for every sequence θ = 〈κα : α < ω2〉 such that κα ∈ {ω, ω1}, all α < ω2, one
can force the existence of a LCS space with cardinal sequence θ. And L. Soukup
(unpublished) has shown that for every sequence θ of length ω2 such that each
cardinal in the sequence is ω, ω1, or ω2, it is consistent that there is a LCS space
with cardinal sequence θ.

However, not much more is known about other possible cardinal sequences.

Problem 4.2. What are the possible cardinal sequences of LCS spaces of height313?

ω2?

Ideally, one would like to have a complete characterization (in ZFC) of all
the possible sequences. Notice, however, that even for spaces of height strictly
between ω1 and ω2 the problem is not yet completely solved (see Theorem 3.3 and
our remarks above).

The most interesting open problem about spaces of height ω2 is the following:

Problem 4.3. Does there exist (in ZFC) an LCS space of width ω1 and height314?

ω2?

Such a space exists in L ([11]), and it can always be forced while making the
continuum large ([2], see [1]). Hence, the existence of such a space is consistent
with both CH and not-CH. However, the answer to the problem is not known
even under GCH . The best result so far in this direction is the recent difficult
construction by I. Juhász, S. Shelah, L. Soukup, and Z. Szentmiklóssy [6], of
a LCS space of height ω2 with only ω1 isolated points, i.e., with the first level
of cardinality ω1. This solved an old problem of Juhász. Other versions of the
problem, still open, are the following (see [6]):
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Problem 4.4. Does there exist (in ZFC) an LCS space with only ω1 isolated points 315?

and of height α, for every α < ω3?

Problem 4.5. Does there exist (in ZFC) an LCS space with only ω2 isolated points 316?

and of height ω3?

5. Spaces of height > ω2

The best result to date on the consistency of the existence of LCS spaces of
countable width and height greater that ω2 is the following:

Theorem 5.1 (J.C. Mart́ınez [17]). There is a σ-closed ∗ ccc forcing notion that
forces that for every α < ω3 there is a LCS space of height α and width ω.

The proof is again based on the Baumgartner–Shelah forcing construction,
but it needs quite a bit of extra work to ensure that the forcing does not col-
lapse cardinals. For this, Mart́ınez uses the notion of tree of intervals, introduced
in [16], which allows one to work with different ∆-functions (see Section 7 below
for the definition) at ordinals of cofinality ω2 in a coherent way. In a recent work,
L. Soukup [23] has given another proof, also based on the Baumgartner–Shelah
construction. Instead of using trees of intervals he proves a rather general lifting
theorem which allows one to lift any reasonable forcing construction of a LCS space
of height a regular cardinal κ and countable width to one of a space of height any
α < κ+ and countable width.

The following is a long-standing open problem:

Problem 5.2. Is the existence of an LCS space of width ω and height ω3 consis- 317?

tent?

This is a wide open question. In fact, it is not even known if there is any
bound on the possible heights of a LCS space of countable width. Lemma 1.1 puts
the bound on 2ω, but of course 2ω can consistently take arbitrarily high values.

As for spaces of uncountable width, a variation of the Baumgartner forcing,
this time with infinite forcing conditions, was used by J.C. Mart́ınez [13] to force,
for any given regular cardinal κ, a LCS space of height κ+ with all levels of
cardinality κ. Moreover, P.‘Koepke and J.C. Mart́ınez [11] showed that such
spaces also exist in the constructible universe L by building them using simplified
morasses. Further, J.C. Mart́ınez [16] shows that for every infinite regular cardinal
κ, one can always force, while preserving cardinals, an LCS space of width κ and
height any ordinal α < κ++.

But this does not yet solve the following:

Problem 5.3. Is the existence of an LCS space of width ω1 and height ω3 con- 318?

sistent?

Since, apparently, there is nothing equivalent to a ∆-function (see Section 7
below) for ω3, trying to lift the construction of Baumgartner–Shelah [2] one car-
dinal up will not work.
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6. A basic construction

Many of the known constructions of LCS spaces are based on the following
Definition and Lemma, which are essentially due to J. Baumgartner citest-bagaria-
B-S.

Definition 6.1. Given θ = 〈κα : α < λ〉, where each κα is an infinite cardinal,
we say that a poset (T,≤) is a LCS(θ)-structure if

(1) T =
⋃{Tα : α < λ}, where Tα = {α} × κα.

(2) For every pair of distinct elements s, t of T there exists a finite subset of
T , denoted by i{s, t}, such that:
(a) If u ∈ i{s, t}, then u ≤ s, t.
(b) If u ≤ s, t, then there exists v ∈ i{s, t} such that u ≤ v.

(3) If s ∈ Tα, t ∈ Tβ and s < t, then α < β.
(4) For every α < β < λ, if t ∈ Tβ, then the set {s ∈ Tα : s < t} is infinite.

Lemma 6.2. If there exists a LCS(θ)-structure, then there exists an LCS space
X with CS(X) = θ.

Proof. Suppose (T,≤) is a LCS(θ)-structure. For each t ∈ T , let C(t) =
{s ∈ T : s ≤ t}. Let

B = {C(t) \ (C(s1) ∪ · · · ∪ C(sn)) : n < ω, s1, . . . , sn ∈ T, s1, . . . ., sn < t}.
B is a clopen base for a Hausdorff topology T on T . Let X = (T, T ). For each
t ∈ T , C(t) is a compact neighborhood of t. Hence, X is locally-compact. Further,
if Z is a non-empty subspace of X , we can always find t ∈ Z with C(t)∩Z = {t}.
i.e., t is an isolated point of Z. Hence, X is scattered. Finally, by 4, for each α < λ,
Xα \Xα+1 = Tα is the α-level of X . So, X has height λ and CS(X) = θ. �

Notice that X = (T, T ) is zero-dimensional, right-separated, non-compact,
and if it has uncountable height, it is not even Lindelöf. For X to be ccc, κ0

must be countable. By taking the one-point compactification of X , we obtain a
scattered Boolean space with cardinal sequence θ, plus a top level with only one
element.

It is an interesting open question whether every LCS space can be obtained
from an LCS structure, i.e., whether for every sequence θ of infinite cardinals,
the existence of a LCS space with cardinal sequence θ implies the existence of a
LCS(θ) structure.

7. Forcing a LCS-space

The main advantage of working with LCS structures is that they are amenable
to the forcing technique. Indeed, there is a natural notion of forcing ([2]) that
produces a LCS(θ)-structure, provided, of course, that the cardinals involved are
not collapsed.

Definition 7.1. Fix a sequence θ = 〈κα : α < λ〉 of infinite cardinals, and let
T =

⋃{Tα : α < λ}, where Tα = {α}× κα, all α < λ. Let P = Pθ be the set of all
p = (xp,≤p, ip) such that:
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0. xp ∈ [T ]<ω.
1. ≤p is a partial ordering on xp satisfying:

(a) If s ∈ Tα, t ∈ Tβ and s <p t, then α < β.
2. ip : [xp]2 → [xp]<ω is such that for every s, t ∈ xp with s 6= t, the following

hold:
(a) If v ∈ ip{s, t}, then v ≤p s, t.
(b) If u ≤p s, t, then there is v ∈ ip{s, t} such that u ≤p v.

The ordering is given by:

p ≤ q iff xp ⊇ xq , ≤p ∩ (xq × xq) = ≤q and ip � [xq ]2 = iq

As long as forcing with P does not collapse any of the cardinals κα, nor λ,
a LCS(θ)-structure will exist in any P-generic extension. To see this, let p =
(xp,≤p, ip) ∈ P. Pick t ∈ T \ xp, and define q = (xq ,≤q, iq) ∈ P as follows:
xq = xp ∪ {t}, ≤q = ≤p, iq{u, v} = ip{u, v} if u, v ∈ xp, and iq{t, u} = ∅, for all
u ∈ xp. It is clear that q is a condition stronger than p with t ∈ xq . This shows
that for every t ∈ T , the set Dt = {p ∈ P : t ∈ xp} is dense in P. So, if G ⊆ P is
generic for all the Dt, t ∈ P, the relation ≤ =

⋃{≤p : p ∈ G} and the function
i =

⋃{ip : p ∈ G} witness that (T,≤) satisfies (1), (2) and (3) of Definition 6.1.
We claim that (T,≤) also satisfies (4). For suppose α < β < λ and t ∈ Tβ. Given
p ∈ P with t ∈ xp, choose s ∈ Tα \ xp. Now define q ∈ P as follows: xq = xp ∪ {s},
≤q = ≤p ∪ {(s, u) : u ∈ xp, t ≤p u}, iq{u, v} = ip{u, v} if u, v ∈ xp, iq{s, u} = {s}
if t ≤p u, and iq{s, u} = ∅ otherwise. It can be easily checked that q is a condition
stronger than p which forces s ≤ t. A genericity argument now shows that (4) of
Definition 6.1 holds for (T,≤).

When forcing with Pθ to obtain an LCS(θ)-structure, the main problem is
to show that one does not collapse any of the cardinals involved in the sequence
θ. Unfortunately, if θ has length > ω1, then ω1 is always collapsed: Let S be a
countable subset of Tω1

. For each α < ω1, the set

Dα = {p ∈ Pθ : ∃s, t ∈ S ∩ xp ip{s, t} = {(α, 0)}}
is dense. Hence, if Pθ does not collapse ω1, in any generic extension there are s, t ∈
S such that for some (actually, uncountably-many) α 6= β, i{s, t} = {(α, 0)} =
{(β, 0)}, which is impossible. A similar argument shows that if the length of θ is
greater than some uncountable cardinal κ, then Pθ forces that all cardinals ≤ κ
are countable. Thus, in order to force an LCS(θ)-structure of uncountable height,
one usually needs to do something to avoid collapsing cardinals. If the height is
< ω2, this doesn’t seem to be much of a problem, since such structures either exist
in ZFC (Theorem 3.2), or very likely they can be forced by modifying the cardinal
arithmetic accordingly (see Theorems 3.1 and 3.3, although the construction given
by Juhász–Weiss does not produce LCS structures directly). But for heights ≥ ω2

the only solution is to restrict the i-function, namely, for every p and every distinct
s, t ∈ xp, the elements of ip{s, t} must be chosen within a countable subset of T .
Needless to say, the choice has to be done very carefully to ensure that condition
(4) of Definition 6.1 is satisfied by the generic LCS structure.
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A solution to this problem for T of height ω2 was provided by J. Baumgartner
and S. Shelah [2]. They introduce the notion of ∆-function on pairs of ordinals
< ω2, and show that the existence of such a function can be forced over a model
of CH while preserving cardinals. More recently, using S. Todorčević’s ρ function,
B. Veličković has shown that the existence of a slightly stronger form of a ∆-
function is actually a consequence of �ω1

(see [3]).

Definition 7.2. A function f : [ω2]2 → [ω2]≤ω is called a (strong) ∆-function if
f{α, β} ⊆ min{α, β}, all α, β < ω2, and for any uncountable set D of finite subsets
of ω2 there exists an uncountable E ⊆ D such that for every distinct a, b ∈ E, for
all α ∈ a \ b, for all β ∈ b \ a, and for all τ ∈ a ∩ b,

(1) If α, β > τ , then τ ∈ f{α, β}.
(2) If β > τ , then f{α, τ} ⊆ f{α, β}
(3) If α > τ , then f{β, τ} ⊆ f{α, β}

By modifying item (2) in the definition of the poset P (see Definition 7.1)
to require that for every s, t ∈ xp, ip{s, t} ⊆ f({s, t}), where f is a ∆-function,
Baumgartner–Shelah show that the poset that forces a LCS structure of height ω2

with all levels countable is ccc, and therefore it does not collapse cardinals. This
yields a proof of Theorem 4.1.

For T of height greater than ω2, but smaller than ω3, ∆-functions can still
be used ([17]), but there are also other approaches ([23]). ∆-functions will very
likely still play an important rôle in the complete solution to Problem 4.2, and
perhaps also in Problems 5.2 and 5.3, although this seems less likely. It is generally
felt that a positive solution to Problems 5.2 and 5.3 would probably require new
methods.

A possible approach to Problem 4.3 would be to use the combinatorial tech-
niques introduced in [6]. Another approach would be to try to lift the proof of
Theorem 3.1 given in [1], in which LCS spaces of height < ω2 and width ≤ ω1 are
built by generically expanding LCS structures. These expansions are obtained by
forcing over countable models of a fragment of ZFC, and so the whole construction
is carried out in ZFC. However, to build a space of height ω2 and width ω1, one
would now have to expand structures of size ω1 by means of generic extensions of
models of a fragment of ZFC also of size ω1. But to do this in ZFC one needs to
work with countable conditions, which introduces some new technical difficulties.

8. Final remarks

8.1. Stone duality. A Boolean algebra is superatomic iff every homomor-
phic image is atomic. Equivalently, iff its Stone space is scattered. If B is a
superatomic Boolean algebra (henceforth, a sBa), the height and the cardinal se-
quence of B may be defined as, respectively, the height and the cardinal sequence
of its Stone space. However, given a Boolean algebra B, one can also define, by
induction on α, the α-Cantor–Bendixson ideals Jα of B as follows: J0 = {0}.
Jα+1 is the ideal generated by Jα together with all the b ∈ B such that b/Jα is
an atom in B/Jα. If α is a limit ordinal, Jα is the union of all Jβ , β < α. B
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is superatomic iff B = Jα, for some α. The height of B is the least α such that
Jα = Jα+1. The α-th level of B is the set of atoms of B/Jα, which we denote by
Jα(B). The cardinal sequence of B is CS(B) = 〈|Jα(B)| : α < ht(B)〉.

Many important results for the theory of LCS spaces and cardinal sequences
are part of the literature on superatomic Boolean algebras. However, all these
results can be easily translated to the language of topological scattered spaces, via
Stone duality. Conversely, all results on LCS spaces have a direct translation to
the language of superatomic Boolean algebras.

The class of Boolean algebras arising, via Stone duality, from the LCS spaces
obtained from LCS structures coincides with the classes studied in [4].

For more information about superatomic Boolean algebras we refer the reader
to J. Roitman’s survey article [20].

8.2. PCF structures. There is a particularly important class of LCS struc-
tures, the so-called PCF structures. They play an essential rôle in the proof of
Shelah’s celebrated theorem on cardinal arithmetic. Namely: if ℵω is a strong
limit, then 2ℵω < ℵω4

. A PCF structure is an LCS structure with some extra
requirements ([21]). The non-existence of a PCF structure of size ω3 (compare
with Problem 5.2 above) would improve Shelah’s bound on 2ℵω to ℵω3

.
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Sequential order

Alan Dow

There are four very natural countable convergence conditions that are very
well known. A space is first countable if every point has a countable local base.
A space is Fréchet–Urysohn if each point x is in the closure of a set exactly when
there is a sequence {an : n ∈ ω} from the set converging to the point, denoted
an → x. A space has countable tightness if a point is in the closure of a set exactly
when there is a countable subset of the given set which also has the point in the
closure. The fourth condition is the sequential property. The definition of this
property already sets it apart from the previous three because it can not be stated
just in terms of a fixed point and which sets it is in the closure of. A subset A of a
space X is sequentially closed if each sequence from A which converges in X will
converge to a point of A. A space is sequential if each sequentially closed subset is
closed. In a sequential space, the closure of a set A can be computed by iterating
the operation of adding limit points of converging sequences (in some sense the
Fréchet–Urysohn operation). This gives rise to the notion of the sequential order
of a space.

Definition ([1]). For a subset A of a space X , define for each ordinal α, A(α)

inductively as follows. Set A(0) to be A; for limit α, let A(α) =
⋃

β<αA
(β); and

A(α+1) = {x ∈ X : there exists {an : n ∈ ω} ⊂ A(α) such that an → x}.
It is immediate that for each A and each space X , A(ω1) is sequentially closed

and A(α) ⊂ A(ω1) for all α. We define the sequential order of A in X , denoted
so(A,X), to be the minimum α such that A(α) is sequentially closed. The sequen-
tial order of a (sequential) space X is the supremum of so(A,X) for all A ⊂ X .

The question that is the basis of this article is the following.

Question 1. Is there a compact sequential space with sequential order greater than 319?

two?

It was shown by Baškirov [2] to follow from CH that there is a compact space
of sequential order ω1. In the author’s view, this investigation is made more
interesting when one recalls Balogh’s result that the Proper Forcing Axiom, PFA,
implies that each compact space of countable tightness is sequential.

Question 2. Does PFA imply that there is a finite bound to the sequential order 320?

of compact sequential spaces?

It is shown in [3] that Martin’s Axiom implies there are compact sequential
spaces of sequential order four. The next question is likely more accessible than
the others.

The author acknowledges support provided by NSF grant DMS-0103985.
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Question 3. Is it consistent with the failure of CH to have compact sequential321?

spaces with sequential order ω1?

Question 4. Is it consistent with b = c > ω1 or s = c > ω1 to have compact322?

sequential spaces with infinite sequential order (or sequential order larger than
four)?

The requirement that the spaces be compact is quite essential in the above
questions. It is not difficult to construct spaces with a given countable sequential
order.

Proposition ([1]). Suppose that {αn : n ∈ ω} ⊂ ω1 and for each n, there is
a countable sequential space with sequential order at least αn. Then there is a
countable sequential space with sequential order greater than each αn.

Although this result is easy to prove, it is instructive to recall that the topology
could not be first countable if we are expecting sequential order larger than two.
We may assume that the sequence {αn : n ∈ ω} is monotone increasing and for
each n, fix a countable space Xn and an An ⊂ Xn such that so(An, Xn) ≥ αn. For
each n, let xn be a point of Xn in A(αn) \A(βn) where βns are chosen so that the
sequence {βn + 1 : n ∈ ω} has the same supremum as the sequence of αns. Our
desired space X will consist of a new point x together with the topological sum
of the (pairwise disjoint) Xns. A subset A of

⋃
nXn will have x as a limit only

if xn is in the closure of A ∩Xn for infinitely many n. The space X is sequential
(and completely regular if each Xn is completely regular) and no sequence disjoint
from {xn : n ∈ ω} will converge to x.

It is really quite remarkable that the largest sequential order that has been
found in the class of compact sequential spaces is two. Any example of a compact
sequential space which is not Fréchet–Urysohn is such an examle. The best known
example is to simply take the one point compactification of any of the well-known
ψ-spaces. There does appear to be a natural connection to the study of maximal
almost disjoint (mad) families. If ω is a subset of a compact sequential space
X then there are mad families on ω consisting of sequences which converge in
X . Therefore if so(ω,X) > 1, then clopen neighborhoods of the points which are
ω(2) \ ω(1) will themselves contain mad families of sequences from ω(1) while not
splitting any elements of the original mad family on ω. This complex interaction
between these families appears to be at the root of the problems.

Each of the examples that has been constructed to witness sequential order has
been scattered. Moreover, if A is the set of isolated points in a compact scattered
space X , then these examples have had the property that each of the scattering
levels of X correspond naturally to the iterations in the sequential order hierarchy,
i.e., the sets {A(α+1) \ A(α) : α < so(A,X)}. Note, for example, that the space
ω1 (the space of countable ordinals) has scattering height ω1 but sequential order
one.

Question 5. If there is a compact sequential space with sequential order α, is323?

there such a space which is scattered? Can it be arranged so that in addition, for
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each integer n < α, A(n+1) \ A(n) is the set of points on the n + 1-st scattering
level of X?

It may be interesting to ask each of the above questions in the context of
countably compact spaces.

Question 6. For which α ≤ ω1 is there a sequentially compact sequential regular 324?

space with sequential order α?
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On D-Spaces

Todd Eisworth

Introduction

So what makes a mathematical problem interesting? This question always
provokes spirited debate among mathematicians no matter where it is posed. Of
course there is no good answer to it (as English critic and author William Hazlitt
says, “Whatever interests, is interesting.”), but there are certainly some mathe-
matical questions that arouse the curiosity of almost anyone who comes in contact
with them, questions that tempt with the simplicity of of their formulation, tanta-
lize with promises of an elegant solution if only one can look at the problem in just
the right way, and taunt with the number of excellent mathematicians who have
examined the question in the past and failed to solve it. The theory of D-spaces is
replete with such questions, and in this short note we will examine a few of them.

What is a D-space? A topological space1 X is a D-space if for every neigh-
borhood assignment {N(x) : x ∈ X} (that is, N(x) is an open neighborhood of x
for each x ∈ X) there is a closed discrete subset D of X such that X =

⋃{N(x) :
x ∈ D}. The concept goes back to work of van Douwen [10]. One of the first
things said about D-spaces in the cited paper is the following:

Up to now no satisfactory example of a space which is not
a D-space is known, where by satisfactory example we mean
an example having a covering property at least as strong as
metacompactness or subparacompactness.

Over twenty years later, the situation is much the same. We still lack a basic
understanding of the relationship between covering properties and the state of
being a D-space. In fact, as Fleissner and Stanley noted in 2001 [7]:

Besides the trivial observation that a compact T1-space is a
D-space, there are no proofs known that a covering property
implies D-space.

This state of affairs is the main topic of the following short note.

Questions about D-spaces

The first subject we address is our lack of understanding about the relation-
ship between covering properties and the state of being a D-space. As Fleissner
and Stanley say, we simply lack theorems that say that such-and-such covering
property implies that a space is a D-space. Moreover, we lack the techniques that

1We assume that all spaces under consideration are at least regular.

The author acknowledges support from NSF grant DMS-0506063.
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would allow us to build counterexamples to such alleged theorems. To wit, all of
the following problems (essentially from [10]) remain open:

Question 1. Is every (hereditarily) Lindelöf space a D-space?325?

Question 2. Is every paracompact space a D-space?326?

Question 3. Does there exist a subparacompact or metacompact space which is327?

not a D-space?

In view of the last question, we recall that a space X is subparacompact if
every open covering of X can be refined by a σ-discrete closed covering.

Arhangelskii [2] has recently addressed the relationship between covering prop-
erties and D-spaces. He adds the following questions to van Douwen’s list:

Question 4 ([2, Problem 1.18]). Is every countably metacompact weakly θ-refinable328?

(Tychonoff) space a D-space?

Recall that a space X is weakly θ-refinable if for each open covering C of X ,
there exists a sequence 〈Cn : n < ω〉 of open coverings of X , each refining C, such
that for every x ∈ X there is a k < ω with Ck point-finite at x.

A σ-metrizable space is weakly θ-refinable, so this suggests the related ques-
tion:

Question 5 ([2, Problem 1.21]). Is every countably metacompact σ-metrizable329?

space a D-space?

Finally, let us recall that a space X is screenable if every open covering of X
has an open σ-disjoint refinement. Arhangelskii and Buzyakova [3] establish that
every space with a point countable base is in fact a D-space; in particular, every
space with a σ-disjoint base is a D-space, and so the following question is natural:

Question 6 ([2, Problem 1.22]). Is every screenable (Tychonoff) space a D-space?330?

We next turn to a problem of Buzyakova concerning cardinal invariants and
their relation to D-spaces. We start with the observations that every compact
space is trivially a D-space, and that a countably compact D-space is compact.
These facts follow immediately from the easy fact that l(X) = e(X) for a D-space
(where l(X), the Lindelöf number of X , is the smallest infinite cardinal τ such
that every open covering of X contains a subcovering of cardinality ≤ τ , and
e(X), the extent of X , is defined to be the supremum of cardinalities of closed
discrete subsets of X).

The converse is not true; Buzyakova notes in [5] that if we take the product
X = D(ω1)× ω1 (where D(ω1) is a discrete space of cardinality ω1), then l(X) =
e(X) = ℵ1, but X is not a D-space. To see this last fact, note that X contains
a closed copy of ω1 and it is straightforward to see that this precludes X being a
D-space. However, she notes that the following question may be of interest:

Question 7 ([5, Question 3.6]). Suppose that l(Y ) = e(Y ) for every subspace Y331?

of X. Is X then a D-space?
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It is worth mentioning Buzyakova’s main result from [5]: if X is compact, then
Cp(X) (the space of continuous real-valued functions on X with the topology
of pointwise convergence) is hereditarily a D-space. Her result is quite strong;
for example, it allows one to immediately deduce the following two well-known
theorems:

Theorem (Baturov [4]). If X is compact, then l(Y ) = e(Y ) for every subspace
Y of Cp(X).

Theorem (Grothendieck [8]). If X is compact and Y is a countably compact
subspace of Cp(X), then Y is compact.

Of course, both theorems follow immediately from Buzyakova’s result using
simple properties of D-spaces, and perhaps this helps to make the case that D-
spaces are a class worthy of more research.

Arhangelskii also puts forward the following question regarding D-spaces and
spaces of the form Cp(X):

Question 8 ([2, Question 1.23]). Suppose that X is a Tychonoff space with Cp(X) 332?

Lindelöf. Is Cp(X) then a D-space?

Many other questions on D-spaces have recently appeared in the literature
and we do not have space to consider them all. We refer the reader instead
to [2, 1, 3, 5] for more comprehensive coverage, and limit ourselves to the following
intriguing questions of Arhangelskii concerning unions of D-spaces.

Question 9. Suppose that a (regular, Hausdorff, Tychonoff) T1-space is the union 333?

of two subspaces which are both D-spaces. Is then X a D-space as well?

Question 10. Suppose X is countably compact, and X =
⋃

n<ω Xn where each 334?

Xn is a D-space. Is X compact?

Arhangelskii conjectures that a positive answer to the first is highly unlikely,
but he and Buzyakova [3] have shown that if a regular T1 space X is the union
of a finite collection of metrizable subspaces, then X is a D-space. Regarding the
second question, Gary Gruenhage [9] has shown that a positive answer results if
we require that X is a finite union of D-spaces.

Stickyness

The fact that Gruenhage’s [9] ends the previous section is serendipitous, for
we want to examine his techniques in more detail in this section. In [9], Gruenhage
develops a general framework based on earlier work of Fleissner and Stanley [7] and
implicit in Buzyakova’s work that seems to handle the most important theorems
of the form “a space X of such-and-such a type must be a D-space”. He uses
these methods to solve many open problems asked by Arhangelskii, Buzyakova,
and others. We briefly outline his techniques, as they should be helpful to anyone
tackling problems in this area.

Let X be a space. A binary relation R on X is nearly good if x ∈ A implies
that x R y for some y ∈ A. If N is a neighborhood assignment on X , and X ′ and
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D are subsets of X , then we say that D is N -sticky mod R on X ′ if whenever x
is in X ′ and xR y for some y ∈ D, then in fact x ∈ N(D), i.e., N(D) swallows all
R-predecessors of each y ∈ D that lie in X ′. If X ′ = X , then we say2 that D is
N -sticky mod R.

The simplest example illustrating this definition is to let N be a neighborhood
assignment on X , and define

(∗) x R y ⇐⇒ y ∈ N(x).

This particular R is nearly good, and a set D is N -sticky mod R if x ∈ N(D)
whenever N(x) ∩D 6= ∅.3

Theorem (Gruenhage). Let N be a neighborhood assignment for X. Suppose as
well that R is a nearly good relation on X such that every non-empty closed subset
F of X contains a non-empty closed discrete subset D that is N -sticky mod R on
F . Then there is a closed discrete D∗ in X with X = N(D∗).

This theorem has some strength. Consider, for example, the case where X is
left-separated andN is a neighborhood assignment onX , without loss of generality
with N(x) ⊆ [x,∞) (the interval is defined using the order that left-separates X).
Let R be as in (∗). Given a non-empty closed subset F of X , let x be the least
element of F . Then the closed discrete set D = {x} is N -sticky mod R on F , and
so from the preceding theorem we conclude that X is a D-space.

We get more powerful results using the next theorem, which is also taken
from [9]. The statement of the following theorem makes reference to N -close sets,
where N is a neighborhood assignment on X . We say that a subset Z of X is
N -close if Z ⊆ N(x) for every x ∈ Z.

Theorem (Gruenhage). Let N be a neighborhood assignment on X, and suppose
there is a nearly good relation R on X such that for any y ∈ X, we can express
the set R−1(y)\N(y) as a countable union of N -close sets. Then there is a closed
discrete D such that X = N(D).

We give one more easy example from [9] illustrating how powerful this result
is. The key is that one can vary the relation R in order to get results in different
situations.

Recall that a space X satisfies open (G) if each point x ∈ X has a countable
neighborhood base Bx such that whenever x ∈ A and N(x) is a neighborhood of
x, then there is an a ∈ A and B ∈ Ba for which x ∈ B ⊆ N(x).

Theorem. Any space satisfying open (G) is a D-space.

Proof. Given a neighborhood assignment N for such a space X , one defines

x R y ⇐⇒ there exists a B ∈ By such that x ∈ B ⊆ N(x).

2Gruenhage deals with a generalization of this situation, where R is a relation from X to
[X]<ω ; this generalization allows him to capture more examples, but we shall deal only with the
simpler version.

3This is what Fleissner and Stanley referred to as “N-sticky” in [7].
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This choice of R is nearly good because X satisfies open (G). Furthermore, for
each B ∈ By, we can let C(B) be the set of all x ∈ B for which B ⊆ N(x). The
set C(B) is N -close, and R−1(y) =

⋃{C(B) : B ∈ By}. From the theorem cited
earlier, we conclude that X is a D-space. �

It is clear that any space with a point-countable base satisfies open (G)4 and
so such spaces are D-spaces, a fact first shown by Arhangelskii and Buzyakova [3].

Gruenhage’s paper contains a wealth of other results; for example, he shows
that all Corson compacta are hereditarily D-spaces, and that Cp(X) is hereditarily
a D-space whenever X is a Lindelöf Σ-space. We refer the reader to [9] for the
details.

General remarks

The current state of knowledge about D-spaces is full of asymmetries. We are
rich with theorems that state that certain types of spaces are D-spaces, but we are
lacking theorems of the form “If X is a D-space, then . . . ”. We have many results
that state that spaces with certain types of bases are D-spaces, but there are no
substantial theorems saying that spaces satisfying certain covering properties are
D-spaces. We have fairly general techniques for proving that something is a D-
space, but we are sorely in need of more techniques for building spaces that are
not D-spaces. Correcting these asymmetries should provide the next generation
of general topologists with ample work.

Finally, I thought I would drop the authorial “we” for a moment, just to say
that I, too, pulled out a pencil and scrap paper when I first heard the question of
whether a regular Lindelöf space must be a D-space. I was sure I could see how
the proof would go, and then later that night I reversed my opinion and thought
I could see how a counterexample might work. Good problems are like this—they
are interesting because they interest!
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The fourth head of βN

Ilijas Farah

Start from N, the space of natural numbers with the discrete topology, and
consider its Čech–Stone compactification, βN. This is the compactification of N
such that every f : N → [0, 1] has a unique continuous extension f̃ : βN → [0, 1].
For the rest of this note all maps are continuous. In his introduction to βN ([35]),
Jan van Mill called it a three-headed monster. The first head shows under the
Continuum Hypothesis, CH, and it is ‘smiling and friendly’ since CH easily resolves
problems about βN (more precisely, as easily as solutions to problems about βN
get). The second head is the ‘ugly head of independence’ as Paul Erdös used
to call it (the head which, in van Mill’s own words, ‘constantly tries to confuse
you’). The smallest, third, head is the ZFC-head of βN. It provides those few facts
about βN that can be resolved without applying additional set-theoretic axioms.
Ever since Shelah’s groundbreaking results discussed below we are witnessing the
emergence of the fourth head of βN: A coherent theory of βN deduced from forcing
axioms (or Ramseyan axioms) with strong rigidity phenomena for βN and similar
Čech–Stone compactifications.

The reader is assumed to have only basic familiarity with the topology of βN
and axiomatic set theory (see e.g., [9]).

1. Trivial continuous maps

Let us start with a concrete problem, naturally stated as a problem about
the Čech–Stone remainder N∗ = βN \ N. A map f : N∗ → N∗ is trivial if there

is a function h : N → βN such that f = h̃ � N∗. Assuming CH, it is very easy to
construct nontrivial maps and even nontrivial autohomeomorphisms of N∗. In [26],
Shelah constructed a model of ZFC in which all autohomeomorphisms of N∗ are
trivial (of course, assuming there is a model of ZFC). In other words, he showed
that a nontrivial autohomeomorphism of N∗ cannot be constructed without using
some additional set-theoretic axioms.

Question 1. Is it possible to construct a nontrivial map f : N∗ → N∗ without 335?

using additional set-theoretic axioms?

Another way of stating this question (and similarly all the questions stated
below) is: Assuming there is a model of ZFC, is there a model of ZFC in which
there are no nontrivial maps f : N∗ → N∗? To an untrained eye this question may
appear to be ad hoc, but please read on.

The existence of a nontrivial f : N∗ → N∗ implies the existence of both a
nontrivial surjection f : N∗ → N∗ and a nontrivial injection f : N∗ → N∗ (dualize

Partially supported by NSERC. I would like to thank A. Dow, K.P. Hart, J. van‘Mill,
J.T. Moore and J. Steprāns for interest and remarks.
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examples of [11, §3.2]). However, a nontrivial f : N∗ → N∗ that is both a surjec-
tion and an injection cannot be constructed without using additional set-theoretic
axioms, by Shelah’s result.

Question 2 (Dow). Is it possible to construct a nonseparable extremally discon-336?

nected image of N∗ without using additional set-theoretic axioms?

If Question 1 has a negative answer, so does Question 2. This is because the
assumption that all maps f : N∗ → N∗ are trivial implies every extremally discon-
nected image of N∗ is separable (see [11, Proposition 4.11.7]). Under the Proper
Forcing Axiom, PFA,1 all extremally disconnected images of N∗ have countable cel-
lularity (see e.g., [31]). M. Bell has constructed a nonseparable zero-dimensional
image of N∗ with countable cellularity ([2]). An f : (N∗)κ → (N∗)λ is trivial if it is

of the form h̃ for some h : Nκ → Nλ. Note that h̃ need not exist for an arbitrary h;
see e.g., [14]. The triviality of all f : N∗ → N∗ is equivalent to its self-strengthening
asserting that every map f : (N∗)κ → (N∗)λ is trivial, where κ and λ are any two
cardinals, finite or infinite (see [14]). This is a consequence of a phenomenon
conjectured by van Douwen ([33]) and proved in [14]: If f : (N∗)κ → K for a
compact space K, then the domain can be decomposed into finitely many clopen
sets so that f depends on at most one coordinate on each one of the pieces. This
remains true if N∗ is replaced with any βN-space: a space with the property that
the closure of any infinite discrete subspace is homeomorphic to βN.

An appealing variation on Question 2 is the following (a copy of N∗ in a
compact space X is nontrivial if it is nowhere dense and not of the form D \ D
for a countable discrete D ⊆ X).

Question 3 (van Douwen). Is it possible to construct a nontrivial copy of N∗337?

inside N∗ without using additional set-theoretic axioms?

This is closely related to Question 1. If every f : N∗ → N∗ is trivial then every
copy of N∗ inside N∗ is trivial. Conversely, if all copies of N∗ inside N∗ are trivial
and all autohomeomorphisms of N∗ are trivial, then all injections f : N∗ → N∗

are trivial, and therefore all maps f : N∗ → N∗ are trivial. Under CH nontrivial
copies of N∗ exist in abundance. A natural way of assuring that a copy X of N∗

is nontrivial is to make it into a P-set (i.e., a set such that every Gδ superset of
X includes an open neighbourhood of X). Todorcevic’s Open Coloring Axiom,
OCA, implies that no copy of N∗ is a P-set ([19] for consistency, [23] from OCA;
see also [11, Corollary 3.5.5]). As pointed out by A. Dow, it is not easy to find a
nontrivial copy of N∗ anywhere.

K.P. Hart noted that every f : N∗ → 2κ is trivial, because every continuous
f : N∗ → {0, 1} extends to βN. Therefore every copy of N∗ in any 2κ is trivial. He
has also suggested a line of attack to Question 2: construct continuous f : N∗ → 2c

such that f [N∗] is extremally disconnected and the extension of f to βN sends N
into f [N∗].

1The exact statements PFA, OCA and MA can be found in [31], [18], [11], or any up-to-date
text on combinatorial Set Theory. Todorcevic’s OCA is different from its namesake introduced
in [1]. Note that PFA implies both OCA and MA.
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2. A partial result

Assuming MA and OCA the following was proved in [11], building on the work
of Shelah–Steprāns, Todorcevic, Just and Velickovic (a map f : α∗ → γ∗ is trivial

if f = h̃ � α∗ for some h : α→ βγ).

Theorem 1 (OCA + MA). For any two locally compact countable spaces α and γ
and f : α∗ → γ∗ there is a clopen partition α∗ = U ∪̇ V such that f � U is trivial
and f [V ] is nowhere dense.

This easily implies that under OCA+ MA (α∗)κ maps onto (γ∗)λ if and only
if this is witnessed by a trivial map. Also, (α∗)κ and (γ∗)λ are homeomorphic if
and only if this is witnessed by a trivial map. It is not difficult to characterize
when such a trivial map exists; see [11, Theorem 4.5.1] for one-dimensional ver-
sions and [14, Theorem 4.6] for (a bit more difficult) higher-dimensional versions.
Therefore Theorem 1 and analogous results reduce the highly complex problem
of the existence of continuous maps between large topological spaces to a simple
problem of countable combinatorics. The interest in our questions largely derives
from such reductions of complexity. Just ([20]) first proved the consistency of the
statement ‘(N∗)d does not map onto (N∗)d+1 for any d ∈ N.’ He used a rather
weak consequence of Theorem 1 proved in [22]. As an additional motivation for
the program discussed here, the reader is invited to compare the complex proof
of [20] with the straightforward calculation of the same result from a consequence
of Theorem 1 given in [11, Theorem 4.6.1]; see also [14] and [15].

Parovičenko’s theorem implies that under CH any two remainders α∗ and γ∗

of locally compact countable spaces are homeomorphic (as long as they are both
nonempty. However, powers (α∗)κ and (α∗)γ are homeomorphic if and only if
κ = γ ([33]).

Question 4. Is it possible to construct a nontrivial map between Čech–Stone 338?

remainders of locally compact countable spaces without using additional axioms of
set theory?

Again, the conclusion is equivalent to its self-strengthening asserting all maps
between powers of such spaces are trivial. Admittedly, the restriction to the class
of countable locally compact spaces (also known as ‘countable ordinals’) is ad
hoc. An analogue of Theorem 1 holds for a slightly wider class of spaces; see [11,
§4.10]. Pending an answer to Question 4, I will refrain from fantasizing about
the widest class of spaces for which analogous rigidity results can be proved (but
see [11, §§4.10–4.11]). It is nevertheless worth mentioning that PFA implies all
autohomeomorphisms of D∗ are trivial for every discrete space D ([36]).

3. Rigidity phenomena for quotients P(N)/I

Via the Stone duality, all of the above discussion could be recast in terms
of Boolean algebras. The space N∗ is the Stone space of the Boolean algebra
P(N)/Fin, where Fin is the ideal of finite subsets of N. Hence Question 1 asks
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whether for every homomorphism Φ: P(N)/Fin → P(N)/Fin there exists a se-
quence {Un} of ultrafilters on N such that Φ([A]Fin) = [{n | A ∈ Un}]Fin. Such
a homomorphism is said to have an additive lifting. It is not difficult to see that
each homomorphism Φ: P(N)/Fin → P(N)/I for a countably generated ideal I
has an additive lifting if and only if each homomorphism Φ: P(N) → P(N)/I
for a countably generated ideal I has an additive lifting (see [6, Theorem 3.3]).
The algebraic reformulation suggests asking for which ideals I on N the following
assertion is true:

(CI) Every homomorphism Φ: P(N)→ P(N)/I has an additive lifting.

The topological dual, assertion that every continuous map g from a closed subset
F of N∗ into βN is trivial, is still meaningful for very simple subspaces F . For
example, if F is an intersection (or a closure of the union) of countably many
clopen sets then the analogue of Theorem 1 holds: g is a direct sum of a trivial
map and a map with a nowhere dense range ([11, Theorem 3.9.2]). Again CH

trivializes the question. I have conjectured that PFA implies (CII) for every
analytic ideal I. (Consider P(N) with the Cantor-set topology; a set is analytic if
it is a continuous image of the irrationals.) I reluctantly refrain from discoursing
on this subject any further. The survey [17] of this conjecture is still up to date.

It seems plausible that all questions stated here have a positive answer, and
more precisely that it follows from PFA.

4. Further results

At present it is unclear what the limitations of the rigidity phenomena de-
scribed above are. It is, however, clear that they go a bit beyond the outlined
framework. A small number of rigidity results for N∗ were recently proved by
combining lifting results with other techniques. For example, assuming OCA and
MA, Dow and Hart have proved that a Čech–Stone remainder of a locally compact,
σ-compact space X is a continuous image of N∗ if and only if X is homeomorphic
to a sum of N with a compact space ([7]). From the same assumptions they also
deduced that the Stone space of the Lebesgue measure algebra is not a continuous
image of N∗ ([8]). Both statements contradict the conclusion of Parovičenko’s
theorem. I proved ([12, §8]) that OCA implies Exp(N∗) is not a continuous image
of N∗, thus confirming a conjecture of M. Bell. Dow ([4]) proved that PFA im-
plies every two-to-one image of N∗ is trivial : whenever f : N∗ → X is such that
each fibre has exactly two points then X is homeomorphic to N∗ and moreover
f has to be a trivial map in the sense of Question 1. Needles to say, CH implies
the existence of nontrivial two-to-one maps. In Dow’s result it is important that
each fibre has exactly two points; van Douwen ([34]) has constructed a nontrivial
f : N∗ → X such that each fibre has at most two points. It is not known whether
it is possible that a two-to-one image of N∗ is not homeomorphic to N∗; curiously
enough, a negative answer follows from CH ([10]).

Question 5. Is it possible to construct a nontrivial n-to-one map on N∗ for some339?

n ∈ N without using additional axioms of set theory?
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This subject would not be complete without the insight provided by Murray
Bell.

Question 6 (M. Bell). Is it possible to construct an extremally disconnected image 340?

of a zero set in N∗ that is not an image of N∗ without using additional set-theoretic
axioms?

Some partial answers to this question were obtained in [6]. The rectangle
algebra is the algebra of subsets of NN generated by rectangles,

∏∞
i=1Ai.

Question 7 (M. Bell). Is it possible to show that the Stone space of the rectangle 341?

algebra is a continuous image of N∗ without using additional set-theoretic axioms?

I would conjecture that in both cases there is either a (properly defined)
‘trivial’ map witnessing the connection or appropriate axioms imply there is no
surjection.

5. Conclusion

The main purpose of this note was to draw the attention of topologists and set
theorists to an emerging canonical theory of spaces and Boolean algebras closely
related to N∗ and P(N)/Fin respectively. Under CH, two such spaces that could
possibly be related (via a homeomorphism or a surjection) are indeed related.
A variant of this sweeping claim is a consequence of Woodin’s Σ2

1-absoluteness
theorem ([37], [13]); see [11, §2.1] and also §5.1 below.

This note is about the other extreme situation. For spaces X and Y define
the notion of ‘trivial’ map f : X → Y . This notion should be simple so that
deciding the existence of a trivial homeomorphism/surjection between X and Y
is reasonably easy, and that the statement ‘there is a trivial isomorphism (or
surjection) between X and Y ’ is absolute between sufficiently closed models of
ZFC. It should also be well-chosen so that forcing (or Ramseyan) axioms imply
every isomorphism (or surjection) between X and Y has to be trivial. This ‘ideal’
scenario is rather flexible. For example, in the case when X = Y it serves to
completely describe the group of all autohomeomorphisms of X : Take the case
when X = N∗ ([26]), from where all this has started.

In most situations it is sufficient to prove that sufficiently strong forcing (or
Ramseyan) axioms imply that if there is a homeomorphism (or surjection) f : X →
Y then a trivial homeomorphism (or surjection) exists. In many concrete cases this
is a theorem; see [11, §2.1]. The existence of a trivial connecting map is typically
a Σ1

2 statement, and therefore absolute by Shoenfield’s Absoluteness Theorem.
Having a general lifting theorem greatly simplifies the question whether two spaces
are homeomorphic or otherwise related. Compare e.g., [21], where a weak lifting
theorem was supplemented by a technical tour de force argument and the proof
of the same result in [11, Corollary 3.4.4, Proposition 1.13.13] where a strong
lifting theorem was supplemented by straightforward computations. Isolating the
notion of ‘trivial’ connecting map is not necessary to prove rigidity results. Take,
for example, the Dow–Hart result on the Stone space of the Lebesgue measure
algebra ([8]).
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The problems of determining the relation between lifting statements such as
those considered above and other set-theoretic statements are difficult and well-
studied, but this is an another story (see e.g., [30], [29], [28]).

5.1. Metamathematics. The phenomenon that CH resolves so many ques-
tions about N∗ has a metamathematical explanation or two. Model-theoretically
(see [3] for model-theoretic background), P(N)/Fin is a countably saturated Boolean
algebra, hence CH implies it is a saturated model of the (complete) theory of
atomless Boolean algebras. Clopen algebras of other Parovičenko spaces are also
countably saturated, and this allows one to apply back-and-forth methods to relate
these and similar algebras.

Another explanation is of a different nature. Instead of giving a technical
device for constructing maps, it implies that maps that can be constructed in some
models of set theory can also be constructed using CH. Hence CH is an optimal
assumption for finding such maps. Let X and Y be spaces whose basic open
sets can be coded by real numbers; for example, Čech–Stone compactifications of
countable, locally compact spaces, as well as their finite powers, are of this form.
A continuous map f : X → Y can be coded by a set of pairs of basic open subsets
of X and Y , and therefore by a set of real numbers, Cf . Statements like ‘f is
onto’ or ‘f is a homeomorphism’ are projective in Cf : they can be expressed using
quantification over the real numbers only. Thus ‘α∗ and γ∗ are homeomorphic’ (for
countable ordinals α and γ) is equivalent to a statement of the form (∃C ⊆ R)φ(C)
for a statement φ projective in C. A statement of this syntactical form is called a
Σ2

1-statement. Using a large cardinal assumption, Woodin proved ([37], see [13]
or [25]) that if a Σ2

1 statement can be forced then it holds in every forcing extension
that satisfies CH.

Consequences of OCA + MA fit together forming a coherent picture of N∗

and related spaces, with their rigidity properties maximized (see [11, §2.1] for
an overview). A satisfactory metamathematical explanation of this phenomenon
is yet to be found, but the current state of our understanding suggests that the
ability to make gaps in quotient algebras indestructible is of central importance.
The gap-freezing technique was developed in [31, §8] (cf. [1]) and first employed
in this context in [27]. See [5] for analysis of gaps in [κ]ω/Fin or [16] for gaps in
quotients of the form P(N)/I; for an approach compatible with CH see [32].

Notably, OCA and MA both hold in Woodin’s canonical model for the negation
of CH ([38]; see [24]). A discussion of the wider metamathematical context is
beyond the scope of this article and it appears elsewhere ([17], [11, §2.1]).
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[29] S. Shelah and J. Steprāns, Martin’s axiom is consistent with the existence of nowhere trivial

automorphisms, Proc. Amer. Math. Soc. 130 (2002), no. 7, 2097–2106.
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Are stratifiable spaces M1?

Gary Gruenhage

The Bing–Nagata–Smirnov characterization of metrizable spaces as the reg-
ular spaces having a σ-locally finite (or σ-discrete) base was one of the seminal
results of the early 1950s in general topology. Then the late 1950s saw E. Michael’s
characterizations of paracompactness in regular spaces via σ-locally finite, σ-
closure-preserving, and other related types of refinements. Clearly motivated by
these now classical results, in 1961 Michael’s student J. Ceder [2] introduced the
following class of spaces as a natural generalization of metrizable spaces:

Definition. A regular space X is an M1-space if it has σ-closure-preserving base.1

M1-spaces are paracompact by one of Michael’s theorems, and it is easy to see
that closed sets are Gδ , so they are also perfectly normal. An important subclass
of M1-spaces is the class of closed images of metrizable spaces [29].

However, Ceder could not show that M1-spaces are hereditary, even for closed
subspaces. To see the problem, note that the trace of a closure-preserving collec-
tion on a closed subset need not be closure preserving (there are easy examples
in the plane illustrating this). Nor could he show that they are preserved by nice
mappings such as closed or even perfect mappings. Thus he also considered two
formally larger classes, which he called M2-spaces and M3-spaces, respectively.
These classes had more technical definitions, but otherwise, they had essentially
the same topological properties and they had the advantage of being preserved by
arbitrary subspaces as well as closed mappings.

Definition. A collection B is a quasi-base for X if whenever x ∈ U , U open, there
is B ∈ B with x ∈ int(B) ⊂ B ⊂ U . A regular space X is an M2-space if it admits
a σ-closure-preserving quasi-base B (which may be taken to consist of closed sets).

Note that M2-spaces are hereditary, since the trace of a closure-preserving
collection of closed sets on a subspace is closure-preserving in the subspace.

Recall that B is a regular closed set if B = cl(int(B)). If B is a σ-closure-
preserving quasi-base of regular closed sets, it is easy to check that the interiors
form a σ-closure-preserving base. So if M2 is really more general than M1, it
comes from allowing members of the quasi-base to have nonempty outliers B \
cl(int(B)). Note that such outliers can help make a collection closure-preserving;
e.g., a collection D0, D1, . . . of disks in the plane converging to a point p is not
closure-preserving, but {Dn ∪ {p} : n ∈ ω} is closure-preserving.

The M3-spaces were defined by Ceder as the regular spaces having a σ-
cushioned pair-base, though the following characterization of Borges [1], who
showed that M3-spaces have many other good properties (e.g., they satisfy the

1Recall that a collection U is closure-preserving if cl (
S

U ′) =
S

{cl(U) : U ∈ U ′} for any
subcollection U ′ of U , and is σ-closure-preserving if it is a countable union of closure-preserving
collections.
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Dugundji Extension Theorem), and renamed them stratifiable spaces, provides a
more elegant definition:

Definition. A T1-space X is an M3-space (or stratifiable) iff one can assign to
each closed set H a decreasing sequence Un(H), n ∈ ω, of open sets satisfying:

(1) H =
⋂

n∈ω Un(H) =
⋂

n∈ω cl(Un(H));
(2) H ⊂ K ⇒ Un(H) ⊂ Un(K).

Since the first condition characterizes perfect normality, stratifiable spaces
can be thought of as the class of monotonically perfectly normal spaces. They
are also exactly the monotonically normal σ-spaces (σ-spaces are spaces having a
σ-discrete network).

Ceder didn’t know if any of these classes were in fact different. In the mid-
1970s, the author [6] and Junnila [15] independently proved that stratifiable and
M2-spaces are the same. But to this day, it is not known if stratifiable and M1-
spaces are the same.

Problem 1. Are stratifiable (equivalently, M2-) spaces M1?342?

Since stratifiable spaces have turned out to be one of the most useful and
important classes of generalized metrizable spaces, an answer to the problem would
be of great interest, and if positive, would render many papers on the subject
obsolete.

1. Equivalent questions

As mentioned in the introduction, Ceder was led to define M2- and M3-spaces
because he could not show that M1-spaces were preserved by some basic topolog-
ical operations. In fact, certain preservation statements are equivalent to Prob-
lem 1:

Theorem 1.1. The following statements are equivalent:

(1) Stratifiable spaces are M1;
(2) Every (closed) subspace of an M1-space is M1;
(3) Perfect (closed) images of M1-spaces are M1.

The above equivalences follow immediately from the the fact that stratifiable
spaces are preserved by subspaces and closed images, along with the following very
pretty result of Heath and Junnila [10]:

Theorem 1.2. Every stratifible space X is a closed subspace of an M1-space
Z such that Z \ X consists of isolated points and there is a perfect retraction
r : Z → X.

Here are some other equivalences:

Theorem 1.3. The following statements are equivalent:

(1) Stratifiable spaces are M1;
(2) Every point of every stratifiable space has a (σ-)closure-preserving local

base;
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(3) Every closed subset of every stratifiable space has a (σ-)closure-preserving
outer base.

Here, an outer base for a subset H of X is a collection U of open supersets
of H such that every open superset of H contains a member of U . That these
statements are equivalent follows fairly easily from the fact that stratifiable spaces
are paracompact σ-spaces, preservation under closed mappings, and using the
following recent and important result of Mizokami [19]:

Theorem 1.4. Every closed subset of an M1-space has a closure-preserving outer
base.

For some time the class P of M1-spaces in which every closed subset has a
closure-preserving outer base was studied; by Theorem 1.4, everyM1-space is in P .

2. Related classes and partial results

One of the most important early partial results on Problem 1 was the following
result of Ito [13]:

Theorem 2.1. The following are equivalent for a stratifiable space X:

(1) Every closed subset of X has a closure-preserving outer base (and hence
X is M1);

(2) Every point of X has a closure-preserving local base.

Using the fact the stratifiable spaces are paracompact σ-spaces, it is easy to
see that if every closed subset of a stratifiable space X has a closure-preserving
outer base, then X is M1 (by Theorem 1.4, the converse also holds). So Ito’s
result says it suffices that every point have a closure-preserving local base. E.g.,
first-countable stratifiable spaces are M1.

Mizokami, Shimane, and Kitamura [21], extending a result of the first two of
these authors [20], have improved the first countable result to sequential spaces
and more:

Theorem 2.2. A space X is M1 if it is stratifiable and has the following property:

(δ) Whenever U is dense open in X and x ∈ X \ U , there is a closure-
preserving collection F of closed subsets of X that is a network at x,
such that cl(F ∩ U) = F for every F ∈ F .

Note that this result extends Ito’s, for if B is a closure-preserving local base
at x, and U is dense open, then F = {cl(B) : B ∈ B} witnesses property (δ).
It is easy to observe that every Fréchet space satisfies (δ); less obvious is that
sequential stratifiable spaces satisfy (δ) [20]. More generally, a stratifiable space
satisfies (δ) (see [21]) if it has the following property, which has been called weak
approximation by points (WAP) [27]:

(WAP) If A is not closed, there exists B ⊂ A such that cl(B) \ A is exactly one
point.
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There are classes of spaces formally stronger than M1 for which it is as yet
undetermined whether every M3-(or sometimes even every M1-) space belongs to
the class. The most pertinent of these classes, so it seems at present, is the class
of µ-spaces, introduced by Nagami [22] for dimension-theoretic reasons.

Definition. A space X is Fσ-metrizable if it is a countable union of closed metriz-
able subspaces, and X is a µ-space if it is homeomorphic to a subspace of a count-
able product of paracompact Fσ-metrizable spaces.

I showed [7] that stratifiable Fσ-metrizable spaces are M1. The following two
results extend this:

Theorem 2.3.

(1) Stratifiable µ-spaces are M1;
(2) A stratifiable space is M1 if it is a countable union of closed M1 subspaces.

The second result follows from Mizokami’s theorem in [17] that a stratifiable
space which is a countable union of closed subspaces in the class P is M1, together
with his more recent result mentioned earlier that every M1-space is in P .

Theorem 2.3(1) is due to Mizokami [17]; Junnila and Mizokami [14] subse-
quently showed that a couple of other subclasses of stratifiable spaces that had
been studied in the literature are µ-spaces. Tamano [30] obtained the following
useful internal characterization of µ-spaces:

Theorem 2.4. The following are equivalent:

(1) X is a stratifiable µ-space;
(2) X has a base B =

⋃
n∈ω Bn, where each Bn is mosaical, i.e., there is a

σ-discrete cover Fn of X such that F ∩ B 6= ∅ ⇐⇒ F ⊂ B for every
F ∈ Fn and B ∈ Bn.

There are spaces having a countable network which are not µ-spaces [32, 33];
but we don’t know the answer to:

Problem 2. Is every stratifiable space a µ-space?343?

Since the class of µ-spaces is hereditary, by the Heath–Junnila theorem it is
equivalent to ask if every M1-space is a µ-space. Obviously a positive answer to
Problem 2 settles Problem1. An important partial result is that spaces having a σ-
closure-preserving clopen base, which are called M0-spaces , are µ-spaces [12, 16].
The class of M0-spaces turns out to coincide with the class of stratifiable µ-spaces
X with dimX = 0; also, every stratifiable µ-space is a perfect image of an M0-
space [17].

Consider the following string of containments, where Mi denotes the class of
Mi-spaces, S (Sµ) is the class of stratifiable (stratifiable µ-) spaces, and PM0

(CM0) is the class of perfect (closed) images of M0-spaces:

M0 ⊂ Sµ ⊂ PM0 ⊂ CM0 ⊂M1 ⊂ S.
It is not known if any of these containments other than the leftmost are strict.
Indeed, parts of this line could collapse, maybe all the way from S to Sµ. But it
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could also happen, e.g., that S =M1 6= CM0. That every space in CM0 is M1, in
fact hereditarily M1, follows from the observation that M0-spaces are hereditary,
and the following result of Ito [11]:

Theorem 2.5. If every closed subset of an M1-space X is M1, then every closed
image of X is M1.

The class PM0 would equal Sµ if the following old question of Nagami [22]
had a positive answer:

Problem 3. Are µ-spaces preserved by perfect mappings? 344?

This seems to be open even for closed mappings. A partial result is that the
closed image of a stratifiable Fσ-metrizable space is a µ-space [14].

Another interesting subclass of stratifiable spaces was introduced by Oka [25]:

Definition. A stratifiable space X is in the class EM3 if there is a σ-closure-
preserving collection E satisfying:

Whenever x ∈ U , U open, there is F ⊂ E such that
⋃F is

closed, and x ∈ X \⋃F ⊂ U .

Oka’s motivation for defining EM3 was dimension-theoretic; he proved the
following:

Theorem 2.6.

(1) dimX = IndX for every X ∈ EM3;
(2) EM3 is the class of perfect (or closed) images of (strongly) 0-dimensional

stratifiable spaces;
(3) EM3 is hereditary, countably productive, and preserved by closed maps.

It follows that the class EM3 fits between CM0 and S; but it is not known if it
is equal to either one or both, nor is its relation toM1 known. If EM3 =M1, then
it would follow from the Heath–Junnila theorem that S = M1. Also note that
S = EM3 iff every stratifiable space is the closed (or perfect) image of a (srongly)
0-dimensional stratifiable space. The following dimension theoretic questions are
also open:

Problem 4. 345–348?

(1) Let X be strongly 0-dimensional. If X ∈ M1, must X ∈ M0? What if
X ∈ PM0?

(2) Is every M1-space the perfect (or closed) image of a (strongly) 0-dimensional
M1-space?

(3) For an M1-space X, is it true that Ind(X) ≤ n iff X has a σ-closure-
preserving base B such that for every B ∈ B, Ind(∂B) ≤ n− 1?

(4) Does dimX = IndX for all stratifiable X? What if X is separable?

If the answer to (2) is positive, then by the Heath–Junnila result, every strat-
ifiable space is also the closed image of a 0-dimensional M1-space, so it would
follow that S = EM3. (3) is known to hold for stratifiable µ-spaces [17]. (4) is
known to consistently fail (e.g., under CH) for (non-stratifiable) spaces having a
countable network ([3]; see also [4]).
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3. Function spaces and a possible counterexample

Gartside and Reznichencko [5] investigated stratifiability of function spaces,
and in particular, proved that the space Ck(X) of all real-valued continuous func-
tions on X with the compact-open topology is stratifiable whenever X is Polish
(complete separable metric). They show this first when X is the space P of irra-
tionals, and then use the fact that any Polish space Y is the continuous image of
P, and hence Ck(Y ) embeds in Ck(P). It is quite interesting that their proof of
stratifiability of Ck(P) gives no clue as to its M1-ness, and no one has yet been
able to determine if Ck(P) is M1 or not.

Problem 5 ([5]). Is Ck(P) an M1-space?349?

It is also not known if Ck(P) is a µ-space or in EM3. A negative answer to
Problem 5 of course solves Problem 1 in the negative. There are unpublished
results of Balogh and Gruenhage, Gartside, Nyikos, and Tamano showing that
collections built in some ways from standard basic open sets won’t work; e.g., no
collection of sets consisting of finite unions of standard basic open sets of Ck(P) can
form either a σ-closure-preserving or σ-mosaical base. In the positive direction,
the author and Tamano [9] have shown that Ck(X) is a µ-space whenever X is
σ-compact Polish.

Possibly, one could show that Ck(P) is M1 by showing it has property (δ).
However, while it is known that Ck(P) is not sequential [26], the following is open
even for σ-compact Polish spaces:

Problem 6. If X is Polish, does Ck(X) have the WAP property?350?

Gartside and Reznichenko asked if a converse of their result is true:

Problem 7. If X is separable metrizable, and Ck(X) is stratifiable, must X be351?

Polish?

This is still unsettled, but Nyikos [23] has shown that Ck(X) is not stratifiable
for any separable metric X which contains a 0-dimensional closed subspace with no
uncountable compact sets (e.g., a closed subspace homeomorphic to the rationals);
a corollary is that the answer to Problem 7 is positive for coanalytic subsets of
Polish spaces.

4. Some final remarks

We close with a few more remarks about Problem 1 and some suggestions
for further reading. A brief survey with proofs of basic results on stratifiable and
M1-spaces is included in [8]. Much more extensive and highly recommended is
Tamano’s survey [31], which includes among other things proofs of Ito’s theorems
as well as most of the results we mentioned on µ-spaces and the class EM3. Also
discussed there are some classes of M1-spaces that fall between stratifiable µ-
spaces and hereditarily M1-spaces that are defined in terms of special bases. More
recent surveys, which like this one do not include proofs, have been written by
Mizokami [18] and Nyikos (see Classic Problem IV in [24]).
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Anyone hoping to prove that stratifiable implies M1 should become familiar
with techniques in [21] and/or [20], many of which were also used in the important
paper [19]. Large parts of these arguments involve fattening up closure-preserving
collections of closed sets to collections which have certain combinatorial and regu-
larity properties (with the goal of building closure-preserving collections of regular
closed sets). It is difficult to characterize these techniques briefly, so we only men-
tion some tools that are common to not only these arguments but many that
preceded these. Monotone normality is heavily exploited. Any stratifiable space
has a weaker metrizable topology; constructing weaker metrizable topologies hav-
ing certain close relations to the given topology is frequently useful. Another
important tool is the following key lemma in Ito’s proof of Theorem 2.1: given a
closure-preserving collection B of closed sets, there is a σ-discrete set D such that,
for every B ∈ B, D ∩B is dense in B. Also, building networks with special prop-
erties can be useful; oft-used here is the result in [28] that any closure-preserving
collection B of closed sets in a stratifiable space is mosaical (see Theorem 2.4(2)
for the meaning of mosaical).

For stratifiable spaces, separability and Lindelöfness, as well as the hereditary
versions, are equivalent, and these are in turn equivalent to having a countable
network. So Problem 1 would seem to split naturally into two cases, the countable
network case and the σ-discrete but uncountable network case. However, there
seems to be no evidence that these cases will turn out any differently or that
the countable network case is any easier. Indeed, Ck(P), which presently the
only specific space known to be stratifiable that is not known to be M1, has a
countable network.

Finally, we remark that it seems doubtful that the answer will turn out to
be independent of ZFC; the only known consistency result in the area is due to
N. Zhong [34], who showed that that stratifiable spaces of cardinality less than b

are M1.
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Perfect compacta and basis problems in topology

Gary Gruenhage and Justin Tatch Moore

An interesting example of a compact Hausdorff space that is often presented in
beginning courses in topology is the unit square [0, 1]× [0, 1] with the lexicographic
order topology. The closed subspace consisting of the top and bottom edges is
perfectly normal. This subspace is often called the Alexandroff double arrow
space. It is also sometimes called the “split interval”, since it can be obtained by
splitting each point x of the unit interval into two points x0, x1, and defining an
order by declaring x0 < x1 and using the induced order of the interval otherwise.
The top edge of the double arrow space minus the last point is homeomorphic
to the Sorgenfrey line, as is the bottom edge minus the first point. Hence it
has no countable base, so being compact, is non-metrizable. There is an obvious
two-to-one continuous map onto the interval.

There are many other examples of non-metrizable perfectly normal compacta,
if extra set-theoretic hypotheses are assumed. The most well-known is the Souslin
line (compactified by adding a first and last point). Filippov [6] showed that the
space obtained by “resolving” each point of a Luzin subset of the sphere S2 into a
circle by a certain mapping is a perfectly normal locally connected non-metrizable
compactum (see also Example 3.3.5 in [38]). Moreover a number of authors have
obtained interesting examples under CH (or sometimes something stronger); see,
e.g., Filippov and Lifanov [17], Fedorchuk [5], and Burke and Davis [3].

At some point, researchers began to wonder if there is a sense in which minor
variants of the double arrow space are the only ZFC examples of perfectly normal
non-metrizable compacta. A first guess was made by David Fremlin, who asked if
it is consistent that every perfectly normal compact space is the continuous image
of the product of the double arrow space with the unit interval. But this was too
strong: Watson and Weiss [39] constructed a counterexample (which looked like
the double arrow space with a countable set of isolate points added in a certain
way). Finally, the following question, also due to Fremlin, became the central one:

Question 1 ([9]). Is it consistent that every perfect compactum admits a contin- 352?

uous and at most two-to-one map onto a metric space?

We call a space which does admit an at most two-to-one continuous map onto
a metric space premetric of order 2.

Gruenhage noticed a close connection with what is now being called the “basis
problem” for uncountable first countable spaces:

Question 2. Is it consistent that every uncountable first countable regular space 353?

contains either an uncountable discrete subspace, or a fixed uncountable subspace
of the real line or of the Sorgenfrey line?

The first author acknowledges support from NSF grant DMS-0405216 and the second
author from NSF grant DMS-0401893.
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In other words, might there be a three-element basis for uncountable first
countable regular spaces? One might be tempted to remove the requirement of
first countability in this question, but this is not possible by Moore’s ZFC L-
space [21]. It’s clear that if there is any three element basis, it must be the three
mentioned in Question 2. The connection to Fremlin’s problem is this: a positive
answer to the basis problem for first countable spaces implies a positive answer
to Fremlin’s conjecture, and Fremlin’s conjecture is equivalent, under PFA, to the
basis conjecture for subspaces of perfectly normal compacta [12].

As is suggested by some previous partial results, it is possible that PFA or
Martin’s Maximum MM could imply positive answers to these questions. Frem-
lin [7] showed that under MM, any perfectly normal compactum admits a map to
a metric space M whose fibers have cardinality two or less on a comeager subset
of M . Gruenhage [11] showed that even without first-countability, PFA implies a
positive answer to the basis problem in the class of cometrizable spaces1 (later,
Todorcevic [31] proved that this follows from OCA, a consequence of PFA).

It turns out that there is an axiom, namely Woodin’s Axiom (∗) [40], which
is a provably optimal set theoretic hypothesis in the sense that if either of these
questions can be shown to have a positive answer in some suitably robust model,2

then (∗) implies a positive answer. It is important to note that questions for which
(∗) is optimal in this sense are ones which are of a certain logical form and which
reduce to spaces of size and weight not greater than ℵ1. This includes not only
these two questions, but most of the ones that follow. Thus we have decided to
state them in the form “Does (∗) imply . . . ”, though this is of course usually
not the way they originally appeared. In practice, (∗) can be rather difficult to
apply directly; our formulation can be taken to be an essentially equivalent way of
asking if the statements can be proved consistent. See the last section for further
discussion of (∗).

1. Perfect compacta

Predating Fremlin’s problem are two other basic questions about perfectly
normal compacta:

Question 3 (∗). If X × Y is perfect and compact, then is either X or Y is354?

metrizable?

Question 4 (∗). Is every locally connected perfect compactum metrizable?355?

The first question is due to Przymusinski [23] and the variant of the second
which asks if MAℵ1

gives a positive answer has been attributed to Rudin (see [22]).
If (∗) implies a positive answer to either the basis problem or to Fremlin’s problem,
then both of these questions also have positive answers [10, 12].

1A space (X, τ) is cometrizable if there is a weaker metric topology τ ′ such that every point
has a τ -neighborhood base consisting of τ ′-closed sets.

2In particular, if PFA or MM implies a positive answer or if such an answer can be forced
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A consistent positive answer to Question 4 would imply a consistent positive
answer to the following question, which appears in [18]3 (see also Problem 6.12
in [24]). But in this case we don’t know any consistency results, positive or
negative:

Question 5. If a compact convex subset of a locally convex topological vector space 356?

is perfectly normal, must it be metrizable?

It is perhaps worth noting that Helly’s space of non-decreasing functions from
[0, 1] into [0, 1] with the pointwise topology is compact, convex, separable, and
first countable but not metrizable.

Concerning Przymusinski’s question, suppose that there are disjoint uncount-
able A0, A1 ⊆ [0, 1] such that there is no monotonic injection of an uncountable
subset of A0 into A1. Abraham and Shelah have shown in [2] that such pairs of
subsets of [0, 1] can exist in a model of MAℵ1

. On the other hand, Todorcevic
proved in [29] that if X0 and X1 are obtained as in the split interval construction,
but with only the points of A0 and A1 split, then X0 × X1 is perfectly normal.
Hence MAℵ1

is not sufficient for a positive answer to Przymusinski’s question.
Since no uncountable subspace of the Sorgenfrey line is embeddable in a locally

connected perfect compactum [10], a positive answer to the following would give
a positive answer to Question 4:

Question 6 (∗). Does every non-metrizable perfect compactum contains a copy 357?

of an uncountable subspace of the Sorgenfrey line?

The difference between maps with metric fibers and with ≤ 2-point fibers in
this context is unclear:

Question 7 (∗). Does every perfect compactum admit a map into a metric space 358?

with metric fibers?

Question 8 (∗). If K is a perfect compactum which maps into a metric space 359?

with metric fibers, must K admit an at most two-to-one map into a metric space?

A compact Souslin line K is a perfectly normal compactum which does not
map onto a metric space with metric fibers [27]. Filippov’s CH example mentioned
in the introduction admits an obvious map onto a compact metric space with
metric fibers, but is not premetric of order two.

A weaker form of Question 7 can be stated as follows. Suppose that K ⊆
[0, 1]ω1 is a perfect compactum. For f 6= g ∈ K, let ∆(f, g) denote the least α
such that f(α) 6= g(α), and define

T (K) = {f � α : f ∈ K and ∃g ∈ K(α < ∆(f, g) < ω1)}.
Question 9 (∗). If K is a non-metrizable perfect compactum, can T (K) contain 360?

an Aronszajn subtree?

3The author of this question is not clear; it seems to have already been known to MacGibbon
in [18], but this was the earliest reference we could locate.
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This question appears in [4] along with a number of related questions. See
also the article from North Bay in this volume [15].

Question 10 (∗). If X is a perfect compactum and Y ⊆ X2 is scattered, must361?

Y have Cantor–Bendixson rank less than ω1? What if Y is assumed to be locally
compact?

Assuming CH, Gruenhage has constructed an example of a perfect compactum
X whose square is a hereditarily normal, hereditarily separable space [13]. In fact,
X is premetric of order 2 and X2 contains a locally compact, locally countable
S-space. It is possible to show, however, that Question 10 has a positive answer
for compacta which are premetric of order 2 ((∗) is required for this deduction).

It is also not known if Fremlin’s problem can be reduced to the 0-dimensional
case, which motivates the following two questions, the latter suggested by Todor-
cevic.

Question 11. Is it consistent4 that every perfect compactum is the continuous362?

image of a 0-dimensional perfect compactum?

Question 12 (∗). Does every non-metrizable perfect compactum contains a closed363?

subspace with uncountably many clopen sets?

2. Uncountable spaces

Call a space X functionally countable if every continuous real-valued function
defined on X has countable range.

Question 13 (∗). Is every first countable hereditarily functionally countable space364?

countable?

Question 14 (∗). Does every uncountable functionally countable subspace of a365?

countably tight compact space have an uncountable discrete subspace?

Obviously any uncountable hereditarily functionally countable space has count-
able spread, and a first countable example is a counterexample to the basis con-
jecture. Any uncountable left-separated subspace of a Souslin line is a consistent
example of such a space. Currently the only known ZFC example of an uncount-
able functionally countable space with no uncountable discrete subspace is Moore’s
L-space, which is hereditarily functionally countable. Assuming MAℵ1

, it is known
that there are no first countable L-spaces [25] and that any compactification of
an L-space maps continuously onto [0, 1]ω1 [8, 44A] (see [35, p. 68]). Under (∗),
any functionally countable first countable space of countable spread must be both
hereditarily Lindelöf and hereditarily separable, and any uncountable one would
also be a counterexample to the basis conjecture.

4(∗) may not necessarily be an optimal hypothesis for giving a positive solution to this
problem, since we cannot assume without loss of generality that the space has weight ℵ1. It
still seems likely, however, that a forcing axiom is an appropriate hypothesis to yield a positive
solution.
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Question 15. Is it consistent that every uncountable first countable space of 366?

countable spread either contains an uncountable subspace of the Sorgenfrey line
or has a countable network?

If a positive answer to this question is consistent with MAℵ1
, then this would

also give a positive answer to the basis question, since MAℵ1
implies that any

uncountable space with a countable network contains a uncountable separable
metrizable subspace [11]. As with the basis conjecture, under PFA [11] (or even
OCA [31]), this question has a positive in the class of cometrizable spaces, even
without the first countable assumption.

Question 15 is related to some other questions concerning when spaces have a
countable network. Recall that a subset Y of a space X is weakly separated if one
can assign to each y ∈ Y a neighborhood Uy of y such that y 6= z implies y 6∈ Uz

or z 6∈ Uy. Note that if X has a countable network, then X does not contain
an uncountable weakly separated subspace. The converse of this was asked by
Tkachenko [26]:

Question 16. Is it consistent that a space with no uncountable weakly separated 367?

subspace must have a countable network?

Unlike Question 15, this is open even in the non-first countable case. Todor-
cevic discusses this question in [31] and states without proof that under PFA, if
no finite power of a space X has an uncountable weakly separated subspace, then
X has a countable network. Juhasz, Soukup, and Szentmiklóssy [14] obtained the
same result under MAℵ1

for spaces of size and weight ≤ ℵ1. Note that it follows
that under PFA (under MAℵ1

for spaces of size and weight ≤ ℵ1), Question 15 and
Question 2 are equivalent.

The following also remain unsolved:

Question 17. (a) Is it consistent that X has a countable network if X2 has 368–369?

no uncountable discrete subspace? (b) What if Xω is hereditarily separable and
hereditarily Lindelöf?

Question 17(b) is an old question of Arhangel’skii [1]. Todorcevic [31] has
shown that there are cometrizable counterexamples to these questions, as well
as Question 16, as long as b 6= ω2. These questions are also open in the the
first countable case, and in that case, a positive answer to Question 15 with PFA

implies a positive answer to these as well.

3. Approaches, axiomatics, further reading

It should be emphasized that analysis of these problems would benefit greatly
from a combinatorial reformulation or approximation, particularly one which is
Ramsey theoretic in nature. If there are positive solutions, Todorcevic’s method
of building forcings with models as side conditions will likely provide the basic
framework. The standard source is [31]; further reading can also be found in [32]
and [33]. The methods of [20] can be considered as a continuation of this theme.
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In [34], Todorcevic has given positive answers to Fremlin’s question and the
basis problem in the rather broad class of spaces that can be represented as rel-
atively compact subsets of the class B1(X) of all Baire class 1 functions on some
Polish space X endowed with the topology of pointwise convergence. Compact
subsets of such B1(X) are sometimes called ‘Rosenthal compacta’ since one in-
terpretation of the famous Rosenthal `1-theorem says that the double dual ball
of a separable Banach space containing no copy of `1 equipped with the weak*
topology is one example of such a compactum. The class also contains the split
interval, the one point compactification of a discrete set of size at most 2ℵ0 , and
is closed under the operations of taking countable products and closed subspaces.
Todorcevic proves that if K is a Rosenthal compactum with no uncountable dis-
crete subspaces, then K is perfect and premetric of order at most 2; moreover, if
K is not metrizable, then it contains a full copy of the split interval.

Unlike the broader class of regular spaces, questions about Rosenthal com-
pacta can typically be settled in the framework of ZFC. The analysis in [34],
however, has a strong set theoretic theme and a number of the arguments pre-
sented there may give some insight into how to approach some of the problems
in this article. The reader may also find [37] and [36] informative in a similar
manner.

While a complete understanding of Woodin’s axiom (∗) is probably not nec-
essary for an analysis of these problems, it is worth making a few more remarks
about it. Axiom (∗) is the assertion that L(P(ω1)), is a generic extension of L(R)
by the Pmax forcing. Many questions in this article can be cast in the language of
H(ℵ+

1 ) — the collection of sets of hereditary cardinality at most ℵ1 — since it is
often possible to assume without loss of generality that the weight and possibly
the cardinality of the space is at most ℵ1. Furthermore, the assertions in the ques-
tions typically are Π2 in their complexity — they have a pair ∀X∃Y of unbounded
quantifiers followed by bounded quantification.5 The Pmax forcing has the effect of
making H(ℵ+

1 ) satisfy all Π2 sentences which are Ω-consistent. Being Ω-consistent
is a natural strengthening of “has a well founded model” — a precise definition
can be found in [40]. For our purposes it is sufficient to say that if a statement
can always be forced over any ground model with sufficient large cardinals, then
it is Ω-consistent. All the forcing axioms and nearly all consistency results in set
theoretic topology fit this description. Large cardinals are needed for the analysis
of Pmax but these can often be avoided in applications if one wishes to obtain
consistency results instead.

Another interesting property of the Pmax extension is its minimality. If G is
Pmax-generic over L(R) and X is any new element of H(ℵ+

1 ), then L(R)[X ] =
L(R)[G]. Since a C-sequence on ω1 can never be in L(R) under appropriate large
cardinal hypotheses, the Pmax extension is always of the form L(R)[C] where

5X usually takes the form of a space, Y usually takes the form of either a substructure (e.g.,
an uncountable discrete subspace) or a connecting map (e.g., an embedding from an canonical
space into X). The bounded quantification is usually made over the base and/or set of points
in X.
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C is some C-sequence on ω1.6 In this context, L(R) is a model in which the
Axiom of Choice fails and which satisfies strong Ramsey theoretic statements
(e.g., ω1 is measurable and in particular Ramsey’s theorem holds for ω1). This
gives a posteriori explanation as to the role of Todorcevic’s method of minimal
walks [30] in building counterexamples such as Moore’s L-space [21]. This method
involves an analysis of a number of two place functions which are recursively
defined on C-sequences. It is likely that this method will be useful in constructing
counterexamples related to the above questions. The reader is referred to [28] for
further information.

It also seems plausible that a hypothesis such as the following may be useful
in constructing an informative counterexample to some of these questions:

f: There are continuous fα : α→ ω (α < ω1) such that if E ⊆ ω1 is closed
and unbounded, then there is a δ in E such that fδ(E ∩ δ) = ω.

The object postulated by this axiom can naturally be used to strengthen the
combinatorial objects constructed using the method of minimal walks. Since quan-
tification is only over the closed unbounded filter, this axiom cannot be negated
by c.c.c. forcing and hence is consistent with MAℵ1

. It is even immune to Axiom A

forcings and many forcings built using models as side conditions (see, e.g., [31]).
It therefore cannot be used to construct, e.g., an S-space. It has been used to
construct a counterexample to Shelah’s basis conjecture for the uncountable lin-
ear orders [19]. Whether f can be used to construct a counterexample can, in
general, be used as a litmus test for whether the more involved methods pre-
sented in [20] are needed to eliminate counterexamples (as opposed to the more
user-friendly techniques of [31]). This axiom was also useful in constructing an
L-space which later was the prototype for the ZFC construction in [21].
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[1] A. V. Arhangel’skĭı, The structure and classification of topological spaces and cardinal in-
variants, Uspekhi Mat. Nauk 33 (1978), no. 6(204), 29–84, 272, Translated in: Russian
Math. Surveys 33 1978, 33–95.

[2] U. Avraham and S. Shelah, Martin’s axiom does not imply that every two ℵ1-dense sets of
reals are isomorphic, Israel J. Math. 38 (1981), no. 1-2, 161–176.

[3] D. K. Burke and S. W. Davis, Compactifications of symmetrizable spaces, Proc. Amer.
Math. Soc. 81 (1981), no. 4, 647–651.

[4] D. Daniel, J. Nikiel, L. B. Treybig, H. M. Tuncali, and E. D. Tymchatyn, On perfectly
normal compacta, Questions Answers Gen. Topology 23 (2005), no. 1, 1–14.

[5] V. V. Fedorchuk, Perfectly normal compact space without intermediate dimensions, Bull.
Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), no. 9, 975–979.

[6] V. V. Filippov, Perfectly normal bicompacta, Dokl. Akad. Nauk SSSR 189 (1969), 736–739.
[7] D. H. Fremlin, Notes on Martin’s Maximum, Unpublished notes.
[8] D. H. Fremlin, Consequences of Martin’s axiom, Cambridge Tracts in Mathematics, vol. 84,

Cambridge University Press, Cambridge, 1984.
[9] D. H. Fremlin, Problem list, 2005.

6A C-sequence (on ω1) is a sequence Cα (α < ω1) such that Cα is a cofinal subset of α and
if γ < α, then Cα ∩ γ is finite.



158 16. PERFECT COMPACTA AND BASIS PROBLEMS IN TOPOLOGY

[10] G. Gruenhage, On the existence of metrizable or Sorgenfrey subspaces, General topology
and its relations to modern analysis and algebra, VI (Prague, 1986), Heldermann Verlag,
Berlin, 1988, pp. 223–230.

[11] G. Gruenhage, Cosmicity of cometrizable spaces, Trans. Amer. Math. Soc. 313 (1989), no. 1,
301–315.

[12] G. Gruenhage, Perfectly normal compacta, cosmic spaces, and some partition problems,
Open problems in topology, North-Holland, Amsterdam, 1990, pp. 85–95.

[13] G. Gruenhage and P. J. Nyikos, Normality in X2 for compact X, Trans. Amer. Math. Soc.
340 (1993), no. 2, 563–586.
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Michael’s selection problem

Valentin Gutev and Tsugunori Nogura

For a T1-space X , let F(X) be the set of all non-empty closed subsets of X .
Usually, we endow F(X) with the Vietoris topology τV , and call it the Vietoris
hyperspace of X . Let us recall that τV is generated by all collections of the form

〈V〉 =
{
S ∈ F(X) : S ⊂

⋃
V and S ∩ V 6= ∅, whenever V ∈ V

}
,

where V runs over the finite families of open subsets of X .
Suppose that Φ: Y → F(X) is a map, usually called a set-valued mapping , or

a multi-map, and, sometimes, a multifunction. Once F(X) has been topologized,
Φ becomes a function between topological spaces, and it makes sense to talk about
its continuity and other topological properties. In 1951 Ernest Michael [28] raised
the following general question:

Question 1 (Michael, [28, Question 6.1]). When is it possible to find a continuous
f : Y → X, such that f(y) ∈ Φ(y) for all y ∈ Y (i.e., a selection for Φ)?

As he wrote in his paper [28], a sufficient condition for this to be possible is
that both the following hold: Φ is continuous, and there exists a “selection” from
F(X) to X . The problem is thus reduced to two simpler ones; the second of which
is concerned only with the space X , and has nothing to do with the space Y or
the function Φ. This second problem is now known as the Selection Problem for
Hyperspaces, and here we will mainly discuss different aspects of it.

In the sequel, all spaces are assumed to be infinite and at least Hausdorff, while
any subset D ⊂ F(X) will carry the relative Vietoris topology τV as a subspace
of the hyperspace F(X). A map f : D → X is a selection for D if f(S) ∈ S for
every S ∈ D. A selection f : D → X is continuous if it is continuous with respect
to the relative Vietoris topology τV on D. Sometimes, for reasons of convenience,
we also say that f is a Vietoris continuous selection for D to stress the attention
that f is continuous with respect to the topology τV .

For a subset D ⊂ F(X), we will use Sel [D] to denote the set of all Vietoris
continuous selections for D. Also, we will use the following special subsets of
F(X), where n ≥ 1.

Fn(X) = {S ∈ F(X) : |S| ≤ n},
[X ]n = {S ⊂ X : |S| = n},
C(X) = {S ∈ F(X) : S is compact}.

Note that we may identify X with the set [X ]1 = F1(X), and, in fact, X
is homeomorphic to the space (F1(X), τV ). The latter means that the Vietoris
topology is admissible, see [28].

161
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1. Weak selections and orderability

A space X is orderable (or linearly orderable) if the topology of X coincides
with the open interval topology on X generated by a linear ordering on X . A space
X is suborderable (or generalized ordered) if it can be embedded into an orderable
space. Following [34], we say that a space X is weakly orderable if there exists
a coarser orderable topology on X . In all these cases, we call the corresponding
linear order on X compatible for the topology of X , or, merely, a compatible order
for X . Finally, let us recall that a selection f : F2(X) → X is usually called a
weak selection for X .

Question 2 (van Mill and Wattel, [34]). Is a space X weakly orderable provided370?

it has a continuous weak selection f : F2(X)→ X?

The motivation for this question goes back to Eilenberg [8] and Michael [28].
Namely, every weak selection f : F2(X) → X generates a natural order-like re-
lation �f on X [28, Definition 7.1] by letting for x, y ∈ X that x �f y iff
f({x, y}) = x. For simplicity, we write that x ≺f y if x �f y and x 6= y.
Unfortunately, in general, this relation is not transitive, and, in fact, the clopen
subsets of X are an indication for the non-transitivity of �f , [20, Proposition 2.2].
Here are some particular classes of spaces for which Question 2 was resolved in
positive.

Connected spaces. In 1941 Eilenberg [8, Theorem I] proved that a con-
nected space X is weakly orderable iff the subset P (X) = {(x, y) ∈ X×X : x 6= y}
of its square X ×X , obtained by deleting the diagonal, is not connected. In fact,
he showed [8, (3.1)] that if X is connected, then P (X) has exactly two connected
components A and B such that Λ(A) = B, where Λ: P (X) → P (X) is defined
by Λ(x, y) = (y, x), (x, y) ∈ X ×X . Hence, a connected weakly orderable space
has precisely two compatible orders, which are inverse of each other. Relying on
these results, Michael [28, Lemma 7.1] proved that a connected space X is weakly
orderable iff Sel [F2(X)] 6= ∅ by showing that, in this case, the relation �f is a
compatible linear order on X for every f ∈ Sel [F2(X)]. Thus, in particular, a
connected weakly orderable space X has precisely two continuous weak selections
(i.e.,

∣∣Sel [F2(X)]
∣∣ = 2).

Locally connected spaces. Eilenberg [8, (8.1) and (8.2)] proved that a
connected and locally connected space X is orderable iff P (X) is not connected.
According to results of Michael [28, Lemmas 7.2 and 7.4], this implies that a
connected and locally connected space X is orderable iff Sel [F2(X)] 6= ∅. In
fact, Michael [28, Lemma 7.4] proved that a locally connected space X , with
Sel [F2(X)] 6= ∅, must be weakly orderable. Finally, Nogura and Shakhmatov [30,
Theorem 4 and Remark 16] proved that a locally connected space X is orderable
iff Sel [F2(X)] 6= ∅. They also demonstrated [30, Example 8] that there exists a
separable completely metrizable connected space X , which is not orderable, but
Sel [F(X)] 6= ∅ (hence, Sel [F2(X)] 6= ∅ as well).
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Compact spaces. Michael’s characterization of weakly orderable spaces [28]
implies that a connected compact space X is orderable iff Sel [F2(X)] 6= ∅.
The question if connectedness is essential for compact spaces has been raised
by van Douwen [32], and resolved by van Mill and Wattel [34, Theorem 1.1] by
proving that a compact space X is orderable iff Sel [F2(X)] 6= ∅.

Pseudocompact spaces. E.K. van Douwen [32, Theorem 1.2] proved that
a countably compact space X , with Sel [F2(X)] 6= ∅, must be sequentially com-
pact, hence, for these spaces, countable compactness is equivalent to sequential
compactness. On the other hand, van Mill and Wattel [35, Theorems 2.2 and 3.1]
proved that a Tychonoff space X is suborderable iff there exists an f ∈ Sel [F2(X)]
such that, for every p ∈ βX \X , f can be extended to a continuous weak selec-
tion for X ∪ {p} (i.e., f = g � F2(X) for some g ∈ Sel [F2(X ∪ {p})]), where
βX is the Čech–Stone compactification of X . Weak selections f ∈ Sel [F2(X)]
with this property were called locally uniform [35], and were characterized in an
inner manner as well (see [35, Theorem 2.2]). Finally, let us mention that, by [36,
Proposition 3.2], if βX is orderable, then X must be a pseudocompact normal
space (hence, countably compact as well), while, by Glicksberg’s theorem [15,
Theorem 3.1], β(X × X) = βX × βX for every Tychonoff space X for which
X × X is pseudocompact. On this base, it was obtained in [4, Theorem 1.16]
(using direct arguments) and in [29, Theorem 2.1] (relying on Glicksberg’s the-
orem mentioned above) that βX is orderable iff X × X is pseudocompact and
Sel [F2(X)] 6= ∅. Finally, solving [4, Problems 5.1 and 5.2], Garćıa-Ferreira and
Sanchis [14, Theorem 2.3] proved that X×X is pseudocompact if X is itself pseu-
docompact and Sel [F2(X)] 6= ∅, hence βX is orderable (and X suborderable) iff
X is a pseudocompact space, with Sel [F2(X)] 6= ∅. Thus, by [4, Proposition 1.19],
every pseudocompact space, with Sel [F2(X)] 6= ∅, must be sequentially compact.

Countable spaces. It was proved in [13, Theorem 3.1] that a countable
space X is weakly orderable iff it has a continuous weak selection, while, by [13,
Example 3.6], there exists a non-regular countable space X , with Sel [F(X)] 6= ∅.

Going back to Question 2, it should be mentioned that local compactness
and local connectedness are equivalent for connected weakly orderable spaces [4,
Proposition 1.18] (see, also [8]). From this point of view, we have the following
particular question for locally compact spaces.

Question 3 ([23]). Let X be a locally compact space, with Sel [F2(X)] 6= ∅. Then, 371?

is X weakly orderable?

Related to Question 3, it was constructed in [4, Theorem 4.6] (under the
Diamond Principle) a monotonically normal, locally compact and locally countable
space X which is not suborderable, but Sel [F(X)] 6= ∅ (hence, Sel [F2(X)] 6= ∅
as well).

E. Michael [28, Lemma 7.5.1] proved that Sel [C(X)] 6= ∅ for every weakly
orderable space X . Hence, if the answer to Question 2 is in positive, then
Sel [F2(X)] 6= ∅ should imply that Sel [C(X)] 6= ∅ (and, in particular, that
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Sel [Fn(X)] 6= ∅ for every n > 2). This was the reason for the following ques-
tion.

Question 4 ([23]). Does there exist a space X such that Sel [F2(X)] 6= ∅, but372?

Sel [Fn(X)] = ∅ for some n > 2?

Clearly, a positive solution to Question 4 will imply a negative solution to
Question 2, however Question 4 is open even when n = 3. Related to this, it was
obtained in [12, Corollary 4.1] that Sel [F3(X)] 6= ∅ provided Sel [F2(X)] 6= ∅
and Sel

[
[X ]3

]
6= ∅. One of the main obstacles in this particular case is that a

selection f ∈ Sel [F2(X)] may generate a triple of distinct points x, y, z ∈ X such
that

· · · ≺f z ≺f x ≺f y ≺f z ≺f . . .

where ≺f is the order-like relation corresponding to f . This may explain the
hypothesis “Sel

[
[X ]3

]
6= ∅” in the mentioned result of [12]. Further, since every

weak selection for X is continuous on the singletons of X (see, for instance, [23,
Proposition 1.4]), we always have that Sel [F2(X)] 6= ∅ provided Sel

[
[X ]2

]
6= ∅.

Motivated by this, the following question was asked in [12].

Question 5 ([12]). Let X be a space such Sel [Fn(X)] 6= ∅ and Sel
[
[X ]n+1

]
6= ∅373?

for some n ≥ 3. Then, is it true that Sel [Fn+1(X)] 6= ∅?

On the other hand, using methods of Graph Theory and Flows in Networks, it
was obtained in [26, Theorem 4.1] that Sel [F4(X)] 6= ∅ provided Sel [F3(X)] 6= ∅.
Hence, the following question is also of a particular interest.

Question 6. Let X be a space such that Sel [F2n+1(X)] 6= ∅ for some n ≥ 2.374?

Then, is it true that Sel [F2n+2(X)] 6= ∅?

A somewhat different approach to Question 2 was applied in [20]. Namely,
if X is weakly orderable and T is the topology on X , then there should exist an
ordered topology T∗ on X , with T∗ ⊂ T , and, clearly, X has a continuous weak
selection with respect to T∗ (when X is endowed with T∗, and F2(X) with the
Vietoris topology generated by T∗). On the other hand, by [20, Corollary 3.2],
if T is the topology on a space X and f ∈ Sel [F2(X)], then f is continuous

with respect to any topology T̃ , which is finer than T . Finally, going back to
Eilenberg [8, (7.1)], given an ordered set (X,�), among all topologies on X which
lead to a weakly orderable space with respect �, there is a coarsest one. Motivated
by this, the following question was asked in [20].

Question 7 ([20]). Let X be a space, f ∈ Sel [F2(X)], and let T be the topology375?

on X. Does there exist a topology T∗ ⊂ T on X such that f is continuous with
respect to T∗, and T∗ is the coarsest topology on X with this property?

For a selection f ∈ Sel [F2(X)], the relation �f generates a natural “f -open
interval” topology Tf on X [20], which was called a selection topology. The
selection topology Tf is always a regular topology on X [25, Corollary 2.3], and
always Tf ⊂ T [20, Theorem 3.5], where T is the original topology on X . Thus,
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the selection topology Tf is coarser than any topology on X with respect to which
f is continuous, hence it was a possible candidate for a solution to Question 7.
However, there exists a space X and f ∈ Sel [F2(X)] such that f is not continuous
with respect to Tf , [20, Example 3.6] and [25, Theorem 4.1].

Clearly, if X is a compact space, with Sel [F2(X)] 6= ∅, and T is the topol-
ogy on X , then Tf = T for every f ∈ Sel [F2(X)]. According to Eilenberg [8]
and Michael [28], the same is true if X is connected and locally connected, and
Sel [F2(X)] 6= ∅. However, this fails for locally connected spaces [25, Example 3.6];
for connected spaces [25, Example 3.7]; also for sequentially compact spaces [25,
Example 3.12], which was behind the motivation for the following question.

Question 8 ([25]). Does there exist a space X, with Sel [F2(X)] 6= ∅, which 376?

is neither compact nor connected and locally connected, but Tf = T for every
f ∈ Sel [F2(X)], where T is the topology on X?

2. Topological well-ordering and selections

There is a principal difference between continuous selections for F2(X) and
continuous selections for F(X). According to van Mill and Wattel [34, Theo-
rem 1.1], for a compact space X , we have that Sel [F(X)] 6= ∅ iff Sel [F2(X)] 6= ∅.
However, this is not true even for spaces which are both connected and locally
connected. Indeed, it was shown in [9, Proposition 5.1] that Sel [F(R)] = ∅,
while Sel [C(R)] 6= ∅ because R is an ordered space [28, Lemma 7.5.1]. In fact,
Michael [28, Lemma 7.3] proved that if X is a connected space and f ∈ Sel [F(X)],
then X is not only weakly orderable with respect to the linear order �f on X , but
f(F ) is the �f -first element of F for every closed set F ∈ F(X). Such selections
f were called monotone in [20], and were characterized topologically with the
property that if G,F ∈ F(X) and f(F ) ∈ G ⊂ F , then f(G) = f(F ). On the
other hand, an ordered space Z with the property that every non-empty closed
subset of Z has a first element is called topologically well-ordered [9]. Clearly,
every compact ordered space is topologically well-ordered, while by the mentioned
Michael’s result, if X is connected and f ∈ Sel [F(X)] 6= ∅, then X is topolog-
ically well-ordered with respect to the open interval topology generated by �f .
In fact, X must have a stronger property because, by [28, Lemma 7.3], every
non-empty closed (with respect to the original topology on X) subset of X must
have a �f -first element. Indeed, it was demonstrated in [20, Example 5.3] that
there is a connected separable metrizable space X and a linear order � on X such
that Sel [F(X)] = ∅, but the ordered topology on X generated by � is coarser
than the original topology of X , and X equipped with this topology is a topolog-
ically well-ordered space. This led to the following concept in [20]: A space X is
Sorgenfrey well-orderable if there exists a linear order � on X such that

(i) the ordered topology T� is coarser that the original topology T of X ,
(ii) X is topologically well-ordered with respect to T�,

(iii) if x ∈ X and x ≺ sup�X , then for every T -neighbourhood V of x there
exists a point y ∈ X such that x ≺ y and {z ∈ X : x � z ≺ y} ⊂ V .



166 17. MICHAEL’S SELECTION PROBLEM

Question 9. Let X be a space, with Sel [F(X)] 6= ∅. Then, is X Sorgenfrey377?

well-orderable?

The following may be useful considering this question:

• By [20, Theorem 5.1] (see, also, [28, Lemma 7.5.1]), Sel [F(X)] 6= ∅
provided X is Sorgenfrey well-orderable;

• By [34, Theorem 1.1], a compact space X is orderable (hence, Sorgenfrey
well-orderable) iff Sel [F(X)] 6= ∅;

• By [20, Theorem 5.1] and [28, Lemmas 7.3 and 7.5.1], a connected space
X is Sorgenfrey well-orderable iff Sel [F(X)] 6= ∅;

• By [28, Lemmas 7.4 and 7.5.1] and [30, Theorem 4], a locally connected
spaceX is topologically well-orderable (hence, Sorgenfrey well-orderable)
iff Sel [F(X)] 6= ∅.

Motivated by the pseudocompact case (recall, every pseudocompact space X ,
with Sel [F2(X)] 6= ∅, is weakly orderable and sequentially compact), the following
particular question is also of a certain interest.

Question 10. Let X be a sequentially compact space, with Sel [F(X)] 6= ∅. Then,378?

is X Sorgenfrey well-orderable?

The topologically well-ordered spaces are a natural generalization of ordinal
spaces, hence the selection problem for them is naturally related to that one of
ordinal spaces. Recently, topologically well-ordered spaces and ordinal spaces
were successfully characterized also in terms of continuous selections for the Fell
hyperspace topology ; for these and related results, also some further open problems,
we refer the interested reader to [1, 2, 3, 10, 11, 17, 22].

3. Selections and disconnectedness-like properties

One of the main problems that remains to be dealt with is about selections for
the Vietoris hyperspace on spaces that may have many clopen sets. The cardinality
of Sel [F(X)] may provide some information for this, but mainly when it is finite.
Suppose that X is a space, with Sel [F(X)] 6= ∅. The following hold:

• If X is connected, then
∣∣Sel [F(X)]

∣∣ ≤ 2, [28, Lemmas 7.2 and 7.3];
• The set Sel [F(X)] is finite if and only if X has finitely many connected

components, [31, Theorem 1];
• If X is infinite and connected, then

∣∣Sel [F(X)]
∣∣ = 2 if and only if X is

compact, [30, Theorem 1].

For some other relations between the cardinality of Sel [F(X)] and X , we refer
the interested reader to [13, 30, 31].

On the other hand, all known selection constructions are based on some ex-
treme principle, and our knowledge about particular members of Sel [F(X)] is at
present mainly reduced to this. Here are some results about such extreme-like
selections for the Vietoris hyperspace on spaces X , with Sel [F(X)] 6= ∅:

• If X is zero-dimensional, then the set
{
f(X) : f ∈ Sel [F(X)]

}
is dense

in X , [21, Theorem 1.3];
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• If the set
{
f(X) : f ∈ Sel [F(X)]

}
is dense in X , then X is totally

disconnected, [21, Theorem 1.5];
• If for every point x ∈ X there exists an fx ∈ Sel [F(X)], with f−1

x (x) =
{S ∈ F(X) : x ∈ S}, then X is zero-dimensional, see the proof of [21,
Theorem 1.4];

• If X is first countable and zero-dimensional, then for every x ∈ X there
exists an fx ∈ Sel [F(X)], with f−1

x (x) = {S ∈ F(X) : x ∈ S}, [21,
Theorem 1.4];

• If X is separable, then it is first countable and zero-dimensional iff for
every x ∈ X there exists an fx ∈ Sel [F(X)], with f−1

x (x) = {S ∈ F(X) :
x ∈ S}, [13, Theorem 3.5] and [21, Theorem 1.4];

• If X is countable, then it is metrizable and scattered iff for every x ∈ X
there exists an fx ∈ Sel [F(X)], with f−1

x (x) = {S ∈ F(X) : x ∈ S}, [13,
Theorem 3.5].

Recall that a space X is totally disconnected if each singleton of X is the
intersection of clopen subsets of X ; also that X is zero-dimensional if it has a base
of clopen sets (i.e., if ind(X) ≤ 0, where ind(X) is the small inductive dimension
of X). Here are a few actual questions motivated by these results.

Question 11 ([21]). Does there exist a space X which is not zero-dimensional, 379?

but the set
{
f(X) : f ∈ Sel [F(X)]

}
is dense in X?

Question 12 ([23]). Let X be a totally disconnected space, with Sel [F(X)] 6= ∅. 380?

Is the set
{
f(X) : f ∈ Sel [F(X)]

}
dense in X?

Related to these problems, recall that a collection P of open subsets of a
space X is a π-base for X if every non-empty open subset U ⊂ X contains some
non-empty V ∈ P . Recently, it was proved in [18, Theorem 2.1] that if X is a
space, with Sel [F(X)] 6= ∅, then the set

{
f(X) : f ∈ Sel [F(X)]

}
is dense in X

iff X has a clopen π-base. In particular, if X is a space, with a clopen π-base and
Sel [F(X)] 6= ∅, then it must be totally disconnected, [18, Corollary 2.3]. This
gives rise to the following alternative reading of Question 12.

Question 13. Let X be a totally disconnected space, with Sel [F(X)] 6= ∅. Then,
is it true that X has a clopen π-base?

The above questions are especially interesting concerning the Selection Prob-
lem for the Vietoris hyperspace on homogeneous spaces X , with Sel [F(X)] 6= ∅.
Namely, for such spaces X , we have that X =

{
f(X) : f ∈ Sel [F(X)]

}
. This was

used in [18, Corollary 3.2] to show that if X is a homogeneous metrizable space,
with Sel [F(X)] 6= ∅, then X must be zero-dimensional; and in [18, Corollary 3.3]
to show that if, in addition, X is also separable, then Sel [F(X)] 6= ∅ iff X is
a discrete space, or a discrete sum of copies of the Cantor set, or the irrational
line. Hence, a separable homogeneous metrizable space X , with Sel [F(X)] 6= ∅,
must be strongly zero-dimensional and orderable. Here, a space X is strongly
zero-dimensional if its covering dimension dim(X) is at most zero.
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Question 14. Does there exist a homogeneous metrizable space X such that381?

Sel [F(X)] 6= ∅, but X is not orderable?

A zero-dimensional orderable metrizable space X must be also strongly zero-
dimensional, while, by a result van Mill, Pelant and Pol [33], a metrizable space
X must be completely metrizable provided Sel [F(X)] 6= ∅. Finally, according
to [6, 9], Sel [F(X)] 6= ∅ for every completely metrizable strongly zero-dimensional
space. Thus, we have also the following natural question.

Question 15 ([23]). Does there exist a zero-dimensional completely metrizable382?

space X such that dim(X) 6= 0 and Sel [F(X)] 6= ∅?

Concerning metrizable spaces, the interested reader is also referred to [5,
7, 16, 19] for some further questions about the Selection Problem on metric-
generated hyperspace topologies.

Going back to Question 14, another aspect is to look for properties that follow
from orderability, and to see which of them may depend on continuous selections.
Clearly, ind(X) ≤ 1 for every orderable space X , which leads us to the following
natural question (see, [23]).

Question 16. Let X be a space, with Sel [F(X)] 6= ∅. Then, is it true that383?

ind(X) ≤ 1?

Recently, it was established in [27] that, for every n < ω, there exists a Polish
space Xn (i.e., separable and completely metrizable) such that dim(Xn) = n and
Sel [C(Xn)] 6= ∅; also that there exists a strongly infinite-dimensional Polish space
X , with Sel [C(X)] 6= ∅. In fact, all these results are based on natural examples of
totally disconnected spaces of arbitrary covering dimension. On the other hand, it
was obtained in [27], that Sel [Fn(X)] 6= ∅ for every second countable totally dis-
connected space X , but we don’t know if this result can be extended to selections
for C(X).

Question 17. Let X be a second countable totally disconnected space. Then, is384?

it true that Sel [C(X)] 6= ∅?

Another natural class of homogeneous spaces is given by topological groups.
Below we summarize some of the results in this direction:

• A pseudocompact topological group G, with a continuous weak selection,
is either finite, or topologically homeomorphic to the Cantor set, [4,
Corollary 1.27] (for an alternative proof in the compact case, see [24,
Corollary 5.6]);

• If G is a locally pseudocompact topological group, with a continuous
weak selection, then it is locally compact, metrizable, and orderable, [4,
Theorem 1.25];

• A topological group G, with Sel [F(G)] 6= ∅, is zero-dimensional and
metrizable iff there exists a selection f ∈ Sel [F(G)] such that f−1(p) =
{S ∈ F(G) : p ∈ S} for some (any) p ∈ G, [24, Corollary 5.5];
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• A locally compact topological group G is totally disconnected and order-
able iff Sel [F(G)] 6= ∅, [18, Corollary 3.4].

Motivated by these results, we have also the following question.

Question 18. Characterize those topological groups G which admit continuous 385?

selections for F(G). In particular, is it true that a topological group G is zero-
dimensional provided Sel [F(G)] 6= ∅?
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[12] S. Garćıa-Ferreira, V. Gutev, and T. Nogura, Extensions of 2-point selections, New Zealand

J. Math. (2006), Accepted for publication.
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Efimov’s problem

Klaas Pieter Hart

Introduction

In their memoir [1, p. 54] Alexandroff and Urysohn asked “existe-il un espace
compact (bicompact) ne contenant aucun point (κ)?” and went on to remark “La
resolution affirmative de ce problème nous donnerait une exemple des espaces com-
pacts (bicompacts) d’une nature toute differente de celle des espaces connus jusqu’à
présent”. The ‘compact’ of that memoir is our countably compact, ‘bicompact’
is ‘compact Hausdorff ’ and a κ-point is one that is the limit of a non-trivial con-
vergent sequence. A look through the examples in [1] will reveal a few familiar
classics: the ordinal space ω1 and the corresponding Long line, the double circum-
ference, the Tychonoff plank (in disguise), the lexicographically ordered square,
and the Double Arrow space. The geometric nature of the constructions made
the introduction of non-trivial convergent sequences practically unavoidable and
it turns out that the remark was quite correct as we will see below.

The question was answered by Tychonoff [15] and Čech [3] using the very
same space, though their presentations were quite different. Tychonoff took for
every x ∈ (0, 1) its binary expansion 0.a1(x)a2(x) . . . an(x) . . . (favouring the one
that ends in zeros), thus creating a countable set

{
an : n ∈ N

}
of points in the

Tychonoff cube [0, 1](0,1), whose closure is the required space. Čech developed
what we now call the Čech–Stone compactification, denoted βX , of completely
regular spaces and showed that βN, where N is the discrete space of the natural
numbers, has no convergent sequences.

A natural question is whether one has to go to such great lengths to construct
a compact Hausdorff space without convergent sequences. This then is Efimov’s
problem, raised in [7].

Efimov’s problem. Does every infinite compact Hausdorff space contain either 386?

a non-trivial convergent sequence or else a copy of βN?

It should be noted that Efimov raised his problem not in the context sketched
above but as part of a program to determine when Čech–Stone compactifications
of discrete spaces were embeddable in certain compact Hausdorff spaces.

For the rest of this note all convergent sequences will be assumed to be non-
trivial, so that adjective will not be used. Basic information about βN may be
found in [6].

1. Attacking the problem

Efimov’s problem may of course be cast in the form of an implication: If a
compact Hausdorff space does not contain any convergent sequences must it then
contain a copy of βN?

171
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Let us consider an infinite compact Hausdorff space X that does not contain
any convergent sequences. As any infinite Hausdorff space, it does contain an
infinite relatively discrete subspace; we take a countably infinite subset of that
subspace and identify it with N. The sequence 〈n〉n does not converge, so we can
take two distinct accumulation points, x0 and x1, of N. Take neighbourhoods U0

and U1 of x0 and x1 respectively with disjoint closures and put A0 = U0 ∩ N and
A1 = U1 ∩ N. Thus we find that in an infinite compact Hausdorff space with-
out convergent sequences every countably infinite discrete subset has two infinite
subsets with disjoint closures. To get a copy of βN one should construct an infi-
nite discrete subset with the property that any two disjoint subsets have disjoint
closures. To appreciate how difficult this may be we continue our construction.

We have our two disjoint subsets of N with disjoint closures. We iterate the
procedure above and determine, recursively, a family {As : s ∈ <ω2}, where <ω2 is
the binary tree of finite sequences of zeros and ones, that satisfies

• if s ⊆ t then At ⊆ As, and
• clAs∗0 ∩ clAs∗1 = ∅.

Using this family one defines, for every point x in the Cantor set ω2, a closed set
Fx =

⋂
n clAx�n. By construction the (nonempty) closed sets Fx are disjoint and

we see that the cardinality of X must be at least c. In fact, with some care one
can arrange matters so that

• F =
⋃

x Fx is closed, and
• mapping the points of Fx to x gives a continuous map from F onto ω2.

Using the Tietze–Urysohn theorem one can employ this map to obtain a continuous
surjection from X onto the unit interval I or even the Hilbert cube ωI. As we will
see below what is needed is a continuous map onto the Tychonoff cube cI; however,
näıvely, the Hilbert cube is best possible. Though the construction above can be
continued for (at least) ω1 many steps to show that N has at least 2ℵ1 many
accumulation points, the examples below show that it will not necessarily yield a
map onto the next cube ω1I.

To get a copy of βN inside X more is needed, as Efimov himself established
in [7] when he characterized the spaces that do contain such a copy. On the one
hand the space βN admits a continuous map onto the Cantor cube c2 and thence
onto the Tychonoff cube cI; the Tietze–Urysohn theorem may then be applied
to produce a continuous map from the ambient space onto this cube. On the
other hand assume that X maps onto cI. Since the cube contains a copy of βN, a
standard argument produces a closed subset F of X and an irreducible map from
F onto βN. Because βN is extremally disconnected this map is a homeomorphism.

It follows that the following statements about a compact Hausdorff X are
equivalent:

(1) X contains a copy of βN,
(2) X maps onto cI,
(3) some closed subset of X maps onto c2, and
(4) there is a dyadic system

{
〈Fα,0, Fα,1〉 : α < c

}
of closed sets in X .
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The dyadic system satisfies, by definition,

• Fα,0 ∩ Fα,1 = ∅ for all α, and
• ⋂α∈dom p Fα,p(α) 6= ∅, whenever p is a finite partial function from c to 2.

To deduce (4) from (3) simply set Fα,i = f←
(
π←α (i)

)
, where f is the map onto c2

and πα is the projection onto the αth coordinate. Conversely, this same formula
implicitly defines a continuous map from

⋂
α<c(Fα,0 ∪ Fα,1) onto c2.

In [14] Shapirovskĭı added another condition to this list: there is a closed
set F such that πχ(x, F ) ≥ c for all points of F . Here πχ(x, F ) is the π-character
of x (in F ): the minimum cardinality of a family U of non-empty open sets such
that every neighbourhood of x contains an elements of U (the elements of U need
not be neighbourhoods of x).

2. Counterexamples

There are several consistent counterexamples to Efimov’s problem. This of
course precludes an unqualified positive answer and leaves us with two possibilities:
a real, ZFC, counterexample or the consistency of a positive answer.

Here is a list of the better-known counterexamples.

(1) For every natural number n there is a compact Hausdorff space Xn with
the property that every infinite closed subset has covering dimension n.
As both the convergent sequence and βN are zero-dimensional neither
can be a subspace of Xn. This example was constructed by Fedorčuk
in [9] using the Continuum Hypothesis (CH).

(2) Another example, this time with the aid of ♦, was constructed by Fe-
dorčuk in [10]. The space is a compact S-space of size 2c without con-
vergent sequences. As βN is not hereditarily separable it cannot be
embedded into this space.

(3) Yet another counterexample was constructed by Fedorčuk in [11] using
a principle he called the Partition Hypothesis. In present day terms this
is the conjunction of s = ℵ1 and 2ℵ0 = 2ℵ1 . Here s is the splitting
number , the minimum cardinality of a splitting family , that is, a family
S of subsets of N such that for every infinite subset A of N there is S ∈ S
such that both A ∩ S and A \ S are infinite. Fedorčuk’s principle holds
in the Cohen model. The title of [11] makes it completely clear why this
is a counterexample to Efimov’s question: no convergent sequences and
the space is simply too small to contain βN.

(4) In [5] Dow weakened Fedorčuk’s hypothesis substantially, at the cost of
a more elaborate construction, to the conjunction of cf

(
[s]ℵ0 ,⊂

)
= s

and 2s < 2c. The former equality says that there are s many countable
subsets of s so that each countable subset of s is contained in one of
them.

All four counterexamples arise as limits of suitable inverse systems, where at each
stage some or all convergent sequences are dealt with. In the first two construc-
tions the CH allows one to do some (clever) bookkeeping so that every potential
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convergent sequence in the limit is dealt with at some intermediate stage. In the
third and fourth example the inverse system is ω1 long but at every stage all con-
vergent sequences in the space constructed that far are dealt with; the cofinality
assumption on s enables one to do this by splitting just s objects. The final space
then has at most 2s points, so that the power assumption prevents βN from being
a subspace.

A simpler version of the third space was given by van Douwen and Fleissner
in [16] using 2ℵ0 = 2ℵ1 plus a version of s = ℵ1 for the Cantor set ω2: there
should be a family {Uα : α < ω1} of open sets such that for every convergent
sequence s there is an α for which s∩Uα and s\clUα are infinite. This example is
indeed simpler than the others: after copying the sets Uα to each cube β2 (where
ω ≤ β < ω1) one can simply write down a formula for the example, as a subspace
of the Cantor cube ω12. Indeed, choose, for each β ≥ ω, a homeomorphism
hβ : ω2→ β2 and, for all α, put Uβ,α = hβ[Uα]. Furthermore let b : ω1 × ω1 → ω1

be a bijection with the property that b(α, β) = γ implies β ≤ γ. Now the space
X is the subspace of ω12 consisting of those points x that satisfy

x
(
b(α, β)

)
= 0 implies x � β ∈ clUβ,α and

x
(
b(α, β)

)
= 1 implies x � β ∈ clVβ,α

where Vβ,α = β2 \ clUβ,α.

3. Is there still a problem?

The condition cf
(
[s]ℵ0 ,⊂

)
= s in used in Dow’s example is quite weak; indeed,

if it were false an inner model with a measurable cardinal would have to exist.
This is explained in [12]: if there is any cardinal κ of uncountable cofinality for
which cf

(
[κ]ℵ0 ,⊂

)
> κ then the Covering Lemma fails badly: not just for L but

for any inner model that satisfies the Generalized Continuum Hypothesis.
One might therefore be tempted to conclude that Efimov’s problem is all but

solved, especially in the absence of large cardinals. However, that completely
disregards the necessary inequality 2s < 2c; without it the guarantee that the
example does not contain βN is gone. We are thus lead to consider situations
where 2s = 2c, or even s = c. The best-known of these is of course when Martin’s
Axiom (MA) holds and, indeed, it is not (yet) known what the effect of MA+¬CH

(or even PFA) is on Efimov’s problem.

Question 1. Does MA + ¬CH (or PFA) imply that a compact Hausdorff space387?

without convergent sequences contains a copy of βN?

As noted above, this is equivalent to asking whether such a space admits a
continuous map onto cI. Also, as shown below, under MA every countable and
discrete subset of a compact Hausdorff space without convergent sequences has
2c accumulation points. As such a space does admit a continuous map onto ωI
and considering the adage “MA makes cardinals below c countable”, it may be
worthwhile to investigate the following weaker question first.
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Question 2. Does MA + ¬CH (or PFA) imply that a compact Hausdorff space 388?

without convergent sequences maps onto ω1I or even onto each cube κI for κ < c?

In case Question 1 has a positive answer it becomes of interest how much of
MA is actually needed. The equalities s = c and t = c seem to suggest themselves
as possible candidates; the former by the rôle of 2s < 2c in the examples of
Fedorčuk and Dow and the latter by the fact, shown below, that a countable
discrete set in a compact Hausdorff space without convergent sequences has at
least 2t accumulation points. The meaning of t will be explained below.

In the CH-type constructions mentioned in Section 2, where one deals with
one convergent sequence at a time, the preferred thing to do is to blow up the
limit to a larger set, every point of which will be an accumulation point of the
sequence. The most frugal thing to do would be to split the limit into just two
points. This is called a simple extension and an inverse limit construction where
at each step one performs a simple extension never leads to a space that can be
mapped onto ω1I unless the initial space in the system already does so. In Boolean
algebraic form this result is due to Koppelberg [13]; in [5] one finds a topological
proof and the following question. The definition of ‘simple extension’ in [5] does
not mention the two-point limitation but it is used in the proof.

Question 3. Is it consistent that every such simple inverse limit contains a con- 389?

vergent sequence? Does PFA imply this?

4. Larger cardinals

In [7] Efimov considered the general problem of characterizing when a space
contains a copy of βκ, where κ is any infinite cardinal with the discrete topology.
The characterization of embeddability of βN given by Efimov as discussed in Sec-
tion 1 remains valid in the general situation, as does Shapirovskĭı’s characterization
of being able to map a space onto a Tychonoff cube of a given weight.

Many generalizations of Efimov’s problem suggest themselves but they will
never be as succinct as the original question. Given an uncountable cardinal κ an
audacious question would be: Does every compact Hausdorff space contain either
the Alexandroff (one-point) compactification ακ of κ or a copy of βκ?

This would also be a foolish question: an arbitrary compact Hausdorff space
need not contain a relatively discrete subset of cardinality κ. A better question
would therefore be

Question 4. Does every large enough compact Hausdorff space contain either the 390?

Alexandroff compactification ακ of κ or else a copy of βκ?

This of course begs the question what ‘large enough’ should mean. Therefore
one should first investigate for what class of spaces Question 4 actually makes
sense. The answer will have to involve some kind of structural description of ‘large
enough’ because for every cardinal κ the ordinal space κ+ 1 contains neither αω1

nor βω1, so that size alone does not seem to matter.
Efimov’s question is a structural question in disguise: if a compact Hausdorff

space does not contain a convergent sequence then can one find a dyadic system
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of cardinality c? One may disregard the structural part and concentrate on the
cardinality part only to get a weaker version of Efimov’s question:

Question 5. If in a compact Hausdorff space every countable and discrete set has391?

more than one accumulation point must there be such a set with 2c accumulation
points?

The näıve construction from Section 1 shows that one always gets at least 2ℵ1

accumulation points and, näıve though it may be, it does show that the answer to
this question is positive under MA: one gets a family {Fs : s ∈ <c2} of closed sets
indexed by the complete complete binary tree of height c and such that always
Fs∗0 ∩ Fs∗1 = ∅; in this way one obtains a pairwise disjoint family {Fx : x ∈ c2}
of nonempty closed sets, all contained in the derived set of the initial countable
and discrete set. To be precise, the construction can be continued all the way up
to the cardinal t, which is, by definition, the minimum cardinal κ for which there
is a sequence 〈Aα : α < κ〉 of infinite subsets of N such that Aα ⊂∗ Aβ whenever
β < α but for which no infinite set A exists with A ⊂∗ Aα for all α. This shows,
as promised above, that the discrete set has at least 2t accumulation points.

One cannot simply copy Question 5 to larger cardinals: if α is a compact
ordinal space and D a (discrete) subset of uncountable size κ then D has κ many
accumulation points. However, we can build the partial result on Question 5 into
its translation. The strongest version that we get is the following.

Question 6. Let κ be an infinite cardinal. For what compact Hausdorff spaces X392?

is the following implication valid? If
∣∣Dd

∣∣ > κ for all discrete subsets of size κ

then
∣∣Dd

∣∣ ≥ 22κ

for some discrete subset of size κ.

Here Dd denotes the set of accumulation points of D. Various (weaker) ver-
sions of this question can be obtained by inserting

∣∣Dd
∣∣ ≥ λ in the antecedent and∣∣Dd

∣∣ ≥ µ into its consequent for cardinals λ and µ that satisfy κ < λ < µ ≤ 22κ

.
A related notion was defined by Arkhangel′skĭı in [2]: denote by g(X) the

supremum of cardinalities of closures of discrete subsets of the spaceX ; Arkhangel′skĭı
asked whether g(X) = |X | for compact Hausdorff spaces. The following question
combines this with a sup = max problem.

Question 7. When does a compact Hausdorff space X have a discrete subset D393?

such that |clD| = |X |?

Efimov [8] showed that this is true for dyadic spaces (provided every inac-
cessible cardinal is strongly inaccessible); in [4] Dow shows that relatively small
(cardinality at most ℵω) compact Hausdorff spaces of countable tightness do have
such discrete subsets and also gives some consistent examples of compact Haus-
dorff spaces X of cardinality ℵ2 with g(X) ≤ ℵ1.

Acknowledgement. Thanks to Alan Dow for his help in improving some of the
questions raised in this note.
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Completely separable MAD families

Michael Hrušák and Petr Simon

An infinite family A ⊆ [ω]ω is almost disjoint if any two of its distinct elements
have finite intersection. A family A is maximal almost disjoint (MAD) if it is
almost disjoint and for every X ∈ [ω]ω there is an A ∈ A such that A ∩ X is
infinite.

There are almost disjoint (hence also MAD) families of cardinality c and many
MAD families with special combinatorial and/or topological properties can be
constructed using set theoretic assumptions like CH, MA or b = c. However,
special MAD families are notoriously difficult to construct in ZFC alone. The
reason being the lack of a device ensuring that a recursive construction of a MAD
family would not prematurely terminate, an object that would serve a similar
purpose as independent linked families do for the construction of special ultrafilters
(see [15]). The notion of a completely separable MAD family is a candidate for
such a device and, moreover, is an interesting notion in its own right.

MAD families provide a powerful tool for topological constructions. Not only
for the study of βN \ N—the Čech–Stone remainder of the discrete countable
space ([2], [1]) but also, typically via the corresponding Ψ-space [8], the study of
convergence properties of topological spaces [6], [21].

1. The main problem

The notion of completely separable MAD family was introduced by S.H. Hech-
ler [9] in 1971:

Definition. An infinite MAD family A on ω is completely separable if for every
subset M ⊆ ω either there is an A ∈ A with A ⊆M or there is a finite subfamily
B ⊆ A with M ⊆ ⋃B.

A year later, P. Erdős and S. Shelah asked the central problem of this article:

Problem 1. Does there exist a completely separable MAD family in ZFC? 394?

A MAD family A on ω is of true cardinality c if for every subset M ⊆ ω the
set {A ∈ A : |M ∩ A| = ω} is either finite or of size c. It is easily seen that every
completely separable MAD family is of true cardinality c. On the other hand, the
existence of a MAD family of true cardinality c readily implies the existence of a
completely separable MAD family.

An almost disjoint family A is nowhere MAD if for every X ⊆ ω either
X ⊆∗ ⋃B for some finite B ⊆ A or there is a B ∈ [X ]ω almost disjoint from all
elements of A. Given a cardinal number κ, a MAD family A is κ-partitionable if

The first listed author gratefully acknowledges support received from a CONACyT
grant 46337-F and a PAPIIT grant IN106705

179



180 19. COMPLETELY SEPARABLE MAD FAMILIES

A can be partitioned into κ subfamilies {Aξ : ξ < κ} such that A\Aξ is nowhere
MAD for every ξ < κ.

Note that a MAD family A is c-partitionable if and only if it is of true car-
dinality c. This motivated A. Dow to ask how close can we get to constructing a
c-partitionable MAD family:

Problem 2. For which κ is there a κ-partitionable MAD family?395?

In [21] it is shown that 2-partitionable families exist in ZFC. This was later
extended by E. van Douwen to show that ω-partitionable MAD familes exist. In
fact, one can, in ZFC, construct a t-partitionable MAD family (personal commu-
nication by A. Dow), but it is not known whether there is a b-partitionable MAD
family.

Problem 1 has a close connection to the disjoint refinement property. Given
two familes M,A ⊆ [ω]ω, we say that the family A refines the family M, if for
each M ∈M there is an A ∈ A such that A ⊆M . We say that a familyM⊆ [ω]ω

has an almost disjoint refinement if there is an almost disjoint family A ⊆ [ω]ω

which refines M. Clearly, not everyM⊆ [ω]ω has an almost disjoint refinement,
M = [ω]ω being an example. It is known that every uniform ultrafilter on ω has
an almost disjoint refinement [3]; to present other examples, we need a definition.
Given R ⊆ [ω]ω, let

I+(R) = {M ⊆ ω : |{R ∈ R : |M ∩ R| = ω}| ≥ ω}.
If R is an infinite partition of ω into infinite sets, then I+(R) has an almost
disjoint refinement [3].

Hence, a MAD family A is completely separable if an only if A is an almost
disjoint refinement of I+(A). However, the following problem is open, too:

Problem 3. Let A be an infinite MAD family on ω. Does there exist an almost396?

disjoint refinement of I+(A)?

Note that this is the strongest possible formulation of an almost disjoint re-
finement property: Given an arbitrary family M ⊆ [ω]ω, which has an almost
disjoint refinement B, it is easy to find a MAD family A with M ⊆ I+(A); sim-
ply replace each B ∈ B by infinitely many disjoint subsets of it and extend to a
maximal almost disjoint family.

If Problem 3 has an positive answer, then so does Problem 1, in a very strong
sense:

Theorem ([2]). The following statements are equivalent:

(1) For every MAD family A on ω, I+(A) has an almost disjoint refinement.
(2) There is a set S ⊆ [ω]ω satisfying (a) each infinite M ⊆ ω contains a

member of S and (b) every infinite MAD family A ⊆ S is completely
separable.

In particular, if I+(A) has an almost disjoint refinement for every MAD family
A, then there is a completely separable MAD family. It is another open problem,
whether this implication can be reversed.



2. TOPOLOGICAL CONNECTION 181

There are consistent affirmative answers to Problem 3. Each of the following
assumptions on cardinal invariants

a = 2ω, b = d, d ≤ a, s = ω1

implies that Problem 3 has a positive answer [2], [23].
Also, if one relaxes maximality, then one can find an infinite AD family A

which is completely separable in the sense that every set belonging to I+(A)
contains an element of A [2].

In an e-mail conversation, A. Dow remarked that most applications of com-
pletely separable MAD familes require that they can be recursively constructed,
rather then that they just exist, which seems to be similar to Problem 3:

Problem 4. Suppose that I+(A) has an almost disjoint refinement for every MAD 397?

family A. Can every nowhere MAD family be extended to a completely separable
MAD family?

2. Topological connection

An equivalent formulation of Problem 3 has been asked also in a purely topo-
logical language. The space βN \ N is not extremally disconnected, so it must
contain a point which belongs to the intersection of closures of two disjoint open
sets. In 1967, R.S. Pierce asked in [19], whether it is possible to show, without us-
ing the Continuum Hypothesis, that there are 3-points in βN \N, i.e points which
lie simultaneously in the closure of three pairwise disjoint open sets. N. Hind-
man [11] then showed that there are not only 3-points, but even c-points in βN\N
in 1969, and finally B. Balcar and P. Vojtáš [3] proved that every point in βN \N
is a c-point in 1980.

Meanwhile, S.H. Hechler started to consider nowhere dense sets instead of
points and showed that under MA, if S is any nowhere dense subset of βN \ N,
then there exists a family of c pairwise disjoint open sets each of which contains
S in its closure [10]. Call such a set a c-set . It is easy to show that the following
is nothing but a topological reformulation of Problem 3:

Problem 5. Is every nowhere dense subset of βN \ N a c-set?

The topological language allows to formulate a seemingly easier problem, also
open till now:

Problem 6. Is every nowhere dense subset of βN \ N a 2-set? 398?

Still, this is not the end of the story. A.I. Veksler introduced the following
order on the family of all nowhere dense subsets of a topological space: If C, D
are nowhere dense in X , let C < D mean that C ⊆ D and C is nowhere dense in
D. He studied this order in a series of paper; we quote here [25] as a sample. A
theorem from [22] says that the next problem is again Problem 3 in disguise:

Problem 7. Is it true that a family of all nowhere dense subsets of βN \N, when
ordered by <, has no maximal elements?
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While studying the sequential order of compact spaces A. Dow [6] introduced
the notion of a totally MAD family:

Definition. Given A and B infinite families of subsets of ω, say that A is totally
bounded with respect to B, if for each infinite B′ ⊆ B and each h ∈ B′ω, there
is an A ∈ A such that A ∩ ⋃{B \ h[B] : B ∈ B′} is infinite. A MAD family A
is totally MAD if for each infinite B ⊆ A no subset of cardinality less than c is
totally bounded with respect to B.

Dow showed that a totally MAD family exists assuming b = c, noted that
every totally MAD family has a refinement which is a completely separable MAD
family and asked:

Problem 8. Is there a totally MAD family in ZFC? Does b = ω1 imply there is a399?

totally MAD family?

A positive answer to Dow’s second problem, implies a positive answer to the
following weak form of Problem 1.

Problem 9. Is there a completely separable MAD family assuming c ≤ ω2?400?

3. MAD families in forcing extensions

While (as mentioned in the introduction) MAD families with strong combina-
torial properties are hard to come by in ZFC, there is also a definite lack of negative
(i.e. consistency) results. In this section we present some of the open test prob-
lems for understanding the behavior of MAD families in forcing extensions. The
first of these problems is due to J. Steprāns [24]:

Problem 10. Is there a Cohen-indestructible MAD family in ZFC?401?

K. Kunen [16] showed that the answer is positive under CH. J. Steprāns
showed that the answer is also positive in any model obtained by adding ℵ1-many
Cohen reals. Each of b = c, a < cov(meagre) and ♦(d) ([13], [14], [17]) is also
sufficient for the positive answer. The problem has the following combinatorial
translation:

Theorem ([13, 17]). The following statements are equivalent for a MAD fam-
ily A.

(1) A is Cohen-indestructible.
(2) For every f : Q → ω there is an A ∈ A such that f−1[A] is somewhere

dense.

Surprisingly, it is not even known whether there is (in ZFC) a MAD family
which survives some forcing extension adding new reals (equivalently, a single
Sacks real extension):

Problem 11. Is there a Sacks-indestructible MAD family in ZFC?402?

A flawed proof of this appeared in [13]. This and other flaws of the paper were
rectified in [5]. The following old problem (sometimes attributed to J. Roitman)
can be formulated as a problem about cardinal invariants of the continuum:
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Problem 12. Does d = ω1 imply a = ω1? 403?

Consult [12] and [18] for some partial positive results. Recently S. Shelah [20]
using a novel technique of iteration along templates showed that d < a is relatively
consistent with ZFC. J. Brendle[4] presented an axiomatic treatment of Shelah’s
technique and showed that it can not be used to solve Problem 12.

We would like to thank Alan Dow for commenting on a preliminary version
of the paper and for providing interesting questions.
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[7] P. Erdős and S. Shelah, Separability properties of almost-disjoint families of sets, Israel J.

Math. 12 (1972), 207–214.
[8] L. Gillman and M. Jerison, Rings of continuous functions, D. Van Nostrand Co., Princeton,

NJ, 1960.
[9] S. H. Hechler, Classifying almost-disjoint families with applications to βN − N , Israel J.

Math. 10 (1971), 413–432.
[10] S. H. Hechler, Generalizations of almost disjointness, c-sets, and the Baire number of βN −

N , General Topology and Appl. 8 (1978), no. 1, 93–110.
[11] N. Hindman, On the existence of c-points in βN\N , Proc. Amer. Math. Soc. 21 (1969),

277–280.
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[13] M. Hrušák, MAD families and the rationals, Comment. Math. Univ. Carolin. 42 (2001),

no. 2, 345–352.
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Good, splendid and Jakovlev

Istvan Juhász and William A.R. Weiss

1. The size of good and splendid spaces

It is a trivial observation that a compact space that is locally countable is
actually countable, while the (ordered) space ω1 of countable ordinals shows that
this fails if compact is replaced with countably compact. This prompted E. van
Douwen to ask to following two questions in the mid 1970s.

Problem 1. Is there a countably compact and locally countable T3 space of size 404–405?

continuum? Are there such spaces of arbitrarily large cardinality?

The reason why he asked the first question was that he could construct such
a space under the assumption b = c.

In [6] partial answers to these questions were given and the following termi-
nology was introduced.

Definition. A countably compact and locally countable T3 space is called good .
A good space is splendid if countable subsets have countable (or equivalently,
compact) closures. (Of course, ω1 is splendid.) G(κ) (resp. S(κ)) is the statement
that there is a good (resp. splendid) space of size κ.

Good spaces are locally compact and first countable, that is where T3 is
needed.

Below we summarize what is known about the sizes of good and splendid
spaces, most of it from [6] or [7].

Proposition 1.1.

(1) For κ > ω, G(κ) implies cf([κ]ω,⊂) = κ, hence cf(κ) > ω and if κ ≥ c

then even κω = κ.
(2) For all n < ω we have S(ωn).
(3) If b = c then for all n < ω we have G(c+n).
(4) If for any κ with cf(κ) = ω < κ we have both cf([κ]ω,⊂) = κ+ and �κ,

then S(λ) holds whenever cf(λ) > ω.
(5) If κ > ℵω and G(κ) holds then κ ≥ cf([ℵω]ω,⊂).
(6) The Chang conjecture variant (ℵω+1,ℵω) → (ℵ1,ℵ0) implies that S(κ)

fails for all κ ≥ ℵω.
(7) The existence of a supercompact cardinal implies the consistency of MA+
ℵω+1 < c + ¬G(ℵω+1).

(8) If P is the forcing that iteratively adds ω1 dominating reals to any ground
model V then, in V P, the statement G(κ) holds for all κ such that κω = κ.

The first author was supported by OTKA grant no. 37758.
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It has recently been observed by P. Nyikos that the first part of (1) immediately
follows from the following (folklore?) fact that is probably due to Sierpiński: For
any κ, cf([κ]ω,⊂) = min{|C| : C is ω-hitting in [κ]ω}, where C is ω-hitting means
that for any A ∈ [κ]ω there is C ∈ C with |A ∩ C| = ω. Indeed, if we have a good
space X with underlying set κ then the family C of all compact open sets in X is
clearly ω-hitting and of size κ. Note that (5) obviously follows from (1).

(4) was proved in [6] assuming V = L and Nyikos noticed that the proof
given there goes through under the weaker assumption of (4). The latter holds,
e.g., if the covering lemma over the core model is valid, hence large cardinals are
necessary to get a κ > ℵω with cf(κ) > ω such that S(κ) fails.

Concerning (6) and (7) we note that the consistency of the Chang conjecture
variant (ℵω+1,ℵω)→ (ℵ1,ℵ0) had been established from a 2-huge cardinal that is
much stronger than a supercompact.

(5) raises the following question.

Problem 2. Is there a good space of cardinality cf([ℵω]ω,⊂)?406?

2. Connections to other problems

It is very natural to raise the following question.

Problem 3. Is there a ZFC example of a good space that is not splendid?407?

Of course, such a space has a separable closed subspace that can not be com-
pact, hence it is an example asked for by Nyikos, see [8] in this volume.

The good spaces of size c constructed by van Douwen from b = c are separable,
hence non-splendid. The published version (see [9, Example 13.1]) has an extra
property: b = c implies that for any ultrafilter ultrafilter u ∈ ω∗ there is a sepa-
rable good space Xu of size c which is not u-compact. In [6] this was (partially)
strengthened as follows: If, in addition to b = c, one also has 2c < c+ω then there
is a single good space X that is not u-compact for any u ∈ ω∗. It follows then that
neither

∏{Xu : u ∈ ω∗} nor X2c

is countably compact, hence these spaces provide
(consistent) good counterexamples to the Scarborough–Stone problem, see [10] in
this volume. One can also show that the Vietoris hyperspace H(X) of the latter
space X is not countably compact, either.

If X is a splendid space of size κ (w.l.o.g. its underlying set is κ) then the
collection C of all compact (hence countable) and open subsets of X is easily seen
to form a Kurepa family, that is the trace of C on any countable subset of κ is
countable. Also, C is clearly cofinal in [κ]≤ω. Conversely, as was shown in [4],
the existence of a cofinal Kurepa family in [κ]≤ω that is also closed under finite
intersections and is well-founded by inclusion implies S(κ). The above family C is
clearly closed under finite intersections but, contrary to the claim made in [4], it
is not clear that well-foundedness of it may also be assumed. Thus we are lead to
the following question.

Problem 4. Is S(κ) equivalent to the existence of a cofinal Kurepa family over κ?408?
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The following interesting result was (essentially) proved in [3]. If G(κ) holds
and there is a κ-sized maximal almost disjoint family of subsets of ω then there is
also a separable, crowded, sequentially compact T2 space of cardinality κ. (Com-
pare this to the well-known fact that any crowded and countably compact T3

space has size at least c.) This observation prompted the authors of [3] to ask if
the smallest size of such a T2 space is actually equal to a. In view of part (7) of
Proposition 1.1, if a = ℵω+1 < cf([ℵω]ω,⊂) (that may consistently occur) then we
know at least as much that the method they used to get such a space of size a can
not be applied anymore.

Finally we mention the very recent article [1] concerning some problems that
seem to be very closely related to those about the possible sizes of good spaces.
Our definitions slightly deviate from those given in [1] because we think that ours
are more natural (and more general).

Definition. An uncountable T3 space X is called a Jakovlev space iff X =⋃∗
n<ω Ln (here ∗ denotes disjoint union) such that

• every x ∈ Ln has a countable neighbourhood U with U \ {x} ⊂ ⋃i<n Li;
• every infinite A ⊂ Ln has a limit point.

J(κ) stands for the statement that there is a Jakovlev space of cardinality κ.

So Jakovlev spaces are locally countable and partially countably compact. It
is easy to see that any Jakovlev space is locally compact and hence first countable,
and that the one-point compactification of a Jakovlev space is weakly first count-
able (the family {⋃i≥n Li : n < ω} forms a weak base at the point-at-infinity ∗),
while every neighbourhood of ∗ is co-countable, hence the compactification is not
first countable at ∗. (The assumption of uncountability of a Jakovlev space was
made because of this.) Thus Jakovlev spaces (of size > c) answer a couple of very
old questions of Arhangelskii from [2], asking if weakly first countable but not first
countable compact T2 spaces (of size > c) exist. The first example of such a space
was constructed from CH by Jakovlev in [5], that explains the terminology.

Let us now give a summary of the results from [1].

Proposition 2.1.

(1) J(κ) implies κ ≥ b.
(2) b = c⇒ J(c+)⇒ J(c).
(3) If C is the forcing that adds ω1 Cohen reals to any ground model V then

V C |= J(ω1).
(4) If P is the forcing that iteratively adds ω1 dominating reals to any ground

model V then, in V P, the statement J(κ) holds for all κ such that κω = κ.
If V also satisfies GCH then J(κ) holds in V P for all cardinals κ > ω.

Thus we see that there are both analogies and differences about the problems
concerning the possible sizes of good and Jakovlev spaces, respectively. The biggest
difference at present is that while good, even splendid, spaces exist in ZFC, the
same question concerning Jakovlev spaces remains open. We close our paper by
formulating this problem and a few related others.
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Problem 5. Is there a Jakovlev space in ZFC? Are J(c) or J(c+) provable in409–412?

ZFC? Does J(c) imply J(c+)? Do Jakovlev spaces of arbitrarily large size exist in
ZFC?
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Homogeneous compacta

Jan van Mill

0. Introduction

All spaces under discussion are Tychonoff.
A space X is homogeneous if for all x, y ∈ X there is a homeomorphism

f : X → X such that f(x) = y. So, loosely speaking, all points in X are topologi-
cally equivalent.

Many of the familiar classical objects in topology are homogeneous: manifolds
without boundary, the Cantor set, the rational numbers, the irrational numbers,
the universal Menger continua (Bestvina [7]), the Hilbert cube and connected
manifolds modeled on it (Keller [29]), the pseudoarc (Bing [8]), the circle of pseu-
doarcs (Bing and Jones [9]), and topological groups. Besides topological groups
and large products of the spaces we just mentioned, all of the examples of ho-
mogeneous spaces that immediately come to mind are metrizable. This is not
by accident. Homogeneity is best understood in the presence of metrizability
and plays a significant role there. See for example Daverman [12], Bessaga and
Pe lczyński [6] and Toruńczyk [42, 43] for evidence of this in the study of the
topology of both finite- and infinite-dimensional manifolds.

Outside the class of metrizable spaces, homogeneity is not a well understood
notion and our knowledge is very limited. There are various examples of exotic
homogeneous compacta; a few recent ones can be found in Kunen [32], de la Vega
and Kunen [14], and van Mill [48]. And there are many theorems that imply
that certain spaces are inhomogeneous, quite often based on delicate cardinality
considerations. See de la Vega [13], Ridderbos [37], Juhász, Nyikos and Szent-
miklóssy [28], Arhangel′skĭı [3], and Arhangel′skĭı, Ridderbos and van Mill [49],
for some recent results. But there does not seem to be any unifying theme emerg-
ing yet.

In this note we will discuss some longstanding open problems about the struc-
ture of homogeneous compacta. The fact that these questions are all stated in
very simple topological terms fully demonstrates that there is still a lot of work
to be done in this area.

1. Rudin’s problem

In [38], Walter Rudin proved that under the Continuum Hypothesis (abbre-
viated CH) the Čech–Stone remainder N∗ = βN \ N of the natural numbers N
with the discrete topology is not homogeneous. He proved the existence of two
types of points in N∗ with evident different topological behavior: the P -points
and the non-P -points. In [21], Froĺık established the inhomogeneity of N∗ in
ZFC; moreover, he showed that N∗ decomposes into 2c equivalence classes under
autohomeomorphisms. See e.g., Comfort [10], Wimmers [50], and Kunen [30] for
additional information on the inhomogeneity of N∗.

189
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In [39], Rudin returned to βN, and asked whether the inhomogeneity of N∗

was a consequence of the fact that it contains no convergent sequences. This
problem has been open for almost half of a century now, and is known as Rudin’s
Problem.

Problem 1. Does every infinite homogeneous compact space contain a nontrivial413?

convergent sequence?

See Rudin’s own very informative discussion of the problem in [40, pp. 157–159].
By Kuz′minov [33] (see also Uspenskiy [45]), every compact group is dyadic,

i.e., a continuous image of a Cantor cube. This easily implies that every infi-
nite compact group does contain a nontrivial convergent sequence, hence Rudin’s
Problem has an affirmative answer for groups.

Another (but, related) approach to this is given not by the dyadic approach
but by the fact that a compact group of weight τ contains a copy of 2τ . It
was proved independently by Efimov [16], Gerlits [22] and Hagler [23] that if
X is a dyadic space of weight τ , then X contains a copy of 2τ if and only if X
cannot be expressed as the union of countably many closed subspaces of weight less
than τ . Now let us assume that X is a homogeneous dyadic space of weight τ ≥ ω
(for example, a compact group of weight τ). Suppose that X can be written
as X =

⋃
n<ω Xn, where each Xn is closed and has weight less than τ . The

Baire Category Theorem implies that some Xn has nonempty interior, and then
it easily follows by homogeneity and compactness that X has weight less than τ ,
a contradiction. So X contains a copy of 2τ , and hence a nontrivial convergent
sequence (these considerations are well-known of course). So Rudin’s Problem not
only has an affirmative answer for groups, but even for the much broader class of
dyadic spaces. For a nice ‘modern’ proof that every compact group of weight τ
contains a copy of 2τ , see Shakhmatov [41]. Observe that not all homogeneous
dyadic spaces are groups: every Tychonoff cube Iτ for τ ≥ ω is homogeneous
(being a product of Hilbert cubes) and clearly dyadic, and has the fixed-point
property by Brouwer’s Theorem so cannot be a topological group. There are even
zero-dimensional examples of such spaces, see Pašenkov [36].

Interestingly, the class of homogeneous dyadic spaces is about the only ‘gen-
eral’ class of homogeneous compacta for which Problem 1 was answered. Even
for separable spaces it is unknown, or for spaces with countable π-weight. The
point is, as I said in the introduction, that our knowledge of nonmetrizable ho-
mogeneous compacta is very limited. Examples of Fedorčuk [19, 20] show that
even in ‘small’ compact spaces, the existence of nontrivial convergent sequences is
a delicate matter.

2. Van Douwen’s problem

The existence of Haar measure on a compact group clearly implies that it
has countable cellularity. This prompts the question whether there are homoge-
neous compacta of uncountable cellularity. It was answered by Maurice [35], who
constructed homogeneous ordered compacta of cellularity continuuum. Different
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examples can now be found by using the following highly nontrivial result of Dow
and Pearl [15]: if X is zero-dimensional and first countable, then Xω is homo-
geneous. Indeed, let X be the Alexandroff double of the Cantor set. Then X
is zero-dimensional, compact, first countable, and has cellularity c. Hence by the
Dow–Pearl Theorem, its countable infinite product Xω is a homogeneous compact
space with cellularity c.

The proof that these spaces are homogeneous is very strongly based on the fact
that they are first countable. By Arhangel′skĭı’s Theorem from [1], first countable
compacta have cardinality at most c. ‘Large’ homogeneous compacta can be found
for example by forming large products of homogeneous first countable compacta
and compact groups. Then one increases many cardinal functions, among them
trivially cardinality, but cellularity remains bounded by c (Engelking [17, Theo-
rem 2.3.17]). The following problem, known as van Douwen’s Problem, is therefore
natural.

Problem 2. Is there a compact homogeneous space with cellularity greater than c? 414?

This problem has been open already for more than 30 years. I remember that
I got a letter from van Douwen when I was a PhD-student in which he mentioned
it (unfortunately, I cannot find the letter anymore). He wrote me that one can
form a Souslin circle which is homogeneous by collapsing the endpoints of a certain
Souslin continuum to a single point. The square of this space has cellularity ω1.
He then asked about cellularity c in ZFC, and bigger.

Let us remark that no bound is known for the cellularity of homogeneous
compacta. It would already be a fantastic achievement if it could be shown that
every homogeneous compactum has cellularity at most, say, iω1

.

3. Arhangel′skĭı’s problem

Many good questions about homogeneity can be found in Arhangel′skĭı [5]. I
focus here on Conjecture 1.17 only since I find it of particular interest.

Problem 3. Is every homogeneous compact space of countable tightness first 415?

countable?

It was shown recently by de la Vega [13] that every homogeneous compact
space of countable tightness has cardinality at most c. This interesting result may
suggest that the answer to Problem 3 is yes.

In fact, de la Vega showed that if X is a homogeneous compactum, then
|X | ≤ 2t(X). Since by a deep result of S̆apirovskĭı [44] for every compact space X
we have πχ(X) ≤ t(X), it is natural to ask whether tightness can be replaced by
π-character in this result. This is an interesting question due to de la Vega.

Ismail [26, 1.13] and Hart and Kunen [24, 2.5.1(2)] pointed out that if X is
a homogeneous compactum, then |X | = 2χ(X). This is a consequence of the clas-
sical Čech–Pospǐsil Theorem, see Juhász [27, 3.16], and Arhangel′skĭı’s Theorem
from [1]. So if X is a homogeneous compactum of cardinality at most c, then
X is first countable under CH. Hence as de la Vega observed in [13], the answer
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to Problem 3 is yes under CH. Malyhin [34] constructed consistent examples of
Fréchet–Urysohn compact spaces that are not first countable at any point. This
result makes one wonder whether the problem could be independent. This is not
impossible since homogeneity is not free from set theory: there is by van Mill [48]
(see also Hart and Ridderbos [25]) a compact space X in ZFC such that X is
homogeneous under MA + ¬CH, but not under CH.

4. Continuous images of homogeneous compacta

Since every compact metrizable space is a continuous image of the homoge-
neous Cantor set, the following question is quite natural. I have no idea who asked
it.

Problem 4. Is every compact space a continuous image of a compact homogeneous416?

space?

It is clear that ‘yes’ to Problem 4 implies ‘yes’ to Problem 2.
It is sometimes possible to ‘improve’ the homogeneity properties of a space by

considering products of it. For example, if X = ω+ 1 then it is not homogeneous,
while Xω is, being homeomorphic to the Cantor set. Another example is X = I.
Then Xω is the Hilbert cube which is homogeneous by Keller’s Theorem from [29].
In fact, as we saw above, by the Dow-Pearl Theorem from [15], this trick works for
every zero-dimensional, first countable space. Sometimes one has to take ‘large’
products to finally arrive at a homogeneous space. Consider for example the space
X = 2κ ⊕ {0, 1}, the topological sum of 2κ and a two-point space, where κ is an
infinite cardinal. Then Xµ for every µ < κ is not homogeneous, while Xκ is (this
is an observation of Ridderbos). Kunen [31] has shown that in this way it is im-
possible to ‘improve’ the homogeneity properties of any infinite compact F-space.
See also van Douwen [46], Farah [18] and Arhangel′skĭı [2] for related results. A
characterization of those spaces X for which some power Xκ is homogeneous is
unknown. In general, this question seems beyond reach. Whether it makes sense
to formulate it for certain special classes of (compact) spaces is unclear to me.

It is not true that every compact space is a retract of a compact homogeneous
space. Motorov has shown that the familiar sin 1

x -continuum in the plane is not a
retract of any homogeneous compact space (Arhangel′skĭı [4]). It is an interesting
problem whether there is a compact zero-dimensional space that is not a retract
of a homogeneous compact space.

5. Remarks

Problems 1–4 are stated for compact spaces. This is essential. For Prob-
lems 1, 2 and 4 consider a large discrete space, and for Problem 3 a Σ-product
in 2ω1 (Engelking [17, 3.10.D]). Even if we add familiar compactness properties
such as countable compactness or pseudocompactness, then there are appropriate
examples. For Problem 3, simply observe that a Σ-product in 2ω1 is countably
compact (even ω-bounded). In Comfort and van Mill [11] it was shown that every
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compact space is a retract of a homogeneous, countably compact space. This im-
plies that compactness is essential in Problems 2 and 4. Van Douwen [47] proved
that under MA there is a countably compact topological group without nontrivial
convergent sequences, hence compactness is essential in Problem 1 as well (we
touch a delicate problem here since it is not known whether there is a countably
compact topological group without nontrivial convergent sequences in ZFC).

I am indebted to Wis Comfort, Klaas Pieter Hart, Ken Kunen and Guit-Jan
Ridderbos for some helpful comments.
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23 (1956), 409–419.
[39] W. Rudin, Averages of continuous functions on compact spaces, Duke Math. J. 25 (1958),

197–204.
[40] W. Rudin, The way I remember it, History of Mathematics, vol. 12, American Mathematical

Society, Providence, RI, 1997.
[41] D. Shakhmatov, A direct proof that every infinite compact group G contains {0, 1}w(G) ,

Papers on general topology and applications (Flushing, NY, 1992), Ann. New York Acad.
Sci., vol. 728, New York Acad. Sci., New York, 1994, pp. 276–283.
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Compact spaces with hereditarily normal squares

Justin Tatch Moore

In 1948, Katětov proved the following metrization theorem.

Theorem 1 ([3]). If X is a compact space1 and every subspace of X3 is normal,
then X is metrizable.

This is an immediate consequence of the following two results which are of
independent interest.

Theorem 2 ([3]). If X × Y is hereditarily normal, then either X is perfectly
normal or else every countable subspace of Y is closed and discrete.

Theorem 3 ([7]). If X is a compact space and the diagonal is a Gδ subset of X2,
then X is metrizable.

Katětov then asked whether the dimension in his theorem could be lowered to
2. In [1] Gruenhage and Nyikos present two examples which show that consistently
this is not possible.

Theorem 4 ([1]). If there is a Q-set then there is a separable compact space X
such that X2 contains an uncountable discrete subspace and yet has every subspace
normal.

Theorem 5 ([1]). If the Continuum Hypothesis is true, then there is a non-
metrizable compact space X such that every subspace of X2 is separable and nor-
mal.

The first construction is due to Nyikos and is optimal in the sense that the
existence of such a space implies the existence of a Q-set [1]. The second con-
struction is due to Gruenhage and does not obviously require the full strength of
the Continuum Hypothesis.

In [4], Larson and Todorcevic proved that it is consistent that Katětov’s prob-
lem has a positive answer.

Theorem 6 ([4]). It is relatively consistent with ZFC that if X is a compact space
and X2 is hereditarily normal, then X is metrizable.

The solution they give represents a set theoretic breakthrough. The purpose
of this section is to suggest how one might obtain a positive solution to Katětov’s
problem via an analysis which is almost purely topological. The broader goal is
to obtain a better understanding of hereditary and perfect normality in compact
topological spaces.

I will begin by giving a list of questions which have so far have not received
much attention. I was made aware of most if not all of them by Todorcevic.

1In this article, all spaces are assumed to be regular.

The research presented in this paper was supported by NSF grant DMS–0401893.
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Question 1. If X is compact and X2 is hereditarily normal, must X be separable?417?

Recall that a space X is premetric of degree ≤ 2 iff there is a continuous map
f from X into a metric space such that the preimage of any point contains at
most two elements. Both Gruenhage’s and Nyikos’s examples in [1] are premetric
of degree ≤ 2.

Question 2 (See [8]). If X is compact and X2 is hereditarily normal, must X be418?

premetric of degree ≤ 2?

Question 3. If there is a compact non-metrizable X which is premetric of degree419?

≤ 2 such that X2 is hereditarily normal, must there exist either a Q-set or a Luzin
set?

In each case, a positive answer to the question is a consequence of a positive
answer to Katětov’s problem and hence is consistent by [4]. The hope is that it is
possible to prove positive answers to these questions in ZFC.

Notice that a counterexample to Question 1 is necessarily a compact L-space.
While a Suslin line comes to mind as a candidate for an example, M.E. Rudin
has shown that this is not possible — if L is a compact Suslin line, then L2 is
not hereditarily normal [6]. Interestingly, however, 2ℵ0 < 2ℵ1 implies that a coun-
terexample to Question 1 must have a square which does not satisfy the countable
chain condition. This is a consequence of the following results of Shapirovskii and
Todorcevic.

Theorem 7 (See [11]). The regular open algebra of any hereditarily normal c.c.c.
space has size at most continuum.

Theorem 8 ([10]). If X is compact and X2 does not contain an uncountable
discrete subspace, then X is separable.

Observe that a positive answer to Question 2 would give a positive answer to
Question 1 since every premetric compactum of degree ≤ 2 is separable.

Question 3 is motivated Theorem 10 below which shows that Gruenhage’s
construction requires the existence of a Luzin set. Observe that it is relatively
easy to obtain a model of set theory in which there are no Q-sets or Luzin sets —
this is true after adding ℵ2 random reals to any model, for instance. Hence a pos-
itive solution of the above questions would yield a different solution to Katětov’s
problem.

We will now revisit Gruenhage’s example mentioned above. The construction
is closely based around a well known construction of Kunen.

Theorem 9 ([2]). If the Continuum Hypothesis is true, then there is a strengthen-
ing of the topology on R to a topology which is locally countable, locally compact,
and such that the difference between the closure of a set in this and the usual
topology is countable. In particular such a space is hereditarily separable but not
Lindelöf.

M. Wage observed that the construction could be carried out on an arbitrary
uncountable set of reals instead of just R assuming the Continuum Hypothesis.
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Such spaces have come to be known as Kunen lines. Gruenhage’s construction is
connected in the sense that his X2 contains a subspace Z which maps 2–1 onto a
Kunen line where the underlying set of reals is a Luzin set.

In order to state Theorem 10 concisely, I will first introduce some notation.
Suppose that X and Y are topological spaces and f : X → Y is continuous.

Define ∆f to be all pairs (x0, x1) in X2 such that f(x0) = f(x1). The function
f∗ : ∆f → Y is defined by f∗(x, y) = f(x) = f(y).

If f is the identity function, then ∆f is the diagonal and the subscript is
suppressed, giving the standard notation.

Theorem 10. Suppose that X is a compact non-metrizable space such that X2 is
hereditarily normal; X is premetric of degree ≤ 2; and the quotient of ∆f \∆ by
f∗ is a Kunen line. Then there is a Luzin set.

It is not clear whether Gruenhage’s construction can be carried out from
the existence of a Luzin set. Todorcevic has shown that an analogue of Wage’s
construction can be carried out if b = ℵ1, an assumption which follows from the
existence of a Luzin set.

Theorem 11 (b = ℵ1, [9]). If X is a set of reals of size ℵ1, then there is a refine-
ment of the metric topology which is locally compact, locally countable, perfectly
normal and hereditarily separable in all of its finite powers.

Carrying out Gruenhage’s construction assuming only the existence of a Luzin
set seems to be a considerably more subtle matter—see my note [5] for some limited
progress. I conjecture that this is possible.

Proof of Theorem 10. Let X be given as in the statement of the theorem
and f : X → K witness that X is premetric of degree ≤ 2. If U is an open subset
of X and {x0, x1} is a pair of points in X then we say that U splits {x0, x1} if both
U and X \U contain an element of {x0, x1}. Since X is non-metric and compact,
it is possible to recursively select points zξ in K and open sets Uξ in X such that
Uξ splits f−1(zξ) but does not split f−1(zη) if ξ < η < ω1. Let Z = {zξ : ξ < ω1}
and let Vn (n < ω) enumerate a base for the topology on K. By removing points
from Z if necessary, we may assume that it has no countable neighborhoods.

Observe that if f(x) = zξ then one of the collections

{f−1(Vn) ∩ Uξ : x ∈ f−1(Vn)}, {f−1(Vn) \ Uξ : x ∈ f−1(Vn)}
intersects to the singleton {x} and hence forms a local base for x. Also observe
that since f−1(Vn) does not split any pair of the form f−1(z) for z ∈ K, sets of
the form f−1(Vn) ∩ Uξ and f−1(Vn) \ Uξ can split f−1(zη) only when η ≤ ξ.

Suppose that Z is not a Luzin set in clK(Z). It suffices to show that X2 is
not hereditarily normal. To this end, let E ⊆ K be a closed set such that E ∩ Z
is relatively nowhere dense and uncountable. Define the following sets

G = {(x0, x1) ∈ ∆f : x0 6= x1 and f∗(x0, x1) ∈ E ∩ Z}
H = {(x, x) ∈ X2 : f(x) 6∈ E}.
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Clearly G ∩H = G ∩H = ∅. It is sufficient to show that if W ⊆ X2 is open and
contains H then W ∩G is nonempty.

By shrinking W if necessary, we may assume that is a union of sets of the
form

(
(f−1(Vn) ∩ Uξ)× (f−1(Vn) ∩ Uξ)

)
∪
(
(f−1(Vn) \ Uξ)× (f−1(Vn) \ Uξ)

)

for n < ω and ξ < ω1 such that Vn ∩ E = ∅. Since X2 is hereditarily normal,
it follows from [3] that X is perfect and therefore that W is a countable union
of such sets. Let δ be an upper bound for all ξ < ω1 required in this union. If
δ < ξ < ω1 and (x0, x1) is in ∆f \∆ with f∗(x0, x1) = zξ, then (x0, x1) is in W
provided that zξ is not in E. Put D = {zξ : ξ ≤ δ}.

By our assumption on ∆f \∆, the closure of Z \(E∪D) in the metric topology
and in the quotient topology induced by f∗ differ by a countable set D′. Since
E is nowhere dense, D is countable, and Z has no countable neighborhoods, Z is
contained in the metric closure of Z \ (E ∪D).

I will now show that if (x0, x1) is in ∆f \∆ with f∗(x0, x1) in Z \ (D ∪D′),
then either (x0, x1) or (x0, x1) is in the closure of W . This finishes the proof since
there is a (x0, x1) such that f∗(x0, x1) is in Z \ (D ∪ D′) and both (x0, x1) and
(x1, x0) are in G. To this end, suppose that (x0, x1) are given as above and let
z = f∗(x0, x1). Since z is not in D′, z is a limit point of Z \(E∪D) in the quotient
topology since it is in the metric topology. This means that there is an element
of f−1

∗ (z) which is in the closure of the f∗-preimage of Z \ (E ∪ D). Since this
preimage is contained in W , either (x0, x1) or (x1, x0) is in the closure of W as
desired. �
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The metrization problem for Fréchet groups

Justin Tatch Moore and Stevo Todorcevic

1. Introduction

Let us begin this paper by recalling the following classical metrization theorem
of Birkhoff and Kakutani.

Theorem 1. Every first countable group is metrizable.

In this article, we will be interested in the extent to which the assumption
of first countability in this theorem can be weakened. Recall that a Hausdorff1

topological space X is Fréchet if whenever x is a limit point of A ⊆ X , there is
a sequence an (n < ω) of elements of A which converges to x. This is a natural
weakening of first countability which has been extensively studied in the literature.
It turns out that this property by itself is not sufficient to ensure the metrizability
of a topological group.

Example 1. The direct sum of ω1 copies of the circle group (R/Z,+) is a σ-
compact Fréchet group which is not first countable.

Such an example, however is easily ruled out by requiring that the group be
separable. Hence we arrive at the following problem posed by Malykhin in 1978.

Problem 1. Is every separable Fréchet group metrizable? 420?

The requirement of separability in Malykhin’s problem can be replaced by a
more restrictive notion without changing the problem as the following proposition
shows.

Proposition. If every countable Fréchet group is metrizable, then so is every
separable Fréchet group.

We have already noted that some countability requirement is necessary in the
formulation of Malykhin’s problem. Later Todorcevic provided an example with
an additional striking property.

Example 2 ([13]). There are two σ-compact Fréchet groups whose product is not
countably tight.

This highlights an auxiliary consideration—the productivity of the Fréchet
property in groups—which will also be part of our focus.

It was known from the beginning that Malykhin’s problem is really a con-
sistency question. At the time he posed Problem 1, Malykhin was aware of the
following consistent counterexample.

1All spaces in this article are assumed to be Hausdorff.

The second author acknowledges the support of NSF grant DMS–0401893
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Example 3 (p > ω1). If G is a separable metrizable group with at least two
elements, then Gω1 is a separable Fréchet group which is not metrizable.

On the other hand, Shibakov later showed that CH can also be used to generate
counterexamples with additional properties.

Example 4 ([9], c = ω1). There are separable Fréchet groups whose product is
not Frećhet.

It is also not clear what role the group structure plays in Malykhin’s problem.
Recall that [ω]<ω—the finite subsets of ω—is a group when equipped with the
operation 4 of symmetric difference.

Question 1. Is there a topology which makes ([ω]<ω,4) a non-metrizable Fréchet421?

group?

Question 2. Suppose that there is a separable non-metrizable Fréchet group. Is422?

there a topology which makes ([ω]<ω,4) a non-metrizable Fréchet group?

These questions really ask about the existence of certain filters—known as
FUF filters in the literature—on [ω]<ω (see [8]).

Since there is already a recent survey [8] by Shakhmatov on convergence in
settings where there is additional algebraic structure, we will focus on a scenario
for proving a positive answer to Malykhin’s problem and refer the reader to that
article for further information.

2. The role of gaps

Suppose that G is a countable topological group on ω with 0 serving as the
identity. A central object in the study of Malykhin’s problem is the ideal IG of
subsets of ω which do not accumulate to 0. It is easily verified that G is Fréchet
iff I⊥⊥G = IG.2

Recall that two families A and B of subsets of ω form a gap if they are
orthogonal (i.e. B ⊆ A⊥) and yet there is no C ⊆ ω such that every element of A
is almost contained in C and every element of B is almost disjoint from C. If A⊥⊥
is countably generated, then the gap is said to be Rothberger . Hence Malykhin’s
problem is equivalent to asking whether there is a countable Fréchet group G such
that IG does not form a Rothberger gap with I⊥G .

Todorcevic’s Open Coloring Axiom is an assertion which has a strong influence
on the structure of gaps in P(ω):

If X is a separable metric space and G ⊆ [X ]2 is an open
graph on X , then either G is countably chromatic or else has
an uncountable complete subgraph.

This axiom was defined in [12], where its influence on gaps is presented.
Moreover, if the underlying set of reals is analytic, then OCA is provable—in

2If A is a family of subsets of ω, we let A⊥ denote the collection of all subsets of ω which
have finite intersection with every element of A.



3. OTHER CONVERGENCE PROPERTIES 203

ZFC—for all open graphs on X . This can either be deduced3 from the consistency
proof of OCA or proved directly as in [3]. Not surprisingly, it is possible to carry
out a parallel analysis of gaps in P(ω) in which A is analytic. This led to the proof
of the following effective solution to Malykhin’s problem. Recall that a countable
topological space X is analytic if its topology is an analytic subset of P(X) when
identified with 2X .

Theorem 2 ([16]). Suppose that G is a separable group with a countable dense
analytic subspace. Then G is metrizable.

Countable metrizable spaces are always analytic but in general this is a consid-
erably larger class which includes a number of important test spaces. For example
the countable sequential fan and Arens space are examples of analytic topologies.
In fact a countable space is analytic if and only if it can be embedded into Cp(X)
for some Polish space X .

While Malykhin’s problem can only have a consistent positive solution and
Theorem 2 is a ZFC theorem, the analysis of the combinatorial difficulties seems
likely to be similar. The reader is referred to [16] and [15] for applications of OCA

which are closely related to the subject matter.

3. Other convergence properties

There are two other weakenings of first countability which are important in
the present context.

Definition. A topological space is said to have the weak diagonal sequence prop-
erty4 if whenever Si (i < ω) is a collection of sequences which converges to a given
point x, there is a sequence S∞ which converges to x such that Si ∩ S∞ is non-
empty for infinitely many i < ω. If S∞ can always be selected so as to intersect
every Si, then the space is said to have the diagonal sequence property.5

In the general setting of topological spaces, they are unrelated to the Fréchet
property. Nyikos demonstrated that this is not the case is the more restrictive
setting of topological groups.

Theorem 3 ([6]). Fréchet groups have the weak diagonal sequence property.

Whether Fréchet groups have the stronger of these properties, however, is
unclear and may be closely related to Malykhin’s problem.

Question 3 ([7]). Is it consistent that every countable Fréchet group has the 423?

diagonal sequence property?

3This is a consequence of the following observations: (1) the partial order for forcing an
instance of OCA (see [12, §8]) can be modified so that the resulting homogeneous set is moreover
relatively closed, (2) analytic sets have the perfect set property yielding a perfect homogeneous
set in the extension, and (3) by Shoenfeld’s absoluteness theorem [10], the homogeneous set
exists in the ground model.

4This property is often referred to as α4.
5This property is often referred to as α2.
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Question 4 ([7]). Is it consistent that every countable Fréchet group with the424?

diagonal sequence property is metrizable?

Both of these questions could also be also asked without the assumption of
countability. Let us note the following reformulation of a result of Szlenk (see [11]
and [14, p. 65], or [16, p. 516]) that there is a positive solution to the effective
version of Question 4.

Theorem 4. Every analytic Fréchet space with the diagonal sequence property is
first countable.

An important question becomes whether (and how much) Theorem 3 can
be strengthened. The ultimate target is to demonstrate that—consistently—
separable Fréchet groups are bi-sequential : whenever U is a convergent ultrafilter,
there is a sequence Un (n < ω) of elements of U which converges to the same point
as U . This property is easily shown to be productive and strengthens both the
Fréchet and diagonal sequence properties. Furthermore, in the class of topologi-
cal groups, this condition is as strong as metrizability, as the following result of
Arkhangel’ski and Malykhin [1] demonstrates.

Theorem 5. Bi-sequential groups are first countable and therefore metrizable.

Proof. Clearly we may assume that G has no isolated points and therefore
that the nowhere dense subsets of G extend the cofinite filter. Suppose that g is in
G and let U be an ultrafilter converging to g which is disjoint from the collection
of nowhere dense subsets of G. Applying the bi-sequentiality of G, let Un (n < ω)
be a sequence of elements of U which converge to g. Let Vn be the interior of
the closure of Un and set Wn = Vn ∗ V −1

n . It follows then that {Wn : n < ω}
forms a countable neighborhood base at 0 and hence G is first countable. By the
Birkhoff-Kakutani theorem, every first countable group is metrizable, finishing the
proof. �

The point is, however, that it may be more natural to verify that the group
at hand is bi-sequential and indeed this is the approach taken in [16].

We will now recall a set theoretic definition. Now suppose that X is a count-
able set. A collection H of subsets of X is a co-ideal (on X) if

(1) H is closed under supersets relative to X and
(2) If Z is in H and Z =

⋃
i<n Zi, then there is an i < n such that Zi is in

Z.

Definition. A co-ideal H on X is said to be selective if it satisfies the following
two additional conditions:

p+: Whenever Zn (n < ω) is a decreasing sequence of elements of H, then
there is a Z∞ in H such that Z∞ \ Zn is finite for all n < ω.

q+: Whenever Z is in H and φ : Z → ω is finite-to-one, there is a Z∗ ⊆ Z
in H such that φ � Z∗ is one-to-one.
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If G is a topological group, define

HG = {X ⊆ G : X accumulates at 0}.
It is easily verified that HG is always a co-ideal—even if G is not a group and 0 is
replaced by an arbitrary limit point in the space. The following proposition shows
that in the context which is of interest to us, this co-ideal is selective.

Proposition ([16]). If G is a countable Fréchet group, then HG is a selective
co-ideal.

4. In search of a test model

Examples 1 and 3 suggest the need for a model which allows for the failure of
certain consequences of PFA close to MAℵ1

(σ-centered) while maintaining other
consequences—and OCA in particular. Models with these general properties were
considered by Larson and Todorcevic in [4], [5] and were obtained by forcing with
a Souslin tree over a model of a strong fragment of PFA. Note, however, that since
p > ω1 in their ground model and since examples solving Malykhin’s problem are
preserved in forcing extensions which do not add reals, such models can not yield
a solution to Malykhin’s problem. The problem is essentially that one needs the
conjunction of OCA and together with a failure of p > ω1 which is more pertinent
to the problem at hand. Michael Hrušák has suggested the following problems in
relation to this.

Question 5. Is OCA consistent with the assertion that every ω-splitting family in 425?

[ω]ω contains an ω-splitting subfamily of size ℵ1?

Question 6. Assume OCA and that every ω-splitting family in [ω]ω contains an 426?

ω-splitting subfamily of size ℵ1. Is every separable Fréchet group metrizable?

References
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Čech–Stone remainders of discrete spaces

Peter J. Nyikos

1. Introduction

The study of Čech–Stone remainders has long been a major theme in set-
theoretic topology. A whole book [13] was published that primarily dealt with
the remainder ω∗ = βω−ω of the countable discrete space ω, and discussion of this
remainder takes up a sizable chunk of a book that was published back in 1960 [7].
It is remarkable that one of the most basic questions about it is still unsolved:

Problem 1. Is it consistent that ω∗ is homeomorphic to ω∗1? 427?

Here ω∗1 refers to the Čech–Stone remainder of a discrete space of cardinality
ω1. What makes this problem all the more remarkable is that if we put any other
pair of distinct infinite cardinals for {ω, ω1}, even if one of this pair is one of the
members of the new pair, the answer is negative. Moreover, this has been known
since the late 1970s. Since most of the research that established this and other
nontrivial facts detailed later was done by Polish and Czech mathematicians [2,
5, 6], I decided to break with the usual American custom and use the expression
“Čech–Stone” in place of “Stone–Čech.”

An interesting alternative formulation of Problem 1 in ZFC is:

Problem 1′. Is it consistent that the Boolean algebras P(ω)/fin and P(ω1)/[ω1]<ω

are isomorphic?

In the absence of the Axiom of Choice (AC) the two problems are not equiv-
alent: what passes for the Čech–Stone remainders could be empty, while the quo-
tient algebras are both uncountable. It would be interesting if the Boolean Algebra
version had a positive answer in ZF while the answer to both versions is negative
in ZFC. While our primary interest is what happens in ZFC, I will be making
remarks about what to watch out for if AC is not assumed. The theory would
have a varying flavor depending on what weakenings of AC are assumed. Three
natural weakenings are: (1) the Boolean Prime Ideal Theorem, which assures that
every discrete space has a Čech–Stone compactification; (2) the existence of right
inverses to the two quotient maps; and (3) the axiom of dependent choices DC,
which implies the Countable AC (= AC for countable collections of sets).

Three other weakenings of AC dovetail well with Problem 1′. Let wAC(κ, λ)
stand for the axiom that there is a choice function for collections of ≤ κ sets, each
of cardinality ≤ λ). Then wAC(2ω1 , ω1) implies (2) above; wAC(2ω, ω) implies
that the quotient map from P(ω) to P(ω)/fin has a right inverse; and we will see
some proofs which go through if {κ, λ} ⊂ {ω, ω1}. An interesting but farfetched
scenario is that of Problem 1′ having a Yes answer in the absence of (2), yet for
the quotient map from P(ω) to P(ω)/fin to have a right inverse.

The following natural variation on Problem 1 is also unsolved:

207
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Problem 2. Is it consistent for U(κ) and U(λ) to be homeomorphic for different428?

κ, λ?

Here U(κ) stands for the set of uniform ultrafilters on κ—those of which every
member is of cardinality κ. It is very easy to show that there is no homeomorphism
if cf(κ) 6= cf(λ) (see Theorem 2.1) but even the case κ = ω, λ = ℵω has resisted
all attempts at a solution. The Boolean algebra version of Problem 2 is left as an
exercise for the reader; facts from Section 2 make this exercise trivial.

The conventional wisdom is that Problems 1 and 2 have negative answers,
so I could easily have worded Problem 1, “Is it a theorem of ZFC that ω∗ is not
homeomorphic to ω∗1?” and used a similar wording for Problem 2. However, I
am recommending that we treat the claim that ω∗ and ω∗1 ARE homeomorphic
as an axiom, the way Rothberger boldly treated p > ω1 even though all the
evidence then available (including Godel’s proof of consistency of CH) suggested
it was false. Recall also how Bing, unaware of Rothberger’s research, published
an example of a nonmetrizable separable normal Moore space on the assumption
that there exists a Q-set, known to be contradicted by the natural-seeming axiom
2ω < 2ω1 ; and how Mary Ellen Rudin published the first example of a Dowker
space assuming the existence of a Souslin tree, also not known at the time to be
consistent. Accordingly I formulate:

Axiom Ω: ω∗ is homeomorphic to ω∗1 .

Nowadays people are reluctant to assume axioms so boldly, except perhaps
in the case of large cardinal axioms, but there are certain advantages to this ap-
proach. It encourages researchers to publish consequences of the axiom in the
optimistic hope that some day the axiom may turn out to be consistent, so that
if the breakthrough does happen, we will have a whole body of different state-
ments known to be simultaneously consistent. On the other hand, if the axiom
should turn out to be false, the proof that this is so will probably be a proof by
contradiction, building upon consequences of the axiom that are already known.

Clearly, Axiom Ω implies 2ω = 2ω1 : the weights of ω∗ and ω∗1 are 2ω and
2ω1 respectively. Two other easy consequences of Axiom Ω are that there is a
complete ω1-tower (Theorem 2.2) and, in contrast, that there is a Q-set. The
contrast is heightened in both directions in Section 3, by Theorems 3.1 and 3.3
respectively. A great many natural questions about the implications of Axiom Ω
remain unanswered; a short list is given in Section 5.

We assume AC except where explicitly stated otherwise. Lower-case Gothic
letters designate small uncountable cardinals [11, 12].

2. Some basics

We recall some basic facts about the Čech–Stone compactifications of discrete
spaces. The underlying set for βD, where D is a discrete space, is the set of
all ultrafilters on D. A base for the topology is the collection of all sets of the
form [A] = {p ∈ βD : A ∈ p}. This makes βD into a compact space, which
is 0-dimensional because each [A] is clopen. The discrete space D is identified
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with the set of principal ultrafilters and is the dense set of isolated points of βD.
The Čech–Stone remainder βD \D is designated D∗, and [A] \ A (= [A] \D) is
designated A∗. The sets of the form A∗ thus form a base for the relative topology
on D∗.

The collection CO(X) of clopen sets of any topological space X is a Boolean
algebra under the usual operations of ∪, ∩, and complementation. The following
facts are well known, easy to prove, and useful; for instance, (b) clearly implies
the equivalence of Problems 1 and 1′.

(a) The unary operation [·] is a Boolean algebra isomorphism from P(D) to
CO(βD).

(b) The unary operation ∗ is a Boolean algebra homomorphism from P(D)
onto CO(D∗), whose kernel is [D]<ω.

(c) For each infinite cardinal κ ≤ |D|, the set of ultrafilters whose smallest
members are of cardinality < κ is a dense open subspace of D∗. There-
fore, U(D) is a nowhere dense closed subspace of βD.

(d) If we define Â as {[A] ∩ U(D) : A ⊂ D} then ̂ is a Boolean algebra
homomorphism from P(D) onto CO(U(D)), whose kernel is [D]<|D|.

(e) If X and Y are compact 0-dimensional spaces and φ : X → Y is contin-
uous, and φ← : CO(Y ) → CO(X) is defined by φ←(K) = φ−1(K) then
φ← is a Boolean algebra homomorphism. Moreover, φ← is injective iff φ
is surjective, and vice versa.

(f) A continuous bijection between compact Hausdorff spaces is a homeomor-
phism. Consequently, φ← is an isomorphism iff φ is a homeomorphism.

A good understanding of ω∗ and ω∗1 calls for skill in shuttling back and forth
between P(D) and CO(D∗), using the ∗ operation to “go upstairs” from D to
D∗ and implicitly using various choice functions to “go downstairs” by labeling
clopen subsets of D∗ as A∗, etc. This is where the various weakenings of AC

come in. [In their absence, we translate topological language on ω∗ by using the
natural correspondence between open sets and ideals, and between clopen sets and
elements (or principal ideals).]

A similar shuttle works for P(D) and U(D). We see it operating in the proof
of the following theorem [4].

Theorem 2.1. If cf(κ) 6= cf(λ), then U(κ) and U(λ) are not homeomorphic.

Proof. Let cf(κ) < cf(λ). Partition λ into cf(κ) sets Aα of cardinality λ.

The (disjoint) clopen sets Âα upstairs have dense union in U(λ) because every
member of [λ]λ meets some Aα in a set of size λ. On the other hand, no family

of cf(κ) disjoint clopen subsets B̂α of U(κ) is dense in U(κ): there is a κ-element
subset of κ which meets Bα in a set of cardinality |α| and is disjoint from all earlier
Bβ . �

In analyzing ω∗1 the dense open subspace S(ω1) = ω∗1 \ U(ω1), known as the
space of subuniform ultrafilters , plays an important role. It is the union of the
ascending ω1-chain {α∗ : α is a countable limit ordinal} of clopen sets. In other
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words, it is what I call an ω1-oval: A union of a chain of clopen sets in a Čech–
Stone remainder of a discrete space is and oval and is a κ-oval if the chain has
cofinality κ.

In particular, the ω-ovals are the cozero sets. The small uncountable cardinal
t can be characterized as the least κ such there is a dense κ-oval in ω∗. With this
in mind it is easy to see:

Theorem 2.2. Axiom Ω implies t = ω1.

The Boolean algebra version is that there is an ideal generated by an ω1-chain
in P(ω)/fin that meets every nonzero ideal.

Another shuttle goes between P(D) (or CO(D∗)) and P(ω × ω). I call it the
RH Transfer in honor of Rothberger and Hechler, who made good use of it.

Let A = {An : n ∈ ω} be a family of subsets of ω such that A#
n = An\

⋃n−1
i=0 Ai

is infinite for all n. An RH transfer of A to ω × ω is a bijection ψ : ω → ω × ω
which distributes the elements of ω \⋃∞n=0An into the bottom row ω × {0}, and

sends A#
n into the (n+ 1)st column {n} × ω.

In an RH transfer, subsets of ω that are almost disjoint from all the An are
characterized by their images being dominated by the graph of a function. The
transfer and the definition of the function can all be defined in ZF, taking advantage
of the listing of A and the well-ordering on ω. It is when we combine the transfers
with moves downstairs that some form of AC is required. The following simple
theorem [8] only requires wAC(ω, ω) in a move downstairs followed by composing
one RH transfer with the inverse of another, followed by a move upstairs.

Theorem 2.3. Any two ω-ovals in ω∗ are homeomorphic; moreover, there is a
permutation of ω whose extension to βω is a homeomorphism taking one to the
other.

3. Some consequences of Axiom Ω

There is some confusion about whether “Q-set” is understood to include “un-
countable,” so I have suggested extending the usual list of Gothic-letter small
cardinals to include q. The trouble is, there are two natural and useful rivals for
what q could designate. So I recommend using subscripts, as follows: q0 = the
least cardinal κ for which there is a set of reals of size κ that is not a Q-set. q1 =
the least cardinal κ for which no set of reals of size κ is a Q-set.

Theorem 3.1. Axiom Ω implies q1 > ω1.

This theorem is a corollary of a much stronger theorem mentioned (but not
proved) in [9]. Call a family A of ω1-many denumerable subsets of ω a strong
Q-sequence if every 2-coloring of the members of A is uniformizable. This means
that if fA → {0, 1} is given for each A ∈ A, there is a function f : ω → {0, 1}
such that f(a) = fA(a) for all but finitely many a in each A ∈ A. Clearly any
strong Q-sequence is an AD family, by which I mean a collection of denumerable
sets such that the intersection of any two is finite. We will see below how a Q-set
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of cardinality ω1 is intimately associated with the special case where each fA is
constant.

Unlike q1 > ω1, the existence of a strong Q-sequence does not follow from
MAω1

and indeed is incompatible with it [9]. In contrast:

Theorem 3.2. Axiom Ω implies there is a strong Q-sequence.

Proof. For each countable limit ordinal α let Aα = [α, α + ω). Obviously,
every 2-coloring (indeed every coloring!) of the individual Aα is uniformizable.
Upstairs in ω∗1 , uniformizability of every 2-coloring translates into the following:
for each choice of clopen Cα ⊂ A∗α there is a clopen K such that K ∩Aα = Cα for
all α. [Just let Cα be the remainder of the support of fAα

, etc.] Assuming Axiom

Ω we shuttle over to ω∗ with a homeomorphism ψ. The images of the Aα move
downstairs to an AD family on ω which is easily seen to be a strong Q-sequence
by a translation like that above. �

Among the many statements equivalent to q1 > ω1 is the existence of a sep-
arable nonmetrizable normal Moore space, as well as the existence of the special
case where the Moore space is locally compact and its set of nonisolated points is
a closed discrete space; see [10] and its references in Section II. This special case
has a nice alternative characterization as a normal uncountable Ψ-like space: A
Ψ-like space is a locally compact, locally countable space X in which ω is a dense
set of isolated points and X \ ω is closed discrete.

We can associate an AD family A on ω with the nonisolated points of a
Ψ-like space X , with each A ∈ A associated with a point pA such that A ∪
{pA} is a compact open neighborhood of pA. Normality of X then translates to
uniformizability of every 2-coloring of A in which each fA is constant. In this way,
Theorem 3.1 is made to follow from Theorem 3.2.

Rothberger showed that q0 ≤ mathfrakb. Since b ≤ d, the following theorem
shows that Axiom Ω implies q0 = ω1.

Theorem 3.3. Axiom Ω implies d = ω1.

The proof of this theorem in [4] starts with the assumption that κ∗ is homeo-
morphic to ω∗ (where κ is regular uncountable). It makes a downstairs move that
implicitly uses wAC(ω1, ω1) and then explicitly constructs a κ-scale in (ωω,<∗),
i.e., a cofinal family of order type κ under the order <∗ of strict eventual domina-
tion. Recall that d is the least (uncountable) cardinality of a cofinal family in this
order. Thus Theorem 3.3 is established.

The case of general κ is then made in [4] to lead to a contradiction in evey
case except κ = ω1, as part of a sequence of proofs that culminates in the theorem
mentioned in the paragraph following Problem 1.

There is a topological route to Theorem 3.3 via the following theorem:

Theorem 3.4. Let κ be a regular cardinal. The following are equivalent.

(1) There is a κ-scale.
(2) The exterior of some (hence every) ω-oval in ω∗ is a κ-oval.
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(3) There is an ω-oval E and a family C of κ disjoint clopen sets in ω∗ such
that every clopen set containing E also contains all but < κ members
of C, but also every subfamily of < κ members of C is missed by some
clopen set containing E.

This theorem needs only ZF for the forward implications but the reverse im-
plications both seem to require moves downstairs utilizing wAC(κ, ω). The topo-
logical proof of Theorem 3.3 is finished by finding a pair E, C in ω∗1 that answers
to the description in (3) of Theorem 3.4, with κ = ω1. The following pair needs
nothing beyond ZF: E =

⋃∞
n=0A

∗
n where An = {α + n : α ∈ Λ ∪ {0}} (where

Λ stands for the set of countable limit ordinals) and C = {Cα : α ∈ Λ} where
Cα = [ω ·α, ω ·(α+1))∗. In particular, if K is a clopen set that meets uncountably
many Cα, and K = B∗, then B meets uncountably may intervals [ω ·α, ω · (α+1))
and so it meets some An in an uncountable set. Therefore, K ∩ E 6= ∅, and any
clopen set that contains E consequently must contain all but countably many Cα.
Since we only moved downstairs with K, this much is true in ZF as long as one
substitutes, if necessary, members of P(ω1)/[ω1]<ω for the clopen sets.

In contrast to this explicit example, the modification of (2) which puts ω∗1
in place of ω∗ is actually equivalent to d = ω1 as will be explained in the next
section. This may be behind the fact that I have been unable to show (3) implies
(2) without going downstairs.

Theorem 3.5. Axiom Ω implies that there is a dense ω1-oval in ω∗ whose com-
plement does not contain any P-points.

There do exist models where this consequence of Axiom Ω holds. In fact,
in [13, 7.15] a proof attributed to Mary Ellen Rudin shows how the set Z of
ultrafilters on ω which do not contain any sets of density 0 is nowhere dense in
ω and is a P-set without P-points of ω∗. Under CH, the complement of Z is an
ω1-oval.

The key to Theorem 3.5 is that no uniform ultrafilter on ω1 is a P-point of
ω∗1 : take a sequence of partitions Pn of ω1 into 2n uncountable pieces such that
the common refinement of Pn is the partition into singletons. Thus, in ω1, the
subspace U(ω1) fits the description of the complement.

Problem 3. Is there a model of d = ω1 in which there is a strong Q-sequence and429?

also a dense oval as described in Theorem 3.5?

4. Implications for ω∗1

There is a variation on RH transfer for ω1 that helps with the analysis of
ω-ovals in ω∗1 . Let A = {An : n ∈ ω} be a family of subsets of ω1 such that

A#
n = An \

⋃n−1
i=0 Ai is uncountable for all n. An RH-like transfer of A to ω1×ω1

is a bijection ψ : ω1 → ω×ω1 which does one of two things, depending on whether
A∞ = ω1 \

⋃∞
n=0An is countable or uncountable. If it is countable, ψ distributes

the elements of ω1 \
⋃∞

n=0An into the bottom row ω×{0}, and sends A#
n into the
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(n + 1)st column {n} × ω1. If A∞ is uncountable, ψ sends it onto {0} × ω1 and
A#

n onto {n+ 1} × ω1.
This transfer is good for analyzing ω-ovals in ω∗1 that meet U(ω1) in a noncom-

pact subset. The first case represents ovals whose closure contains all of U(ω1).
If the exterior of such an oval is also an oval, then there is an almost-ascending
sequence {Aα : α ∈ ω1} of countable subsets of ω × ω1 such that every set that is
almost disjoint from the columns of ω × ω1 is a subset of some Aα. This implies
d = ω1, as a look at the traces of the Aα on ω × ω shows. The converse is also
easy for those used to the arguments in [11] involving β and d. In the second
case, where A∞ is uncountable, one looks at sets of the form Aα∪A∞ to arrive at
the same conclusions. Also, ω-ovals which do not meet U(ω1) can be encapsuled
in the remainder of a countable set; then, if d = ω1 we get the conclusion that
every ω-oval in ω∗1 has an ω1-oval exterior. Of course, Axiom Ω gives the same
conclusion even more easily, thanks to Theorems 2.3 and 3.3. The former theorem
also shows (1) implies (5) in the following theorem, and together with the modi-
fied RH transfer in this section it easily implies (4) is equivalent to (5). The other
implications, all of which are very easy, are shown in [4].

Theorem 4.1. The following are equivalent.

(1) Axiom Ω
(2) Any two nonempty clopen subsets of ω∗1 are homeomorphic.
(3) There is an autohomeomorphism of ω∗1 that does not take U(ω1) to itself.
(4) There is an autohomeomorphism of ω∗1 such that U(ω1) is disjoint from

its image.
(5) For any two ω-ovals in ω∗1, there is an autohomeomorphism of ω∗1 taking

one to the other.

We call an autohomeomorphism of ω∗ or ω∗1 nontrivial if it cannot be induced
by a 1-1 function from ω (resp. ω1) to itself.

Corollary 1. Axiom Ω implies that ω∗1 has nontrivial autohomeomorphisms.

Problem 4. Does Axiom Ω imply that ω∗ has nontrivial autohomeomorphisms? 430?

One might think that there are bijections from ω1 to itself whose effect on
ω∗1 cannot be mimicked by functions from ω to itself acting on ω∗, but appear-
ances may be deceiving. The search for bijections without mimics is especially
challenging in models where there are strong Q-sequences.

5. Some more open problems about Axiom Ω

Of the endless questions one might ask about the implications of Axiom Ω, the
following seem especially natural to me:

Problem 5. Does Axiom Ω place any restrictions on 2ω besides the usual one (it 431?

cannot have countable cofinality) and the denial of CH?

Problem 6. Does Axiom Ω imply that there are (or are not?!) P-points in ω∗? 432?
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Theorem 3.5 shows that every P-point of ω∗1 is in S(ω1).

Problem 7. Does Axiom Ω have any implications for the small uncountable433–436?

cardinals a, i, r, u?

Problem 8. Does Axiom Ω negate ♣? |• ?437–438?

Axiom |• (“stick”) states that there is a family A of ω1 countable subsets of
ω1 such that every uncountable subset of ω1 contains some member of A, while ♣
adds the condition that A is a ladder system.

Note that Axiom Ω + |• implies r = ω1, since r is the least cardinality of a
π-base for a free ultrafilter on ω. [A family of sets witnessing |• is a π-base for
every uniform ultrafilter on ω1.]

Problem 9. Does Axiom Ω imply that there is a family of more than ω1 disjoint439?

clopen sets in ω∗1 , each of which meets U(ω1)?

If the answer to this problem is Yes, then so is the answer to Problem 8. In
contrast, if Axiom Ω implies all disjoint clopen families of cardinality c have (all but
< c) members missing U(ω1), we must look elsewhere than the density example
for a mimic of U(ω1) in ω∗, because that nowhere dense P-set Z is met by a family
of c-many disjoint clopen subsets of ω∗. To see this, partition ω into two subsets,
such that in both of them the ratio of numbers < n to n gets arbitrarily close
to both 0 and 1. Repeat this process countably many times, and diagonalize to
get c-many almost disjoint subsets of ω in which this same phenomenon happens.
Each one is in some member of Z.

Problem 10. Does Axiom Ω have any implications for the cardinals in Cichoń’s440?

diagram [12] that are not below d?

Problem 11. Does Axiom Ω imply that there are no ω2-ovals in ω∗?441?

Problem 12. Does Axiom Ω imply that there is an ω1-oval in ω∗ whose exterior442?

is also an ω1-oval?

In [3] it is shown (in effect) that t = ω1 is equivalent to there being a pair of
disjoint ω1-ovals in ω∗ whose union is dense in ω∗, but there are models of t = ω1

where neither can be the exterior of the other. I am unaware of any such models
where d = ω1, however.

If ♣ holds, the subspace S(ω1) of ω∗1 can be split into two disjoint ω1-ovals,
each of which has all of U(ω1) in its closure, making each one the exterior of the
other. On the other hand, this is impossible if what is called (∗) in [1] holds. But
in this latter case there may be ways of constructing disjoint ω1-ovals inside A∗

for some countable A, each of which is the exterior in A∗ of the other; this is easy
to do under CH, which is compatible with (∗). Then the union of one oval with
the complement of A∗ in ω∗1 is an ω1-oval whose exterior in ω∗1 is the other oval.

6. Notes on Problem 2

Comparatively little research has been done on the implications of a Yes an-
swer to Problem 2. Unlike with Problem 1, there is no end of pairs κ, λ that
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are candidates for an affirmative answer. Here we content ourselves with a few
observations about the pair ω,ℵω. Most of what we will say carries over to any
other pair that is not eliminated by Theorem 2.1.

First, an argument similar to the construction of a Bernstein set shows that
if K is a collection of κ sets of cardinality κ, then there is a pair of disjoint sets
which meets each one in a set of cardinality κ. So if U(ℵω) is homeomorphic to
U(ω) (= ω∗), the reaping number r is ≥ ℵω+1.

The other observations have to do with the variety of dense ovals in U(ℵw),
summarized in the following theorem. In any model where it is homeomorphic to
U(ω) (= ω∗), we get the same variety in ω∗, in marked contrast to the little we
know about ovals in ω∗ if Axiom Ω holds (see Problem 11).

Theorem 6.1. U(ℵω) has dense κ-ovals for all κ such that ω < κ < ℵω and also
κ = b and also for all regular κ between ℵω and min{cf[ℵω]ω,ℵω1

}.
For κ = ωn (n > 0), use ℵω × ωn and let Cα = ℵω × α; a cofinality argument

shows that every subset of ℵω × ωn of cardinality ℵω meets some Cα in a set of
cardinality ℵω. The remainders of the Cα in U(ℵω) union up to a dense κ-oval.

For regular κ from ℵω to the minimum of cf[ℵω]ω and ℵω1
, use the powerful

result of pcf theory that there are subsequences of {ℵn : n ∈ ω} where the product
has a scale of the desired length. Let Cα be the part of ℵω × ω below the graph
of fα.

For κ = b use Aω ×ω and functions fα α < b that are constant on [ωn, ωn+1)
and nondecreasing, and are well-ordered by the order of eventual domination. Here
too, let Cα be the part of ℵω × ω below the graph of fα.

This last argument works for any κ for which there is a <∗-unbounded <∗-
well-ordered family of increasing functions of cofinality κ in ωω.
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First countable, countably compact, noncompact
spaces

Peter J. Nyikos

The main problem in this article is one of my all-time favorites. To drum up
interest in it, I announced at the 1986 Prague Topological Symposium (Toposym)
that I was offering a US$500 prize for a solution during the following ten years [8].
There was essentially no progress on the problem all during those ten years, and
so at the 1996 Toposym I raised the award to US$1000 during the following ten
years. Those ten years have almost passed with no progress on the problem at
all to the best of my knowledge, and I am hereby removing all time limits on the
$1000 award and am contemplating raising it. Here is the problem that is the
focus of all this largesse:

Problem 1. Does ZFC imply the existence of a separable, first countable, count- 443?

ably compact, noncompact Hausdorff (T2) space?

A mild put-down of general topology one hears from time to time is that there
are too many adjectives in a typical problem or theorem. For me, however, one of
the charms of general topology is that there are so many theorems and problems
one can understand with no more than a typical undergraduate textbook in general
topology as a resource. The adjectives used here definitely fall under that heading;
the concepts are like second nature to many of us, and I have little mental pictures
that I associate to each one to help keep arguments straight.

I will soon cut down on the number of adjectives in the alternative word-
ing below, but the ones in the original wording are all implicitly there. The usual
topology on ω1 satisfies everything except separability. The Novak–Teresaka space
described in Vaughan’s article [15] satisfies everything except first countability. If
one refines the cofinite topology on ω1 by making initial segments open, then the
resulting space satisfies everything except T2 and is T1. The remaining two prop-
erties are obviously necessary also to have an open problem. Also, the question
mentions ZFC because there is a multitude of consistent examples of spaces as in
Problem 1; see Sections 1 and 2. In fact, Problem 1 is one of a small but growing
number of topological problems for which a negative answer is known to entail
(2ω =)c ≥ ℵ3, yet c = ℵ3 has not been ruled out. See Section 4.

For reasons having nothing to do with the aforementioned put-down, it is
convenient to introduce the following concepts:

A space X is ω-bounded if every countable subset has compact closure, and
strongly ω-bounded if every σ-compact subset has compact closure.

Also, after this paragraph, space will mean T2-space. In fact, it could almost
as easily mean T3-space because of the well-known fact that T2 implies T3 for first
countable, countably compact spaces [1, 2]. (However, this doesn’t work with
“locally countable” in place of “first countable,” as shown by an example of mine,
mentioned in Vaughan’s article [15] and done in detail in [13].) I could also have

217
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gone quite far in the opposite direction: an easy proof by contrapositive shows
that every first countable space in which convergent sequences have unique limits
is T2. With this convention, we give the negative version of Problem 1 thus:

Problem 1′. Is it consistent that every first countable, countably compact space
is ω-bounded?

Unlike with Problem 1, we have no consistency results either way for the
following problem:

Problem 2. Is there a first countable, ω-bounded space that is not strongly ω-444?

bounded?

The following ZFC example shows that first countability cannot be dropped
from this problem.

Example. Let p be a weak P-point in ω∗ = βω \ ω that is not a P-point. Then
ω∗ \ {p} is locally compact, ω-bounded, and not strongly ω-bounded.

1. Consistent good examples for Problem 1

The best-known consistent examples for Problem 1 are the separable uncount-
able good spaces that are also discussed in the articles by Juhász and Weiss [6]
and Vaughan [15].

A space is good if it is countably compact, locally countable, and T3. A space
is splendid if it is good and ω-bounded.

Clearly, a good space is noncompact iff it is uncountable, and so a good space
is splendid iff every countable subset has countable closure. It follows that a ZFC

example of good space that is not splendid would solve Problem 1. We do not
know whether the added generality in Problem 1 is necessary—in other words,
part (a) of the following problem is unsolved; so is part (b):

Problem 3. Is it consistent that there is a countably compact first countable445–446?

space that is not ω-bounded and yet (a) every good space is splendid, or (b) every
locally compact, countably compact first countable space is ω-bounded?

Clearly, every good space is locally compact. In [9] I gave a general construc-
tion of separable good spaces that are not splendid, referring to such spaces as
Ostaszewski–van Douwen spaces. This is the Ostaszewski construction by induc-
tion explained in detail in Vaughan’s article [15], with one modification stemming
from the fact that we do not care whether the spaces are r-compact for some
ultrafilter r.

At the αth step (α < c) we have a locally compact, locally countable non-
compact space (α, Tα) with ω as a dense set of isolated points. Having earlier
listed all sequences s on c in a c-sequence, we take the first sequence sβ without a
cluster point; if there is none, then (α, Tα) is a good space. Otherwise, the crucial
question is whether (α, Tα) is a wD space:

A space X is wD if for every infinite closed discrete subspace D there is an
infinite E ⊂ D for which there is a discrete family of open sets Ue such that
Ue ∩ E = {e} for all e ∈ E.
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If (α, Tα) is a wD space, then we select an infinite E as above, and choose
Ue to be a compact (hence countable) open neighborhood of e, cutting down E if
necessary so that when we make

⋃
e∈E Ue ∪ {α} the one-point compactification of⋃

e∈E Ue and add α to (α, Tα), the resulting space (α+ 1, Tα+1) remains noncom-
pact. Once α ≥ ω1 this reason for cutting down E becomes obsolete (although we
may have other reasons for cutting it down, see below) because (α, Tα) is auto-
matically noncompact, being uncountable and locally countable. If we can define
(α, Tα) for all α < c then we have a good space at the end, because every sequence
has been given a cluster point. In the article by Vaughan [15], various models are
given where the construction ends in a good space, either by continuing all the
way to c or stopping earlier with all sequences having cluster points. In particular,
in any model where b = c, the construction can (if so desired) continue to stage
c [14, Theorem 13.4]. In some models we have no choice, such as models where
p = c; see [3] where it is shown that every T3 separable, countably compact space
of Lindelöf number < p is compact. In others we do have a choice (such as models
where p = ω1, see below).

If at some point (α, Tα) is not a wD space, and we do not yet have a good
space, then we have to scrap it and try again. It cannot be extended to a space
for Problem 1 because of the following fact:

Theorem 1.1 ([9, Theorem 1.3]). Every subspace of a first countable, countably
compact space is a wD space.

Moreover, in a certain sense, we have to modify various choices of Ue and/or
the set to which E is cut down and/or the order in which sβ is listed: as explained
in [9], every separable good noncompact space admits a construction such as we
have gone through just now.

This is not to say that there might not be other ways of constructing the
same space. In [11] there is a construction which begins with a splendid space of
cardinality c and repeatedly tears chunks from it, attaching the chunks to a copy
of ω which will be dense in the intermediate spaces. As explained in [9], however,
the same obstacle of an intermediate non-wD space might be encountered before
we have a countably compact space on our hands. There is the added incovenience
that in some models obtained using enormously large cardinals, all splendid spaces
are of cardinality less than c; see Section 3.

A different alternative construction is in models of p = ω1, which is equiva-
lent [14] to t = ω1, i.e., there is a decreasing mod-finite ω1-tower on ω. This is
a family {Aα : α ∈ ω1} of infinite subsets of ω such that Aα ⊂∗ Aβ whenever
α > β, and such that no infinite subset ⊂∗ Aα for all α < ω1. Given such a fam-
ily, one constructs a Franklin–Rajagopalan (FR) space as explained in Vaughan’s
article [15], a countably compact space with ω as a dense set of isolated points
and set of non-isolated points homeomorphic to ω1. Like all FR-spaces it is locally
compact, and so it is a good space. As usual, it is defined “all in one go” in [15]
but it could also be constructed by the Ostaszewski technique and provides us with
an example where the construction ends before stage c in any model of t = ω1 < c.
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Yet another approach to constructing good spaces is in the last section of [9]:
construct good spaces in ground models or intermediate models with a view to
them being preserved in forcing extensions. Unfortunately, I know of no progress
here since [9] was written; the results sketched there have not even been published
yet.

2. Other consistent constructions for Problem 1

In this section we summarize constructions of separable, countably compact,
first countable, noncompact spaces that are not good. None to date has given us
examples in any model where there are good examples for Problem 1.

Example ([9, p. 139]). Modify the Ostaszewski construction to begin with 2ω(=
the Cantor set) ×ω, to serve as a dense subspace for the rest of the inductive
construction. At stage α we could take advantage of the fact that the union of the
Ue-analogues is homeomorphic to 2ω×ω and to compactify it by identifying it with
an open subspace of a copy Cα of the Cantor set, the rest of Cα being disjoint from
the space we have constructed thus far. The special case where there is only point
in the rest of Cα is especially close to the Ostaszewski construction, allowing for
[ω, α) to be the rest of the space at stage α.

Example ([7, Example 3.11]). Begin with an open ball in Rn(n ≥ 2) and recur-
sively add copies of [0, 1) in a way that makes the spaces we build into n-manifolds
with the original open ball as a dense subspace.

CH and a few forcing models are enough to give us countably compact non-
compact manifolds (hence locally compact in addition to being first countable),
but this seems too restrictive a method of constructing spaces for Problem 1. The
following problem from [9], for example, is still unsolved.

Problem 4. Is it consistent for there to be a countably compact manifold of weight447?

> ω1?

Lacking a Yes answer, we are stymied in all models of p > ω1, while p = ω1

is already enough to give us a good FR-space (see above). Section 6 of [9] details
the main hurdles to any solution of Problem 4. The key problem is that wD is no
longer good enough to continue the construction if it is not yet countably compact
at stage α; one needs for there to be a subsequence of sα contained in a closed
copy of the closed ball minus a single point, and there are ZFC examples of weight
ω1 where there is no such subsequence.

Example ([9, Section 5]). A countably compact, first countable linearly ordered
space Y is attached to ω so that ω is a dense set of isolated points. If t > ω1 then
Y is densely linearly ordered and nowhere locally compact.

Making the whole space countably compact relies on the existence of numer-
ous tight (ω1, c

∗)-gaps and (c, ω∗1)-gaps. Some progress has been made in this
direction—see the solution to Problem 10 of [9]—but the models involved have
“good” solutions to Problem 1 in them, and so Problem 3 remains open.
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3. Arbitrarily large first countable, locally compact, countably
compact spaces

In this section we turn to some related problems which may involve solutions
to Problem 1. The following problem was featured in [8]:

Problem 5. Can there be an upper bound on the cardinalities of locally compact, 448?

first countable, countably compact spaces?

Without “locally compact” this would have an easy answer: take any regu-
lar cardinal and remove all its points of first countability. Problem 5 was origi-
nally motivated by Arhangelskii’s famous solution to Alexandroff’s old problem of
whether there is an upper bound on the cardinalities of first countable, compact
spaces. Arhangel’skii showed that c is the upper bound. Both Problem 5 and
Problem 6 below are generalizations of Alexandroff’s problem. Problem 5 is also
a generalization of the second part of Problem 1 in Juhász and Weiss’s article [6],
which asks the same question (in negated form) of good spaces.

Problem 6. Can there be an upper bound on the cardinalities of locally compact, 449?

first countable, ω-bounded spaces?

As far as we know, it may be consistent that c is the upper bound in Problem 5
or Problem 6 as well; compare the first part of Problem 1 in Juhász’s article. In
any case, a positive solution even to Problem 6 would require the use of some very
large cardinals.

Back when I first started thinking about Problem 5, I had not yet heard of the
joint work of Juhász, Nagy and Weiss [4] which produced arbitrarily large splendid
spaces, which are more than enough for a consistent No answer to Problem 5. We
now know that their construction works under e.g., Covering(V, K); for details see
the article by Juhász and Weiss [6]. Thus it is consistent with c being anything
reasonable and requires large cardinals for its negation.

On the other hand, we also know [5, 15] that the Chang Conjecture variant
(ℵω+1,ℵω) → (ℵ1,ℵ0) destroys all splendid spaces of size ≥ ℵω. This variant,
called the CCV below, has been shown consistent assuming a 2-huge cardinal.
This use of the CCV has not been extended to a solution of Problem 6. The best
we have so far is:

Theorem 3.1 ([5]). If the CCV holds, then every locally compact, locally heredi-
tarily Lindelöf, ω-bounded space is of Lindelöf degree < ℵω and hence of cardinality
< max{ℵω, c

+}
For convenience I will temporarily adopt the following expressions: A space

is amenable if it is locally compact, locally hereditarily Lindelöf and countably
compact and fine if it is locally compact, locally hereditarily Lindelöf and ω-
bounded.

Clearly, every splendid space is fine and every good space is amenable. A
corollary of Theorem 3.1 is that the CCV implies every amenable space of Lindelöf
degree > ℵω contains a separable, countably compact noncompact subspace. This
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suggests that a ZFC construction of an amenable space of Lindelöf degree ≥ ℵω+1

(in particular, a good space of cardinality ≥ ℵω+1) would solve Problem 1. But
it is conceivable that there may be one construction that works assuming the
CCV, and another that works if the CCV fails, and which produces an ω-bounded
space in some models. This may not be the end of the story, however. Every
amenable space that is not ω-bounded contains a separable, noncompact closed
subspace of cardinality ≤ c. So if forcing is enough to destroy all such spaces, it
seems plausible that a poset of modest size would be enough to do the trick. But
the CCV is not destroyed by forcing by a set of cardinality lower than the first
uncountable measurable cardinal. So it may not be a major step from the ZFC

construction of an amenable space to an affirmative solution to Problem 1, or at
least to a proof that large cardinals are needed to get a negative solution.

However, there is a far more sensational possibility: the hypothetical ZFC

construction may actually be of a fine (perhaps even splendid) space, thereby
showing that the CCV is inconsistent and hence so is the existence of 2-huge
cardinals. Such a discovery would set off a major flurry of activity in large cardinal
theory, as set theorists search for a natural lower bound for cardinals that are in
jeopardy, so to speak.

On the other hand, the time may be ripe for lowering the large cardinal needed
for the nonexistence of arbitrarily large fine (or at least splendid) spaces. A great
deal has happened since [5] was published, including the discovery of Woodin
cardinals and the equiconsistency of the Axiom of Determinacy (AD) with that
of infinitely many Woodin cardinals. Recall that the consistency of AD was once
thought to call for cardinals far larger than even 2-huge cardinals, and now it
is known to call for something less than even a supercompact cardinal. If the
consistency of nonexistence of arbitrarily large amenable spaces could be lowered
this much, it would make their set-theoretic independence secure in the opinion
of most set theorists.

A special case of fine, implicit in our next theorem [10], might give impetus
to this quest. It uses the concept of a Kurepa family—a family K of denumerable
sets which is uncluttered in the following way: for each countable A ⊂ ⋃K the
family K � A = {A ∩K : K ∈ K} is countable. A Kurepa family is called cofinal
if it is ⊂-cofinal in [

⋃K]ω .

Theorem 3.2. Let κ be an infinite cardinal. The following are equivalent.

(a) There is a cofinal Kurepa family of cardinality κ.
(b) There is a locally metrizable, ω-bounded 0-dimensional space of weight κ.

The proof uses Stone Duality and the fact that a compact 0-dimensional space
is metrizable iff it has at most countably many clopen sets.

Problem 7. Can 0-dimensionality be dropped from Theorem 3.2?450?

In Juhasz and Weiss’s article [6] the problem is posed whether (a) is equivalent
to there being a splendid space of cardinality κ. Note that the spaces described
in (b) are intermediate between splendid and fine spaces. The simple structure of
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cofinal Kurepa families suggests that a lowering of consistency strength as above
may be within reach. The following problem may be especially tractable:

Problem 8. Is there a cofinal Kurepa family on R? 451?

4. Towards negative answers

In Section 1 we saw that there are good spaces that are not ω-bounded if
either t = ω1 or b = c. This, together with the Pigeonhole Principle applied to
the well known fact [14] that t ≤ b, implies that there are good spaces if either
c = ω1 or c = ω2. This means that a negative answer to Problem 1 cannot be
obtained by iterated forcing with countable supports: because this very popular
and sophisticated method of producing models of set theory makes c ≤ ω2. The
main alternative, finite support forcing, can lead to models of c ≥ ω3, but only if
a tail of the iteration consists of ccc posets. One drawback is that ccc posets are
a rather restrictive class. The technique of mixed supports does allow for some
non-ccc posets while still leading to models of c ≥ ω3, but we still have no good
mixed-support candidates for negative answers to Problem 1. Another drawback
of ccc forcing with finite supports is that Cohen reals are added at each limit
stage, and these produce ω1-towers, all of which need to be destroyed if we want
a counterexample to Problem 1. They can be destroyed without making b = c or
even b = d: Section 7 of [9] gives one simple way, but with some choices of ground
model the final model still has good spaces that are not ω-bounded, and we still
do not know whether all choices give good spaces.

On the other hand, models of c = ω2 have not been eliminated as candidates
for negative answers to Problem 4, nor to the following problem:

Problem 9. Is there a scattered, countably compact T3 space that can be contin- 452?

uously mapped onto [0, 1]?

While b = c is enough to construct “good” examples for this problem [14,
Theorem 13.4], no example at all has been constructed just assuming t = ω1 and
we do not know whether c = ω2 is enough to construct one.

For countably compact Tychonoff spaces, admitting a continuous function
onto [0, 1] is equivalent to having a non-scattered Stone–Čech compactification,
and this is of interest in the geometry of Banach spaces of continuous func-
tions [12]. Any example for Problem 9 contains a separable subspace that is
also an example (just take the closure of any countable subspace whose image
is the set of rational points in [0, 1]). Since no compact scattered space can be
mapped onto [0, 1], no example is ω-bounded.

All the (consistent) examples for Problem 9 thus far constructed are first
countable, in fact good, and I conjecture that Problem 9 is reducible to the locally
countable, hence good case, making it a special case of Problem 1. A minimality
argument involving the Cantor-Bendixson derivatives of a scattered space shows
that if there is an example for Problem 9, it has a subspace Y with the same
properties in which each point has a nbhd which does not admit of a continuous
map onto [0, 1]. Such a nbhd meets at most countably many fibers π−1(r), since
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otherwise it would have a copy of the Cantor set in its image, and therefore it
could be mapped onto [0, 1]. If Y has a point all of whose nbhds are uncountable
[in other words, if Y is not a good space] then every nbhd of that point must meet
some fiber π−1(r) in an uncountable subset; moreover, π−1(r) is of Lindelöf degree
c because there are c disjoint crowded countable subsets of [0, 1] with r in their
closure.

In contrast, it is very easy to construct a separable, locally countable, scat-
tered, countably compact (T2) space that can be mapped continuously onto [0, 1],
using the technique of [13] which adds points to compactify countable discrete
subspaces and uses the resulting copies of ω + 1 to define a weak base for the
topology. This highlights the importance of first countability in Problem 1 and
of the T3 separation axiom in Problem 9. It appears that the natural techniques
for producing separable, locally countable, countably compact spaces either tie
up the whole space into one compact (and countable) package, or else they tie up
countable subsets as loosely as possible. The intermediate situation, where a fairly
tight but noncompact tying-up is required, is where the challenging problems lie.
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Linearly Lindelöf problems

Elliott Pearl

Introduction

The regularity of cardinals plays a fine role in characterizations of compactness
properties of topological spaces. While a Hausdorff space is compact if and only
every infinite subset has a complete accumulation point, Lindelöf spaces cannot
be characterized similiarly. [A point x is a complete accumulation point of a set A
if |A ∩ U | = |A| for every neighborhood U of x. A space is Lindelöf if every open
cover has a countable subcover.]

This role was demonstrated by P.S. Alexandroff and P.S. Urysohn who proved
in their fundamental memoir [1, p. 17] that for a regular cardinal κ, the following
properties are equivalent in a Hausdorff space: every subset of size κ has a complete
accumulation point; every decreasing sequence of length κ of non-empty closed sets
has non-empty intersection; every open cover of size κ has a subcover of strictly
smaller size. It follows that if every uncountable subset of a space contains a
complete accumulation point then the space is Lindelöf, and every Lindelöf space
is finally compact in the sense of accumulation points (each uncountable subset of
regular cardinality has a complete accumulation point). They noted that ℵω with
the order topology is Lindelöf but does not contain any complete accumulation
points (in itself).

In 1962, A. Mǐsčenko [18] proved that these properties are different by de-
scribing a space which is finally compact in the sense of accumulation points but
not Lindelöf.

Meanwhile, in 1967 W.B. Sconyers considered properties of ordered open cov-
ers. A space is linearly Lindelöf if every increasing open cover {Uα : α ∈ κ} has
a countable subcover (by increasing, we mean that α < β < κ implies Uα ⊆ Uβ).
According to Alexandroff and Urysohn’s results, a space is finally compact in the
sense of accumulation points if and only if it is linearly Lindelöf and it is the latter
name that is now used popularly.

The main problem.

Question 1. Is a normal, linearly Lindelöf space Lindelöf? 453?

This is the famous open problem. A counterexample must be a Dowker space,
as noted by Mǐsčenko (see below). This problem, and its equivalent formulations,
were discussed in Norman Howes’ paper [10]. Mary Ellen Rudin has mentioned
this problem in print several times.

Properties. A space is linearly Lindelöf iff every open cover contains a sub-
cover of countable cofinality. A space is linearly Lindelöf iff whenever an open
cover of cardinality κ has no subcover of cardinality < κ then the cofinality of κ
must be countable.

225
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A linearly Lindelöf space is Lindelöf if and only it is countably metacompact.
Every linearly Lindelöf space with a point-countable base is Lindelöf. Every lin-
early Lindelöf space with network weight stricly less than ℵω is Lindelöf. In a
linearly Lindelöf space, every closed discrete subspace is countable. Every meta-
Lindelöf, linearly Lindelöf space is Lindelöf. Every locally metrizable, linearly
Lindelöf space is hereditarily Lindelöf (hence separable metrizable too).

A.N. Karpov [11] proved that a countable product of Čech-complete, linearly
Lindelöf spaces is linearly Lindelöf.

M. Matveev [17] proved that if a Tychonoff space Y is countably 1-paracompact
in every Tychonoff space X that contains Y as a closed subspace, then Y is lin-
early Lindelöf. A subspace Y of X is countably 1-paracompact in X if for every
countable open cover U of X there is an open cover V of X which refines U and is
locally finite at the points of Y .

G. Gruenhage [9, Theorem 4.2] proved that if a space has countable extent
and is the union of finitely many D-spaces, then the space is linearly Lindelöf.

P. Lipparini [16, Theorem 1.3] proved that if a product of spaces is linearly
Lindelöf then all but at most countably many factors are compact.

Examples. A.S. Mǐsčenko’s [18] example is
⋃∞

k=1(
∏k

i=1(ωi +1)×∏∞i=k+1 ωi)

as a subspace of the product
∏∞

i=1(ωi + 1), where each ordinal ωi has the order
topology. It is Tychonoff, linearly Lindelöf but not Lindelöf. Mǐsčenko also showed
that every linearly Lindelöf space with a particular countable shrinking property
(equivalent to countable metacompactness) is Lindelöf.

Another example of a Tychonoff, non-Lindelöf, linearly Lindelöf space was
discovered independently by G. Gruenhage and R. Buzyakova. It is even a topo-
logical group. Here is a description. Let D = {0, 1} be the discrete two-point
space. Consider the Tychonoff product Dℵω For each x ∈ Dℵω , let Ax denote the
set of all α ∈ ℵω such that the corresponding α-coordinate of x is 1. Now take the
subspace of Dℵω consisting of all points x such that the cardinality of Ax is < ℵω.

Local compactness

In the proceedings of the Colloquium on Topology (Keszthely, 1972), L. Babai
and A. Máté asked: Is there a locally compact space which is not Lindelöf and
is such that any of its subsets of a cardinality not cofinal to ω has a complete
accumulation point? They noted that without assuming that the space is locally
compact the answer is yes. In [3, 5, 4], A.V. Arhangel′skĭı and R. Buzyakova also
asked if every locally compact, linearly Lindelöf space is Lindelöf.

ZFC examples. K. Kunen [14, 15] constructed two Hausdorff, locally com-
pact, linearly Lindelöf spaces which are not Lindelöf. Actually, Kunen proved two
versions of the following theorem.

Theorem. There is a compact Hausdorff space X with a point p such that the
character of p in X is uncountable and equal to the weight of X, and for all regular
uncountable κ, no κ-sequence of points distinct from p converges to p.
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Given such a compact Hausdorff space X and a point p, X \ {p} is locally
compact and linearly Lindelöf but not Lindelöf. In the first version, X is an inverse
limit of the spaces βin and the point p is a thread of weak Pin

-points in βin.
Here X has weight iω . In the second version, X is an inverse limit of spaces of
weight < ℵω and the point p is a thread of weak Pℵn

points. Here X has weight
ℵω. The second version is obtained from the first by applying the elementary
submodel method.

A conditional theorem. P. Nyikos [20] proved that it is consistent (relative
to the existence of large cardinals) that every locally compact, linearly Lindelöf,
normal space is Lindelöf. This result is a consequence of the theory of antidiamond
principles developed by T. Eisworth and P. Nyikos [8]. In particular, the following
axiom is consistent if it is consistent that there is a supercompact cardinal. It is
a consequence of PFA but is also compatible with CH.

Axiom P. For every P-ideal I on an uncountable set X, either there is an un-
countable subset A of X such that every countable subset of A is in I, or X is the
union of countably many sets {Bn : n ∈ ω} such that Bn ∩ I is finite for all n and
for all I ∈ I.

A collection I of countable subsets of a set X is a P-ideal if it is downward
closed with respect to ⊂, closed under finite unions, and has the property that if
{In : n ∈ ω} ∈ [I]ω then there exists J ∈ I such that In ⊂∗ J for all n.

In the context of locally compact Hausdorff spaces, this axiom can be applied
to the ideal of countable subsets of X with compact closure.

First Trichotomy Theorem (Axiom P). Let X be a Hausdorff, locally compact
space. Then at least one of the following is true: X is the countable union of
ω-bounded subspaces, X has an uncountable closed discrete subspace, or X has a
countable subset with non-Lindelöf closure.

With the assumption that c < ℵω this trichotomy theorem can be applied to
show that every normal, locally compact, linearly Lindelöf space is Lindelöf. Note
that in every known model of P , c is either ℵ1 or ℵ2.

Sequentially linearly Lindelöf spaces

M. Kojman and V. Lubitch [12] introduced the stronger notion of a sequen-
tially linearly Lindelöf space. A space is sequentially linearly Lindelöf if it satisfies
the following property for all uncountable regular cardinals κ ≤ w(X): for every
A ⊂ X of cardinality κ there exists a B ⊂ A of cardinality κ that converges to a
point x ∈ X . A set B ⊂ X is said to converge to point x ∈ X if |B \U | < |B| for
all open sets U containing x.

Kojman and Lubitch proved that the existence of a good (ℵω,ℵω+1)-scale
implies the existence of a sequentially linearly Lindelöf topology on ℵω+1 which
is not Lindelöf. This is done by extracting a subspace from Mǐsčenko’s space.
This method is analogous to the method of Kojman and Shelah [13] of using an
(ℵω,ℵω+1)-scale (which always exists in ZFC) to extract a small Dowker space
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from Rudin’s ZFC example of a Dowker space. Good (ℵω,ℵω+1)-scales exist in
many models of ZFC. In particular, since good (ℵω,ℵω+1)-scales exist in L and are
preserved by c.c.c. and by ℵ1-closed forcing, adding ℵω+1 Cohen reals to a model
of V = L followed by ℵω+2 subsets to ℵ1 yields a model with 2ℵω > ℵω+1 = c

and a sequential linearly Lindelöf topology on ℵω+1 that is not Lindelöf. Such a
topology on ℵω+1, together with ℵω+1 = c, can be used to produce a realcompact
and linearly Lindelöf topology on ℵω+1 that is not Lindelöf.

Question 2 (Kojman and Lubitch). Can one prove in ZFC alone the existence454?

of a sequentially linearly Lindelöf space that is not Lindelöf?

Discretely Lindelöf spaces

In a survey of relative topological properties [2], Arhangel′skĭı introduced this
property (among others) related to Lindelöfness. X is discretely Lindelöf if the
closure of every discrete subspace of X is a Lindelöf space. This property was
originally called strongly discretely Lindelöf. Note that the analogous property of
discrete compactness would coincide with compactness.

Arhangel′skĭı proved the following lemma from which it follows that every
discretely Lindelöf space is linearly Lindelöf: if X is discretely Lindelöf then every
open cover whose cardinality does not have countable cofinality has a subcover of
strictly smaller cardinality.

Question 3 ([2, Problem 14]). Is every regular (or Tychonoff, or normal), dis-455–457?

cretely Lindelöf space Lindelöf?

In [3, Corollary 3.5], Arhangel′skĭı and Buzyakova showed that every Ty-
chonoff, countably tight, discretely Lindelöf space is Lindelöf. More generally [3,
Theorem 3.6], every Tychonoff, discretely Lindelöf space of tightness less than ℵω

is Lindelöf.

Question 4 (Arhangel′skĭı). Is every locally compact, discretely Lindelöf space458?

Lindelöf?

Estimating cardinality

In [5, Theorem 3.1], Arhangel′skĭı and Buzyakova generalize Arhangel′skĭı
famous theorem to prove that the cardinality of every first countable, linearly
Lindelöf space is at most c. In a later article, they prove a more general result ([4,
Theorem 2.1]): if X is a linearly Lindelöf, sequential space, then |X | ≤ c iff
ψ(X) ≤ c. Here ψ(X) is the pseudocharacter of X .

Z.T. Balogh proved a stronger result too. Call a space [κ, λ]-linearly Lindelöf
if every cover by open sets increasing in well-order type ≤ λ has a subcover of
cardinality ≤ κ (κ < λ are infinite cardinals).

Theorem ([6, Theorem 3.2]). Let κ be an infinite cardinal. Suppose that X is
a [κ, 2κ]-linearly Lindelöf (Tychonoff) space such that t(X) ≤ κ, ψ(X) ≤ 2κ and
|S| ≤ 2κ for every S ∈ [X ]≤κ. Then |X | ≤ 2κ.
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Balogh applies this theorem to prove [6, Corollary 3.7] that if X is a [ℵ0, c]-
linearly Lindelöf, sequential space with ψ(X) ≤ c, then |X | ≤ c.

Question 5 (Arhangel′skĭı). Is it true in ZFC that every first countable, ω1- 459?

Lindelöf, Hausdorff space has cardinality at most c?

A space is ω1-Lindelöf iff every open cover of cardinality ℵ1 has a countable
subcover. Under CH, ω1-Lindelöf Tychonoff spaces of countable tightness are Lin-
delöf. Buzyakova [7, Corollary 3.5] proved that every first countable, ω1-Lindelöf,
Hausdorff space has Lindelöf degree at most c (and therefore such spaces have size
at most 2c).

Question 6 ([7, Problem 3.7]). If X is a separable, ω1-Lindelöf, Hausdorff space 460?

of countable tightness and countable pseudocharacter is it true that |X | ≤ c?

Buzyakova [7, Theorem 3.10] proved that if X is a realcompact, ω1-Lindelöf
space of countable tightness and countable pseudocharacter then |X | ≤ c.

The Hušek number

In [3], Arhangel′skĭı and Buzyakova define the Hušek number of X , Hus(X),
as the supremum of Hus(x,X), where x runs over X ; Hus(x,X) is the smallest
infinite cardinal κ such that for every subset A ⊂ X such that |A| is a regular
cardinal not less than κ and A does not contain x, there is an open neighborhood
U of x such that |A \ U | = |A|. Equivalently, Hus(x,X) is the smallest infinite
cardinal κ such that if A, an infinite subset of X of regular cardinality, converges
to x, then the cardinality of A is less than κ. The Hušek number is interesting
because if X is a compact Hausdorff space and x ∈ X then Hus(x,X) ≤ ℵ1 iff
X \ {x} is linearly Lindelöf, and if Hus(x,X) = ℵ0 then x is an isolated point of
X . Kunen’s examples of locally compact, linearly Lindelöf, non-Lindelöf spaces
are based on the construction of a a compact Hausdorff space X that has a point
x such that Hus(x,X) ≤ ℵ1 and X is not necessarily first countable at x.

Question 7 ([3, Question 4]). Let X be a compact Hausdorff space such that 461?

Hus(X) ≤ ℵ1. Is it then true that the cardinality of X is not greater than c? Yes,
if CH.

Question 8 ([3, Question 5]). Is it true in ZFC that every compact Hausdorff 462?

space X such that Hus(X) ≤ ℵ1 is sequential? Yes, if MA.

Question 9 (Arhangel′skĭı and Buzyakova). If a compactum has a lineary Lin- 463?

delöf co-diagonal is it then metrizable?

A consistent realcompact example

Question 10. Is there a ZFC example of a realcompact, linearly Lindelöf space 464?

that is not Lindelöf?
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The Kojman–Lubitch construction is a consistent example.
Arhangel′skĭı and Buzyakova [3, Example 15] had contructed a consistent

example (under c = 2ℵω) of a hereditarily realcompact, linearly Lindelöf, Tychonoff
topology on [0, 1] that is not Lindelöf. Let X denote the Buzyakova–Gruenhage
example. The idea of the proof is to construct a subspace H of X × [0, 1] such
that the projection on the first coordinate maps H onto X while the projection of
H on the second coordinate is one-to-one (and even onto). The points of H are
chosen by a transfinite recursion of length c and the construction requires c = 2ℵω .

A consistent first countable example

Assuming MA +ℵω < c, O. Pavlov [21] constructed a finer-than-usual topol-
ogy on a subset of the Cantor set that is first countable, linearly Lindelöf but not
Lindelöf. This gives a negative answer to [4, Question 3] and [3, Question 9].

Question 11 ([21, Question 4]). Does the existence of a first countable, linearly465–466?

Lindelöf, not Lindelöf space follow from ℵω < c? From 2ℵω = c?

Question 12 ([21, Question 5]). Does the existence of linearly Lindelöf, not467?

Lindelöf space of countable pseudocharacter follow from ℵω < c?

Question 13 ([21, Question 6]). Is there a pseudocompact, first countable, linearly468?

Lindelöf space that is not Lindelöf (equivalently, not compact)?

Lindelöf problems

Which additional conditions force a linearly Lindelöf space to be Lindelöf?

Question 14 ([4, Question 1], [4, Question 3]). Is it true in ZFC that every locally469?

compact, first countable, linearly Lindelöf space is Lindelöf?

Question 15 ([4, Question 4]). Is there a nonmetrizable, linearly Lindelöf space470?

with a base of countable order? Equivalently, is every linearly Lindelöf space with
a base of countable order Lindelöf?

Question 16 (Arhangel′skĭı and Buzyakova). Is every realcompact, locally com-471?

pact, linearly Lindelöf space Lindelöf?

Note that Kunen’s example is pseudocompact.

Question 17 (J.T. Moore). Are there two Lindelöf spaces whose product is lin-472?

early Lindelöf but not Lindelöf?

Moore [19] gave examples if c > ℵω. This is in fact an equivalent of c > ℵω if
one of the factors is required to be a separable metric space.

Question 18 (J.T. Moore). Is there a linearly Lindelöf, non-Lindelöf space of473?

size ℵω?

Question 19 (J.T. Moore). Is there a normal, linearly Lindelöf, non-Lindelöf474?

space of weight ℵω?

Question 20 (Arhangel′skĭı). Is the product of any two (or countably many)475?

linearly Lindelöf p-spaces Lindelöf?
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ogy Proc. 27 (2003), no. 1, 9–14.
[7] R. Z. Buzyakova, Cardinalities of some Lindelöf and ω1-Lindelöf t1/t2-spaces, Topology
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Small Dowker spaces

Paul J. Szeptycki

A normal space whose product with the closed unit interval I is not normal
is called a Dowker space. The spaces are named for Hugh Dowker who proved
a number of characterizations of the class of spaces for which X × I is normal.
One of his motivations for studying this class of spaces was the study of the so-
called insertion property: X has the insertion property whenever f, g : X → R
such that f < g, g lower semi-continuous and f upper semi-continuous, there
is a continuous h : X → R such that f < h < g. Dowker proved the following
characterization ([16]).

Theorem. For a normal space, the following are equivalent

(1) X is countably paracompact.
(2) X × Y is normal for all infinite, compact metric spaces Y .
(3) X × Y is normal for some infinite compact metric space Y .
(4) X has the insertion property.

The homotopy extension property also fueled interest in normality of products
X × [0, 1] (later Starbird [43] and Morita [31] showed that normality of X was
sufficient to for the homotopy extension property).

Dowker was the first to raise the question when he asked (in a footnote to [16]):
“It would be interesting to have an example of a normal Hausdorff space that is not
countably paracompact.” Indeed. The connection between normality and count-
able paracompactness is quite subtle and constructing a normal not countably
paracompact space has turned out to be a difficult and deep problem.

The first few examples of Dowker spaces were all constructed by M.E. Rudin.
In [36], assuming the existence of Suslin tree, she constructed a locally countable
realcompact Dowker space of size ℵ1. At the time Suslin’s hypothesis was still
open, but, nonetheless, this was the first construction of any kind of Dowker space.
Moreover, it established a blueprint for the construction of many Dowker spaces
to come. The construction is also fairly flexible and can be modified to obtain
locally compact, first countable examples assuming the existence of a Suslin tree.

Rudin next constructed the first, and for many years only, ZFC example [37].
The example is an easy to describe subspace of the box product �{ωn + 1 : 0 <
n < ω}, it is strongly collectionwise normal ([21]) and orthocompact ([22]), but
it has very few other nice properties. For example, the cardinality of the space is
ℵω
ℵ0 and all other natural local and global cardinal functions on this space are

equally large.
Although this example answered Dowker’s original question, instead of closing

the book on the Dowker space problem, it raised what has come to be known as
the ‘small Dowker space problem.’ A small Dowker space means any Dowker space
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with some small local or global cardinal invariant. Here small is usually interpreted
as countable, ω1 or less than or equal continuum. Each of the following problems
was raised in one of Rudin’s early papers and they are still open in ZFC:

Problem 1. Is there a Dowker space of size ℵ1?476?

Problem 2. Is there a first countable Dowker space?477?

Problem 3. Is there a separable Dowker space?478?

Problem 4. Is there a locally compact Dowker space?479?

Since most of the consistent examples of Dowker spaces of size ω1 are locally
countable it is natural to ask whether such spaces exist in ZFC:

Problem 5. Is there a locally countable Dowker space?480?

Rudin’s ZFC example and the questions it raised, led to a flurry of activity fu-
eled by the set-theoretic developments of the 70s and 80s. During that time many
very special consistent examples were constructed under a variety of different as-
sumptions. In addition, a few other ZFC examples were obtained by modifying
Rudin’s example ([23, 15, 27, 26, 18]). No truly new ZFC example of any kind
of Dowker space, small or large, was constructed until the celebrated example of
Balogh published more than 20 years after Rudin’s example [6]. Balogh’s exam-
ple is of size continuum and is the first ZFC example of a small Dowker space.
While the example itself is, in the words of Jerry Vaughan “a milestone in set-
theoretic topology” [49], more remarkable is the main technique invented for the
construction. Balogh developed an elementary submodel technique based on ideas
of M.E. Rudin. This technique is quite flexible (at least for Balogh) who previ-
ously used it to construct Q-set spaces, and later to solve Morita’s conjectures [7],
[2]. He also employed it to construct a few other more specialized small Dowker
spaces in ZFC: a screenable example [8] and a hereditarily collectionwise nor-
mal, hereditarily meta-Lindelf, hereditarily realcompact example [4]. Perhaps the
best reference for somebody wishing to learn the technique is the posthumous [9].
While all the examples are of size 2ℵ0 , none is first countable, locally compact,
locally countable or separable. So although Balogh’s examples are ‘small Dowker
spaces’, they do not settle any of the main questions 1–5 in ZFC.

Except for a few consistent examples constructed quite recently (that I will
mention below) that is pretty much the short history of the small Dowker space
problem to date. Returning to the main questions 1–5, it is remarkable how few
independence results have been obtained. There are a handful of independence
results showing that certain constructions cannot yield ZFC examples, but there
are very few quotable results. For example, PFA implies there is no hereditarily
separable Dowker space (since all such examples are hereditarily Lindelof assuming
PFA [48]). Slightly more technical, but also important is Balogh’s result (see [5]
and [34]) that under MA + ¬CH there is no first countable locally compact sub-
metrizable Dowker space of size ℵ1 (a space is submetrizable if it has a weaker
metric topology). Note that an example announced in [25] assuming ♦ has all
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these properties. However, none of the modifications of Rudin’s example, nor
Balogh’s examples (see the discussion in [34]) are submetrizable.

Problem 6. Is there a submetrizable Dowker space? 481?

Illustrating how weak our independence results seem, none rules out a single
ZFC example giving a positive answer to Problems 1–5 simultaneously:

Problem 7. Is there a ZFC example of a locally compact, locally countable (hence 482?

first countable) separable Dowker space of size ℵ1.

This gives some support to conjecture positive answers to the main ques-
tions. Further evidence is given by an example of Chris Good [20]: assuming
that no inner model contains a measurable cardinal, there is a locally compact,
locally countable (hence first countable) zero-dimensional, collectionwise normal,
σ-discrete Dowker space. Therefore, the consistency of no first countable Dowker
space, or no locally compact Dowker space would require at least a measurable
cardinal. Of course, Good’s example is large in cardinality and sheds no light on
the existence of a Dowker spaces of size ℵ1, or a separable example.

Part of the difficulty in showing the consistency of no Dowker space of size
ℵ1 is that there seems to be no natural set-theoretic formulation of the problem
(compare with the S-space and L-space problems). This shortcoming was touched
upon with the following question of Rudin, raised in her paper [39]:

Problem 8. Find a purely set-theoretic translation of the assertion: “There is a 483?

Dowker space of size ℵ1.”

Rudin also asked whether the existence of a Dowker space of size ℵ1 implies
the existence of a Souslin tree [39]. We now know the answer to this question is
‘no’ (there are models of CH without Suslin trees and CH implies the existence
of some very nice Dowker spaces of size ℵ1, e.g., [25]). However, it is possible to
revive Rudin’s question if we strengthen the hypotheses: (local compact may be a
particularly important assumption, see the discussion on locally compact Dowker
spaces below). A positive answer to the following version of Rudin’s question is
possible (but would be surprising):

Problem 9. Does the existence of (some kind of) locally compact (maybe add 484?

locally countable, realcompact, σ-discrete) Dowker space of size ℵ1 imply the exis-
tence of a Suslin tree?

While there are many sufficient conditions established for the existence of
certain small Dowker spaces, establishing any kind of necessary conditions would
seem to require some new ideas.

It is also not known if either MA +¬CH or PFA say something about Dowker
spaces of size ℵ1:

Problem 10. Does MA + ¬CH or PFA imply that there are no Dowker spaces of 485?

size ω1?
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Barring a ZFC example of size ℵ1, it is natural to ask what is the minimum
cardinality of a Dowker space. For the purposes of brevity, let us denote this car-
dinal by D. Rudin’s example is of cardinality ℵω

ω and Balogh’s example is of size
continuum, and it is consistent that 2ℵ0 = ℵω

ℵ0 . Kojman and Shelah constructed
a subspace of Rudin’s ZFC example using a scale in

∏
n∈ω ωn of cardinality ℵω+1

(such scales exist in ZFC [42]). Later Kojman and Lubitch constructed a similar
example with even nicer properties [26]. These examples gives the current best
absolute bound for D.

Problem 11 (Kojman and Shelah; Watson). Is it consistent that every Dowker486?

space is of cardinality ≥ ℵω+1?

Balogh’s example of size continuum shows, technically, that D may be consid-
ered a cardinal invariant of the continuum. But is it a natural cardinal invariant?
Are there any provable relations to the well-known cardinal invariants? This has
been touched on before: Todorčević described an example of a Dowker space con-
structed from a Lusin set [48] and asked whether b = ω1 sufficed for the construc-
tion (it was shown in [44] that no). By a construction of Rudin, it is consistent
with MAω3

that there is a Dowker space of cardinality ω2 (this construction was
described in [37] but later retracted since it was not known at the time whether
the assumptions used were consistent—however, they are). So, if there is some
provable inequality between a known cardinal invariant and D, the later would
need be the smaller. E.g., we can ask

Problem 12. Is there a Dowker space of cardinality ≤ p?487?

A curious fact is that of all the Dowker spaces constructed from CH (e.g.,
[25, 10, 12, 44]), none of them is locally compact. And of all the Dowker spaces
constructed from some variant of ♦ (e.g, [11, 13, 36, 14, 24, 50, 40, 19, 20]) all
are either locally compact or can easily be made so. This led Balogh and Nyikos
to ask

Problem 13. Does CH imply the existence of a locally compact Dowker space?488?

Nyikos recently found a general method for constructing the first examples
of hereditarily normal, locally compact Dowker spaces. The construction appears
in [33] where he gives a detailed discussion the problem of locally compact Dowker
spaces. In particular, assuming ♦ Nyikos constructs a locally compact hereditarily
normal, hereditarily separable, locally countable, hereditarily strongly collection-
wise Hausdorff Dowker space of cardinality ℵ1. The example can in addition be
made Fréchet–Urysohn and satisfy the convergence property α1 of Arhangel’skii.
In [17] it is shown consistent with CH that there are no such examples. Thus
CH is not sufficient to construct some types of locally compact Dowker spaces.
The pair of results also provides another independence results for Dowker spaces.
In particular they proved that it is consistent with CH that there are no locally
compact, ω1-compact Dowker spaces with the property that in the one point com-
pactification, the point at infinity is a α1-point.
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Recently Tall ([46]) using a model constructed by Todorčević [47], showed it
consistent (modulo large cardinals) that there are no separable hereditarily normal
Dowker spaces that are either first countable or locally compact. Both of these
results are non-vacuous as exhibited by Nyikos’s example.

Finally, we list a number of other small Dowker space problems that seem com-
pletely open. Most of these have been mentioned several times in the literature,
the most important being

Problem 14. Is there a Dowker space with a σ-disjoint base? 489?

An equivalent question is whether a normal space with a σ-disjoint base is
paracompact. This question is completely open. There could be a ZFC exam-
ple but in Rudin’s survey article from the first Open Problems in Topology she
conjectures a theorem.

Closely related is the following problem due to Mike Reed:

Problem 15 (Reed). If a normal space is a union of a countable family of open 490?

metrizable subspaces, must it be metrizable?

A counterexample would need be a Dowker space with a σ-disjoint base. Reed
has a regular example in ZFC and can prove, consistently, that there are no coun-
terexamples of size < c [35].

A class of spaces still not well understood are para-Lindelof spaces. The
following problem arose from Caryn Navy’s examples of normal paralindelof non-
paracompact spaces constructed in [32]. All of them are countably paracompact
raising the question

Problem 16 (Tall; Watson). Is there a para-Lindelof Dowker space? 491?

The following question of Kemoto finds motivation from the fact that normal
subspaces of finite products of ordinals are countably paracompact and whether
countably paracompact subspaces of finite products of ω1 are normal seems to be
a difficult problem [3]:

Problem 17 (Kemoto). Can ωω
1 contain a Dowker subspace? 492?

An old question of Michael and Arhangel’ski asks whether points are Gδ sets
in a regular symmetrizable space (a symmetric is like a metric where you drop
the triangle inequality, and a topological space is symmetrizable if the balls with
respect to the symmetric form a network for the topology). Given a symmetrizable
Dowker space, adding a point at infinity in the natural way would provide a
counterexample to the Michael–Arhangel’skii problem.

Problem 18 (Davis). Is there a symmetrizable Dowker space? 493?

We conclude now with a pair of questions where Dowker spaces and measure
theory intersect: Mařikś theorem states that in a normal, countably paracompact
space every Baire measure on X admits an extension to a closed-regular Borel
measure [30]. So a space has come to be called a Mařik space if every Baire mea-
sure can be so extended. There are consistent examples to the following problems
constructed in [1] but it is open whether there are ZFC examples.
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Problem 19. Is there a Mařik Dowker space?494?

Problem 20. Is there a normal space such that every Baire measure can be ex-495?

tended to a Borel measure but it is not Mařik? (It necessarily would be Dowker.)
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[48] S. Todorčević, Partition problems in topology, Contemporary Mathematics, vol. 84, Ameri-

can Mathematical Society, Providence, RI, 1989.
[49] J. Vaughan, Review of [6], 96j:54026.
[50] W. Weiss, Small Dowker spaces, Pacific J. Math. 94 (1981), no. 2, 485–492.





Reflection of topological properties to ℵ1

Franklin D. Tall

Large cardinals exhibit reflection phenomena: roughly speaking, if some uni-
versal property holds below κ, it holds everywhere; alternatively, if there is an ob-
ject with some property, there is one of size less than κ. A standard set-theoretic
technique is to collapse a large cardinal κ to be “small,” e.g., ℵ1,ℵ2, or 2ℵ0 , and
to see if some particular instance of reflection holds. The prototypical example
of this is the proof in [6] that if a supercompact cardinal is Lévy-collapsed to ω2,
then for every regular cardinal λ ≥ ω2 and every stationary set S of ω-cofinal
ordinals in λ, there is an α < λ of cofinality ω1 such that S ∩α is stationary in α.
One naturally wonders whether such phenomena exist in topology. The simplest
such interesting question — due to Fleissner [13] — is

Problem 1. Is every first countable ℵ1-collectionwise Hausdorff space collection- 496?

wise Hausdorff?

There are easy counterexamples if one omits “first countable.” More interest-
ing, but apparently harder to deal with is Hamburger’s

Problem 2. If X is a first countable space with every subspace of size ℵ1 metriz- 497?

able, is X metrizable?

However, Shelah has proven (among many other results in [29]):

Proposition 1. There is a first countable nonmetrizable space of size ℵ2 such that
every subspace of size ≤ ℵ1 is metrizable if and only if there is a first countable
Hausdorff space which is ℵ1-collectionwise Hausdorff but is not ℵ2-collectionwise
Hausdorff.

“First countable” is the topological analogue of “ω-cofinal.” In proofs in-
volving topological reflection, it is useful because it ensures that the reflection of a
space is a subspace of the original space (Defining the reflection of a space requires
getting further into large cardinals than we wish to do here. For a first countable
space X sitting on some λ ≥ κ, κ supercompact, say X = 〈λ, T 〉, it would just be
the subspace 〈α, T |α〉, for some α < κ. See [11]).

The rationale for thinking at least some reflection questions are consistent is
an intuition that we have so little comprehension of uncountable cardinals, that
from our perspective, they all look like ℵ1. Axioms expressing this intuition can
be found in [17] and [31].

A third old chestnut is

Problem 3. Is 2ℵ0 = ℵ2 consistent with every normal Moore space being metriz- 498?

able?
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It is not immediately obvious that the third problem is of the same genre
as the first two, but it is. The standard — so far unsuccessful — technique for
attacking these is to collapse a supercompact to ω2; for the first two, via Lévy-
collapse; for the third via the Mitchell-collapse [1, 26] which “combines” the Lévy
collapse and adding Cohen reals. Since after adding ℵ2 Cohen reals, normal Moore
spaces of size ℵ1 are metrizable [12], a positive solution to Problem 3 as well as
to Problem 2 could be obtained if one could positively answer

Problem 4. Does countably closed forcing preserve nonmetrizability for first499?

countable spaces?

This would go via the standard “reflection plus preservation” argument, as
in [11], Lévy- or Mitchell-collapsing a supercompact cardinal to ω2.

Countably closed forcing does preserve nonmetrizability for spaces of size
ℵ1 [23]; this leads to the following result.

Proposition 2 ([23]). Suppose there is a nonmetrizable X which can be made
metrizable by countably closed forcing. Then every subspace of X of size ℵ1 is
metrizable.

Unfortunately, while looking at [29] while preparing this note, I realized that
Shelah had in his Sections 1.3 and 1.4 solved Problem 4 under a mild assumption.
First of all, he constructs an example:

Proposition 3 ([29]). Suppose there is a strong limit cardinal λ of uncountable
cofinality such that 2λ = λ+. Then there is a first countable Hausdorff space of
size λ+ which is not collectionwise Hausdorff, but is ℵ1-collectionwise Hausdorff,
and indeed has every subspace of size ℵ1 metrizable.

Shelah does not mention the last fact, but since the space is the union of
a closed discrete subspace with a set of isolated points, the metrizability follows.
(Incidentally, Shelah’s definition of “collectionwise Hausdorff” in the paper is actu-
ally what is usually called “hereditarily collectionwise Hausdorff,” but on a quick
perusal, does not seem to affect the results he states.) He then remarks that
collapsing λ+ to ℵ1 with countable conditions will make the space collectionwise
Hausdorff, which — by the argument above — will make it metrizable.

Shelah’s example makes it highly unlikely that Lévy-collapsing a supercom-
pact to ω2 via countable conditions will solve Problems 1 and 2, since one would
somehow have to make use of GCH failing at cardinals of uncountable cofinality.
Probably there are ZFC-counterexamples. With regard to Problem 3, someone
should follow up on Watson’s idea that Fleissner’s proof [15] that CH implies that
the existence of a normal nonmetrizable Moore space could possibly be modified
to use only that 2ℵ0 ≤ ℵ2.

There are relevant partial results on preservation via countably closed forcing;
for example, Shelah [27] proves by a variation of the proof in [6] alluded to earlier,

Lemma. Countably closed forcing preserves noncollectionwise Hausdorffness for
first countable spaces with local density ≤ ℵ1.
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This yields

Proposition 4 ([27]). If it is consistent there is a supercompact cardinal, it is
consistent that every first countable ℵ1-collectionwise Hausdorff space of local den-
sity ≤ ℵ1 is collectionwise Hausdorff.

There are other presentations and generalizations of this result — see [16]
and [10]. Studying the various proofs may give some insight into how to construct
a counterexample, which will necessarily not be “locally small.”

Another partial result in which one throws in extra conditions so that noncol-
lectionwise Hausdorffness is preserved is in [23], improving [25]:

Definition. A space is stationarily θ-collectionwise Hausdorff if for each closed
discrete {xα : α < θ}, and each stationary S ⊆ θ, there is a stationary T ⊆ S,
such that {xα : α ∈ T} is separated.

Proposition 5 ([23]). Let θ be a regular cardinal. If X is not stationarily θ-
collectionwise Hausdorff, then X is not θ-collectionwise Hausdorff in any countably
closed extension.

This yields, for example

Proposition 6 ([25]). If it’s consistent there is a supercompact cardinal, it’s
consistent that every first countable ℵ1-collectionwise Hausdorff space is weakly
collectionwise Hausdorff.

(Recall that a space is weakly collectionwise Hausdorff if every closed dis-
crete subspace includes a separated (by disjoint open sets) subspace of the same
cardinality.)

Actually, it is not certain that Junqueira’s result is an improvement over that
of Laberge and Landver. I do not know offhand of an example of say a stationarily
ℵ1-collectionwise Hausdorff space that is not ℵ1-collectionwise Hausdorff. Speak-
ing of examples, the standard example — easier than Shelah’s — which shows that
the reflection problems we have mentioned cannot have positive answers in ZFC is
due to Fleissner [14]. E(ω2) is the axiom which asserts that there is a stationary
E ⊆ {α ∈ ω2 : cf(α) = ω}, such that for no limit δ < ω2 is E ∩ δ stationary in δ.
The failure of E(ω2) is equiconsistent with the existence of a Mahlo cardinal [21].

Example. Given such an E, for each α ∈ E, choose sα : ω → α to be a strictly
increasing sequence converging to α. Let D = {sα|m : α ∈ E,m ∈ ω}. Let
X = E ∪ D. The points of D are taken to be isolated; the nth neighbourhood
of α ∈ E is N(α, n) = {α} ∪ {sα|m : m > n}. X is a locally compact, locally
countable Moore space, which is ℵ1-collectionwise Hausdorff but not (stationarily)
ℵ2-collectionwise Hausdorff. Every subspace of X of size ≤ ℵ1 is metrizable.

See [9, 25, 29] for other examples of interest. Let us also note that connections
between Problem 1 and problems concerning sequential fans are established in [25].

Balogh [4, 5] proposes a number of problems of the form, “if X is countably
tight (or first countable) and every subspace of size ≤ ℵ1 has some covering or base
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property, does X?”, and obtains some interesting partial results using Fleissner’s
Axiom R [16].

One of these, raised by several authors (see e.g., [8]) is particularly interesting:

Problem 5. Is it consistent that if every subspace of size ≤ ℵ1 of a first countable500?

space has a point-countable base, then the whole space does?

As usual, a non-reflecting stationary set of ω-cofinal ordinals in ω2 is a coun-
terexample.

Aside from the standard approach [6, 27] of collapsing a supercompact car-
dinal and proving a preservation lemma, an alternate approach is to Foreman–
Laver-collapse a huge cardinal [18]. The flavour of this is to obtain an object
of size ℵ2 being the union of ℵ1 nice subsets, if objects of size ℵ1 are nice. A
prototypical example is

Proposition 7 ([31]). Assuming the consistency of a huge cardinal, there is a
model in which every first countable ℵ1-collectionwise Hausdorff space has the
property that closed discrete subspaces of size ℵ2 are the union of ℵ1 subspaces,
each of which is separated by disjoint open sets.

The same idea yields a more obviously reflective result:

Proposition 8 ([29, 31]). Assuming the consistency of a huge cardinal, there is
a model in which every first countable weakly ℵ1-collectionwise Hausdorff space is
weakly ℵ2-collectionwise Hausdorff.

In another direction, we have

Proposition 9 ([31]). Assuming the consistency of a huge cardinal, there is a
model in which every ℵ1-collectionwise normal Moore space of size ℵ2 is metrizable.

It is not clear whether the limitation to ℵ2 can be consistently removed, say by
assuming some sufficiently large cardinal. See [31]. Proposition 3 tends to make
one think not. Also, Shelah [29] has shown there is a first countable Hausdorff
space which is (2ℵ0)+-weakly collectionwise Hausdorff, but is not weakly collec-
tionwise Hausdorff. The difficulty first occurs at ℵω, assuming GCH, but, in any
event, occurs at some singular cardinals of cofinality ω.

Assuming the existence of a huge cardinal κ with j(κ) supercompact (see [31]
for an explanation of “j” and applications of this stronger hypothesis), one can
get both the power of the Foreman–Laver collapse (of a huge cardinal to ω1) and
the power of the Lévy-collapse of a supercompact cardinal to ω2.

Another major problem which possibly involves reflection is Arhangel’skĭi’s:

Problem 6. Is it consistent that every Lindelöf T2 (T3?) space with points Gδ501?

has cardinality ≤ 2ℵ0?

By assuming the Continuum Hypothesis, which is reasonable in this context,
we again have a question involving ℵ1.

Problem 7. Is it true (or consistent via countably closed forcing) that Lindelöf502?

T2 spaces with points Gδ cannot be made non-Lindelöf by countably closed forcing?
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If so, then in the “true” case and probably in the consistent one, Arhangel’skĭi’s
problem can be settled affirmatively by Lévy-collapsing a supercompact cardinal
to ω2 [32].

There is a combinatorial version of Problem 7 which does not mention forc-
ing [32].

Definition. A covering tree for a Lindelöf space X is a collection of open sets
{Uf : f ∈ <ω1ω}, such that for each α ∈ ω1 and each f ∈ αω, {Uf∪{〈α,n〉} : n < ω}
covers X . For f ∈ ≤ω1ω, the f -branch Bf is defined to be {Uf |β : β ∈ dom f}.

Problem 7′. Is it true that for each Lindelöf T2 space X with points Gδ, that for
each covering tree T of X, Bf is a cover for some f ∈ <ω1ω?

A related problem also due to Arhangel’skĭi is

Problem 8. Does every Lindelöf first countable T1 space have cardinality ≤ 2ℵ0? 503?

Relevant partial results are:

Proposition 10 ([3]). There is no Lindelöf space with points Gδ of size greater
than or equal to the first measurable cardinal.

Proposition 11. It’s consistent (via countably closed forcing [19, 22, 28] or
V = L [30, 33]) that there is a Lindelöf 0-dimensional space with points Gδ of size
ℵ2 = (2ℵ0)+.

Note that the claim by Morgan referred to in [32] that in L one could get such
spaces of size ℵn, for every n, has been withdrawn.

Proposition 12 ([28, 32]). By Lévy-collapsing a supercompact cardinal to ω2

and then adding κ ≥ ℵ3 Cohen subsets of ω1, one obtains a model in which there
are no Lindelöf spaces with points Gδ of size ≥ ℵ2 and < κ.

Another reflection problem involving Lindelöf spaces is due to Hajnal and
Juhász [20]:

Problem 9. Does every Lindelöf space have a Lindelöf subspace of size ℵ1? 504?

By adding topological hypotheses, one can get positive results [7]. There
is a consistent 0-dimensional counterexample [24]. There are only very weak
positive consistency results, assuming first countability (!) [7]. I bet there is a
ZFC counterexample.

Presently available methods for dealing with the problems discussed have more
or less reached a dead end. Perhaps positive consistency results can be obtained by
a clever use of countably closed elementary submodels in order to prove forcing–
preservation results, exploiting first countability or points Gδ . On the other hand,
such dead ends are often a signal that there are counterexamples to be obtained
by someone taking a fresh look at the problems.
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The Scarborough–Stone problem

Jerry E. Vaughan

1. Introduction

In their paper from 1966, C.T. Scarborough and A.H. Stone posed the follow-
ing problem:

Problem 1.1 (Scarborough–Stone [36]). Must every product of sequentially com- 505?

pact spaces be countably compact?

This problem has been restated many times (e.g., [45, 47]), yet major portions
of it remain open. For instance

Problem 1.2. In ZFC, is there a family of sequentially compact T3.5-spaces whose 506?

product is not countably compact?

Problem 1.2 is stated differently from Problem 1.1 because under the assump-
tions of various set-theoretic conditions, there are families of sequentially compact
T3.5-spaces (even T6) whose product is not countably compact. In this article, we
discuss the current state of knowledge about the Scarborough–Stone problem.

Terms not defined here can be found in the Encyclopedia of General Topol-
ogy [13], Engelking’s General Topology [9] or The Handbook of Set-theoretic
Topology (e.g., [3, 45]). By a T6-space we mean a perfectly normal T2-space. We
assume all spaces are T2.

The set of natural numbers is denoted by ω. The set of positive integers
is denoted by N = ω \ {0}. The Stone–Čech compactification of the integers is
denoted by β(ω), and its remainder by ω∗. Let [ω]ω denote the set of infinite
subsets of ω, and ωω the set of all function from ω into ω. Let c denote the
cardinality of the continuum.

The following definitions will be central to this article.
A space is countably compact provided every countable open cover of X has

a finite subcover (equivalently, if every sequence has a cluster point*).
A space is sequentially compact provided every sequence has a convergent

subsequence.
For r ∈ ω∗, x ∈ X and s : ω → X , we say that x is the r-limit of s provided

for every neighborhood U of x, {n ∈ ω : s(n) ∈ U} ∈ r (in a T2-space the r-limit
of a sequence is unique).

A space is r-compact if every sequence has an r-limit.
A space is ω-bounded provided every countable set has compact closure or,

equivalently, if the space is r-compact for every r ∈ ω∗.
While countable compactness is not productive (see Section 2 below), both

r-compactness and ω-boundedness are productive properties.

Theorem 1.3 (Bernstein [4]). Every product of r-compact spaces is r-compact,
hence countably compact.

249
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Corollary 1.4. Every product of ω-bounded spaces is ω-bounded, hence countably
compact.

Also, if we place a restriction on the number of factors in the product, we have
the following Theorem which gives additional motivation for Problem 1.2.

Theorem 1.5. (a) A product of countably many sequentially compact spaces
is sequentially compact.

(b) (Scarborough–Stone) The product of at most ω1 sequentially compact
spaces is countably compact.

For A,B ∈ [ω]ωwe write A ⊂∗ B provided A \ B is finite (the mod-finite
order). A tower on ω is an ordered family of infinite subsets of ω, {Aα : α < κ},
such that for every α < β, Aβ ⊂∗ Aα, and there does not exist an infinite A ⊂ ω
such that A ⊂∗ Aα for all α < κ.

We finish the introduction by recalling a few more definitions.
An ultrafilter r is called a T-point provided it contains a tower. The cardinal

t is defined to be the smallest cardinal κ such that there exists a tower indexed by
κ (see [43]). In any space a closed nowhere dense set H is called a Tκ-set provided
H is the intersection of a decreasing chain of κ many clopen neighborhoods of H .
We will also say that H is a T-set provided H is a Tκ-set for some κ ≥ ω1. In this
paper, we only consider these notions in the space ω∗.

We also need the mod finite order on ωω: We say f <∗ g provided {n ∈ ω :
g(n) < f(n)} is finite. The cardinal b is defined to be the smallest cardinal κ such
that there exists an unbounded family of size κ in ωω (see [43]).

The proof of Theorem 1.5 also shows that (a) the product of fewer than t

sequentially compact spaces is sequentially compact, and (b) the product of no
more than t sequentially compact spaces is countably compact. See [43, 13.1].

2. How to construct a product that is not countably compact

We now describe a technique for constructing a family of spaces whose product
is not countably compact.

A family of pairs {(Xα, sα) : α < κ}, where Xα is a space, and sα is a sequence
in Xα is called an SS-family provided for every r ∈ ω∗ there exists α < κ such
that sα has no r-limit in Xα.

Lemma 2.1. A product Πα<κXα is not countably compact if and only if for all
α < κ there exists a sequence sα : ω → Xα such that {(Xα, sα) : α < κ} is an
SS-family.

It follows that the Scarborough–Stone problem reduces to the problem of
constructing an SS-family of sequentially compact spaces.

We illustrate the use of an SS-family with a well known example.

Example 2.2 (Novak–Terasaka [24, 39]). There exist two countably compact
T3.5-spaces X0, X1 whose product is not countably compact.
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The spaces X0 and X1 are constructed so that that both are subsets of β(ω),
and X0 ∩ X1 = ω. Let s denote the identity function on ω. Then s has the
property that for every r ∈ β(ω), the r-limit of s exists (and obviously equals r)
and is in X0 or X1 but not both. It follows that the family {(X0, s), (X1, s)} is an
SS-family. By Lemma 2.1, X0 ×X1 is not countably compact.

We know only two ways to construct (consistent) SS-families of sequentially
compact spaces: the Ostaszewski construction (§ 3) and the Franklin-Rajagopalan
construction (§ 4). Each construction uses a set-theoretic property that is not a
theorem of ZFC; so neither construction can produce a counterexample to Prob-
lem 1.1 in ZFC. Each construction works in some models where the other does not,
but combining the two constructions will not produce a counterexample in ZFC

either (see §6).

3. The Ostaszewski construction

Fix r ∈ ω∗. We discuss the Ostaszewski construction [32], [44] of a sequen-
tially compact space which is not r-compact. The construction produces zero-
dimensional T2-spaces, hence T3.5-spaces. The underlying set in the Ostaszewski
construction is c, and the construction proceeds by induction on c. At each step in
the induction one has a topology Tα on an ordinal α < c such that Tα is a locally
compact, locally countable, T2-space (hence first countable and zero-dimensional).
In the space Xα = (α, Tα) there will be a “next” sequence s with no cluster point
(else we are done). Ostazwewski’s construction defines a topology Tα+1 on α+ 1
so that some subsequence of s converges to the new point α. To define neighbor-
hoods of α, we consider the range of s (which is a closed discrete subset of Xα),
and “expand” each s(n) to an open set Un. The expanded family {Un : n ∈ ω}
will be used to define a local base at α in Xα+1 = (α+1, Tα+1) and must be chosen
to make sure Xα+1 is a locally compact, locally countable, T2-space (hence zero-
dimensional and T2). The way to insure Tα is as desired is to choose the family
{Un : n ∈ ω} to be a discrete (locally finite) family in Tα. Choosing {Un : n ∈ ω}
to be discrete is difficult in general. This can be achieved, however, if the following
weak form of normality holds in Xα.

Definition (R.L. Moore [22]). A space X has property D provided for every
closed discrete countable set Y ⊂ X , there exists a discrete family of open sets
{Uy : y ∈ Y } such that y ∈ Uy for all y ∈ Y .

Thus we need that each Xα has property D. Let {U s(n)
n : n ∈ ω} be a de-

creasing local base at s(n). Then for each x ∈ Xα, there exists fx ∈ ωω and

a neighborhood V of x such that V intersects at most one of the sets U
s(n)
fx

(n)
for y ∈ H . Several people observed that if there is a function f that domi-

nates {fx : x ∈ H} in ωω then {Us(n)
f(n) : n ∈ ω} is a locally finite expansion of

{s(n) : n ∈ ω} ([43], [18], [21]). In particular, a dominating f can be found if
|X | < b. Van Douwen expressed this as follows:
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Lemma 3.1 (van Douwen [43, 12.2]). If X is a first countable space and |X | < b

then X has property D. Moreover there exists a first countable zero-dimensional
T2-space such that |X | = b and X does not have property D.

If we assume ♦, which is much stronger than b = c, we obtain the following
result using the Ostaszewski construction.

Theorem 3.2 (Vaughan [44]). Assume ♦. There exists a family {Xr : r ∈ ω∗}
such that each Xr is a sequentially compact T6-space that is not r-compact. Thus
Πr∈ω∗Xr is not countably compact.

Achieving zero-dimensional T2-spaces at each step in the Ostaszewski con-
struction seems to require an extra set-theoretic hypothesis. This is because at
step α, the space Xα = (α, Tα) has cardinality less than c, but to apply van
Douwen’s lemma, we need that the space has cardinality less than b. Thus the
assumption b = c seems natural. Nevertheless, we discuss below some models of
b < c where the Ostaszewski construction works.

Juhász, Nagy and Weiss [17] called a space X good provided it is T3, count-
ably compact and locally countable; hence also first countable, locally compact,
and zero-dimensional [17]. As we discussed above, assuming b = c, van Douwen
constructed for each r ∈ ω∗ a good space which is not r-compact; thus the family
of all these spaces provided a counterexample to Scarborough–Stone (Lemma 2.1).
Moreover Juhász, Nagy and Weiss constructed a single good space that is not r-
compact for any r ∈ ω∗ (they assume Martin’s Axiom and 2c < ℵω, but only
use MA to get b = c). Also K. Kunen and A. Berner (unpublished, see [49]),
came up with a similar single space assuming the first two steps of GCH. All these
constructions are modifications of the Ostaszewski construction, and b = c holds
in these models.

Models of b < c are known where Ostaszewski’s construction yields a family
of sequentially compact spaces whose product is not countably compact. In 1988,
K. Kunen showed us that in models obtained from models of CH by adding at least
ω1 Cohen reals, the Ostaszewski construction can be used to produce a counterex-
ample to the Scarborough–Stone Problem (unpublished). In 2002 Alan Dow no-
ticed that Kunen’s method worked in models obtained from CH by adding random
reals (also unpublished). It would be interesting to ask about other models, but
it is not clear this would solve the remaining portions of the Scarborough-Stone
problem.

Another approach by Juhász, Shelah and Soukup [18] shows that if one itera-
tively adds ω1 dominating reals to any model, then at each step of the induction,
a dominating function can be found for the family {fx : x ∈ Xα} in the next
model, which can be used to get the discrete expansion described above. Thus
in this model the Ostaszewski construction produces a counterexample to the
Scarborough–Stone problem, and if we assume ¬CH in the ground model, we have
b = ω1 < c in this model.

In [30] Nyikos weakened property D by requiring that the expanded family
{Ui : i ∈ ω} be a pairwise disjoint collection instead of a discrete collection. This
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weaker property is called ω-collectionwise Hausdorff . An analogue of Lemma 3.1
can be proved in ZFC with no restriction on the cardinality of X . This means
that we can continue the induction maintaining the ω-collectionwise Hausdorff
property at each step. Hence the analogous Ostaszewski construction can be
continued through c and this can be done in ZFC and yields the next result. We
mention, however, that we pay a price for using the weaker property because the
constructed spaces are T2, but not T3.

Theorem 3.3 (ZFC, Nyikos and Vaughan [30]). There exists a family of 2c se-
quentially compact Hausdorff spaces whose product is not countably compact.

A space is called a Urysohn space if any pair of points can be separated by
neighborhoods with disjoint closures. The Scarborough–Stone Problem is only
half solved in the class of Urysohn spaces. The T2-spaces in [30] are not T3, but
we do not know if they can be made to be Urysohn in ZFC (see [48]).

4. Franklin–Rajagopalan spaces

The second way to construct a family of sequentially compact spaces whose
product is not countably compact uses Franklin–Rajagopalan spaces (FR-spaces) [10].

Let T = {Tα : α < κ} be a tower on ω. The underlying set for the FR-space
built from T is ω∪κ, (where we consider ω and κ to be disjoint sets). The topology
is defined by declaring ω to be a set of isolated points, and basic neighborhoods of
α ∈ κ, are defined by N(α, β, F ) = (β, α] ∪ Tβ \ (Tα ∪ F ) where β < α and F is a
finite subset of ω. Clearly the subspace topology on κ is its usual order topology
(see [30]). Given a tower T , let X(T ) denote the FR-space constructed from T .

There are two main ideas in using FR-spaces to solve the Scarborough–Stone
Problem. (1) A sequentially compact FR-space X(T ) is not r-compact if and only
if there exists an ultrafilter u such that u ⊃ T , and u is below r in the Rudin–
Keisler order on ultrafilters [30, Theorem 1.2]. (2) There are certain models of
set theory in which ω∗ can be covered by a family of T-sets, in fact by fewer
than c many T-sets (hence every r ∈ ω∗ contains a tower). These are models
of Hechler [15], and models obtained from adding ω1 Cohen reals to a model of
b > ω1 (for example models of MA+¬CH [1]). We do not know if the Ostaszewski
construction works in these models, but we have the following

Theorem 4.1 (Nyikos and Vaughan [30]). If a family of T -sets covers ω∗, then
the product of the corresponding family of sequentially compact FR-spaces is not
countably compact.

In models where ω∗ can be covered by fewer than c many T-sets, we have the
somewhat surprising result that there exists a product of fewer than c sequentially
compact spaces whose product is not countably compact.

5. Martin’s axiom and proper forcing

In this section we consider the positive solutions to the Scarborough–Stone
problem in the classes of T6 and T5-spaces.
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Theorem 5.1 (W. Weiss [50]). Assume MA +¬CH (or its consequence p > ω1).
Every countably compact T6-space is compact. Hence every product of countably
compact T6-spaces is countably compact.

Theorem 5.1 and Theorem 3.2 provide a complete solution for T6-spaces:

Theorem 5.2. Whether or not every product of sequentially compact T6-spaces
is countably compact is consistent with and independent of ZFC.

The Scarborough–Stone problem for T5-spaces was solved using the Proper
Forcing Axiom (PFA), which is stronger than MA + ¬CH.

Theorem 5.3 (Nyikos, Soukup, Veličović [26, Cor. 1.4]). Assume PFA. In a
countably compact T5-space every countable set has compact (Fréchet–Urysohn)
closure. Thus every product of countably compact T5-spaces is ω-bounded, hence
countably compact.

Theorem 5.3 and Theorem 3.2 provide a complete solution for T5-spaces:

Theorem 5.4. Whether or not every product of sequentially compact T5-spaces
is countably compact is consistent with and independent of ZFC.

6. Concluding comments

Theorem 5.1 and Theorem 5.2 tell us that under certain set-theoretic as-
sumptions countable compactness implies a productive compactness property (and
therefore the Scarborough–Stone problem has a positive answer). In the case of
T6-spaces, the productive property is compactness, and in the case of T5-spaces the
productive property is ω-boundedness. Note that only countable compactness—
not sequential compactness—is involved.

We also note that as we weaken the separation from T6 to T5 in Theorems 5.1
and 5.3, we had to use much stronger set-theory, going from p > ω1 to PFA.
Nyikos remarked to us that we can weaken p > ω1 in Theorem 5.1 by thinking of
the statement “every countably compact T6-space is compact” as a set-theoretic
property. This property is weaker than p > ω1 because T. Eisworth has shown
that it is consistent with CH [8].

In order to give a positive (consistent) solution to the Scarborough–Stone
problem in the class of T3.5-spaces it will be necessary to use some of the strength
in sequential compactness because in the class of T3.5-spaces (unlike the T5 and T6

cases) it is not consistent that countable compactness by itself implies a productive
compactness property, as the Novak–Terasaka example shows (Example 2.2).

Let us note that it is consistent that no mixture of spaces produced by the
Ostaszewski construction and the Franklin–Rajagopalan construction will yield
a T4 counterexample to the Scarborough-Stone problem. To see this, suppose
we have a family F of sequentially compact spaces, each of which is either an
FR-space or has countable tightness (such as the Ostaszewski spaces constructed
using b = c, a consequence of PFA). Then assuming PFA, the product of the
spaces in F is countably compact. This follows from some known results. Nyikos
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proved that under PFA, every countably compact, countably tight T4-space is ω-
bounded [2, 25]. Kunen showed that assuming MA + ¬CH + ♦(c, ω1-limits) (a
consequence of PFA [3, Theorem 7.13]) that there exists a single u ∈ ω∗ such that
every sequentially compact FR-space is u-compact (unpublished, see [30]). Thus
the family F consists entirely of ω-bounded spaces and u-compact spaces. Hence
the product of the spaces in F is u-compact, and therefore countably compact.

Obviously there are many variations on the Scarborough–Stone problem. We
state one more:

Problem 6.1. Must every product of sequentially compact topological groups be 507?

countably compact?

This problem was raised in [47, Problem 347], but has not received much
attention. There are, however, a number of consistent examples of not countably
compact products of countably compact groups (e.g., see [14, 41, 42]).

We have included in our References some citations related to the Scarborough–
Stone problem which we did not have space to discuss.
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Part 3

Continuum Theory





Questions in and out of context

David P. Bellamy

These are problems which have seemed to me important, interesting, or both
for years. Some of them are just isolated questions which may not lead anywhere;
some are missing links in different developments. Sometimes, I am aware of how
they fit into the general scheme of topology; sometimes I am not. Some I express
as conjectures; some just as questions. If a question is not my own, I have given
the name of the person who first posed it if I know who it is.

Conjecture 1. Let X be a tree-like continuum and let f : X → X be a continuous 508?

map. Then there exists an indecomposable continuum W ⊆ X such that f(W ) ∩
W 6= ∅.

I think that this is the last remaining hope of getting something akin to a
fixed point theorem for all tree-like continua.

Conjecture 2 (Norman Passmore). Let P be a pseudo-arc and let C(P ) denote 509?

its hyperspace of subcontinua. Let X ⊆ C(P ) be a pseudo-arc. Then X is a subset
of a Whitney level for some Whitney map µ.

This was posed by Norman Passmore, in his Ph.D. dissertation [5] in 1976,
and is still open.

Conjecture 3 (Howard Cook). Let A ⊆ Rn be a compact set with the property 510?

that every component of A is either a point or a pseudo-arc. Then there exists a
pseudo-arc P with A ⊆ P ⊂ Rn.

Howard Cook proved the R2 case of this in his dissertation [3]. Good dis-
sertation problem. I have discussed this with Howard Cook in conversation. He
suspects that it is probably easier for n > 2 than for n = 2.

Conjecture 4. Let A ⊆ Rn and suppose A is compact and every component of 511?

A is a hereditarily indecomposable continuum. Then there exists a hereditarily
indecomposable continuum M with A ⊆M ⊂ Rn+1.

I think this is easier than Problem 4; I can do it if A has only finitely many
components. This is, of course, just a natural generalization of Problem 4.

Conjecture 5. Every finite-dimensional hereditarily indecomposable continuum 512?

can be embedded into a finite product of pseudo-arcs.

It is true that every hereditarily indecomposable continuum can be embedded
into a product of pseudo-arcs; a countable product if the continuum is metric. An-
other variation follows. An affirmative answer to this would be a satisfying analog
to what is known about embedding compact finite-dimensional metric spaces into
Euclidean spaces. Conjecture 6 is, of course, strictly stronger than Conjecture 5.
Conjecture 7 is another special case.
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Conjecture 6. Every n-dimensional hereditarily indecomposable continuum can513?

be embedded into a product of 2n+ 1 pseudo-arcs.

Conjecture 7. Every planar hereditarily indecomposable continuum embeds into514?

a product of two pseudo-arcs.

Conjecture 8. Let X be a chainable continuum. Then there is a base of connected515?

open neighborhoods of the diagonal in X ×X; that is, if ∆ denotes the diagonal
of X × X and U is open in X × X with ∆ ⊆ U then there is a connected open
V ⊆ X ×X such that ∆ ⊆ V ⊆ U .

This is true for the arc, all Knaster continua, and the pseudo-arc for what
appear to be completely different reasons. It is not true for solenoids, which are,
of course, circularly chainable but not chainable.

Problem 9. Let H denote the Stone–Čech remainder of [0,∞). Let M be the516?

orbit of any point of H under the action of its homeomorphism group. Is M
connected?

This construction will be revisited in Problem 26. Many other spaces besides
[0,∞) could, of course, be used here.

A continuum X is invertible iff given any nonempty open set U ⊆ X there is
a homeomorphism h : X → X such that h(X \ U) ⊆ U .

Problem 10 (Sam Nadler). Is the pseudo-arc the only invertible chainable con-517?

tinuum?

It is not the only invertible tree-like continuum.

Problem 11. Does every homogeneous tree-like continuum have the fixed-point518?

property?

The only known homogeneous tree-like continuum is a pseudo-arc.

Problem 12. Is there a dendroid M in the plane such that the accessible points519?

of M are precisely the endpoints of M , and the set of endpoints is totally discon-
nected?

There is a dendroid K in the plane with the property that a point is accessible
if and only if it is an endpoint, and in which the set of endpoints is connected [1].
There is also a continuum in the plane with a totally disconnected set of accessible
points.

A topological space W is widely connected if and only if every nondegenerate
connected subset of W is dense in W (P.M. Swingle, [7, 8]).

The only known examples of widely connected sets are as follows:
Let X be a metric indecomposable continuum. Let C be the set of composants

of X . Let S be the collection of closed subsets A of X such that X \ A is not
connected. Let ϕ : C → S be a bijection. The set {C∩ϕ(C) | C ∈ C} is a collection
of pairwise disjoint non-empty sets. Let W be a choice set on this collection. W
is widely connected.
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Conjecture 13. Let W be a widely connected separable metric space. Then W 520?

can be densely embedded into some metric indecomposable continuum.

Problem 14. Is the Stone–Čech compactification of a widely connected space 521?

necessarily an indecomposable continuum?

Of course, assume complete regularity or normality.

Problem 15. Are there widely connected spaces of arbitrarily large cardinality? 522?

This is motivated by Michel Smith’s work. He proved that there are indecom-
posable continua with arbitrarily large numbers of composants [6].

An absolute suspension is a continuum X such that given any p, q ∈ X with
p 6= q, X has the structure of a suspension with p, q as vertices. Precisely, given any
p, q ∈ X with p 6= q, there exists a space Y and a homeomorphism H : X → ΣY ,
the suspension of Y , with H(p), H(q) being the vertices of ΣY .

Conjecture 16 (de Groot, [4]). Every finite-dimensional absolute suspension is 523?

a sphere.

Conjecture 17 (Janusz  Lysko?). The suspension of an absolute suspension is 524?

itself an absolute suspension.

The next four problems involve homogeneous arcwise connected continua.

Problem 18 (R.L. Wilson). Is there a uniquely arcwise connected homogeneous 525?

compact Hausdorff continuum?

Such an example cannot be metric [2].

Problem 19 (Lewis Lum). Let X be a metric arcwise connected homogeneous 526?

continuum which is not a simple closed curve. Must X contain simple closed
curves of arbitrarily small diameter?

Conjecture 20. Let X be a homogeneous arcwise connected continuum which 527?

is not a simple closed curve. Let U be an open set in X and let M be an arc
component of U . Then M is cyclicly connected.

Problem 21. Let X be a homogeneous arcwise connected continuum which is not 528?

a simple closed curve. Is every arcwise connected open subset of X also cyclicly
connected?

Let X be a continuum, and let T be the well-known set function. The state-
ment T is continuous for X means that T : 2X → 2X is continuous in the Vietoris
topology.

Conjecture 22. If T is continuous restricted to the hyperspace of subcontinua 529?

of X, then T is continuous for X.

Conjecture 23 (Nadler–Bellamy). Let X be a homogeneous one-dimensional con- 530?

tinuum. Then T is continuous for X.
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Two points x and y of a continuum X are in the same tendril class iff there
is a nowhere dense continuum W ⊆ X with p, q ∈W .

Problem 24. Is there a continuum X with a proper dense open tendril class?531?

Problem 25. If every tendril class of a continuum X is dense, and X has more532?

than one tendril class, is X necessarily indecomposable?

A space X is thin iff for all A,B ⊆ X , if A is homeomorphic to B, there exists
a homeomorphism H : X → X such that H(A) = B.

The only known examples of thin spaces are: finite discrete spaces, finite
indiscrete spaces, and products of one of each of these.

Problem 26 (P.H. Doyle). Does there exist an infinite thin space?533?

More specifically, is there a complete metric space X and a point p ∈ βX \X
such that the orbit of p under the homeomorphism group of either βX or of βX\X
is an infinite thin space? Based upon what one can readily prove about thin spaces,
this is as simple as an example could possibly be.
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An update on the elusive fixed-point property

Charles L. Hagopian

R.H. Bing’s expository article [11], “The elusive fixed point property,” which
appeared in the American Mathematical Monthly in 1969, has been an invaluable
guide to generations of mathematicians. It consists of twelve questions and a
variety of related theorems and examples. A space has the fixed-point property if
each map of the space into itself has a fixed point. A continuum is a nondegenerate
compact connected metric space. Bing was interested in the fundamental problem
of determining which continua have the fixed-point property. We review Bing’s
questions, some results that followed the publication of [11], and some related
unsolved problems.

Bing’s Question 1. Is there a 2-dimensional polyhedron with the fixed-point 534?

property which has even Euler characteristic?

Question 1 is still open. It was motivated by W. Lopez’s example [68] of an
8-dimensional polyhedron with even Euler characteristic that has the fixed-point
property.

After stating O.H. Hamilton’s theorem [51] that each arc-like continuum has
the fixed-point property, Bing asked the following question.

Bing’s Question 2. Does each tree-like continuum have the fixed-point property?

Bing referred to Question 2 as one of the most interesting unsolved prob-
lems in geometric topology. The first results related to Question 2 following
the publication of [11] were positive. In 1970, H. Cook [21] proved every λ-
dendroid (hereditarily decomposable hereditarily unicoherent continuum) is tree-
like. R. Mańka [71] in 1976 generalized theorems of K. Borsuk [14] and Hamil-
ton [50] [11, Th. 9] by proving that every λ-dendroid has the fixed-point property.

In 1979, D.P. Bellamy [8] answered Question 2 in the negative. Modifying
a 6-adic solenoid, Bellamy [8] constructed a nonplanar tree-like continuum that
admits a fixed-point-free map. Bellamy [8] used this example and an inverse
limit technique of J.B. Fugate and L. Mohler [29] to construct a second tree-like
continuum that admits a fixed-point-free homeomorphism. The following problems
remain unsolved.

Problem 1. Can Bellamy’s second example be embedded in the plane? 535?

Problem 2. Does every triod-like continuum have the fixed-point property? 536?

Bing believed that special classes of triod-like continua provide a good starting
point for an investigation. In a conversation with the author, he asked the following
four questions.

Suppose M is an inverse limit space of triods.

(a) Does M have the fixed-point property if each bonding map is the identity 537?

on the set of end points of the triod?
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(b) Does M have the fixed-point property if each bonding map is the identity538?

on the end points and center point of the triod?
(c) Does M have the fixed-point property if each bonding map is the identity539?

on one arm of the triod?
(d) Does M have the fixed-point property if each bonding map is the identity

on two arms of the triod?

Questions (a), (b), and (c) are still open. In 1984, M.M. Marsh [77] an-
swered (d) in the affirmative. A more general theorem for inverse limits of n-ods
in [78] gives a partial answer to (c). Marsh [80] in 1989 further generalized these
results for inverse limits of n-ods and fans.

Bellamy’s second example is an arc continuum (each of its proper subcontinua
is an arc).

Problem 3. Does every triod-like arc continuum have the fixed-point property?540?

Problem 4. Do there exist two commuting maps of a triod onto itself that do not541?

have a coincidence point?

If there exist two maps with these properties, then there exists an inverse limit
space of triods with a fixed-point-free map induced by a commuting non-square
(parallelogram) diagram, thus answering Problem 2 in the negative. E. Dyer [22]
in 1956 stated Problem 4 for a tree instead of a triod. According to a result
established in 1981 by Fugate and T.B. McLean [28, Th. 1.11], every map induced
on an inverse limit of trees by commuting squares has a fixed point.

Problems 2 and 3 remain unsolved when the word “triod-like” is replaced by
“n-od like.” One invariant arc component of Bellamy’s first tree-like continuum
contains a fan. It is not known if Bellamy’s first example is fan-like.

Problem 5. Does every fan-like continuum have the fixed-point property?542?

In 1980, L.G. Oversteegen and J.T. Rogers [95] defined a tree-like continuum
as an inverse limit of planar curves with a fixed-point-free map that is “almost”
induced by commuting squares. Their geometrically explicit construction was
given to motivate the study of planar embeddings. Oversteegen and Rogers [96]
in 1982 defined another example as an inverse limit of trees with a fixed-point-free
map induced by commuting non-square parallelograms.

During the period from 1992 to 2000, P. Minc constructed a variety of related
tree-like continua. He defined a tree-like continuum that admits fixed-point-free
maps with arbitrarily small trajectories [86], a tree-like continuum that admits
a periodic-point-free homeomorphism [87], and a weakly chainable (continuous
image of a chainable continuum) tree-like continuum [88] and a hereditarily inde-
composable tree-like continuum [89] that admit fixed-point-free maps.

Problem 6 (Minc). Does every weakly chainable tree-like arc continuum have the543?

fixed-point property?

Problem 7 (Minc). Does there exist a tree-like arc continuum that admits a544?

periodic-point-free homeomorphism?
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In 1993, L. Fearnley and D.G. Wright [26] gave a geometric description of
Bellamy’s continuum.

After Bing’s publication [11], there were many applications of the following
theorem of W. Holsztynski [52].

Theorem 1. Every inverse limit space of ANRs with universal bonding maps has
the fixed-point property.

In 1981, C.A. Eberhart and Fugate [24] used Theorem 1 to establish the fixed-
point property for inverse limit spaces defined with weakly confluent bonding maps
between the same tree. They [24] extended this result to weakly arc preserving
bonding maps between different trees and Marsh [79] further extended it to allow
for certain types of arc folding by the bonding maps. Finally, in 1998, Eberhart and
Fugate [23] established necessary and sufficient conditions for the bonding maps
between trees to be universal. It is often overlooked that Theorem 1 had previously
been established for compact polyhedra by J. Mioduszewski and M. Rochowski [90,
p. 69], which is sufficient for these applications.

A. Granas [32] in 1968 proved that every approximative absolute retract con-
tinuum has the fixed-point property. In 2004, J.J. Charatonik and J.R. Prajs [19,
Th. 3.3] showed each absolute retract for the class of tree-like continua is an ap-
proximative absolute retract. They [19, Th. 3.8] also showed that every inverse
limit space of trees with confluent bonding maps is an absolute retract for tree-
like continua. This gives a proof (which does not involve Theorem 1) of Eberhart
and Fugate’s theorem [24, Ths. 5,7] that every inverse limit space of trees with
confluent bonding maps has the fixed-point property.

Problem 8 (J.J. Charatonik, W.J. Charatonik, and Prajs). Is every absolute 545?

retract for hereditarily unicoherent continua a tree-like continuum?

Problem 9 (J.J. Charatonik, W.J. Charatonik, and Prajs). Does every absolute 546?

retract for hereditarily unicoherent continua have the fixed-point property?

Every tree-like continuum that is an absolute retract for hereditarily unico-
herent continua is an absolute retract for tree-like continua. Hence an affirmative
answer to Problem 8 would also answer Problem 9 in the affirmative [19, Th. 3.3].

In 1981, Fugate and McLean [28] generalized a theorem of P.A. Smith [105]
by proving every periodic homeomorphism of a tree-like continuum has a non-
void connected fixed-point set. They [28] also proved every hereditarily indecom-
posable tree-like continuum has the fixed-point property for pointwise periodic
homeomorphisms.

Problem 10 (Fugate and McLean). Does every tree-like continuum have the fixed- 547?

point property for pointwise periodic homeomorphisms?

Problem 11 (Bellamy). If M is a homogeneous tree-like continuum, must M 548?

have the fixed-point property?

In 1976, the author [38] used E.G. Effros’s theorem [25] and Hamilton’s ar-
gument [51] to show every homogeneous almost chainable continuum has the
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fixed-point property. I.W. Lewis [67] in 1981 improved this result by showing all
such continua are arc-like. Nevertheless, the method in [38] provides a natural
approach to Problem 11. In 1982, Oversteegen and E.D. Tymchatyn [97] proved
the answer to Problem 11 is yes if M is planar. They accomplished this by showing
every homogeneous nonseparating plane continuum has zero span [66].

Bing’s third question is often referred to as the plane fixed-point problem. It
has been called the most interesting outstanding problem in plane topology [11].

Bing’s Question 3. Does the intersection of each decreasing sequence of disks549?

have the fixed-point property?

A plane continuum is the intersection of a decreasing sequence of disks if
and only if it does not separate the plane. Hence it is called a nonseparating
plane continuum. An affirmative answer to Question 3 would provide a beautiful
generalization to the 2-dimensional version of Brouwer’s fixed-point theorem [4,
59].

Generalizing a theorem of Hamilton [50] [11, Th. 10], in 1967–1970, H. Bell [5],
K. Sieklucki [104], and S.D. Iliadis [55] proved the following theorem.

Theorem 2. For every fixed-point-free map f of a nonseparating plane continuum
M into M there exists an indecomposable continuum I in the boundary of M such
that f(I) = I.

Theorem 2 follows from the existence of an outchannel in the complement of
M . Bell developed the theory of variation to simplify and possibly extend his
proof. Recently, J.C. Mayer, Oversteegen, and Tymchatyn [84] used the theory
of prime ends to prove Bell’s basic variation results. They [84] established Bell’s
theorem that a nonseparating plane continuum that admits a fixed-point-free map
has exactly one outchannel and its variation must be −1.

If a continuum can be embedded in the plane in a way that excludes the
existence of an outchannel, then it cannot be a counterexample to Question 3 [15].
A. Lelek [66] showed that a counterexample must also have positive span. The
natural embedding of W.T. Ingram’s [57] atriodic tree-like plane continuum with
positive span does not allow for an outchannel. In 1982, Mayer [83] defined an
atriodic tree-like plane continuum with positive span that might allow for the
existence of an outchannel.

Problem 12 (Mayer). Does Mayer’s continuum have the fixed-point property?550?

In 1978, Iliadis [54] used a construction that eliminates the possibility of an
outchannel in his proof of the following theorem.

Theorem 3. If K is a nonseparating plane continuum, then there exists a non-
separating plane continuum Q containing K such that every component of Q \K
is a half-open arc and Q has the fixed-point property.

A cut disk is a nonseparating plane continuum obtained by deleting one dense
canal from a disk. Imagine starting on the boundary of a disk in the plane and
digging a canal (a simply connected open set) that gets narrower as it goes into
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the disk. If we stop digging at any finite length, the resulting continuum will be
a disk, and by Brouwer’s theorem has the fixed-point property. To be dense, the
canal must be infinitely long and get arbitrarily close to all remaining points in
the disk. The accessible boundary of a cut disk is a one-to-one continuous image
of the real line. Every cut disk is an indecomposable continuum.

Problem 13 (Bell). Does every cut disk have the fixed-point property? 551?

Borsuk [12] proved that every locally connected nonseparating plane contin-
uum has the fixed-point property by showing that all such continua are retracts of
a disk. Borsuk and J. Stallings [108] were following this approach to Question 3
when they asked if every nonseparating plane continuum is an almost continuous
retract of a disk.

A function f of a space Y into a space Z is almost continuous if for each open
set G in Y × Z that contains f there exists a map g of Y into Z such that G
contains g.

Since every almost continuous retract of a disk has the fixed-point prop-
erty [108], an affirmative answer to Borsuk and Stallings’ question would have
answered Question 3 in the affirmative. In 1984, V. Akis [1] proved a plane con-
tinuum formed by a disk and a ray spiraling to its boundary is not an almost
continuous retract of a disk. Akis and D. Curtis [3] in 1987 did the same for a
spiral to a triod, thus showing the answer to Borsuk and Stallings’ question is
no, even with the added assumption the nonseparating plane continuum is tree-
like. However, this approach is not completely ruled out by these results. Using a
theorem of Akis [1] and H. Rosen [101], recently B.D. Garrett [30] showed every
nonseparating plane continuum is an almost continuous retract of a continuum
that is an almost continuous retract of a disk. Although channels are not men-
tioned in Garrett’s proof, he used an arc-attaching technique similar to Iliadis’s
construction for Theorem 3 and his intermediate continuum does not allow for
an outchannel. Garrett’s theorem and an affirmative solution to the following
problem would provide an affirmative answer to Question 3.

Problem 14 (Garrett). If Y is a continuum that is an almost continuous retract 552?

of a disk and a continuum Z is an almost continuous retract of Y, must Z have
the fixed-point property?

In 1971, the author [33] used Theorem 2 to prove that every arcwise connected
nonseparating plane continuum has the fixed-point property. Shortly thereafter,
the author [34] and J. Kransinkiewicz [62] established the fixed-point property for
all δ-connected nonseparating plane continua. B. Knaster and S. Mazurkiewicz [60]
defined a continuum to be δ-connected if each pair of its points belong to a hered-
itarily decomposable subcontinuum.

C. Kuratowski [64] defined a continuum M to be of type λ if M is irreducible
and every indecomposable continuum in M is a continuum of condensation. If
a continuum M is of type λ, then M admits a unique monotone upper semi-
continuous decomposition to an arc with the property that each element of the
decomposition has void interior relative to M [65, Th. 3, p. 216]. The elements
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of this decomposition are called tranches . A continuum M is λ-connected if for
each pair p and q of its points there is a type λ subcontinuum of M irreducible
between p and q.

Every λ-connected plane continuum is δ-connected [39, Th. 2]. Hence every
λ-connected nonseparating plane has the fixed-point property.

Suppose M is a continuum of type λ and each tranche of M has the fixed-point
property. In 1971, G.R. Gordh [31, Th. 3B.1] proved every monotone map of M
onto M has a fixed point. To answer a question of Gordh, the author [46] in 2003
defined a nonplanar continuum of type λ that admits a fixed-point-free map and
has the condition that each of its tranches has the fixed-point property. Recently,
planar continua with these properties have been constructed by the author and
Mańka [48] and V. Martinez-de-la-Vega [82].

Problem 15. Must a plane continuum of type λ have the fixed-point property553?

if none of its tranches separates the plane and each tranche has the fixed-point
property?

Problem 16. Must a plane continuum of type λ have the fixed-point property if554?

each of its tranches has the fixed-point property and its decomposition is continu-
ous?

In 1976, H. Bell [6, 7] generalized a theorem of Cartwright and Littlewood [18]
[11, Th. 11] by proving every homeomorphism of a nonseparating plane contin-
uum onto itself that can be extended to a homeomorphism of the plane has a
fixed point. Bell announced in 1984 that the Cartwright and Littlewood Theo-
rem extends to the class of all holomorphic maps of the plane (see also Akis [2]).
R. Fokkink, Mayer, Oversteegen, and Tymchatyn [27] recently introduced the
class of oriented maps of the plane and showed that among perfect maps of the
plane the oriented maps are exactly the compositions of open maps and monotone
maps. Each invariant nonseparating plane continuum under a positively-oriented
map of the plane must contain a fixed point [27].

Every tree-like plane continuum is a nonseparating plane continuum. Hence
an affirmative solution to Problem 1 would answer Question 3 in the affirmative.
A partial solution to either Problem 2 or 3 derived by adding the assumption that
the continuum is planar would be a breakthrough.

In 1990, Minc [85] generalized the results of [33] and [51] by proving that
every weakly chainably connected nonseparating plane continuum has the fixed-
point property. A continuum is weakly chainably connected if each pair of its points
is contained in a weakly chainable subcontinuum. Noting this theorem fails for
tree-like continua in general [88] and there exists a hereditarily indecomposable
tree-like continuum without the fixed-point property [89], Minc asked the following
question.

Problem 17. Does every hereditarily indecomposable nonseparating plane contin-555?

uum have the fixed-point property?
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Every tree-like continuum and every nonseparating plane continuum is disk-
like. Bellamy’s continuum [8] was the first known example of a disk-like con-
tinuum without the fixed-point property. R. Bennett [9] in 1966 proved every
locally connected disk-like continuum is planar and therefore has the fixed-point
property [12]. Since every arcwise connected disk-like plane continuum has the
fixed-point property [33], it is natural to ask the following question [37].

Problem 18. Does every arcwise connected disk-like continuum have the fixed- 556?

point property?

S.B. Nadler [93, Th. 3.2] in 1980 used Theorem 1 to prove that every in-
verse limit space of disks with weakly confluent bonding maps has the fixed-point
property.

Dyer [22] in 1956 proved every product of arc-like continua has the fixed-point
property. Suppose X and Y are δ-connected continua and X × Y is disk-like. In
1975, the author [35] provedX and Y are arc-like. HenceX×Y has the fixed-point
property.

Problem 19. Does every disk-like product of two continua have the fixed-point 557?

property?

Marsh and R. Escobedo independently proved each product of two zero span
continua has the fixed-point property. In 2004, Marsh [81] extended this result to
all products of zero span continua.

Let C(X) be the hyperspace of compact connected subsets a continuum X .
In 1962, J. Segal [103] proved C(X) has the fixed-point property if X is arc-
like. In 1972, Rogers [98] showed if X is the circle with a spiral, then C(X) is
homeomorphic to the cone over X . This gave the first example of a hyperspace
C(X) without the fixed-point property. Shortly thereafter, Nadler and Rogers [94]
proved if X is a disk with a spiral, then C(X) does not have the fixed-point
property, thus giving an example of a continuum X with the fixed-point property
whose hyperspace C(X) admits a fixed-point-free map. Rogers [98] also proved
if X is a hereditarily indecomposable continuum, then both C(X) and the cone
over X have the fixed-point property. Krasinkiewicz [63] and Rogers [99, 100]
in 1974 proved C(X) has the fixed-point property if X is circle-like. In 1983,
Marsh [76] applied his concept of s-connectedness to show the cone over a circle-
like continuum must have the fixed-point property. J. Bustamente, R. Escobedo,
and F. Macias-Romero [17] recently used s-connectedness to show that C(X) has
the fixed-point property if X has zero span.

The author [36] in 1975 proved the following theorem.

Theorem 4. Suppose X is a δ-connected continuum and C(X) can be ε-mapped
(for each ε > 0) into the plane. Then X is either arc-like or circle-like.

It follows that C(X) is disk-like [102] and has the fixed-point property [103,
63, 99, 100].

Problem 20. Can the assumption that X is δ-connected be removed from Theo- 558?

rem 4?
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A continuum is uniquely arcwise connected if it is arcwise connected and does
not contain a simple closed curve. The sin 1

x circle (Warsaw circle) is the simplest
example of a uniquely arcwise connected plane continuum that separates the plane.
In [11], Bing gave a dog-chases-rabbit argument to show the sin 1

x circle has the
fixed-point property. Then Bing asked his fourth question which had previously
been raised by G.S. Young [110].

Bing’s Question 4. Does each uniquely arcwise connected plane continuum have
the fixed-point property?

In 1979, the author [40] used the dog-chases-rabbit principle to answer Ques-
tion 4 in the affirmative. The proof involved a continuous image of a ray defined
by Borsuk [14] and a nested sequence of polygonal disks constructed by Siek-
lucki [104].

Bing [11, Th. 14, Th. 15] defined a 1-dimensional uniquely arcwise connected
nonplanar continuum X with the fixed-point property and a disk D such that
D ∩X is an arc and D ∪X does not have the fixed-point property [74, 47].

Bing’s Question 5. Does the product of Bing’s continuum X and an interval
have the fixed-point property?

In 1970, W.L. Young [111] answered Question 5 in the affirmative. Bing’s
continuum X is similar to an earlier example of G.S. Young [110]. Other examples
of uniquely-arcwise-connected continua without the fixed-point property have been
given by the author and Mańka [47], Holsztynski [53], Mańka [74], Mohler and
Oversteegen [92], and M. Sobolewski [106]. Bing’s sixth question was also raised
by G.S. Young [110].

Bing’s Question 6. Must every homeomorphism of a uniquely arcwise connected
continuum into itself have a fixed point?

In 1976, Mohler [91] used the Markov–Katutani theorem (measure theory) to
answered Question 6 in the affirmative.

In 1986, the author [41] proved the following theorem.

Theorem 5. Every deformation of a uniquely arcwise connected continuum has
a fixed point.

Problem 21. Does every disk-like continuum have the fixed-point property for559?

deformations?

Problem 22. Does every hereditarily decomposable continuum that does not con-560?

tain a simple closed curve have the fixed-point property for deformations?

A map of a continuum that sends each arc-component into itself is called an
arc-component preserving map. Note that every deformation of a continuum is
an arc-component preserving map. The author established the fixed-point prop-
erty for deformations of tree-like continua [45], nonseparating plane continua [42,
Th. 4.1], indecomposable plane continua [42, Th. 4.12], and plane continua that
do not contain a simple closed curve [43, Th. 15] by proving that all continua
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in these classes have the fixed-point property for arc-component preserving maps.
G.S. Young’s example [110] shows that deformations cannot be replaced by arc-
component preserving maps in Theorem 5 or Problem 22.

A set is simply connected if it is arcwise connected and its fundamental group
is trivial. In 1996, the author [44] proved the following general theorem.

Theorem 6. Suppose M is a plane continuum, D is a decomposition of M , and
each element of D is simply connected. Then every map of M that sends each
element of D into itself has a fixed point.

It follows from Theorem 6 that every simply connected plane continuum has
the fixed-point property. In fact, an arcwise connected plane continuum has a
trivial fundamental group if and only if it has the fixed-point property. This
result answers a question of Mańka [72].

Since Bing’s continuum X in Question 5 is not embeddable in the plane, he
asked the following question.

Bing’s Question 7. If C is a plane continuum with the fixed-point property and
D is a disk such that C ∩D is an arc, must C ∪D have the fixed-point property?

Recently, the author and Prajs [49] defined a continuum Ω that answered
Question 7 in the negative.

Lopez [68] proved there is a polyhedoron P with the fixed-point property and
a disk D such that P ∩ D is an arc and P ∪ D does not have the fixed-point
property. To show that P ∪D does not have the fixed-point property, Lopez used
the following theorem of F. Wecken [109] [11, Th. 16].

Theorem 7. Every connected polyhedron without local separating points and Euler
characteristic 0 admits a fixed-point-free map.

Since the dimension of Lopez’s example is 17, Bing asked for something sim-
pler.

Bing’s Question 8. What is the lowest dimension for such a polyhedron P as 561?

promised by Lopez’s theorem?

Question 8 remains open. In a conversation, Bing conjectured the answer is
2. In 1990, Mańka [73] defined two rational arcwise connected continua X and Y
with the fixed-point property such that X ∩ Y is contractible and X ∪ Y admits
a fixed-point-free map.

Problem 23 (Mańka). Suppose X and Y are 1-dimensional plane continua with 562?

the fixed-point property and X ∩ Y is arcwise connected. Must X ∪ Y have the
fixed-point property?

Bing’s Question 9. If a compact 1-dimensional continuum has the fixed-point
property, does its cartesian product with an arc?

Bing’s Question 10. If a plane continuum has the fixed-point property, does its 563?

cartesian product with an arc?
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M. Sobolewski [107] recently answered Question 9 with a counterexample.
Question 10 remains open. Since Sobolewski’s continuum contains a solenoid and
sequences of Cook continua [20], it is clearly not embeddable in the plane. The
product of the plane continuum Ω defined in [49] and an arc has the fixed-point
property. R. Knill’s continuum [61] [11, Th. 23], the can-with-a-skirt, provides a
negative answer when the dimension is changed to 2 in Question 9.

In 2002, Mańka [75] proved the product of a λ-dendroid and an arc must have
the fixed-point property.

Problem 24. If M is a tree-like continuum with the fixed-point property, must564?

M × [0, 1] have the fixed-point property?

Problem 25. If M is a uniquely arcwise connected continuum with the fixed-point565?

property, must M × [0, 1] have the fixed-point property?

Problem 26. Must the product of a uniquely arcwise connected plane continuum566?

and an arc have the fixed-point property?

Problem 27. If a plane continuum is simply connected, must its product with an567?

arc have the fixed-point property?

Theorem 7 and Lopez’s example [68] shows there is a polyhedron with the
fixed-point property such that its cartesian product with an arc admits a fixed-
point-free map. This motivated Bing’s eleventh question.

Bing’s Question 11. If P and Q are polyhedra without local separating points
but with the fixed-point property, must P ×Q have the fixed-point property?

In 1971, G.E. Bredon [16] gave a negative answer to Question 11. Unlike
earlier examples, Bredon’s polyhedral factors satisfy the Shi condition. Every
polyhedron of the same homotopy type as a Bredon factor has the fixed-point
property.

Bing [11] reviewed S. Kinoshita’s continuum [58], the can-with-a-roll-of-toilet-
paper. It is contractible, does not have the fixed-point-property, and its cone does
not have the fixed-point property. Since Kinoshita’s fixed-point-free map is not
one-to-one, Bing asked the following question.

Bing’s Question 12. Must every homeomorphism of a contractible continuum
onto itself leave some point fixed?

Borsuk [13] in 1935 defined a 3-dimensional acyclic continuous curve that
admits a fixed-point-free homeomorphism. Bing [10] [11, Th. 20], in 1967 defined
a 2-dimensional continuum with the same properties. Bing and Borsuk’s continua
are not contractible. Knill’s cone-with-a-skirt [61] [11, Th. 21] is a contractible
2-dimensional continuum without the fixed-point property. However, Knill’s fixed-
point-free map is not a homeomorphism. In 1972, J.M.  Lysko [69] gave a negative
answer to Question 12.  Lysko’s continuum which contained two rolls of thickened
toilet paper has dimension 3.
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Problem 28 ( Lysko and Mańka). Must every homeomorphism of a 2-dimensional 568?

contractible continuum have a fixed point?

At the 2006 Spring Topology and Dynamical Systems Conference, Bellamy
asked the following question.

Problem 29. Must the cone over an arc continuum have the fixed-point property? 569?

The cone-with-a-skirt is actually the cone over a spiral to a circle in the plane.
By filling in the bounded complementary domain of the circle, one gets a non-
separating plane continuum with the fixed-point property whose cone admits a
fixed-point-free map [61] [11, Th. 22]. Knill [61] in 1967 mentioned the classical
problem of determining whether the cone over each tree-like continuum has the
fixed-point property.

A. Illanes [56] recently solved this problem by showing the cone over a plane
continuum X consisting of a spiral to a triod admits a fixed-point-free map. To
answer a question of Rogers [99, p. 234], Illanes also showed the hyperspace C(X)
does not have the fixed-point property.

By attaching to Illanes’s plane continuum X a disjoint open arc that joins the
center point of the triod in X with the starting point of the spiral in X , we can
define a uniquely arcwise connected continuum Y in Euclidean 3-space with the
fixed-point property. Since the cone over Y can be retracted onto the cone over
X , the cone over Y does not have the fixed-point property.

Problem 30. Must the cone over a uniquely arcwise connected plane continuum 570?

have the fixed-point property?

Problem 31. Must the cone over a simply connected plane continuum have the 571?

fixed-point property?

The first version of this paper was presented at the 2006 Spring Topology and
Dynamical Systems Conference in Greensboro. Recently, the author received a
preprint of a survey article on Bing’s twelve questions by Roman Mańka [70].
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Hyperspaces of continua

Alejandro Illanes

Introduction

A continuum is a compact, connected metric space with more than one point.
Throughout this paper X will denote a continuum, the hyperspaces of X are
defined as: 2X = {A ⊂ X : A is closed and nonempty}, C(X) = {A ∈ 2X :
A is connected}, Fn(X) = {A ∈ 2X : A has at most n points}, Cn(X) = {A ∈
2X : A has at most n components}.

The hyperspace 2X is equipped with the Hausdorff metric H . The space
Fn(X) is called n-symmetric product and Cn(X) is called n-fold hyperspace.

Hyperspaces of continua have been widely studied. The book [19] resume
most of what was known on this topic up to 1999. There are many open problems
on hyperspaces. The interested reader can find many of these problems in [29]
and [19]. At the end of [19], there are comments about the problems posed in [29].

In this paper we focus on problems which have been posed since 1999.
The concepts not defined here are taken as in [30].

Whitney and diameter maps

A Whitney map for 2X (resp., C(X)) is a continuous function µ : 2X → [0,∞)
(resp., µ : C(X)→ [0,∞)) such that:

(a) µ({p}) = 0, for each p ∈ X ,
(b) if A,B ∈ 2X (resp., C(X)) and A ⊂ B 6= B, when µ(A) < µ(B).

Whitney maps are important tools in the study of hyperspaces, they were
introduced by H. Whitney (in [37]) in a context different of hyperspaces. As can be
seen in [29, 0.50.1, 0.50.2 and 0.50.3] and [19, 13.5, 13.7 and 13.8], every continuum
X admits Whitney maps for 2X . A general problem in this area is to determine for
which continua there is a really simple way of defining a Whitney map for C(X).
For instance, it is easy to see that the diameter map diam: C([0, 1]) → [0, 1] is a
Whitney map.

Problem 1. Is the arc the only continuum X for which there exists a metric such 572?

that diam: C(X)→ [0,∞) is a Whitney map?

It is easy to check that if X is the sin( 1
x )-continuum (the closure in the

Euclidean plane R2 of the graph of the function sin( 1
x ), defined on the inter-

val (0, 1]) and if π1, π2 : R2 → R are the projections on the first and second
coordinate, respectively, then the function µ : C(X) → [0, 3] given by µ(A) =
diam(π1(A)) + diam(π2(A)) is a Whitney map. This motivates the following def-
inition: a continuum Y is said to admit an n-determined Whitney map provided
that there exist continuous functions f1, . . . , fn : Y ×Y → [0,∞) such that the map
µ : C(Y )→ [0,∞) given by µ(A) = diam(f1(A))+ · · ·+diam(fn(A)) is a Whitney

281
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map. From the observation above, the sin( 1
x)-continuum admits a 2-determined

Whitney map and it can be seen that a simple closed curve S is not n-determined
for any positive integer n. This motivates the following problem.

Problem 2. Characterize those continua which admit a 2-determined Whitney573?

map. Characterize those continua which admit an n-determined Whitney map,
for some positive integer n.

In [29, Remark 14.67, p. 471], S.B. Nadler, Jr., observed that if S is a unit
circle in R2, then the diameter map from 2S onto the interval [0, 2] is not an
open map (if p, q, r ∈ S are the vertices of an equilateral triangle, then diam
attains a local minimum at {p, q, r}). Answering a question by S.B. Nadler, Jr.,
in [29, Question 14.68], W.J. Charatonik and A. Samulewicz proved that if X is
the suspension over a discrete compact set, then X admits a metric for which the
diameter map from 2X onto [0, diam(X)] is open. In particular, a closed simple
curve S admits a metric for which the diameter map is open. The following
questions remain open.

Problem 3 ([5, Problem 5.10]). Does the suspension of any compact metric574?

space (continuum) admit an open diameter mapping? In particular, does the n-
dimensional sphere (n > 1) admit such a mapping?

Problem 4 ([5, Problem 5.19]). Does every dendrite (local dendrite, graph, locally575?

connected continuum) admit an open diameter mapping?

Cones, products and hyperspaces

Using a number of results found by several authors, in [6] and [18], A. Illanes
and M. de J. López gave a complete description of those continua X for which
there exists a finite dimensional continuum Z such that C(X) is homeomorphic to
the cone over the cone of Z. With respect to products, A. Illanes has shown [11]
that a continuum X has the properties that C(X) is finite dimensional and it is
homeomorphic to the product of two nondegenerate continua if and only if X is
an arc or a simple closed curve.

It is natural to ask (assuming that dim[Cn(X)] < ∞ and n > 2) for which
continua X , is Cn(X) homeomorphic to a cone or to the product of two nonde-
generate continua? In [26], some partial answers to this question are given. There
are only a few examples on this topic, they are described below.

(a) C2([0, 1]) is homeomorphic to [0, 1]4 (R. Shori, [14, Lemma 2.2]).
(b) C2(S1) (where S1 is a simple closed curve) is homeomorphic to the cone

over a solid torus ([17]).
(c) Cn(X) is homeomorphic to a cone whenX is the cone over a 0-dimensional

compact space ([25]).

The following questions remain open.

Problem 5. Is Cn(S1) homeomorphic to a cone for some n > 2 (for all n > 2)?576?

It would be interesting to know the answer to this problem for n = 3.
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Problem 6. Is there a finite graph X different from simple m-ods, [0, 1] or S1
577?

such that Cn(X) is homeomorphic to a cone or to the product of two nondegenerate
continua, for some n > 1?

Problem 7 ([26, Question 3.8]). Does there exist a hereditarily decomposable 578?

continuum X that is different from simple m-ods, [0, 1] or S1 such that Cn(X) is
homeomorphic to the cone over a finite-dimensional continuum for some integer
n > 1?

Problem 8 ([26, Question 3.7]). Does there exist an indecomposable continuum X 579?

such that Cn(X) is homeomorphic to the cone over a finite-dimensional continuum
for some integer n > 1?

Problem 9 ([26, Question 4.12]). Does there exist a continumm X that is not 580?

an arc, for which there is an integer n > 1 such that Cn(X) is homeomorphic to
the product of two finite-dimensional continua?

In this area, it would be interesting to characterize those continua X for which
Fn(X) is homeomorphic to the cone over some continuum Z and it would be also
interesting to characterize those continua X for which Fn(X) is homeomorphic to
the product of two nondegenerate continua. There are only a few results on this
direction. E. Castañeda showed in [3] that: (a) if X is a finite graph, then F2(X)
is the cone over a continuum Y if and only if X is a simple m-od or an arc and,
(b) if X is a finite graph, then F2(X) is a product of two nondegenerate continua if
and only if X is an arc. On the other hand, it is known (see [21, Theorem 6]) that
F3([0, 1]) is homeomorphic to [0, 1]3. In [2, Lemma 1], E. Castañeda proved that If
X is a simple m-od, then F2(X) is homeomorphic to the cone over a continuum Z,
this result was extended in [25] for every Fn(X). The following problems are open.

Problem 10 ([3, Question 3.15]). Is [0, 1] the only finite graph such that F3(X) 581?

is a product of two nondegenerate continua?

Problem 11. Do there exist a finite graph X and an integer n ≥ 4 such that 582?

Fn(X) is a product of two nondegenerate continua?

Problem 12. Are the simple m-ods and the arc the only finite graphs for which 583?

Fn(X) (n ≥ 3) is the cone over a continuum Y ? This problem is interesting even
for n = 3.

Problem 13 ([25, Question 3.5]). Does there exist a continuum X which is not 584?

the cone over a compactum such that Fn(X) is homeomorphic to the cone over a
finite-dimensional continuum for some integer n ≥ 2?

Means

A mean is a continuous function m : F2(X) → X such that m({x}) = x for
each x ∈ X . The main problem in this area is to charaterize those continua X
which admit a mean. Many authors have studied this problem and there are a
number of open problems on this area. In this section we only include some of



284 32. HYPERSPACES OF CONTINUA

my favorite questions, all of them appeared in [20], where the following results
were obtained.

(a) Each dendrite admits a monotone mean, while the harmonic fan admits
no monotone mean.

(b) Each n-cell, as well as the dyadic solenoid, admits a mean that is mono-
tone and open, simultaneously.

(c) Each simple n-od, as well as the Cantor fan admits no open mean.
(d) The harmonic fan admits a confluent mean.

The interested reader can find more information and problems about means
in [19, Ch. XII, Section 76] and [4].

Problem 14 ([20, Question 2.3]). Suppose that X is a dendroid and it admits a585?

monotone mean, does it follow that X is a dendrite?

Problem 15 ([20, Question 3.8]). Does each tree admit an open mean?586?

Problem 16 ([20, Question 3.9]). Does there exist a dendrite X such that X is587?

not a tree and X admits and open mean?

Problem 17 ([20, Question 4.2]). Does there exist a continuum X such that X588?

admits a mean but X does not admit a confluent mean?

Fixed point property

B. Knaster asked in The Scottish book, in 1952, whether C(X) must have the
fixed point property when X has the fixed point property. In [32] S.B. Nadler, Jr.
and J.T. Rogers, Jr. showed that if Y is the union of a disk D with a ray surround-
ing the boundary of D, then Y the fixed point property but C(Y ) and 2Y do not
have the fixed point property. So, J.T. Rogers asked if C(X) has the fixed point
when X is a tree-like continuum [28, Problem 446, p. 307]. Recently, the author
has answered this question in [9] by showing that if Z is the union of a simple triod
T with a ray surrounding it, then C(Z) does not have the fixed point property. It
is not known if the statements (a) C(X) has the fixed point property and, (b) 2X

has the fixed point property; are equivalent [29, Question 7.12, p. 299].

Problem 18. Let Z be as in the previous paragraph. Does 2Z have the fixed point589?

property?

With respect to symmetric products, in the paper in which they were intro-
duced [21], K. Borsuk and S. Ulam asked whether Fn(X) has the fixed point prop-
erty when X has the fixed point property. This question was solved by J. Oledzki
in 1988 [33], who gave an example of a 2-dimensional continuum X with the fixed
point property such that F2(X) does not have the fixed point property. With this
in mind, S.B. Nadler, Jr. has offered the following list of new questions (among
others) in [31].

Problem 19 ([31, 8.12, p. 119]). Does Fn(X) have the fixed point property when590?

X is a circle-like continuum with the fixed point property?
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Problem 20 ([31, 8.13, p. 119]). Does Fn(X), n ≥ 2, have the fixed point property 591?

when X is hereditarily indecomposable continuum with the fixed point property?

The answer to Problem 20 is not known even when X is the pseudo-arc and
n ≥ 3.

Problem 21 ([31, 8.14, p. 120]). Is there a 1-dimensional continuum X with the 592?

fixed point property such that Fn(X) does not have the fixed point property for
some n?

Problem 22 ([31, 8.15, p. 120]). If X is a tree-like continuum with the fixed point 593?

property then does Fn(X) have the fixed point property?

Problem 23 ([31, 8.16, p. 120]). Is there a continuum X such that Fn(X) has 594?

the fixed point property for some n > 1 and, yet, Fm(X) does not have the fixed
point property for some m?

Problem 24 ([31, 8.17, p. 121]). Is there a continuum X such that X and F2(X) 595?

have the fixed point property but F3(X) does not have the fixed point property?

Problem 25 ([31, 8.23, p. 122]). If X is a continuum such that C(X) has the 596?

fixed point property, then does Cn(X) have the fixed point property for each n?

Problem 26 ([31, 8.24, p. 123]). If X is a continuum such that Fn(X) has the 597?

fixed point property for all n, then does Cn(X) have the fixed point property for
all n?

Let Z be as in the first paragraph at the beginning of this section (a simple
triod with a ray surrounding it). Since it has been proved [9] that C(Z) does not
have the fixed point property, it would be interesting to know if Fn(Z) has the fixed
point property for each n. If this is true, then Z would provide a negative answer
to Problem 26. If this is false, then Problem 22 would be solved in the negative.

Problem 27. Let Z be as in the previous paragraph, does Fn(Z) have the fixed 598?

point property for all n?

Problem 28 ([31, 8.26, p. 123]). If X is a continuum such that Fn(X) has the 599?

fixed point property for all n, then does 2X have the fixed point property?

Problem 29 ([31, p. 77]). Does Fn(X) have the fixed point property when X is 600?

arc-like and n ≥ 3?

It is known that if X is arc-like, then F2(X) has the fixed point property ([19,
22.25, p. 199]).

Mappings between hyperspaces

In [29, 22.25, p. 199], S.B. Nadler, Jr., discussed the problem of when there
exists a continuous map from one of the continua C(X), 2X or X onto another.
On this topic, I. Krzemińska and J.R. Prajs [22] have shown that there exists a
uniformly path connected continuum X such that X is not a continuous image of
C(X). Recently, A. Illanes [12], has constructed a continuum X such that C(X)
is not a continuous image of X . The following questions remain open.
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Problem 30 ([22, 22.25, p. 199]). If f : X → Y is a continuous surjection between601?

continua, does there exist a continuous surjection g : C(X)→ C(Y )?

Problem 31 ([22, Question 3, p. 61]). Given a continuum X, does there exist a602?

continuous surjection f : C(X)→ C(C(X))?

Unicoherence of F2(S1)

Answering a question by A. Illanes and A. Garćıa-Máynez, E. Castañeda
showed (in [1]) that if S1 and S2 are the circles in the plane, centered at the
origin, with radius 1 and 2, respectively and, R is a topological copy of the real
line such that one end surrounds asyntotically the circle S1 and the other end
surrounds S2, then X = S1 ∪ S2 ∪R is unicoherent but F2(X) is not unicoherent.
It is known that if X is a locally connected unicoherent continuum, then F2(X)
is unicoherent [10]. A discussion on this topic can be found in [7]. The following
questions are open.

Problem 32 ([1, Problem 1, p. 66]). Does there exist an indecomposable contin-603?

uum X such that F2(X) is not unicoherent?

Problem 33 ([1, Problem 2, p. 66]). Does there exist a hereditarily unicoherent604?

continuum X such that F2(X) is not unicoherent?

Problem 34 (J.J. Charatonik, [1, Problem 3, p. 66]). Does there exist a heredi-605?

tarily unicoherent, hereditarily decomposable continuum X such that F2(X) is not
unicoherent?

Locating cells in hyperspaces

In [23], S. López made a very detailed study of those continua X for which the
element X in C(X) has a neighborhood in C(X) which is a 2-cell. The following
question remains open.

Problem 35 ([23, Question 10, p. 189]). Suppose that there is a neighborhood D606?

of X in C(X) such that D is embeddable in the plane. Does X have a neighborhood
in C(X) which is a 2-cell?

Locating m-cells in hyperspaces has been an important tool in the study of
hyperspaces. An m-od in a continuum X is a subcontinuum B for which there
exists a subcontinuum A ⊂ B such that B − A contains at least m components.
When C1, . . . , Cm are components of B − A, taking an order arc αi from A to
A ∪ clX(Ci), for each i ∈ {1, . . . ,m} (that is, αi : [0, 1] → C(X) is a continuous
function such that αi(0) = A, αi(1) = A∪clX (Ci) and αi(s) ( αi(t) if s < t, for the
existence of order arcs see [19, Theorem 15.3]) and defining ϕ : [0, 1]m → C(X) by
ϕ((t1, . . . , tm)) = α1(t1) ∪ · · · ∪ αm(tm), it is easy to see that ϕ is an embedding.
Thus, if there exists an m-od in X , then there exists an m-cell in C(X). The
converse of this implication is also true (see [19, Theorem 70.1]). Therefore, we
have a complete intrinsic charaterization of those continua X for which there exists
an m-cell in C(X). It would be interesting to have a similar characterization for
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the hyperspaces Cn(X). With the idea described above it can be proved that if
B1, . . . , Bn are pairwise disjoint subcontinua of X such that each Bi is an ri-od,
then there exists a (r1+· · ·+rn)-cell in Cn(X). The problem here is to determine if
this is the only way to obtain cells in Cn(X). Thus we have the following problem.

Problem 36. Suppose that X is a continuum such that there exists an m-cell in 607?

Cn(X), then does there exist pairwise disjoint subcontinua B1, . . . , Bn of X such
that each Bi is an ri-od and m = r1 + · · ·+ rn?

Unique hyperspaces

The continuum X is said to have unique hyperspace C(X) (2X , Cn(X) and
Fn(X), respectively) provided that if Y is a continuum and C(X) (2X , Cn(X)
and Fn(X), respectively) is homeomorphic to C(Y ) (2Y , Cn(Y ) and Fn(Y ), re-
spectively), then X is homeomorphic to Y . A discussion on what is known about
unique hyperspaces can be found in [13]. The following questions are open.

Problem 37 ([13, p. 77]). Do hereditarily indecomposable continua X have unique 608?

hyperspace F2(X)?

Problem 38 ([8, p. 93]). Let X and Y be dendrites whose respective sets of end- 609?

points are closed. Suppose that C2(X) is homeomorphic to C2(Y ), then does it
follow that X is homeomorphic to Y ?

The respective question for Cn(X) instead of C2(X) with n 6= 2 has been
solved in the affirmative in [8, Theorem 5.24].

Problem 39. Let X be a dendrite and let Y be a continuum such that Fn(X) is 610?

homeomorphic to Fn(Y ), for some n ≥ 3. Does it follow that Y is also a dendrite?

The respective question for n = 2 was answered in the positive in [13].

Problem 40. Let X and Y be a dendrites. Suppose that the respective sets of 611?

ordinary points (that is, sets of non-ramification points) are open and Fn(X) is
homeomorphic to Fn(Y ), for some n ≥ 3. Does it follow that X is homeomorphic
to Y ?

The respective question for n = 2 was answered in the positive in [13].

Problem 41. Let X and Y be metric compactifications of the ray [0, 1). Sup- 612?

pose that F3(X) and F3(Y ) are homeomorphic. Does it follow that X and Y are
homeomorphic?

The respective question for n 6= 3 has been recently solved in the affirmative
by J.M. Mart́ınez-Montejano.

Problem 42. Let X be a metric compactification of the ray [0, 1) and let Y be a 613?

continuum. Suppose that Fn(X) is homeomorphic to Fn(Y ) for some n > 1. Does
it follow that Y is a metric compactification of the ray [0, 1)?
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1. Miscellaneous problems

In [2], E. Castañeda, showed that if X is a locally connected continuum, then
F2(X) can be embedded in R3 if and only if X can be embedded in the figure eigth
curve (the continuum obtained by joining two simple closed curves by a point).
The following problem is open.

Problem 43. Can F2(X) be embedded in R4 for each finite graph X?614?

A topological property P is said to be sequential decreasing Whitney property
provided that if µ is a Whitney map for C(X), {tn}∞n=1 is a sequence in the interval
(t, µ(X)) such that lim tn = t and each Whitney level µ−1(tn) has property P , then
µ−1(t) has property P . Sequential decreasing Whitney properties were introduced
and studied by F. Orozco-Zitli in [34], where he posed the following problem.

Problem 44 ([34, Question 1, p. 305]). Is the property of being a hereditarily615?

arcwise connected continuum a sequential decreasing Whitney property?

Let As(X) = {A ∈ C(X) : A is an arc} ∪ F1(X). It is known that if X is a
dendrite, then As(X) is homeomorphic to F2(X), by associating each arc with its
set of end-points. On the other hand, in [15], it has been proved that if X is a
dendroid with only one ramification point and F2(X) is homeomorphic to As(X),
then X is a dendrite. So the following question arises naturally.

Problem 45 (A. Soto, [15, Question 1, p. 308]). If X is a dendroid such that616?

F2(X) and As(X) are homeomorphic, must X be a dendrite?

Given a continuous function between continua f : X → Y the induced mapping
2f : 2X → 2Y is defined by 2f (A) = f(A) (the image of A under f). A wide
discussion on what has been done about induced mappings can be found in [19,
Ch. XII, Section 77].

Problem 46. Suppose that X is hereditarily indecomposable and F : 2X → 2X is617?

a homeomorphism, is it true that there exist a homeomorphism f : X → X such
that F = 2f?

The continuum X is said to be zero-dimensional closed set aposyndetic pro-
vided that for each zero-dimensional closed subset A of X and for each p ∈ X−A,
there exists a subcontinuum M of X such that p ∈ int(M) and M ∩ A = ∅. An-
swering a question by J. Goodykoontz, Jr., recently, J.M. Mart́ınez-Montejano has
shown that the hyperspaces 2X and Cn(X) (for all n) are zero-dimensional closed
set aposyndetic and he offered the following question.

Problem 47 ([24, Question 3.1]). Let n ≥ 3. Is Fn(X) zero-dimensional closed618?

set aposyndetic?

Problem 48 ([16, Problem 1, p. 180]). Are there integers 1 < n < m and continua619?

X and Y such that dim[C(X)] is finite and Cn(X) is homeomorphic to Cm(Y )?

Some partial answers to this question are given in [16].
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Problem 49 ([16, Problem 2, p. 180]). Do there exist two non-homeomorphic 620?

continua X and Y such that Cn(X) is homeomorphic to Cn(Y ), dim[Cn(X)] is
finite and n > 1?

Given p ∈ X , in [36], the following map was considered: ϕp : X → F2(X),
given by ϕp(x) = {p, x}. In the same paper, P. Pellicer-Covarrubias proved
that [36, Lemma 5.3] if X is contractible, then ϕp is a deformation retraction
in F2(X). This motivates the following problem.

Problem 50 ([36, p. 291]). Suppose that ϕp is a deformation retraction, does 621?

this imply that X is contractible?

Given p ∈ X , let C(p,X) = {A ∈ C(X) : p ∈ A} and let K(X) = {C(p,X) ∈
C(C(X)) : p ∈ X}. Spaces of the form K(X) were studied by P. Pellicer-
Covarrubias in [35], where she posed the following problems.

Problem 51 ([35, p. 284]). Let T be a simple triod. Does there exists a continuum 622?

X such that X is not homeomorphic to T and K(X) is homeomorphic to K(T )?
If so, must X be indecomposable?

Problem 52 ([35, p. 284]). Let G be a finite graph. Does there exists a continuum 623?

X such that X is not homeomorphic to G and K(X) is homeomorphic to K(G)?
If so, must X be indecomposable?

We finish this list of problems including an interesting problem of Continuum
Theory (not of hyperspaces) which has not been posed in the literature. For the
particular case when X is the Pseudo-arc, this question was solved in [27].

Problem 53. Is it true that for each continuum X there exists an uncountable 624?

family of pairwise non-homeomorphic metric compactifications of the ray [0, 1)
with remainder X.

References
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[3] E. Castañeda, Symmetric products as cones and products, Topology Proc. 28 (2004), no. 1,
55–67.

[4] J. J. Charatonik, Some problems concerning means on topological spaces, Topology, mea-
sures, and fractals (Warnemünde, 1991), Math. Res., vol. 66, Akademie-Verlag, Berlin, 1992,
pp. 166–177.

[5] W. J. Charatonik and A. Samulewicz, On size mappings, Rocky Mountain J. Math. 32
(2002), no. 1, 45–69.
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[18] A. Illanes and M. de J. López, Hyperspaces homeomorphic to cones. II, Topology Appl. 126

(2002), no. 3, 377–391.
[19] A. Illanes and S. B. Nadler, Jr., Hyperspaces, Monographs and Textbooks in Pure and

Applied Mathematics, vol. 216, Marcel Dekker Inc., New York, 1999.

[20] A. Illanes and L. C. Simón, Means with special properties, Houston J. Math. 29 (2003),
no. 2, 313–324.

[21] Borsuk K. and S. Ulam, On symmetric products of topological spaces, Bull. Amer. Math.
Soc. 37 (1931), 875–882.
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Inverse limits and dynamical systems

W. T. Ingram

1. Introduction

Throughout this article, we use the term continuum to mean a compact, con-
nected subset of a metric space; by a mapping we mean a continuous function. A
continuum is decomposable provided it is the union of two of its proper subcon-
tinua; a continuum is indecomposble if it is not decomposable. A continuum is
hereditarily decomposable if each of its subcontinua is decomposable.

If X1, X2, X3, . . . is a sequence of metric spaces and f1, f2, f3, . . . is a sequence
of mappings such that fi : Xi+1 → Xi for i = 1, 2, 3, . . ., by the inverse limit of the
inverse limit sequence {Xi, fi} is meant the subset of the product space

∏
i>0Xi

that contains the point (x1, x2, x3, . . .) if and only if fi(xi+1) = xi for each positive
integer i. The inverse limit of the inverse limit sequence {Xi, fi} is denoted by
lim←−{Xi, fi}. For convenience of notation, we will use boldface characters to denote
sequences. Thus, if s1, s2, s3, . . . is a sequence, we denote this sequence by s. By
this convention, the point (x1, x2, x3, . . .) of an inverse limit space will also be
denoted by x, the sequence of factor spaces by X and the sequence of bonding
maps by f . For brevity, we will denote the inverse limit space by lim←− f .

A problem set is invariably personal and reflects the interests of the compiler
of the set. So it is with this collection of problems. Because of recent developments
in the use of inverse limits in certain kinds of models in economics, in Section 7
we include some problems arising from this although we have not personally con-
tributed anything to these applications. Instead we rely on some who have made
contributions for problems that reflect the current state of this research.

2. Characterization of chainability

Although it is not the original definition of chainability we take as our defini-
tion that a continuum is chainable to be that the continuum is homeomorphic to
an inverse limit on intervals; a continuum is tree-like provided it is homeomorphic
to an inverse limit on trees. A continuum is unicoherent provided it is true that if
it is the union of two subcontinua H and K then H∩K is connected; a continuum
is hereditarily unicoherent provided every subcontinuum of it is unicoherent. A
continuum M is a triod provided there is a subcontinuum H of M so that M −H
has at least three components; a continuum is atriodic provided it contains no
triod. It is immediate that chainable continua are tree-like. It is well known that
chainable continua are atriodic and tree-like continua are hereditarily unicoherent.

Several characterizations of chainability of a continuum exist. These include
(1) (the original definition) for each ε > 0 there is a finite collection of open sets
C1, C2, . . . , Cn covering M such that diam(Ci) < ε for 1 ≤ i ≤ n and Ci ∩ Cj 6= ∅
if and only if |i− j| ≤ 1 and (2) for each positive number ε there is a map fε of the
continuum to [0, 1] such that if t is in [0, 1] then the diameter of f−1

ε (fε(t)) is less
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than ε. Notably missing is a characterization involving a list of internal topological
properties of the continuum. For example, in case the continuum is hereditarily
decomposable, RH Bing [3, Theorem 11] proved that the continuum is chainable
if and only if it is atriodic and hereditarily unicoherent. This characterization
for hereditarily decomposable continua is satisfying in that it is given in terms of
“internal” topological properties of the continuum.

Problem 1. Characterize chainability of a continuum in terms of internal topo-625?

logical properties of the continuum.

J.B. Fugate [10] extended Bing’s result from the class of hereditarily decom-
posable continua to the class of those continua having the property that every
indecomposable subcontinuum is chainable. Thus, Problem 1 may be solved by
characterizing chainability of indecomposable continua. Case and Chamberlin [6]
gave a characterization of tree-like continua as those one-dimensional continua for
which every mapping to a one-dimensional polyhedron is inessential (i.e., homo-
topic to a constant map). J. Krasinkiewicz later proved that a one-dimensional
continuum is tree-like if and only if every mapping of it to a figure-8 (the union
of two circles with a one-point intersection) is inessential [26]. Although these
characterizations of tree-likeness do not involve “internal” topological properties,
it would still be of significant interest to characterize chainability among tree-like
continua. Since tree-like continua are hereditarily unicoherent, atriodicity is a
natural candidate for one of the properties on a list of characterizing properties.
That atriodicity alone is not sufficient was shown in [14].

One significant attempt at characterizing chainability involves the notion of
the span of a continuum. If M is a continuum, the span of M is the least upper
bound of {ε ≥ 0 | there is a subcontinuum C of M ×M such that p1(C) = p2(C)
and dist(x, y) ≥ ε for all (x, y) in C} (p1 and p2 denote the projections of M ×M
into its factors). The following problem on span remains open even though it was
featured [8] in the first volume of Open Problems in Topology.

Problem 2. If the span of a continuum is 0, is M chainable?626?

A. Lelek intoduced span in [28] and proved that chainable continua have
span 0. Although span 0 is a topological property, in some real sense it is not
“internal”. Consequently, if one were to settle Problem 2 in the affirmative, the
nature of the definition of span would, in this author’s opinion, leave work to be
done on Problem 1. That said, Problem 2 is significant in its own right and not
only because it has become an “old” problem. For instance, a positive solution
would tell us that we know all of the homogeneous plane continua [34].

3. Plane embedding

In thinking about Problem 1 and in light of the Case–Chamberlin theo-
rem [6] characterizing tree-likeness, the author began a quest to settle the question
whether atriodic tree-like continua are chainable. That investigation led to an ex-
ample of an atriodic tree-like continuum that is not chainable [14]. Span turned
out to be just the tool needed to show that the example obtained is not chainable.
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Figure 1. Bing’s example of a nonplanar tree-like continuum

However, span was not the first tool the author tried to use. In fact, two
other properties of chainable continua first came to mind: planarity and the fixed
point property. Bing showed that chainable continua can be embedded in the
plane [3] and O.H. Hamilton showed that chainable continua have the fixed point
property [12]. The author chose to try to employ Bing’s result and construct an
atriodic tree-like continuum that cannot be embedded in the plane. This leads to
our next problem.

Problem 3. Characterize those tree-like continua that can be embedded in the 627?

plane.

The reader interested in this problem should be familiar with Brian Raines
work [35] on local planarity of inverse limits of graphs.

Of course, tree-like continua that cannot be embedded in the plane are well
known. Arguably the simplest of these may be one given by Bing [3]. This example
consists of a ray with remainder a simple triod together with an arc that intersects
the union of the ray and the triod only at the junction point of the triod. A map
of the 4-od that produces in its inverse limit a simple triod and a ray having the
simple triod as a remainder is shown in Figure 1. Bing’s example is obtained
by attaching an arc to this inverse limit at the point (O,O,O, . . .) and otherwise
misses the inverse limit.

Finding an atriodic example presents somewhat more of a challenge. Although
other non-planar atriodic tree-like continua are known, an example may be con-
structed in the following way. Let M be the atriodic tree-like continuum with pos-
itive symmetric span that the author constructed in [14] and let C be the product
of M with a Cantor set. A construction of Laidacker [27] produces an atriodic
tree-like continuum M ′ that contains C. Dušan Repovš, Arkadij B. Skopenkov,
and Evgenij V. Ščepin prove in [36] that the plane does not contain uncountably
many mutually exclusive tree-like continua with positive symmetric span so the
continuum M ′ is non-planar.
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Figure 2. A first attempt at a nonplanar atriodic tree-like continuum

In order to tackle Problem 3, it would be helpful to have some examples of
planar continua that “look” like they might be non-planar as well as some simpler
examples of non-planar atriodic tree-like continua to study. The remainder of this
section is devoted to some examples and possible examples.

The author’s first attempts to construct an atriodic tree-like continuum that
cannot be embedded in the plane failed (as have many subsequent attempts). We
briefly describe an early attempt. The picture in Figure 2 is a schematic drawing
of a mapping f of a simple triod T = [OA] ∪ [OB] ∪ [OC] onto itself. The action
of the function is to take the first half of [OA] onto [AO] with f(O) = A and the
second half of [OA] onto [OB] with f(A) = B; f takes the first third of [OB] onto
[AO], the next sixth onto the first half of [OC], the next sixth folds back to O
and the final third is taken onto [OB]; f takes the first third of [OC] onto [AO],
the next third half way out [OB] and back, and the final third onto [OC]. The
resulting inverse limit is atriodic, but it is a chainable continuum because f ◦ f
factors through [0, 1] (i.e., there are maps g : T → [0, 1] and h : [0, 1]→ T so that
f = h ◦ g). Though the schematic of f cannot be drawn in the plane, lim←− f being
chainable is planar.

An alternative to Bing’s non-planar tree-like continuum mentioned above is
the following. Take a continuum consisting of two mutually exclusive rays each
having the same simple triod as remainder but the rays wind around the triod
in opposite directions. The resulting tree-like continuum is non-planar. This
observation suggests the following way possibly to construct a non-planar atriodic
tree-like continuum. The continuum is an inverse limit on a simple 5-od, [OA] ∪
[OB] ∪ [OC] ∪ [OD] ∪ [OE]. Restricted to the triod [OA] ∪ [OB] ∪ [OC] our 5-
od map is just the triod map that the author used in [14] to obtain an atriodic
tree-like continuum that is not chainable. We use the other two arms of the 5-od
to obtain rays that wind in “opposite” directions onto that example. We provide
a schematic diagram of the map in Figure 3. The author does not know if the
resulting inverse limit is non-planar.

There is a somewhat simpler possibility that results from an inverse limit
on 4-ods. The author does not know if the resulting inverse limit space is non-
planar. The bonding map f (shown in a schematic in Figure 4) has the interesting
feature that, although it can be “drawn in the plane”, f 2 cannot be “drawn in
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Figure 3. A alternative to Bing’s example

Figure 4. A twisted example

the plane”. This appears to be caused by a twist of the arms of the 4-od imposed
by the bonding map. Unfortunately, as our second example shows (see Figure 2),
not being able to “draw” a schematic of the bonding map in the plane does not
guarantee that the inverse limit is non-planar.

4. Inverse limits on [0, 1]

Considerable interaction between dynamacists and continuum theorists has
occurred in the past fifteen or twenty years. Inverse limits appeal to dynamacists
in part because they allow one to transform the study of a dynamical system
consisting of a space and a mapping of that space into itself into the study of a
(perhaps more complicated) space, the inverse limit, and a homeomorphism, the
shift, of that space into itself. Considerations in dynamics have led to extensive
investigations of parameterized families of maps. Many of these are maps of [0, 1]



296 33. INVERSE LIMITS AND DYNAMICAL SYSTEMS

into itself and include the logistic family and the tent family. Interest in these
families also rekindled the author’s interest in inverse limits on [0, 1] using a con-
stant sequence of bonding maps in which that bonding map is chosen from one of
those two families or from one of several other families of piecewise linear maps
including the families ft for 0 ≤ t ≤ 1, gt for 0 ≤ t ≤ 1, fab (also denoted gbc by
the author and others) where both parameters come from [0, 1], and the family of
permutation maps. In this article we provide definitions only for the tent family
(in the next paragraph) and the permutation maps (in the next section). For
definitions of the families not discussed further in this article and information on
some of the inverse limits generated by these families see [16], [15], [17], [21].
With one exception these are families of unimodal maps, a class of maps of special
interest in dynamics. Permutation maps are Markov maps, a class also of interest
in dynamics. A map is monotone provided its point inverses are connected; a map
f : [0, 1] → [0, 1] is unimodal provided f is not monotone and there is a point c,
0 < c < 1, such that f � [0, c] and f � [c, 1] are monotone. A map f : [0, 1]→ [0, 1]
is Markov provided there is a finite subset {x1 = 0, x2, . . . , xn = 1} with xi < xi+1

and f � [xi, xi+1] is monotone for 1 ≤ i < n.
Tent maps are unimodal maps of [0, 1] constructed as follows. Choose a num-

ber s from [0, 1] and let fs : [0, 1]→ [0, 1] be the piecewise linear map that passes
through (0, 0), (1/2, s), and (1, 0). (Specifically, fs is given by fs(x) = 2sx for
0 ≤ x ≤ 1/2 and fs(x) = (2− 2x)s for 1/2 ≤ x ≤ 1.)

One problem involving the tent family has sparked considerable interest and
has given rise to a large number of partial results.

Problem 4. If fs and ft are tent maps with lim←− fs and lim←− ft homeomorphic, is628?

s = t?

This has been settled in a number of cases including Lois Kailhofer’s proof
for maps that have periodic critical points [24]. Štimac has announced a positive
solution if the maps have preperiodic critical points.

The collection of inverse limits arising from the tent family is rich in its vari-
ety. Barge, Brucks, and Diamond have shown that there are uncountably many
parameter values at which the inverse limit is so complicated that it contains a
copy of every continuum arising as an inverse limit space from a tent family core
(see the next paragraph) [2]. In spite of the presence of complicated topology
at some parameter values, progress has been made on Problem 4 when the orbit
of the critical point is infinite. B. Raines has begun a systematic study of these
inverse limits and has made some significant progress for certain parameter val-
ues. The author acknowledges private correspondence with Professor Raines that
provided some of the problems in this section as well as some of the information
on the literature related to these problems.

If fs is a tent map lim←− fs is the closure of a topological ray. Except for s = 1 the
inverse limit is a decomposable continuum and if R is the ray that is dense in the
inverse limit, R −R is a proper subcontinuum that results from the inverse limit
on [fs(s), s] using the restriction of fs to that interval as the bonding map. We
refer to lim←− fs � [fs(s), s] as the core of lim←− fs and the map fs � [fs(s), s] as a tent
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core. Sometimes the tent core is rescaled to be the map of [0, 1] onto itself given
by fs(x) = sx+ 2− s for 0 ≤ x ≤ 1− 1/s and fs(x) = s− sx for 1− 1/s ≤ x ≤ 1.
Since the critical point is different depending on one’s perspective, it is simply
denoted by c in the remainder of this section.

Raines’ approach to the case that the orbit of the critical point c is infinite

has been to look at the omega limit set of c, ω(c) =
⋂∞

n=1 {fk(c) | k ≥ n}. When
the orbit of c is infinite, ω(c) = [0, 1] or ω(c) is totally disconnected. If the orbit is
infinite and ω(c) is totally disconnected, ω(c) may be a countable set, a Cantor set,
or the union of a countable set and a Cantor set. It is in the case that ω(c) = [0, 1]
that the Barge, Brucks and Diamond phenomenon of [2] occurs (i.e., there are
parameter values at which the inverse limit of the tent map contains a copy of
every continuum that arises as an inverse limit space from a tent family core).

Problem 5 (Raines). Suppose f is a tent core with critical point c such that ω(c) = 629?

[0, 1]. If C is a composant of lim←− f , does C contain a copy of every continuum that
arises as an inverse limit space of a tent family core?

Problem 6 (Raines). Suppose f is a unimodal map with critical point c. Give 630?

necessary and sufficient conditions on c so that lim←− f contains a copy of every
continuum that arises as an inverse limit space in a tent family core.

In case f is a tent core with critical point c and ω(c) is countable or the
union of a countable set and a Cantor set, it is known that the inverse limit is an
indecomposable arc continuum without end points (by an arc continuum we mean
a continuum such that every proper subcontinuum is an arc). Good, Knight, and
Raines have shown [11] that there are uncountably many members of the tent
family cores with ω(c) countable that have topologically different inverse limits.

In case f is a tent core with critical point c and ω(c) is a Cantor set, the
inverse limit is indecomposable but it may have end points. If it has end points
the set of end points is uncountable [5]. The subcontinua of lim←− f can be quite

complicated as demonstrated in [4]. This gives rise to the next problem.

Problem 7 (Raines). Let f be a tent core with critical point c and ω(c) a Cantor 631?

set. Classify all possible subcontinua of lim←− f .

We close this section with one final problem. If n is a positive integer and σ
is a permutation on the set {1, 2, . . . , n}, define a map fσ : [0, 1] → [0, 1] in the
following way: (1) for 1 ≤ i ≤ n let ai = (i−1)/(n−1), (2) let fσ(ai) = aσ(i), and
(3) extend fσ linearly to all of [0, 1]. We call a map so constructed a permutation
map. These maps are all Markov maps and many interesting continua result as
the inverse limit space based on a permutation map. In [18] the author began a
study of the inverse limits spaces that result from using a permutation map in an
inverse limit. By brute force, all continua arising from permutations based on 3,
4, or 5 elements were determined.

Problem 8. Classify all continua arising from permutation maps. 632?
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5. The property of Kelley

A continuum M with metric d is said to have the Property of Kelley provided
if ε > 0 there is a positive number δ such that if p and q are points of M and
d(p, q) < δ and H is a subcontinuum of M containing p then there is a subcon-
tinuum K of M containing q such that H(H,K) < ε (H deonotes the Hausdorff
distance on the hyperspace of subcontinua C(M)). This property that we now call
the Property of Kelley was introduced by J. Kelley in his study of hyperspaces,
but it is a nice continuum approximation property in its own right. The author
considered the property in [23], [19], and [20]. While presenting the results that
appeared in [19] and [20] in seminar, the author was asked the following question
by W.J. Charatonik.

Problem 9 (Charatonik). Is there a characterization of the Property of Kelley633?

in terms of the inverse limit representation of the continuum?

The author briefly tried to distill a sufficient condition from the proofs in the
papers in [19] and [20] but never found a satisfying theorem. Nonetheless, it
would be of interest to be able to determine the presence of the Property of Kelley
based on some easily checked conditions on the bonding maps in an inverse limit
representation of the continuum. Private communication with W.J. Charatonik
indicates that he and a student have obtained some sufficient conditions on an
inverse limit sequence to guarantee that the inverse limit have the Property of
Kelley.

Permutation maps were defined in Section 4. In [18] it was shown that if f is
a permutation map based on a permutation on 3, 4, or 5 elements, then lim←− f has
the Property of Kelley. This leads us to ask the following question.

Problem 10. Do all permutation maps produce continua with the Property of634?

Kelley?

6. Inverse limits with upper semi-continuous bonding functions

W.S. Mahavier introduced inverse limits with upper semi-continuous bonding
functions in [29] but as inverse limits on closed subsets of [0, 1] × [0, 1]. In that
article he showed that inverse limits on closed subsets of [0, 1]× [0, 1] are inverse
limits on [0, 1] using upper semi-continuous closed set valued functions as bonding
functions. In a subsequent paper [22], Mahavier and the author extended the
definition to the setting of inverse limits on compact Hausdorff spaces using upper
semi-continuous closed set valued bonding functions. If Y is a compact Hausdorff
space, 2Y denotes the collection of all closed subsets of Y . If X and Y are compact
Hausdorff spaces, a function f : X → 2Y is called upper semi-continuous at the
point x of X provided if O is an open set in Y that contains f(x) then there is
an open set U in X that contains x and f(t) is a subset of O for every t in U .
If X1, X2, X3, . . . is a sequence of compact Hausdorff spaces and f1, f2, f3, . . . is a
sequence of upper semi-continuous functions such that fi : Xi+1 → 2Xi for each i,
by the inverse limit of the inverse sequence {Xi, fi} is meant the subset of

∏
i>0Xi
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that contains the point x = (x1, x2, x3, . . .) if and only if xi ∈ f(xi+1). The reader
will note that in case the functions are single valued, this definition reduces to the
usual definition of an inverse limit. Beyond the collection of chainable continua
that occur with single valued bonding functions, many interesting examples of
continua result from inverse limits on [0, 1] with upper semi-continuous bonding
functions that cannot occur with single valued functions. Among these are the
Hilbert cube, the Cantor fan, a 2-cell with a sticker, and the Hurewicz continuum
H that has the property that if M is a metric continuum there is a subcontinuum
K of H and a mapping of K onto M . The example that produces a 2-cell with
an attached arc leads to the following problem.

Problem 11. Is there an upper semi-continuous function f : [0, 1] → 2[0,1] such 635?

that lim←− f is a 2-cell?

Admittedly, this problem is rather more specific than most in this article, but
perhaps it can serve as a starting point for an interesting investigation of these
new and different inverse limits.

We end this section with a problem inspired by considerations from Section 7.
Some models in economics are not well-defined either forward in time or backward
in time [7], [37]. Some models consist of the union of two mappings that have no
point in common. Perhaps an investigation of these new inverse limits using these
models would be helpful to economists as well as a way to begin work on our next
problem.

Problem 12. Suppose f : [0, 1]→ 2[0,1] is an upper semi-continuous function that 636?

is the union of two mappings of [0, 1]. What can be said about lim←− f?

7. Applications of inverse limits in Economics

An exciting recent development in inverse limits is the development of models
in economics in which the state of the model at time t is related to its state
at time t + 1 by some non-invertible mapping f . A solution to the model is
an infinite sequence x1, x2, x3, . . . such that f(xt+1) = xt for t = 1, 2, 3, . . .. So
the set of solutions is the inverse limit on the state space using the map f as
a bonding map. These models have arisen in cash-in-advance models [25] and
overlapping generations models [30, 31] studied by various economists. These
models generally fall into a category of models described by economists as having
“backward dynamics” or as models involving “backward maps”. Economists are
interested in the inverse limit because it contains as its points all future states
predicted by the model. The author acknowledges private correspondence with
Judy Kennedy and Brian Raines used in the development of this section and
appreciates the contribution of problems by both of them. The problems that
they contributed are labeled below with their names. Of course, any errors or
misstatement of problems are solely the responsibility of the author.

If f : X → X and g : X → X are maps of a topological space X , we say that f
and g are topologically conjugate provided there is a homeomorphism h : X → X
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such that f ◦ h = h ◦ g. If f and g are topologically conjugate, a homeomorphism
h such that f ◦ h = h ◦ g is called a conjugacy.

Problem 13 (Kennedy–Stockman). Suppose f : [0, 1] → [0, 1] and g : [0, 1] →637?

[0, 1] are topologically conjugate. How does one construct a homeomorphism h so
that f ◦ h = h ◦ g?

This problem deserves attention independent of the interest by economists.
For economists the existence of a conjugacy is not sufficient information for carry-
ing out some of the computations they need such as the computation of measures
and then integrals for utility functions. Specific questions related to this problem
and asked by Kennedy and Stockman include:

(1) Can the conjugacy be constructed by means of a sequence of approxima-
tions?

(2) If f and g are piecewise differentiable, must the conjugacy be piecewise
differentiable?

The next problem is related to Problem 5 above.

Problem 14 (Kennedy–Stockman). Do continua that contain copies of every638?

inverse limit that arises in a tent family core occur as inverse limits in the cash-
in-advance model [25] or the overlapping generations model [33]?

Some models in economics are based on relations instead of functions so nei-
ther forward nor backward dynamics is well defined. In particular the Christiano–
Harrison model [7] and a Stockman model [37] fit this scenario. Perhaps inverse
limits with upper semi-continuous bonding functions (see Section 6) could be em-
ployed in an analysis of these models. Consequently, we reiterate Problem 12.

In considering models in economics, measure theory will likely play an impor-
tant role for several reasons one of which we have already mentioned. For instance,
when economists consider models involving backward dynamics, they would like
to be able to “rank” the inverse limit spaces in some meaningful way, perhaps by
using “natural” invariant measures. For a survey of literature on such measures
see [13]. When comparing two inverse limit spaces but with a precise meaning of
“better” to be determined, Kennedy and Stockman ask the following.

Problem 15 (Kennedy–Stockman). Suppose policy A and policy B in economics639?

lead to different inverse limit spaces. Determine which of the inverse limits is
“better”.

With a precise meaning of “complex” to be determined, they also ask.

Problem 16 (Kennedy–Stockman). For an economics model, what is the measure640?

of the set of initial conditions that lead to “complex” dynamics?

Problem 17 (Kennedy–Stockman). In a model from economics, if an equilibrium641?

point (i.e., point in the inverse limit) is chosen at random, what is the probability
that it is “complex”?
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One search for appropriate measures on the inverse limit space centers on
somehow making use of measures already developed. Kennedy and Stockman have
recently succeeded in “lifting” given measures for interval maps to measures on the
corresponding inverse limit spaces although they remark that such measures on
the inverse limit space apparently are already known, see [9]. For an introduction
to measures for interval maps see [1, Sections 6.4–6.6]. See also [13]. Kennedy and
Stockman ask if there exist other useful measures one might consider, particularly
in non-chaotic situations.

Recall that if f : X → X is a mapping of a metric space and x is a point of
X , then the ω-limit set of x is ω(x) =

⋂
i>0 {fm(x) | m ≥ i}. If A is a closed

subset of X and f [A] = A, we call A an invariant set. If A is a closed invariant
subset of X , then the basin of attraction of A is {x ∈ X | ω(x) ⊂ A}. A subset
B of X is nowhere dense in X provided B does not contain a nonempty open set.
A subset M of X is said to be residual in X provided X −M is the union of
countably many nowhere dense subsets. A closed invariant subset of X is called
a topological attractor [33] for f provided the basin of attraction for A contains
a residual subset of X and if A′ is another closed invariant subset of X then the
common part of the basin of attraction of A′ and the basin of attraction of A is
the union of at most countably many nowhere dense sets. For more information
of topological attractors and metric attractors (defined below), see [33].

One possible tool for analyzing an inverse limit arising in a model from eco-
nomics lies in the shift homeomorphism. There are two shifts and they are inverses
of each other. Specifically, below we are referring to the shift σ : lim←− f → lim←− f

given by σ(x) = (x2, x3, x4, . . .). Raines asks the following.

Problem 18 (Raines). Let f be a map of the interval. Find necessary and suf- 642?

ficient conditions for lim←− f to admit a proper subset that is a topological attractor
for the shift homeomorphism.

Problem 19 (Raines). Let f be a unimodal map of the interval. Classify all of 643?

the topological attractors for the shift homeomorphism on lim←− f .

Not all models from economics involve one-dimensional spaces. This prompts
the following problem.

Problem 20 (Raines). Let f be a map of [0, 1] × [0, 1]. Identify topological at- 644?

tractors in lim←− f under the shift homeormorphism.

If X is a metric space with a measure µ, f : X → X is a mapping and A is
a closed invariant subset of X , then A is called a metric attractor for f provided
the basin of attraction for A has positive measure and and if A′ is another closed
invariant subset of X then the common part of the basin of attraction of A′ and
the basin of attraction of A has measure zero.

Problem 21 (Raines). In the previous two problems, change the phrase topolog- 645–646?

ical attractor to metric attractor.
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Indecomposable continua

Wayne Lewis

Except for discussion near the end of this article, we shall consider a con-
tinuum to be a compact connected metric space. In discussion near the end of
this article we shall consider a non-metric continuum to be a compact connected
non-metrizable Hausdorff space.

A continuum is indecomposable if it is not the union of two proper subcontinua.
It is hereditarily indecomposable if each of its subcontinua is indecomposable.

Hereditary equivalence

The best studied hereditarily indecomposable continuum is the pseudo-arc.
Moise [62] showed that the pseudo-arc is hereditarily equivalent , i.e., homeo-
morphic to each of its nondegenerate subcontinua, and gave it its name because
it shares this property with the arc.

Question 1. Is the pseudo-arc the only nondegenerate continuum other than the 647?

arc which is hereditarily equivalent?

It follows from results by Henderson [26] and Cook [18] that any nondegen-
erate hereditarily equivalent continuum other than the arc must be hereditarily
indecomposable and tree-like.

Mohler and Oversteegen [61] have constructed examples of non-metric de-
composable hereditarily equivalent continua, including one which is not a Haus-
dorff arc. Smith [89] has constructed a non-metric hereditarily indecomposable
hereditarily equivalent continuum, obtained as an inverse limit of ω1 copies of the
pseudo-arc. Oversteegen and Tymchatyn [65] have shown that any planar heredi-
tarily equivalent continuum must be close to being chainable, i.e., must be weakly
chainable and have symmetric span zero.

Homogeneity

Bing [10] has characterized the pseudo-arc as a nondegenerate hereditarily
indecomposable chainable continuum, i.e., any such continuum must be homeo-
morphic to the continuum constructed by Moise, and to a continuum constructed
earlier by Knaster [33] to show that hereditarily indecomposable continua exist.
Bing [8] and Moise [63] have independently shown that the pseudo-arc is homo-
geneous and Bing [11] has shown that it is the only nondegenerate homogeneous
chainable continuum. This latter result has been generalized by this author [43] to
show that the pseudo-arc is the only nondegenerate homogeneous almost chainable
ontinuum.

The first characterization of the pseudo-arc has been used extensively and it
would be useful to know if it can be generalized.

Question 2. Is the pseudo-arc the only nondegenerate hereditarily indecomposable 648?

weakly chainable continuum?

305
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A weakly chainable continuum can be described in terms of a defining sequence
of open covers. Fearnley [22] and Lelek [38] have shown that a continuum is weakly
chainable if and only if it is the continuous image of a chainable continuum, and
hence of the pseudo-arc. Thus the above question can be rephrased as “If X is
a nondegenerate hereditarily indecomposable continuum which is the continuous
image of the pseudo-arc, is X itself a pseudo-arc?”

This question is of interest not just in terms of the images of the pseudo-arc
or a possible generalization of a known characterization of the pseudo-arc. It is
central to the classification of homogeneous plane continua and is a special case
of a family of questions of interest.

Question 3. Is the pseudo-arc the only nondegenerate homogeneous non-separating649?

plane continuum?

Hagopian [23] has shown that every non-separating homogeneous plane con-
tinuum is hereditarily indecomposable. Oversteegen and Tymchatyn [66] have
shown that every such continuum is weakly chainable. More on the status of
the classification of homogeneous plane continua or homogeneous one-dimensional
continua can be found in survey articles by this author [51] and by Rogers [80, 79].

Rogers [77] has shown that every homogeneous hereditarily indecomposable
continuum is tree-like. Krupski and Prajs [36] have shown that every homoge-
neous tree-like continuum is hereditarily indecomposable. Both of these results
are independent of whether the continuum is planar.

Question 4. Is the pseudo-arc the only nondegenerate homogeneous tree-like con-650?

tinuum?

While it is known from the result of Oversteegen and Tymchatyn that any
such continuum which is planar must be weakly chainable, such is not yet known
to be the case for the possibly non-planar case.

Question 5. Is every homogeneous tree-like continuum weakly chainable?651?

A continuous surjection f : X → Y between continua is confluent if, for each
subcontinuum H of Y and each component C of f−1(H), f(C) = H , The class of
confluent maps includes the classes of open maps and of monotone maps. Cook [16]
has shown that a continuum Y is hereditarily indecomposable if and only if every
continuous surjection from a continuum onto Y is confluent. Thus, any hereditarily
indecomposable continuum which is weakly chainable is the confluent image of
the pseudo-arc. McLean [57] has shown that the confluent image of a tree-like
continuum is tree-like. A positive answer to the following question would show
that the pseudo-arc is the only nondegenerate hereditarily indecomposable weakly
chainable continuum, providing positive answers to Questions 2 and 3.

Question 6. Is the confluent image of a chainable continuum chainable?652?

Bing [10] and Rosenholtz [81], respectively, have shown that monotone maps
and open maps preserve chainability. Confluent maps also preserve indecompos-
ability, hereditary indecomposability and atriodicity. One of the most general
forms of this family of questions is due to Mohler [60].
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Question 7. Is every weakly chainable atriodic tree-like continuum chainable? 653?

Minc [59] has provided a partial answer by showing that any atriodic weakly
chainable continuum which is an inverse limit of trees with simplicial bonding
maps is chainable.

As indicated above, Rogers [77] has shown that every homogeneous hereditar-
ily indecomposable continuum is tree-like. However, there are homogeneous inde-
composable continua which are not tree-like, e.g. solenoids or solenoids of pseudo-
arcs. However, all such known nondegenerate continua are one-dimensional, lead-
ing Rogers to ask the following two questions. (Any product of non-degenerate
continua is aposyndetic and hence decomposable. Thus there can be no indecom-
posable homogeneous analog of the Hilbert cube.)

Question 8 ([79]). Is each nondegenerate homogeneous indecomposable contin- 654?

uum one-dimensional?

Question 9 ([78]). Is each homogeneous indecomposable cell-like continuum tree- 655?

like?

Every known nondegenerate homogeneous indecomposable continuum (whether
hereditarily indecomposable or not) is circle-like. Also, every known homogeneous
plane continuum (whether indecoposable or not, whether separating the plane or
not) is circle-like. The family of homogeneous circle-like continua has been com-
pletely classified [25, 74, 46] as the circle, solenoids, circle of pseudo-arcs and
solenoids of pseudo-arcs, with the circle of pseudo-arcs and for each solenoid the
solenoid of pseudo-arcs being unique.

Question 10. Is every nondegenerate homogeneous indecomposable continuum 656?

circle-like?

Question 11. Is every nondegenerate homogeneous plane continuum circle-like? 657?

Burgess [14] has shown that every continuum which is both circle-like and
tree-like is chainable. Recalling Bing’s result [11] that the only nondegenerate
homogeneous chainable continuum is the pseudo-arc, positive answers to each of
Question 9 and 10 would imply that the only nondegenerate indecomposable ho-
mogeneous cell-like continuum is the pseudo-arc while a positive answer to Ques-
tion 10 implies a positive answer to Question 11. A positive answer to Question 11
implies that the classification of homogeneous plane continua is complete with the
four known examples of the point, simple closed curve, pseudo-arc and circle of
pseudo-arcs.

A space X is said to be homogeneous with respect to the classM of maps if for
every x, y ∈ X there exists a continuous surjection f : X � X of X onto itself with
f(x) = y and f ∈ M. (Usual homogeneity is thus homogeneity with respect to
homeomorphisms.) J. Charatonik and Maćkowiak [15] have shown that the result
of Bing can be strengthened to show that the pseudo-arc is the only nondegen-
erate chainable continuum which is homogeneous with respect to confluent maps.
Several examples are known of continua which are not homogeneous but which
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are homogeneous with respect to various classes of maps. Prajs [71] has shown
that the disc is homogeneous with respect to open maps, while Seaquist [82] has
shown that it is not homogeneous with respect to monotone maps. Prajs [72] and
Seaquist [83] have independently shown that the Sierpiński universal plane curve
is homogeneous with respect to open monotone maps. J. Charatonik has asked
the following question, with special interest in possible generalized homogeneity
of the pseudo-circle.

Question 12. Does there exist an hereditarily indecomposable continuum which658?

is not homogeneous but which is homogeneous with respect to continuous functions
(and hence with respect to confluent maps)?

ε-premaps

Determining whether a nondegenerate weakly chainable hereditarily indecom-
posable continuum must be chainable, and hence a pseudo-arc, is equivalent to
determining if such a continuum can be mapped onto a chainable continuum with
arbitrarily small point inverses. The pseudo-arc has a strong version of a converse
property. If f : P → X is a continuous surjection from the pseudo-arc P onto the
nondegenerate continuum X and ε > 0, there exists a homeomorphism h : P → P
such that diam(f ◦ h)−1(x) < ε for every x ∈ X , i.e., f ◦ h is an ε-map of P
onto X. For such a continuous surjection f we shall call the composition f ◦ h an
ε-premap corresponding to f. It can be shown that any nondegenerate continuum
sharing this property with the pseudo-arc P that every continuous surjection onto
a nondegenerate continuum has a corresponding ε-premap must be chainable and
indecomposable.

Question 13. Is the pseudo-arc the only nondegenerate continuum with the prop-659?

erty that for every ε > 0 every continuous surjection onto a nondegenerate con-
tinuum has a corresponding ε-premap?

Fixed points

Indecomposable continua play an important role in the study of the fixed-
point property. We expect this topic to be more thoroughly covered in a separate
article in this volume and include only the following questions. The first two are
due to  Lysko [54].

Question 14. Does there exist a continuum X with the fixed point property such660?

that X × P (P = pseudo-arc) does not have the fixed point property?

There are known examples [7] of continua with the fixed point property whose
product with the unit interval [0, 1] does not have the fixed point property. How-
ever, these do not translate to such examples for products with the pseudo-arc
and the structure of an hereditarily indecomposable continuum places restrictions
on maps of products of it with other continua. The above question is a special
case of the following. The case of the pseudo-arc, or a nondegenerate heredi-
tarily indecomposable continuum with the fixed point property, seems especially
challenging.
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Question 15. If X is a nondegenerate continuum with the fixed point property, 661?

does there always exist a nondegenerate continuum Y with the fixed point property
such that X × Y does not have the fixed point property?

A continuum X has the complete invariance property if every nonempty closed
subset of X is the complete fixed point set of some self-map of X. Martin and
Nadler [55] have shown that every two-point set is a fixed point set for some
continuous self-map of the pseudo-arc. Cornette [20] has shown that every sub-
continuum of the pseudo-arc is a retract of the pseudo-arc. Toledo [92] has shown
that every subcontinuum of the pseudo-arc is the fixed point set of a periodic
homeomorphism of the pseudo-arc. This author [42] has shown that there are
proper subsets of the pseudo-arc with nonempty interior which are the fixed point
sets of homeomorphisms.

The following question due to Martin and Nadler [55] is also of interest in the
special case of self-homeomorphisms of the pseudo-arc.

Question 16. Does the pseudo-arc have the complete invariance property? 662?

Maps of products

Bellamy and  Lysko [6] have shown that every homeomorphism of P×P , where
P is the pseudo-arc, is a composition of a product of homeomorphisms on the
individual factors with a permutation of the factors. Bellamy and Kennedy [5] have
extended this to a product of an arbitrary number of copies of the pseudo-arc. The
arguments in both cases use specific properties of the pseudo-arc. However, the
considerations motivating this investigation stem from the structure of hereditarily
indecomposable continua in general.

Question 17. If X =
∏

α∈AXα is a product of hereditarily indecomposable con- 663?

tinua, is every homeomorphism of X a composition of a product of homeomorphism
on the individual factor spaces with a permutation of the factors?

The following question about the structure of products of the pseudo-arc is
due to Bellamy.

Question 18. Does every nondegenerate subcontinuum of P n, the product of 664?

finitely many copies of the pseudo-arc, contain a pseudo-arc?

A continuum X is pseudo-contractible if there exists a continuum Y , points
a and b in Y , a point x0 ∈ X and a continuous function f : X × Y → X such
that f(x, a) = x for each x ∈ X and f(x, b) = x0 for each x ∈ X. There exist
examples of continua which are pseudo-contractible but not contractible, e.g. the
spiral around a disk. Sobolewski [91] has shown that no nondegenerate chainable
continuum other than the arc is pseudo-contractible. In particular, the pseudo-arc
and the Knaster-type indecomposable continua are not pseudo-contractible.

Question 19. Does there exist a nondegenerate (hereditarily) indecomposable con- 665?

tinuum which is pseudo-contractible?
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Concerning maps of products of pseudo-arcs,  Lysko [53] has also asked the
following question.

Question 20. Assume that P is the pseudo-arc and that r : P×P → ∆ = {(x, y) ∈666?

P × P |x = y} is a continuous retraction. Must r be of the form r(x, y) = (x, x)
for all (x, y) or r(x, y) = (y, y) for all (x, y)?

Homeomorphism groups

This author [48] has used properties of homeomorphisms of P×M, where P is
a pseudo-arc and M a continuum, to show that H(P ), the topological group of self-
homeomorphisms of the pseudo-arc, does not contain a nondegenerate continuum.
The following is a variation of questions asked by Brechner [12], Krasinkiewicz [31]
and this author [45].

Question 21. Is H(P ), the topological group of all self-homeomorphisms of the667?

pseudo-arc P , totally disconnected?

Question 22. Does C(P ), the space of all continuous functions from the pseudo-668?

arc into itself, contain any nondegenerate connected sets other than collections of
constant maps?

The above two questions are also of interest for nondegenerate hereditarily
indecomposable continua in general, not just for the pseudo-arc.

The Menger universal curve M has quite different local structure from an
hereditarily indecomposable continuum. For it, the complexity of this local struc-
ture has allowed Brechner [12] to show that H(M), the topological group of all
self-homeomorphisms of M, is totally disconnected and Oversteegen and Tym-
chatyn [67] to show that H(M) is one-dimensional.

Question 23. What is the dimension of H(P ), the topological group of all self-669?

homeomorphisms of the pseudo-arc P?

There is one aspect in which H(P ) differs from H(M). Using essential maps
onto simple closed curves in M, Brechner [12] has shown that given any two dis-
tinct self-homeomorphisms f and g of the Menger curve M there exists ε > 0 and
a separation of H(M) into sets A and B, with f ∈ A, g ∈ B, and dist(A,B) > ε,
where distance is measured by the sup metric. For the pseudo-arc P [49], given
any homeomorphism h : P → P and any ε > 0, there exist self-homeomorphisms
h1, h2, . . . , hn of the pseudo-arc such that h = hn◦· · ·◦h2◦h1 and dist(hi, idP ) < ε
for each 1 ≤ i ≤ n. No method of classifying “essential” maps or homeomorphism
has been identified which is inherent to the structure of hereditarily indecompos-
able continua, though the composant structure of such continua and their sub-
continua imposes strong constraints on continuous families of maps or homeomor-
phisms.

It would also be of interest to know more about the algebraic structure of
the topological group H(P ) of all self-homeomorphisms of the pseudo-arc. This
author [50] has shown that every inverse limit of finite solvable groups acts effec-
tively on the pseudo-arc. Thus, for every positive integer n, there exists a period
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n homeomorphism of the pseudo-arc [47]. Though the pseudo-arc is chainable,
in the construction of periodic homeomorphisms it is convenient to view it as an
inverse limit of n-ods, with the period n homeomorphisms being realized as the
restrictions of period n rotations of the plane. The pseudo-arc also admits [44]
effective p-adic Cantor group actions. The smallest group not known to act effec-
tively on the pseudo-arc is A5, the alternating group on 5 symbols, a simple group
of order 60.

Question 24. Does every compact zero-dimensional topological group act effec- 670?

tively on the pseudo-arc?

The following question is due to Brechner [13]. It is also of interest without
the assumption that the homeomorphism is periodic, or with an assumption of
nth roots for n ≥ 2.

Question 25. Does each periodic homeomorphism h of the pseudo-arc have a 671?

square root, i.e., a homeomorphism g such that g ◦ g = h?

While there are limited results on families of homeomorphisms of the pseudo-
arc, it has more often been possible to determine if there exists a homeomorphism
of the pseudo-arc with specific properties. If none of the properties involves ex-
tendability to a homeomorphism of the plane or other Euclidean space and if the
chainability of the pseudo-arc and the relations between composants of the pseudo-
arc or of its subcontinua are not inconsistent with the desired set of properties, a
homeomorphism with the desired properties can usually be shown to exist.

While many of the questions posed so far are specifically phrased in terms of
the pseudo-arc, the corresponding versions for such continua as the pseudo-circle,
pseudo-solenoids or other continua all of whose nondegenerate proper subcontinua
are pseudo-arcs are also of interest.

Q-like continua

A continuum X is Q-like for the polyhedron Q if, for each ε > 0, there exists
a continuous surjection f : X → Q such that diam(f−1(q)) < ε for each q ∈ Q. We
have been using the term chainable, which is equivalent to arc-like. It is known
that the pseudo-arc P is Q-like for every nondegenerate connected polyhedron
Q. It is also true, but not so often recognized, than any nondegenerate chainable
continuum which is either indecomposable or 2-indecomposable is Q-like for every
nondegenerate connected polyhedron Q. (A continuum is 2-indecomposable if it is
the union of two proper subcontinua each of which is indecomposable.)

Ingram [27] has constructed an atriodic simple triod-like continuum which
is not chainable (arc-like). He [28] has constructed a family of c = 2ℵ0 distinct
such continua such that the members of the family can be embedded disjointly
in the plane. It is a classic result of Moore [64] that there does not exist an
uncountable family of disjoint triods in the plane. Ingram’s family also has the
property that any continuum can be continuously mapped onto at most countably
many members of the family.
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Ingram has constructed such atriodic simple triod-like nonchainable continua
with the property that every nondegenerate proper subcontinuum is an arc, as
well as ones such that every nondegenerate proper subcontinuum is a pseudo-
arc [29, 30].

Minc [58] has constructed an atriodic simple 4-od-like continuum which is not
simple triod-like. His example also has the property that every nondegenerate
proper subcontinuum is an arc and is obtained from an inverse limit of simple
4-ods with simplicial bonding maps and the same single step bonding map each
time.

Question 26. Does there, for every n ≥ 2, exist an atriodic simple n+ 1-od-like672?

continuum which is not simple n-od-like? such an example which is planar? such
an example with the property that every nondegenerate proper subcontinuum is an
arc? a pseudo-arc?

One can place a partial order on the family of nondegenerate connected topo-
logical graphs where G1 ≤ G2 if there is a continuous surjection f : G2 → G1 with
each nondegenerate f−1(g), g ∈ G1, being a connected subgraph of G2. Under
this partial order, if G1 ≤ G2, then every G1-like continuum is G2-like. The arc
and the simple closed curve are the minimals elements in this partial order.

Question 27. If G is a nondegenerate connected topological graph, does there673?

exist an atriodic G-like continuum which is not H-like for any graph H < G?

Hyperspaces

Kelley [32] has shown that both indecomposability and hereditary indecom-
posability can be characterized in terms of the hyperspace C(X) of a nondegen-
erate continuum X. The nondegenerate continuum X is indecomposable if and
only if C(X) \ {X} is not arcwise connected. The nondegenerate continuum X is
hereditarily indecomposable if and only if C(X) is uniquely arcwise connected.

Eberhart and Nadler [21] have shown that for every nondegenerate hereditar-
ily indecomposable continuum X the hyperspace C(X) is either two-dimensional
or infinite-dimensional. This author [41] has shown that every nondegenerate
hereditarily indecomposable continuum is the open, monotone image of a one-
dimensional hereditarily indecomposable continuum. Thus, there exist one-dimensional
hereditarily indecomposable continua with infinite-dimensional hyperspaces. Levin
and Sternfeld [40] have shown that every continuum of dimension two or greater
has infinite-dimensional hyperspace and Levin [39] has shown that every two-
dimensional continuum contains a one-dimensional subcontinuum with infinite-
dimensional hyperspace.

Question 28. What is a characterization, either algebraic or topological, of the674?

one-dimensional hereditarily indecomposable continua with infinite-dimensional
hyperspaces?

The dimension-raising maps constructed by the author involve “collapsing
holes” to raise dimension. There must be many such “holes.” Rogers [75] has
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shown that if X is a one-dimensional hereditarily indecomposable continuum with
finitely generated first Čech cohomology then C(X) is two-dimensional. Tym-
chatyn [93] has shown that if X is a nondegenerate hereditarily indecomposable
plane continuum then C(X) can be embedded in R3.

Krasinkiewicz [34] has shown that if X is a nondegenerate hereditarily in-
decomposable continuum then C(X) doe not contain any subcontinuum homeo-
morphic to Y × [0, 1] for a nondegenerate continuum Y. He has asked the following
question.

Question 29. If X is an hereditarily indecomposable continuum, can C(X) ever 675?

contain the product of two nondegenerate continua?

Hereditarily indecomposable continua are characterized by their hyperspaces
of subcontinua in the sense that X and Y are homeomorphic if and only if C(X)
and C(Y ) are homeomorphic. The composant structure of an hereditarily inde-
composable continuum and of its subcontinua imposes a branching which occurs
everywhere in the hyperspace. Ball, Hagler and Sternfeld [1] have shown that,
while distinct hereditarily indecomposable continua have distinct hyperspaces of
subcontinua, there is a natural ultrametric which can be placed on the hyper-
space C(X) of an hereditarily indecomposable continuum which yields a topology
finer than that normally placed on C(X) by the Hausdorff metric and with the
property that C(X) and C(Y ) are homeomorphic and in fact isometric for any
nondegenerate hereditarily indecomposable continua X and Y.

Dimensions greater than one

Hereditarily indecomposable continua of dimension greater than one have com-
plex structure. For example, it is known from results of Mason, Walsh and Wil-
son [56] that no such continuum can be P -like for any polyhedron P, i.e., if such
a continuum is expressed as an inverse limit of polyhedra, the factor spaces in the
inverse sequence must get increasingly complex.

The following questions are due to Krasinkiewicz [35].

Question 30. Suppose X is an hereditarily indecomposable continuum such that 676?

dim(X) = n ≥ 2. Does there exist an essential map from X onto the n-dimensional
sphere Sn? (By a result of Krasinkiewicz, if dim(X) > n, then there does exist
such an essential map onto Sn.)

Question 31. If X is an hereditarily indecomposable continuum and A is a sub- 677?

continuum of X, is it true that Sh(A) ≤ Sh(X)? (Sh(A) denotes the shape of A.)

Question 32. If X is an hereditarily indecomposable continuum and A is a sub- 678?

continuum of X, is it true that A is a shape retract of X? Under what conditions
is A a(n open) retract of X?

Question 33. If X is an hereditarily indecomposable continuum with dim(X) ≥ 2 679?

does there exist a continuous surjection from X onto a non-trivial solenoid? onto
a non-trivial pseudo-solenoid?
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The pseudo-arc has a very rich collection of self-homeomorphisms. There
are other hereditarily indecomposable continua with very few homeomorphisms.
Cook [17] has constructed one-dimensional hereditarily indecomposable continua
with very few self-maps and no nonidentity self-homeomorphisms. One example
has the property that any map between subcontinua is either a constant or a
retract onto subcontinua, while another has the stronger property that any map
between subcontinua is either a constant or the identity map of a subcontinuum
onto itself.

Pol [69] has constructed, for every positive integer n, hereditarily indecompos-
able continua of arbitrary positive dimension, whose groups of self-homeomorphisms
are cyclic groups of order n. She [70] has recently constructed, for every positive
integer n, an hereditarily indecomposable one-dimensional continuum Xn with ex-
actly n continuous self-surjections each of which is a homeomorphism and such
that Xn admits an atomic map onto the pseudo-arc. (A mapping f : X → Y
between continua is atomic if, for each subcontinuum K of X such that f(K) is
nondegenerate, f−1(f(K)) = K.)

Question 34. Which finite groups are the complete homeomorphism groups of680?

hereditarily indecomposable continua? For each such group, does there exist an
hereditarily indecomposable continuum with that group as its homeomorphism group
such that every continuous self-surjection of the continuum is a homeomorphism?
such a continuum of arbitrary positive dimension?

Renska [73] has constructed for every m = 2, 3, . . . ,∞ an m-dimensional
hereditarily indecomposable Cantor manifold Ym whose only self-homeomorphism
is the identity. Pol [68] has constructed for every such m an m-dimensional heredi-
tarily indecomposable continuum whose only continuous self-surjection is the iden-
tity. For each such m she has constructed c = 2ℵ0 such continua which are pairwise
incomparable by continuous maps.

Question 35. Does there for each m = 2, 3, . . . ,∞ exist an m-dimensional hered-681?

itarily indecomposable Cantor manifold whose only continuous self-surjection is
the identity?

Non-metric continua

If x is a point of the nondegenerate continuum X, the composant Cx of X cor-
responding to the point x is the union of all proper subcontinua of X containing
the point x. If X is a nondegenerate decomposable continuum, then X always has
either exactly one composant, in the case when X is not irreducible between any
pair of points, or exactly three distinct composants, in the case when X is irre-
ducible between some pair of points, with any two of the composants intersecting.
This is the case whether X is metrizable or not.

For indecomposable continua, the case is quite different. A nondegenerate
indecomposable metric continuum always has c = 2ℵ0 distinct composants, which
form a partition of the continuum with each composant being a dense first category
set in the continuum.
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Bellamy [3] has constructed a non-metric indecomposable continuum with
exactly two composants and, by identifying a point in each composant [4], a
non-metric indecomposable continuum with only one composant. Smith [87] has
constructed a non-metric hereditarily indecomposable continuum with exactly two
composants. Bellamy’s identification to produce a single composant produces
a decomposable subcontinuum and so cannot be used to obtain an hereditarily
indecomposable continuum.

Question 36. Does there exist a non-metric hereditarily indecomposable contin- 682?

uum with only one composant?

Smith [85] has also shown that for every infinite cardinal α there is an inde-
composable continuum with exactly 2α composants.

If H = [0, 1) and H∗ is the Stone–Čech remainder H∗ = β(H) \ H, then
H∗ is an indecomposable continuum. However, in set theory determined by ZFC

alone it is not possible to determine the number of composants of H∗. There are
consistency results by Rudin, Blass, Banakh, Mildenberger and Shelah showing
that the number of composants of H∗ can be 1, 2 or 2c. Banakh and Blass [2] have
shown that the number of composants of H∗ must be either finite or 2c, but it is
not known that if the number of composants is finite it must be one or two.

Question 37. If X is an indecomposable non-metric continuum with only finitely 683?

many composants, must X have at most two composants?

Question 38. If X is an indecomposable non-metric continuum with infinitely 684?

many composants, must the number of composants of X be 2α for some infinite
cardinal α?

By considering inverse limits of pseudo-arcs indexed by ω1, Smith [89] has
constructed a non-metric hereditarily indecomposable homogeneous hereditarily
equivalent continuum. Thus this continuum shares many of the properties of
the metric pseudo-arc. He has also constructed an inverse limit of pseudo-arcs
indexed by ω1 which is a non-metric hereditarily indecomposable continuum which
is neither homogeneous nor hereditarily equivalent. The first example has c = 2ℵ0

composants, while the second example has only two composants.
The following questions are due to Smith.

Question 39. Are there non-metric indecomposable hereditarily equivalent con- 685?

tinua other than the inverse limit of ω1 pseudo-arcs constructed by Smith?

Question 40. Are there non-metric homogeneous chainable continua other than 686?

the inverse limit of ω1 pseudo-arcs constructed by Smith? In particular, is there
an inverse limit on a large set of chainable continua which is homogeneous?

Question 41. How many topologically distinct continua obtainable as inverse 687?

limits of pseudo-arcs indexed by ω1 are there?

Bing [9] has shown that every metric continuum of dimension greater than
one contains an hereditarily indecomposable continuum. Smith [88, 90, 84] has
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a number of results and examples for products of non-metric continua and for
non-metric continua of various dimensions showing that the analogous situation
is not true, or that there may exist indecomposable continua but not hereditarily
indecomposable continua. This is an area deserving much further investigation.

Conclusion

Kuratowski [37] wrote in 1973 about the theory of indecomposable continua:

“It is one of the most developed and, to my mind, most beauti-
ful branches of topology. It has attracted the attention of such
distinguished mathematicians as P.S. Alexandrov, RH Bing,
D. van Dantzig, G.W. Henderson, S. Mazurkiewicz, E.E. Moise,
R.L. Moore, and, among the younger generation, C. Hagopian,
J. Krasinkiewicz, Rogers and many others.

“This is not surprising: by means of indecomposable con-
tinua one has succeeded in solving many earlier problems and
in opening up new, extraordinarily rich topics.

“In particular, great interest has been aroused (and this
is even more noteworthy) by hereditarily indecomposable con-
tinua, i.e. those whose every subcontinuum is indecomposable
(B. Knaster gave the first example of an hereditarily indecom-
posable continuum in 1922 in “Fund. Math.” 3).”

Except that individuals are not as young as they once were, this is just as true
more than 30 years later as it was when Kuratowski wrote it and indecomposable
continua continue to richly reward anyone willing to investigate them.
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Open problems on dendroids

Veronica Mart́ınez-de-la-Vega and Jorge M. Mart́ınez-Montejano

Dedicated to the memory of our friend, colleague and teacher, Professor Janusz
J. Charatonik.

1. Introduction

A continuum is a compact, connected, metric space. A dendroid is an arcwise
connected and hereditarily unicoherent continuum. A dendrite is defined as a
locally connected dendroid. Dendroids were defined by B. Knaster in the Topology
Seminar in Wroc law in the late fifties. One of the most assiduous participants of
this Seminar was Prof. J.J. Charatonik, who wrote his Doctoral Dissertation and
over fifty papers on dendroids. Many of his doctoral students, such as S.T. Cszuba,
T. Maćkowiak, P. Krupski and J. Prajs, also have done many contributions to
this field. Even though dendroids are one-dimensional and most of them can be
geometrically realized, there are many properties and intrinsic characterizations
of them which are still unknown. The purpose of this paper is to give a survey of
some results and open problems in this interesting area of Continuum Theory.

2. The problem

We begin with a problem that many authors consider as one of the most
importance in the study of dendroids. Before posing the problem it is interesting
to note that in the early sixties, B. Knaster saw dendroids as those continua that
for which for every ε > 0 there exists a tree T and an ε-retraction r : X → T
(an ε-retraction is a retraction such that diam(r−1(t)) < ε for every t ∈ T ). The
contemporary definition of dendroids (the one given above) was formulated in a
more convenient way.

Problem 1. Let X be a dendroid and ε > 0. Are there a subtree T of X and an 688?

ε-retraction from X onto T?

Let us note that Fugate in [25] and [26] has some partial positive answers to
this problem and that a positive answer to it would give an affirmative answer to
a variety of other problems about dendroids (see, e.g., Problem 27).

3. Mappings on Dendrites

Characterize dendrites among dendroids is one of the eldest problems in the
study of dendroids, over 60 characterizations of dendrites can be found in [10].
Also in [10] a survey of some open problems is made.

Problem 2 (Problem 2.14, [10]). Characterize all dendrites X having the property 689?

that every open image of X is homeomorphic to X.

Problem 3 (Question 3.6, [10]). Does every monotonely homogeneous dendrite 690?

(Definition 3.8) contains a homeomorphic copy of the dendrite L0? ((2.19), [10])

321
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A topological space X is said to be chaotic (strongly chaotic) if for any two
distinct points p and q of X there exists open neighborhoods U of p and V of q
such that no open subset of U is homeomorphic to any open subset (subset) of V
and rigid (strongly rigid) if the only homeomorphism of X onto (into) X ; is the
identity map.

Problem 4 (Problem 4.5, [10]). Give any structural characterization of (strongly)691–692?

chaotic and of (strongly) rigid dendrites.

Consider the following conditions (ω0) and (ω).

(ω0) For every compact space Y , for every light open mapping f : Y → f(Y )
with X ⊂ f(Y ) and for every point y0 ∈ f−1(X) ⊂ Y there exists a
homeomorphic copy X ′ of X in Y with y0 ∈ X ′ such that the restriction
f | X ′ : X ′ → f(X ′) = X is a homeomorphism.

(ω) For every compact space Y, for every light open mapping f : Y → f(Y )
with X ⊂ f(Y ) there exists a homeomorphic copy X ′ of X in Y such
that the restriction f | X ′ : X ′ → f(X ′) = X is a homeomorphism.

Now consider conditions (ω0(M)) and (ω0(M)) regarding a continuum X and
a class M of light mappings. Which can be defined replacing the phrase “light
open mapping f : Y → f(Y )” by “light mapping f : Y → f(Y ) in M.”

Note that if O stands for the class of open mappings, then (ω0(O)) and (ω(O))
coincide with conditions (ω0) and (ω).

One can also consider conditions (γ0) and (γ) obtained from (ω0) and (ω),
respectively, by replacing the phrase “every compact space Y ” with “every con-
tinuum Y ”, and define condition (δ) X is a dendrite.

In (Statement 1, [18]) it is shown why conditions (δ), (ω0), (ω), (γ0) and (γ)
are equivalent. So the following problem is posed.

Problem 5 (Problem 2, [18]). Does the equivalence in Statement 1 remain true if693?

we replace openness of the light mapping f by a less restrictive condition? In other
words, for what (larger) classesM of light mappings are conditions (δ), (ω0), (ω),
(γ0) and (γ) equivalent?

Also by (Observation 4, [18]) if the class M contains the class O of open
mappings, and if, for a continuum X , implication (δ) ⇒ (ω0(M)) holds, then all
the conditions (δ), (ω0), (ω), (ω0(M)) and (ω(M)) are equivalent. Thus Problem 5
reduces to:

Problem 6 (Problem 5, [18]). For what classes M of mappings containing the694?

class O does each dendrite X satisfy condition (ω0(M)) (i.e., the implication
(δ)⇒ (ω0(M)) holds)?

In [7] the following result of K. Omiljanowski is proved.

Theorem 3.1. Let a dendrite Y be such that all ramification points of Y are of
order 3 and the set R(Y ) of all ramification points of Y is discrete. If a den-
drite X can be mapped onto Y under a monotone mapping, then X contains a
homeomorphic copy of Y .
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In [2] J.J. Charatonik proved the following theorem.

Theorem 3.2. Let D be a dendrite. For every compact space X and for every light
open surjective mapping f : X → Y with D ⊂ Y there is a homeomorphic copy D′

of D in X such that the restriction f | D′ : D′ → f(D′) is a homeomorphism.

The inverse implication of Theorem 3.2 was proved in (Corollary 10, [11] and
Theorem 16, [18]). It is interesting to ask if Theorem 3.1 can be reversed. So the
natural problem is.

Problem 7 (Problem 1.3, [2]). Characterize all dendrites Y having the property 695?

that if a dendrite X can be mapped onto Y under a monotone mapping, then X
contains a homeomorphic copy of Y .

Using the notation and all the classes of mappings defined in [2], the following
Corollary is proved.

Corollary 3.3 (Corollary 3.2, [2]). Let a continuum Y satisfy the conditions of
Theorem 3.1. If a dendrite X can be mapped onto Y under a mapping that belongs
to one of the classes of mappings OM, C, LocC, QM, WM; then X contains a
homeomorphic copy of Y .

Problem 8 (Question 3.3, [2]). Let a continuum Y satisfy conditions of The- 696?

orem 3.1 and X a dendrite that can be mapped onto Y under a semi-confluent
mapping. Must then X contain a homeomorphic copy of Y ?

Notice that Theorem 3.1 cannot be extended to continuaX that contain simple
closed curves, not even if X is locally connected or X is a linear graph; (Ch. X,
§3, Ex., p. 189, [53]). Using all the above ideas one of the natural questions is:

Problem 9 (Question 3.7, [2]). Let a continuum Y satisfy conditions of Theo- 697?

rem 3.1 and let a continuum X be such that if X can be mapped onto Y under a
monotone mapping, then X contains a homeomorphic copy of Y . Must then X be
a dendrite? If not under what additional assumptions does the implication hold?

Another important and interesting question related to Theorem 3.1 is if the
implication in the result can be reversed. A partial answer is given.

Theorem 3.4 (Theorem 4.1, [2]). Let a dendrite Y have the property that for
each dendrite X if X can be mapped onto Y under a monotone mapping, then X
contains a homeomorphic copy of Y . Then either Y is an arc or all the ramification
points of Y are of order 3.

And so the following question arises.

Problem 10 (Question 4.2, [2]). Let a dendrite Y have the same property as in 698?

Theorem 3.4. Must then Y either be an arc or have the set R(Y ) of ramification
points discrete?

Given a space X and a map f : X → X . A point x of X is said to be fixed if
f(x) = x, periodic (of period n) provided that there is n ∈ N such that fn(x) = x
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(and fk(x) 6= x for k < n), recurrent , provided that for each open set U containing
x there is n ∈ N such that fn(x) ∈ U , eventually periodic of period n provided
that there exists m ∈ N ∪ {0} such that fm(x) is a periodic point of f of period
n, eventually periodic provided that there is n ∈ N such that x is an eventually
periodic point of period n ∈ N for f and a non-wandering point of f provided that
for any open set U containing x there exists y ∈ U and n ∈ N such that fn(y) ∈ U .
For a mapping f : X → X the sets of fixed, periodic, recurrent, eventually periodic
and non-wandering points of f will be denoted by F (f), P (f), R(f), EP (f) and
Ω(f), respectively.

Also a space X is said to have the periodic-recurrent property (PR-property)
provided that for every mapping f : X → X the equality cl(P (f)) = cl(R(f))
holds, the non-wandering-periodic property (ΩP -property) provided that for ev-
ery mapping f : X → X the equality Ω(f) = P (f) holds and the non-wandering-
eventually periodic property (ΩEP -property) provided that for every mapping
f : X → X the inclusion Ω(f) ⊂ clX (EP (f)) is satisfied.

In (Proposition 2.11, [16]) is proved that a dendrite X has the PR-property if
and only if X does not contain any copy of the Gehman dendrite; and it is posed
the following problem

Problem 11 (Problem 2.14, [16]). Give an internal (i.e., structural) characteri-699?

zation of dendrites with ΩP -property.

In (Corollary 3.6, [16]) it is proved that if X is a tree and f a mapping
f : X → X such that Ω(f) is finite, then card(P (f)) = card(Ω(f)). It is not
known if the assumption of the finiteness of the set Ω(f) is or is not essential. So,
the following question is posed.

Problem 12 (Question 3.7, [16]). Do there exist a tree X and a mapping f : X →700?

X such that Ω(f) is infinite while P (f) is finite?

In (Theorem 4.6, [16]) it is proved that if X is a dendrite such that for each
mapping f : X → X the equality card(P (f)) = card(Ω(f)) holds, then X is a tree.
So, it is asked if the converse is true.

Problem 13 (Question 4.7, [16]). Is it true that for each tree X the assertion701?

that for each mapping f : X → X the equality card(P (f)) = card(Ω(f)) holds?

Given a dendroid X , we define E(X) as the set of endpoints, O(X) the set
of ordinary points and R(X) the set of ramification points of X . In (Proposi-
tion 4.7, [7]) J.J. Charatonik proved the following.

Proposition 3.5. Let x and y be any two points of the standard universal dendrite
X = Dm for m ∈ {3, 4, . . . , ω}. Then there is a homeomorphism h : X → X
such that h(x) = y if and only if one of the following conditions is satisfied:
x, y ∈ E(X); x, y ∈ O(X); x, y ∈ R(X).

To this respect the following problem remains unsolved.

Problem 14 (Question 4.9, [7]). What dendrites X have the property that for702?

each two points x and y of X there exists a homeomorphism h : X → X with
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h(x) = y if and only if both these points are either end points, or ordinary points
or ramification points of X?

It is known that.

Theorem 3.6 (Corollary 5.5, [7]). Let Dm be the standard universal dendrite of
order m ∈ {3, 4, . . . , ω}. Then each monotone surjection of Dm onto itself is a
near homeomorphism if and only if m = 3.

A map f : X → Y is a near homeomorphism provided that for ε > 0 there
exists a homeomorphism h : X → Y such that sup{d(f(x), h(x) : x ∈ X} < ε.
The following problem is still open.

Problem 15 (Problem 5.1, [7]). What dendrites X have the property that each 703?

monotone mapping of X onto itself is a near homeomorphism?

LetM be a class of mappings. Two continuaX and Y are said to be equivalent
with respect toM if there are a mapping inM from X onto Y and a mapping inM
from Y onto X . A classM of mappings is said to be neat if all homeomorphisms
are inM and the composition of any two mappings inM is also inM. Therefore,
if a neat class M of mappings is given, then a family of continua is decomposed
into disjoint equivalence classes in the sense that two continua belong to the same
class provided that they are equivalent with respect to M. A continuum is said
to be isolated with respect to M provided the above mentioned class to which X
belongs consists of X only.

In (Theorem 6.7 and Theorem 6.14, [7]) it is shown that universal dendrites are
not isolated with respect to monotone mappings. The following problem remain
open.

Problem 16 (Problem 6.1, [7]). Find all dendrites which are isolated with respect 704?

to monotone mappings.

About the previous problem the authors have the following conjecture.

Conjecture 3.7. A dendrite X is isolated with respect to monotone mappings if 705?

and only if |R(X)| <∞.

Definition 3.8. Let M be a class of mappings. A continuum X is homogeneous
with respect to M provided that for every two points p and q of X there is a
surjective mapping f : X → X such that f(p) = q and f ∈ M.

In (Theorem 7.1, [7]) it is proved that any standard universal dendrite Dm

of order m ∈ {3, 4, . . . , ω} is homogeneous with respect to monotone mappings.
After this it is observed that each m-od is an example of a dendrite which is not
homogeneous with respect to confluent, and therefore to monotone, mappings.
Then the following problem is posed.

Problem 17 (Question 7.2, [7]). What dendrites are homogeneous with respect 706?

to monotone mappings?
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4. Maps onto dendroids

In (Theorem 2, [31]), J. Heath and V. Nall proved the following.

Theorem 4.1. There does not exist a (exactly) 2-to-1 map from a hereditarily
decomposable continuum onto a dendroid.

They asked the following.

Problem 18 (p. 288, [31]). Is there an indecomposable continuum I that admits707?

a map onto a dendroid X such that the inverse of each point in the range contains
at most two points?

A negative answer of Problem 18 would have strengthened Theorem 4.1.
P. Minc has shown that this is the case in some special situations and he says
that it would be interesting to partially answer Problem 18 for the case of chain-
able continua. He proved the next two theorems.

Theorem 4.2 (Corollary 3.12, [43]). Let f be a map of an indecomposable con-
tinuum Y into a plane dendroid P . Then there is a point p ∈ P such that f−1(p)
is uncountable.

Theorem 4.3 (Corollary 3.9 and Remark 3.10, [43]). Let K be either any Knaster
type continuum or any solenoid. Suppose that f is a map of K onto an arbitrary
dendroid X. Then there is a point x ∈ X such that f−1(x) consists of at least
three points.

Also, P. Minc pointed out the following: Theorem 4.3 shows that some inde-
composable continua do not admit 2-or-1-to-1 maps on dendroids. On the other
hand, it is easy to construct such maps from many standard examples of chainable
hereditarily decomposable continua. So he posed the next problem.

Problem 19 (p. 289, [44]). Is it true that a chainable continuum is hereditarily708?

decomposable if and only if it admits a 2-or-1-to-1 map onto a dendroid?

Let us note that in (Theorem 1.1, [44]) he proved that every chainable contin-
uum can be mapped into a dendroid in such a way that all point-inverses consist
of at most three points

5. Contractibility

The symbols Lsup, Linf and Lt mean the upper limit, the lower limit and
the topological limit. A dendroid X is said to be: (a) smooth, (b) semi-smooth,
(c) weakly smooth, if there exists a point p ∈ X such that for every a ∈ X and
each convergent sequence {an}n∈N ⊂ X , with an → a we have: (a) Lt pan = pa,
(b) Lsup pan is an arc, (c) Linf pan = pb for some b ∈ X . A dendroid X is said to
be pointwise smooth if for each x ∈ X there exists a point p(x) ∈ X such that for
each convergent sequence xn convergent to a point a, the sequence of arcs p(x)an

is convergent and Lt pan = pa. The next theorem is well known.

Theorem 5.1 (Theorem, [5] and [6]). Every contractible one-dimensional con-
tinuum is a dendroid.
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It is known that the inverse implication is not true.
The main problem related to contractibility of dendroids is the following.

Problem 20 (p. 28, [8]). Find a structural characterization of contractible den- 709?

droids.

Given a dendroid X , a mapping H : X × [0, 1] → X such that H(x, 0) = x
for each point x ∈ X is called a deformation. A non-empty proper subset A of a
dendroid X is said to be homotopically fixed provided that for every deformation
H : X × [0, 1] → X we have that H(A × [0, 1]) = A. A non-empty subset A of a
dendroid X is said to be homotopically steady provided that for every deformation
H : X × [0, 1]→ X we have that A ⊂ H(X ×{1}). Denote by D(X) the family of
all deformations on X . Define, K(X), the kernel of steadiness of X by K(X) =⋂{H(X × {1}) : H ∈ D(X)}.

A non-empty proper subcontinuumA of a dendroidX is called anRi-continuum
(where i ∈ {1, 2, 3}) if there exist an open set U containing A and two sequences
{C1

n : n ∈ N} and {C2
n : n ∈ N} of components in U such that

A =





Lsup C
1
n ∩ Lsup C

2
n for i = 1,

LtC1
n ∩ LtC2

n for i = 2,

Linf C
1
n for i = 3.

It is well known that if a dendroid X contains a homotopically fixed subset,
then X is not contractible (Proposition 1, [14]) and that each Ri-continuum of
a dendroid X (where i ∈ {1, 2, 3}) is a homotopically fixed subset of X (Theo-
rem 3, [20]).

J.J. Charatonik and A. Illanes proved (Theorem 4.3, [15]) that each con-
tractible space has empty kernel of steadiness and asked.

Problem 21 (Question 4.5, [15]). Does every non-contractible dendroid have 710?

non-empty kernel of steadiness?

Also, it is shown that (Example 4.7, [15]) there is a plane dendroid X and a
subcontinuum A of X such that A is an Ri-continuum in X for each i = 1, 2, 3,
so it is homotopically fixed, while not homotopically steady. So the following
questions arise.

Problem 22 (Questions 4.9, [15]). (a) Does the existence of a homotopically fixed 711–712?

subset in a dendroid imply the existence of a homotopically steady subset? (b) What
are the interrelations between Ri-continua and homotopically steady subsets of
dendroids? More precisely, let an Ri-continuum A (for some i ∈ {1, 2, 3}) be
contained in a dendroid X. Must A contain a non-empty homotopically steady
subset of X?

The following question (asked by W.J. Charatonik) is related to Problem 21.

Problem 23 (Question 4.19, [15]). Given a dendroid X with a non-degenerate 713?

kernel K(X) of steadiness, is the dendroid X/K(X) always contractible?
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A point p of a dendroid X is called a Q-point of X provided that there exists
a sequence of points pn of X converging to p such that Lsup ppn 6= {p} and if for
each n ∈ N the arc pnqn is irreducible between pn and the continuum Lsup ppn,
then the sequence of points qn converges also to p. The following problem is open.

Problem 24 (p. 30, [8]). Is it true that if a dendroid has a Q-point, then it is714?

non-contractible?

By (Corollary 3.10, [22]), it is known that if a dendroid is hereditarily con-
tractible, then it is pointwise smooth. So, the following questions arise naturally.

Problem 25 (Question 3.11, [22]). Does pointwise smoothness of dendroids imply715?

their hereditary contractibility?

Problem 26 (Question 13, [14]). Find an intrinsic characterization of hereditar-716?

ily contractible dendroids.

6. Hyperspaces

Given a continuum X , the hyperspace 2X of X is defined by 2X = {A ⊂ X :
A is non-empty and closed}. We consider 2X with the Hausdorff metric H . Other
hyperspaces considered here are C(X) = {A ∈ 2X : A is connected}, and, for each
n ∈ N, Fn(X) = {A ∈ 2X : A has at most n elements}.

In (Theorem 6.18, [47]), S.B. Nadler, Jr. proved that C(X), 2X and Fn(X)
have the fixed point property when X is either a smooth dendroid or a fan. Right
below the proof, S.B.‘Nadler, Jr. asks the following.

Problem 27. Do C(X), 2X and Fn(X) have the fixed point property when X is717–719?

a dendroid?

We note that a positive answer would follow from an affirmative answer to
Problem 1.

7. Property of Kelley

A continuumX is said to have the property of Kelley at a point x ∈ X provided
that for each sequence of points xn converging to x and for each continuum K in
X containing the point x there is a sequence of continua Kn in X with xn ∈ Kn

for each n ∈ N and converging to K. A continuum X is said to have the property
of Kelley if it has the property at each point x ∈ X .

Given a dendroid X , and x ∈ X , we define the Jones function T (x) = {y ∈
X : if there exists A ∈ C(X) such that y ∈

∫
X

(A) then x ∈ A}.
A λ-dendroid is a hereditarily unicoherent and hereditarily decomposable con-

tinuum.
S.T. Czuba proved the following implications.
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Theorem 7.1 (Lemma 2 and Corollary 5, [24]). Let X be a dendroid. Then:

X has the property of Kelley =⇒ ∀x, y ∈ X if xy ∩ T (x) 6= {x}, then y ∈ T (x)

=⇒ X is smooth

=⇒ X is locally connected at some point.

In Theorem 7.1, the assumption that X is a dendroid is essential: a λ-dendroid
obtained as a compactification of the Cantor fan minus its vertex such that the
remainder is an arc has the property of Kelley and is non-smooth (it is not locally
connected at any point). Concerning to this J.J. Charatonik asked the following.

Problem 28 (Question 5.20, [8]). For what continua X does the property of 720?

Kelley imply local connectedness of X at some point?

Fans having the property of Kelley have been characterized in [9] and [3]. But
there are not known characterizations of dendroids having the property of Kelley.
So we have the following.

Problem 29. Characterize dendroids having the property of Kelley. 721?

8. Retractions

In (Theorem 3.1 and Theorem 3.3, [12]), J.J. Charatonik et al proved the
following.

Theorem 8.1. Let X be a one-dimensional continuum. If there is a retraction
from C(X) (2X) onto X, then X is a uniformly arcwise connected dendroid.

And, in (Theorem 2.9, [27]), J.T. Goodykoontz, Jr. showed the following.

Theorem 8.2. Every smooth fan X is a deformation retract of 2X .

Also, there are known examples of a non-smooth fan X such that there is
no retraction from 2X onto X (Example 3.7, [1]) and of a non-planable smooth
dendroid for which there is no retraction from 2X onto X (Example 5.52, [12]).
So, in [12], J.J. Charatonik et al asked the following.

Problem 30. For what smooth dendroids X does there exist a deformation re- 722?

traction from 2X onto X?

Let X be a continuum. A retraction r : 2X → X is said to be associative
provided that r(A ∪B) = r({r(A)} ∪B) for every A,B ∈ 2X .

Let X be a hereditarily unicoherent continuum. A retraction r : 2X → X
is said to be internal provided that r(A) ∈ I(A) for each A ∈ 2X , where I(A)
denotes the continuum irreducible with respect to containing A.

It is known (Theorem 3.21, [12]) that the Mohler–Nikiel universal smooth
dendroid admits an associative retraction and, as we mentioned above, that there
is a smooth dendroid which admits no retraction from 2X ontoX . So, the following
problem arises.
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Problem 31 (Problem 5.57, [12]). Characterize smooth dendroids X admitting723?

a retraction from 2X onto X.

Also, since the Mohler–Nikiel universal smooth dendroid have the property of
Kelley, the following problem arises.

Problem 32 (Problem 3.23, [12]). Let X be a dendroid with the property of724?

Kelley. Does there exist a retraction r : 2X → X?

9. Means

Given a Hausdorff space X , a mean µ on X is defined as a map µ : X×X → X
such that for each x, y ∈ X we have that µ(x, x) = x and µ(x, y) = µ(y, x).

The natural question that comes with the definition is: which spaces, espe-
cially metric continua admit a mean? This question has been around for more
than half of a century and has been answered for a very small class of spaces. So,
the main problem about means is the following.

Problem 33 (Problem 5.28 and Problem 5.50, [12]). Characterize metric con-725–726?

tinua (in particular dendroids) that admit a mean.

For a continuum X the existence of a mean µ : X ×X → X is equivalent to
the existence of a retraction r : F2(X) → X , where the two concepts are related
to each other by the equality µ(x, y) = r({x, y}). In this respect, the existence of
a retraction r : 2X → X implies the existence of a mean but it is not known if the
inverse implication is true. So we have the following problem.

Problem 34 (Question 5.44, [12]). Does there exist a dendroid X which admits727?

a mean and for which there is no retraction from 2X onto X?

Related to the previous problem and Theorem 8.1, we have the next problems.

Problem 35 (Question 5.48, [12]). Let X be a dendroid admitting a mean. Must728?

X be uniformly arcwise connected?

Problem 36 (Question 5.49, [12], compare to Problem 32). Let X be a dendroid729?

with the property of Kelley. Does there exist a mean µ : X ×X → X?

A mean µ : X×X → X is said to be associative provided that µ(x, µ(y, z)) =
µ(µ(x, y), z) for every x, y, z ∈ X .

It is known that

Theorem 9.1 (Theorem 5.31, [12]). Let X be a locally connected continuum.
Then the following conditions are equivalent:

(1) X is an absolute retract;
(2) there is a retraction r : 2X → X.

Moreover, if X is one-dimensional, then each of them is equivalent to any of
the following:

(3) X is a dendrite;
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(4) there exists an associative retraction r : 2X → X ;
(5) there exists an associative mean µ : X ×X → X ;
(6) there exists a mean µ : X ×X → X .

About Theorem 9.1, J. J. Charatonik et al asked the following.

Problem 37 (Question 5.38, [12]). Assume that X is locally connected. Does 730–731?

(6) imply (5)? Does (5) imply (1)?

It is known that there is a smooth dendroid admitting no mean (Exam-
ple 5.52, [12]) and that the Mohler–Nikiel universal smooth dendroid admits an
associative mean (Theorem 3.21 and Proposition 5.16, [12]). So the following
problem arises.

Problem 38 (Problem 5.56, [12]). Characterize smooth dendroids admitting a mean.732?

A mean µ on a dendroid X is said to be internal if for each x, y ∈ X , µ(x, y) ∈
xy. M. Bell and S. Watson give an example of a contractible and selectible fan
which admits a mean while it does not admit neither an associative mean nor an
internal mean (Example 4.8, [1]). So they asked the following.

Problem 39 (Problem 4.3, [1]). Does a selectible dendroid have a mean? Does 733–734?

a contractible dendroid have a mean?

10. Selections

A continuous selection for a family H ⊂ 2X is a map s : H → X such that
s(A) ∈ A for each A ∈ H. A continuum X is said to be selectible provided that it
admits a continuous selection for C(X).

In [48], S.B. Nadler, Jr. and L.E. Ward, Jr. proved the following.

Theorem 10.1.

(1) Every selectible continuum is a dendroid;
(2) A locally connected continuum is selectible if and only if it is a dendrite;
(3) Each selectible dendroid is a continuous image of the Cantor fan, hence

it is uniformly arcwise connected.

A selection s : H → X , where H ⊂ 2X , is said to be rigid provided that if
A,B ∈ H and s(B) ∈ A ⊂ B, then s(A) = s(B).

In [52], L.E. Ward, Jr. showed the following.

Theorem 10.2. A continuum X is a smooth dendroid if and only if there exists
a rigid selection for C(X).

On the other hand, there is an uniformly arcwise connected dendroid which is
not selectible and there is a non-smooth dendroid admitting non-rigid selections
for its hyperspace of subcontinua (Figure 17 and Figure 18 (respectively), [8]).

In [46], S.B. Nadler, Jr. posed the following problem (which is still open).

Problem 40. Give an internal characterization of selectible dendroids (of se- 735–736?

lectible fans).
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In [40], T. Maćkowiak gave an example of a contractible and non-selectible
dendroid, J.J. Charatonik asked for an example with these and additional prop-
erties.

Problem 41 (Question 8.7, [8]). Is there a contractible and non-selectible den-737–739?

droid which is (a) planable, (b) hereditarily contractible, (c) a fan?

An open selection is a selection that also is an open map. In [41], it is shown
that a smooth fan X admits an open selection if and only if X is locally connected.
Regarding this topic, the following problems are still unsolved.

Problem 42 (Problem 1, [41]). If X is a finite tree, then does X admit an open740?

selection?

Problem 43 (Problem 2, [41]). Can a non-locally connected dendroid admit an741?

open selection?

Let D be a dendrite and Σ(D) the space of selections of D. Trying to give
new tools to solve Problem 40, J.E. McParland proved that for each dendrite D,
the space Σ(D) (a) is not compact (Theorem 3.9, [42]), (b) is nowhere dense in
DC(D) (Theorem 3.10, [42]), (c) is not dense in DC(D) (Theorem 3.11, [42]) and
(d) is not an arc (Theorem 4.3, [42]). For us it is natural to present the following
problem.

Problem 44. Give a wider variety of properties with which Σ(D) is endowed. In742?

particular, is Σ(D) homeomorphic to l2?

11. Smooth Dendroids

S.T. Czuba showed some relations among the different types of smoothness
(see definitions of Section 5) and proved:

Theorem 11.1 (Theorem 1, [51]). A fan is pointwise smooth if and only if it is
smooth.

Theorem 11.2 (Theorem 4.6, [22]). If a dendroid is pointwise smooth and weakly
smooth, then it is also semi-smooth.

Corollary 11.3 (Corollary 4.9, [22]). If a dendroid X is pointwise smooth and
semi-smooth, then it is also weakly smooth.

Consider the following definitions.
Let T be a property and A a class of continua then:

• T is finite (countable) in the class A if there is a finite (countable) set
F ⊂ A such that a member X of A has property T if and only if X
contains a homeomorphic copy of some member of F ;

• a class A has a common model M under continuous mapping if there is
a continuum M belonging to A with the property that every member of
A is a continuous image of M ;
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• a class A has a universal element U , if there is a a continuum U belong-
ing to A with property that every member A can be homeomorphically
embedded into U .

Now consider the following classes of continua: (a) dendroids, (b) fans, (c) smooth
dendroids, (d) smooth fans, (e) semi-smooth dendroids, (f) semi-smooth fans,
(g) weakly smooth dendroids, (h) weakly smooth fans, (i) pointwise smooth den-
droids, (j) uniformly arcwise connected dendroids, (k) uniformly arcwise connected
fans.

Some of the questions which remain unanswered are.

Problem 45. Does there exist a common model for the classes (a), (b), (e) 743?

and (f)?

In (Theorem 11, [13]) and ([35]) it is shown that classes (c), (d), (j), (k) have
a common model.

Problem 46. Does there exist a universal element for the classes (b), (e), (f), 744?

(g), (h), (i), (j) and (k)?

A universal element is known for classes (c) ([29] and [45]) and (d) (Theo-
rem 10, [13]). Class (a) does not have a universal element (see [34]).

12. Planability

Considering planability of dendroids, in 1959, B. Knaster posed the following
question, which is still unsolved.

Problem 47. Characterize dendroids that can be embedded in the plane. 745?

In [38] T. Maćkowiak showed that there is no universal element in the class
of plane smooth dendroids and in [30] L. Habiniak proved that there is no plane
dendroid containing all plane smooth dendroids. Using the same definitions of
Section 11 the following is still an open problem.

Problem 48 (p. 307, [13]). Is the property of non-embeddability in the plane finite 746?

in the classes (e), (f), (g), (h), (i)?

It is known that the property of non-embeddability in the plane is not finite
for classes (a), (c) and (j) (see [37]) and for classes (b), (d) (see [17]).

Now, we move to different concepts. Lelek proved.

Theorem 12.1 (Theorem p. 307, [36]). If the set E(X) of all end points of a
dendroid X is not a Gδσδ-set then X is non-planable.

However, the following problem is still open.

Problem 49 (Problem 1. [19]). Does there exist a dendroid X such that the set 747?

E(X) is not a Gδσδ-set?

Also, T. Maćkowiak asked:



334 35. OPEN PROBLEMS ON DENDROIDS

Problem 50 ([38]). Is planability of dendroids (fans) an invariant property with748–749?

respect to open mappings?

A negative answer of Problem 50 for finite graphs is known in (p. 189, [53]).
Also considering continuous images of dendroids J.J. Charatonik proved in [4]
that a monotone image of a planable λ-dendroid (dendroid, fan) is a planable
λ-dendroid (dendroid, fan).

13. Shore sets

A subset A of a dendroid X is said to be a shore set provided that for each
ε > 0, there exists a subcontinuum B of X such that B∩A = ∅ and H(B,X) < ε.

Answering a question of I. Puga-Espinosa, A. Illanes proved in [32] the fol-
lowing.

Theorem 13.1. If X is a dendroid and A1, A2, . . . , Am are pairwise disjoint shore
subcontinua of X, then A1 ∪ A2 ∪ · · · ∪ Am is a shore set.

He also gave an example (Example 5, [32]) which shows that it is necessary
to require pairwise disjointness in the previous theorem. The following natural
problem is still open.

Problem 51 (Question 6, [32]). Is the union of two disjoint closed shore subsets750?

of a dendroid X also a shore set?
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[37] T. Maćkowiak, A certain collection of non-planar fans, Bull. Acad. Polon. Sci. Sér. Sci.

Mat. Astronom. Phys. 25 (1977), no. 6, 543–548.
[38] T. Mackowiak, Planable and smooth dendroids, General topology and its relations to modern

analysis and algebra, IV (Proc. Fourth Prague Topological Sympos., Prague, 1976), Part B,
Soc. Czechoslovak Mathematicians and Physicists, Prague, 1977, pp. 260–267.



336 35. OPEN PROBLEMS ON DENDROIDS
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1
2-homogeneous continua

Sam B. Nadler, Jr.

1. Introduction

A space is homogeneous provided that for any two of its points, there is a
homeomorphism of the space onto itself taking one of the points to the other
point. Intuitively, spaces that are homogeneous look the same everywhere.

Homogeneity is a classical topic in continuum theory. For information about
homogeneous continua, I refer the reader to the article by Janusz Prajs in this
book. We will discuss 1

2 -homogeneity, a notion that is closely related to homo-
geneity.

We give the formal definition of 1
2 -homogeneity in a moment. First, we note

a visible property of the closed unit n-dimensional ball Bn in Euclidean n-space:
For any two points in the sphere Sn−1 (= ∂Bn) or in Bn \ Sn−1, there is a
homeomorphism of Bn onto Bn taking one of the points to the other, but there is
no homeomorphism of Bn onto Bn taking a point of Sn−1 to a point of Bn \Sn−1

(a formal proof of the last fact uses Invariance of Domain [6, p. 95, VI9]. The
abstract formulation of this property of Bn is the definition of 1

2 -homogeneity,
which we give next.

Let H(X) denote the group of homeomorphisms of a space X onto itself. An
orbit of X is the action of H(X) at a point x of X , meaning {h(x) : h ∈ H(X)}
for a given point x ∈ X . We say X is 1

2 -homogeneous provided that X has exactly

two orbits. More generally, for a positive integer n, X is said to be 1
n -homogeneous

provided that X has exactly n orbits. Thus, the 1-homogeneous spaces are the
homogeneous spaces.

We give some simple examples of 1
2 -homogeneous continua: A figure eight (the

join of two simple closed curves at a point); a θ-curve; the Hawaiian earring (a
null sequence of simple closed curves joined at a point); the Sierpiński universal
curve [10]; the compactification of R1 with two disjoint circles as remainder for
which the ray [0,∞) continually winds in a clockwise (or counterclockwise) di-
rection as it approaches one circle and the other ray (−∞, 0] does the same as it
approaches the other circle.

Regarding the last example, we note that if the rays approach the circles
changing direction after each complete revolution (only), then the compactifica-
tion is 1

3 -homogeneous. We note another situation in which two related con-
structions give different results: The suspension over any nonlocally connected
homogeneous continuum is 1

2 -homogeneous, but the cone over such a continuum

is not 1
2 -homogeneous when it is finite dimensional (see Theorem 4.8).

Until recently, there were only two papers about 1
2 -homogeneity, [10] and [18].

In the past two years, four more papers have been written. The four recent papers
fit into three categories: 1

2 -homogeneous continua with cut points ([16], [17]),

337
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1
2 -homogeneous cones [15], and 1

2 -homogeneous hyperspaces [14]. We survey the
main results and discuss open problems in each category separately. We provide
detailed references for all results and problems that do not originate here.

2. Notation and Terminology

A compactum is a nonempty compact metric space. A continuum is a con-
nected compactum. We assume that the reader is somewhat familiar with contin-
uum theory. Most notation and terminology that we use is standard and can be
found in [11], [13] and [20]. However, we note the following items (other notation
and terminology that is not standard is presented as it comes up):

A cut point (separating point) of a connected space is a point whose removal
disconnects the space.

The remainder of a compactification Y of a space Z is Y \ Z. Let X be a
compactification of R1, and let R denote the open, dense copy of R1 in X . For
any point r ∈ R, the closure in X of a component of R\{r} is called an end of the
compactification X . (Thus, up to homeomorphism, there are at most two ends.)

The symbol ordp(X) denotes the order of the space X at p; ordp(X) ≤ ω means
that p has arbitrarily small open neighborhoods whose boundaries are finite [11,
p. 274].

The symbols AR and ANR stand for absolute retract and absolute neighbor-
hood retract, respectively.

A continuum Y is n-homogeneous (n a positive integer) provided that for any
two n-element subsets A and B of Y , there is a homeomorphism h of Y onto Y
such that h(A) = B [19]. A continuum Y is n-homogeneous at a point p ∈ Y (n a
positive integer) provided that for any two n-element subsets A and B of Y such
that p ∈ A ∩ B, there is a homeomorphism h of Y onto Y such that h(A) = B
and h(p) = p (this notion originates in [16]).

A finite graph is a 1-dimensional compact connected polyhedron.
A bouquet of continua Y is a continuum X with a cut point c such that the

closure of each component of X\{c} is homeomorphic to Y . The Hawaiian earring
is the unique locally connected bouquet of infinitely many simple closed curves.

3. 1
2 -Homogeneous Continua with Cut Points

We denote the subspace of all cut points of a continuum X by Cut(X).
Recall that every continuum has noncut points [13, p. 89, 6.6]; thus, when a

1
2 -homogeneous continuum X has cut points, the two orbits of X must be Cut(X)
and its complement (the set of all noncut points of X).

In [16] the general stucture of 1
2 -homogeneous continua with cut points and

the structure of their two orbits was described in detail. In addition, it was
determined how the two orbits are situated in X . Nevertheless, as we will see,
there are still open questions about the structure of such continua.

We state the results from [16] in the four theorems that follow. The first
theorem lays the foundation for the next three theorems. We note that the first
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theorem shows (implicitly) that if a 1
2 -homogeneous continuum has a cut point,

then it has either uncountably many cut points or only one cut point.

Theorem 3.1 ([16, 6.1]). Let X be a 1
2 -homogeneous continuum with at least one

cut point.

(1) If |Cut(X)| > 1, then Cut(X) is homeomorphic to R1, Cut(X) is both
open and dense in X, the orbit of all noncut points of X is the union of
two disjoint, homeomorphic and homogeneous continua (possibly single
points, in which case X is an arc, and the ends of the compactification
X are mutually homeomorphic.

(2) If Cut(X) = {c}, then the closures of the components of X \ {c} are
mutually homeomorphic and are (each) 2-homogeneous at c; furthermore,
if ordc(X) ≤ ω, then X is a locally connected bouquet of simple closed
curves (thus, X is the Hawaiian earring when X \{c} has infinitely many
components).

In connection with part (2) of Theorem 3.1, we note that the closures of the
components of X \ {c} need not be homogeneous: Attach two disjoint copies of a
pinched 2-sphere together at the pinched points [16, 7.4]; the continuum obtained
from the attachment is easily seen to be 1

2 -homogeneous (see Theorem 3.4).
The next theorem isolates the properties in Theorem 3.1 that are relevant to

the structure of Cut(X) for any 1
2 -homogeneous continuum.

Theorem 3.2 ([16, 6.2]). If X is a 1
2 -homogeneous continuum, then either Cut(X)

is homeomorphic to R1 and Cut(X) is both open and dense in X or Cut(X) con-
sists of at most one point; furthermore, if Cut(X) consists of a single point c, then
ordc(X) ≥ 4 and ordc(X) is even if ordc(X) is an integer.

The following theorem characterizes all 1
2 -homogeneous continua with more

than one cut point:

Theorem 3.3 ([16, 6.4]). Let X be a continuum with more than one cut point.
Then X is 1

2 -homogeneous if and only if X is an arc or X is a compactification of

R1 whose remainder is the union of two disjoint, nondegenerate, homeomorphic
continua and the ends of X are mutually homeomorphic and 1

3 -homogeneous.

Our final theorem from [16] is a partial characterization of 1
2 -homogeneous

continua with more than one cut point:

Theorem 3.4 ([16, 6.5]). Let X be a continuum with only one cut point c. Assume
that the components of X \{c} form a null sequence. Then X is 1

2 -homogeneous if
and only if the closures of the components of X \ {c} are mutually homeomorphic
and are (each) 2-homogeneous at c.

In the following example, we show that the assumption in Theorem 3.4 that
the components of X \ {c} form a null sequence is required and is restrictive.

Example 3.5 ([16, 7.2 and 7.3]). Let Z = {0, 1, 1
2 , . . . ,

1
n , . . . }, let C be the

Cantor set, let S1 be the unit circle, and fix a point p ∈ S1. The quotient space
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X = (Z×S1)�(Z × {p}) has only one cut point c = Z×{p} and the closures of the
components of X \{c} are mutually homeomorphic and are (each) 2-homogeneous
at c; however, X is not 1

2 -homogeneous since X is locally connected at some

noncut points but not at others. On the other hand, Y = (C × S1�(C × {p}) is
a 1

2 -homogeneous continuum with only one cut point c = C × {p0} and, yet, the
components of Y \ {c} do not form a null sequence. The continuum Y also shows
that the assumption that ordc(X) ≤ ω in part (2) of Theorem 3.1 is required.

Now, we come to some questions about Theorem 3.3 and Theorem 3.4.
The characterization in Theorem 3.3 would be enhanced if we had a solution to

the following problem (the two ways of stating the problem are equivalent by [16,
4.7]):

Problem 3.6 ([16, section 7]). Find intrinsic conditions that characterize all 1
3 -751?

homogeneous compactifications of [0,∞). In other words, When is the remainder
of a compactification of [0,∞) an orbit of the compactification?

It may be that any inherent characterization of 1
3 -homogeneous compactifi-

cations of [0,∞) would be too technical to be useful. In fact, we do not know
the answer to Problem 3.6 when the remainder of the compactification is a simple
closed curve; the problem is pinpointed in the following question:

Problem 3.7 ([16, 7.1]). Consider a compactification of the ray [0,∞) with the752?

circle S1 as remainder such that every point of S1 is a limit of points in the ray
at which the ray reverses direction for at least one full revolution about S1. Can
such a compactification be 1

3 -homogeneous?

We ask about extending Theorem 3.4:

Problem 3.8 ([16, section 7]). Characterize (inherently) all 1
2 -homogeneous con-753?

tinua with only one cut point.

Regarding Theorem 3.4 as well as part (2) of Theorem 3.1, we would like a
solution to the following problem:

Problem 3.9 ([16, section 7]). Characterize (inherently) the continua that are754?

2-homogeneous at a point.

We discuss three theorems from [17] that characterize particular continua in
terms of 1

2 -homogeneity. The first two theorems characterize the arc.

Theorem 3.10 ([17, 3.6]). The arc is only 1
2 -homogeneous semilocally connected

continuum with more than one cut point.

Theorem 3.11 ([17, 4.6]). The arc is only 1
2 -homogeneous hereditarily decom-

posable continuum whose nondegenerate proper subcontinua are arc-like.

The assumption of being hereditarily decomposable in Theorem 3.11 is re-
quired: The arc of pseudoarcs is a 1

2 -homogeneous arc-like continuum [17, 4.8].

Problem 3.12 ([17, 4.9]). Is there a 1
2 -homogeneous indecomposable arc-like755?

continuum?
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By Theorem 3.11, there is no 1
2 -homogeneous hereditarily decomposable circle-

like continuum. The arc of pseudo-arcs with the end tranches identified to a point
is an example of a 1

2 -homogeneous decomposable circle-like continuum [17, 4.8].
These observations lead to the following question:

Problem 3.13 ([17, 4.10]). Is there a 1
2 -homogeneous indecomposable circle-like 756?

continuum?

The question of determining all 1
2 -homogeneous arc-like continua or circle-like

continua is implicit from Theorem 3.11, Problem 3.12 and Problem 3.13.
Our next theorem characterizes the Hawaiian earring.

Theorem 3.14 ([17, 3.12]). Let X be a 1
2 -homogeneous hereditarily locally con-

nected continuum with a cut point that is not a finite graph. Then X is the
Hawaiian earring.

I do not know if having a cut point is required for Theorem3.14:

Problem 3.15. Is the Hawaiian earring the only 1
2 -homogeneous hereditarily 757?

locally connected continuum that is not a finite graph?

Let us note a lemma that follows easily from Theorem 3.1 and Theorem 3.10:

Lemma 3.16. A 1
2 -homogeneous finite graph with at least one cut point is either

an arc or a bouquet of finitely many simple closed curves.

The following variation on Theorem 3.14 is an immediate consequence of
Lemma 3.16 and Theorem 3.14:

Theorem 3.17. Let X be a hereditarily locally connected continuum with a cut
point. Then X is 1

2 -homogeneous if and only if X is an arc or a bouquet of simple
closed curves (that is, a finite bouquet or the Hawaiian earring).

Lemma 3.16 raises a question about finite graphs. Patkowska [18, p. 25,
Theorem 1] claims “Moreover, we find a full classification of all 1

2 -homogeneous
polyhedra by means of homogeneous multigraphs.” However, the meaning of the
claim (and its verification) does not seem to be in [18], even for the case of finite
graphs. Lemma 3.16 takes care of the case of finite graphs with a cut point;
however, we do not know about cyclic finite graphs:

Problem 3.18. What are all the 1
2 -homogeneous finite graphs that have no cut 758?

point?

4. 1
2 -Homogeneous Cones

We denote the cone over a compactum X by Cone(X) and its vertex by
vX . The question of when the cone over a continuum is 1

2 -homogeneous was
investigated for the first time in [14]. So far, there are no other papers about this
topic.

The main results in [14] fall into three categories: 1-dimensional continua,
an ANR theorem for finite-dimensional compacta, and continua with conditions
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weaker than being atriodic in some nonempty open set. We discuss many of the
results and open problems from [14].

Note that Cone(Bn) and Cone(Sn) are (n+1)-cells and, hence, are 1
2 -homogeneous.

One of the main results from [14] is that B1 and S1 are the only 1-dimensional
continua whose cones are 1

2 -homogeneous:

Theorem 4.1 ([14, 6.1]). Let X be a 1-dimensional continuum. Then Cone(X)
is 1

2 -homogeneous if and only if X is an arc or a simple closed curve.

The natural analogue for all finite-dimensional continua of Theorem 4.1 is
false:

Example 4.2 ([14, 1.1]). For each integer n ≥ 4, let X = Cone(Sn−1/A), where
A is an arc in the (n−1)-sphere Sn−1 such that the fundamental group of Sn−1\A
is nontrivial. Then X is an n-dimensional AR that is not a manifold and, yet,
Cone(X) is 1

2 -homogeneous since Cone(X) an (n+ 1)-cell [2, p. 26, 4.4].

Theorem 4.1 and Example 4.2 lead us to a question for dimensions 2 and 3 as
well as a question for any finite dimension:

Problem 4.3 ([14, 1.2]). If X is a continuum, even a Peano continuum, of di-759?

mension n = 2 or 3 such that Cone(X) is 1
2 -homogeneous, must X be an n-cell or

an n-sphere?

Problem 4.4 ([14, 1.3]). If the cone over a finite-dimensional continuum, even a760?

Peano continuum, is 1
2 -homogeneous, then is the cone an n-cell?

We note several corollaries to Theorem 4.1. (It is not obvious why Corol-
lary 4.5 is a consequence of Theorem 4.1; to see why it is uses some technical
lemmas that we do not include here.)

Corollary 4.5 ([14, 6.2]). Let X be a nondegenerate continuum that contains
only finitely many simple closed curves. Then Cone(X) is 1

2 -homogeneous if and
only if X is an arc or a simple closed curve.

Corollary 4.6 ([14, 6.3]). If X is a nondegenerate tree-like continuum, then
Cone(X) is 1

2 -homogeneous if and only if X is an arc.

Corollary 4.7 ([14, 6.7]). The only circle-like continuum whose cone is 1
2 -homogeneous

is a simple closed curve.

Next, we turn our attention to the class of finite-dimensional compacta whose
cones are 1

2 -homogeneous. We begin with an ANR theorem and a corollary for all
finite-dimensional compacta; we show that the theorem and the corollary do not
extend to infinite-dimensional compacta.

Theorem 4.8 ([14, 3.5]). Let X be a finite-dimensional compactum. If Cone(X)
is 1

2 -homogeneous, then X is an ANR.

Corollary 4.9 ([14, 3.7]). If X is a finite-dimensional compactum such that
Cone(X) is 1

2 -homogeneous, then Cone(X) is an AR.
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Theorem 4.8 and Corollary 4.9 do not extend to infinite dimensions even when
X is locally connected. We will give an example that is based on the following
result (which we state slightly differently than in [14]):

Theorem 4.10 ([14, 3.8]). If Y is a homogeneous compactum and Q is the Hilbert
cube, then Cone(Y ×Q) is either homogeneous or 1

2 -homogeneous.

Example 4.11 ([14, 3.10]). Let X = M × Q, where M is the 1-dimensional
Menger universal curve and Q is the Hilbert cube. Then X is locally connected
and Cone(X) is 1

2 -homogeneous (by Theorem 4.10), but X and Cone(X) are
not ANRs. Furthermore, Theorem 4.8 and Corollary 4.9 fail badly in infinite
dimensions in that X (hence, Cone(X)) need not even be locally connected: Let
X = Y ×Q, where Y is a nonlocally connected homogeneous continuum Y (e.g.,
the dyadic solenoid or the pseudo-arc [3]); then Cone(X) is 1

2 -homogeneous (by
Theorem 4.10), but X and Cone(X) are not locally connected.

We note another corollary to Theorem 4.8 and a problem concerning the
corollary.

Corollary 4.12 ([14, 3.6]). If X is a finite-dimensional contractible continuum
such that Cone(X) is 1

2 -homogeneous, then X is an AR.

Unlike Theorem 4.8 and Corollary 4.9, we do not know if Corollary 4.12 ex-
tends to infinite dimensions:

Problem 4.13 ([14, 3.11]). If X is a contractible continuum such that Cone(X) 761–762?

is 1
2 -homogeneous, then is X an AR? What about with the additional assumption

that X is locally connected?

Finally, we discuss results for continua that satisfy conditions that are weaker
than being atriodic. For the first result, we note names for two special continua:
(1) the hairy point is the union of a null sequence of countably infinitely many
arcs all emanating from the same point and otherwise disjoint from one another;
(2) the null comb is the continuum homeomorphic to the union of the line segments
in the plane from (0, 0) to (1, 0) and from ( 1

n , 0) to ( 1
n ,

1
n ) for each n = 1, 2, . . . .

Theorem 4.14 ([14, 6.4]). Let X be a nondegenerate continuum with a nonempty
open set U such that U does not contain a hairy point or a null comb. Then
Cone(X) is 1

2 -homogeneous if and only if X is an arc or a simple closed curve.

Corollary 4.15 ([14, 6.5]). Let X be a nondegenerate continuum that contains
no simple triod in some nonempty open set U . Then Cone(X) is 1

2 -homogeneous
if and only if X is an arc or a simple closed curve.

Corollary 4.16 ([14, 6.6]). Let X be a nondegenerate continuum with a nonempty
open set U such that every nondegenerate subcontinuum of U is arc-like. Then
Cone(X) is 1

2 -homogeneous if and only if X is an arc or a simple closed curve.

We complete this section by stating two problems that are natural from what
we have discussed (the problems are not explicitly stated elsewhere).
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Problem 4.17. Find more classes of continua whose cones are 1
2 -homogeneous.763?

Problem 4.18. Find classes of continua whose suspensions are 1
2 -homogeneous.764?

5. 1
2 -homogeneous hyperspaces

For a continuum X with metric d, the hyperspace C(X) is the space of all
subcontinua of X with the Hausdorff metric ([9] or [12]).

It has been known for some time when C(X) is homogeneous, namely, if and
only ifX is a Peano continuum in which every arc is nowhere dense or, equivalently,
C(X) is the Hilbert cube. (This was proved in [12, p. 564, 17.2] using [5, p. 22,
4.1].) The next logical step from the point of view of homogeneity-type properties
is to inquire into when C(X) is 1

2 -homogeneous. This was investigated for the
first time in [15]. One of our principal tools used in [15] is the theory of layers
(or tranches) of irreducible hereditarily decomposable continua [11, pp. 190–219].

Two simple continua for which C(X) is 1
2 -homogeneous are the arc and the

simple closed curve; in both cases, C(X) is a 2-cell [9, pp. 33–35]. The two main
results in [15], which we state next, suggest that there are very few continua X
for which C(X) is 1

2 -homogeneous and, in fact, that the arc and the simple closed
curve may be the only ones.

Theorem 5.1 ([15, 3.1]). If X is a locally connected continuum, then C(X) is
1
2 -homogeneous if and only if X is an arc or a simple closed curve.

Theorem 5.2 ([15, 5.1]). Let X be a nondegenerate atriodic continuum. Then
C(X) is 1

2 -homogeneous if and only if X is an arc or a simple closed curve.

Corollary 5.3 ([15, 5.2]). Let X be a continuum such that each nondegenerate
proper subcontinuum of X is arc-like. Then C(X) is 1

2 -homogeneous if and only
if X is an arc or a simple closed curve.

Corollary 5.3 shows that when X is arc-like (circle-like, atriodic tree-like),
then C(X) is 1

2 -homogeneous if and only if X is an arc (a simple closed curve, an
arc, respectively) [15, 5.3, 5.4, 5.6].

Corollary 5.4 ([15, 5.7]). Let X be a continuum such that dimC(X) = 2. Then
C(X) is 1

2 -homogeneous if and only if X is an arc or a simple closed curve.

Problem 5.5 ([14, section 1]). If X is a continuum such that C(X) is 1
2 -765–766?

homogeneous, then is X an arc or a simple closed curve? What about when
C(X)is finite dimensional?

We note two results that give information about the second part of Problem 5.5
(two other such results are [15, 3.9 and 3.12]).

Theorem 5.6 ([15, 3.10]). Let X be a decomposable continuum such that dimC(X) <
∞. If C(X) is 1

2 -homogeneous, then X is hereditarily decomposable.

Theorem 5.7 ([15, 3.11]). Let X be a nonlocally connected continuum such that
dimC(X) < ∞ and C(X) is 1

2 -homogeneous. Then every nondegenerate proper
subcontinuum of X is decomposable.
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A number of questions were asked at the end of [15]. The purpose of some
of the questions was to indicate directions that might lead to solutions or partial
solutions to Problem 5.5. We summarize a few such questions:

Problem 5.8 ([15]). Let X be a continuum such that C(X) is 1
2 -homogeneous. 767–770?

Is dimC(X) <∞ and, in fact, is dimC(X) = 2 [15, 6.2]? Is X decomposable [15,
6.4]? Is dimX = 1 and, in fact, must X be hereditarily decomposable [15, 6.5]?
Must X be hereditarily decomposable when dimC(X) <∞ [15, 6.5]?

(Note: In [15], the third part of 6.5 says, ”Is dimC(X) <∞?”, which was al-
ready asked in [15, 6.2]; the way the third part of [15, 6.5] is stated in Problem 5.8
is what was meant.)

Regarding Problem 5.8, X can not be hereditarily indecomposable [15, 3.3].
However, we do not know if X can contain a nondegenerate hereditarily indecom-
posable continuum—if it does not, then dimX = 1 [4, p. 270, Theorem 5].

In investigating when C(X) is 1
2 -homogeneous, it is important to have con-

ditions under which various elements of C(X) belong or do not belong to the
manifold interior of a 2-cell. Acosta showed that if X is an atriodic continuum,
then no singleton, {x}, belongs to the manifold interior of any 2-cell in C(X)
(weakened form of [1, p. 40, Theorem 3]). Acosta’s result was important for the
proof of Theorem 5.2; in view of that, the following question was asked in [15]:

Problem 5.9 ([15, 6.6]). What conditions on continua X (other than being 771?

atriodic) or on points p ∈ X are necessary and/or sufficient for {p} not to belong
to the manifold interior of a 2-cell in C(X)?

A point p of a finite graph X is as in Problem 5.9 if and only if ordp(X) ≤ 2;
however, for the point p = (0, 0) in the null comb X (defined preceding Theo-
rem 4.14), ordp(X) = 1 and, yet, {p} belongs to an n-cell in C(X) for every n
by [9, p. 40, 6.4]. As noted in [15], Problem 5.9 for n-cells in C(X) is open as
well.

We also note the following question about 2-cells in C(X):

Problem 5.10 ([15, 6.7]). Is there a continuum X such that dimC(X) <∞ and, 772?

for every x ∈ X , {x} is a point of the manifold interior of a 2-cell in C(X)?

There is no reason to restrict the study of 1
2 -homogeneous hyperspaces to the

hyperspace C(X). Several special hyperspaces other than C(X) are of general
interest—the hyperspace 2X of all nonempty compact subsets of a continuum
X (with the Hausdorff metric), the n-fold hyperspace Cn(X) of all elements of
2X with at most n components, and the n-fold symmetric product Fn(X) of
all elements of 2X with at most n points. Our final question concerns these
hyperspaces.

Problem 5.11 ([15, 6.8]). For what continua X are the hyperspaces 2X , Cn(X) 773–774?

or Fn(X) 1
2 -homogeneous (n > 1 for the case of Fn(X))? What about 1

m -
homogeneity for any integer m > 1?
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The case of 1
2 -homogeneity for C2(X) seems especially interesting: C2([0, 1])

is 1
2 -homogeneous since C2([0, 1]) is a 4-cell ([7, p. 349, Lemma 2.2], due to

R.M. Schori); however, C2(S1) is not 1
2 -homogeneous since C2(S1) is the cone over

a solid torus [8]. This (naively) suggests that C2(X) may only be 1
2 -homogeneous

when X is an arc. In fact, this is true when X is locally connected (a proof is in
the comments following Question 6.8 of [15]).
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Thirty open problems in the theory of
homogeneous continua

Janusz R. Prajs

Broadly understood symmetry is an archetypical quality abundant both in
nature and human creativity. In particular, its presence in mathematics is over-
whelming. Functions, formulas and spaces with special symmetric properties, as
a rule, tend to be more important and have more applications than others. In
geometry, symmetry manifests through invariance with respect to certain isomet-
ric transformations. Since the concept of an isometry is not topological, one can
ask what topological properties could possibly represent symmetry in this broad
meaning. Which topological spaces would have “strong symmetric properties?”
We propose the following answer: the richer the group of self-homeomorphisms
of a topological space, the more “symmetric” the space. This answer, which nat-
urally corresponds to geometric symmetry, leads us to the concept of topological
homogeneity introduced by Sierpiński [25, p. 16]. A topological space X is ho-
mogeneous provided for each x, y ∈ X there exists a homeomorphism h : X → X
such that h(x) = y. This definition identifies a fundamental class of spaces with
rich groups of self-homeomorphisms.

The systematic study of homogeneous spaces began with the question of
Knaster and Kuratowski [6] whether the simple close curve is the only nonde-
generate, homogeneous plane continuum. Since then, classifying homogeneous
continua became a classic topic, which now is an important area in continuum
theory. The restriction to the study of homogeneous continua is reasonable in-
deed. First, the class of all homogeneous spaces is so vast, that one cannot expect
many important results about that class as whole. A strong restriction is needed.
Thus the class of compact, metrizable spaces, which have the most common ap-
plications, is a natural choice. As it was shown by Michael Mislove and James
Rogers [13, 14], each compact, metrizable homogeneous space is a product of a
finite set or the Cantor set, and a homogeneous continuum, that is, a homoge-
neous compact, connected, metric space. This makes investigating homogeneous
continua particularly important.

Let us notice that the class of homogeneous continua is a natural generaliza-
tion of the two following important classes of spaces, both in the focus of classic,
mainstream study in topology and mathematics: (1) closed, connected manifolds,

The author was supported in part by the NSF grant DMS-0405374. The author was
supported in part by assigned time from the Chair of the Department of Mathematics
and Statistics, Dr. Doraiswamy Ramachandran, at California State University,
Sacramento. The author acknowledges collaboration with Keith Whittington on
filament and ample subcontinua of homogeneous continua. In fact, a substantial part of
questions from section 5 emerged from this collaboration.
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and (2) compact, connected topological groups (including Lie groups). The signif-
icance of these classes provides further motivation for the study of homogeneous
continua.

Despite excellent motivation and persistent effort since early 1920s, progress
in understanding homogeneous continua and finding new examples has been slow,
though rewarded with occasional unexpected turns and spectacular breakthroughs.
The purpose of this article is to contribute to this effort by offering questions and
possible directions for future research. We do not focus our attention, however,
on the most classic questions such as the ones about homogeneous plane continua,
(hereditarily) indecomposable homogeneous continua, or hereditarily decompos-
able homogeneous continua. Excellent references to these problems can be found
in [9], [23] and [12].

The problems collected in this paper are divided into two parts. In section 3
we present miscellaneous problems, some of which already have been published,
and some are new. In the author’s view, these questions may have potential to
become a part of the mainstream study of homogeneous continua in the future.
The remaining part of the paper is devoted to a new line of study of homoge-
neous continua, initiated in [21, 20] and based on the duality of filament and
ample subcontinua. As it is shown in [22], this new research is related to the
past applications of aposyndesis to homogeneous continua. The idea is to iden-
tify major archetypical classes of homogeneous continua related to the structure
of their filament subcontinua, and investigate properties of these classes. After
presenting definitions and summary of basic facts in section 4, we propose and
discuss questions related to this new approach in section 5.

1. Preliminaries

A continuum is a compact, connected, nonempty metric space. Continua
of dimension 1 are called curves . If X is a continuum, C(X) will denote the
hyperspaces consisting of all subcontinua of X under the Hausdorff metric. The
definition of a homogeneous space is given in the introduction. A space X is 2-
homogeneous if for every x1, x2, y1, y2 ∈ X with x1 6= x2 and y1 6= y2 there exists
a homeomorphism h : X → X such that h({x1, x2}) = {y1, y2}.

Though we do not explicitely use the Effros theorem in this paper, it is a
fundamental tool applied in the proofs of many cited results, and can be very
helpful when attacking problems involving homogeneous continua. Therefore we
recall it here. If X is a homogeneous continuum, then for every positive ε, there
is a number δ, called an Effros number for ε, such that for each pair of points
with d(x, y) < δ, there is some homeomorphism f : X → X that carries x to y
and such that d(z, f(z)) < ε for each z ∈ X . This is called the Effros Theorem.
It follows from the more general statement that for each x ∈ X , the evaluation
map, g 7→ gx, from the homeomorphism group onto X is open. The latter follows
from [5, Theorem 2]. (See also [26, Theorem 3.1].)
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2. Fourteen Miscellaneous Problems

By Mazurkiewicz’s theorem [11] the simple closed curve is the only locally con-
nected, nondegenerate homogeneous continuum in the plane. An analogous result
in 3-space is yet to be found. Note that, by Anderson’s result [1], 1-dimensional
locally connected continua are precisely the simple closed curve and Menger curve.
In the first question the Pontryagin sphere appears. The Pontryagin sphere has
several equivalent definitions. For instance, let S be the Sierpiński universal plane
curve, also known as Sierpiński’s carpet , in its standard geometric construction in
the unit square [0, 1]× [0, 1]. The quotient space obtained from S by identifying
each pair of points a, b such that a and b are in the boundary of the same com-
plementary domain of S in the plane, and a and b have at least one coordinate
the same, is a Pontryagin sphere. Another way to define the Pontryagin sphere is
to take two Pontryagin disks defined in [15, pp. 608–609] and glue them together
along their combinatorial boundary. It is known that the Pontryagin sphere is
homogeneous.

Question 1. If X is a homogeneous, locally connected, 2-dimensional continuum 775?

in 3-space, is X either a 2-manifold, or a Pontryagin sphere?

Question 2. Is every nondegenerate, simply connected homogeneous continuum 776?

in 3-space homeomorphic to 2-sphere S2?

The four next questions refer to the important class of path-connected ho-
mogeneous continua, and they are essential in the non-locally connected case.
Krystyna Kuperberg asked [7, Problem 2, p. 630] whether each path-connected
homogeneous continuum is locally connected. This question was answered in the
negative in [19]. The following related question seems to provide a similar type of
challenge.

Question 3. If X is a simply connected homogeneous continuum, is X locally 777?

connected?

The following question was explored in the past by David Bellamy, who ob-
tained a strong partial result [2].

Question 4. If X is a path connected homogeneous continuum, is X uniformly 778?

path connected?

Since all uniformly path connected continua are weakly chainable, a positive
answer to the previous question would imply one to the next question.

Question 5. If X is a path connected homogeneous continuum, is X weakly chain- 779?

able?

The path-connected example P from [19] has a natural projection onto the
Menger curve such that P has a unique path lifting property with respect to this
projection. It is not known whether each homogeneous path-connected continuum
admits such a map. We ask the following.
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Question 6. Let X be a homogeneous path connected (1-dimensional) contin-780?

uum. Does X admit an open surjective map f : X → Y onto a locally connected
continuum Y such that X has the unique path lifting property with respect to f?

The next three questions are related to each other. They ask about the ex-
istence of certain inverse limit representations for some homogeneous continua.
To formulate the first of these problems, which originally appeared in [16], we
need some definitions. A surjective map f : X → Y is called confluent if for every
continuum K in Y and every p ∈ f−1(K) there exists a continuum C ⊂ X such
that p ∈ C and f(C) = K. A continuum X is confluently graph-like provided for
every ε > 0 there is a confluent map of X to a graph with point inverses having
diameters less than ε. A continuum is called confluently graph-representable if it
can be represented as the inverse limit of graphs with confluent bonding maps. By
one of the main results of [16] the property “confluently graph-like” is equivalent
to “confluently graph-representable” for continua.

Question 7. If X is a homogeneous curve that contains an arc, is X confluently781?

graph-like?

Question 8 (J.H. Case [4]). If X is a homogeneous curve that contains an arc,782?

can X be represented as inverse limit of either simple closed curves or topological
Menger curves with covering bonding maps?

Question 9. If X is a homogeneous continuum such that each point of X has a783?

neighborhood whose components are n-manifolds (Menger manifolds, Hilbert cube
manifolds), is X the inverse limit of n-manifolds (Menger manifolds, Hilbert cube
manifolds) with covering bonding maps?

Known examples suggest that the three following questions may admit positive
answers. A counterexample would provide an even more spectacular result.

Question 10. Does every nondegenerate (1-dimensional) homogeneous contin-784?

uum have a nondegenerate weakly chainable subcontinuum?

Question 11. Does every nondegenerate homogeneous continuum contain either785?

an arc or a nondegenerate (hereditarily) indecomposable subcontinuum?

Question 12. Does every homogeneous curve contain either an arc or a proper,786?

nondegenerate terminal subcontinuum?

The remaining two problems in this section are new. The next one, interesting
by its own right, appears in connection to the study of filament sets, and is related
to Problems 22 and 23 from section 5.

Question 13. If a homogeneous continuum X is a finite (equivalently, countable)787?

union of its indecomposable subcontinua, is X indecomposable?

We say the group of self-homeomorphisms H(X) of a space X respects a par-
tition G of X if h(G) ∈ G for every h ∈ H(X) and G ∈ G. Given a subcontinuum
K of a space X , let HK = {h(K) | h ∈ H(X)}. For every x, y ∈ X we write
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x ∼K y provided that x = y or there are continua K1, . . . ,Kn ∈ HK such that
K1 ∪ · · · ∪Kn is connected and x, y ∈ K1 ∪ · · · ∪Kn. Note that ∼K is an equiv-
alence. The equivalence classes of ∼K are called K-components . The space X is
K-connected if X is the only K-component in X . It is an immediate observation
the partition into K-components is respected by self-homeomorphisms of X . If
K1, K2 are two subcontinua of a continuum X , we write K1 ' K2 provided the
K1-components and K2-components are identical. Note that ' is an equivalence
in C(X). We have the trivial structure of {p}-components generated by single-
tons {p}, which is the trivial decomposition into singletons, and which we usually
ignore. For every homogeneous space X we assign the cardinality κ(X) of the
collection of the equivalence classes of ' represented by nondegenerate subcon-
tinua of X . Thus κ(X) = 0 when X is a singleton. It can easily be observed that
κ(S1) = 1 for the unit circle S1. As an exercise please note that κ(X) ≥ 2 if X is
indecomposable, and κ(X) ≥ 3 if X is the circle of pseudo-arcs. (In fact κ(X) = 3
in the latter case.) The following proposition can easily be shown.

Proposition 2.1. If X is a nondegenerate 2-homogeneous continuum, then κ(X) =
1. In particular, if X is either a manifold, the Menger curve, or the Hilbert cube,
then κ(X) = 1.

Using [10, Homeomorphism Extension Theorem] one can show that for the
Menger curve M we have κ(M×M) = 1, even though M×M is not 2-homogeneous [8].

Question 14. Let X be a homogeneous continuum with κ(X) = 1. Must X be 788–789?

path-connected? Must X be locally-connected?

3. Filament Sets: Definitions and Basic Properties

In this section we provide basic concepts and facts involved in a new line of
study of homogeneous continua, initiated in [21, 20] and based on the duality
of filament and ample subcontinua. We begin with the following definitions of
certain subsets of a continuum X , which are crucial in the remaining part of the
paper. With an exception of (iv), they were introduced in [21].

(i) A subcontinuum F of X is called filament if there exists a neighborhood
N of F such that the component of N containing F has empty interior.

(ii) A set Y ⊂ X is called filament if every subcontinuum of Y is filament
in X .

(iii) A set Z ⊂ X is called co-filament if X \ Z is a filament set in X .
(iv) A subcontinuum G of X is called almost filament if G is the limit, in the

sense of the Hausdorff distance, of filament continua in X .
(v) A subcontinuum A of X is called ample if every neighborhood N of A

contains a continuum B such that A ⊂ int(B) ⊂ B ⊂ N .

The three following propositions summarize the most fundamental proper-
ties [21] of the introduced concepts. Part (b) of Proposition 3.1 was originally
proved in [27].

Proposition 3.1. Let X be a homogeneous continuum.
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(a) A subcontinuum K of X is ample if and only if K is not filament.
(b) The set of all pairs (x, y) ∈ X ×X such that only ample subcontinua of

X can contain both x and y is a dense Gδ subset of X ×X.
(c) Each ample subcontinuum of X contains a minimal ample subcontinuum.
(d) Each closed filament set in X has a filament neighborhood in X.
(e) The collection of filament subcontinua of X is an open, connected subset

of C(X).
(f) The subspace of C(X) of ample subcontinua of X is a compact absolute

retract.

Proposition 3.2. For every continuum X the following conditions are equivalent:

(a) X is indecomposable.
(b) X is the only ample subcontinuum of X.
(c) Every nonempty subset of X is co-filament.

Proposition 3.3. For every continuum X the following conditions are equivalent:

(a) X is locally connected.
(b) Every subcontinuum of X is ample.
(c) X is the only closed, co-filament subset of X.

(vi) Given a point p ∈ X , the union of the filament continua in X containing
p is called the filament composant of X determined by p, and denoted
by Fcs(p).

We recall the following fundamental properties of filament composants (see [21,
Proposition 1.8]).

Proposition 3.4. Let X be a continuum and p ∈ X. If Fcs(p) is nonempty,
it is a countable union of filament continua, each containing p. Thus each fila-
ment composant is a first-category Fσ subset of X. If X is indecomposable, the
composants and filament composants of X are identical.

Employing the concept of a filament continuum, we define some classes of
continua.

(vii) A continuum X is filament additive provided for each two filament sub-
continua F1 and F2 with nonempty intersection, the union F1 ∪ F2 is
filament.

(viii) A continuumX is called filament connected if for each two points p, q ∈ X
there are filament continua F1, . . . , Fn in X such that p, q ∈ F1∪ · · ·∪Fn

and the union F1 ∪ · · · ∪ Fn is connected.

Most known homogeneous curves are filament additive. The first non-filament
additive homogeneous curve was defined in [19]. In higher dimensions, each prod-
uct of at least two homogeneous, non-locally connected continua is non-filament
additive [20]. Filament additive continua and filament connected continua are
disjoint classes of spaces.

(ix) A continuum X is called filamentable if either X is a singleton, or X has
a filament subcontinuum whose complement is filament.
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The diagram below represents a classification scheme of homogeneous continua
introduced in [17]. It is based on the concept of a co-filament continuum, that is,
a co-filament, compact, connected set. Homogeneous continua form a spectrum
having at its ends Class I with the richest collection of co-filament subcontinua, and
Class IV with the smallest one. The following conditions define the corresponding
classes:

(I) Every subcontinuum is co-filament ;
(II) Contains non-co-filament subcontinua, and also subcontinua that simul-

taneously are co-filament and filament ;
(III) All co-filament subcontinua are ample and some of them are proper ; and
(IV) The whole space is the only co-filament subcontinuum.

Homogeneous Continua

Filamentable Nonfilamentable

Class I Class II Class III Class IV

Ia: singleton,
indecomposable,
filamentable,
aposyndetic

IIa: filamentable,
decomposable,
aposyndetic

IIIa: nonfila-
mentable, with
proper
co-filament
subcontinua,
aposyndetic

IVa: locally
connected,
nondegenerate,
nonfilamentable,
aposyndetic

Ib: indecompos-
able,
nondegnerarate,
filamentable,
nonaposyndetic

IIb: filamentable,
decomposable,
nonaposyndetic

IIIb: nonfila-
mentable, with
proper
co-filament
subcontinua,
nonaposyndetic

IVb: no proper
co-filament
subcontinua,
nonfilamentable,
nonaposyndetic

Figure 1. Classification of homogeneous continua

The classes indicated in the diagram (Figure 1) are mutually disjoint and
each of them is nonempty. If a continuum belongs to a class labeled with b, its
aposyndetic decomposition quotient space is in the corresponding class labeled
with a. By a recent result of Rogers [24], and by Anderson’s characterization of
locally connected homogeneous curves [1], all members of Class IVb have their
aposyndetic quotient spaces homeomorphic to either the circle S1, or the Menger
curve M. Below, we list at least one example of spaces belonging to each class.
Note that the selected examples have dimension less than or equal to 1.

(Ia) A singleton.
(Ib) The pseudo-arc and solenoids.

(IIa) The Case continuum.
(IIb) The continuous curve of pseudo-arcs with the Case continuum as the

quotient space.
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(IIIa) The path-connected continuum P from [19].
(IIIb) The continuous curve of pseudo-arcs with P as the quotient space.
(IVa) The circle S1 and Menger curve M.
(IVb) The continuous curves of pseudo-arcs with S1 and M as the quotient

spaces.

Finally, note that the extreme classes, Classes I and IV, are exclusively com-
posed of filament additive continua. Thus the property “filament connected” can
only occur in Classes II and III. Each of the Classes IIa, IIb, IIIa and IIIb has
both filament additive and non-filament additive members.

4. Filament Sets: Sixteen Questions

In the previous section we presented the most fundamental concepts and facts
related to the new line research, in the area of homogeneous continua, introduced
in [21, 20] and continued in [22, 17, 18]. In this section we collect problems that
are related to this new research. We begin with a question posed in [20].

Question 15. Is every homogeneous continuum either filament additive or fila-790?

ment connected?

This intriguing problem has a positive solution in Classes I, II and IV. Obvi-
ously, in the filament additive part of Class III this question is also answered in
the affirmative. It is interesting that Class III is the only one of the four, where
some other problems remain unsolved. For instance, a possible counterexample to
a classic question by Józef Krasinkiewicz and Piotr Minc whether a nondegener-
ate, hereditarily decomposable, homogeneous continuum must be a simple closed
curve, would have to be in the non-filament additive part of Class III [17, 20].
It is not accidental that the path-connected continuum from [19] is again in that
part of Class III because every non-locally connected, path-connected homoge-
neous continuum is in there [17]. Class III and, in particular, its non-filament
additive part remain mystery areas, which deserve special attention in the future.

The four following problems seem to be essential to understand the ‘filament
structure’ of homogeneous continua.

Question 16. If K is a subcontinuum of an almost filament continuum L in a791?

homogeneous continuum X, is K almost filament?

Question 17. If X is a homogeneous continuum with dense filament composants,792?

is X almost filament?

Question 18. If X is a homogeneous continuum and x ∈ X, is the filament793?

composant Fcs(x) a first category subset of the closure cl (Fcs(x))?

Question 19. If X is a homogeneous, non-locally connected continuum, does794?

there exist a nondegenerate subcontinuum K of X such that for every filament
subcontinuum F of X intersecting K the union K ∪ F is filament?

The two next questions are about products. If K is a subcontinuum of the
product X × Y of continua X and Y , and at least one of the two projections of
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K is a filament subcontinuum of the corresponding space, then K is filament in
X × Y [20]. The converse is not necessarily true. Indeed, David Bellamy and
Janusz  Lysko observed in [3] that if X is a non-circle solenoid, then the diagonal
of the product X ×X is filament even though both projections are ample in the
corresponding spaces. In view of these facts the following question is of interest.

Question 20. Let X and Y be homogeneous continua, πX : X × Y → X and 795?

πY : X × Y → Y the projections, and F a filament subcontinuum of the product
X × Y . Is either πX(F ) almost filament in X, or πY (F ) almost filament in Y ?

A number of rules are known that indicate where the product of given two
homogeneous continua X and Y may belong, in the diagram from the previous
section. For example (IVa) × (IVa) ⊂ (IVa), which is well known, and it means
that if X,Y ∈ Class IVa, then X × Y ∈ Class IVa. In [17] it is shown that
(IVa) × (IVb) ⊂ (IIIa). It is also observed that if X is filamentable, then so is
X × Y . Thus, for instance, (IIa) × (IIIb) ⊂ (IIa) and (IIb) × (IVb) ⊂ (IIa), etc.
The following is an interesting open question in this area.

Question 21. If X and Y are nonfilamentable homogeneous continua, is the 796?

product X × Y nonfilamentable?

The next four questions are interconnected. It can be observed that in a
homogeneous continuum a minimal ample subcontinuum with nonempty interior
would have to be indecomposable. The existence of such subcontinuum would
imply that the space is the finite union of indecomposable subcontinua. Thus the
four following questions are also related to Question 13.

Question 22. If X is a homogeneous continuum such that a minimal ample 797?

subcontinuum of X has nonempty interior, must X be indecomposable?

It can be shown that if a homogeneous continuum has a finite co-filament
subset, then each minimal ample subcontinuum has nonempty interior. Therefore,
the next question would be answered in the affirmative if the previous one was.

Question 23. If X is a homogeneous continuum having a finite co-filament set 798?

C, must X be indecomposable? What if C has at most two elements?

In the next two questions we focus on some converse directions to the ones of
Questions 22 and 23, respectively.

Question 24. If Y is an indecomposable subcontinuum, with nonempty interior, 799?

of a homogeneous continuum X, must Y be a minimal ample subcontinuum of X?

Question 25. Let X be a homogeneous continuum such that every closed co- 800?

filament set in X is infinite. Does every minimal ample subcontinuum of X have
empty interior in X?

In a filament additive continuum all minimal ample subcontinua are indecom-
posable [20]. It is not known whether the converse is true.
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Question 26. Let X be a homogeneous continuum such that every minimal ample801?

subcontinuum of X is indecomposable. Must X be filament additive?

In [21] it has been proved that for a homogeneous continuum X the collection
A(X) of ample subcontinua ofX , as a subspace of C(X), is an AR. It is interesting
to ask the following.

Question 27. Is the collection A(X) of ample subcontinua of a homogeneous802?

continuum X a deformation retract of C(X)?

The only known examples of homogeneous continua having the collection of
minimal ample subcontinua closed belong to Class IV. Therefore, the following
question naturally appears.

Question 28. Let X be a homogeneous continuum, A0(X) be the collection of803–805?

minimal ample subcontinua of X, and assume A0(X) is a closed subset of C(X).
Is A0(X) a partition of X? Is A0(X) the Jones aposyndetic decomposition of X?
Does X belong to Class IV?

Our knowledge about the important class of homogeneous path-connected
continua, especially in the non-locally connected case, is still very limited. It may
be worth to explore the direction of the following question.

Question 29. Let X be a homogeneous continuum having an ample, locally con-806?

nected (path-connected) subcontinuum. Is X path connected?

The last question of the paper is related to Question 9 from section 3. It em-
ploys the concept of micro-local connectedness . A continuum X is micro-locally
connected at p provided there exists an open neighborhood U of p such that the
component of U containing p is locally connected at p. The micro-local connect-
edness at p implies that X is micro-locally connected (everywhere) whenever X
is homogeneous. Note that X from Question 9 is micro-locally connected. In the
following question, the micro-local connectivity of the space implies the filament
local product structure [18], i.e., points have neighborhoods homeomorphic to the
product K × C, where K is a continuum and C is the Cantor set. Moreover, the
micro-local connectivity of the space also implies that K can be locally connected.
In Question 9, additionally, K can be an n-cell (a Menger continuum, the Hilbert
cube). For instance, solenoids and the Case continuum are spaces for which the
hypotheses of Questions 9 and 30 hold.

Question 30. If X is a micro-locally connected homogeneous continuum, is X807?

the inverse limit of locally connected continua with covering bonding maps?
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Part 4

Topological Algebra





Problems about the uniform structures of
topological groups

Ahmed Bouziad and Jean-Pierre Troallic

1. Introduction

In the introduction of their fundamental paper entitled “Pseudocompactness
and uniform continuity in topological groups” published in 1966, W.W. Comfort
and K.A. Ross asserted, without proving it, that if every real-valued left uniformly
continuous function on a topological group G is right uniformly continuous, then
the left and right uniform structures on G coincide. Let us recall that the class of
all {(x, y) ∈ G × G : x−1y ∈ V }, with V a neighborhood of the identity element
e in G, is a basis of the left uniform structure LG on G; a basis of the right
uniform structure RG on G is obtained by replacing “x−1y” by “xy−1”. Actually,
forty years later, and despite many mathematicians’ efforts, it still isn’t known
whether this property is true or false. The aim of this paper is to take stock of
this problem, to present a few new ideas in order to study it, and to raise certain
questions connected with the subject.

The well-known class of all (Hausdorff) balanced topological groups is de-
noted by [SIN]. A topological group G is said to be balanced (or a [SIN]-group) if
LG = RG, or, equivalently, if every neighborhood of the identity element contains
a neighborhood which is invariant under all inner automorphisms of G. (Cf. for
instance [37].) Following Protasov [35], we will say that G is functionally bal-
anced (or an [FSIN]-group) if every bounded real-valued left uniformly continuous
function on G is right uniformly continuous, and we will say that G is strongly
functionally balanced if every real-valued left uniformly continuous function on G
is right uniformly continuous (Itzkowitz [23]). The symbol [FSIN] (respectively
[SFSIN]) stands for the class of all functionally (respectively strongly functionally)
balanced topological groups. It is plain that [SIN] is a subclass of [SFSIN] and
that [SFSIN] is a subclass of [FSIN].

All the questions below are motivated by the following “Itzkowitz’s Problem”,
which was first raised by Itzkowitz in [21]:

Question 1. Is [SFSIN] = [SIN]? 808?

In fact, we will especially consider the following bounded version of the prob-
lem (and from now on, the phrase “the main problem” will denote this case):

Question 2. Is [FSIN] = [SIN]? 809?

Let us recall that between 1988 and 1992, Itzkowitz [21], Milnes [33] and Pro-
tasov [35] provided independent proofs that every locally compact functionally
balanced topological group is balanced; in 1997, and in another direction, Megrel-
ishvili, Nickolas and Pestov [32] proved that every locally connected functionally
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balanced topological group is balanced. Improvements of these results were pre-
sented by Itzkowitz [22] in his survey on the subject published in 1998. We will,
of course, highlight the progress made after this date.

2. The two versions of Itzkowitz’s problem

Considering a bounded version and an unbounded version of the problem was
not immediately deemed useful; for example, in the locally compact case in [21],
or in the locally connected case in [32], it was stated that any G in [SFSIN] is
balanced, although the proof works with [FSIN] instead of [SFSIN]. Nevertheless,
it remains possible that the two problems are only one.

Question 3. Is [SFSIN] = [FSIN]?810?

Clearly, a negative answer to Question 3 would imply a very strong negative
answer to Question 2.

In 1991, Protasov [35] gave a positive answer to Question 2 for the class of
almost metrizable groups (a class which contains both that of locally compact
groups and of metrizable groups) by using the following very interesting charac-
terization of [FSIN]: let VG(e) denote the neighborhood system of the identity
element e of a given topological group G; then G is a member of [FSIN] if and
only if G satisfies the Protasov and Saryev’s criterion [36], that is to say, if and
only if for all A ⊂ G and V ∈ VG(e), there is U ∈ VG(e) such that UA ⊂ AV . The
part played by this criterion in the problem was made completely clear in [4, 6]
when observing, after an immediate re-writing, that it means the equality of the
proximities on G induced by the left and right uniformities.

Another way to formulate Protasov and Saryev’s criterion consists in saying
that for each A,B ⊂ G and V ∈ VG(e) such that AV ⊂ B, there is U ∈ VG(e)
such that UA ⊂ B. This formulation leads us to propose the following criterion
for G to be strongly functionally balanced. It is easily derivable from the work
of Leader [31]. To state it, the following terminology is needed. A sequence
(An)n∈N of subsets of G is said to be strongly left increasing (respectively strongly
right increasing) if there is V ∈ VG(e) such that AnV ⊂ An+1 (respectively
V An ⊂ An+1) for each n ∈ N.

Proposition. The following conditions are equivalent for any topological group G:

(1) G is strongly functionally balanced.
(2) Every sequence of subsets of G which is strongly left increasing is strongly

right increasing.

A topological group is said to be non-Archimedean if there exists a base for
the neighborhood system of the identity element which consists of open sub-
groups. It was discovered by Hernández [13] that every G in [SFSIN] which is
non-Archimedean and ℵ0-bounded is balanced. This result was recently extended
in [40] to every non-Archimedean group which is strongly functionally generated
by the set of all its subspaces of countable o-tightness. For all we know, these



3. SOME REMARKS ABOUT [FSIN] AND [SIN] 363

are the only instances where unbounded uniformly continuous functions were re-
ally involved. Let us take the opportunity to state the criterion for balancedness
that Hernández established beforehand: A topological group G is balanced (i.e.,⋂

x∈G xV x
−1 ∈ VG(e) for all V ∈ VG(e)) if and only if

⋂
a∈A aV a

−1 ∈ VG(e)
for every left uniformly discrete subset A of G and every V ∈ VG(e). This very
important criterion was already implicitly used in [32], and explicitly formulated
in [22]. Let us recall that a subset A of G is said to be left uniformly discrete if
there is V ∈ VG(e) such that aV and bV are disjoint whenever a, b ∈ A and a 6= b.

From now on, we will only consider the bounded version of Itzkowitz’s Prob-
lem, it being understood that most of the problems raised below obviously admit
an unbounded version.

3. Some remarks about [FSIN] and [SIN]

Let G be a topological group. If (and only if) for any precompact uniform
space Y , every left uniformly continuous mapping of G into Y is right uniformly
continuous, then G ∈ [FSIN]. If Y runs through the larger class of all bounded
uniform spaces, a characterization of [SIN] is obtained. Before specifying this
point, let us recall some definitions and properties.

A uniform space Y is said to be bounded if all real-valued uniformly continuous
functions on Y are bounded. Another concept in its right place here is that of
injective uniform space: Y is said to be injective if whenever A is a subspace of a
uniform space X , any uniformly continuous mapping of A into Y has a uniformly
continuous extension to X [18]. It can be shown that if Y is injective, then Y
is bounded. The most familiar example of an injective uniform space is that of
the unit interval [0, 1]; this fact, proved by Katětov [27, 28], is here of great
significance since the belonging of the topological group G to [FSIN] means that
the left and right uniformities on G induce the same proximity on G. Another
standard injective uniform space is the metric Hedgehog H(A) over a set A, that
is the set of all (a, x) (a ∈ A, 0 ≤ x ≤ 1), A× {0} being reduced to a point, with
the metric d((a, x), (a, y)) = |x− y| and d((a, x), (b, y)) = x+ y if a 6= b.

A family (Ai)i∈I of subsets of G is said to be left uniformly discrete if there
is V ∈ VG(e) such that AiV and AjV are disjoint whenever i, j ∈ I and i 6= j. As
already said in Section 2, a subset A of G is left uniformly discrete if the family
({a})a∈A is left uniformly discrete. The subset A of G is said to be right thin (in G)
if
⋂

a∈A aV a
−1 is a neighborhood of the identity element e for every V ∈ VG(e).

Right uniform discreteness and left thinness are defined similarly. Finally, the
subset A of G is said to be lower uniformly discrete if there is V ∈ VG(e) such
that V aV and V bV are disjoint whenever a, b ∈ A and a 6= b.

The following is a key lemma; knowing whether it can be extended to any
left uniformly discrete subset A of G is equivalent to Question 2 since, as said
in Section 2, if every left uniformly discrete subset of G is right thin, then G is
balanced [22].

Lemma ([5]). Every lower uniformly discrete subset of a functionally balanced
group G is right thin in G.



364 38. PROBLEMS ABOUT THE UNIFORM STRUCTURES OF TOPOLOGICAL GROUPS

Proposition. Let G be a topological group. Then the following are equivalent:

(1) G is balanced.
(2) For any bounded uniform space Y , every left uniformly continuous map-

ping f : G→ Y is right uniformly continuous.
(3) For any injective uniform space Y , every left uniformly continuous map-

ping f : G→ Y is right uniformly continuous.
(4) For any set A, every left uniformly continuous mapping f : G → H(A)

is right uniformly continuous.
(5) Any left uniformly discrete family of subsets of G is right uniformly dis-

crete.

Proof. Obviously, (1) implies (2). Any injective uniform space being bounded,
(2) implies (3). Since H(A) is injective, (3) implies (4). The implication (4) ⇒
(5) holds for any two uniformities on a given set X (in place of the left and right
uniformities on G); see [8] or [30]. Finally, let us suppose that (5) holds; then any
two subsets of G which are left proximal are right proximal (so that G ∈ [FSIN]),
and every left uniformly discrete subset of G is lower uniformly discrete; therefore,
by the above key lemma, (1) is satisfied. (Note that the equivalence between (1),
(2) and (3) is also a consequence of the well-known fact that every uniform space
can be embedded in an injective uniform space [18].) �

In view of the previous proposition, Question 2 could be stated as follows:

Question 4. Let G be a functionally balanced group. Is any left uniformly discrete
family of subsets of G right uniformly discrete?

Let us say that a topological group G is injective (respectively bounded) if
the uniform space (G,LG) (or, equivalently, (G,RG)) is injective (respectively
bounded). Since any injective uniform space is proximally fine [17], the answer to
Question 2 is positive for all injective topological groups.

Proposition. Every injective topological group which is functionally balanced is
balanced.

Question 5. Is it true, more generally, that every bounded member of [FSIN]811?

belongs to [SIN]?

It should be pointed out that the answer to the following question is not clear.

Question 6. Is every injective (respectively bounded) topological group function-812–813?

ally balanced?

4. The class [ASIN]

A natural approach to the main problem is to consider any class [C] of topo-
logical groups which contains the class [SIN] as closely as possible, and try to prove
that [C] also includes the class [FSIN]. The dual problem consists in examining
whether the inclusion [C] ∩ [FSIN] ⊂ [SIN] holds, the class [C] now being as wide
as possible. To illustrate that idea, let us consider the class [ASIN] of all almost
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balanced topological groups, that is the class of all topological groups G for which
the identity element e has at least a right thin neighborhood in G. Clearly, the
class [ASIN] is much larger than [SIN]. The following is established in [5].

Theorem. [ASIN] ∩ [FSIN] = [SIN].

In view of that property, Question 2 becomes: Is [FSIN] ⊂ [ASIN]? Moreover,
for any class of topological groups contained in [ASIN], a positive answer to the
main problem holds; it applies, for instance, to every topological group which is
locally precompact or which contains an open subgroup belonging to [SIN]. Here
is another interesting class contained in [ASIN]:

Proposition. Let G be a topological group. Suppose that the identity element of
G has a neighborhood V such that every bounded real-valued continuous function
on G is left uniformly continuous, when restricted to V . Then G is a member of
[ASIN].

It is proved by Itzkowitz and Tkachuk in [26] that every uniformly functionally
complete topological group G is balanced; of course, this follows from the previous
proposition. Recall that G is said to be uniformly functionally complete [26], or
with property U [29], if every real-valued (or, equivalently [7], every bounded real-
valued) continuous function on G is left uniformly continuous.

5. A few other questions

In this section we collect some concrete open questions related to the main
problem.

Question 7. Let G be a functionally balanced group. Is every left uniformly 814?

discrete subset of G right uniformly discrete?

Question 8. Let G be a functionally balanced group. Is every left precompact 815?

subset of G right precompact?

Question 9. Let G be a functionally balanced group. Let us suppose that every 816?

left precompact subset of G is right precompact. Is G balanced then?

The main statement of a recent paper by Itzkowitz [24] consists in saying that
if G ∈ [FSIN] and if every left uniformly discrete subset of G is right uniformly
discrete, then G ∈ [SIN]. This is to be compared with the implication (5) ⇒
(1) in the first proposition of Section 3 above. We must admit that one point in
Itzkowitz’s argumentation eluded us.

It is well known that any balanced topological group is isomorphic (topo-
logically and algebraically) to a subgroup of a product of balanced metrizable
topological groups [9]. (See [37] for details.) This suggests the two following
questions:

Question 10. Is every member of [FSIN] isomorphic to a subgroup of a product 817?

of metrizable topological groups?

The dual question is:
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Question 11. Let G be a member of [FSIN] which is isomorphic to a subgroup818?

of a product of metrizable topological groups. Is G balanced?

A topological group G is said to be ℵ0-bounded if for every neighborhood V
of the identity element, there is a countable subset A of G such that G = AV . It
is well known that G is ℵ0-bounded if and only if it is isomorphic to a subgroup
of a product of metrizable separable topological groups [10].

Question 12. Let G be a member of [FSIN] which is ℵ0-bounded. Is G balanced?819?

In fact, the question arises even in the following simple case.

Question 13. Is every countable member of [FSIN] balanced?820?

Let us remark that a positive answer to Question 13 will imply a positive
answer to Question 4 for ℵ0-bounded groups.

6. A representative case

The fact that a metrizable topological group which is functionally balanced
is balanced belongs to the theory of uniform spaces. The same remark holds,
more generally, for every topological group such that the neighborhood system
of the identity element has a linearly ordered base, and this follows from the
proximally fineness (proved in [1]) of every uniform space (X,U) such that U
has a linearly ordered base. The above positive answer to Question 2 for the
class of all injective topological groups rested on the same sort of argument. The
following combinatorial lemma, established in [1], is essential for the approach of
these results.

Lemma. Let (X,U) be a uniform space and W ∈ U a symmetric entourage. Let
us suppose that (xα, yα) 6∈ W 3 for all α ∈ Γ, where Γ is a set of regular cardinal,
and xα, yα ∈ X. Then, there is a set Γ′ ⊂ Γ with the same cardinal as Γ such that
(xα, yβ) 6∈ W for all α, β ∈ Γ′.

Surprisingly enough, in the context of topological groups, and in order to
tackle our main problem, that lemma may be used under very general topological
conditions. Let us illustrate this by the proposition below. Let us say that a subset
Y of a topological group G is relatively o-radial in G if for every y ∈ Y and every
family (Oi)i∈I of open subsets of G such that y ∈ cl(

⋃
i∈I Oi ∩ Y ) \ ⋃i∈I cl(Oi),

there is a set J ⊂ I of regular cardinality such that for every neighborhood V of y in
G, we have |{j ∈ J : Oj ∩ V = ∅}| < |J |. Obviously, we will say that G is o-radial
if it is relatively o-radial in itself. Radial spaces are defined in [15] (cf. also [2]);
every radial topological group is o-radial. If Y is relatively o-Malykhin in G (as
defined in [6]), that is for instance the case if Y is left (or right) precompact [6],
then Y is relatively o-radial in G. All locally precompact topological groups,
all q-groups (as defined in [12]), are o-Malykhin (i.e., relatively o-Malykhin in
themselves), and therefore o-radial.

Proposition. Every functionally balanced o-radial topological group is balanced.
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Proof. Suppose that G is not balanced. Then there is a symmetric open
W ∈ VG(e) such that for every U ∈ VG(e) one can find gU , hU ∈ G with g−1

U hU ∈ U
and gUh

−1
U 6∈ W 6. Clearly, e ∈ cl(

⋃
U∈VG(e) g

−1
U WhU ). Since G is o-radial, there

is Γ ⊂ VG(e) such that the cardinal of Γ is regular and e ∈ cl(
⋃

U∈Γ′ g
−1
U WhU ) for

every Γ′ ⊂ Γ with the same cardinal as Γ. By the previous lemma, there is a set
Γ′′ ⊂ Γ with the same cardinal as Γ such that gUh

−1
V 6∈ W 2 for all U, V ∈ Γ′′. Let

us put A = {gU : U ∈ Γ′′} and B = W{hV : V ∈ Γ′′}; then A and B are left, but
not right, proximal which contradicts the functional balance of G. �

In fact, if G is an o-radial topological group, then the uniform space (G,LG) is
proximally fine, and that remains true if G is more generally strongly functionally
generated (in the sense of [3]) by its relatively o-radial subspaces.
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On some special classes of continuous maps

Maria Manuel Clementino and Dirk Hofmann

1. Special morphisms of Top

Triquotient maps were introduced by E. Michael in [24] as those continuous
maps f : X → Y for which there exists a map ( )] : OX → OY such that, for
every U, V in the lattice OX of open subsets of X :

(T1) U ] ⊆ f(U),
(T2) X] = Y ,
(T3) U ⊆ V ⇒ U ] ⊆ V ],
(T4) (∀y ∈ U ]) (∀Σ ⊆ OX directed) f−1(y) ∩ U ⊆ ⋃Σ⇒ (∃S ∈ Σ) y ∈ S].

It is easy to check that, if f : X → Y is an open surjection, then the direct image
f( ) : OX → OY satisfies (T1)–(T4). If f : X → Y is a retraction, so that there
exists a continuous map s : Y → X with f ◦ s = 1Y , then ( )] := s−1( ) satisfies
(T1)–(T4). Moreover, if f : X → Y is a proper surjection (by proper map we mean
a closed map with compact fibres: see [2]), then U ] := Y \ f(X \U) fulfills (T1)–
(T4). That is, open surjections, retractions and proper surjections are triquotient
maps. But there are triquotient maps which are neither of these maps (cf. [3, 15]
for examples). However, we do not know whether these three classes of maps
describe completely triquotient maps, in the sense we describe now:

Question 1. Is it true that any triquotient map can be factored through open 821?

surjections, proper surjections and retractions?

T. Plewe in [26] related triquotient maps to Topological Grothendieck Descent
Theory (see [17]). We recall that a continuous map f : X → Y is effective descent
if its pullback functor f∗ : Top/Y → Top/X , that assigns to each g : W → Y
its pullback along f , is monadic. If f∗ is premonadic, then f is a descent map
(see [18, 19]). Descent maps are exactly universal quotient maps [10], or pullback-
stable quotient maps, that is quotient maps whose pullback along any map is still a
quotient. We point out here that this class of maps was introduced independently
by B. Day and M. Kelly [10], by E. Michael [23], under the name biquotient maps,
and by O. Hájek [11], as limit lifting maps. Effective descent maps turned out to
be very difficult to describe topologically. The only characterisation that is known
is due to J. Reiterman and W. Tholen [27] and uses heavily ultrafilter convergence.
(We will concentrate on ultrafilter convergence later in this work.)

Problem 2. Find a characterisation of topological effective descent maps in terms 822?

of the topologies or the Kuratowski closures.

The authors acknowledge partial financial assistance by Centro de Matemática da
Universidade de Coimbra/FCT and Unidade de Investigação e Desenvolvimento
Matemática e Aplicações da Universidade de Aveiro/FCT.
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One possible approach to this problem could be via the existence of a map
between the topologies that resembles the map ( )] introduced by E. Michael to
define triquotient maps. Indeed, it is interesting to notice that one can charac-
terise several of these classes of morphisms using a map OX → OY as follows: a
continuous map f : X → Y is:

(1) a universal quotient map (= biquotient = limit lifting = descent) if and
only if there exists a map ( )] : OX → OY satisfying (T1)–(T3) and

(U4) (∀y ∈ Y ) (∀Σ ⊆ OX directed) f−1(y) ⊆ ⋃Σ⇒ (∃S ∈ Σ) y ∈ S].
(2) a proper surjection if and only if there exists a map ( )] : OX → OY

satisfying (T1)–(T3) and, for every U ∈ OX .
(P4) (∀y ∈ U ]) (∀Σ ⊆ OX directed) f−1(y) ∩ U ⊆ ⋃Σ ⇒ (∃S ∈ Σ) y ∈

S] and f−1(y) ⊆ S.
(3) an open surjection if and only if there exists a map ( )] : OX → OY

satisfying (T1)–(T3) and, for every U ∈ OX
(O4) (∀y ∈ f(U)) (∀Σ ⊆ OX directed) f−1(y) ∩ U ⊆ ⋃

Σ ⇒ (∃S ∈
Σ) y ∈ S].

Problem 3. Describe effective descent maps via the existence of a map ( )] similar823?

to those described above.

A possible approach to Problem 3 might be making use of the following result,
that we could prove only for maps between finite topological spaces. It is based
on the existence of a map between the lattices of locally closed subsets (i.e., the
subsets which are an intersection of an open and a closed subset), which we will
denote by LC( ).

Theorem 1. If X and Y are finite spaces, a continuous map f : X → Y is
effective descent if and only if, for every pullback g : W → Z of f , there exists a
map ( )] : LC(W )→ LC(Z) such that, for every A,B ∈ LC(W ),

(1) A] ⊆ g(A);
(2) W ] = Z;
(3) A ⊆ B ⇒ A] ⊆ B];
(4) (∀z ∈ Z) g−1(z) ⊆ A⇒ z ∈ A].

We believe that the work of G. Richter [28] may be inspiring to attack Prob-
lem 3.

In the pioneer work [15], G. Janelidze and M. Sobral describe several classes
of maps using convergence, whenever X and Y are finite spaces.

Theorem 2 ([15]). If X and Y are finite spaces, a continuous map f : X → Y
is:

(a) a universal quotient if and only if, for every y0, y1 ∈ Y with y1 → y0,
there exist x0, x1 ∈ X such that x1 → x0, f(x0) = y0 and f(x1) = y1.

(b) an effective descent map if and only if, for every y0, y1, y2 ∈ Y withk
y2 → y1 → y0, there exist x0, x1, x2 ∈ X such that x2 → x1 → x0 and
f(xi) = yi, for i = 0, 1, 2.
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(c) a triquotient map if and only if, for every y0, · · · , yn ∈ Y with
yn → · · · → y0, there exist x0, · · · , xn ∈ X such that xn → · · · → x0

and f(xi) = yi, for i = 0, · · · , n.
(d) a proper map if and only if, for every x1 ∈ X and y0 ∈ Y with f(x1)→

y0, there exists x0 ∈ X such that x1 → x0 and f(x0) = y0.
(e) an open map if and only if, for every x0 ∈ X and y1 ∈ Y with y1 → f(x0),

there exists x1 ∈ X such that x1 → x0 and f(x1) = y1.
(f) a perfect map if and only if, for every x1 ∈ X and y0 ∈ Y with f(x1)→

y0, there exists a unique x0 ∈ X such that x1 → x0 and f(x0) = y0.
(g) a local homeomorphism (or étale map) if and only if, for every x0 ∈ X

and y1 ∈ Y with y1 → f(x0), there exists a unique x1 ∈ X such that
x1 → x0 and f(x1) = y1.

We recall that a continuous map f : X → Y is perfect if it is proper and
Hausdorff (i.e., if f(x) = f(x′) and x 6= x′, there exists U, V ∈ OX with x ∈ U ,
x′ ∈ V and U ∩ V = ∅), and that it is a local homeomorphism, or an étale map,
if it is open and, for each x ∈ X , there exists U ∈ OX such that x ∈ U and
f|U : U → f(U) is a homeomorphism.

This work led us to investigate the extension of these characterisations to maps
between (infinite) topological spaces. The right setting to use convergence turned
out to be the ultrafilter convergence. As a side result we also obtained, together
with W. Tholen, a useful characterisation of exponentiable maps via convergence
(see [9]) we will mention in Section 2.

The results corresponding to (a), (d), (e), (f) were either known or easy to
obtain; in fact, the characterisation of universal quotient maps using convergence
is the basis for the definition of limit lifting maps by Hájek, and the descriptions of
open, proper and perfect maps are straightforward (see [5]). Statement (b) corre-
sponds, in the infinite case, to the Reiterman–Tholen characterization of effective
descent maps. Indeed, although this is not completely evident in the original for-
mulation [27], the notions and techniques introduced in [5] clarify completely the
analogy between these characterizations. In the latter paper, we also generalized
the Janelidze–Sobral–Clementino characterization of triquotient maps (c) to the
infinite case, as we will explain later.

After that, only a characterization of local homeomorphism, using ultrafilter
convergence, remained unknown to us. To explain the problem we first state the
characterisation of proper, perfect and open maps.

Proposition 3.

(1) A continuous map f : X → Y is proper (perfect) if and only if, for each
ultrafilter x in X with f [x]→ y in Y , there exists a (unique) x in X such
that x→ x and f(x) = y:

X

f
��

x
_

��

//____ x_

���
�

Y f [x] // y
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(2) A continuous map f : X → Y is open if and only if, for each x ∈ X and
each ultrafilter y in Y with y→ f(x) in Y , there exists an ultrafilter x in
X such that x→ x and f(x) = y:

X

f
��

x
_

���
�

//_____ x_

��
Y y // f(x)

Analysing the characterisations of proper and perfect map, we conjectured
that, from the characterisation of open map, one could obtain a characterisation
of local homeomorphism imposing the unicity of the lifting of the convergence
y→ f(x).

Indeed, the parallelism between the two situations becomes evident once we
observe that, if we denote by δf : X → X ×Y X , x 7→ (x, x), the continuous map
induced by the pullback property of the (pullback) diagram below

X
1X

!!
δf

%%KKKKKK

1X

((

X ×Y X
π1

��

π2 // X
f

��
X

f // Y

then:

• a continuous map f : X → Y is perfect if and only if f and δf are proper
maps,

• a continuous map f : X → Y is a local homeomorphism if and only if f
and δf are open maps.

Eventually we have shown, together with G. Janelidze [8], that our conjecture
was wrong. Calling a continuous map f : X → Y having the unicity of the lift-
ing of y → f(x) described above a discrete fibration (using the parallelism with
categorical discrete fibrations), one has:

Proposition 4 ([8]). Every local homeomorphism is a discrete fibration (and the
converse is false).

We could prove that the two notions coincide under some conditions on the
domain of the map. For that, given a cardinal number λ, we call a topological
space X a λ-space if the character of X is at most λ and each subset of X with
cardinality less than λ is closed.

Theorem 5 ([8]). If X is a λ-space, for some cardinal λ, then, for continuous
maps with domain X, local homeomorphisms and discrete fibrations coincide.

Among λ-spaces one has the indiscrete spaces (=0-spaces), the Alexandrov
spaces (=1-spaces) and the first countable T1-spaces (=ℵ0-spaces).

Problem 4. Characterise those topological spaces X such that, for a continuous824?

map f : X → Y , f is a local homeomorphism if and only if it is a discrete fibration.
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In order to formulate more results and problems in this context we need to
consider iterations of the ultrafilter convergence. The right way of doing this is
making it a functorial process. There are two natural choices in this direction.
We may use the ultrafilter functor U : Rel→ Rel, which assigns to each set X its
set of ultrafilters UX , and to each relation r : X 9 Y the corresponding relation
Ur : UX 9 UY (see for instance [1]). For maps f : X → Y , Uf : UX → UY is
the usual map; for simplicity we write Uf(x) = f [x]. The most valuable functor
in this study is the functor Conv: Top → URS, where URS is the category of
ultrarelational spaces and convergence preserving maps (see [5]), which assigns to
each topological space X the space Conv(X); here Conv(X) is the set consisting of
pairs (x, x), where x is a point and x is an ultrafilter converging to x in X , equipped
with a convergence structure as follows: first we consider the map p : Conv(X)→
X with p(x, x) = x; an ultrafilter X converges to (x, x) in Conv(X) if p[X] = x.
Each continuous map f : X → Y induces a map Conv(f) : Conv(X) → Conv(Y )
with (x, x) 7→ (f [x], f(x)), which preserves the convergence structure (see [5] for
details).

It is clear that we can consider instead Conv: URS → URS. Furthermore,
the map p : Conv(X) → X preserves the structure, so that it defines a natural
transformation p : Conv→ 1URS.

This functor Conv is an excellent tool to describe our classes of maps via their
lifting of convergence. For that we need to consider (possibly transfinite) iterations
of the functor Conv: URS→ URS, as described in [5].

For an ordinal number α we call a continuous map f : X → Y between ultra-
relational (or topological) spaces α-surjective if, for every β < α, Convβ(f) : Convβ(X)→
Convβ(Y ) is surjective; f : X → Y is Ω-surjective if Convα(f) is surjective for ev-
ery ordinal α.

Theorem 6 ([5]). For a continuous map f : X → Y between topological spaces,

(1) f is 1-surjective if and only if it is surjective;
(2) f is 2-surjective if and only if it is a universal quotient map (if and only

if it is a descent map);
(3) f is 3-surjective if and only if it is an effective descent map;
(Ω) f is Ω-surjective if and only if it is a triquotient map.

Similarly to Problem 2, we may formulate the following

Problem 5. Study the properties of the classes of 4-surjective, . . . , n-surjective, 825?

ω-surjective maps, and possible characterisations of these classes using the topolo-
gies (or even the sequential closures).

Concerning assertion (Ω) above, it is shown in [5] that, for a continuous map
f : X → Y , f is a Ω-surjection if and only if f is a λY -surjection, where λY is
the successor of the cardinal of Y . This covers the result already known for a
continuous map between finite spaces: f is a triquotient (hence Ω-surjective) if
and only if it is ω-surjective (see [3, 15]).
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Problem 6. Characterise those topological spaces Y such that, for a continuous826?

map f : X → Y , f is Ω-surjective if and only if it is ω-surjective.

Using the functor U : Rel → Rel instead of Conv: URS → URS, one can
also iterate U and formulate the notions of U -α-surjective map, for any continuous
map f : X → Y between topological spaces. (We will keep the name α-surjective
for Conv-α-surjective maps.)

It is easy to check that every 3-surjective map is U -3-surjective, i.e. every
effective descent map is U -3-surjective.

Question 7. Is every U -3-surjective map effective descent?827?

Question 8. If the answer to the previous question is negative, is the class of828?

effective descent maps the least pullback-stable class containing the U -3-surjective
maps?

Furthermore, the functor Conv may be also useful to characterise local home-
omorphisms as special discrete fibrations. For instance, one may ask the following:

Question 9. Is every continuous map f such that both f and Conv(f) are discrete829?

fibrations a local homeomorphism?

There is another problem in Topological Descent Theory, described in the
sequel, that justifies the study of local homeomorphisms, or étale maps, using
convergence.

The notion of a effective (global-)descent map can be generalised by consid-
ering instead of all morphisms with codomain Y a well-behaved subclass E(Y )
of morphisms. One important example is obtained by taking E the class of all
étale maps, so that E(Y ) is the category of étale bundles over the space Y . A
continuous map f : X → Y is called effective étale-descent if the pullback functor
f∗ : E(Y )→ E(X) is monadic. For finite spaces X and Y , the problem of charac-
terising effective étale-descent maps was solved by G. Janelidze and M. Sobral:

Theorem 7 ([16]). The morphism f : X → Y in FinTop is effective étale-descent
if and only if the functor ϕ : Z(Eq(f))→ Y is an equivalence of categories.

Here Eq(f) is the equivalence relation on X induced by f , and Z(Eq(f)) is
the category having as objects the points of X ; a morphism from x to x′ is an
equivalence class of zigzags in X (see Figure ta-ch-fig-zigzags).

Now ϕ : Z(Eq(f))→ Y is an equivalence of categories if and only if

(1) f : X → f(X) is a quotient map,
(2) Z(Eq(f)) is a preorder and
(3) f : X → Y is essentially surjective on objects (i.e., for every y ∈ Y there

exists x ∈ X such that f(x)→ y → f(x)).

The obvious question is now how to transport this result into the context of all
topological spaces.

Question 10. Characterise effective étale-descent maps f : X → Y between arbi-830?

trary topological spaces.
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x
��

xn−1 ∼f x′n−1

��
xn−2 ∼f x′n−2

��

��
x1 ∼f x′1

��
x′.

Figure 1. An equivalence class of zigzags

A possible solution to the problem above requires most likely translations of
point-convergence notions and arguments to (ultra)filter-convergence ones. Both
notions, of local homeomorphism and quotient map, should be considered in this
problem via ultrafilter convergence. We have already mentioned the study of
local homeomorphisms using convergence developed in [8]; possible descriptions
of quotients, and their relations to zigzags, are studied in [14].

2. Corresponding morphisms in related categories

We study now the same problems in categories related to Top. Here same
will be used with two meanings: either we consider characteristic categorical prop-
erties of the morphisms, or we deal with topological categories whose objects and
morphisms have a description similar to the (ultrafilter) convergence description
of Top. (We will not focus in this latter subject since it would take us too far
from our purpose here. But we refer the Reader to [6].)

We start by considering some important supercategories (improvements) of
Top. The interest in these categories has its roots in the fact that many cat-
egorically defined constructions either cannot be carried out in Top or destroy
properties of spaces or maps. In order to perform these constructions, topologists
move (temporarily) outside Top into larger but better behaved environments such
as the category PsTop of pseudotopological spaces and continuous (i.e., conver-
gence preserving) maps. Recall that a pseudotopology on a set X may be described
as a convergence relation x→ x between ultrafilters x on X and points x ∈ X such
that the principal ultrafilter ẋ converges to x. The category PsTop contains
Top as a full and reflective subcategory; in fact, it is the quasitopos hull of Top
(see [12] for details). Being in particular a quasitopos, PsTop is locally cartesian
closed and therefore the class of effective descent morphisms coincides with the
class of quotient maps.

A pseudotopology on a set X is called a pretopology if it is closed under inter-
sections in the sense that

⋂
y→x y ⊆ x implies x → x, for each ultrafilter x ∈ UX
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and each x ∈ X . Hence convergence to a point x is completely determined by
the neighbourhood filter

⋂
y→x y. Together with continuous maps pretopological

spaces form the category PrTop. In [12] is is shown that PrTop is the extensional
topological hull of Top, that is, the smallest extensional topological category con-
taining Top nicely. However, in contrary to PsTop, the category PrTop is not
cartesian closed. Exponentiable pretopological spaces are characterised in [22] as
those spaces where each point has a smallest neighbourhood. The map version
of this result is established in [29]: it states that a continuous map f : X → Y
between pretopological spaces is exponentiable if and only if each x ∈ X has a
neighbourhood V such that, for each ultrafilter x in X , if V ∈ x and f [x] → f(x)
in Y , then x → x in X . Whereas exponentiable objects and morphisms are fully
understood in PrTop, effective descent maps have not been described yet.

Question 11. Characterise effective descent maps f : X → Y between pretopo-831?

logical spaces.

The study of these classes of maps is also interesting in metric-like categories.
Together with metric spaces we also consider premetric spaces. By a premetric
space we mean a set X together with a map a : X×X → [0,∞] such that a(x, x) =
0 and a(x, z) ≤ a(x, y) + a(y, z), for any x, y, z ∈ X ; that is, a premetric is a,
possibly infinite, reflexive non-symmetric distance. We consider now the categories
Met, of metric spaces and non-expansive maps, and PMet, of premetric spaces
and non-expansive maps.

Exponentiable and effective descent maps between metric, and more generally
premetric, spaces are characterised in [4] and [7] respectively. We list here the
results which might serve, together with the corresponding results for topological
spaces, as a guideline for the study of these classes of maps in approach spaces as
outlined below.

Theorem 8. A non-expansive map f : (X, a)→ (Y, b) between premetric spaces is
exponentiable in PMet if and only if, for each x0, x2 ∈ X, y1 ∈ Y and u0, u1 ∈ R
such that u0 ≥ b(f(x0), y1), u1 ≥ b(y1, f(x2)) and u0+u1 = max{a(x0, x2), b(f(x0), y1)+
b(y1, f(x2))} <∞,

(∀ε > 0) (∃x1 ∈ f−1(y1)) a(x0, x1) < u0 + ε and a(x1, x2) < u1 + ε.

Theorem 9. A non-expansive map f : (X, a) → (Y, b) between metric spaces is
exponentiable in Met if and only if it is exponentiable in PMet and has bounded
fibres.

Theorem 10. A morphism f : (X, a)→ (Y, b) in PMet (Met) is effective descent
if and only if

(∀y0, y1, y2 ∈ Y ) b(y2, y1) + b(y1, y0) = inf
xi∈f−1(yi)

a(x2, x1) + a(x1, x0).

Approach spaces were introduced by R. Lowen [20] as a natural generalisation
of both topological and metric spaces. They can be defined in many different
ways; however, the most convenient presentation for our purpose uses ultrafilter
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convergence (see also [6]): an approach space (X, a) is a pair consisting of a set X
and a numerified convergence structure a : UX×X → [0,∞] such that 0 ≥ a(ẋ, x)
and Ua(X, x)+a(x, x) ≥ a(mX(X), x). A map f : X → Y between approach spaces
(X, a) and (Y, b) is called non-expansive if a(x, x) ≥ b(Uf(x), f(x)), for all x ∈ UX
and x ∈ X . We denote by App the category of approach spaces and non-expansive
maps. So far, in App little is known about exponentiable objects and morphisms
and nothing about effective descent morphisms, though one may conjecture that a
combination of the known results in Top and Met will provide characterisations
of these classes of objects and maps in App.

Question 12. Characterise exponentiable objects and maps in App. 832?

Question 13. Characterise effective descent maps in App. 833?

Exponentiable objects in approach theory are studied in [21, 13], and the
following sufficient condition is obtained.

Theorem 11 ([13]). An approach space (X, a) is exponentiable provided that,
for each X ∈ U2X, x ∈ X with a(mX(X), x) < ∞, each γ0, γ1 ∈ [0,∞) with
γ1 + γ0 = a(mX(X), x), and each ε > 0, there exists an ultrafilter x such that
Ua(X, x) ≤ γ1 + ε and a(x, x) ≤ γ0 + ε.

We conjecture that the condition above is also necessary for (X, a) to be
exponentiable. A first step towards a solution to Problem 13 is to define the
functor Conv in the context of approach theory. This, by the way, would also
open the door to carry the notion of triquotient map to App.

We turn now our attention to the category Unif of uniform spaces and uni-
formly continuous maps. The question regarding exponentiable maps was settled
by S. Niefield [25].

Theorem 12. A morphism f : X → Y in Unif is exponentiable if and only if
there exists U ⊆ X uniform for Y satisfying

(1) GV = {(y, y′) ∈ Y ×Y | V0y,y′ = Vyy′} is uniform for Y for all V uniform
for X,

(2) there exists G0 uniform for Y such that the projection V0yy′ → Yy is a
surjection whenever (y, y′) ∈ G0.

Here Vyy′ = V ∩ f−1(y) × f−1(y′). In particular we have that a uniform
space is exponentiable if and only its uniformity has a smallest member. However,
nothing is known about effective descent maps in Unif .

Question 14. Characterise effective descent maps f : X → Y in Unif . 834?
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Dense subgroups of compact groups

W. W. Comfort

1. Introduction

The symbol G here denotes the class of all infinite groups, and TG denotes
the class of all infinite topological groups which satisfy the T0 separation prop-
erty. Each element of TG is, then, a Tychonoff space (i.e., a completely regular,
Hausdorff space) [49, 8.4]. We say that G = (G, T ) ∈ TG is totally bounded
(some authors prefer the expression pre-compact) if for every U ∈ T \ {∅} there
is a finite set F ⊆ G such that G = FU . Our point of departure is the following
portion of Weil’s Theorem [77]: Every totally bounded G ∈ TG embeds as a
dense topological subgroup of a compact group G; this is unique in the sense that

for every compact group G̃ containing G densely there is a homeomorphism-and-

isomorphism ψ : G � G̃ fixing G pointwise.
As usual, a space is ω-bounded if each of its countable subsets has compact

closure. For G = (G, T ) ∈ TG we write G ∈ C [resp., G ∈ Ω; G ∈ CC;
G ∈ P; G ∈ TB] if (G, T ) is compact [resp., ω-bounded; countably compact;
pseudocompact; totally bounded]. And for X ∈ {C,Ω,CC,P,TB} and G ∈ G
we write G ∈ X′ if G admits a group topology T such that (G, T ) ∈ X. The
class-theoretic inclusions

C ⊆ Ω ⊆ CC ⊆ P ⊆ TB ⊆ TG and

C′ ⊆ Ω′ ⊆ CC′ ⊆ P′ ⊆ TB′ ⊆ TG′ = G

are easily established. (For P ⊆ TB, see [29]. For TG′ = G, impose on an
arbitrary G ∈ G the discrete topology.)

We deal here principally with (dense) subgroups of groups G ∈ C, that is,
with G ∈ TB. Given G ∈ G we write tb(G) := {T : (G, T ) ∈ TB}. It is good to
remember that tb(G) = ∅ and |tb(G)| = 1 are possible (for different G); see 2.3(a)
and 5.8(2) below.

The symbol A is used as a prefix to indicate an Abelian hypothesis. Thus,
for emphasis and clarity: The expression G ∈ AG may be read “G is an infinite
Abelian group”, and G ∈ ACC′ may be read “G is an infinite Abelian group
which admits a countably compact Hausdorff group topology.”

For G,H ∈ G, we write G =alg H to indicate that G and H are algebraically
isomorphic. For (Tychonoff) spaces X and Y , we write X =top Y to indicate that
the spaces X and Y are homeomorphic. The relation G =alg H promises nothing
whatever about the underlying topologies (if any) on G and H ; similarly, the rela-
tion X =top Y is blind to ambient algebraic considerations (if any). We say that
G,H ∈ TG are topologically isomorphic, and we write G ∼= H , if some bijection
between G and H establishes simultaneously both G =alg H and G =top H .

379
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We distinguish between Problems and Questions. As used here, a Problem is
open-ended in flavor, painted with a broad brush; different worthwhile contribu-
tions (“solutions”) might lead in different directions. In constrast, a Question
here is relatively limited in scope, stated in narrow terms; the language suggests
that a “Yes” or “No” answer is desired—although, as we know from experience,
that response may vary upon passage from one axiom system to another.

With thanks and appreciation I acknowledge helpful comments received on
preliminary versions of this paper from: Dikran Dikranjan, Frank Gould, Kenneth
Kunen, Gábor Lukács, Jan van Mill, Dieter Remus, and Javier Trigos-Arrieta.

2. Groups with topologies of pre-assigned type

Problem 2.1. Let X ∈ {C,Ω,CC,P,TB}. Characterize algebraically the835–839?

groups in X′.

Problem 2.2. Let X ∈ {AC,AΩ,ACC,AP,ATB}. Characterize algebraically840–844?

the groups in X′.

Discussion 2.3. (a) That ATB′ = AG is easily seen (as in Theorem 3.1(a)
below, for example, using the fact that Hom(G,T) separates points of G whenever
G ∈ AG). That the inclusion TB′ ⊆ G is proper restates the familiar fact that
there are groups G ∈ G whose points are not distinguished by homomorphisms
into compact (Hausdorff) groups; in our notation, these areG such that tb(G) = ∅.
For example: according to von Neumann and Wigner [76], [49, 22.22(h)], every
homomorphism h from the (discrete) special linear group G := SL(2,C) to a
compact group satisfies |h[G]| = 1.

(b) It is a consequence of the Čech–Pospisil Theorem [9] (see also [42, Prob-
lem 3.12.11], [50, 28.58]) that every G ∈ C satisfies |G| = 2w(G). Thus in order
that G ∈ G satisfy G ∈ C′ it is necessary that |G| have the form |G| = 2κ.

(c) The algebraic classification of the groups in AC′ is complete. The full
story is given in [49, §25].

(d) It is well known that every G ∈ P′ satisfies |G| ≥ c. See [26] or [13, 6.13]
for an explicit proof, and see [8], [75, 1.3] for earlier, more general results.

(e) The fact that every pseudocompact space satisfies the conclusion of the
Baire Category Theorem has two consequences relating to Problems 2.1 and 2.2.
(1) If G ∈ P′, the cardinal number |G| = κ cannot be a strong limit cardinal with
cf(κ) = ω [75]. (2) every torsion group in AP′ is of bounded order [27, 7.4].

(f) No complete characterization of the groups in P′ (nor even in AP′) yet
exists, but the case of the torsion groups in AP′ is well understood ([40, 24, 41]):
A torsion group G ∈ AG of bounded order is in P′ iff for each of its p-primary
constituents G(p) each infinite cardinal number of the form κ := |pk ·G(p)| satisfies⊕

κ Z(p) ∈ P′. (Thus for example, as noted in [24], if p is prime and κ is a strong
limit cardinal of countable cofinality, then

⊕
2κ Z(p2) ⊕⊕κ Z(p) ∈ AP′ while⊕

2κ Z(p)⊕⊕κ Z(p2) /∈ P′.)
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(g) An infinite closed subgroup H of G ∈ X ∈ {C,Ω,CC,TB} satisfies
H ∈ X, but the comparable assertion for X = P is false [30]. Indeed every
H ∈ TB embeds as a closed topological subgroup of a group G ∈ P ([32, 70, 73]).

(h) Examples are easily found in ZFC showing that the inclusions AC ⊆ AΩ ⊆
ACC ⊆ AP ⊆ ATB are proper. (See also in this connection 3.3(h) below.) As is
indicated in [15, 3.10], the inclusions AC′ ⊆ AΩ′ and ACC′ ⊆ AP′ ⊆ ATB′ are
proper in ZFC, but the examples cited there from the literature to show AΩ′ 6=
ACC′ rest on either CH [68, 69] or MA [71].

Question 2.4. Is there in ZFC a group G ∈ ACC′ \AΩ′? 845?

3. Topologies induced by groups of characters

For G ∈ G, we use notation as follows.

• H(G) := Hom(G,T), the set of homomorphisms from G to the circle
group T.

• S(G) is the set of point-separating subgroups of H(G).
• When A ∈ S(G), TA is the smallest topology on G with respect to which

each element of A is continuous.
• When (G, T ) ∈ TG, (̂G, T ) is the set of T -continuous funtions in H(G).

These symbols are well-defined for arbitrary groups G, but (in view of the
privileged status of the group T) typically they are useful only when G is Abelian.
The fact that the groups A ∈ S(G) are required to separate points ensures that
the topology TA satisfies the T0 separation property required throughout this
article; indeed, the evaluation map eA : G → TA (given by eA(x)h = h(x) for
x ∈ G, h ∈ A) is an injective homomorphism, and TA is the topology inherited
by G (identified in this context with eA[G]) from TA. When H(G) is given the
(compact) topology inherited from TG, a subgroup A ⊆ H(G) satisfies A ∈ S(G)
iff A is dense in H(G) (cf. [28, 1.9]).

The point of departure for our next problem is this theorem.

Theorem 3.1 ([28]). Let G ∈ AG. Then

(a) A ∈ S(G)⇒ (G, TA) ∈ ATB;
(b) (G, T ) ∈ ATB⇒ ∃ A ∈ S(G) such that T = TA;

(c) A ∈ S(G)⇒ ̂(G, TA) = A; and
(d) A ∈ S(G)⇒ w(G, TA) = |A|.

It follows from Theorem 3.1(c) that the map A 7→ TA from S(G) to tb(G)
is an order-preserving bijection between posets, so tb(G) is large. That theme is
noted and developed at length in [28, 5, 61, 23, 25, 34, 4], where the following
results (among many others) are given for such G: (a) From |H(G)| = 2|G| ([52],

[43, 47.5], [49, 24.47]) and |S(G)| = 22|G|

([53], [5, 4.3]) follows |tb(G)| = 22|G|

;

(b) from any set of 22|G|

-many elements TA ∈ tb(G), some 22|G|

-many of the spaces
(G, TA) are pairwise nonhomeomorphic; (c) each of the two posets (tb(G),⊆) and
(P(P(|G|)),⊆) embeds into the other, so any question relating to the existence
of a chain or anti-chain or well-ordered set in tb(G) of prescribed cardinality is
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independent of the algebraic structure of G and is equivalent to the corresponding
strictly set-theoretic question in the poset (P(P(|G|)),⊆).

Problem 3.2. Fix G ∈ AG and fix X ∈ {AC,AΩ,ACC,AP,ATB}. For846–850?

which A ∈ S(G) is (G, TA) ∈ X?

Discussion 3.3. (a) From 3.1(a), the answer for X = ATB is “all such A”.
(b) As mentioned earlier, every group in C′ (whether or not Abelian) satisfies

|G| = 2w(G). Thus for many G ∈ AG (for example, those with cardinality not of
the form 2κ) the answer for X = AC is “no such A”.

(c) In parallel with (b), 2.3(e) above indicates that for many G ∈ AG there
is no A ∈ S(G) such that (G, TA) ∈ P.

(d) Several authors address, peripherally or directly these questions: Given
G ∈ AG, (a) find A ∈ S(G) such that (G, TA) ∈ AP; or, (b) for which h ∈ H(G)
is there A ∈ S(G) such that h ∈ A and (G, TA) ∈ AP? With no pretense toward
completeness I mention in this connection [48, especially 3.4], also [32, 4.1], [27,
5.11, 6.5], [44], [48, 3.5, §4], [17, 3.6, 3.10], [56].

(e) For each of the five classes X considered in Problem 3.2, the continuous
homomorphic image of each G ∈ X is itself in X. Thus when B ⊆ A ∈ S(G) and
B ∈ S(G), from (G, TA) ∈ X follows (G, TB) ∈ X. Since a compact (Hausdorff)
topology is minimal among Hausdorff topologies, it is immediate that if (G, TA) ∈
AC and A ⊇ B ∈ S(G), then A = B.

(f) That remark leads naturally to less trivial considerations. We say as usual
that a group (G, T ) ∈ TG is minimal , and we write (G, T ) ∈ M, if no (T0)
topological group topology on G is strictly coarser than T . The difficult question,
whether (in our notation) AM ⊆ ATB holds, occupied The Bulgarian School
for nearly 15 years, finding finally its positive solution in 1984 [59]. (An earlier
example had shown that the relation M ⊆ TB is false.) The relevance of the
class M to Problem 3.2 is the obvious fact that (G, TA) ∈ AM iff A is minimal in
S(G). We noted in (e) that C ⊆M, so AC′ ⊆ AM′, but many G ∈ AG = ATB′

are not in AM′: the groups Qn (n < ω), Z(p∞) are examples. For a careful study,
with proofs and historical commentary and a comprehensive bibliography, of the
groups which are/are not in the classes M, AM, M′, AM′, including a proof
of the theorem AM ⊆ ATB, the reader should consult [38]. See also [36] for
background on the principal remaining outstanding problem in this area: Which
reduced, torsion-free G ∈ AG are in AM′?

(g) Let D be a dense subgroup of E ∈ ATG. Since each h ∈ D̂ is uniformly

continuous and T is complete, each such h extends (uniquely) to h ∈ Ê; we have,

then, D̂ =alg Ê. Now let {Gi : i ∈ I} ⊆ ATB and set G :=
∏

i∈I Gi. From the

uniqueness aspect of Weil’s theorem we have G =
∏

i∈I Gi; further, the relation

Ĝ =
⊕

i∈I Ĝi is well known. (Here
⊕

i∈I Ĝi is given the discrete topology. See [49,
23.21] for a comprehensive treatment.) It follows from the Tychonoff Product
Theorem that that if each Gi ∈ X ∈ {C,Ω,TB} then also G ∈ X; it is shown
in [28] that, similarly, if each Gi ∈ P then also G ∈ P.
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The relevance of the foregoing paragraph to Problem 3.2 is this: If X ∈
{C,Ω,P,TB} and {Gi : i ∈ I} ⊆ AG, and if Ai ∈ S(Gi) makes (Gi, TAi

) ∈ X,
then A :=

⊕
i∈I Ai makes also (G, TA) ∈ X. This indicates a global coherence

or stability in passing among the groups G ∈ AG while seeking A ∈ S(G) for
which (G, TA) ∈ X. [Remark. In contrast to the classes C, Ω, P and TB, the
issue of “the closure under the formation of products” in the class CC is much
more complex and subtle. See [39] for an extended discussion and many relevant
problems; see also Question 5.1 below.]

(h) The algebraic structure of a group A ∈ S(G) is not of itself sufficient to
determine whether or not (G, TA) ∈ X. For examples to that effect, begin with
K := {0, 1}c in its usual compact topology and define G :=

⊕
c{0, 1}. (0) Let

G0 be the Σ-product in K; (1) Let D be a countable, dense subgroup of K and
let G1 ∈ CC satisfy |G1| ≤ c and D ⊆ G1 ⊆ K. [Such a group G1 may be
defined by choosing for each countable set C ⊆ D an accumulation point pC of C
in K, forming the subgroup of K generated by D and all points pC , and iterating
the process over the countable ordinals; see [30] for details, and see [63] for the
modified argument furnishing such G1 which is p-compact (in the sense of 5(A)
below) for pre-assigned p ∈ ω∗.] (2) Let G2 be a proper, dense pseudocompact
subgroup of G0. [Such a group is given in [27, 7.3], [33].] (3) Write K = K0×K1

with Ki
∼= K, let H and E be the natural copies of G0 and D in K0 and K1,

respectively, and set G3 := H × E ⊆ K. Then each Gi is dense in K, with
|Gi| ≤ c by construction. For 0 ≤ i ≤ 2 we have |Gi| ≥ c by 2.3(d), and also
|G3| = |G0| · |D| ≥ c. Thus each Gi is a Boolean group with |Gi| = c, so Gi =alg G
for 0 ≤ i ≤ 3 [49, A.25]. Let Ti be the topology on Gi inherited from K, and
(using Theorem 3.1(b) above) let Ai ∈ S(G) satisfy (G, TAi

) ∼= (Gi, Ti). Again,
since Ai is a Boolean group with |Ai| = w(G, TAi

) = c, we have Ai =alg ⊕c{0, 1}
for 0 ≤ i ≤ 3. Then we have

(G, TA0
) ∼= G0 ∈ Ω \C. (Proof. |G0| = c < 2c = |K|.)

(G, TA1
) ∼= G1 ∈ CC \Ω. (Proof. D is dense in G1 with |D| = ω, so G1 ∈ Ω

gives the contradiction G1 = K.)
(G, TA2

) ∼= G2 ∈ P \CC. (Proof. The general result given in [12], [27, 3.3]
shows that no proper, Gδ-dense subset of G0 is countably compact.)

(G, TA3
) ∼= G3 ∈ TB \ P. (Proof. If G3 ∈ P then also its continuous image

E = π1[G3] ∈ P, which with |E| = ω < c contradicts 2.3(d).)

Without specific reference to any of the classes X here considered, two ques-
tions now arise naturally. (See also Problem 5.6 below for a related query.)

Problem 3.4. Fix G ∈ AG. For which A,B ∈ S(G) does the relation (G, TA) ∼= 851?

(G, TB) hold?

Problem 3.5. Fix G ∈ AG. For which A,B ∈ S(G) does the relation (G, TA) =top 852?

(G, TB) hold?

Discussion 3.6. (a) A simple example, easily generalized, will suffice to indi-
cate a distinction between Problems 3.4 and 3.5. Choose A,B ∈ S(Z) such that
|A| = |B| = ω and A 6=alg B. The spaces (Z, TA), (Z, TB) are then countable
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and metrizable without isolated points, hence according to a familiar theorem
of Sierpiński [64] (see also [42, Exercise 6.2.A(d)]) are homeomorphic. So here
(Z, TA) =top (Z, TB) and (Z, TA) =alg (Z, TB), but (Z, TA) ∼= (Z, TB) fails since

from Theorem 3.1(c) we have ̂(Z, TA) = A 6=alg B = ̂(Z, TB).
(b) It is evident from Theorem 3.1(d) that if (G, TA) =top (G, TB) then |A| =

|B|. The converse fails, however, even in the case G = Z: It is shown in [60]
that there is a set {Aη : η < c} ⊆ S(Z), with each Aη =alg ⊕cZ, such that
(Z, TAη

) 6=top (Z, TAη′ ) for η < η′ < c; one may arrange further that all, or none,

of the spaces (Z, Tη) contain a nontrivial convergent sequence. Similar results in
a more general context are given in [22].

(c) In groups of the form H(G) ∈ AC with G ∈ AG, Dikranjan [37] has
introduced a strong density concept, called g-density, which is enjoyed by certain
A ∈ S(G). We omit the formal definition here, but we note that A ∈ S(G) is
g-dense in H(G) iff no nontrivial sequence converges in (G, TA) [37, 4.22]. Thus
for certain pairs A,B ∈ S(G), g-density successfully responds to Problem 3.5: If
(G, TA) =top (G, TB), then A is g-dense in H(G) iff B is g-dense in H(G).

For additional theorems on g-dense and g-closed subgroups of the groups
H(G) ∈ AC, see [3, 54].

4. Extremal phenomena

It is obvious that a group (G, T ) ∈ C admits neither a proper, dense subgroup
in C nor a strictly larger group topology U such that (G,U) ∈ C. A brief additional
argument ([31, 3.1], [27, 3.2]) shows that if (G, T ) ∈ P is metrizable (equivalently:
satisfies w(G, T ) = ω), then (1) (G, T ) ∈ C and (2) (G, T ) admits neither a proper,
dense subgroup in P nor a strictly larger group topology U such that (G,U) ∈ P.
Indeed, for (G, T ) ∈ AP these conditions are equivalent [33]: (a) (G, T ) admits a
proper, dense subgroup in P; (b) there is a topology U on G, strictly refining T ,
such that (G,U) ∈ P; (c) w(G, T ) > ω. Some questions then arise naturally.

Question 4.1. Do the three conditions just listed from [33] remain equivalent for853?

(G, T ) ∈ P when G is not assumed to be Abelian?

When G ∈ AG is given the topology TA with A = H(G), every subgroup of G
is closed; so, (G, TA) ∈ ATG has no proper dense subgroup. As to the existence
of strict refinements, it is clear for every G ∈ TB′ that tb(G) has a largest (=
biggest) topology. (When G ∈ AG ⊆ TB′ this is T = TA with A = H(G).)
The class X = TB, then, is included in this next Question largely to preserve the
symmetry developed in this essay; in this immediate context it deserves minimal
attention. As to Question 4.3, we leave it to the reader to determine which pairs
X,Y give rise to questions of interest and which to questions which are silly or
without content.

Problem 4.2. Fix X ∈ {Ω,CC,TB}, and let (G, T ) ∈ X. Find pleasing neces-854–855?

sary and/or sufficient conditions that (a) (G, T ) has a proper, dense subgroup in
X; and/or (b) there is a topology U on G, strictly refining T , such that (G,U) ∈ X.
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Or even, more generally:

Problem 4.3 ([15]). Fix X,Y ∈ {C,Ω,CC,P,TB}, and let (G, T ) ∈ X. Find 856–857?

pleasing necessary and/or sufficient conditions that (a) (G, T ) has a proper, dense
subgroup in Y; and/or (b) there is a topology U on G, strictly refining T , such
that (G,U) ∈ Y.

Remark 4.4. We noted already in 3.3(h) that according to [12], [27, 3.3]the
Σ-product in a group of the form Gκ with G ∈ C and κ ≥ ω admits no proper
dense subgroup in CC.

5. Miscellaneous questions

(A). Recall first a definition of A.R. Bernstein [6]: For an ultrafilter p ∈ ω∗ :=
β(ω) \ ω, a Tychonoff space X is p-compact if for every (continuous) f : ω → X

the Stone–Čech extension f : β(ω) → β(X) satisfies f(p) ∈ X . (See [13, 14, 63]
for references to related tools introduced by Froĺık, by Katětov, and by V. Saks.)
It is known [46, 11, 63] that for a set {Xi : i ∈ I} of Tychonoff spaces, every
product of the form

∏
i∈I(Xi)

κi is countably compact iff there is p ∈ ω∗ such that
each Xi is p-compact. It is then immediate, as in [13, 8.9], that the class CC is
closed under the formation of (arbitrary) products if and only if there is p ∈ ω∗
such that each G ∈ CC is p-compact. Thus we are led to a bizarre question.

Question 5.1 ([14, 1.A.1]). Is it consistent with the axioms of ZFC that there is 858?

p ∈ ω∗ such that every countably compact group is p-compact?

Discussion 5.2. The article [39] makes reference to work of E. van Douwen,
J. van Mill, K. P. Hart, A. Tomita and others giving the existence of models of
ZFC in which some product of finitely many elements from the class ACC fails
to be in ACC. See also [45] for a similar conclusion based on the existence of
a selective ultrafilter p ∈ ω∗. It is evident from (A) above that in any of these
models of ZFC no ultrafilter p as in Question 5.1 can exist.

(B). It was noted in 3.3(g) that when D is a dense subgroup of G ∈ ATG,

the map φ : Ĝ � D̂ given by φ(h) = h|D establishes the equality Ĝ =alg D̂; clearly

φ is continuous when D̂ and Ĝ are given their respective compact-open topologies.
Following [20, 21], we say that G ∈ ATG is determined if for each dense subgroup

D of G the map φ : Ĝ � D̂ is a homeomorphism. The principal theorem in this
area, given in [10] and [1] independently, is this: Every metrizable G ∈ ATG
is determined. (The exact generalization of that theorem to the (possibly) non-
Abelian context is given in [55]: For every dense subgroup D of metrizable G ∈
TG and for every compact Lie group K, one has Hom(D,K) ∼= Hom(G,K) when
those groups are given the compact-open topology.) The authors of [20, 21] have
noted the existence of many nonmetrizable determined G ∈ ATG (some of them
compact), and they raised this question (see also [18, §6]).

Question 5.3. Is the product of finitely many determined groups in ATG nec- 859–860?

essarily determined? If G ∈ ATG is determined, must G×G be determined?
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Discussion 5.4. Concerning Question 5.3, it is known [72] that the product of
two determined groups in ATG, of which one is discrete, is again determined.

Now let non(N ) be the least cardinal κ such that some set X ⊆ T with |X | = κ
has positive outer (Haar) measure. It is known [20, 21] that no G ∈ AC with
w(G) ≥ non(N ) is determined, so if non(N ) = ℵ1 (in particular, if CH holds)
then G ∈ AC is determined iff w(G) = ω (i.e., iff G is metrizable). The authors
of [20, 21] asked Question 5.5, a sharpened version of [18, 6.1].

Question 5.5. Is there in ZFC a cardinal κ such that G ∈ AC is determined iff861–863?

w(G) < κ? Is κ = non(N )? Is κ = ℵ1?

(C). The remark in 3.6(a) shows for G,H ∈ ATG that the conditions G =alg

H , G =top H do not together ensure that G and H are topologically isomorphic,

even when G and H carry the topologies induced by Ĝ and Ĥ, respectively. The
following problem then arises naturally.

Problem 5.6. (a) Find interesting necessary and/or sufficient conditions on864–865?

G,H ∈ TG to ensure that if G =alg H and G =top H then necessarily G ∼= H.
(b) Find interesting necessary and/or sufficient conditions on G,H ∈ ATG to
ensure that if G =alg H and G =top H then necessarily G ∼= H.

Problem 5.6 relates to pairs from TG. A similar problem focuses on a fixed
G ∈ TG, as follows.

Problem 5.7. (a) For which G ∈ TG do the conditions H ∈ TG, G =alg H and866–867?

G =top H guarantee that G ∼= H? (b) For which G ∈ ATG do the conditions
H ∈ ATG, G =alg H and G =top H guarantee that G ∼= H?

Discussion 5.8. (a) There are many theorems in the literature showing that
certain G ∈ G admit a topology with certain pre-assigned properties, further that
any two such topologies T0, T1 satisfy (G, T0) =top (G, T1), or (G, T0) ∼= (G, T1),
or even T0 = T1. [Remark. In this last case, every automorphism of G is a T0-
homeomorphism.] We cite six results of this and similar flavor; clearly, these relate
closely to the issues raised in Problems 5.6 and 5.7. (1) Van der Waerden [74]
gave examples of groups (G, T ) ∈ C such that tb(G) = {T }. (2) Groups as
in (1) are necessarily metrizable [57, 47], but there exist G ∈ G of arbitrary
cardinality ≥ c with |tb(G)| = 1: [25, 3.17] shows that for every family {Gi : i ∈
I} ⊆ C of algebraically simple, non-Abelian Lie groups, the only topology T on
the group H :=

⊕
i∈I Gi for which (H, T ) ∈ TB is the topology inherited from

the (usual compact) topology on
∏

i∈I Gi. See also [62] for additional relevant
references. (3) [Hulanicki, Orsatti] On an Orsatti group—i.e., a group G of the

form G =alg

∏
p∈P(Zkp

p ×Fp) with Zp the p-adic integers and with finite Fp ∈ AG

such that p ·Fp = {0}—the obvious natural topology T making (G, T ) ∈ C is the
only topology making G ∈ C; conversely, every G ∈ AP with a unique topology T
making (G, T ) ∈ C is an Orsatti group. (4) [Stewart] If G ∈ G admits a connected
topology T such that (G, T ) ∈ C and the center of G is totally disconnected, then
T is the only topology making (G, T ) ∈ C. (5) [Scheinberg] If G,H ∈ ATG are
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connected and (locally) compact and G =top H , then G ∼= H . (6) Every totally
disconnected G ∈ C with w(G) = κ satisfies G =top {0, 1}κ; if further there is
p ∈ P such that p ·G = {0}, then G ∼= (Z(p))κ.

(b) We note en passant that in a model of ZFC with distinct cardinals κi (i =
0, 1) such that 2κ0 = 2κ1 , the group G =

⊕
2κi {0, 1} =alg {0, 1}κi admits totally

disconnected (compact) topologies Ti such that w(G, Ti) = κi, hence (G, T0) 6=top

(G, T1).
(c) For a detailed discussion of the results cited in (a)(3)–(a)(6), with refer-

ences to works of Stewart, Hulanicki, Scheinberg, Orsatti and others, see [49, 38,
19, 35, 51, 62].

(d) Suppose for some G ∈ G and for one of the classes X ∈ {C,Ω,CC,P}
that (1) G ∈ X′ and (2) every two topologies T0, T1 making (G, Ti) ∈ X satisfy
(G, T0) ∼= (G, T1). Then G = (G, T0) is an example of the sort sought in Prob-
lem 5.7. [Proof. From (G, T0) ∈ X and G =top H ∈ TG follows H ∈ X, and any
(hypothesized) isomorphism φ : H � G induces on G a topology T1 such that φ is
a homeomorphism and (G, T1) ∈ X. Then (G, T0) ∼= (G, T1) ∼= H .]

(D). A subgroup G of K ∈ TG is said to be essentially dense [resp., totally
dense] in K if |G ∩N | > 1 [resp., G ∩N is dense in N ] for every closed, normal,
nontrivial subgroup N of G. Given K ∈ TG, the essential density ed(K) [resp.,
the total density td(K)] of K is the cardinal number

ed(K) := min{|G| : G is an essentially dense subgroup of K},
td(K) := min{|G| : G is a totally dense subgroup of K}.

In contrast with the properties studied heretofore in this article—compactness,
pseudocompactness, and so forth—the properties of essential and total density
are not intrinsic to a group G ∈ TG: They must be investigated relative to an
enveloping group K ∈ TG. It is known [65, 58, 2] for G dense in K ∈ TG
that G ∈ M iff K ∈ M and G is essentially dense in K. Hence, since C ⊆ M,
for G ∈ AG these properties are equivalent: (1) (G, TA) ∈ AM; (2) (G, TA) is

essentially dense in (G, TA); (3) A is minimal in S(G). We are drawn to the
companion problem for total density.

Problem 5.9. For which A ∈ S(G) is (G, TA) totally dense in (G, TA)? 868?

It is shown in [16] that there are G ∈ ATB such that ed(G) < td(G), and
that consistently such G ∈ AP exist. The authors of [16] leave several related
questions unanswered, however, including these.

Question 5.10 ([16]). (a) Is there, in ZFC or in augmented axiom systems, a 869–870?

group G ∈ ACC such that ed(G) < td(G)? (b) Is there in ZFC a group G ∈ AP
such that ed(G) < td(G)?

Discussion 5.11. Every G ∈ AC satisfies ed(G) = td(G) [67]. The paper [7]
provides much additional useful background for 5.9 and 5.10.
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[54] G. Lukács, Precompact abelian groups and topological annihilators, To appear.
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Selected topics from the structure theory of
topological groups

Dikran Dikranjan and Dmitri Shakhmatov

This article contains 50 (or 66) open problems and questions covering the
following topics: the dimension theory of topological groups, pseudocompact and
countably compact group topologies on Abelian groups, with or without non-
trivial convergent sequences, categorically compact groups, sequentially complete
groups, the Bohr topology, and transversal group topologies. All topological groups
considered in this manuscript are assumed to be Hausdorff.

1. Dimension theory of topological groups

We highlight here our favourite problems from the dimension theory of topo-
logical groups.

Problem 1 ([1]). Is indG = IndG = dimG for a topological group G with a 871?

countable network?

The classical result of Pasynkov says that indG = IndG = dimG for a (lo-
cally) compact group G [44].

Question 2 ([46]). Is indG = IndG = dimG for a σ-compact group G? 872?

This is a delicate question since there exists an example of a precompact
topological group G such that G is a Lindelöf Σ-space, dimG = 1 but indG =
IndG =∞ [46, 47]. Even the following particular case of Question 2 seems to be
open.

Question 3 (M.J. Chasco). If a topological group G is a kω-space, must indG = 873?

IndG = dimG?

Recall that X is a kω-space provided that there exists a countable family
{Kn : n ∈ ω} of compact subspaces of X such that a subset U of X is open in X
if and only if U ∩Kn is open in Kn for every n ∈ ω.

Question 4 ([47]). Is indG = IndG for a Lindelöf group G? 874?

The answer to Question 4 is positive if G is a Lindelöf Σ-space (in particular,
a σ-compact space), so only the inequality indG ≤ dimG must be proved in order
to answer Questions 2 or 3 positively.

The first named author was partially supported by the project MIUR 2005 “Anelli
commutativi e loro moduli: teoria moltiplicativa degli ideali, metodi omologici e
topologici.” The second named author acknowledges partial financial support from the
Grant-in-Aid for Scientific Research no. 155400823 by the Japan Society for the
Promotion of Science.
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Problem 5 (Old problem). If H is a subgroup of a topological group G, is then875?

dimH ≤ dimG?

The answer is positive if H is R-factorizable [53] (in particular, precom-
pact [48]).

Question 6 ([49]). Suppose that X is a separable metric space with dimX ≤ n.876?

Is there a separable metric group G that contains X as a closed subspace such that
dimG ≤ 2n+ 1?

Without the requirement that X is closed in G the answer is positive due
to the Nöebeling–Pontryagin theorem: X is a subspace of the topological group
R2n+1. The separability in the above question is essential: There exists a metric
space X of weight ω1 such that dimX = 1 and X cannot be embedded into any
finite-dimensional topological group [37].

The next question is the natural group analogue of the classical result about
the existence of the universal space of a given weight and covering dimension.

Question 7 ([49]). Let τ be an infinite cardinal and n be a natural number. Is877?

there an (Abelian) topological group Hτ,n with dimHτ,n ≤ n and w(Hτ,n) ≤ τ
such that every (Abelian) topological group G satisfying dimG ≤ n and w(G) ≤ τ
is topologically and algebraically isomorphic to a subgroup of Hτ,n?

The special case of the above question when τ = ω is due to Arkhangel’skĭı [1].
Transfinite inductive dimensions have many peculiar properties in topological

groups [50]. For example, (i) if G is a locally compact group having small transfi-
nite inductive dimension trind(G), then G must be finite-dimensional, and (ii) if G
is a separable metric group having large transfinite inductive dimension trInd(G),
then G must be finite-dimensional as well. It is not clear if (ii) holds for trind(G)
instead of trInd(G):

Problem 8 ([50]). For which ordinals α does there exist a separable metric group878?

Gαwhose small transfinite inductive dimension trind(Gα) equals α?

The reader is referred to [49], [50] and [36] for additional open problems in
the dimension theory of topological groups.

2. Pseudocompact and countably compact group topologies on
Abelian groups

We denote by C the class of Abelian groups that admit a countably compact
group topology, and use P to denote the class of Abelian groups that admit a
pseudocompact group topology.

The next two problems are the most fundamental problems in this area:

Problem 9 ([16]). Describe the algebraic structure of members of the class P.879?

Problem 10. Describe the algebraic structure of members of the class C.880?
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Despite a substantial progress on Problem 9 for particular classes of groups
achieved in [17, 18, 6, 7, 19], the general case is still very far from the final
solution. (We refer the reader to [3] for further reading on this topic.)

Let G be an Abelian group. As usual r(G) denotes the free rank of G. For ev-
ery natural number n ≥ 1 define G[n] = {g ∈ G : ng = 0} and nG = {ng : g ∈ G}.
Every group G from the class C satisfies the following two conditions [17, 19, 23]:

PS: Either r(G) ≥ c or G = G[n] for some n ∈ ω \ {0}.
CC: For every pair of integers n ≥ 1 and m ≥ 1 the group mG[n] is either

finite or has size at least c.

It is totally unclear if these are the only necessary conditions on a group from
the class C:
Question 11. Is it true that an Abelian group G belongs to C if and only if G 881?

satisfies both PS and CC?

Question 12 ([20]). Is it true in ZFC that an Abelian group G of size at most 2c
882?

belongs to C if and only if G satisfies both PS and CC?

Question 12 has a positive consistent answer [20].
Assuming MA, there exist countably compact Abelian groups G,H such that

G × H is not countably compact [56]. Therefore, our next question could be
viewed as a weaker form of productivity of countable compactness in topological
groups that still has a chance for a positive answer in ZFC.

Question 13 ([16]). If G and H belong to C, must then their product G×H also 883?

belong to C?
In fact, one can consider a much bolder hypothesis:

Question 14 ([16]). Is C closed under arbitrary products? That is, if Gi belongs 884?

to C for each i ∈ I, does then
∏

i∈I Gi belong to C?
The next question provides a slightly less bold conjecture:

Question 15 ([16]). (i) Is there a cardinal τ having the following property: A 885–886?

product
∏

i∈I Gi belongs to C provided that
∏

j∈J Gj belongs to C whenever J ⊆ I
and |J | ≤ τ? (ii) Does the statement in item (i) hold true when τ = c or τ = 2c?

Of course Question 14 simply asks if the statement in item (i) of Question 15
holds true when τ = 1. It might be worth noting that Question 15 is motivated
by a theorem of Ginsburg and Saks [30]: A product

∏
i∈I Xi of topological spaces

Xi is countably compact provided that
∏

j∈J Gj is countably compact whenever

J ⊆ I and |J | ≤ 2c.
A partial positive answer to Question 14 has been given in [15]: It is consistent

with ZFC that, for every family {Gi : i ∈ I} of groups with 2|I| ≤ 2c such that Gi

belongs to C and |Gi| ≤ 2c for each i ∈ I , the product
∏

i∈I Gi also belongs to C.
A similar result for smaller products and smaller groups has been proved in [23,
Theorem 5.6] under the assumption of MA. In particular, if the groups G and H
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in Question 13 are additionally assumed to be of size at most 2c, then the positive
answer to this restricted version of Question 13 is consistent with ZFC [15].

Recall that an Abelian group G is algebraically compact provided that one
can find an Abelian group H such that G×H admits a compact group topology.
Algebraically compact groups form a relatively narrow subclass of Abelian groups
(for example, the group Z of integers is not algebraically compact). On the other
hand, every Abelian group G is algebraically pseudocompact ; that is, one can find
an Abelian group H such that G × H ∈ P [19, Theorem 8.15]. It is unclear if
this result can be strengthened to show that every Abelian group is algebraically
countably compact :

Question 16 ([20]). Given an Abelian group G, can one always find an Abelian887?

group H such that G×H ∈ C?
Recall that an Abelian group G is divisible provided that for every g ∈ G and

each positive integer n one can find h ∈ G such that nh = g. An Abelian group
is reduced if it does not have non-zero divisible subgroups. Every Abelian group
G admits a unique representation G = D(G) × R(G) into the maximal divisible
subgroup D(G) of G (the so-called divisible part of G) and the reduced subgroup
R(G) ∼= G/D(G) of G (the so-called reduced part of G). It is well-known that an
Abelian group G admits a compact group topology if and only if both its divisible
part D(G) and its reduced part R(G) admit a compact group topology. However,
there exist groups G and H that belong to P but neither D(G) nor R(H) belong
to P [19, Theorem 8.1(ii)]. This was strengthened in [23, 20] as follows: It is
consistent with ZFC that there exist groups G′ and H ′ from the class C such that
neither D(G′) nor R(H ′) belong to P . These results leave open the following:

Problem 17 ([16]). In ZFC, give an example of groups G and H from the class888–889?

C such that: (i) D(G) does not belong to C (or even P), (ii) R(H) does not belong
to C (or even P).

Even the following question is also open:

Question 18 ([16]). Let G be a group in C. (i) Is it true that either D(G) or890–891?

R(G) belongs to C? (ii) Must either D(G) or R(G) belong to P?

We note that item (ii) of the last question is a strengthening of Question 9.8
from [19]. Even consistent results related to the last question are currently un-
available.

An Abelian group G is torsion provided that G =
⋃{G[n] : n ∈ ω, n ≥ 1},

and is torsion-free provided that
⋃{G[n] : n ∈ ω, n ≥ 1} = {0}.

Question 19 ([20]). Is there a torsion Abelian group that is in P but not in C?892?

Question 20 ([20]). Is there a torsion-free Abelian group that is in P but not893?

in C?
It consistent with ZFC that a group as in Questions 19 and 20 must have size

strictly bigger than 2c [20].
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Problem 21 ([20]). (i) Describe in ZFC the algebraic structure of separable 894–895?

countably compact Abelian groups.
(ii) Is it true in ZFC that an Abelian group G admits a separable countably

compact group topology if and only if |G| ≤ 2c and G satisfies both PS and CC?

A consistent positive solution to Problem 21(ii) is given in [20].

3. Properties determined by convergent sequences

It is well-known that infinite compact groups have (lots of) non-trivial con-
vergent sequences. There exists an example (in ZFC) of a pseudocompact Abelian
group without non-trivial convergent sequences [51]. While there are plenty of
consistent examples of countably compact groups without non-trivial convergent
sequences [34, 56, 41, 52, 9, 23, 55, 20], the following remains a major open
problem in this area:

Problem 22. Does there exist, in ZFC, a countably compact group without non- 896?

trivial convergent sequences?

Recall that a (Hausdorff) topological group G is minimal if G does not admit
a strictly weaker (Hausdorff) group topology. Even though a countably compact,
minimal Abelian group need not be compact, it can be shown that it must con-
tain a non-trivial convergent sequence. More generally, one can show that an
infinite, countably compact, minimal nilpotent group has a non-trivial convergent
sequence. Whether “nilpotent” can be dropped remains unclear.

Problem 23. Must an infinite, countably compact, minimal group contain a non- 897?

trivial convergent sequence?

The next question may be considered as a countably compact (or pseudocom-
pact) heir of the fact that compact groups have non-trivial convergent sequences
that still has a chance of a positive answer in ZFC.

Question 24 ([20]). Let G be an infinite group from class C (or P). Does G have 898?

a countably compact (respectively, pseudocompact) group topology that contains a
non-trivial convergent sequence?

The next question goes in the opposite direction:

Question 25 ([20]). (i) Does every group G from the class P have a pseudo- 899–900?

compact group topology without non-trivial convergent sequences (without infinite
compact subsets)?

(ii) Does every group G from the class C have a countably compact group topol-
ogy without non-trivial convergent sequences (without infinite compact subsets)?

Question 25(ii) has a consistent positive answer in the special case when |G| ≤
2c [20]. The part “without non-trivial convergent sequences” of item (ii) of our
next question has appeared in [9].
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Question 26. (i) When does a compact Abelian group G admit a proper dense901–903?

subgroup H without non-trivial convergent sequences? without infinite compact
subsets?

(ii) When does a compact Abelian group G admit a proper dense pseudocompact
subgroup H without non-trivial convergent sequences? without infinite compact
subsets?

(iii) When does a compact Abelian group G admit a proper dense countably
compact subgroup H without non-trivial convergent sequences? without infinite
compact subsets?

In GCH, a precompact group H such that w(H) < w(H)ω has a non-trivial
convergent sequence [42]. Thus w(G) = w(G)ω is a necessary condition for the
group G to have a subgroup H as in Question 26. This condition alone is not
sufficient: If K =

∏
n∈ω Z2n and τ is an infinite cardinal, then every dense sub-

group H of G = Kτ has a non-trivial convergent sequence [9] (here Zm denotes
the cyclic group Z/mZ). Many partial results towards solution of Question 26 are
given in [9, 28].

Question 27. (i) If a compact Abelian group has a proper dense pseudocompact904–905?

subgroup without non-trivial convergent sequences, does it also have a proper dense
pseudocompact subgroup without infinite compact subsets?

(ii) If a compact Abelian group has a proper dense countably compact subgroup
without non-trivial convergent sequences, does it also have a proper dense countably
compact subgroup without infinite compact subsets?

Now we relax item (ii) to get the following:

Question 28. Is the existence of a countably compact Abelian group without non-906?

trivial convergent sequences equivalent to the existence of a countably compact
Abelian group without infinite compact subsets?

In connection with the last four questions we should note that, under MA, an
infinite compact space of size at most c contains a non-trivial convergent sequence.

A topological group G is called sequentially complete [21, 22] if G is sequen-
tially closed in every (Hausdorff) group that contains G as a topological subgroup.
Obviously, every topological group without non-trivial convergent sequences is se-
quentially complete. Moreover, sequential completeness is preserved under taking
arbitrary direct products and closed subgroups [21].

Denote by S the class of closed subgroups of the products of countably com-
pact Abelian groups. Since countably compact groups are sequentially complete
and precompact, every group from the class S is sequentially complete and pre-
compact.

Question 29 ([22]). (i) Does every precompact sequentially complete Abelian907–908?

group G belong to S? (ii) What is the answer to (i) if one additionally assumes
that |G| ≤ c?
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Every precompact Abelian group is both a quotient group and a continuous
isomorphic image of some sequentially complete precompact Abelian group [22,
Theorem B]. This motivates the following:

Question 30 ([22]). Is every precompact Abelian group G: (i) a quotient of a 909–911?

group from S? (ii) a continuous homomoprhic image of group from S? (iii) a
continuous isomorphic image of group from S?

Item (iii) of Question 30 has a positive answer when |G| ≤ c [22, Theorem A],
and more generally, if |G| is a non-measurable cardinal [54].

4. Categorically compact groups

A topological group G is categorically compact (briefly, c-compact) if for each
topological group H the projection G×H → H sends closed subgroups of G×H
to closed subgroups of H [26]. Obviously, compact groups are c-compact. To
establish the converse is the main open problem in this area:

Problem 31. (i) Are c-compact groups compact? (ii) Are non-discrete c-compact 912–913?

groups compact?

Item (i) has appeared in [26]. Two related weaker versions are also open:

Question 32. Is every (non-discrete) c-compact group minimal? 914?

Question 33. Does every non-discrete c-compact group has a non-trivial conver- 915?

gent sequence?

A positive answer to Problem 31 in the Abelian case makes recourse to the
deep theorem of precompactness of Prodanov and Stoyanov [14]. Similar to (usual)
compactness, taking products, closed subgroups and continuous homomorphic im-
ages preserves c-compactness [26] (a proof of the productivity of c-compactness
was obtained independently also in [2] in a much more general setting). Therefore,
a positive answer to Question 32 would imply that every closed subgroup H of a
c-compact group is totally minimal , i.e., all quotient groups of H are minimal. At
present we only know that separable c-compact groups are totally minimal (and
complete) [26].

Lukacs [40] resolved Problem 31 positively for maximally almost periodic
groups. Moreover, he showed that it suffices to solve this problem only for second
countable groups (analogously, the case of locally compact SIN-groups, is reduced
to that of countable discrete groups [40]). (Recall that a SIN group is a topological
group for which the left and right uniformities coincide.) According to [40], in
Question 33 it suffices to consider only the non-discrete c-compact groups that
have no non-trivial continuous homomorphisms into compact groups.

Connected locally compact c-compact groups are compact [26]. Hence the
connected locally compact group SL2(R) is not categorically compact, although it
is separable and totally minimal [14]. Nothing is known about c-compactness of
disconnected locally compact groups. In fact, even the discrete case is wide open:
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Question 34 ([26]). Is every discrete c-compact group finite (finitely generated,916?

of finite exponent, countable)?

One can prove that a countable discrete group G is c-compact if and only if
every subgroup of G is totally minimal [26]. Therefore, the negative answer to
this question is equivalent to the existence of an infinite group G such that no
subgroup or quotient group of G admits a non-discrete Hausdorff group topology
(this a stronger version of the famous Markov problem on the existence of an
infinite group without non-discrete Hausdorff group topologies).

A group G is h-complete if all continuous homomorphic images of G are com-
plete, and G is hereditarily h-complete if every closed subgroup of G is h-complete.
c-compact groups are hereditarily h-complete, and the inverse implication holds
for SIN groups (in particular, Abelian groups) [26].

Both c-compactness and h-completeness are stable under products, and h-
completeness also has the the so-called “three space property”: If K is a closed
normal subgroup of a topological group G such that both K and the quotient
group G/K are h-complete, then G is h-complete. This leaves open:

Question 35 ([26, Question 4.3]). If K is a closed normal subgroup of a topolog-917?

ical group G such that both K and the quotient group G/K are c-compact, must
G be c-compact as well?

Nilpotent (in particular, Abelian) h-complete groups are compact, while solv-
able c-compact groups are compact [26]. This motivates the following:

Question 36 ([26, Ques.3.13]). Are solvable h-complete groups c-compact?918?

5. The Bohr topology of the Abelian groups

Let G be an Abelian group. Following E. van Douwen [57], we denote by G#

the groupG equipped with the Bohr topology, i.e., the initial topology with respect
to the family of all homomorphisms of G into the circle group T. It is a well known
fact, due to Glicksberg (see also [29] in this volume), that G# has no infinite com-
pact subsets (in particular, no non-trivial convergent sequences). Therefore, G# is
always sequentially complete. For future reference, we mention two fundamental
properties of the Bohr topology for arbitrary Abelian groups G,H :

(i) the Bohr topology of G × H coincides with the product topology of
G# ×H#;

(ii) if H is a subgroup of G, then H is closed in G# and its topology as a
topological subgroup of G# coincides with that of H#.

E. van Douwen [43] posed the following challenging problem (see also [29]): If
G and H are Abelian groups of the same size, must G# andH# be homeomorphic?
A negative solution was obtained in [38] and independently, in [27]: (Vω

p )# and

(Vω
q )# are not homeomorphic for different primes p and q. (For every positive

integer m and a cardinal κ, Vκ
m denotes the direct sum of κ many copies of the

group Zm.) Motivated by this, let us call a pair G,H of infinite Abelian groups:

(1) Bohr-homeomorphic if G# and H# are homeomorphic,
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(2) weakly Bohr-homeomorphic if G# can be homeomorphically embedded
into H# and H# can also be homeomorphically embedded into G#.

Obviously, Bohr-homeomorphic groups are weakly Bohr-homeomorphic, and
the status of the converse implication is totally unclear (see Question 40(ii)). As we
shall see in the sequel, weak Bohr-homeomorphism provides a more flexible tool for
studying the Bohr topology than the more rigid notion of Bohr-homeomorphism,
e.g, (Vω

p )# and (Vω
q )# are not even weakly Bohr-homeomorphic for different primes

p and q.
If G# homeomorphically embeds into H# and H is a bounded torsion group,

then G must also be a bounded torsion group [32]. In particular, boundedness is
invariant under weak Bohr-homeomorphisms, i.e., if G is a bounded Abelian group
and the pair G,H are weakly Bohr-homeomorphic, than H must be bounded.
Therefore, when studying weak Bohr-homeomorphisms (and thus Bohr-homeo-
morphisms), without any loss of generality whatsoever, one can consider com-
pletely separately the bounded torsion Abelian groups, and non-bounded Abelian
groups.

We start first with the class of bounded torsion Abelian groups. According to
Prüfer’s theorem, every infinite bounded group has the form

∏n
i=1 Vκi

mi
for certain

integers mi > 0 and cardinals κi. For this reason, and in view of items (i) and (ii),
the study of the Bohr topology of the bounded Abelian groups can be focused on
the groups Vκ

m.
For bounded Abelian groups G,H the following two algebraic conditions play

a prominent role.

(3) |mG| = |mH | whenever m ∈ N and |mG| · |mH | ≥ ω.
(4) eo(G) = eo(H) and rp(G) = rp(H) for all p with rp(G) + rp(H) ≥ ω,

where eo(G) is the essential order of G [8, 32], i.e., the smallest positive
integer m with mG finite.

Since a pair G,H satisfies (3) iff each one of these groups is isomorphic to a
subgroup of the other [8], we call such pairs of bounded Abelian groups G and
H weakly isomorphic [8]. By (ii), weakly isomorphic bounded Abelian groups
are weakly Bohr-homeomorphic. According to [8], weakly Bohr-homeomorphic
bounded Abelian groups satisfy (4), i.e.,

weakly isomorphic⇒ weakly Bohr-homeomorphic⇒ (4).

Let us discuss the opposite implications. For countable Abelian groups G,H
the second part of (4) becomes vacuous, while eo(G) = eo(H) yields that G,H
are weakly isomorphic and Bohr-homeomorphic. Analogously, one can see that
(4) for groups of square-free essential order implies again weak isomorphism and
Bohr-homeomorphism. Hence all four properties (1)–(4) coincide for bounded
Abelian groups that are either countable or have square-free essential order [8, 32].
Therefore, the invariant eo(G) alone allows for a complete classification (up to
Bohr-homeomorphism) of all bounded Abelian groups of this class.

The situation changes completely even for the simplest uncountable bounded
Abelian groups of essential order 4. Indeed, G = Vω1

4 and H = Vω1

2 × Vω
4 are not
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weakly isomorphic, because ω1 = |2G| > |2H | = ω. However, we do not know
whether these groups are weakly Bohr-homeomorphic:

Question 37. Can (Vω1

4 )# be homeomorphically embedded into (Vω1

2 × Vω
4 )#?919?

Here is the question in the most general form:

Question 38. Given a cardinal κ ≥ ω and an integer s > 1, are Vκ
ps and Vκ

p×Vω
ps920?

weakly Bohr-homeomorphic? Can this depend on p?

If the answer to Question 38 is positive for all p, then bounded Abelian groups
G and H would be weakly Bohr-homeomorphic if and only if (4) holds.

The next question is an equivalent form of the strongest negative answer to
Question 38.

Question 39. Assume that p is a prime number, k > 1 is an integer, κ and λ921?

are infinite cardinals such that (Vκ
pk )# can be homeomorphically embedded into

(Vκ
pk−1 × Vλ

pk )#. Must then inequality λ ≥ κ hold?

Note that a positive answer to Question 39 is equivalent to the fact that
weak Bohr-homeomorphism coincides with weak isomorphism for bounded Abelian
groups.

The countable groups Vω
4 and Vω

2 ×Vω
4 are obviously weakly isomorphic, hence

weakly Bohr-homeomorphic (see the discussion above).

Question 40. (i) ([38]) Are Vω
4 and Vω

2 × Vω
4 Bohr-homeomorphic? (ii) Are922–923?

weakly Bohr-homeomorphic bounded groups always Bohr-homeomorphic?

Question 41. Suppose that G and H are bounded Abelian groups such that G#
924?

homeomorphically embeds into H#. Does there exist a subgroup G′ of G of finite
index that algebraically embeds into H?

Note that a positive answer to this question would imply, in particular, that
weak Bohr-homeomorphism coincides with weak isomorphism. Hence a positive
answer to this question would imply a positive answer to Question 39.

Now we leave the bounded world and turn to the class of non-bounded groups.
According to Hart and Kunen [35], two Abelian groups G and H are almost
isomorphic if G and H have isomorphic finite index subgroups. This definition
is motivated by the fact that almost isomorphic Abelian groups are always Bohr-
homeomorphic [35]. The converse implication fails. Indeed, Q and Q/Z × Z are
Bohr-homeomorphic [5], and yet these groups are not almost isomorphic. It is
nevertheless unclear if the reverse implication holds for bounded groups.

Question 42 ([38]). Are Bohr-homeomorphic bounded Abelian groups almost iso-925?

morphic?

The question on whether the pairs Z,Z2 and Z,Q are Bohr-homeomorphic is
raised in [4, 29]. Let us consider here the version for weak Bohr-homeomorphisms:

Question 43. (i) Are Z and Q weakly Bohr-homeomorphic? (ii) Are Z and Q/Z926–927?

(weakly) Bohr-homeomorphic?
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A positive answer to item (i) of Question 43 would yield that all torsion-free
Abelian groups of a fixed finite free rank are weakly Bohr-homeomorphic. If both
items have a positive answer, then the weak Bohr-homeomorphism class of Z#

would comprise the class of all Abelian groups G of finite rank1 such that either
G is non-torsion or G contains a copy of the group Q/Z. (In particular, all finite
powers of Z, Q and Q/Z along with their finite products would become weakly
Bohr-homeomorphic.)

Many nice properties of Z# can be found in [39]. For a fast growing sequence
an in Z# the range is a closed discrete set of Z# (see [29] for further properties of
the lacunary sets in Z#), whereas for a polynomial function n 7→ an = P (n) the
range has no isolated points [39, Theorem 5.4]. Moreover, the range P (Z) is closed
when P (x) = xk is a monomial. For quadratic polynomials P (x) = ax2 + bx + c
(a, b, c ∈ Z, a 6= 0) the situation is already more complicated: the range P (Z) is
closed iff there is at most one prime that divides a, but does not divide b [39,
Theorem 5.6]. This leaves open the general question.

Problem 44. Characterize the polynomials P (x) ∈ Z[x] such that P (Z) is closed 928?

in Z#.

Answering a question of van Douwen, Gladdines [33] found a closed countable
subset of (Vω

2 )# that is not a retract of (Vω
2 )#, while Givens [31] proved that every

infinite G# contains a closed countable subset that is not a retract ofG#. However,
the question remains open in the case of subgroups :

Question 45 (Question 81, [43]). If H is a countable subgroup of an Abelian 929?

group G, must H# be a retract of G#?

An affirmative answer to this question of E. van Douwen was obtained in [5]
in the case when H is finitely generated (see also [12] for other partial results and
open problems). The general case is still open.

We refer the reader to [11, 13] for further information about Bohr topology.

6. Miscellanea

Two non-discrete topologies τ1 and τ2 on a set X are called transversal if
τ1 ∪ τ2 generates the discrete topology on X . A precompact group topology on
a group does not admit a transversal group topology, and under certain natural
conditions the converse is also true [25].

Question 46 ([24]). Characterize locally compact groups that admit a transversal 930?

group topology.

This question is resolved for locally compact Abelian groups [25] and for
connected locally compact groups [24].

There exists a locally Abelian group G and a compact normal subgroup K of
G such that G does not admit a transversal group topology while G/K does have

1i.e., there exists n ∈ ω such that r0(G) ≤ n and |G[p]| ≤ pn for every prime p.
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a transversal group topology [25, Example 5.4]. The inverse implication remains
unclear:

Question 47 ([24]). If G is a topological group that admits a transversal group931?

topology and K is a compact normal subgroup of G, does also G/K admit a
transversal group topology?

The answer is positive when G = K ×H for some subgroup H of G [25], or
when G is a locally compact Abelian group (argue as in the proof of the implication
(d) ⇒ (c) of [25, Corollary 6.7]).

Question 48 ([24]). (i) Is it true that no minimal group topology admits a932–933?

transversal group topology?
(ii) Does the topology of the unitary group of an infinite-dimensional Hilbert

space admit a transversal group topology?

The answer to item (i) is positive in the Abelian case.
The quasi-components (respectively, the connected components) of the Abelian

pseudocompact groups are precisely all (connected) precompact groups [10]. The
non-Abelian case remains unclear:

Problem 49 ([10]). Describe the connected components and the quasi-components934?

of pseudocompact groups.

Given a group G, let H(G) denote the family of all Hausdorff group topologies
on G, and P(G) the family of all precompact Hausdorff group topologies on G.
Note that H(G) and P(G) are partially ordered sets with respect to set-theoretic
inclusion of topologies.

Question 50. Suppose that G and H are infinite Abelian groups. Must the935–936?

groups G and H be (algebraically) isomorphic (i) if the posets H(G) and H(H)
are isomorphic? (ii) if the posets P(G) and P(H) are isomorphic?

A relevant information (and the origin of this question) may be found in [45].
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liminary version of this paper offered to us by M.J. Chasco, W. Comfort, K. Kunen,
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Recent results and open questions relating Chu
duality and Bohr compactifications of locally

compact groups

Jorge Galindo, Salvador Hernández and Ta-Sun Wu

1. Introduction

In this paper we collect some problems that have appeared in the context of
harmonic analysis on locally compact groups but can be understood, and per-
haps solved, adopting topological methods. Naturally, this will also produce some
genuine topological questions that can be handled using methods of harmonic
analysis. We start with a simple example that illustrates quite well the interplay
between the two subjects. Consider the group Z of integers and let us agree to
say that a sequence (nk) ∈ Z converges to n0 when the sequence (tnk) converges
to tn0 for all t ∈ T = {t ∈ C : |t| = 1}. Are there convergent sequences under this
definition?

It may appear that finding some convergent sequence should not be difficult.
Suppose however that {nk} is a sequence which goes to 0. Then, by hypothesis, the
sequence of functions {tnk} converges pointwise to 1 on T. Or, equivalently, the
sequence of functions {ei2πnkx} converges pointwise to 1 on the interval [0, 1]. Ap-
plying Lebesgue’s Dominated Convergence Theorem, it follows that the sequence

{0} = {
∫ 1

0 e
i2πnkxdx} converges to

∫ 1

0 dx = 1, which is a contradiction.
Quite surprisingly we have seen that the definition of convergence given above

on Z produces no nontrivial convergent sequences. This convergence actually
stems from the initial topology generated by the functions n 7→ tn of Z into T.
It is called the Bohr topology of Z (denoted Z]) and is the largest precompact
(and, therefore, nondiscrete) group topology that can be defined on the integers.
Even though this topology has been widely studied recently, we are still far from
understanding it well in general.

There are other more topological approaches to show the absence of nontrivial
convergent sequences in Z]. The one we shall focus on in this paper is based on a
careful study of the mappings n 7→ tn of Z into T. When a sequence of integers
{mj} is lacunary, i.e.,

mj+1

mj
> q > 1, the subset A = {mj : j ∈ N} lives in Z] as an

interpolation subset : that is to say, every real-valued bounded function (regardless

of its continuity) defined on A can be extended to a continuous function f of Z]

into R (alternatively, we can say that the subset {mj : j ∈ N} is C∗-embedded in
Z]). It is easily verified that a convergent sequence cannot be an interpolation set

The two first named authors acknowledge partial financial support by the Spanish
Ministry of Science (including FEDER funds), grant MTM2004-07665-C02-01; and
Fundació Caixa Castelló (Bancaja), grant P1 1B2005-22.
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and, since every sequence contains many lacunary subsequences (and, therefore,
interpolation sets), it follows that there are no convergent sequences in Z].

This property actually extends to all abelian groups. If G is an abelian group,
let us denote by G], the group G equipped with its maximal precompact group
topology and by bG the completion of G]. In [60] van Douwen initiated a detailed
analysis of the topological properties of G] and, in doing so, he disclosed to general
topologists a collection of questions that had by then been in consideration in
Harmonic Analysis for at least 30 years. He in particular proved the following
theorem that we take as our starting point.

Theorem 1.1 ([60]). If G is an abelian group, every A ⊂ G contains a subset D
with |D| = |A| that is relatively discrete and C∗-embedded in bG.

2. Basic definitions

2.1. On Chu duality. Chu duality, called unitary duality by Chu [5], is
based on giving a certain topological and algebraic structure to the set of finite
dimensional representations of a topological group G. Denote to that end by Gx

n

the set of all continuous n-dimensional unitary representations of G. It follows
from a result of Goto [20] that the set Gx

n, equipped with the compact-open
topology, is a locally compact space. The space Gx =

⊔
n<ω G

x
n (as a topological

sum) is called the Chu dual of G [5].
The algebraic structure of Gx is given by two standard operations: the direct

sum and the tensor product of representations, that are induced by the corre-
sponding operations between finite dimensional operators.

• (π ⊕ π′)(x) = π(x)⊕ π′(x), for all π, π′ ∈ Gx and x ∈ G.
• (π ⊗ π′)(x) = π(x)⊗ π′(x), for all π, π′ ∈ Gx and x ∈ G.

There is also a concept of equivalence for representations that is often useful:
two representations π1, π2 ∈ Gx

n are said to be (unitarily) equivalent , in symbols
π1 ∼ π2, when there is a unitary matrix U such that π1(x) = U−1π2(x)U for all
x ∈ G. This clearly defines an equivalence relation in Gx.

The main feature of Chu duality is the construction of a bidual of G from the
Chu dual Gx. Denoting by U =

⊔
n<ω U(n), the topological sum of the spaces U(n)

of n×n unitary matrices (topologized as subsets of Cn2

), this bidual consists of the
so-called continuous quasi-representations , i.e. mappings Q : Gx → U satisfying:

• Q[Gx
n] ⊂ U(n).

• Q(π ⊕ π′) = Q(π)⊕Q(π′), for all π, π′ ∈ Gx.
• Q(π ⊗ π′) = Q(π)⊗Q(π′), for all π, π′ ∈ Gx.
• Q(U−1πU) = U−1Q(π)U , π ∈ Gx

n, U ∈ U(n).

See [5] or [33] or [34] for details.
The set of all continuous quasi-representations ofG equipped with the compact-

open topology is a topological group with pointwise multiplication as composition
law, called the Chu quasi-dual group of G and denoted by Gxx. The evaluation
map ε : G → Gxx establishes a group homomorphism between G and Gxx that
gives a measure of how strongly finite dimensional representations determine the
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structure of G. This homomorphism is one-to-one if and only if continuous finite
dimensional representations separate points of G. Groups with that property are
usually called maximally almost periodic, or MAP for short, and constitute the
natural scope of Chu duality. The map ε is always continuous on compacta (an
application of Ascoli’s theorem) and hence ε is continuous for every locally com-
pact group . When ε : G → Gxx is in addition open and surjective (i.e., it is an
isomorphism of topological groups) G is said to satisfy Chu duality or to be Chu
reflexive (or simply Chu). Using this terminology, one has [5] that LCA groups
and compact groups satisfy Chu duality (Chu duality actually reduces to the du-
alities of Pontryagin and Tannaka-Krĕın respectively for such groups). There is a
duality theory for non abelian groups which is based on infinite-dimensional rep-
resentations (a recent account of duality theory of locally compact groups is given
in [13]). We shall not touch on this duality here.

2.2. The Bohr compactification. The Bohr compactification of a topo-
logical group G, can be defined as a pair (bG, b) where bG is a compact Hausdorff
group and b is a continuous homomorphism from G onto a dense subgroup of bG
such that every continuous homomorphism h : G → K into a compact group K
extends to a continuous homomorphism hb : bG → K, making the lower triangle
in the following diagram commutative:

Gxx

j

""EE
EE

EE
EE

G

ε

=={{{{{{{{ b //

h !!CC
CC

CC
CC

bG

hb
||yy

yy
yy

yy

K

The upper triangle of this diagram gives the relation between Bohr compactifica-
tions and Chu duality. Chu [5] proved that the group of all quasi-representations of
G (continuous or not), equipped with the topology of pointwise convergence on Gx

provides a realization of bG. As Gxx consists of continuous quasi-representations,
the inclusion homomorphism j : Gxx → bG that appears in the above diagram is
clearly continuous and one-to-one.

The topology that b induces on G, will be referred to as the Bohr topology .
Since b = j ◦ ε, the map b will be one-to-one exactly when ε is, in other words, the
Bohr topology will be Hausdorff precisely when G is MAP. Since compact groups
(and, in particular, bG) are completely determined by their finite-dimensional
representations (this is Tannaka–Krĕın duality), the Bohr topology of a group G
may also be defined as the one that G inherits from its embedding in the product
UGx

. We refer to [33, V, §14] or to [34] for a careful examination of bG and its
properties.
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3. Abelian groups

In the case of Abelian groups, the notions introduced above become essentially
simpler. This is due to the fact that, for Abelian groups, all irreducible represen-
tations are one dimensional; that is, homomorphisms into the torus, T, the group
of all complex numbers of modulus one. These one dimensional representations
are called characters and are the building blocks of the duality theory of Abelian
groups (see [54]).

Let (G, τ) be an arbitrary topological abelian group. A character on (G, τ) is

a continuous homomorphism χ from G to the torus T. The set Ĝ of all characters,
equipped with the compact open topology, is a topological group with pointwise
multiplication as the composition law, which is called the dual group of (G, τ).

There is a natural evaluation homomorphism ε : G → ̂̂
G of G into its bidual

group. We say that a topological abelian group (G, τ) satisfies Pontryagin–van
Kampen duality if the evaluation map ε is a topological isomorphism onto. The
Pontryagin–van Kampen theorems establish that every LCA group satisfies P–vK
duality.

In [60] van Douwen proved, among other things, the remarkable Theorem 1.1.
Except for the standing abelian hypothesis, his proofs of results concerning ]-
groups made no use whatsoever of specific algebraic properties. This probably
led him to ask whether two groups G1 and G2 with the same cardinality should

have G]
1 and G]

2 homeomorphic. Some years later Kunen [36] and, independently,
Dikranjan and Watson [11], gave examples of torsion groups with the same cardi-
nality having nonhomeomorphic ]-spaces. Still, much remains unknown. Actually,
it is not yet known what happens with some utterly elementary groups:

Question 1. Are the spaces Z] and (Z × Z)] are homeomorphic? What about937–938?

the spaces Q] and Z]?

One consequence of Theorem 1.1 is that ]-groups cannot contain infinite com-
pact subsets. Indeed, the closure clbGD of a discrete and C∗-embedded subset
D of bG is homeomorphic to βD, the Stone–Čech compactification of the discrete
space D. If A is a compact subset of G] and D ⊂ A is as in Theorem 1.1, we obvi-

ously have clbGD ⊂ A. But | clbGD| = |βD| = 22|D|

= 22|A|

. This is a particular
case of a general fact true for any LCA group, a pivotal result indeed about the
Bohr topology of LCA groups.

Theorem 3.1 (Glicksberg, 1962 [19]). Let G be an LCA group. If A ⊂ G is
compact in bG, then A is compact in G.

Theorem 3.1 in its full generality can actually be deduced from Theorem 1.1
and, conversely, Theorem 1.1 follows from Theorem 3.1, by way of Rosenthal’s
`1 theorem. These relations will be explored in Section 4. Further properties
concerning the Bohr topology of a LCA group can be found in [6, 7, 17, 29]
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4. Nonabelian groups

Here we will focus on determining to what extent the results concerning du-
ality theory and Bohr topology of abelian groups can be extended to the noncom-
mutative context. The first contributions to these program have been given by
Chu [5], Heyer [33, 34], Landstad [38], Moran [42], Poguntke [45, 47, 46], and
Roeder [52]. Recent contributions to the subject can be found in [8, 18, 24, 25,
26, 30, 50, 51, 62]. Nevertheless, we do not know how Chu reflexive groups are
placed within the class of LC groups and this is one of the major difficulties for
understanding Chu duality. Therefore, the main question here is:

Question 2. Characterize the (necessarily MAP) locally compact groups that sat- 939?

isfy Chu duality.

Obviously Question 2 leaves open a good number of other questions about
Chu duality. Firstly, we give a brief account on the subject. A topological space
X is called hemicompact if there is a countable family of compact subsets (Kn)n

of G such that every compact subset L of G is contained in some Kn.

Proposition 4.1. Let G be a locally compact MAP group.

(1) If G is discrete (resp. metrizable), then Gx
n is compact (resp. hemicom-

pact).
(2) Conversely, if G is compact then each equivalence class defined by ∼ is

open. Therefore, the quotient space Gx/∼ is discrete.
(3) If G is second countable then Gx

n and Gxx are second countable. As a
consequence Gx is metrizable. In this case G is Chu-reflexive if and only
if the evaluation map ε is onto.

(4) Gxx need not be locally compact, even for countable G, [30, 51].

Now, we recall a notion due to Takahashi [57] in order to obtain a represen-
tation of the Chu quasi-dual for some classes of groups. For each locally compact
group G, Takahashi has constructed a locally compact group GT called Takahashi
quasi dual such that GT is maximally almost periodic, and G′T is compact. The
category of locally compact groups with these two properties is denoted by TAK.
If n > 1 and D ∈ Homc(G,U(n)) then the sets tn(D;U) = {D ⊗ χ : χ ∈ U}, U
any neighborhood of the identity in the group Gx

1 , form a fundamental system of
neighbourhoods of D for a topology in Homc(G,U(n)). We denote by Gt

n the set
Homc(G,U(n)) equipped with this topology and the symbol Gt denotes the topo-
logical sum of the spaces Gt

n, for n ∈ N. A unitary mapping on Gt is a continuous
mapping p : Gt → U conserving the main operations between unitary representa-
tions (see [45] for details). The set of all unitary mappings on Gt equipped with
the compact-open topology is a topological group, with pointwise multiplication
as the composition law, which is usually called the Takahashi quasi-dual group of
G and is denoted by GT . It is easily verified that Gxx ⊂ GT ⊂ bG. The Takahashi
duality theorem establishes that G ∼= GT if G ∈ TAK. A detailed discussion and
extension of this theory has been given by Poguntke in [45].
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Concerning Chu duality, the first difficulty is to identify the quasidual group
Gxx of a locally compact group G. Some extreme situations, totally alien to the
abelian case may actually appear, as for instance that Gxx = bG or, what is the

same (see [18, 30]), that Ĝn is discrete for every n. Next follows some examples
that illustrate the different situations that may arise.

Example 4.2 (Moran [42]). Let {pi} be an infinite sequence of distinct prime
numbers (pi > 2), and let Fi be the projective special linear group of dimension two
over the Galois field GF (pi) of order pi. If G =

∑
i∈N Fi, we have Gxx = GT = bG.

Example 4.3 (Heyer [34]). Let Z3 o Z2 = S3 the permutation group. Define
Gi = Z3 o Z2 for all i ∈ N and take G =

∑
i∈N Gi. Then G = Gxx and GT =∏

i∈N Z3 o
∑

i∈N Z2.

More recently, we have the following results (cf. [30]).

Example 4.4. Let p a prime number greater than 2, and let Fi be the projective
special linear group of dimension two over the Galois field GF (p) of order p. If
G =

∑
i∈N Fi, we have Gxx = G and GT = bG.

Proposition 4.5. Let G be a simple MAP discrete group (which implies G′ = G).
Then the following conditions are equivalent:

(i) Gxx = GT ;

(ii) Ĝn is discrete for all n ∈ N;
(iii) Gxx = bG.

Proposition 4.6. Let G be a discrete MAP group that is nilpotent of length two,
and such that for each positive integer n there are only finitely many co-finite
normal subgroups H of G′ whose index is less or equal than n. Then Gxx ∼= GT .

Proposition 4.6 is a variation of the following nice result due to Poguntke [47,
46].

Corollary 4.7 (Poguntke, 1976). The Heisenberg integral group H, satisfies that
Hxx ∼= HT .

Theorem 4.8. Let G be a discrete MAP group that is an FC group and, for each
positive integer n, there are only finitely many co-finite normal subgroups H of G′

such that G′/H accepts faithful representations into U(n). Then Gxx ∼= GT .

Corollary 4.9. Let G =
∑

n∈N Fn, where each F ′n is simple and limn→∞ exp(F ′n) =
∞. Then Gxx ∼= GT .

Furthermore, for an FC group we have.

Theorem 4.10. Let G be an FC group and suppose there is N ∈ N such that
exp(G′) ≤ N and mdus(G/H) ≤ N for all normal subgroup H of G that is co-finite
in G′. Then the group G is Chu reflexive.

Examples 4.3 and 4.2 also follow from Theorem 4.10. Finally, next example
shows that the Chu quasi-dual group Gxx need not be locally compact even for a
countable discrete group G.
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Example 4.11. Let {pn} be an infinite sequence of distinct prime numbers (pn >
2), and let Gn = PSL(2, pn) be the projective special group of dimension two over
the finite filed of order pn. For each n, let Gn,m be a copy of Gn, for m = 1, 2, . . . .
Let G =

∑∞
n=1(

∑∞
m=1Gn,m) with the discrete topology. The group Gxx is not

locally compact.

We have already mentioned the most recent results about the unitary or Chu
duality (cf. [18, 30, 51]). Nevertheless, the subject is far from being settled.
There are already too many open question that obstruct the progress in this are
of research.

The following two questions concern the very basic structure of Chu duality,
their solution would be of much importance for the study of Chu duality.

Question 3 (Poguntke, 1976 [47]). Let G be a locally compact MAP group with 940?

evaluation map ε : G→ Gxx. Is ε(G) dense in Gxx?

Chu [5] asserted that bG = bGxx for every locally compact group G. The
proof in [5] of this fact is however incomplete, and this remains indeed as one of
the main open questions.

Question 4 (Wu, 2000). Let G be a locally compact MAP group. Is it true that 941?

bG = bGxx?

A positive solution to Question 3 would imply a positive solution to Question 4.

Question 5 (Chu, 1966 [5]). Does the free group with two generators, equipped 942?

with the discrete topology, satisfy Chu duality?

This question appears as one of the major difficulties for a full understanding
of Chu duality. Avoiding it does not however answer all questions.

Question 6. Characterize the MAP, discrete groups without free nonabelian sub- 943?

groups that satisfy Chu duality.

Among groups with no free (non abelian) subgroups, amenable groups are
especially important. A topological group G is amenable when the Banach space
`∞(G) admits a left-invariant mean, that is, a continuous linear functional Λ on
`∞(G) with Λ(1) = 1 and Λ(Lxf) = Λ(f), for every x ∈ G and every f ∈ `∞(G)
(here Lx denotes as usual the left action of x on f , (Lxf)(g) = f(x−1g)). For
discrete G, this is equivalent, to the existence of a finitely-additive left-invariant
probability measure on G. Amenability has a strong impact on the representation-
theoretic properties of a locally compact group, see [43] for instance. Compact
and abelian groups are amenable while any group having a discrete free nonabelian
subgroup is not.

Question 7. Characterize the MAP amenable, locally compact groups that satisfy 944?

Chu duality.
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5. How is G placed in bG? Interpolation sets

Let G be a topological group and let X denote a point-separating, uniformly
closed, self-adjoint subalgebra of CB(G) (continuous, complex-valued, bounded
functions on G). A subset S of G is said to be an X-interpolation set provided
that every bounded function f : S → C (continuous or not) can be extended to a
function f̄ : G→ C with f̄ ∈ X .

Each closed subalgebra X as above is a commutative C∗-algebra and we can
apply the full-strength of Gelfand’s duality to it, see for instance [54]. Let σ(X)
denote the space of multiplicative linear functionals on X (i.e. linear functionals
T : X → C with T (fg) = T (f)T (g), for all f, g ∈ X). The set σ(X) with the
topology of pointwise convergence on X is a compact topological space called the
spectrum of X . Every element f ∈ X can then be identified with a function
Ef ∈ C(σ(X),C) via evaluations (Ef (T ) = T (f) for every T ∈ σ(X)). The
main consequence of Gelfand’s duality is that this identification establishes an
isomorphism of C∗-algebras.

The compact space σ(X) also defines a compactification of G. Taking into
account that the elements of X are continuous functions on G, we have an evalu-
ation mapping j : G → σ(X) (given by j(g)(T ) = T (g)) that defines a one-to-one
continuous map with dense range. From this point of view X-interpolation sets
are those subsets of G that are discrete and C∗-embedded in σ(X).

The Bohr compactification can be obtained in the preceding way by consid-
ering X = AP (G), the algebra of almost periodic functions on G. A bounded
function f : G → C is almost periodic if the set of translates {Lxf : x ∈ G} is a
compact subset of CB(G) (for the topology of uniform convergence). A function
f : G→ C turns to be almost periodic if and only if it is the uniform limit of ma-
trix coefficients1 of finite-dimensional unitary representations. Thus the almost
periodic functions are precisely the functions that admit a continuous extension
to bG. The spectrum σ(AP (G)) of AP (G) can then be identified with the Bohr
compactification of G.

The X-interpolation sets for X = AP (G) are called I0-sets. I0-sets were
first studied by Hartman and Ryll–Nardzewski in the sixties in a series of papers
starting with [27, 28]. The fact that lacunary sequences of integers are I0-sets
was first proved in [56] (see [37] for a recent proof).

5.1. Existence and abundance of interpolation sets. Existence prob-
lems on interpolation sets are amenable to topological techniques as the proof of
van Douwen’s theorem 1.1 [60] shows (see [16] for a simpler proof). We recast
here Theorem 1.1 in terms of I0-sets:

Theorem 5.1. Every infinite subset A of a discrete abelian group G contains an
I0-set S with |S| = |A|.

1If π is a unitary representation of a group G on a Hilbert space H, a matrix coefficient of
π is a complex-valued function g 7→ 〈π(g)ξ, η〉, with ξ, η ∈ H.
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A sequence S = (xn)n of a Banach space E is said to be an (or equivalent
to the) `1-basis if the map sending xn to the canonical basis (en) of `1 extends
to a linear homeomorphism on the closed linear span of S. Interpolation sets
share many properties with `1-basis (see for instance [3], and what follows). This
relation can be a very fruitful one, mainly because the existence of `1-basis is
neatly characterized by Rosenthal’s well-known theorem.

Theorem 5.2 (Rosenthal 1971, [53]). A bounded sequence in a Banach space
either has a weakly Cauchy subsequence or has a subsequence which is an `1-basis.

If E is a Banach space, a sequence (xn) in E is a weakly Cauchy sequence if
f(xn) is convergent for every continuous linear functional f on E.

Rosenthal’s theorem relates the presence of `1-basis to the absence of weakly
convergent sequences. It can be adapted to provide a similar relation with inter-
polation sets, this is the Rosenthal-type theorem for locally compact groups that
appears in [18].

Theorem 5.3. Let G be a metrizable locally compact group. A sequence in G
admitting no Bohr Cauchy subsequence (i.e., no subsequence converging to an
element of bG), must contain an infinite I0-subset.

Observe that the combination of Glicksberg’s Theorem 3.1 and Theorem 5.3
implies Theorem 1.1 for countable abelian groups. As indicated in Section 2, it is
also true that Theorem 3.1 follows from an appropriate extension of Theorem 1.1
to nondiscrete groups, see [17], a fact that was used there to prove Glicksberg’s-
type theorems for some abelian nonlocally compact groups. These theorems are
mainly based on the following analog of Theorem 1.1 that appears in [17]:

Theorem 5.4. Let G be abelian, locally connected and Čech-complete. Every

subset A of Ĝ that is not equicontinuous as a set of T-valued functions on G, must
contain an infinite I0-set.

Both approaches have failed so far to provide a general answer for the simplest
questions about I0 sets in the case of nonabelian locally compact (even discrete)
groups. The relevant question here therefore is:

Question 8. Which (countable) discrete groups contain no nontrivial Bohr con- 945?

vergent sequences? Or equivalently, which groups G have infinite I0-sets inside
every infinite subset A ⊂ G?

As far as we know the first noncommutative theorem related to Question 8 was
given by Moran [42]. We need the concept of direct integral of a representation

to understand his result. Roughly, the direct integral π =
∫ ⊕

A
πα dµ(α) of a family

of unitary representations πα, where α ∈ A runs on a measure space (A, µ), is
another representation such that its matrix coefficients are obtained as ordinary
integrals, of the matrix coefficients of the representations πα.
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Theorem 5.5 (Moran, 1971 [42]). Let G be a locally compact group and suppose
its left regular representation can be decomposed as a direct integral of represen-
tations almost all of which are finite-dimensional. Then every Bohr convergent
sequence of G is also convergent in the locally compact topology.

Corollary 5.6. Let G be a group that satisfies the hypothesis of the theorem above.
Then every subset A of G either has compact closure or contains an infinite I0-set.

It happens that every unitary representation of a locally compact group may
be obtained (often in several unrelated ways) as a direct integral of irreducible
representations. With this fact in mind, Theorem 5.5 applies directly to those
groups G whose irreducible representations are all finite dimensional, so-called
Moore groups . In this line, Remus and Trigos-Arrieta have proved the following
result that avoids direct integrals.

Theorem 5.7 (Remus and Trigos-Arrieta, 1999 [50]). If the locally compact group
G is Moore then G respects compactness.

In the opposite direction we have.

Theorem 5.8 (Wu and Riggins, 1996 [62]). Let G be a maximally almost periodic
FC group that contains no nontrivial convergent sequences. Then G is abelian by
finite (that is has a normal Abelian subgroup of finite index).

These results leave open the following main question.

Question 9. Let G be a discrete group that contains no nontrivial convergent946–947?

sequences.

(a) Is G abelian by finite?
(b) Can the left regular representation be decomposed as direct integral of

finite dimensional representations?

In the positive direction, we have the following result that appears in [31].

Theorem 5.9. Let G be a finitely generated discrete group without non-abelian
free subgroups. Then G has no non-trivial Bohr convergent sequences if and only
if G is abelian by finite.

Theorem 5.9 displays some examples of discrete groups that have Bohr conver-
gent sequences despite having some good commutativity properties. For instance,
the Heisenberg integral group, the lamplighter group (

∑
Z Z/2Z) o Z or the direct

sum G =
∑

n∈N Fn, with Fn finite, simple and non-abelian. In order to solve
Question 8, one has to overcome an important obstacle, namely that of dealing
with the free group with two generators.

Question 10. Does F (a, b) contain non-trivial Bohr convergent sequences?948?

The question may be extended to:

Question 11. Characterize the MAP locally compact groups whose compact sub-949?

sets are the same in the original and Bohr topologies.
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In connection with the Bohr topology of locally compact groups, several au-
thors have considered the so-called van der Waerden (or self-bohrifying) groups.
That is, compact groups G satisfying that bGd = G, where Gd denotes the same
algebraic group G equipped with the discrete topology. In this direction van der
Waerden proved that every (algebraic) homomorphism from a compact connected
semisimple Lie group into a compact group is continuous (cf. [59]). We mention
here the following question along this direction, see [25].

Question 12. What are the direct products G =
∏

i∈I Fi of finite groups Fi such 950?

that the Bohr compactification of Gd is topologically isomorphic to G?

5.2. Sidon sets. The matrix coefficients of all (finite- or infinite-dimensional)
unitary representations also constitute an algebra. This is the Fourier-Stieltjes al-
gebra B(G) introduced by Eymard in [14]. When G is abelian B(G) reduces to
the set of Fourier–Stieltjes transforms of measures of the dual group, see [12].

Let B(G) denote the uniform closure of the Fourier–Stieltjes algebra of G.

B(G)-interpolation sets in discrete (and locally compact) abelian groups G have
been deeply studied under the name of Sidon sets, see for instance [40]. It should

be remarked that B(G)-interpolation sets on noncommutative groups also appear
in the literature as weak Sidon sets, see [44] for instance.

With these definitions in mind, one has that Sidon subsets of a group G are

discrete and C∗-embedded in the spectrum of B(G). Following [41] we will refer
to this spectrum as the Eberlein compactification of G and denote it by eG. There
are two main differences between bG and eG. Firstly, eG is no longer a topological
group, only a semitopological semigroup, secondly eG is a proper compactification
of G, the embedding of G in eG is a homeomorphism and thus a Glicksberg’s-type
theorem makes no sense for eG. The question on which sequences contained in G
converge to some point in eG (we will refer to this property as being eG-Cauchy)
does however make sense, and is the truly relevant one. After adapting Rosenthal’s
theorem to Sidon sets (as it was done in Theorem 5.3 to I0-sets) the question that
corresponds to Question 8 is:

Question 13. Can discrete groups contain nontrivial eG-Cauchy sequences? Or 951?

equivalently, does every infinite subset of a discrete group G have infinite Sidon
subsets?

Sidon sets are far more abundant than I0-sets in noncommutative groups. We
have for instance the following counterpart to Theorem 5.8.

Theorem 5.10 (de Michele and Soardi [10]). Any infinite subset of a discrete
FC-group contains an infinite Sidon subset.

It should be noticed, and this goes in the same direction of the preceding
theorem, that, contrarily to the I0-case, Sidon subsets of subgroups of a discrete
group G are necessarily Sidon subsets of G. Using this fact, it is easy to see that
infinite subsets of solvable groups always contain infinite Sidon sets. The following
questions should by the same reason be far easier than Question 8 or 10:
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Question 14. Does every infinite subset of the free group on two generators con-952?

tain an infinite Sidon subset?

Question 15. Does every infinite subset of an amenable discrete group contain953?

an infinite Sidon subset?

Finally, the main question here is

Question 16 (López and Ross, 1975 [40]). Does every discrete group contain954?

some infinite Sidon set?

It is important to remark that a discrete group with no infinite Sidon sets
must necessarily be a torsion group. Even more, no subgroup of a torsion group
may contain infinite Sidon sets at all since Sidon subsets of subgroups of discrete
groups are Sidon.

The weakness of the algebraic structure of eG is also important for the very
existence of Sidon sets. Note that the mere existence of an interpolation set implies
that the cardinality of the space eG be at least 2c. Thence the interest on knowing
which groups admit some interpolation set and which have none at all. Thanks to
the Bourgain–Fremlin–Talagrand theorem, that question has a satisfactory answer
for I0-sets:

Theorem 5.11 ([18]). Let G be a maximally almost periodic second countable
topological group. The following assertions are equivalent.

(1) G has no I0-sets.
(2) bG is Rosenthal compact (that is, bG is homeomorphic to a compact

subset of B1(X), the space of all first class Baire functions defined on
some Polish space X).

(3) The Bohr compactification bG of G is metrizable
(4) |bG| = c.
(5) G has at most countably many inequivalent finite dimensional unitary

representations.

Countable groups always have a continuum of pairwise inequivalent irreducible
representations (cf. [1]) and the same is true for every connected second countable

locally compact group. Since B(G) is made from matrix coefficients of general
unitary representations, just as AP (G) is made from matrix coefficients of finite
dimensional ones, it could be expected that the arguments leading to Theorem 5.11
also imply that every discrete or second countable connected locally compact group
contains an infinite Sidon set. Notice that the absence of Sidon sets in G implies
that eG is Rosenthal-compact and thus of cardinality c. But the failure of eG
to be a topological group makes statements (3), (4) and (5) of Theorem 5.11
nonequivalent. Take for instance G = SL(2,R), all nonconstant functions in
B(G) vanish at infinity, i.e., B(G) = C0(G) ⊕ C, and eG can be identified with
the one-point compactification of G. The Eberlein compactification of this group
is therefore metrizable despite having uncountably many inequivalent irreducible
representations. Concerning the equivalence between (2) and (3) the absence of
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better examples (in particular of discrete ones) leaves without answer the following
question.

Question 17. Can a non-metrizable Eberlein compactification eG be Rosenthal 955?

compact?

A negative answer would simplify and provide a higher lever of applicability
of topological techniques for the Questions 14–16.

5.3. Other compactifications. The questions discussed in the preceding

subsections regarding AP(G)- and B(G)-interpolation sets (i.e. I0- and Sidon
sets, respectively) have easier answers in the case of X-interpolation sets with
bigger X . The most immediate case is the algebra of weakly almost periodic
functions X = WAP(G). A bounded function φ : G → C is weakly almost peri-
odic if the set of translates {Lxf : x ∈ G} is a weakly compact subset of CB(G).
Ruppert defines in [55] translation-finite sets as those sets A ⊂ G, G discrete,
such that every bounded f : G → C that vanishes off A is weakly almost peri-
odic. These sets, called RW -sets by Chou [4], are WAP(G)-interpolation sets and
by [55, Proposition 13], every infinite subset of a discrete group contains an infi-
nite translation-finite subset. See [15] for an extension of this fact to more general
(not necessarily locally compact) topological groups.

5.4. The structure of Sidon and I0-sets. Perhaps the oldest question
regarding interpolation sets is whether a Sidon set may be dense in the Bohr
compactification. This is open even in the simplest groups:

Question 18 ([40, 35]). Can a Sidon subset of Z be dense in bZ?2
956?

A probabilistic argument due to Katznelson [35] seems to suggest a negative
answer for Question 18. A theorem of Ramsey [48] shows that Question 18 is
equivalent to the following one:

Question 19. Can a Sidon subset of Z cluster (in the Bohr topology) at some 957?

point of Z?

Although the equivalence between Questions 18 and 19 could point towards a
positive answer to the former, the converse conjecture gains strength if we compare
with I0-sets. By a theorem of Hartman and Ryll-Nardzewski [27] no point of G
can be a Bohr-cluster point of an I0-subset of G (the union of an I0 set and a
point is again I0 and therefore discrete in bG). It is clear in this regard that a
deeper knowledge of the relations between I0 sets and Sidon sets (see [49] and
the references therein) would help with Question 18. In particular an affirmative
answer to the following question implies a negative to Question 18:

2A negative answer to the preceding question would leave some space to this one: is the
closure of a Sidon subset of G a Helson subset of the Bohr compactification?, see [54] for the
definition of a Helson set in a compact group K, needless to say that the whole group is not
Helson.
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Question 20 (Grow, 1987 [22]). Is every Sidon subset of Z a finite union of958?

I0-sets?

Bourgain had already shown in [2] that the answer to Question 20 is positive
for groups G of bounded order (groups with mg = 0 for some m ∈ Z and all
g ∈ G).

Lefèvre and Rodŕıguez-Piazza have shown that interpolation sets with a lower
degree of lacunarity, namely Rosenthal-sets, can be dense in the Bohr compacti-
fication (see [39]). This somehow shows how the case of Sidon sets consitutes a
limiting case.

We finally mention two questions that appear in [21] and concern the structure
of I0-sets, just as the preceding questions concern the structure of Sidon sets. We
need here the concepts of I0(U)-set and ε-Kronecker set. If G is a compact group

and U ⊆ G, we say E ⊂ Ĝ is I0(U) if every bounded function on E is the restriction
of the Fourier–Stieltjes transform of a discrete measure supported on U . A set

E ⊂ Ĝ is ε-Kronecker for some ε > 0, if for every continuous function φ : E → T
there exists x ∈ G such that |γ(x)− φ(γ)| < ε for all γ ∈ E.

Question 21 (Graham, Hare and Körner, [21]). Is every I0-set a finite union of959?

sets in a more limited class? Perhaps a finite union of ε-Kronecker sets?

Question 22 (Graham, Hare and Körner, [21]). Is every I0 set I0(U) for all960–961?

U ⊂ G? (this assumes G to be connected) What about when G = T?

Lack of space has refrained us from referring to another whole lot of problems
on interpolation sets that might respond to topological treatment. These concern
interpolation sets in dual objects of compact groups, see [23] for a recent account
and references to previous results.
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[2] J. Bourgain, Propriétés de décomposition pour les ensembles de Sidon, Bull. Soc. Math.
France 111 (1983), no. 4, 421–428.

[3] J. Bourgain, l1 sequences generated by Sidon sets, J. London Math. Soc. (2) 29 (1984),
no. 2, 283–288.

[4] C. Chou, Weakly almost periodic functions and thin sets in discrete groups, Trans. Amer.
Math. Soc. 321 (1990), no. 1, 333–346.

[5] H. Chu, Compactification and duality of topological groups, Trans. Amer. Math. Soc. 123
(1966), 310–324.

[6] W. W. Comfort, S. Hernández, and F. J. Trigos-Arrieta, Relating a locally compact abelian
group to its Bohr compactification, Adv. Math. 120 (1996), no. 2, 322–344.

[7] W. W. Comfort, S. Hernández, and F. J. Trigos-Arrieta, Cross sections and homeomorphism
classes of abelian groups equipped with the Bohr topology, Topology Appl. 115 (2001), no. 2,
215–233.



REFERENCES 419

[8] W. W. Comfort, D. Remus, and H. Szambien, Extending ring topologies, J. Algebra 232
(2000), no. 1, 21–47.

[9] P. de la Harpe and A. Valette, La propriété (t) de Kazhdan pour les groupes localement
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Topological transformation groups: selected
topics

Michael Megrelishvili

1. Introduction

In this paper all topological spaces are Tychonoff. A topological transforma-
tion group, or a G-space, as usual, is a triple (G,X, π), where π : G × X → X ,
π(g, x) := gx is a continuous action of a topological group G on a topological space
X . Let G act on X1 and on X2. A continuous map f : X1 → X2 is a G-map (or,
an equivariant map) if f(gx) = gf(x) for every (g, x) ∈ G×X1.

The Banach algebra of all continuous real valued bounded functions on a
topological space X will be denoted by C(X). Let (G,X, π) be a G-space. It
induces the action G × C(X) → C(X), with (gf)(x) = f(g−1x). A function
f ∈ C(X) is said to be right uniformly continuous , or also π-uniform, if the
map G → C(X), g 7→ gf is norm continuous. The latter means that for every
ε > 0 there exists a neighborhood V of the identity element e ∈ G such that
supx∈X |f(vx) − f(x)| < ε for every v ∈ V . The set RUCG(X) := RUC(X) of
all right uniformly continuous functions on X is a uniformly closed G-invariant
subalgebra of C(X).

A transitive action in this paper means an action with a single orbit. Let
H be a closed subgroup of G and G/H be the (left) coset space endowed with
the quotient topology. In the sequel we will refer to G/H as a homogeneous
G-space. In this particular case f ∈ RUCG(X) iff f is a uniformly continuous
bounded function with respect to the natural right uniform structure on G/H
(this explains Fact 2.1.1 below). A G-space X will be called:

(1) G-compactifiable, or G-Tychonoff, if X is a G-subspace of a compact
G-space.

(2) G-homogenizable, if there exists an equivariant embedding of (G,X) into
a homogeneous space (G′, G′/H) (i.e., there exists a topological group
embedding h : G ↪→ G′ and a topological embedding α : X ↪→ G′/H such
that h(g)α(x) = gx).

(3) G-automorphic, if X is a topological group and each g̃ = π(g, ·) : X → X
is a group automorphism. We say also that X is a G-group.

(4) G-automorphizable, if X is a G-subspace of an automorphic G-space.
In particular, if Y is a locally convex G-space with a continuous linear
action of G on Y then we say that X is G-linearizable.

2. Equivariant compactifications

A G-compactification of aG-spaceX is aG-map ν : X → Y with a dense range
into a compact G-space Y . A compactification is proper when ν is a topological

421



422 43. TOPOLOGICAL TRANSFORMATION GROUPS: SELECTED TOPICS

embedding. The study of equivariant compactifications goes back to J. de Groot,
R. Palais, R. Brook, J. de Vries, Yu. Smirnov and others.

The Gelfand–Raikov–Shilov classical functional description of compactifica-
tions admits a natural generalization for G-spaces in terms of G-subalgebras of
RUC(X) (see for example [22, 6, 4]). The G-algebra V := RUC(X) defines
the corresponding Gelfand (maximal ideal) space βGX ⊂ V ∗ and the, possibly
improper, maximal G-compactification iβG

: X → βGX . Consider the natural ho-
momorphism h : G → Is(RUC(X)), where Is(RUC(X) is the group of all linear
isometries of RUC(X) and h(g)(f) := gf . The pair (h, iβG

) defines a represen-
tation (in the sense of Definition 7.1) of the G-space X on the Banach space
RUCG(X).

A G-space is G-Tychonoff iff it can be equivariantly embedded into a com-
pact Hausdorff G-space iff iβG

is proper iff RUCG(X) separates points and closed
subsets iff (G,X) is Banach representable (cf. Definition 7.1 and Fact 7.2).

Unless G is discrete, the usual maximal compactification X → βX (which
always is a Gd-compactification for every G-space X , where Gd is the group G
endowed with the discrete topology) fails to be a G-compactification, in general.
However several standard compactifications are compatible with actions. For in-
stance it is true for the one-point compactifications [21]. The Samuel compactifica-
tion of an equiuniform G-spaces (X,µ) is a G-compactification (see [18, 21, 40]).
Here ‘µ is an equiuniformity on a G-spaceX ’ means that every translation g̃ : X →
X is µ-uniform and for every entourage ε ∈ µ there exists a neighborhood U of
the identity e such that (gx, x) ∈ ε for every (g, x) ∈ U × X . Equiuniform pre-
compact uniformities correspond to G-compactifications. For G-proximities see
Smirnov [6]. It is easy to see that Gromov’s compactification1 of a bounded metric
space (X, d) with a continuous G-invariant action is a proper G-compactification.
The reason is that the function fz : X → R defined by fz(x) := d(z, x) is π-uniform
for every z ∈ X .

By J. de Vries’ well known result [23] if G is locally compact then every
Tychonoff G-space is G-Tychonoff. See Palais [59] for the case of a compact Lie
group G, and Antonyan [6] for compact G.

We call a group G, a V-group, if every Tychonoff G-space is G-Tychonoff.
In [21], de Vries posed the ‘compactification problem’ which in our terms becomes:
is every topological group G a V-group? Thus every locally compact group is a
V-group. An example of [42] answers de Vries’ question negatively: there exists a
topological transformation group (G,X) such that both G and X are Polish and
X is not G-Tychonoff.

Fact 2.1. Recall some useful situations when G-spaces are G-Tychonoff:

(1) every coset G-space G/H (de Vries [21]; see also Pestov [64]);
(2) every automorphic G-space X (and, hence, every linear G-space X), [43];

1The corresponding algebra is generated by the set of functions {fz : X → R}z∈X , where
fz(x) := d(z, x) (see for example [4, p. 112]).
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(3) every metric G-space (X, d), where G is second category and g̃ : X → X
is d-uniformly continuous for every g ∈ G, [43];

(4) every G-space X, where X is Baire, G is uniformly Lindelöf and acts
transitively on X (Uspenskij [74]).

For some results related to Fact 2.1(4) see Chatyrko and Kozlov [20].
A topological group G is uniformly Lindelöf (alternative names: ℵ0-bounded,

ω-bounded, ω-narrow, etc.) if for every nonempty open subset O ⊂ G count-
ably many translates gnO cover G. By a G-factorization theorem [43] every G-
Tychonoff space X with uniformly Lindelöf G admits a proper G-compactification
X ↪→ Y with the same weight and dimension dim Y ≤ dimβGX .

The following two results are proved in [55].

(1) If G is Polish then it is a V-group iff G is locally compact.
(2) If G is uniformly Lindelöf and not locally precompact, then G is not

a V-group. Furthermore there exists a Tychonoff G-space X such that
iβG

: X → βGX is not injective.

The following longstanding question remains open.

Question 2.2 (Yu.M. Smirnov, 1980). Find a nontrivial Tychonoff G-space X 962?

such that every G-compactification of X is trivial.

The compactification problem is still open for many natural groups.

Question 2.3 ([55]). 963–964?

(1) Is there a locally precompact group G which is not a V-group?
(2) What if G is the group Q of rational numbers? What if G is the precom-

pact cyclic group (Z, τp) endowed with the p-adic topology?

Question 2.4 (Antonyan and Sanchis [12]). Is every locally pseudocompact group 965?

a V-group?

Stoyanov gave (see [25, 71]) a geometric description of G-compactifications
for the following natural action: X := SH is the unit sphere of a Hilbert space H
and G := U(H) is the unitary group endowed with the strong operator topology.
Then the maximal G-compactification is equivalent to the natural inclusion of X
into the weak compact unit ball BH of H .

Question 2.5. Let V be a separable reflexive Banach space. Consider the nat- 966?

ural action of the group Is(V ) on the sphere SV . Is it true that the maximal G-
compactification is equivalent to the natural inclusion of X into the weak compact
unit ball BV of V ?

For more information about the question: ‘whether simple geometric objects
can be maximal equivariant compactifications?’ we refer to Smirnov [70].

Question 2.6 (H. Furstenberg and T. Scarr). Let X be a Tychonoff G-space with 967?

the transitive action. Is it true that X is G-Tychonoff?
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Uspenskij’s result (see Fact 2.1(4)) implies that the answer is ‘yes’ if X is
Baire and G is uniformly Lindelöf.

Very little is known about the dimension of βGX . Even in the case of the
left regular action of G on X := G the dimension of βGG (the so-called greatest
ambit for G) may be greater than dimG (take a cyclic dense subgroup G of the
circle group T; then dimG = 0 and dimβGG = dim T = 1). It is an old folklore
result that dimβGG = 0 iff G is non-Archimedean2 (see for example, [61, 56]).
It follows by [39, Thm 5.12] that in the case of the Euclidean group G = Rn, we
have dimβGG = dimG.

Question 2.7. Does the functor βG preserve the covering dimension in case of968?

compact Lie acting group G?

IfG is a compact Lie group then for everyG-spaceX the inequality dimX/G ≤
dimX holds. For second countable X this is a classical result of Palais [59]. For
general Tychonoff X this was done in [43] using a G-factorization theorem. This
inequality does not remain true for compact (even 0-dimensional) groups. This led
us [42] to an example of a locally compact Polish G-space X such that dimX = 1
and dimβGX ≥ 2, where G is a 0-dimensional compact metrizable group.

Fact 2.8 ([6, 7]). (βGX)/G = β(X/G) for every G-space X and compact G.

Question 2.9 (Zambakhidze). Let G be a compact group, X a G-space, and969?

B(X/G) a proper compactification of the orbit space X/G. Does there exist a
proper G-compactification BG(X) of X such that BG(X)/G = B(X/G)?

For some partial results see Antonyan [8] and Ageev [1].

Question 2.10. Let G be a Polish group and X be a second countable G-Tychonoff970?

G-space. Does there exist a metric G-completion of X with the same dimension?

If G is not Polish then it is not true. The answer is affirmative if G is locally
compact [44].

3. Equivariant normality

Definition 3.1 ([57, 41, 55]). Let (G,X, π) be a topological transformation
group.

(1) Two subsets A and B in X are π-disjoint if UA ∩ UB = ∅ for some
neighborhood U of the identity e ∈ G.

(2) X is G-normal (or, equinormal) if for every pair of π-disjoint closed
subsets A and B there exists a pair of π-disjoint neighborhoods O1(A)
and O2(B). It is equivalent to say that every pair of π-disjoint closed
subsets can be separated by a function from RUCG(X) (Urysohn lemma
for G-spaces).

(3) X is weakly G-normal if every pair of π-disjoint closed G-invariant sub-
sets in X can be separated by a function from RUCG(X).

2Non-Archimedean means having a local base at the identity consisting of open subgroups,
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Another version of the Urysohn lemma for G-spaces appears in [34, Theo-
rem 3.9].

Every G-normal space is G-Tychonoff. The action of G := Q on X := R is not
G-normal. One can characterize locally compact groups in terms of G-normality.

Fact 3.2 ([55]). For every topological group G the following are equivalent:

(1) Every normal G-space is G-normal.
(2) G is locally compact.

It is unclear if ‘G-normal’ can be replaced by ‘weakly G-normal’.

Question 3.3. Is every second countable G-space weakly G-normal for the group 971?

G := Q of rational numbers?

If not, then by [55, Theorem 3.2] one can construct for G := Q a Tychonoff G-
space X which is not G-Tychonoff. That is, it will follow that Q is not a V-group
(see Question 2.3).

Fact 3.4. Every coset G-space G/H is G-normal.

Then the following ‘concrete’ actions (being coset spaces) are equinormal:

(1) (U(H), SH) for every Hilbert space H ;
(2) (Is(U),U) (where Is(U) is the isometry group of the Urysohn space U

with the pointwise topology);
(3) (GL(V ), V \ {0}) for every normed space V (see [48]);
(4) (GL(V ),PV ) for every normed space V and its projective space PV .

It follows in particular by (4) that PV is GL(V )-Tychonoff. This was well
known among experts and easy to prove (cf. e.g. Pestov [63]) using equiuniformi-
ties.

Question 3.5. Is it true that the following (G-Tychonoff) actions are G-normal: 972?

(U(`2), `2), (Is(`p), S`p
)), p > 1, (p 6= 2)?

4. Universal actions

Let A be some class of continuous actions (G,X). We say that a pair (Gu, Xu)
from A is (equivariantly) universal for the class A if for every (G,X) ∈ A there
exists an equivariant pair (h, f) such that h : G ↪→ Gu is a topological group
embedding and f : X ↪→ Xu is a topological embedding. If, in addition we require
that G = Gu and h = idG then we simply say that Xu is G-universal.

For a compact space X denote by H(X) the group of all homeomorphisms of
X endowed with the compact open topology.

Fact 4.1.

(1) (Antonyan and de Vries [11]; Tychonoff theorem for G-spaces) For ev-
ery locally compact σ-compact group G and a cardinal τ there exists a
universal G-space of weight τ .
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(2) (Megrelishvili [43]; G-space version of Nagata’s universal space theorem)
Let G be a locally compact sigma-compact group of weight w(G) ≤ τ . For
every integer n ≥ 0 there exists, in the class of metrizable G-spaces of
dimension ≤ n and weight ≤ τ , a universal G-space.

(3) (Hjorth [37]) If G is a Polish group, then the class of Polish G-spaces
has a G-universal object.

(4) (Megrelishvili and Scarr [56]; Equivariant universality of the Cantor
cube) Let K := {0, 1}ℵ0 be the Cantor cube. Then (H(K),K) is equiv-
ariantly universal for the class of all 0-dimensional compact metrizable
G-spaces, where G is second countable and non-Archimedean.

See also results of Becker and Kechris [14, Section 2.2.6], Vlasov [78] and
questions posed by Iliadis in [38, p. 502].

Question 4.2. Let G be a Polish group. Is it true that there exists a universal973?

G-space in the class of all Polish G-spaces with dimension ≤ n?

Fact 4.3 ([46]).

(1) (H(Iℵ0), Iℵ0) is equivariantly universal for the class of all G-compactifiable
actions (G,X) with second countable G and X.

(2) Let G be a uniformly Lindelöf group. Then every G-Tychonoff space X
is equivariantly embedded into (H(Iτ ), Iτ ) where τ ≤ w(X)w(G).

A direct corollary of Fact 4.3(1) is a well known result of Uspenskij [73] about
universality of the group H(Iℵ0). Another proof of Uspenskij’s result (see [9,
Corollary 4]) follows by the following theorem of Antonyan.

Fact 4.4 ([9]). Let G be a uniformly Lindelöf group. Then for every G-Tychonoff
space X there exists a family of convex metrizable G-compacta {Kf}f∈F such that
|F | = w(X) and X possesses a G-embedding into the product

∏
f∈F Kf .

The following natural question of Antonyan remains open (even for τ = ℵ0).

Question 4.5 (Antonyan [9, 10]). Let G be a uniformly Lindelöf group of weight974?

wG ≤ τ . Does there exist a G-universal compact G-space of weight τ?

Question 4.6. Let τ be an uncountable cardinal.975–976?

(1) Is it true that there exists an equivariantly universal topological trans-
formation group (Gu, Xu) in the class of all topological transformation
groups (G,X) where X is G-Tychonoff and max{w(G), w(X)} ≤ τ?

(2) What if Gu and G are abelian?

A positive answer on (1) will imply the solution of the following question.

Question 4.7 (Uspenskij [76]). Does there exist a universal topological group of977?

every given infinite weight τ?

Fact 4.8. G-Compactifiable ⊃ G-Homogenizable ⊃ G-Automorphizable.
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Every G-group X is naturally identified with the coset P -space P/G, where
P := X h G is the corresponding semidirect product. This explains the second
inclusion. The first inclusion follows by Fact 3.4.

If G is locally compact then every G-space is G-linearizable (see for exam-
ple, [6, 24]) and all classes from Fact 4.8 coincide.

It is well known that the action of H(Iℵ0) on Iℵ0 is transitive. Using Effros’
theorem one can show that Tychonoff cubes Iλ are coset H(Iλ)-spaces for every
infinite power, [46]. Therefore Fact 4.3 leads to the equality G-Compactifiable =
G-Homogenizable for every uniformly Lindelöf group G. It is unclear in general.

Question 4.9. Is there a G-Tychonoff non-homogenizable G-space? Equivalently, 978?

is every compact G-space G-homogenizable?

5. Free topological G-groups

Let X be a Tychonoff G-space. By FG(X) we denote the corresponding free
topological G-group in the sense of [46]. Recall a link with the epimorphism
problem. Uspenskij has shown in [75] that in the category of Hausdorff topological
groups epimorphisms need not have a dense range. This answers a longstanding
problem by K. Hofmann. Pestov gave [60, 62] a useful epimorphism criteria in
terms of the free topological G-groups.

Fact 5.1 (Pestov [60]). The natural inclusion H ↪→ G of a topological subgroup H
into G is an epimorphism (in the category of Hausdorff groups) if and only if the
free topological G-group FG(X) of the coset G-space X := G/H is trivial (here the
triviality means, ‘as trivial as possible’, isomorphic to the cyclic discrete group.

For instance by results of [46], FG(X) is trivial in the following situation: the
group G := H(S) is the group of all homeomorphisms of the circle S which can be
identified with the compact coset G-space G/ St(z) (where z is a point of S and
St(z) is the stabilizer of z). It follows that St(z) ↪→ G is an epimorphism. This
example shows also that not every compact G-space is G-automorphizable.

If G is locally compact then FG(X) canonically can be identified with the
usual free topological group F (X). This suggests the following questions.

Question 5.2. Let X be G-automorphic (i.e., the canonical map X → FG(X) is 979?

an embedding). Is it true that the natural map F (X) → FG(X) is a homeomor-
phism?

Question 5.3. Let X be a G-automorphic G-space. Is it true that FG(X) is 980?

algebraically free over X?

6. Banach representations of groups

A representation of a topological group G on a Banach space V is a homomor-
phism h : G → Is(V ), where Is(V ) is the topological group of all linear surjective
isometries V → V endowed with the strong operator topology inherited from V V .
Denote by Vw the space V in its weak topology. The corresponding topology on
Is(V ) inherited from V V

w is the weak operator topology. By [51], for a wide class



428 43. TOPOLOGICAL TRANSFORMATION GROUPS: SELECTED TOPICS

PCP (Point of Continuity Property) of Banach spaces, including reflexive spaces,
strong and weak operator topologies on Is(V ) coincide.

Let K be a ‘well behaved’ subclass of the class Ban of all Banach spaces. Im-
portant particular cases for such K are: Hilb, Ref or Asp, the classes of Hilbert,
reflexive or Asplund spaces respectively. The investigation of Asp and the closely
related Radon–Nikodým property is among the main themes in Banach space the-
ory. Recall that a Banach space V is an Asplund space if the dual of every
separable linear subspace is separable, iff every bounded subset A of the dual V ∗

is (weak∗,norm)-fragmented, iff V ∗ has the Radon–Nikodým property. Reflexive
spaces and spaces of the type c0(Γ) are Asplund. Namioka’s Joint Continuity
Theorem implies that every weakly compact set in a Banach space is norm frag-
mented. This explains why every reflexive space is Asplund. For more details
cf. [58, 17, 28]. For some applications of the fragmentability concept for topo-
logical transformation groups, see [47, 52, 51, 31].

We say that a topological group G is K-representable if there exists a repre-
sentation h : G → Is(V ) for some V ∈ K such that h is a topological embedding;
notation: G ∈ Kr. In the opposite direction, we say that G is K-trivial if ev-
ery continuous K-representation of G is trivial. Of course, TopGr = Ban r ⊃
Aspr ⊃ Ref r ⊃ Hilbr. As to TopGr = Banr, it is an old observation due to
Teleman [72] (see also [62]) that for every topological group G the natural repre-
sentation G→ Is(V ) on the Banach space V := RUC(G) is an embedding.

Every locally compact group is Hilbert representable(Gelfand–Raikov). (We
say also, unitarily representable.) On the other hand, even for Polish groups very
little is known about their representabilty in well behaved Banach spaces.

It is also well known that TopGr 6= Hilbr. Moreover, there are examples of uni-
tarily trivial, so-called exotic groups (Herer–Christensen [36] and Banasczyk [13]).

Classical results imply that a group is unitarily representable iff the positive
definite functions separate the closed subsets and the neutral element. By results
of Shoenberg the function f(v) = e−‖x‖

p

is positive definite on Lp(µ) spaces for
every 1 ≤ p ≤ 2. An arbitrary Banach space V , as a topological group, cannot
be exotic because the group V in the weak topology is unitarily representable.
However C[0, 1], c0 /∈ Hilbr (see Fact 6.6 below).

Fact 6.1 ([50]). A topological group G is (strongly) reflexively representable (i.e.,
G is embedded into Is(V ) endowed with the strong operator topology for some reflex-
ive V ) iff the algebra WAP(G) of all weakly almost periodic functions determines
the topology of G.

A weaker result replacing ‘strong’ by ‘weak’ appears earlier in Shtern [69].
The group G := H+[0, 1] of orientation preserving homeomorphisms of the closed
interval (with the compact open topology) is an important source for counterex-
amples.

Fact 6.2.

(1) ([50]) H+[0, 1] is reflexively (and hence also Hilbert) trivial.
(2) ([32]) Moreover, H+[0, 1] is even Asplund trivial.
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The question if WAP(G) determines the topology of a topological group G
was raised by Ruppert [68]. (1) means that every wap function on H+[0, 1] is
constant. The WAP triviality of G := H+[0, 1] was conjectured by Pestov.

Question 6.3 (Glasner and Megrelishvili). Is there an abelian group which is not 981?

reflexively representable?

Equivalently: is it true that the algebra WAP(G) on an abelian group G
separates the identity from closed subsets?

Question 6.4. Is it true that every Banach space X, as a topological group, is 982?

reflexively representable?

A separable Banach space U is uniformly universal if every separable Banach
space, as a uniform space, can be embedded into U . Clearly, C[0, 1] is linearly
universal and hence also uniformly universal. In [2] Aharoni proved that c0 is
uniformly universal. P. Enflo [27], in answer to a question by Yu. Smirnov, found
in 1969 a countable metrizable uniform space which is not uniformly embedded
into a Hilbert space. That is, `2 is not uniformly universal3. However, it is an
open question if ‘Hilbert’ may be replaced by ‘reflexive’.

Question 6.5. Does there exist a uniformly universal reflexive Banach space? 983?

There is no linearly universal separable reflexive Banach space (Szlenk). More-
over, there is no Lipschitz embedding of c0 into a reflexive Banach space (Mank-
iewicz). For more information on uniform classification of Banach spaces we refer
to [15].

Fact 6.6 ([45, 51]). Let G be a (separable) metrizable group and let UL denote its
left uniform structure. If G is reflexively representable, than (G,UL) as a uniform
space is embedded into a (separable) reflexive space V . Moreover, if G is unitarily
representable then G is uniformly embedded into a (separable) Hilbert space.

As a corollary it follows that C[0, 1] and c0 are not unitarily representable. A
positive answer to the following question will imply a positive answer on 6.5.

Question 6.7. Are the additive groups c0 and C[0, 1] reflexively representable? 984?

A natural question arises about coincidence of Ref r and Hilbr. The positive
answer was conjectured by A. Shtern [69]. By [49], L4[0, 1] ∈ Ref r and L4[0, 1] /∈
Hilbr. Chaatit [19] proved that every separable Lp(µ) space (1 ≤ p < ∞), is
reflexively representable.

By [3], if a metrizable abelian4 group, as a uniform space, is embedded into
a Hilbert space then positive definite functions separate the identity and closed
subsets. Combining this with Fact 6.6 we have the following5.

3This result by Enflo has recently led to some exciting developments in geometric group
theory, cf. Gromov [35].

4In fact, metrizable amenable, is enough.
5It was presented on Yaki Sternfeld Memorial International Conference (Israel, May 2002).
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Fact 6.8. A metric abelian group is unitarily representable if and only if it is
uniformly embedded into a Hilbert space.

The same observation (for second countable abelian groups) is mentioned by
J. Galindo in a recent preprint [29]. Facts 6.6 and 6.8 suggest the following
question.

Question 6.9 (See also [49]). Let G be a metrizable group and it, as a uniform985?

space (G,UL), is uniformly embedded into a reflexive (Hilbert) Banach space. Is
it true that G is reflexively (resp., unitarily) representable?

Galindo announced [29] that for every compact space X the free abelian topo-
logical group A(X) is unitarily representable. Uspenskij found [77] that in fact
this is true for every Tychonoff space X . The case of F (X) is open.

Question 6.10. Let X be a Tychonoff (or, even a compact) space.986?

(1) Is it true that the free topological group F (X) is reflexively representable?
(2) (see also Pestov [66]) Is it true that F (X) is unitarily representable?

U(`2) clearly is universal for Polish unitarily representable groups.

Question 6.11. Does there exist a universal reflexively representable Polish group?987?

Question 6.12. Is it true that if G is reflexively representable then the factor988?

group G/H is also reflexively representable?

It is impossible here to replace ‘reflexively’ by ‘Hilbert’ because every Abelian
Polish group is a factor-group of a Hilbert representable Polish group (Gao and
Pestov [30]). A positive answer to Question 6.12 will imply that every second
countable Abelian group is reflexively representable. Also then we will get a
negative answer to the following problem.

Question 6.13 (A.S. Kechris). Is every Polish (nonabelian) topological group a989?

topological factor-group of a subgroup of U(`2) with the strong operator topology?

A natural test case by Fact 6.2 is the group H+[0, 1]. Fact 6.2 of course implies
that every bigger group G ⊃ H+[0, 1] is not reflexively representable. Moreover
if G in addition is topologically simple then it is reflexively trivial. For instance
the Polish group Is(U1)6 is reflexively trivial (as observed by Pestov [65], this
fact follows immediately from results by Megrelishvili [50] and Uspenskij [76]). It
follows that every Polish group is a subgroup of a reflexively trivial Polish group.

Question 6.14 (Glasner and Megrelishvili [32]). Is it true that there exists a990?

nontrivial Polish group which is reflexively (Asplund) trivial but does not contain
a subgroup topologically isomorphic to H+[0, 1]?

By a recent result of Rosendal and Solecki [67] every homomorphism of
H+[0, 1] into a separable group is continuous. Hence every representation (of
a discrete group) H+[0, 1] on a separable reflexive space is trivial.

6U1 is a sphere of radius 1/2 in U.
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Question 6.15 (Glasner and Megrelishvili). Find a Polish group G which is re- 991?

flexively (Asplund) trivial but the discrete group Gd admits a nontrivial represen-
tation on a separable reflexive (Asplund) space.

Question 6.16. Is it true that the group H(Iℵ0) is reflexively trivial? 992?

It is enough to show that the group H(Iℵ0) is topologically simple.

Question 6.17 (Glasner and Megrelishvili). Is it true that there exists a group G 993?

such that G ∈ Aspr and G /∈ Ref r.

7. Dynamical versions of Eberlein and Radon–Nikodým compacta

Eberlein compacta in the sense of Amir and Lindenstrauss [5] are exactly
the weakly compact subsets in Banach (equivalently, reflexive) spaces V . If X is
a weak∗ compact subset in the dual V ∗ of an Asplund space V then, following
Namioka [58], X is called Radon–Nikodým compact (in short: RN). Every reflexive
Banach space is Asplund. Hence, every Eberlein compact is RN.

Definition 7.1 ([52]). A (proper) representation of (G,X) on a Banach space V
is a pair (h, α) where h : G→ Is(V ) is a continuous homomorphism of topological
groups and α : X → V ∗ is a weak star continuous bounded G-mapping (resp.,
embedding) with respect to the dual action G×V ∗ → V ∗, (gϕ)(v) := ϕ(h(g−1)(v)).

Note that the dual action is norm continuous whenever V is an Asplund
space, [47]. It is well known that the latter does not remain true in general.

Fact 7.2. A G-space X is properly representable on some Banach space V if and
only if X is G-Tychonoff (consider the natural representation on V := RUCG(X)).

The following dynamical versions of Eberlein and Radon–Nikodým compact
spaces were introduced in [52]. A compact G-space X is Radon–Nikodým, RN
for short, if there exists a proper representation of (G,X) on an Asplund Banach
space V . If V is reflexive (Hilbert) then we get the definitions of reflexively (resp.,
Hilbert) representable G-spaces. In the first case we say that (G,X) is an Eberlein
G-space.

Fact 7.3. Let X be a metric compact G-space.

(1) ([52]) X, as a G-space, is Eberlein (i.e., reflexively G-representable) iff
X is a weakly almost periodic G-space in the sense of Ellis [26].

(2) ([31]) X, as a G-space, is RN iff X is hereditarily nonsensitive.

Compact spaces which are not Eberlein are necessarily nonmetrizable, while
even for G := Z, there are natural metric compact G-spaces which are not RN.

There exist compact a metric Z-space which is reflexively but not Hilbert
representable [53]. This answers a question of T. Downarowicz.

Question 7.4. Is it true that Eberlein (that is, reflexively representable) compact 994?

G-spaces are closed under factors?
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For the trivial group G (i.e., in the purely topological setting) the answer is
affirmative and this is just a well known result by Benyamini, Rudin and Wage [16].
The answer is ‘yes’ for compact metric G-spaces.

Question 7.5. Is it true that RN (that is, Asplund representable) compact G-995?

spaces are closed under factors?

For the trivial group one can recognize a longstanding open question by
Namioka [58]. Again if X is metric then the answer is ‘yes’. For Hilbert rep-
resentable actions the situation is unclear even for the metric case.

Question 7.6. Is it true that Hilbert representable compact metric G-spaces are996?

closed under factors?

For a compactG-spaceX denote by E := E(X) the corresponding (frequently,
‘huge’) compact right topological (Ellis) enveloping semigroup. It is the pointwise
closure of the set of translations {g̃ : X → X}g∈G in the product space XX .

The enveloping semigroup E(X) of a metric compact RN G-space X is a
separable Rosenthal compact (hence, card(E(X)) ≤ 2ℵ0), [31].

Question 7.7 (Glasner and Megrelishvili). Is it true that for every compact metric997?

RN G-space X the enveloping semigroup E(X) is metrizable?7

A function f ∈ RUC(G) is Asplund, notation: f ∈ Asp(G), if f is a (general-
ized) matrix coefficient of an Asplund representation h : G → Is(V ). This means
that V is Asplund and there exists a pair of vectors (v, ψ) ∈ V × V ∗ such that
f(g) = ψ(g−1v). Similarly, WAP(G) is the set of all matrix coefficients of reflexive
representations. Recall that if RUC(G) = WAP(G) then G is precompact [54].

Question 7.8. Assume that RUC(G) = Asp(G). Is it true that G is precompact?998?
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Forty-plus annotated questions about large
topological groups

Vladimir Pestov

This is a selection of open problems dealing with large (non locally compact)
topological groups and concerning extreme amenability (fixed point on compacta
property), oscillation stability, universal minimal flows and other aspects of uni-
versality, and unitary representations.

A topological group G is extremely amenable, or has the fixed point on com-
pacta property , if every continuous action of G on a compact Hausdorff space has
a G-fixed point. Here are some important examples of such groups.

Example 1. The unitary group U(`2) of the separable Hilbert space `2 with the
strong operator topology (that is, the topology of pointwise convergence on `2)
(Gromov and Milman [32]).

Example 2. The group L1((0, 1),T) of all equivalence classes of Borel maps from

the unit interval to the circle with the L1-metric d(f, g) =
∫ 1

0 |f(x) − g(x)| dx
(Glasner [25], Furstenberg and Weiss, unpublished).

Example 3. The group Aut(Q,≤) of all order-preserving bijections of the ratio-
nals, equipped with the natural Polish group topology of pointwise convergence
on Q considered as a discrete space and, as an immediate corollary, the group
Homeo+[0, 1] of all homeomorphisms of the closed unit interval, preserving the
endpoints, equipped with the compact-open topology (the present author [43]).

The above property is not uncommon among concrete “large” topological
groups coming from diverse parts of mathematics. In addition to the above quoted
articles, we recommend [24, 37] and the book [46].

The group in Example 2 is monothetic, that is, contains a dense subgroup
isomorphic to the additive group of integers Z. Notice that every abelian extremely
amenable group G is minimally almost periodic, that is, admits no non-trivial
continuous characters (the book [15] is a useful reference): indeed, if χ : G → T
is such a character, then (g, z) 7→ χ(g)z defines a continuous action of G on T
without fixed points. The converse remains open.

Question 1 (Eli Glasner [25]). Does there exist a monothetic topological group 999?

that is minimally almost periodic but not extremely amenable?

An equivalent question is: does there exist a topology on the group Z of
integers making it into a topological group that admits a free action on a compact
space but has no non-trivial characters?

Suppose the answer to the above question is in the positive, and let τ be a min-
imally almost periodic Hausdorff group topology on Z admitting a free continuous
action on a compact space X . Let x0 ∈ X . Find an open neighbourhood V of x0

with 1 · V ∩ V = ∅. It is not difficult to verify that the set S = {n ∈ Z : nx0 ∈ V }
437
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is relatively dense in Z, that is, the size of gaps between two subsequent ele-
ments of S is uniformly bounded from above, and at the same time, the closure
of S − S = {n − m : n,m ∈ S} is a proper subset of Z. The interior of S − S
in the Bohr topology on Z (the finest precompact group topology) is therefore
not everywhere dense in (Z, τ). Assuming this interior is non-empty, one can now
verify that the τ -closures of elements of the Bohr topology on Z form a base for
a precompact group topology that is nontrivial and coarser than τ , contradict-
ing the assumed minimal almost periodicity of (Z, τ). Thus, a positive answer to
Glasner’s question would answer in the negative the following very old question
from combinatorial number theory/harmonic analysis, rooted in the classical work
of Bogoliuboff, Følner [19], Cotlar and Ricabarra [11], Veech [61], and Ellis and
Keynes [17]:

Question 2. Let S be a relatively dense subset of the integers. Is the set S −S a1000?

Bohr neighbourhood of zero in Z?

We refer the reader to Glasner’s original work [25] for more on the above. See
also [64, 44, 46].

Question 3. Does there exists an abelian minimally almost periodic topological1001?

group acting freely on a compact space?

This does not seem to be equivalent to Glasner’s problem, because there are
examples of minimally almost periodic abelian Polish groups whose every mono-
thetic subgroup is discrete, such as Lp(0, 1) with 0 < p < 1.

There are numerous known ways to construct monothetic minimally almost
periodic groups [1, 15, 4, 48]. The problem is verifying their (non) extreme
amenability. The most general result presently known asserting non extreme
amenability of a topological group is:

Theorem (Veech [62]). Every locally compact group admits a free action on a
compact space.

Since every locally compact abelian group admits sufficiently many charac-
ters, one cannot employ Veech theorem to answer Glasner’s question. Can the
result be extended? Recall that a topological space X is called a kω-space (or: a
hemicompact space) if it admits a countable cover Kn, n ∈ N by compact subsets
in such a way that an A ⊆ X is closed if and only if A∩Kn is closed for all n. For
example, every countable CW -complex, every second countable locally compact
space, and the free topological group [29] on a compact space are such.

Question 4. Is it true that every topological group G that is a kω-space admits a1002?

free action on a compact space?

Question 5. Same, for abelian topological groups that are kω-spaces.1003?

A positive answer would have answered in the affirmative Glasner’s question
because there are examples of minimally almost periodic kω group topologies on
the group Z of integers [48].
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Recall that the Urysohn universal metric space U is the (unique up to an isom-
etry) complete separable metric space that is ultrahomogeneous (every isometry
between two finite subsets extends to a global self-isometry of U) and universal
(U contains an isometric copy of every separable metric space) [54, 63, 31, 22].
The group Iso(U) of all self-isometries of U, equipped with the topology of point-
wise convergence (which coincides with the compact-open topology), is a Pol-
ish topological group with a number of remarkable properties. In particular,
Iso(U) is a universal second-countable topological group [57, 58] and is extremely
amenable [45].

Question 6. Is the group Iso(U) divisible, that is, does every element possess 1004?

roots of every positive natural order?1

Returning to Glasner’s Question 1, every element f of Iso(U) generates a
monothetic Polish subgroup, so one can talk of generic monothetic subgroups of
Iso(U) (in the sense of Baire category).

Question 7 (Glasner and Pestov, 2001, unpublished). Is a generic monothetic 1005?

subgroup of the isometry group Iso(U) of the Urysohn metric space minimally
almost periodic?

Question 8 (Glasner and Pestov). Is a generic monothetic subgroup of Iso(U) of 1006?

the Urysohn metric space extremely amenable?

The concept of the universal Urysohn metric space admits numerous mod-
ifications. For instance, one can study the universal Urysohn metric space U1

of diameter one (it is isometric to every sphere of radius 1/2 in U). By anal-
ogy with the unitary group U(`2), it is natural to consider the uniform topol-
ogy on the isometry group Iso(U1), given by the bi-invariant uniform metric
d(f, g) = supx∈U1

dU1
(f(x), g(x)). It is strictly finer than the strong topology.

Question 9. Is the uniform topology on Iso(U1) non-discrete?2
1007?

Question 10. Does Iso(U1) possess a uniform neighbourhood of zero covered by 1008?

one-parameter subgroups?

Question 11. Does Iso(U1) have a uniform neighbourhood of zero not containing 1009?

non-trivial subgroups?

Question 12. Is Iso(U1) with the uniform topology a Banach–Lie group? 1010?

The authors of [50] have established the following result as an application of
a new automatic continuity-type theorem and Example 3 above.

Theorem (Rosendal and Solecki [50]). The group Aut(Q,≤), considered as a
discrete group, has the fixed point on metric compacta property, that is, every
action of Aut(Q,≤) on a compact metric space by homeomorphisms has a common
fixed point. The same is true of the group Homeo+[0, 1].

1Recently Julien Melleray has announced a negative answer (private communication).
2According to Julien Melleray (a private communication), the answer is yes.
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This is particularly surprising in view of the Veech theorem, or, rather, its
earlier version established by Ellis [16]: every discrete group G acts freely on a
suitable compact space by homeomorphisms (e.g., on βG). The two results seem
to nearly contradict each other!

Question 13. Does the unitary group U(`2), viewed as a discrete group, have the1011?

fixed point on metric compacta property?

Question 14. The same question for the isometry group of the Urysohn space U11012?

of diameter one.

Extreme amenability is a strong form of amenability, an important classical
property of topological groups. A topological group G is amenable if every com-
pact G-space admits an invariant probability Borel measure. Another reformula-
tion: the space RUCB(G) of all bounded right uniformly continuous real-valued
functions on G admits a left-invariant mean, that is, a positive functional φ of
norm 1 and the property φ(gf) = φ(f) for all g ∈ G, f ∈ RUCB(G), where
gf(x) = f(g−1x). (Recall that the right uniform structure on G is generated by
entourages of the diagonal of the form VR = {(x, y) ∈ G ×G : xy−1 ∈ V }, where
V is a neighbourhood of identity. For the left uniformity, the formula becomes
x−1y ∈ V .) For a general reference to amenability, see e.g., [41].

Question 15 (A. Carey and H. Grundling [9]). Let X be a smooth compact1013?

manifold, and let G be a compact (simple) Lie group. Is the group C∞(X,G) of
all smooth maps from X to G, equipped with the pointwise operations and the C∞

topology, amenable?

This question is motivated by gauge theory models of mathematical physics [9].

Question 16. To begin with, is the group of all continuous maps C([0, 1], SO(3))1014?

with the topology of uniform convergence amenable?

The following way to prove extreme amenability of topological groups was
developed by Gromov and Milman [32]. A topological group G is called a Lévy
group if there exists an increasing net (Kα) of compact subgroups whose union is
everywhere dense in G, having the following property. Let µα denote the Haar
measure on the group Kα, normalized to one (µα(Kα) = 1). If A ⊆ G is a
Borel subset such that lim infα µα(A ∩ Kα) > 0, then for every neighbourhood
V of identity in G one has limα µα(V A ∩ Kα) = 1. (Such a family of compact
subgroups is called a Lévy family.)

Theorem (Gromov and Milman [32]). Every Lévy group is extremely amenable.

Proof. We will give a proof in the case of a second-countable G, where one
can assume the net (Kα) to be an increasing sequence. For every free ultrafilter
ξ on N the formula µ(A) = limn→ξ µn(A∩Kn) defines a finitely-additive measure
on G of total mass one, invariant under multiplication on the left by elements
of the everywhere dense subgroup G =

⋃∞
n=1 Kn. Besides, µ has the property

that if µ(A) > 0, then for every non-empty open V one has µ(V A) = 1. Let
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now G act continuously on a compact space X . Choose an arbitrary x0 ∈ X .
The push-forward, ν, of the measure µ to X along the corresponding orbit map,
given by ν(B) = µ{g ∈ G : gx0 ∈ B}, is again a finitely-additive Borel measure
on X of total mass one, invariant under translations by G and having the same
“blowing-up” property: if ν(B) > 0 and V is a non-empty open subset of G, then
ν(V B) = 1. Given a finite cover γ of X , an element W of the unique uniformity
on X , and a finite subset F of G, there is at least one A ∈ γ with ν(A) > 0,
consequently ν(W [A]) = 1 and for all g ∈ F the translates g ·W [A], having full
measure each, must overlap. This can be used to construct a Cauchy filter F of
closed subsets of X with A ∈ F , g ∈ G implying gA ∈ F . The only point of

⋂F
is fixed under the action of G and therefore of G as well. �

For instance, the groups in Examples 1 and 2 are Lévy groups, and so is the
isometry group Iso(U) with the Polish topology [42].

The Theorem of Gromov and Milman cannot be inverted, because the ex-
tremely amenable groups from Example 3 are not Lévy: they simply do not con-
tain any non-trivial compact subgroups. What if such subgroups are present?
The following is a reasonable general reading of an old question by Furstenberg
discussed at the end of [32].

Question 17. Suppose G is an extremely amenable topological group containing 1015?

a net of compact subgroups (Kα) whose union is everywhere dense in G. Is G a
Lévy group?3

Question 18. Provided the answer is yes, is the family (Kα) a Lévy family?4
1016?

A candidate for a “natural” counter-example is the group SU(∞), the induc-
tive limit of the family of special unitary groups of finite rank embedded one into
the other via SU(n) 3 V 7→ ( I 0

0 V ) ∈ SU(n+ 1). Equip SU(∞) with the inductive
limit topology, that is, the finest topology inducing the given topology on each
SU(n).

Question 19. Is the group SU(∞) with the inductive limit topology extremely 1017?

amenable?

If the answer is yes, then Questions 17 and 4 are both answered in the negative.
Historically the first example of an extremely amenable group was constructed

by Herer and Christensen [34]. Theirs was an abelian topological group without
strongly continuous unitary representations in Hilbert spaces (an exotic group).

Question 20. Is the exotic group constructed in [34] a Lévy group? 1018?

The following result shows that the properties of Lévy groups are diametrically
opposed to those of locally compact groups in the setting of ergodic theory as well
as topological dynamics.

3I. Farah and S. Solecki have announced a counter-example (May, 2006).
4Cf. the previous footnote.
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Theorem (Glasner–Tsirelson–Weiss [26]). Let a Polish Lévy group act in a Borel
measurable way on a Polish space X. Let µ be a Borel probability measure on X
invariant under the action of G. Then µ is supported on the set of G-fixed points.

Question 21 (Glasner–Tsirelson–Weiss, ibid.). Is the same conclusion true if one1019?

only assumes that the measure µ is quasi-invariant under the action of G, that is,
for all g ∈ G and every null-set A ⊆ X, the set gA is null?

Recall that a compact G-space X is called minimal if the orbit of every point
is everywhere dense in X . To every topological group G there is associated the
universal minimal flow , M(G), which is a minimal compact G-space uniquely
determined by the property that every other minimal G-space is an image ofM(G)
under an equivariant continuous surjection. (See [3].) For example, G is extremely
amenable if and only if M(G) is a singleton. If G is compact, then M(G) = G,
but for locally compact non-compact groups, starting with Z, the flow M(G) is
typically very complicated and highly non-constructive, in particular it is never
metrizable [37]. A discovery of the recent years has been that even non-trivial
universal minimal flows of “large” topological groups are sometimes manageable.

Example 4. The flow M(Homeo+(S1)) is the circle S1 itself, equipped with the
canonical action of the group Homeo+(S1) of orientation-preserving homeomor-
phisms, with the compact-open topology [43].

Example 5. Let S∞ denote the infinite symmetric group, that is, the Polish group
of all bijections of the countably infinite discrete space ω onto itself, equipped with
the topology of pointwise convergence. The flowM(S∞) can be identified with the
set of all linear orders on ω with the topology induced from {0, 1}ω×ω under the
identification of each order with the characteristic function of the corresponding
relation [27].

Example 6. Let C = {0, 1}ω stand for the Cantor set. The minimal flow
M(Homeo(C)) can be identified with the space of all maximal chains of closed
subsets of C, equipped with the Vietoris topology. This is the result of Glasner and
Weiss [28], while the space of maximal chains was introduced into the dynamical
context by Uspenskij [59].

Question 22 (Uspenskij). Give an explicit description of the universal minimal1020?

flow of the homeomorphism group Homeo(X) of a closed compact manifold X in
dimension dimX > 1 (with the compact-open topology).

Question 23 (Uspenskij). The same question for the group of homeomorphisms1021?

of the Hilbert cube Q = Iω.

Note that both X and Q form minimal flows for the respective homeomor-
phism groups, but they are not universal [59]. Interesting recent advances on both
Questions 22 and 23 belong to Yonatan Gutman [33].

Question 24 (Uspenskij). Is the pseudoarc P the universal minimal flow for its1022?

own homeomorphism group?
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A recent investigation [36] might provide means to attack this problem.
Let G be a topological group. The completion of G with regard to the left

uniform structure (the left completion), denoted by ĜL, is a topological semi-
group with jointly continuous multiplication [49, Prop. 10.2(a)], but in general
not a topological group [14]. Note that every left uniformly continuous real-valued

function f on G extends to a unique continuous function f̂ on ĜL. Say that such
an f is oscillation stable if for every ε > 0 there is a right ideal J in the topological

semigroup ĜL with the property that the values of f̂ at any two points of J differ
by < ε. If H is a closed subgroup of G, say that the homogeneous space G/H is
oscillation stable if every bounded left uniformly continuous function f on G that
factors through the quotient map G → G/H is oscillation stable. If G/H is not
oscillation stable, we say that G/H has distortion.

Example 7. The unit sphere S∞ in the separable Hilbert space `2, considered as
the homogeneous factor-space of the unitary group U(`2) with the strong topol-
ogy, has distortion. It means that there exists a uniformly continuous function
f : S∞ → R whose range of values on the intersection of S∞ with every infinite-
dimensional linear subspace contains the interval (say) [0, 1]. This is a famous
and very difficult result by Odell and Schlumprecht [39], answering a 30 year-old
problem. The following question is well-known in geometric functional analysis.

Question 25. Does there exist a direct proof of Odell and Schlumprecht’s result, 1023?

based on the intrinsic geometry of the unit sphere and/or the unitary group?

Example 8. The set [Q]n of all n-subsets of Q, considered as a homogeneous
factor-space of Aut(Q,≤), is oscillation stable if and only if n = 1. For n = 1,
oscillation stability simply means that for every finite colouring of Q, there is a
monochromatic subset A order-isomorphic to Q (this is obvious). For n ≥ 2,
distortion of [Q]n means the existence of a finite colouring of this set with k ≥ 2
colours such that for every subset A order-isomorphic to the rationals the set
[A]n contains points of all k colours. This follows easily from classical Sierpiński’s
partition argument [53], cf. [46, Example 5.1.27].

The above setting for analysing distortion/oscillation stability in the context of
topological transformation groups was proposed in [37] and discussed in [46]. The
most substantial general result within this framework is presently the following.

Theorem (Hjorth [35]). Let G be a Polish topological group. Considered as a
G-space with regard to the action on itself by left translations, G has distortion
whenever G 6= {e}.
Question 26 (Hjorth [35]). Let E be a separable Banach space and let SE de- 1024?

note the unit sphere of E viewed as an Iso(E)-space, where the latter group is
equipped with the strong operator topology. Is it true that the Iso(E)-space SE has
distortion?

Note of caution: this would not, in general, mean that E has distortion in
the sense of theory of Banach spaces [7, Chapter 13], as the two concepts only
coincide for Hilbert spaces.
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For an ultrahomogeneous separable metric space X , oscillation stability of
X equipped with the standard action of the Polish group of isometries Iso(X) is
equivalent to the following property. For every finite cover γ of X , there is an
A ∈ γ such that for each ε > 0, the ε-neighbourhood of A contains an isometric
copy of X . The following could provide a helpful insight into Question 25.

Question 27. Is the metric space U1 oscillation stable?1025?

The Urysohn metric space U itself has distortion, but for trivial reasons, just
like any other unbounded connected ultrahomogeneous metric space.

The oscillation stability of a metric space X whose distance assumes a discrete
collection of values is equivalent to the property that whenever X is partitioned
into two subsets, at least one of them contains an isometric copy of X . The
Urysohn metric space U{0,1,2} universal for the class of metric spaces whose dis-
tances take values 0, 1, 2 is oscillation stable, because it is isometric to the path
metric space associated to the infinite random graph R, and oscillation stability is
an immediate consequence of an easily proved property of R known as indestruc-
tibility (cf. [8]). Very recently, Delhomme, Laflamme, Pouzet, and Sauer [13] have
established oscillation stability of the universal Urysohn metric space U{0,1,2,3}
with the distance taking values 0, 1, 2, 3. The following remains unknown.

Question 28. Let n ∈ N, n ≥ 4. Is the universal Urysohn metric space U{0,1,...,n}1026?

oscillation stable?

Resolving the following old question may help.

Question 29 (M. Fréchet [20], p. 100; P.S. Alexandroff [55]). Find a model for1027?

the Urysohn space U, that is, a concrete realization.

Several such models are known for the random graph (thence, U{0,1,2}), cf. [8].

Question 30. Find a model for the metric space U{0,1,2,3}.1028?

In connection with Uspenskij’s examples of universal second-countable topo-
logical groups [56, 57], including Iso(U), the following remains unresolved.

Question 31 (V.V. Uspenskij [58]). Does there exist a universal topological group1029?

of every given infinite weight τ?

Question 32 (V.V. Uspenskij). The same, for any uncountable weight?1030?

Question 33 (A.S. Kechris). Does there exist a co-universal Polish topological1031?

group G, that is, such that every other Polish group is a topological factor-group
of G?

In the abelian case, the answer is in the positive [51].

Question 34 (A.S. Kechris). Is every Polish topological group a topological factor-1032?

group of a subgroup of U(`2) with the strong topology?

Again, in the abelian case the answer is in the positive [23].
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Question 35. Is the free topological group F (X) [29] on a metrizable compact 1033?

space isomorphic to a topological subgroup of the unitary group U(H) of a suitable
Hilbert space H, equipped with the strong topology?

Galindo has announced [21] a positive answer for free abelian topological
groups. Uspenskij [60] has given a very elegant proof of a more general result: the
free abelian topological group A(X) of a Tychonoff space embeds into U(H) as a
topological subgroup. This suggests a more general version of the same question:

Question 36. The same question for an arbitrary Tychonoff space X. 1034?

In connection with Questions 34, 35 and 36, let us remind the following old
problem.

Question 37 (A.I. Shtern [52]). What is the intrinsic characterization of topo- 1035?

logical subgroups of U(`2) (with the strong topology)?

A unitary representation π of a topological group G in a Hilbert space H (that
is, a strongly continuous homomorphism G→ U(H)) almost has invariant vectors
if for every compact F ⊆ G and every ε > 0 there is a ξ ∈ H with ‖ξ‖ = 1 and
‖πgξ− ξ‖ < ε for every g ∈ F . A topological group G has Kazhdan’s property (T )
if, whenever a unitary representation of G almost has invariant vectors, it has an
invariant vector of norm one. For an excellent account of this rich theory, see the
book [12] and especially its many times extended and updated English version,
currently in preparation and available on-line [5].

Most of the theory is concentrated in the locally compact case. Bekka has
shown in [6] that the group U(`2) with the strong topology has property (T ).

Question 38 (Bekka [6]). Does the group U(`2) with the uniform topology have 1036?

property (T )?

Question 39 (Bekka [6]). Does the unitary group U(`2(Γ)) of a non-separable 1037?

Hilbert space (|Γ| > ℵ0),equipped with the strong topology, have property (T )?

Here is a remarkable “large” topological group that has been receiving much
attention recently. Let ‖·‖2 denote the Hilbert–Schmidt norm on the n×n matri-

ces, ‖A‖2 =
(∑n

i,j=1 |aij |2
)1/2

, and let dn be the normalized Hilbert–Schmidt met-

ric on the unitary group U(n), that is, dn(u, v) = 1√
n
‖u−v‖2. Choose a free ultra-

filter ξ on the natural numbers and denote by U(ξ)2 the factor-group of the direct
product

∏
n∈N U(n) by the normal subgroup Nξ = {(xn) : limn→ξ dn(e, xn) = 0}.

The following question is a particular case of Connes’ Embedding Conjec-
ture [10], for a thorough discussion see [40] and references therein.

Question 40 (Connes’ Embedding Conjecture for Groups). Is every countable 1038?

group isomorphic to a subgroup of U(ξ)2 (as an abstract group)?

Groups isomorphic to subgroups of U(ξ)2 are called hyperlinear . Here are
some of the most important particular cases of the above problem.
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Question 41. Are countable groups from the following classes hyperlinear: (a) one-1039–1041?

relator groups; (b) hyperbolic groups [30]; (c) groups amenable at infinity (a.k.a.
topologically amenable groups, exact groups) [2]?

Under the natural bi-invariant metric d(x, y) = limn→ξ dn(xn, yn), the group
U(ξ)2 is a complete non-separable metric group whose left and right uniformities
coincide, isomorphic to a topological subgroup of U(`2(c)) with the strong topol-
ogy. Understanding the topological group structure of U(ξ)2 may prove important.

The Connes’ Embedding Conjecture itself can be reformulated in the language
of topological groups as follows. Say, following [47], that a topological group G has
Kirchberg’s property if, whenever A and B are finite subsets of G with the property
that every elemant of A commutes with every element of B, there exist finite
subsets A′ and B′ of G that are arbitrarily close to A and B, respectively, such
that every element of A′ commutes with every element of B′, and the subgroups
of G generated by A′ and B′ are relatively compact. As noted in [47], the deep
results of [38], modulo a criterion from [18], immediately imply that the Connes
Embedding Conjecture is equivalent to the statement that the unitary group U(`2)
with the strong topology has Kirchberg’s property.

Question 42. Do the following topological groups have Kirchberg’s property:1042–1043?

(a) the infinite symmetric group S∞, (b) the group Aut(X,µ) of measure-preserving
transformations of a standard Lebesgue measure space with the coarse topology?

It was shown in [47] that Iso(U) has Kircherg’s property.
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[20] M. Fréchet, Les espaces abstraits, Gauthier-Villars, Paris, 1928.
[21] J. Galindo, On unitary representability of topological groups, 2005, Preprint.
[22] S. Gao and A. S. Kechris, On the classification of Polish metric spaces up to isometry,

Mem. Amer. Math. Soc. 161 (2003), no. 766.
[23] S. Gao and V. Pestov, On a universality property of some abelian Polish groups, Fund.

Math. 179 (2003), no. 1, 1–15.
[24] T. Giordano and V. Pestov, Some extremely amenable groups, C. R. Math. Acad. Sci. Paris

334 (2002), no. 4, 273–278.

[25] E. Glasner, On minimal actions of Polish groups, Topology Appl. 85 (1998), no. 1-3, 119–
125.

[26] E. Glasner, B. Tsirelson, and B. Weiss, The automorphism group of the Gaussian measure
cannot act pointwise, Israel J. Math. 148 (2005), 305–329.

[27] E. Glasner and B. Weiss, Minimal actions of the group S(Z) of permutations of the integers,
Geom. Funct. Anal. 12 (2002), no. 5, 964–988.

[28] E. Glasner and B. Weiss, The universal minimal system for the group of homeomorphisms
of the Cantor set, Fund. Math. 176 (2003), no. 3, 277–289.

[29] M. I. Graev, Free topological groups, Amer. Math. Soc. Translation 1951 (1951), no. 35, 61.
[30] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8,

Springer, New York, 1987, pp. 75–263.
[31] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in
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Part 5

Dynamical Systems





Minimal flows

William F. Basener, Kamlesh Parwani and Tamas Wiandt

1. Introduction

A topological dynamical system is a continuous group action ϕ : X × T → X
written ϕt(x), where T is a group and X is a compact Hausdorff space. The most
common cases are where T = R, called a continuous flow , and T = Z, called a
discrete flow . In this paper, a flow means a continuous flow and discrete flows will
be referred to as maps, homeomorphisms, and diffeomorphisms.

Flows arise most naturally as the set of solutions to a system of differential
equations. A compact invariant subset X ⊂ M is said to ba a minimal set if it
is minimal compact invariant set under containment. Explicitly, X is a minimal
set if the only compact invariant subsets of X are itself and the empty set. It is
not difficult to show that a set is minimal if and only if the orbit of every point in
X is dense in X . Another useful characterization of a minimal set is that a set is
minimal if and only if every point in X is almost periodic, defined as follows. A
point x is almost periodic for ϕ if for every neighborhood U of x there are times
t0 < t1 < · · · < ti < · · · such that ϕti

(x) ∈ U for all i and the set of all |ti+1 − ti|
is bounded. As Gottschalk put it, a periodic point returns every hour on the hour
while an almost periodic point returns to its neighborhood every hour within the
hour. It is also not hard to show that the orbit closure of any almost periodic
point is a minimal set.

The notion of a minimal set was first introduced by G.D. Birkhoff in 1912 [6].
The motivation is that a minimal set is the smallest element of a dynamical system,
and heuristically a dynamical system can be broken down into its minimal sets
and the transient portion which moves between the minimal sets. A flow is said
to a minimal flow if the space M is itself a minimal set. This is the situation
we focus on, putting aside questions about the behavior of flows around and near
minimal sets.

The simplest examples of minimal flows are the trivial flow on a single point
and a flow on a circle without fixed points. After these, there is the classical
example of an irrational flow on a torus.

Example 1.1. Define Tn = Rn/Zn. Let α1, . . . , αn be real numbers. Define a
flow on Tn by ϕt(x1, . . . , xn) = (x1 + α1t, . . . , xn + αnt) mod 1. The case where
n = 2 corresponds to moving along lines of slope α2/α1. If α2/α1 is irrational
then this flow is minimal. For the n–dimensional case, if each ratio αi/αj , i 6= j,
is irrational then the flow is minimal. We call this flow an irrational flow on the
torus if the ratios are all irrational. Note that the distance between points is
preserved by the irrational flow.

It is important to determine when two flows are the same. Two flows ϕ : X ×
R → X and φ : Y × R → Y are said to be topologically conjugate if there is a
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homeomorphism h : X → Y such that h ◦ ϕ = φ ◦ h. This condition is often too
strong. More generally, we say that ϕ and φ are topologically conjugate if there is
a homeomorphism h : X → Y that takes orbits in X to orbits in Y . To illustrate
the necessity for considering topological conjugacy, observe that any two periodic
orbits in a continuous flow are topologically conjugate, but are conjugate only
when they have the same period.

The primary questions regarding minimal flows are still the two questions
Gottschalk put forth in [24].

(1) Construction Problem: Provide an explicit construction for all minimal
flows

(2) Classification Problem: Classify all minimal flows either up to conjugacy
or topological conjugacy.

Gottschalk considered the general case where T is an arbitrary group. He thus
considered conjugacy but not topological conjugacy.

A related question is to determine all manifolds that admit minimal flows.
For n = 1, this is trivial. For n = 2, the question is also easy. The torus
admits a minimal flow (Example 1.1), every flow on the Klein bottle has a periodic
orbit [30], and every flow on any other 2-manifold is forced to have a fixed point
because of nonzero Euler characteristic. The question for 3-manifolds is one of the
most important open questions in dynamical systems. In [24], Gottschalk posed
questions in the following way: “What compact metric spaces can be minimal sets
under a discrete flow? Under a continuous flow? The universal curve of Sierpiński?
The universal curve of Menger? A lens space? A polyhedra? . . . ” The question
about the 3-sphere is usually called the Gottschalk conjecture:

Question 1.2 (Gottschalk Conjecture). Does there exist a minimal flow on the1044?

3-sphere?

In [35], Steve Smale mentioned the problem in his list of the most important
problems for the twenty-first century explicitly as “Is the three-sphere a minimal
set? Can a C∞ vector field be found on the three sphere so that every solution
curve is dense?” The same question also appears in [13]. More generally, we may
ask which 3-manifolds support minimal flows? In Section 2 we survey examples of
minimal flows on 3-manifolds and present several related open questions. Minimal
flows can also be studied by looking at the asymptotic behavior of orbits. Do they
spread out? Are there orbits that get closer and closer? In Section 3, we take this
point of view and discuss distal and proximal flows which are central in topological
dynamics.

The choice of topics covered in this article is subjective, based on the authors’
personal tastes. We ignore the analogous questions regarding minimal homeomor-
phisms and minimal actions of other non-compact Lie groups. However, we would
be remiss in our duties if we failed to mention the following remarkable theorem: if
a compact manifold supports an almost free T2 action, then it supports a minimal
flow. The interested reader should consult [29] and [15] for more on this. Another
important property, not discussed here, is the topology of individual orbits of a
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minimal flow. If we close an orbit segment with a short arc, what type of knot
might we get? This is the approach of [26] and [5]. Our main goal in this survey
is to present enough material to whet the readers appetite and allow for further
exploration through the references listed at the end.

The questions about the existence of minimal flows on manifolds are a special
case of the following more general question.

Question 1.3. Consider two integers n and m, with n > m > 0. Which n- 1045?

dimensional manifolds support a minimal m-dimensional foliation? Here a mini-
mal foliation is a foliation in which all leaves are dense.

It is reasonable to assume that minimal flows on 3-manifolds are more tractable,
and we now present many examples and related open questions.

2. Minimal flows on 3-manifolds

We provide examples of minimal flows on compact 3-manifolds. These ex-
amples fall into a few natural classes—suspensions and horocycle flows that are
derived from Anosov flows and robustly transitive diffeomorphisms.

2.1. Suspensions. Let us first describe the suspension construction. Con-
sider a compact manifold M and a homeomorphism f : M → M . From this data
we construct a manifold Sf and a flow ft in the following manner. Define Sf as
the manifold M × [0, 1]/{(x, 1) ∼ (f(x), 0)}, that is, we glue the roof (M × 1) to
the floor (M × 0) by the map f . Now define the flow ft as the unit speed flow
that moves points vertically up from M × 0 to M × 1. This construction is often
referred to as the constant roof function suspension. The flow ft and map f deter-
mine each other—ft is constructed from f and the time-one map of ft restricted
to M × t, for t ∈ [0, 1], is the homeomorphism f on a copy of M (M × t is a cross
section to the flow and the return map is f).

Now it is easy to see that if the map f is minimal on M , then the flow ft on
Sf is a minimal flow.

Example 2.1. Let f be an irrational translation on the two-dimensional torus
T2 defined by f(x) = x + (α, β) mod 1, where (α, β) is a vector with irrational
slope. Then the suspension flow ft on T3 is minimal. Note that ft is equivalent
to the irrational flow on T3 defined by gt = x+ t(α, β, 1) mod 1.

Question 2.2. Does every minimal flow on T3 have a cross section? 1046?

In order to obtain a minimal flow on a 3-manifold via the suspension construc-
tion, we need a minimal homeomorphism on a two-manifold. The only compact
two-manifolds that support minimal maps are T2 and K2 (the Klein bottle). Min-
imal maps are easy to construct on the torus; consider irrational translations. On
the Klein bottle, a theorem of Katok in [29] implies the existence of a minimal
diffeomorphism isotopic to the identity; this follows from the existence of a free
circle action on K2 and a nontrivial Baire category argument (also see [15]). Con-
sequently, the only 3-manifolds that support minimal flows and arise from the
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suspension construction must be T2 or K2 bundles over the circle—like T3 and
K2 × S1. In any case, a finite cover of the manifold must be a torus bundle over
the circle.

So we will focus on torus bundles over the circle. If a map on T2 is isotopic
to an Anosov diffeomorphism, it must have infinitely many periodic orbits (since
it is semi-conjugate to the Anosov diffeomorphism [18]), and hence, cannot be
minimal. So we need concentrate only on non-hyperbolic maps (up to isotopy).
If f is such a homeomorphism on T2, the induced action on the first homology
group is a linear map that is not Anosov and has all eigenvalues of absolute
value 1; the linear map is either of finite order or conjugate to ( 1 n

0 1 ), where n
is a positive integer. The suspension of such maps produce 3-manifolds that are
better known as circle bundles over the torus. These are also Nil manifolds—they
are quotients of a nilpotent connected Lie group by a closed subgroup. The next
example discusses minimal flows on circle bundles over the torus that arise from
suspending maps of infinite order (up to isotopy). The reader may also consult [3]
and [2] for examples of minimal flows on Nil manifolds.

Example 2.3. Define fn : T2 → T2 as fn(x, y) = (x, nx + y) + (α, 0) mod 1,
where α is irrational and n is an integer. Furstenberg proved that fn is minimal
on T2 for all n in [20]. Note that f0 is just an irrational translation on T2.

For distinct positive n and m, since Sfn
is not homeomorphic to Sfm

(because
the fundamenatal groups are not isomorphic), we obtain minimal flows on an
infinite family of compact 3-manifolds via the suspension construction.

Question 2.4. Does every minimal flow on a circle bundle over T2 have a cross1047?

section?

2.2. Derived from Anosov flows. A flow ft on a compact manifold M
associated to the vector field X is an Anosov flow if there is a splitting of the
tangent bundle TM into the line field RX and two dft-invariant subbundles Es

and Eu such that dft uniformly contracts the vectors in Es and uniformly expands
the vectors in Eu as t→∞.

Generally, Es and Eu are Hölder continuous subbundles of TM that are
uniquely integrable and define foliations Fs and Fu (called the stable foliation
and the unstable foliation respectively). Similarly, Es ⊕ RX and Eu ⊕ RX also
define foliations Fcs and Fcu, called the center-stable and the center-unstable
foliations respectively.

Example 2.5. Anosov flows are not minimal since they have periodic orbits.
However, if an Anosov flow is transitive and not a suspension of an Anosov diffeo-
morphism, its stable and unstable foliations are minimal (see [33] and [11]), and
these foliations readily provide minimal flows. If these foliations are orientable,
we may obtain a vector field tangent to the leaves, which will then produce the
required minimal flow when the all the leaves are dense. If the minimal foliation
is not orientable, we can always obtain a minimal flow on the appropriate double
cover.
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The simplest examples of transitive Anosov flows are suspensions of Anosov
diffeomorphisms on T2. In this case, the stable and unstable foliations are not
minimal; however, after a reparametrization these foliations are minimal. Other
standard examples of transitive Anosov flows are geodesic flows on unit tangent
bundles over surfaces of constant negative curvature. It is a classical theorem
of G.A. Hedlund that the horocycle foliations (the stable/unstable foliations) of
these geodesic flows are minimal (see [28] and [22]), and the resulting horocycle
flow along these leaves in a minimal flow. Handel and Thurston in [27] obtained
more exotic examples of transitive Anosov flows on graph manifolds by doing
surgery along closed orbits. The reader may also be interested in the example of
Bonatti and Langevin in [10] and the examples of Fenley in [17] on non-orientable
hyperbolic 3-manifolds.

We now list an example that is derived from an Anosov flow and deserves
special attention.

Example 2.6. Goodman enhanced the surgery techniques of Handel and Thurston
and in [23] constructed an Anosov flow on a 3-manifold by doing surgery around
a closed orbit of an Anosov flow obtained by suspending the Cat map ( 2 1

1 1 ). The
resulting Anosov flow is on a hyperbolic 3-manifold that is not sufficiently large
(see [36] for more details). This implies that it is a hyperbolic homology sphere,
that is, it has the same homology groups as S3. Furthermore, the unstable/stable
foliations are orientable and since the resulting manifold is hyperbolic, the Anosov
flow on it must be transitive (see [16]). So we obtain a minimal flow on a homology
3-sphere!

The (horocycle) minimal flows that are derived from Anosov flows do not
have cross sections. The existence of a cross section implies that the manifold
(or a finite cover of the manifold) must be a circle bundle over T2, and therefore,
the fundamental group has polynomial growth (the fundamental group is virtually
nilpotent). If a 3-manifold supports an Anosov flow, its fundamental group has
exponential growth and is not virtually nilpotent (see [34] or the appendix of [1]).
So cross sections cannot exist for these minimal flows.

These examples illustrate that the problem of classifying 3-manifolds which
support minimal flows is at least as intractable as the problem of classifying 3-
manifolds that support transitive Anosov flows.

Question 2.7. Which 3-manifolds support transitive Anosov flows? 1048?

David Fried in [19] has shown that all transitive Anosov flows may be obtained
by doing surgery along the singular orbits of flows obtained by suspending certain
pseudo-Anosov maps. In general, given a 3-manifold (with exponential growth in
its fundamental group), it is very difficult to determine if it supports an Anosov
flow or not.

2.3. Derived from robustly transitive diffeomorphisms. A C1 diffeo-
morphism f is robustly transitive if f is transitive and all maps in a C1 neighbor-
hood are also transitive. For instance, perturbations of transitive Anosov flows are
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known to be robustly transitive. Diaz, Pujals, and Ures in [14] have shown that
in dimension 3, robustly transitive maps must necessarily be partially hyperbolic.

A C1 diffeomorphism f on a compact manifold M is partially hyperbolic if
there is a splitting of the tangent bundle TM (E⊕F ) into two df -invariant bundles
E and F such that either df uniformly contracts the vectors in E or df uniformly
expands the vectors in F .

Bonatti, Diaz, Pujals, and Ures have proved that in any dimension, robustly
transitive maps possess a dominated splitting; more precisely, every robustly tran-
sitive set of a C1 diffeomorphism is volume hyperbolic ([9] is an excellent reference
for this topic and for nonuniformly hyperbolic phenomena in general). However,
very little is known about manifolds that support robustly transitive diffeomor-
phisms.

A C1 diffeomorphism f on a compact manifold M is a strong partially hyper-
bolic diffeomorphism or strongly partially hyperbolic if there is a splitting of the
tangent bundle TM (Es ⊕Ec ⊕ Eu) into three df -invariant bundles Es, Ec, and
Eu such that df uniformly expands the vectors in Eu, uniformly contracts the
vectors in Es, and the vectors in Ec are expanded (respectively contracted) less
than the vectors in Eu (respectively Es).

In dimension 3, when f is strongly partially hyperbolic, Bonatti, Diaz and
Ures in [8] have established the existence of minimal stable or unstable foliations.
For example, perturbations of transitive Anosov flows and skew products over
Anosov diffeomorphisms are examples of strong partially hyperbolic and robustly
transitive diffeomorphisms (see [7]), and these examples either possess a minimal
stable foliation or a minimal unstable foliation. So just like in the case of transitive
Anosov flows, certain robustly transitive maps have minimal stable or unstable
foliations, and we obtain minimal flows from these.

Question 2.8. Which 3-manifolds support robustly transitive diffeomorphisms1049?

and do not support transitive Anosov flows?

Question 2.9. Which 3-manifolds support partially hyperbolic diffeomorphisms?1050?

Brin, Burago, and Ivanov have proved, under the assumption of dynamical
coherence, that there are no strong partially hyperbolic maps on S3 (see [12]).
Parwani has recently shown in [32] that if M supports a strong partially hyper-
bolic and dynamically coherent diffeomorphism, then the universal cover of M is
homeomorphic to R3. Of course, since the time-one map of an Anosov flow is
a strong partially hyperbolic diffeomorphism, the classification of manifolds that
support partially hyperbolic maps is at least as difficult as the classification of
manifolds that support Anosov flows.

Question 2.10. Is there a 3-manifold with exponential growth in its fundamental1051?

group that supports a partially hyperbolic diffeomorphism but does not support an
Anosov flow?
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3. Asymptotic properties

We say that two points x, y are positively asymptotic in a flow ϕ : M×R→M if
d(ϕt(x), ϕt(y))→ 0 as t→∞. This defines a relation on M ×M by A = {(x, y) ∈
M×M : x and y are positively asymptotic}. No two distinct points are positively
asymptotic in a irrational flow since the flow preserves the distance between any
two points. There are no positively asymptotic points in the classical horocycle
flow. Choose ε > 0 sufficiently small. If d(x, y) < ε then either x and y are on the
same local leaf, in which case the distance between them will be unchanged by the
flow, or they are on different local leaves in which case d(φt(x), φt(y)) > ε for some
t > 0 (see Chapter 1 in [31]). Asymptotic points are in general characteristic of
minimal sets for symbolic dynamics. We present an example below of a minimal
homeomorphism on a Cantor set with asymptotic points. It is possible to suspend
this map and obtain a minimal flow that enjoys the same property.

Example 3.1. Let Σ denote the set of all bi-infinite sequences of zeros and ones,
with elements written as x = (. . . , x−2, x−1, x0, x1, x2, . . . ), and with the metric

d(x,y) =
∑

i∈Z

|xi − yi|
2i

.

This metric makes Σ into a Cantor set. Define the shift map on Σ by σ(. . . , x−2, x−1,
x0, x1, x2, . . . ) = (. . . , x−1, x0, x1, x2, x3, . . . ). Define the element ω ∈ Σ as follows.
Begin with 0. Make the substitution 0 7→ 01 and 1 7→ 10. Repeating this substi-
tution several times we get

0
01
0110
01101001
0110100110010110

Define ω to be the limit of this sequence in both directions,

ω = (. . . 01101001100101100110100110010110 . . .).

It is not hard to show that the orbit of ω is almost periodic but not periodic.
Hence the closure of this orbit is a minimal set which we call X . Observe that any
point ω′ ∈ Σ that agrees with ω in all entries to the right is in X and is asymptotic
to ω under the discrete flow,

(3.1) d(σn(ω), σn(ω′))→ 0 as n→∞.

This type of minimal set is called a substitution minimal set. Observe that the
asymptotic behavior of Equation (3.1) is not present in either of the other two
examples.

Question 3.2. Does there exist a minimal flow on a smooth manifold with a 1052?

nontrivial pair of positively asymptotic points?
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Asymptotic behavior seems too much to ask in general. So we can consider a
more general form of asymptotic–like behavior. We say that a pair of points x, y ∈
M are proximal if there is a sequence {tn} in R such that d(ϕtn

(x), ϕtn
(y) → 0

as i→∞. (In the case of a group action X × T → X on a noncompact space X ,
two points x, y are proximal if there exists a point z ∈ X and sequence {tn} such
that ϕtn

(x) → z and ϕtn
(y) → z as i → ∞.) We define the proximal relation on

M ×M by P = {(x, y) : x and y are proximal}. In the irrational flow, the only
proximal pairs are trivial, P = ∆.

A pair of points that are not proximal is said to be distal . In other words, two
points x, y are distal if there is a nonzero lower bound on the distance between
the points under the flow; inf{d(ϕt(x), ϕt(y) : t ∈ R} > 0. A flow is said to be
distal if nontrivial pairs of points are distal. That is, the flow is distal if and only
if P = ∆. The irrational flow on the torus is distal.

We can relax the proximal condition as follows. Let ϕ denote a flow on
a compact manifold M . A pair of points x and y are regionally proximal if
there are sequences {xn} → x and {yn} → y in M and {tn} in R such that
d(ϕtn

(xn), ϕtn
(yn)) → 0 as n → ∞. (In the case of a group action X × T → X

on a noncompact space X , two points x, y are regionally proximal if there exists a
point z ∈ X and sequences {xn} → x and {yn} → y in M and {tn} in R such that
(ϕtn

(xn), ϕtn
(y)) → (z, z) as n → ∞.) For flows on a compact manifold, this is

equivalent to d(ϕtn
(x), ϕtn

(y))→ 0 as n→∞. We define the regionally proximal
relation on M ×M by Q = {(x, y) : x and y are regionally proximal}.

Also important is the property of equicontinuity. A flow is equicontinuous if
the family of maps defining the flow is an equicontinuous family. That is, if for
any ε > 0, there exists a δ > 0 such that d(x, y) < δ ⇒ d(ϕt(x), ϕt(y)) < ε for
all t. It is worth noting that the flow being not equicontinuous is equivalent to
having sensitive dependence on initial conditions.

The proof of the following lemma is easy. (For details, see [2].)

Lemma. A flow ϕ is equicontinuous if and only if Q = ∆.

The containment A ⊂ P ⊂ Q implies the following relationship:

Q = ∆⇔ ϕ is equicontinuous

⇓
P = ∆⇔ ϕ is distal

⇓
A = ∆

An obvious question is to determine which manifolds admit minimal flows
with each type of asymptotic behavior. The only Riemannian manifolds that
admit equicontinuous minimal flows are tori, which answers the question for Q =
∆ (see [4]). L. Auslander, L. Green and F. Hahn showed that that typically
minimal flows on Nil manifolds, such as the flows of Example 2.3, are distal but
not equicontinuous in [3]. Their work led to Furstenberg’s structure theorem for
distal flows (see [21]).
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Question 3.3. Describe all 3-manifolds that admit distal flows. (Perhaps only 1053?

Nil manifolds?)
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The dynamics of tiling spaces

Alex Clark

In order to provide a topological structure for spaces of tilings, one uses a
metric defined in analogy with a commonly used metric on symbolic spaces. Given
a finite alphabet A, one can define a metric on AZs

by setting

d ((xn), (yn)) =
1

1 + min{|n| : x|n| 6= y|n|}
,

where |n| denotes the norm of n ∈ Zs. With this metric AZs

is a Cantor set
that supports the continuous shift dynamical system: Zs acts continuously by
translation on index,

m . (xn) = (xm+n).

A subshift is the restriction of this action to a closed, shift-invariant subset.
A tile in Rs is subset of Rs homeomorphic to a closed d-dimensional ball, and

a tiling of Rs is a covering by tiles that only intersect in their boundary. Given a
finite set of polyhedral tiles P , consider the collection XP of all tilings of Rs by
elements of P that meet only full edge to full edge (provided such exist). Then
for two tiles T and T ′,

d (T, T ′) = inf
{
{1} ∪

{
ε > 0 : for some u ∈ Rs with |u| < ε, T + u and T ′ agree on B

(
0, 1

ε

)}}
.

This metric provides XP a compact topology with respect to which the translation
action u . T = T − u is continuous. A tiling space is a closed subset of XP that is
invariant under this action. We shall focus on the dynamics of a particular type
of tiling space: the tiling space T of a single tiling T , formed by taking the closure
of the orbit of T . For a general survey, see, e.g., [23].

Topological Rigidity

An especially well-behaved class of tilings are the self-similar tilings, see,
e.g., [23, Section 4]. If T and T ′ are self-similar tilings with homeomorphic tiling
spaces T and T ′, one should not expect the typical homeomorphism to be a con-
jugacy. But the structure of such tilings is so rigid, one might expect that this
could almost be so. By considering a tiling T and the tiling T ′ obtained from T
by inflating all tiles by a factor λ > 1, one obtains homeomorphic tiling spaces for
which (in general) there can be no conjugacy of actions in the strictest sense.

Rs actions on X and Y are linearly equivalent if there is a homeomorphism
h : X → Y and a linear map L of Rs satisfying h (u . x) = L(u) . h(x). In general,
not all homeomorphic tiling spaces are linearly equivalent, see [11, 12].

Question 1. If T and T ′ are self-similar tilings with homeomorphic tiling spaces 1054?

T and T ′, are T and T ′ linearly equivalent?

Should the answer turn out to be negative, one might modify the question
so as to apply to other classes of tilings; for example, to tilings with pure point
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discrete spectrum. Should the answer turn out to be positive, one may then ask
whether any homeomorphism T → T ′ is homotopic to a homeomorphism that
induces a linear equivalence.

The Topological Structure of Tiling Spaces

While any compact metric space is homeomorphic to the inverse limit of a
sequence of compact polyhedra with PL-bonding maps (see, e.g., [18, Ch. I, §5.2]),
the structure of tiling spaces leads to some especially natural inverse sequences.
For substitution tiling spaces see [2], and for more general spaces see [24, 9, 8].
There has been extensive use of cohomology in the study tiling spaces, and in
many cases well-chosen inverse sequences allow one to calculate the cohomology,
see [2]. The occurrence of torsion in cohomology is still a bit mysterious, see [1].

However, much less is known about the role of homotopy and shape theory
in tiling spaces. A well-studied class of sequences are the Sturmian sequences
(see, e.g., [13]). Tiling spaces derived from Sturmian sequences (in other con-
texts known as Denjoy continua [7]) are homeomorphic to the inverse limit of a
sequence {Ki, fi}, where each Ki is a wedge of two circles and each fi induces
an isomorphism of fundamental groups. It follows that these tiling spaces have
the shape of the wedge of two circles [18]. A natural generalization of this type
of tiling space are the quasiperiodic tiling spaces formed by the cut and project
technique, including the Penrose tiling space, see, e.g., [23, Section 8].

Question 2. Does the Penrose tiling space have the shape of a polyhedron?1055?

Question 3. Is there a natural class Q of quasiperiodic tiling spaces (metrically1056?

equivalent to toral Kronecker actions) so that each T ∈ Q has the shape of a
polyhedron?

An answer to these questions could likely be revealed by understanding the
homomorphisms on the homotopy groups induced by the bonding maps in the
same inverse sequences used to calculate cohomology (when available).

Sadun and Williams [25] have shown that any tiling space of the type under
consideration fibers over a torus with a totally disconnected fiber. Williams [28,
Conjecture 2.4] conjectured that up to homotopy the fiber bundle of the Penrose
tiling could be given in five different ways. Robinson has calculated the discrete
spectrum of the Penrose tiling space P [23, Section 8] and found the group of
eigenvalues to be isomorphic to Z4. To an element of this group there corresponds
a map gi : P → S1 that factors the action on P onto a Kronecker action of S1

(one for which all maps x 7→ t . x are translations). Any choice of two distinct
such maps leads to a bundle projection gi×gj : P → T2. It is not difficult to show
that different choices of (i, j) lead to homotopically distinct bundle projections.
In fact, there will be infinitely many homotopically distinct bundle projections,
but the spirit of the conjecture can be conveyed by the following.

Question 4. Is every bundle map P → T2 homotopic to a map that factors the1057?

action on P to a Kronecker action of T2?
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Question 5. If T has pure point discrete spectrum and p : T → Ts is a bundle 1058?

projection with totally disconnected fiber, is p homotopic to a map that factors the
action on T to a Kronecker action of Ts?

In their topological classification of one-dimensional tiling spaces, Barge and
Diamond [3] made critical use of the asymptotic orbits of the tiling spaces. A
homeomorphism carries a pair of topologically asymptotic orbits to a pair of topo-
logically asymptotic orbits. Barge and Diamond have proved the coincidence con-
jecture for Pisot substitutions of two letters [4], and in the course of trying to
construct a proof for the general case the weaker notion of proximality has proven
key. The orbits of T and T ′ are proximal if there exists a sequence un ∈ Rs with
|un| → ∞ and d (un . T, un . T

′)→ 0.

Question 6 (Barge and Diamond). If h : T → T ′ is a homeomorphism of one- 1059?

dimensional tiling spaces, does h necessarily map a pair of proximal orbits to a
pair of proximal orbits?

Deformations of Tiling Spaces

It the tiling T ′ is obtained from the tiling T by adjusting the size and shape
of the tiles in T without changing the combinatorics of the tiling (which tiles
border which others), the respective tiling spaces T and T ′ are homeomorphic [25].
However, the actions may not be linearly equivalent. We will refer to T ′ as a
deformation of T . In [11, 12] there are general results that allow one to determine
when deformations change the dynamics. For large classes of substitution tiling
spaces, these results suffice to completely determine how deformations effect the
dynamics. However, the results are difficult to apply to tiling spaces that do not
arise from substitutions.

Question 7. If T ′ is a deformation of a Sturmian tiling space T , are T ′ and T 1060?

linearly equivalent?

When T is Sturmian and a substitution tiling, then deformations are linearly
equivalent [22]. But the general case is not as clear. For example, whether the
irrational number α associated to the Sturmian has a bounded continued fraction
expansion might be relevant. This leads naturally to the following.

Question 8. If T ′ is a deformation of a quasiperiodic tiling space T , when are 1061?

T ′ and T linearly equivalent?

Again, the focus is on those tiling spaces that do not arise from substitutions.
Recently, Harriss and Lamb [16] have found conditions that allow one to determine
when a cut and project tiling is also a substitution tiling.

Mixing Properties

A tiling space is (topologically) weakly mixing if it has no non-constant contin-
uous eigenfunction, meaning it has no Kronecker action on a circle as a continuous
factor. A tiling space is topologically mixing if for any pair of non-empty open sets
U and V , there is a corresponding M so that if |u| > M , then (u . U) ∩ V 6= ∅.
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Question 9 ([17]). If a primitive substitution has an associated matrix with no1062?

eigenvalues of modulus one, is topological mixing equivalent to weak mixing?

This question applies to symbolic systems as well as to (one-dimensional) tiling
spaces based on substitutions, and it is shown to have a positive answer in the
case of substitutions on two letters in [17].

Much less is known about the mixing properties of tiling spaces that do not
derive from substitutions.

Question 10. Can a tiling space based on a Sturmian sequence be weakly mixing?1063?

If so, is topological mixing equivalent to weak mixing?

It is highly unlikely that a tiling space as we are currently considering could
be (strong) mixing in the measure theoretic sense. However, it is still unknown
whether more general tiling spaces with a larger group than the translation group
acting on the tiling space, such as the pinwheel tiling investigated by Radin in [21],
could be strongly mixing. As pointed out in [17], it is not even known whether
the pinwheel tiling is topologically mixing.

Question 11. Is the pinwheel tiling topologically mixing?1064?

Question 12 ([21]). Is the pinwheel tiling mixing?1065?

Tiling Spaces that are not Locally Finite

To this point we have been considering tiling spaces arising from tilings by
polyhedra meeting full edge to full edge. Given that there are well known tilings
by fractals, this would seem to be a very restrictive class of tilings. However,
Priebe [20] has shown with a Voronoi cell construction that any tiling space aris-
ing from a tiling with finite local complexity is conjugate to a tiling space with
polyhedral tiles meeting full edge to full edge. A tiling has finite local complexity
if up to translation there is a finite number of patches of two tiles. Solomyak [27]
found arithmetic conditions for the weak mixing of self-similar tilings of R2 with fi-
nite local complexity. Little is known about tilings without finite local complexity.
Some easy to digest examples of such tilings may be found in [14].

Question 13. Is there an arithmetic condition for the weak mixing of self-similar1066?

tilings of R2 without finite local complexity?

In general, one may consider which of the known results can be generalized to
tilings without finite local complexity.

Pisot Conjecture

The Pisot conjecture is one of the most hotly pursued open problems in
the theory of tiling spaces. It has connections to symbolic substitution systems,
graph directed systems, β-shifts, and automorphisms of compact connected abelian
groups. As a result, it has drawn the attention of a wide range of people. A survey
of what is known and how the conjecture relates to tilings may be found in [10].
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There are various formulations of the conjecture corresponding to the different
perspectives.

Question 14. If T is a tiling space associated to an irreducible, unimodular Pisot 1067?

substitution, does T have pure point discrete spectrum?

There are various finiteness conditions on the associated Pisot number that
ensure the conjecture holds. The first such condition seems to have been intro-
duced in [15]. The most general conditions under which the conjecture is now
known to hold are given in [5, 6].

Some results of Siegel [13, 26] indicate that it may not be necessary to assume
that the substitution is unimodular.

Question 15. If T is a tiling space associated to an irreducible, Pisot substitution, 1068?

does T have pure point discrete spectrum?

New Directions

In his thesis, Peach [19] gave a way of constructing an algebra associated
to a tiling of the plane by rhombi. The questions he was most interested in were
purely algebraic, and there is no apparent connection between the structure of this
algebra and the dynamics of the tiling. However, by introducing quiver relations
that reflect the nature of a substitution, it might possible to construct powerful
invariants that reflect the dynamics.

Question 16. Is it possible to construct a quiver algebra for a self-similar tiling 1069?

of the plane that provides an important dynamical invariant?
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Open problems in complex dynamics and
“complex” topology

Robert L. Devaney

Complex dynamics is a field in which a large number of captivating struc-
tures from planar topology occur quite naturally. Of primary interest in complex
dynamics is the Julia set of a complex analytic function. As we discuss below,
these are the sets that often are quite interesting from a topological point of view.
For example, we shall describe examples of functions whose Julia sets (or invari-
ant subsets of the Julia sets) are Cantor bouquets, indecomposable continua, and
Sierpiński curves. Because both the topology of and the dynamics on these Ju-
lia sets is so rich, it is little wonder that there are many open problems in this
field. Our goal in this paper is to describe several of these problems. To keep
the exposition accessible, we shall restrict attention to two very special families
of functions, namely the complex exponential function and a particular family of
rational maps. However, the problems and topological structures encountered in
these families occur for many other types of complex analytic maps.

1. Cantor Bouquets and Indecomposable Continua

In this section we consider the dynamics of the complex exponential family
Eλ(z) = λez where, for simplicity, λ is for the most part chosen to be real and
positive. The Julia set for such an entire transcendental map has several equivalent
definitions. For example, the Julia set may be defined as the closure of the set of
points whose orbits escape to∞ under iteration of Eλ. (Note that this is different
from the definition of polynomial Julia sets, where it is the boundary and not
the closure of the set of escaping points that forms the Julia set.) Equivalently,
the Julia set is also the closure of the set of repelling periodic points. These two
defintions show that the Julia set of Eλ is home to chaotic behavior: arbitrarily
close to any point in the Julia set are points whose orbits tend off to ∞ as well
as other points whose orbits are not only bounded, but in fact periodic. So the
map depends quite sensitively on initial conditions near any point in the Julia set.
In fact, much more can be said since the Julia set may also be defined as the set
of points at which the family of iterates of Eλ fails to be a normal family. By
Montel’s Theorem, it then follows that, for any neighborhood U of a point in the
Julia set, the union of the sets En

λ (U) covers all of C− {0}. So arbitraily close to
any point in the Julia set are points whose orbits visit any region whatsoever in
C. We denote the Julia set of a function F by J(F ).

The complement of the Julia set is called the Fatou set. Here the situation is
quite different: the dynamics on the Fatou set is essentially completely understood.
For example, all points in the basin of attraction af an attracting cycle clearly lie
in the Fatou set: the orbits of all nearby points to a point in such a basin behave
similarly. No nearby orbits tend to ∞ and none lie on repelling periodic cycles.
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Figure 1. The graphs of Eλ for several λ-values.

There are a few other possible types of behavior in the Fatou set, but none of
these behaviors involve anything chaotic.

The graphs of Eλ on the real line (see Figure 1) show that there are two
different types of dynamical behavior depending upon whether λ < 1/e or λ > 1/e.
When λ < 1/e, there are two fixed points on the real line, an attracting fixed point
at q = qλ and a repelling fixed point at p = pλ. All orbits to the right of p tend to
∞, so these points are in the Julia set, as is p. All points to the left of p are in the
basin of attraction of q, so these points are not in the Julia set. In fact, let x be
any point in R with q < x < p. Then one checks easily that the entire half plane
Hx = Re z < x is wrapped infinitely often around a disk minus the origin, and
this disk lies strictly inside the half plane Hx. By the Schwarz Lemma, all points
in any of these half planes therefore have orbits that simply tend to q and hence
lie in the Fatou set. So the Julia set must lie in the half-plane Re z ≥ p. This is
essentially true when λ = 1/e, though now all orbits in the half-plane Re z < p
now tend to the neutral fixed point at p = q.

To get a feeling for the structure of the Julia set when λ ≤ 1/e, we paint the
picture of its complement. Consider the preimage of Hx. This preimage must
contain the lines y = (2n + 1)π for each n ∈ Z, since these lines are mapped to
the negative real axis. Hence there are open neighborhoods of each of these lines
extending from Hx to∞ in the right half plane and mapped onto Hx. This means
that the Julia set is contained in infinitely many symmetrically located, simply
connected, closed sets that extend to ∞ in the right half plane. Each of these
sets is mapped one-to-one onto the entire half plane Re z ≥ x. As a consequence,
there are points in each of these regions that map into each of the neighborhoods
of the lines y = (2n + 1)π and hence these points are also in the Fatou set. So
this breaks each of these complementary domains into infinitely many more sets,
each of which extend off to ∞ to the right. And so the Julia set must lie in these
regions. Continuing in this fashion, one can show that the Julia set is actually an
uncountable collection of curves (called hairs) that extend to ∞ in the right half
plane, and each of these hairs has a distinguished endpoint [7]. The set of all such
hairs forms the Julia set and is an example of a Cantor bouquet. So each of these
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hairs consists of two subsets: the endpoint and the remainder of the hair that we
call the stem. For example, one such hair is the half-line [p,∞) ⊂ R. The point p
is the endpoint, which is fixed, and as we saw earlier, all points to the right of p
simply tend to ∞. In general, it is known that, if a point lies on the stem, then,
as in the case of (p,∞), the orbit of this point necessarily tends to ∞ (though it
usually jumps around between different hairs). Hence all of the bounded orbits
must lie in the set of endpoints. But the repelling periodic points are bounded
and hence they must lie in the set of endpoints. But this means that the set of
endpoints is dense in this entire set, and so they accumulate on each point on any
given stem.

Because of this, a Cantor bouquet has some very interesting topological prop-
erties. For example, Mayer [13] has shown that, in the Riemann sphere, the set
of endpoints together with the point at ∞ forms a connected set, whereas the set
consisting of just the endpoints (i.e., remove just one point from the previous set)
is not just disconnected but totally disconnected. Moreover, Karpinska [12] has
shown that the Hausdorff dimension of the set of stems is 1, whereas the Hausdorff
dimension of the much smaller set of endpoints is actually 2.

When λ passes through 1/e, Eλ undergoes a simple saddle node bifurcation
in which the two fixed points qλ and pλ coalesce when λ = 1/e and then reappear
for λ > 1/e above and below the real axis. Meanwhile, all points on the real axis
now tend to ∞, so the entire real axis suddenly lies in the Julia set. But much
more is happening in the complex plane.

The origin is what is known as an asymptotic value. It is the omitted value
for Eλ. As such, it plays the same role as the critical values do in polynomial
dynamics. In particular, via a result of Sullivan [15], as extended to the entire
case by Goldberg and Keen [11], if the orbit of 0 tends to ∞, then the Julia set
of Eλ must be the entire plane. Hence, when λ ≤ 1/e, all of the repelling periodic
points are constrained to lie in the half plane Re z ≥ p, whereas these points
become dense in C for any λ > 1/e. Now no new repelling cycles are born as λ
passes through 1/e; all of these cycles simply move continuously, but the set of
them migrates from occupying a small portion of the right half plane to suddenly
filling all of C.

However, even more is happening in this bifurcation. For example, consider
what happens to the hair [p,∞) as soon as λ increases past 1/e. Suddenly this
hair is much longer: it becomes the entire real axis. But, in fact, it is longer still.
Consider the set of points in the strip S defined by 0 ≤ Im z ≤ π that eventually
map onto R. Clearly, the line y = π maps into R after one iteration. So we can
think of this hair through the origin as being extended by adjoining the point at
−∞ to the real axis and the line y = π. Now Eλ maps S one-to-one onto the upper
half plane. So there is a unique curve in S that is mapped to y = π and hence
into R after two iterations. This curve actually tends to ∞ in the right half plane
in both directions. So we can similarly adjoin a point at ∞ to the upper end of
this preimage and the right end of y = π. Then the preimage of this curve in S is
another curve that also extends to ∞ in the right half plane in both directions. In
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fact, all of the subsequent preimages of y = π have this property. If we successively
adjoin one endpoint of each curve with the corresponding endpoint of its preimage,
we get a curve in S that can be shown to accumulate everywhere upon itself. If
we compactify this picture by contracting S to the strip −1 ≤ Re z ≤ 1 and again
making these identifications, then this curve does not separate the plane. Using a
result of Curry [1], the closure of this set can be shown to be an indecomposable
continuum [2]. That is, as soon as the bifurcation occurs, the hair [p,∞) suddenly
explodes into an indecomposable continuum.

Here is where a number of open problems arise. Let Cλ denote the indecom-
posable continuum in J(Eλ) in S.

Problem 1. Suppose λ, µ > 1/e. Are Cλ and Cµ homeomorphic?1070?

It is known that each of the maps Eλ and Eµ have the same symbolic dy-
namics on their Julia sets [7], but the maps themselves are not topologically
conjugate [10]. This latter fact was proved by showing that certain collections of
periodic points accumulate onto dynamically different points when λ 6= µ. A more
topological proof of this fact would ensue if Problem 1 were shown to be true.

The exact topology of these indecomposable continua is not known. There
have been some piecewise linear models proposed [9], but so far a complete topo-
logical description of these sets has not been given.

Problem 2. Find a topological model for the sets Cλ.1071?

In contrast to the rich topology of these sets, the dynamical behavior on these
sets is fairly well understood. There are only three types of orbits:

(1) The fixed point (which moves upward off the real axis after q and p
merge);

(2) The points on any of the preimages of R whose orbits simply tend to ∞;
(3) The orbits of all other points which accumulate on the orbit of 0 together

with the point at ∞.

In line with this, there are many other questions having to do with the relation
between the dynamics and the topology of Cλ. For example:

Problem 3. What is the structure of the composant that contains the unique fixed1072?

point in Cλ?

There are other indecomposable continua in the Julia set of Eλ. For exam-
ple, one can associate an itinerary to any point in J(Eλ) by watching how the
orbit passes through the strips Sn = {z | (2n − 1)π < Im z < (2n + 1)π} at each
iteration. Then we associate the infinite sequence of integers s = (s0s1s2 . . .) to

z if Ej
λ(z) ∈ Ssj

for each j. Then, for λ > 1/e, consider the set of points whose
itinerary is a given sequence s. For most sequences, this set of points remains
a hair. However, if s terminates in all 0s, then this set is just a preimage of
the indecomposable continuum (or its complex conjugate) constructed above and
hence is homemorphic to this set. If the itinerary consists of blocks of 0s sepa-
rated by non-zero entries and having the property that the lengths of the blocks
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of 0s goes to ∞ sufficiently quickly, then the corresponding set of points is also
an indecomposable continuum which is presumably topologically diferent from the
one constructed above. See [5]. A natural question is what other types of sets of
points can correspond to a given itinerary.

Problem 4. Identify which itineraries correspond to indecomposable continua 1073?

when λ > 1/e and which yield hairs. Are there any other possibilities for the
types of sets corresponding to a given itinerary? And how does all of this depend
on λ?

Along this line, when λ is allowed to be complex and the orbit of 0 eventually
lands on a repelling periodic orbit (as is the case when λ = kπi with k 6= 0), then
it is known that set of points corresponding to certain itineraries may be an inde-
composable continuum together with a finite collection of curves that accumulates
on the indecomposable continuum. But this is the only other type of set that is
known to correspond to a given itinerary. See [6]. It seems strange that there is
nothing in-between: either such a set is a simple curve or it is (or contains) an
indecomposable continuum.

Problem 5. Identify the types of sets of points that can correspond to a given 1074?

itinerary under a complex exponential map.

We have restricted to the complex exponential in this section for several rea-
sons. First of all, this has been the most widely studied example of an entire
transcendental dynamical system. Secondly, the corresponding results for other
functions seem much more difficult. For example, consider the simple cosine family
iµ cos z where µ > 0. It is known that, if µ ≈ 0.67, the cosine function undergoes
a similar bifurcation as the exponential does when λ = 1/e. The Julia set is a
pair of Cantor bouquets (one in the upper and one in the lower half plane) when
µ < 0.67, whereas the Julia set explodes to become C as soon as µ increases beyond
0.67. How this occurs is still a mystery. The hairs forming the Cantor bouquet do
change after the bifurcation, but do they become indecomposable continua? The
difficulty arises because the cosine function has critical points and not asymptotic
values. This seems to cause a very different structure in the hairs when the critical
points suddenly escape to ∞.

Problem 6. Explain the bifurcation at µ = 0.67 in the family iµ cos z. In partic- 1075?

ular, do hairs suddenly become indecomposable continua?

Of course, there are many other instances of similar (and more complicated)
bifurcations in transcendental dynamics. Perhaps other exotic topological struc-
tures arise in these bifurcations as well. Along these lines, there are examples of
simple bifurcations in which the Julia set of an entire map migrates from a Cantor
bouquet to a simple closed curve (passing through ∞) and also from a Cantor
bouquet to a Cantor set. See [4].
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2. Sierpiński Curve Julia Sets

In this section we turn to a very different type of topological structure that
occurs often in complex dynamics, Sierpiński curves. A Sierpiński curve is any
planar set that is homeomorphic to the well-known Sierpiński carpet fractal. This
set is important in topology for several reasons. First, thanks to a result of Why-
burn [16], there is a topological characterization of any set that is homeomorphic
to the carpet. Any planar set that is compact, connected, locally connected,
nowhere dense, and has the property that each complementary domain is bounded
by a simple closed curve, any pair of which are disjoint, is homeomorphic to the
Sierpiński carpet (and thus called a Sierpiński curve). More importantly, Sierpiński
curves are universal plane continua since any planar, one-dimensional, compact,
connected set may by embedded homeomorphically in a Sierpiński curve.

To see these sets in complex dynamics, we now turn to the family of rational
maps given by Fλ(z) = zn + λ/zn where n ≥ 2 and λ ∈ C − {0}, although these
types of sets occur in many other families of rational maps. For these maps, the
definition of the Julia set is slightly different. The point at ∞ is no longer an
essential singularity as in the case of the exponential map. Rather, since n ≥ 2,
the map Fλ is essentially given by zn near ∞, so ∞ is an attracting fixed point
for these maps and we have a basin of ∞ that we denote by Bλ. J(Fλ) is still the
closure of the set of repelling periodic points, but now it is the boundary of, not
the closure of, the set of points whose orbits escape to∞. Note that the origin is a
pole and there is a neighborhood of 0 that is mapped n-to-1 onto a neighborhood
of ∞ in Bλ. If this neighborhood of 0 does not intersect Bλ, then there is an open
set containing 0 that is mapped n-to-1 onto the entire set Bλ. We then call this
set the trap door and denote it by Tλ. Tλ is the trap door since any orbit that
eventually reaches Bλ must in fact pass through Tλ exactly once.

These maps are special because, despite the high degree of the maps, there
really is only one free critical orbit. Indeed the 2n critical points are given by
λ1/2n, but they are each mapped to one of the critical values ±2

√
λ by Fλ. After

that, the two critical values are mapped onto the same point (if n is even) or
the orbits of these two points are arranged symmetrically under z 7→ −z (if n is
odd). In either case, all the critical orbits behave in the same manner, so there is
essentially only one critical orbit.

If one and hence all of the critical orbits end up in the basin of ∞, then the
topology of the Julia set is completely determined. There are thre different ways
that these orbits can reach Bλ. The following result is proved in [8]. Suppose the
critical orbit tends to ∞.

(1) If the critical values lie in Bλ, the Julia set is a Cantor set;
(2) If the critical values lie in Tλ, the Julia set is a Cantor set of simple closed

curves;
(3) If the crtical values do not lie in Bλ or Tλ but some subsequent iterate

of these points does so, then the Julia set is a Sierpiński curve.
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Figure 2. The Julia sets for (a) z2 − 0.06/z2, and (b) z2 +
(−0.004 + 0.364i)/z are Sierpiński curves.

As a remark, case 2 of this result was proved by McMullen [14]. This case
cannot occur when n = 2. In Figure 2, we display several examples of Sierpiński
curve Julia sets drawn from the family when n = 2.

The fact that there is essentially only one critical orbit for maps in these
families says that the λ-plane is the natural parameter plane for these families.
In Figure 3 we have displayed the parameter planes for the families when n = 3
and n = 4. The external white region consists of parameters for which the Julia
set is a Cantor set; the central white region is the McMullen domain where the
Julia set is a Cantor set of simple closed curves; and all of the other white regions
contain parameters for which the Julia set is a Sierpiński curve. These regions are
called Sierpiński holes. The region in parameter plane that excludes the Cantor
set locus and the McMullen domain is called the connectedness locus; Julia sets
whose parameters lie in this region are known to be connected sets.

For a parameter drawn from a Sierpiński hole, the complementary domains
consist of Bλ and all of its preimages. It is known that if two parameters, λ and
µ, lie in the same Sierpiński hole, then Fλ and Fµ are dynamically the same, i.e.,
Fλ is topologically conjugate to Fµ on their Julia sets. In particular, the critical
orbits all land in Bλ under the same number of iterations under both of these
maps. But if λ and µ are drawn from holes for which the number of iterations
that it takes for the critical orbit to reach Bλ is different, then these maps are not
conjugate. However, there are many different holes for which the critical values
take the same number of iterations to reach Bλ. For example, when n = 3, it is
known [3] that there are exactly 2 · 6j holes for which it takes the critical values
j + 2 iterations to reach Bλ. This leads to a more dynamical type of problem:
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Figure 3. The parameter planes for the cases n = 3 and n = 4.

Figure 4. Two magnifications of the parameter plane for the
family z2 + λ/z2 along the negative real axis. In the first image,
−0.4 ≤ Reλ ≤ −0.06 and, in the second, −0.2 ≤ Reλ ≤ −0.15

Problem 7. Determine whether the dynamical behavior that occurs for parameters1076?

drawn from two different Sierpiński holes with the same escape time is the same
or different.

There are many types of parameters for which the corresponding Julia sets
are Sierpiński curves. For example, a magnification of the parameter plane for
n = 2 shown in Figure 4 shows that there are (in fact, infinitely many) buried
small copies of Mandelbrot sets contained in the parameter plane. These are the
Mandelbrot sets that do not touch the outer boundary of the connectedness locus.
It is known that if λ lies in the main cardioid of such a Mandelbrot set, then again
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the Julia set is a Sierpiński curve. The dynamics on these types of sets are again
different from the dynamics of maps drawn from Sierpiński holes, since there is an
attracting cycle for such a map. So the complementary domains for these maps
consist of all the preimages of this attracting basin as well as the preimages of Bλ.
And there are other types of Sierpiński curve Julia sets: for example, it is known
that there is a Cantor set of simple closed curves in the parameter plane that
do not pass through any Sierpiński holes, yet all of the Julia sets corresponding
to parameters on these curves are Sierpiński curves. As before, all but finitely
many of these maps are dynamically distinct. So we have a huge number of Julia
sets that are all the same from a topological point of view, but dynamically very
different. This leads to a natural question:

Problem 8. Classify the dynamics of all the different types of Sierpiński curve 1077?

Julia sets that arise in these families.
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The topology and dynamics of flows

Michael C. Sullivan

Flows

Let M be a compact connected Riemannian manifold without boundary. Let
‖·‖ be the norm on the tangent bundle TM and d(·, ·) the metric induced on
M . By a flow on M we mean a smooth function f : M × R → M such that
f(f(x, s), t) = f(x, s + t) and f(x, 0) = x. Much of what we describe in this
sections for flows carries over with suitable modifications to diffeomorphisms.

The chain recurrent set of a flow f is

R ={x ∈M : ∀ε > 0, ∃{x0 = x, x1, x2, . . . , xk} ⊂M, ∃{t1, t2, . . . , tk} ⊂ R+

such that d(f(xi, ti), xi+1) < ε, i = 1, . . . , k − 1, d(f(xk, tk), x0) < ε}.
The chain recurrent set of a flow is said to have a hyperbolic structure if the

tangent bundle of the manifold structure can be written as a Whitney sum TR =
Eu⊕Ec⊕Es of sub-bundles invariant under Df where Ec

x is the subspace of TMx

corresponding to the orbit of x and such that there are constants C > 0 and λ > 0
for which ‖Dft(v)‖ ≤ Ce−λt‖x‖ for v ∈ Es, t ≥ 0 and ‖Dft(v)‖ ≥ 1/Ceλt‖x‖ for
v ∈ Eu, t ≥ 0.

Steve Smale showed that when R is hyperbolic it is the closure of the periodic
orbits of the flow. Smale also showed that when R is hyperbolic it has a finite
decomposition into compact invariant sets called basic sets :

Theorem (Spectral Decomposition Theorem). Suppose that the chain recurrent
set R of a flow has a hyperbolic structure. Then R is a finite disjoint union of
compact invariant sets Λ1,Λ2, . . . ,Λk where each Λi contains an orbit that is dense
in Λi.

We define respectively the stable and unstable manifolds of an orbit O in a
flow f .

W s(O) = {y ∈M : d(f(y, t), f(x, t))→ 0 as t→∞ for some x ∈ O},
W u(O) = {y ∈M : d(f(y, t), f(x, t))→ 0 as t→ −∞ for some x ∈ O}.

That these are manifolds is a classical result of Hirsch and Pugh [28] referred to
as the Stable Manifold Theorem. A flow is structurally stable if it is topologically
equivalent , i.e., there is a homeomorphism taking orbits to orbits preserving the
flow direction, to flows obtained by small enough perturbations.

A flow with hyperbolic chain recurrent set R satisfies the transversality con-
dition if the stable and unstable manifolds of R always meet transversally. A
flow (or diffeomorphism) that has a hyperbolic chain recurrent set and satisfies
the transversality condition is structurally stable; see [22, Theorem 1.10] for ref-
erences. The converse — known as the C1 Stability Conjecture — was proposed

477
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by Palis and Smale in [36] has been proven by Hu [29] for dimension 3 and for
arbitrary dimension by Hayashi [27]; see also [51].

For the three dimensional case the basic sets of C1 structurally stable flows
may be of the following types: isolated fixed points; isolated closed orbits; suspen-
sions of nontrivial irreducible shifts of finite type (SFTs) (see [30] for definitions
of terms for symbolic dynamics) — these have infinitely many periodic orbits
but rational zeta functions; two-dimensional attractors or repellers, e.g., a sus-
pension of Pylkin’s attractor — these are modeled by inverse limits of branched
one-dimensional manifolds [52]; and lastly, if the invariant hyperbolic set is the
whole of M , we have an Anosov flow .

If the chain recurrent set of a flow is hyperbolic, consists of a finite collection
of periodic orbits and fixed points, and satisfies the transversality condition, we
have a Morse–Smale flow . Daniel Asimov showed that for n 6= 3 all n-manifolds
(possibly with boundary), subject to certain obvious Euler characteristic criteria,
support nonsingular Morse–Smale flows [1]. (A nonsingular flow is just a flow
without fixed points.) John Morgan has characterized which 3-manifolds (possibly
with boundary) support nonsingular Morse–Smale flows [35] and Masaaki Wada
has determined which links can be realized as the invariant set of a nonsingular
Morse–Smale flow on S3 [50]; see also [13]. Wada’s result shows, for example,
that the figure-8 knots cannot be realized in a nonsingular Morse–Smale flow on
S3. Thus, the existence of a figure-8 knot in a Morse–Smale flow on S3 forces a
fixed point. Bifurcations of nonsingular Morse–Smale flows on S3 are studied in
[12]. Given a link L in some orientable 3-manifold, Masahico Saito [40] shows
how to modify the 3-manifold (by forming connected sums with S2 × S1 pieces)
so that the new 3-manifold has a nonsingular Morse–Smale flow with L as part of
its chain recurrent set (actually he shows a bit more than this).

If the chain recurrent set of a flow is at most one-dimensional and satisfies
the transversality condition the flow is known as a Smale flow . Basic sets which
are not isolated fix points or closed orbits are suspensions of SFTs and must be
saddle sets. There are no chaotic attractors or repellers.

Anosov flows arose from the study of geodesic flows on surfaces. Thus, “unit
tangent bundles of all surfaces with genus greater than one” support Anosov flows.
And so too do “all manifolds that can be obtained by suspending Anosov dif-
feomorphisms of T 2.”1 There are no Anosov flows on S3. It is known that a
3-manifold for which every co-dimension one foliation has a Reeb component does
not support an Anosov flow. There are infinity many such manifolds [39]. In
general, “[It is] not known at all which manifolds have Anosov flows.”2

Question 1. Which 3-manifolds support Anosov flows?1078?

There has been a great deal of interest in partially hyperbolic flows ; see [38].
These can have singular hyperbolic invariant sets in which a saddle fixed point

1Keith Burns, private communication.
2Sergio Fenley, private communication.
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Figure 1. Left: Lorenz template for a saddle set. Right: Lorenz
template for a singular hyperbolic Lorenz attractor.

cannot be isolated from an invariant set with infinitely many periodic orbits. To-
gether they form a compact invariant attractor or repeller. The Lorenz attractor
is a standard example. The first return map of a cross section may be conjugate to
a shift space with a countably infinite alphabet. They are not structurally stable.
See [34]. Morales and Pacifico have shown that generically a flow on a 3-manifold
either has infinitely many sinks or sources, or (exclusive) has a chain recurrent set
that is hyperbolic or singular hyperbolic. Their result implies that a generic flow
on a 3-manifold has an attractor or a repeller. This is done in [33], a paper that
should be widely read. They raise the following question in Conjecture 1.3.

Question 2. Can every C1 vector field on a closed 3-manifold be approximated 1079?

by a vector field exhibiting a homoclinic tangency or by a singular Axiom A one
without cycles? (See [33] for definitions and details.)

The rest of this chapter is devoted to Smale flows except for the last section
on Smale diffeomorphisms.

Templates for Basic Sets

Let B be a basic set of a Smale flow that is the suspension of a nontrivial
irreducible SFT. We can pick a neighborhood of B that will be foliated by stable
manifolds. If we form a quotient space by collapsing along the stable direction
we derive a two dimensional branched manifold TB known as a template. The
original flow will induce a semi-flow on the template. A theorem of Joan Birman
and Robert Williams asserts that there is a one-to-one correspondence between the
periodic orbits of B and TB that preserves the knot type of each periodic orbit and
how they are linked [6]; see also [24, Theorem 2.2.4]. Templates allow us to “see”
basic sets. The simplest example is the Lorenz template shown in Figure 1 on the
left. One can recover the basic set by taking an inverse limit of the template’s
semi-flow. For the Lorenz template the basic set is a suspension of the full 2-shift.

Templates, slightly modified, are used to model singular hyperbolic attractors,
see Figure 1 on the right [7], and Plykin-like attractors — here the templates have
no boundary and are harder to draw [24, Figure 3.15].
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It is natural to ask which knots and links exist on a given template. (For basic
definitions of knot theory see [11]). Let L(m,n) denote the Lorenz-like template
constructed from the Lorenz template by adding m half twists in the left band
and n in the right band; by symmetry L(m,n) = L(n,m). It is known that for
n ≥ 0 that the knots in L(0, n) are prime positive braids [53], while for n < 0 all
knots and links are in L(0, n) [23]. A template that contains all knots and links is
called universal . A template is positive if it can be placed in a braid form with all
crossings having the same orientation. For positive templates there is a bound on
the number of prime factors of the supported knots [45]. For m and n positive the
L(m,n) knots have at most two prime factors, while for L(−1,−1) the bound is
three [46]. Even though L(−1,−1) is not a positive template it can be presented
so the all the crossing are positive, but not while it is in braid form [43]. When
both m and n are negative it is known the L(m,n) does not support all links [24,
Proposition 3.2.21].

Question 3. Is there a general way to characterize which templates are universal?1080?

Is there a bound on the number of prime factors of knots in templates that can be
presented with only one crossing type?

When the “standard” suspension of the Plykin attractor is placed in a flow
on S3 it contains a copy of L(0,−1) [24, Proposition 3.2.18] and thus contains all
knots and links [24, Proposition 3.2.18]. Rob Ghrist found that the same was true
for every Plykin-like attractor he studied, but no general theorem is known here.

Question 4. Are there any attractors which are “standard” embeddings of Plykin-1081?

like attractors that do not have all knots and links?

Twist-wise flow equivalence

Two flows are topologically equivalent if there is an orbit-wise homeomorphism
between them that preserves the flow direction. Two SFTs are flow equivalent if
their suspensions are topologically equivalent. Two non-negative square matrices
are flow equivalent if they generate flow equivalent SFTs. In particular, incidence
matrices of first return maps of any two cross sections to the same flow of this
type are flow equivalent, although the two return maps need not be topologically
conjugate (the usual equivalence relation for SFTs). Topologically conjugate SFTs
are flow equivalent.

For nontrivial, irreducible non-negative square matrices, John Franks [17] has
shown that flow equivalence is completely determined by two easy to compute
invariants. They are the Parry-Sullivan number, denoted PS, and the Bowen-
Franks group, denoted BF , derived in [37] and [10], respectively. If M is any
non-negative integral n× n matrix then

PS = det(I −M) and BF =
Zn

(I −M)Zn
.
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We note that |PS| is the order of BF if BF is finite, otherwise PS = 0. (The trivial
matrices are the permutation matrices. These generate SFTs and suspension flows
with a only a finite number of orbits, all closed.)

Flow equivalence only looks at basic sets, not at the ambient flows they may
be embedded in. For example, the inverse limit flows of L(0, 0) and L(0, 1) are
topologically equivalent since both are suspensions of the full 2-shift. Yet they
look different: one has a (orientation reversing) twisted band, the other does
not. To capture this twist-wise flow equivalence was introduced in [41]. We add
additional information to the incidence matrices by using a t if the first return map
is orientation reversing on a member of the Markov partition. This may require
refining the Markov partition, which can always be done. Call these modified
incidence matrices twist matrices . For L(0, 2n) and L(0, 2n + 1) we get twist
matrices [ 1 1

1 1 ] and [ 1 1
t t ], respectively. We take t2 = 1 in all matrix calculations

to mimic the fact the composition the first return map with itself is orientation
preserving. Formally, twist matrices have entries of the form at+ b, with a and b
nonnegative integers, and are just matrices over the semi-group ring Z+[Z/2].

The topological interpretation is as follows. Take two basic sets of flows.
Suppose they are flow equivalent. If we can extend the homeomorphism into the
tangent bundles so that the stable and unstable sub-bundles are preserved, we
say the embedded basic sets are twist-wise flow equivalent or sometimes ribbon
equivalent ; visually it is easier to extend the homeomorphism just a little, say
ε > 0, into the tangent bundle. Then the extended homeomorphism will take
annuli to annuli, Mobius bands to Mobius bands, and infinite strips to infinite
strips. Two twist matrices are twist-wise flow equivalent if they correspond to
ribbon equivalent embedded basic sets.

There are several easy to compute invariants. If T (t) is a twist matrix T (±1)
is defined by evaluating T (t) at t = ±1. Let

PS± = det(I − T (±1)) and BF± =
Zn

(I − T (±1))Zn
.

Then PS+ and BF+ are clearly invariants since T (1) is just the incidence matrix.
It is shown in [43, 42] that PS− and BF− are also invariants that distinguish
twist matrices not distinguished by PS+ and BF+.

Next, let A = [ 0 1
1 0 ]. Then regard T (A) as the 2n × 2n matrix obtained by

replacing each t with A and each 1 with the 2× 2 identity matrix: a+ bt→
[

a b
b a

]
.

Define

PS∂ = det(I − T (A)) and BF ∂ =
Z2n

(I − T (A))Z2n
.

It is shown in [42] that PS∂ and BF ∂ are invariants of twist-wise flow equiv-
alence. While PS∂ = PS+ × PS− there are examples of pairs of twist matrices
which are not distinguished by PS± and BF± but are distinguished by BF ∂ .

Example. Let A =
[

3 1+t
1+t 3

]
and B =

[
3 1+t
2 3

]
. We get PS+ = 0, BF+ = Z⊕Z2,

PS− = 4, and BF− = Z2
2 for both matrices. But BF ∂(A) = Z ⊕ Z4 while

BF ∂(B) = Z2
2. Thus, A and B are in distinct twist-wise flow equivalence classes.
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Example. For [ 1 1
1 1 ] and [ t 1

1 1 ] we get PS± = −1, which implies all three BF
groups are trivial. Yet, the suspension flow of the first matrix has no Mobius
bands while the suspension flow of the second clearly does.

Orientability, that is whether or not the ribbon set contains a Mobius band,
is itself an invariant and easy to check for. If the twist matrix T is n×n then it is
enough to check the diagonal entries of the first n powers of T . If no t’s appear,
then there are no Mobius bands in the ribbon set.

In [47] a complete algebraic invariant is produced. But, it is not known
whether or not it is computable. An expository account is given in [48]. Given
a matrix A over Z+[Z/2] let (I − A)∞ be the N × N matrix equal to I − A in
its upper left hand corner and the infinite identity everywhere else. The theorem
below is Theorem 6.8 of [48] which is a special case of Theorem 6.3 of [47]; see
either of these for the definition of essentially irreducible.

Theorem. Let A and B be nontrivial essentially irreducible matrices over Z+[Z/2]
and assume they are nonorientable. Then A and B are twist-wise flow equivalent
if and only if there is an SL(N,Z[Z2]) equivalence from (I −A)∞ to (I −B)∞.

Classifying matrices up to SL-equivalence over a PID is done by using an
algorithm to convert them to a standard normal form (the Smith normal form).
However, Z[Z/2] is not a PID: (1 + t)(1 − t) = 0. It is unknown if an analogous
algorithm exists for matrices over Z[Z/2] or if SL-equivalence is decidable here.

Question 5. Is there an algorithm to classify square matrices over Z[Z/2] up to1082?

SL-equivalence? This would then settle the problem of determining twist-wise flow
equivalence of basic sets of Smale flows.

Putting the pieces together and realization problems

Now we look at how the basic sets can be pieced together to form Smale
flows, with an emphasis on non-singular flows. This can be looked at from two
prospectives. We will first review some results of John Franks that determine
which basic sets can fit together to form a nonsingular flow on S3 and some
generalizations. Next we ask just how the basic sets can fit together.

Suppose there is a single attracting closed orbit and a single repelling closed
orbit in a nonsingular Smale flow on S3. All other basic sets are saddle sets.
Then we can compute the absolute value of the linking number of the attracting
repelling pair as follows. Suppose there are n saddle sets and that for the i-th one
det T (t) is given by ai + tbi. Then the absolute value of the linking number is the
product |a1− b1| · · · |an− bn| [20]. For example, the template L(1, 1) gives linking
number 3.

The structure matrix of an embedded basic set is just its twist matrix eval-
uated at t = −1. In [16] the following are proved. If S is any structure matrix
of a basic set, then there exists a nonsingular Smale flow φt on some 3-manifold
with a basic set B whose structure matrix is A and every other basic set of φt

consists of a single attracting or repelling closed orbit (Theorem 1). If there exists
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a nonsingular Smale follow on S3 with basic set B with structure matrix S then
there exists a nonsingular Smale flow of S3 with a twist-wise flow equivalent basic
set with all other basic sets being attracting or repelling closed orbits (Proposi-
tion 3.2). Furthermore, if det(I − S) 6= 0 then the group Zn/(I − S)Zn is cyclic
(Theorem 3.3). Thus, [ 1 2

2 1 ] cannot be realized as the structure matrix of a basic
set in a nonsingular Smale flow on S3.

Question 6. Are there any other obstructions (besides [16, Theorem 3.3]) to the 1083?

realization of structure matrices in nonsingular Smale flows on S3?

Finally, in [18] we have an abstract classification of nonsingular Smale flows
on S3. The major new tool is the Lyapunov graph. Given a Smale flow on a
manifold there exist a smooth function from the manifold to the reals which is
non-increasing with respect to the flow parameter. Thus, each basic set goes to
a point. This is called a Lyapunov function. The Lyapunov graph is defined by
identifying connected components of the inverse images of points in the real line.
Each vertex of the graph is a point whose connected component contained a basic
set. A vertex is labeled by the basic set it is associated with. Edges are oriented
by the flow direction.

Suppose Γ is an abstract Lyapunov graph whose sinks and sources are each
labeled with a single attracting or repelling periodic orbit and suppose each re-
maining vertex is labeled with the suspension of a subshift of finite type. Then
Γ is associated with a nonsingular Smale flow on S3, if and only if the following
are satisfied. (1) The graph Γ is a tree with one edge attached to each source
and each sink vertex. (2) If v is a saddle vertex whose basic set has incidence
matrix M and with e+v entering edges and e−v exiting edges then e+v ≤ ZM + 1,
e−v ≤ ZM + 1, and ZM + 1 ≤ e+v + e−v . Here ZM is a the Zeeman number defined
by dim ker((I −M2) : Zn

2 → Zn
2 ), where M2 is the mod 2 reduction of M , Z2 is

the integers mod 2, and n is the size of M . (Ketty de Rezende has generalized
Lyapunov graphs to Smale flows with singularities [15].)

Thus, if there is a single attracting closed orbit and a single repelling closed
orbit ZM = 0 or 1. The converse holds as well. Further, if |a − b| = 1 we know
that the linking number is 1. But, we do not know whether or not they can or
must form a Hopf link.

To see how the basic sets fit together involves mostly ad hoc cut-and-paste
arguments. It is unlikely that a complete Wada like theorem will be found.

Smale flows on S3 where there is a single attracting and a single repelling
closed orbit, and a single saddle set modeled by an embedding of the Lorenz
template were studied in [44]. It was show that the attractor/repeller pair either
formed a Hopf link or a trefoil and meridian, and that the template was L(0, 2n)
for some n.

Let φt be a Smale flow onM3. We say a template T (we include the embedding
in M3 in the definition of the symbol T ), is realized by φ is φ has a basic set
modeled by a template isotopic to T in M 3. In his Ph.D. dissertation [31], Vadim
Meleshuk studies realization of templates by Smale flows on S3. Without any other
restriction, all templates are realizable with only fixed point basic sets [Theorem
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3.3.1]3 A template can be realized in a flow whose only other basic sets are fixed
point attractors and repeller if and only if certain easy to check topological criteria
are meet [Theorem 3.3.2].

Meleshuk then switches his attention to nonsingular Smale flows. He shows
that every template is realizable by a nonsingular Smale flow on some 3-manifold
[Theorem 3.4.1]. On S3, he gives a complete criteria for when a template can be
realized by a nonsingular Smale flow [Theorems 3.5.1, 3.5.6, 3.6.3]. In some cases a
template T is realizable with only attractors and repellers, but other times T may
force other saddle sets. For example, take a Lorenz template and tie a figure-8
knot in one band. By [31] it can be realized in a nonsingular Smale flow, but by
[44] it cannot be realized with just a single repeller and attractor as the only other
basic sets. What other basic sets could be forced?

Following [19] Meleshuk works with thickened templates. These are handle
bodies whose boundaries are partitioned into 2-dimensional exit and entrance sets,
separated by loops (the tangent set). They retract naturally to the branched
manifold version of templates. He explores, using homological machinery, relations
between the entrance and exit sets. For example, he shows that if T is realizable
in a nonsingular Smale flow on S3 and the entrance and exit sets are connected,
then they are diffeomorphic [Theorem 3.10.6], and conjectures that if a template
can be realizable in a nonsingular Smale flow on S3 with only one attractor and
one repeller, then the exit and entrance sets must be diffeomorphic [Conjecture
3.10.11].

There has been some work on Smale flows on manifolds beyond S3. Ketty de
Rezende along with several collaborators has developed the theory of Lyapunov
graphs of flows to other manifolds [14, 4, 5]. Sue Goodman has characterized
when a flow on an arbitrary 3-manifold with a one-dimensional hyperbolic set has
a transverse foliation noting the importance of transverse foliations in the study
of Anosov flows; see [26] and also [25, 55]. Indeed one of the motivations for the
study of nonsignular Smale flows is their connection to Anosov flows; any Anosov
flow can be turned into a nonsingular Smale flow via two surgery moves [6, 24].

Bonatti’s Geometric type

A Smale diffeomorphism is a hyperbolic map with zero dimensional basic sets.
A Smale flow always has Smale diffeomorphisms as cross sections. In a series of
paper’s Bonatti et al ([2, 9, 3, 49]) have developed a new approach to the study
of Smale flows on 3-manifolds and Smale diffeomorphisms on surfaces. The idea
is to encode geometric information along with a Markov partition. This data
includes twist data as in the twist matrices, but also includes “order” information;
it is encoded as a geometrized Markov partition However, the geometrized Markov
partition is not presented as a matrix but a mapping; whence it is not clear how
to compute invariants from it.

3Meleshuk gives an independent proof, but the result can also be derived from a more
general theorem of William Bloch [8].
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We shall give an example from a paper by Vago [49]. A Smale diffeomorphism
f on a disk takes two large rectangles r1 and r2 to images shown in Figure 2.
The horizontal strips, h11, h12, h13 in r1 and h21, h22, h23 in r2 are taken to the
vertical strips v24, v23, v22, v21, v11, v12, respectively. From this one constructs the
map φ, from (1, 2) × (1, 2, 3) (more typically the subset of realized indices) into
(1, 2)× (1, 2, 3, 4)× (+,−) given by

φ(1, 1) = (2, 4,−) φ(1, 2) = (2, 3,+) φ(1, 3) = (2, 2,−)

φ(2, 1) = (1, 4,−) φ(2, 2) = (1, 3,+) φ(2, 3) = (1, 2,−),

where the signs tells us whether the orientation has been reversed or not.
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Figure 2. A Smale map

Geometrized Markov partitions have been used to prove theorems giving nec-
essary and sufficient conditions for the existence of conjugacies. We shall state
two, but shall not define all the terms, as we only intend to give the reader the
flavor of this area.

Theorem ([9]; translated in [49]). Let f and g be two Smale diffeomorphisms on
compact surfaces, and let K and L be hyperbolic saturated sets of f and g respec-
tively, without attractors or repellers. Then f and g are conjugate on domains
of K and L if and only if (K, f) and (L, g) admit Markov partitions of the same
geometrical type.
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Theorem ([2]). Let X and Y be Smale vectors fields on compact orientable 3-
manifolds. Let K and L be saturated saddle sets in X and Y respectively. Suppose
that K and L admit good Markov partitions of the same geometrical type. Then
there exist invariants neighborhoods of K and L where the restrictions of the field
X and Y respectively, are equivalent.

Order is nonabelian (obviously). What is needed is a nonabelian theory of
symbolic dynamics. Bob Williams has developed a determinant for nonabelian
matrices that contains some knot theoretic data for Lorenz attractors [54]. Could
his matrices be modified to contain order data? They might capture part of the
geometrized Markov partition in matrix form and thus facilitate the search for
computable invariants. Another approach is to to use the skew-products systems
in [47]. There the skew-products are of SFTs over finite groups. When the group
is Z/2 we get twist-wise flow equivalence. But the results in [47] hold for all finite
groups including nonabelian groups. I have tried to find a way to use permutations
groups to capture some of the order information in the geometrized Markov par-
tition, but without success. When the map is iterated the order information does
not seem to behave is a “group-like” manner. Could some non-group algebraic
structure be used? But then would skew-products be meaningful??

Question 7. How can we get computable invariants that capture some of the order1084?

information in Bonatti’s geometrized Markov partition?
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[2] F. Béguin and C. Bonatti, Flots de Smale en dimension 3: présentations finies de voisinages
invariants d’ensembles selles, Topology 41 (2002), no. 1, 119–162.
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Part 6

Topology in Computer Science





Computational topology

Denis Blackmore and Thomas J. Peters

1. Computational topology—Introduction

The emphasis here will be upon how point-set topology can be applied to
computing on geometric objects embedded in R3. The fundamental topological
concept of a neighborhood generalizes limits over the reals, which inherently relies
upon infinite precision arithmetic. Any specific computational representation of a
real number is limited to being expressed in a finite number of bits. This cardinal-
ity disparity means that fundamental topological notions such as neighbhorhoods,
dense sets and continuity are not well-expressed computationally, but can only
be approximated. This presents novel opportunities for complementary research
between topologists and numerical analysts.

The article Computing over the Reals: Foundations for Scientific Comput-
ing [69] begins,

“The problems of scientific computing often arise from the study
of continuous processes, and questions of computability and
complexity over the reals are of central importance in laying
the foundation for the subject.”

The use of floating point numbers as an approximation of the reals entails
a radically different perspective for classical point-set topologists, as the central
topological notions regarding the interior, exterior and boundary of a set are based
upon limits of infinite sequences of neighbhorhoods. These ideas are also crucial
for geometric computations. Past practice can be somewhat tersely oversimplified
as saying that the cardinality disparities have long been appreciated, but have
been treated largely in an ad hoc fashion. Engineering practice and pragmatic
programming, generally directed by heuristics, have been the dominant practice.

The definition adopted here for computational topology comes from the report
Emerging Challenges in Computational Topology [62]. (Also see Section 13.)

We intend the name computational topology to encompass both
algorithmic questions in topology (for example, recognizing knots)
and topological questions in algorithms (for example, whether
a discrete construction preserves the topology of the underlying
continuous domain).
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Figure 1. Box and Cylinder

The broad definition is intended to prompt a “. . . beneficial symbiosis . . . ” [88]
between both sub-fields and “. . . to extend computational geometry . . . into contact
with classical topology . . . ” [62] with expected benefits to both fields. The sub-
discipline of computational topology is relatively young. This very immaturity
provides an important opportunity to consider its foundations as well to explore
pernicious specific problems that remain unresolved.

2. History

The first usage of the term ‘computational topology’ appears to have occurred
in the dissertation of M. Mäntylä [131]. The focus there was upon the connective
topology joining vertices, edges and faces in geometric models, frequently also
informally described as the symbolic information of a solid model. These vertices,
edges and faces are discussed as the operands for the classical Euler operations.

2.1. Elementary manifold examples. In Figure 1, the box depicted on
the left would have 8 vertices, 12 edges and 6 faces. This should be obvious, while
the cylinder shown on the right entails an additional minor subtlety. Namely, the
cylinder can be considered to be composed of an open cylinder and a top disc and
a bottom disc. To explicitly include vertices and edges, the open cylinder will
often be considered to be formed from a flat rectangle which has been rolled into
a cylinder, with two opposing edges identified as one. This one edge would be
vertical in the image on the right and would have a vertex at each end. Each disc
would then be seen as having a circular bounding edge that had its initial and
terminal vertex at one of these points on the vertical edge. This representation
would then have 2 vertices, 3 edges and 3 faces (though other variants are clearly
possible).

2.2. Non-manifold topology. Manifolds have a rich history in topology.
They provide extensions of the usual topology on Cartesian products of the re-
als. Moreover, manifolds provide a generalization whereby points, curves, surfaces
and solids have a common abstraction, but vary in dimension (from 0 to 3, respec-
tively). Within the Boolean algebra of regular-closed, compact 3-manifolds, curves
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Figure 2. Model with Non-manifold Topology

and surfaces are nowhere dense sets – meaning that the interior of their closures is
empty within R3. Hence, these sets are trivial operands within that algebra. So,
strict adherence to a programming paradigm, based upon this Boolean algebra of
3-manifolds would not directly admit the mixing of manifolds of differing dimen-
sion. Pioneering work by K.J. Weiler in his thesis [180] describing ‘non-manifold
topology’ laid the intellectual framework for his initial prototype and extensive
follow-up work by F. Printz in his ‘Noodles’ system [108].

Figure 2 shows how the manifolds of differing dimensions could be integrated
in these systems to form one integrated geometric model. Each point need not
have a neighborhood that is homeomorphic to a neighborhood in a 3-manifold (For
3-manifolds without boundary, these neighborhoods are just open neighborhoods
of R3 and for 3-manifolds with boundary, the neighbhorhoods just have the usual
relative topology associated with a boundary point). However, each point does
have a neighborhood that is homeomorphic to an open neighborhood in an n-
manifold, with n being equal to the lowest dimension of any of the manifolds
joined at that point.

Question 2.1. Is there a unifying topological abstraction covering manifolds, non- 1085?

manifolds and other possible geometric models that might be useful to improve
algorithmic design for geometric computations?

Some other relevant references in the development of computational topology
are listed [55, 81, 80, 82, 87, 85, 149, 151, 150, 176].

3. Computation and the reals

Whenever computations are intended to be representative of operations on
the reals, inherent concerns are the trade-offs required between algorithmic effi-
ciency and sufficient numerical precision. This dilemma is discussed [69] relative
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Optics 10−7 10−8

Electromagnetics 10−4 10−7

Multidisciplinary Design Optimization 10−4 10−6.5

Computation Fluid Dynamics 10−3 10−5

Visualization 10−2 10−3.5

Figure 3. Digits of Accuracy Required

to using a satisfactory number of terms from a Taylor’s series approximation. The
summarizing directive is “. . . to take just enough terms to satisfy our precision
needs.”

3.1. The role for tolerances. This same issue has been expressed within
venues of the Society of Industrial and Applied Mathematics (SIAM) by the math-
ematician D.R. Ferguson and the engineer R. Farouki. Ferguson has observed that
geometric models used in aeronautical and aerospace design require differing pre-
cisions dependant upon the application software that is using such models for
input [98]. His focus is upon the approximation needed in order to have appropri-
ate representations at topological boundaries formed from surface intersections.
A broad overview of this concept is illustrated in the graph of Figure 3, where
the values along the horizontal axis are merely suggestive orders of magnitude,
but express the relative precisions empirically observed as needed for the differing
applications. Farouki has espoused a similar point of view [97], based upon issues
raised at a SIAM workshop that he and Ferguson organized with funding from the
National Science Foundation (NSF).

This perspective raises several fundamental problems:

Question 3.1. What are the differing floating point precisions needed to accurately1086?

capture the topology along surface intersection boundaries in geometric models so
that they can be reliably used in engineering simulations for visualization, com-
putational fluid dynamics, stress analysis, computational optics, computational
electromagnetics, etc.?

Question 3.2. Are there crucially sensitive engineering applications that can be1087?

used to determine these precision needs? (For instance, are visualization and
computational optics at extreme ends of the precision spectrum? Is understanding
the needs of those two applications then sufficient for the conceptual framework
for all modeling needs?)

Question 3.3. Are some geometric intersection problems ill-conditioned?1088?

Question 3.4. Will the process of finding the precision required for the models for
these engineering simulations generalize to a mathematical methodology for being
able to determine floating point precision needs for a wide variety of geometric
models, inclusive of examples such as fractals and Julia sets?
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We note some abstractions that are appropriate for topologists. Individual
computer science algorithms might be considered as specific functions, with dis-
tinctive domains and images. Even this level of abstraction is rarely articulated
within computer science. Moreover, this view belies a cultural distinction between
the computer science (CS) and mathematical communities. Topologists often fo-
cus attention of an entire family of functions, analyzing properties shared by an
entire class of functions. For instance, homeomorphisms form an important such
class within point-set topology, forming the basis for the traditional definition of
topological equivalence. This broader approach, considering whole classes of algo-
rithms, would be one way that topological perspectives can enrich CS. The process
of going from one algorithm to another then merely is modeled by composition of
functions. An example of how this view might also be useful in computer graphics
is presented in Section 4.

3.2. Engineering examples for computational topology. The material
of this subsection is largely extracted from a related article [149] in order to intro-
duce topologists to prominent engineering examples for computational topology.

The Boolean algebra of regular closed sets is prominent in topology, particu-
larly as a dual for the Stone–Čech compactification. This algebra is also central
for the theory of geometric computation, as a representation for combinatorial
operations on geometric sets. However, the issue of computational approximation
introduces unresolved subtleties that do not occur within pure topology.

The standard algorithmic operators on regular closed set representations are
those from its Boolean algebra. These Boolean operations have elegant symbolic
representation in a binary tree, but do not typically include error bounds on
the leaf node operands, which appears to fall within Knuth’s definition [121]
of algorithms being “. . . properly called seminumerical because they lie on the
borderline between numeric and symbolic calculation.” This disparity between the
theory and practice on this Boolean algebra is a central aspect of the “geometric
robustness” problem [116].

The regular closed sets discussed here will be assumed to be subsets of R3,
with its usual topology. The Boolean algebra of regular closed sets in R3 will be
denoted as R(R3). Furthermore, any regular closed set considered will be assumed
to be compact. Any surfaces and curves considered will be assumed to be compact
2-manifolds and 1-manifolds, respectively. All neighborhoods will be assumed to
be open subsets of R3.

The theoretical role for R(R3) was introduced into geometric computing to
correct the unexpected output seen from combinatorial operations on geomet-
ric sets [156]. For instance, consider the two dimensional illustration shown in
Figure 4. The original operands of A and B are indicated in Figure 4(a). The
unexpected output is shown in Figure 4(b), where the expected result would have
been what is shown in Figure 4(c).

The phenomenon shown in Figure 4(b) was informally described as “dangling
edges” [177]. The formalism that was proposed to eliminate this behavior was
that geometric combinatorial algorithms should accept only regular closed sets as
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Figure 4. Subtraction of Two Sets
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Figure 5. Tree for (A ∧B) ∨ (C−D).

input and then execute the Boolean operations of meet, join and complementa-
tion on these operands, thereby creating only regular closed sets as output [174].
The intent was to eliminate “dangling edges” and, in principle, this should have
been sufficient1. However, each operand also has a geometric representation that
depends upon the approximation methods used to compute the results. This ad-
ditional subtlety raises issues in both theory and computation.

An earlier survey on topology in computer-aided geometric design [151] is rec-
ommended as introductory material for topologists. The texts [116, 144] discuss
the integration of computational geometry, shape modeling and topology.

3.2.1. Theory versus computation. One elegant computational representation
for the combinatorial operators is to assign each object a symbol and then to
indicate operations in a tree referencing those symbols. For instance, such a tree
structure could be as depicted in Figure 5.

At this level of abstraction, the mathematical theory and the computational
representation are completely consistent, and this representation became known
as Constructive Solid Geometry (CSG). Difficulties arose in instantiating the basic
geometric information that is represented by the operands at the leaf nodes and,
sometimes, in computing geometric representations at the internal nodes of the
tree. In CSG, the leaf nodes are restricted to a small set of specific geometric
objects, known as primitives. A typical collection of primitives might consist of

1The subtraction operation between two sets, shown as A−B in Figure 4, is not specifically a
Boolean operation. However, the use of A−B should be understood to be conveniently shortened
notation equivalent to the operations A∧B′, where B′ represents the standard Boolean operation
of complementation on the operand B.
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spheres, parallelepipeds, tori and right circular cylinders. The critical geometric
algorithm underlying each Boolean operation is the pairwise intersection between
the operands.

As the boundary of each of these primitives can be represented by linear or
quadratic polynomials, the needed intersection between each pair of primitives
was relatively simple and numerically stable, for most cases considered, although
specific intersections could be problematical. For instance, suppose two cylinders
of identical radius and height were created and then positioned so that the bottom
of one cylinder was co-incident with the top of the other cylinder. This special
case was specifically considered in most intersection algorithms and could usually
be processed without problem. However, if one then rotated the top cylinder
a fraction of a degree about its axis (so that the planar co-incidence remained
intact) many software systems would fail to produce any output for this problem,
sometimes even causing a catastrophic program failure. This particular problem
became a celebrated test case and most systems developed ad hoc methods to
solve this cylindrical intersection problem. Yet, this was just avoiding the more
serious issue of the fragile theoretical foundations for many intersection algorithms.
People using CSG systems became sensitive to their limitations and continued to
use them effectively by avoiding these challenging circumstances, although the
work-arounds were often tedious to execute.

The imperative, largely initiated by the aerospace and automotive industries,
to model objects using polynomials of much higher degree than quadratic created
a movement away from CSG systems. The alternative format was to represent
compact elements of R(R3) by their boundaries, and this became known as the
“boundary representation” approach, or “B-rep” for short. This has become the
dominant mode today. Again, within this clean conceptual overview, the reali-
ties of computation pose some subtle problems. In most industrial practice, the
modeling paradigm was further restricted so that the boundary of an object was a
2-manifold without boundary. However, it was difficult to create computer mod-
eling tools that could globally define 2-manifolds without boundary, though there
existed excellent tools for creating subsets of these 2-manifolds. For example,
computational tools for creating splines were becoming prevalent [152]. Again,
in principle, if each such spline subset was created with its boundaries, then the
subsets could be joined along shared boundary elements to form a topological
complex [115] for the bounding 2-manifold without boundary.

The inherent computational difficulty was to separately create two spline
patches, each being a manifold with boundary, so that the corresponding boundary
curves were identical and could be exactly shared between the patches. In some
situations, algorithms for fitting spline patches were used successfully. In other
cases, patches have been slightly enlarged and intersected so as to obtain im-
proved fits. Indeed, such intersections are well-defined in pure mathematics, but,
again, approximation in computation poses subtle variations from that theory, as
described in the next section on pairwise surface intersection.
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3.2.2. Subtleties of pairwise spline surface intersection. It is well known that
unwanted gaps between spline surfaces or self-intersections within intended mani-
folds often appear as artifacts of various implemented intersection algorithms [97].
The mismatch between approximate geometry and exact topology has historically
caused reliability problems in graphics, CAD, and engineering analyses, draw-
ing the attention of both academia and industry. The severity of the problem
increases with the complexity of the geometric data represented, both from high-
degree nonlinearity and from the intricate interdependence of shape elements that
should, but do not, fit together according to the specified topological adjacency
information.

The conceptual view of these joining operations is illustrated in the upper
half of Figure 6, with an intersection curve2 illustrated as a single curve. But
this image only exemplifies the idealized, exact intersection curve, denoted here
as c. For practical computations, an approximation of the intersection set is
often created [106, 107] and, in many systems, an intersection curve will be
approximated twice. These two approximations are created corresponding to each
of the spline functions, denoted as F : [0, 1]2 → R3 and G : [0, 1]2 → R3, whose
images are the surfaces being intersected. Specifically, a spline curve, denoted as
c1, is created so that c1 ⊂ [0, 1]2 and the image of c1 by F , denoted as F (c1)
approximates c (with similar meaning given to c2 ⊂ [0, 1]2 and G(c2)). It is
virtually certain that those approximations, F (c1) and G(c2), will not be exactly
equal in R3, as shown in the lower half of Figure 6.

The mismatch between concept and reality depicted in Figure 6 creates ambi-
guity, as the intersection representation is sometimes considered as a unique set,
from the symbolic topological view, and at other times as two approximating sets,
from an algorithmic view.

3.2.3. Error bounds for topology from Taylor’s theorem. First, we present the
Grandine–Klein (GK) intersection algorithm [107]. Referring to Figure 6, we
note that the GK algorithm bases its error bounds on well-established numerical
techniques in differential algebraic equations (DAE). While these DAE techniques
provide rigorous error bounds, these bounds are expressed within the parameter
space [0, 1]2, which serves as the domain of the spline functions (indicated as F and
G, above). The code implementing the GK algorithm then has an interface that
allows the user to specify an upper bound ε for the error within parameter space
and the algorithm provides guarantees for meeting this error bound. However, the
typical end user is often not fully aware of the details of the parametric definitions
of F and G, so selection of this parametric space error bound has often relied upon
heuristics. It would be more convenient for the user to be able to specify an error
bound within R3. One accomplishment within the I-TANGO [149] project has
been to demonstrate a mathematical relation [141] between the error bounds in
R3 and [0, 1]2, following from a straightforward application of Taylor’s Theorem in
two dimensions. The conversion between these error bounds has been implemented

2We focus on the generic case of an intersection curve, although isolated points and co-
incident areas can also arise, with similar complications.
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Figure 6. Joining operations for geometric objects

in a pre-processing interface to the GK algorithm and this new interface has been
tested to be reliable, efficient and user-friendly.

Using the notation from Figure 6 for the spline function F , Taylor’s Theorem
provides a bound on the error of F evaluated at a particular point (u, v) versus
F evaluated at a point (u0, v0), where (u, v) and (u0, v0) are within a sufficiently
small neighborhood. This sufficiently small neighborhood will have radius given by
the value in the parametric domain [0, 1]2 which was denoted as ε in the previous
paragraph. Then it follows [141], with ‖·‖ being any convenient vector norm, that

‖F (u, v)− F (u0, v0)‖ ≤ εM
for any M satisfying

∥∥∥∥
∂F

∂u
(u∗, v∗)

∥∥∥∥+

∥∥∥∥
∂F

∂v
(u∗, v∗)

∥∥∥∥ ≤M,

for some point [u∗, v∗] on the line segment joining [u, v] and [u1, v1].
For the single spline F , let γ(F ) be an upper bound for the acceptable error

in R3 between the true intersection curve c and one of its approximants F (c1). In
order to guarantee that this error is sufficiently small, it is sufficient that εM ≤
γ(F ), where an upper bound for M can be computed by using any standard
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technique for obtaining the maximums of the partials ∂F
∂u and ∂F

∂v . For G, a

similar relation between γ(G) and ε exists3.
Then it is clear that a neighborhood can be defined that contains the true

intersection curve c and both of its approximants. Let Nγ(F )(F (c1)) be a tubular
neighborhood of radius γ(F ) about F (c1), where c1 has been generated from
the GK intersector to satisfy the inequality presented in the previous paragraph.
Similarly, define Nγ(G)(G(c2)). Then, let N(c) = Nγ(F )(F (c1)) ∪Nγ(G)(G(c2)).

It is clear that N(c) is a neighborhood of c, which contains both of its approx-
imants, F (c1) and G(c2). However, there is both a theoretical and computational
limitation to this approach.

• There is no theoretical guarantee that either approximant is topologically
equivalent to c, and

• Any practical computation of N(c) would depend upon an accurate com-
putation of the set Nγ(F )(F (c1))∩Nγ(G)(G(c2)), which is likely to be as
difficult as the original computation of F ∩G.

While the above bounds are often quite acceptable in practice to compute a
reasonable approximant, further research has been completed into alternate meth-
ods to give guarantees of topological equivalence within a computationally accept-
able neighborhood of the intersection set, as reported in the next subsection.

3.2.4. Integrating error bounds and topology via interval solids. Recent work
by Sakkalis, Shen and Patrikalakis [160] emphasized that the numeric input to
any intersection algorithm has an initial approximation in the coordinates used to
represent points in R3, leading to their use of interval arithmetic [144]. The basic
idea behind interval arithmetic is that any operation on a real value v is replaced
by an operation of an interval of the form [a, b], where a, b ∈ R and a < v < b.
The result of any such interval operation is an interval, which is guaranteed to
contain the true result of the operation on v. This led naturally to the concept of
an interval solid and some of its fundamental topological and geometric properties
were then proven, as summarized below.

Throughout this section, a box is a rectangular, closed parallelepiped in R3

with positive volume, whose edges are parallel to the coordinate axes4. Let F be
a non-empty, compact, connected 2-manifold without boundary. Then the Jordan
Surface Separation Theorem asserts that the complement of F in R3 has precisely
two connected components, FI , FO ; we may assume that FI is bounded and FO is
unbounded. Let also B = {bj , j ∈ J} be a finite collection of boxes that satisfies
the following conditions:

C1: {int(bj), j ∈ J} is a cover of F .
C2: Each member b of B intersects F generically; that is, b ∩ F is a non-

empty closed disk that separates b into two (closed) balls, B+
b and B−b ,

with B+
b , (B−b ) lying in FI ∪ F (FO ∪ F ), respectively.

3This error bound assumed that the error due to algorithmic truncation within the numerical
DAE methods dominated any other computational errors.

4Enclosures other than boxes are quite possible and this is a subject of active research.
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Figure 7. 2D versions of Conditions C2 and C3

C3: For any bi, bj ∈ B, let bij = bi ∩ bj . If int(bi) ∩ int(bj) 6= ∅, then bij is
also a box which satisfies C2.

Notice that condition C2 indicates that every b ∈ B intersects F in a natural
way (see Figure 7).

The following result summarizes several previously appearing results, where a
solid is defined to be a non-empty compact, regular closed subset of R3.

Theorem 3.1 ([160, Corollary 2.1, p. 165]). If F is connected and B satisfies
C1–C3, then F ∪⋃j∈J bj is a solid.

Bisceglio, Peters and Sakkalis [159, 1] have recently given sufficient conditions
to show when the boundary of an interval solid is ambient isotopic to the well-
formed solid that it is approximating, as described in the following theorem. To do
so, they define a parameter, denoted here as, γ, which is based upon curvature and
critical values of an energy function. This value of γ then permits the definition of
non-self-intersecting tubular neighborhoods about the original object for all values
of r < γ, when r is a positive number for a constant radius tubular neighbhorhood.
For a positive number δ, define the open set F (δ) = {x ∈ R3 : D(x, F ) < δ}, where
D(x, F ) = inf{d(x, y) : y ∈ F}, with d being the Euclidean metric in R3.

Theorem 3.2. Let F be a connected 2-manifold without boundary. For each
ε > 0, there exists δ, with 0 < δ < γ so that whenever a family of boxes B satisfies
conditions C1–C3, and for each b of B, b is a subset of F (δ) (see Figure 8) then,
for S = F ∪ FI and SB = S ∪ ⋃j∈J bj, the sets F and ∂SB are ε-isotopic with
compact support. Hence, they are also ambient isotopic.

The quoted theorem depends upon results from Bing’s book on PL topol-
ogy [63, p. 214], and related literature [120], as is explained in full [159, 1].
The proof shows that normals to F do not intersect within the constructed tubu-
lar neighborhood, as is illustrated by the depiction of its planar cross-section in
Figure 8.

If the boxes containing the true intersection curve can be made sufficiently
small so that each such box fits inside F (ρ), then the resultant intersection neigh-
borhood will contain an object that is both close to the true solid and is ambient
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Figure 8. 2D Version of Proper Subset Condition

isotopic to it. Considerable success in meeting these constraints has already been
achieved [144, 1, 160].

4. Correctly embedded approximations for graphics & applications

Papers on tolerances in engineering design [2, 3, 171] raised the issue of
rigorous proofs for the preservation of topological form in geometric modeling,
but these papers did not specifically propose ambient isotopy as a criterion. The
class of geometric objects considered was appreciably expanded by theorems for
ambient isotopic perturbations of PL simplexes and splines [56, 57, 58].

As an elementary example, there is an exact computational representation of
a unit circle centered at the origin, as x2 + y2 = 1. However, as soon as one
goes to create a computer graphics image of this circle, some approximation is
needed. The ultimate display on the screen is to ‘turn on’ a collection of pixels,
each being some very small rectangle. If these pixels are sufficiently small and the
approximation is sufficiently fine, then the user perceives a reasonable image of a
circle. This has many parallels to a human rendition of a circle, such as a pen and
ink image that approximates a circle. The criterion for success is largely subjective,
though it has been successfully codified in standard algorithms for this simple case
of the circle [4]. This technique does generalize to more difficult geometric shapes
which also have nice differentiable properties [5], but there remain difficulties in
the prevalent approximation paradigms, as will be discussed further, here.

However, there is a crucial distinction between the use of such images in
classical mathematics and in computer science. The adage in pure mathematics
is that ‘A picture is not a proof.’ Rather, the use of illustrations is meant to
guide discovery and intuition in order to lead to formal proofs. The situation
in computer science is quite different. Namely, the focus is upon the definition
and properties in creating specific algorithms to work on particular abstract data
types. Here, the data type is the equation of a circle, but this representation
is then approximated for graphics rendering. So far, this offers little distinction
to the classical case. However, the output of this approximation algorithm may
often be used by another algorithm. The approximation becomes the object of
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Figure 9. Nonequivalent Knots

interest. This could be translating the circle to another position or determining
its circumference. Both these operations are quite successful for the circle.

Indeed, even at the graphics display level, the concern for a ‘properly repre-
sentative approximation’ should not be dictated solely by subjective criterion, as
can be shown in the following knot approximation example, which summarizes a
published example [55].

Many geometric approximation algorithms offer no guarantees about the topol-
ogy of the output. Sometimes it is guaranteed that the output is homeomorphic
to a desired manifold [6]. Indeed, in the simple circle example, essentially any
reasonable PL approximation of the cirle will be homeomorphic to it. However,
in graphics, any 3D image is projected onto a 2D display. One asks if this com-
position of functions will necessarily lead to a homeomorphic image. The answer
can easily be shown to be ‘no’ and supports the argument for a stronger form of
topological equivalence.

We argue here that a guarantee of homeomorphism is insufficient for many
of the applications for which the algorithms are designed. Rather, examples are
given for preferring a stronger equivalence relation based upon ambient isotopy.

Definition 4.1. If X and Y are subspaces of R3, then X and Y are ambient
isotopic if there is a continuous mapping F : R3 × [0, 1] → R3 such that for each
t ∈ [0, 1], F (·, t) is a homeomorphism from R3 onto R3 such that F (·, 0) is the
identity and F (X, 1) = Y .

For other fundamental terms, the reader is referred to the text [114].
Figure 9 shows a free-form curve, and its homeomorphic, but non-ambient

isotopic PL approximant5. An improved approximation is shown in Figure 10.

5The different knot classifications of 01 and 4m
1 are indicated.
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Figure 10. Ambient Isotopic Approximation

In the right half of Figure 9 the z coordinates of some vertices are specifically
indicated to emphasize the knot crossings in R3, whereas other vertices have z = 0.
All end points of the line segments in the approximation are also points on the
original curve. In response to the example of Figure 9, a theorem was published
for ambient isotopic PL approximations of 1-manifolds [130], with an illustrative
outcome shown in Figure 10. The proof utilizes ‘pipe surfaces’ from classical
differential geometry [137].

Although any two simple closed planar curves are ambient isotopic, this knot-
ted curve as an approximant to the original unknot would be undesirable in many
circumstances, such as graphics and engineering simulations [57]. For instance,
projected images of this approximation could have self-intersections, whereas the
original curve had none.

There is a related study of curves, comparing them to α-shapes [7] via ambient
isotopies [158]. Recent work in support of molecular modeling appears in the
doctoral thesis and related publications [138, 8, 139].

Other problems arise for surfaces (2-manifolds) in three dimensions. Some
algorithms compute a triangulated surface C to approximate the boundary F of a
closed, finite volume, with a guarantee that C is homeomorphic to F [53, 54]. It
is well known that this does not guarantee that the complement of C, denoted as
R3 \ C, is homeomorphic to the complement of F , R3 \ F , meaning that there is
no guarantee that F and C are equivalently embedded in R3. An ambient isotopy
between C and F , on the other hand, provides such a guarantee.
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The class of PL surfaces presents another domain in which topological guar-
antees are desirable. Even guaranteeing that the common edge contraction oper-
ator produces an object homeomorphic to its input requires some care for simpli-
cial complexes [82]. Preservation of genus during approximation by a polygonal
mesh [175] also requires considerable care.

Recent theorems [49, 48, 55] prove approximation techniques that preserve
ambient isotopy over an important sub-classes of 2-manifolds, covering cases both
with and without boundary. The role for ambient isotopy has been recognized by
the computer animation research community [9].

Question 4.1. Is ambient isotopy the appropriate topological equivalence relation 1089?

for computational topology in computer graphics and animation?

Question 4.2. What geometric approximation algorithms can capture the topo-
logical equivalence needed in computer graphics and animation?

Question 4.3. Are the known algorithms for ambient isotopic of parametric 1090?

curves optimal with respect to performance and space requirements?

Question 4.4. Are the known algorithms for ambient isotopic of parametric sur- 1091?

faces optimal with respect to performance and space requirements?

Considerable work on isotopies in approximation has appeared, ranging over
applications from computer graphics, geometric modeling and surface reconstruc-
tion [96, 72, 71, 73].

5. The role for differentiability

Although computational topology is a relatively new discipline [62, 176], it
has grown and matured rapidly partially because of its increasing importance to
many vital contemporary applications areas such as computer aided design and
manufacturing, (CAD/CAM), the life sciences, image processing and virtual real-
ity. It is leading to new techniques in algorithm and representation theory. These
applications are evoking new connections between mathematical subdisciplines
such as algebraic geometry, algebraic topology, differential geometry, differential
topology, dynamical systems theory, general topology, and singularity and strati-
fication theory [10, 47, 45]. The tender age of computational topology renders it
fertile ground for a wide variety of challenging open problems—many of fundamen-
tal importance. While the primary focus of this book and, of course, this chapter
is upon problems in general topology, the integrative nature of computational
topology is expressed here with some attention to the role of differentiability.

5.1. Introduction. Computational geometry preceded computational topol-
ogy as indispensable theory and practice for solving difficult problems that have
arisen in CAD/CAM and other contexts that rely on computationally powerful
methods for analysis and accurate representation of various objects and configu-
rations. On the other hand, computational topology has only considerably more
recently risen to prominence in such applications [97]. The difference between
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these two disciplines is roughly analogous to the difference between geometry and
topology, and can be rather effectively illustrated in the following terms: Whereas
computational geometry is concerned essentially with algorithmic (and a fortiori
computer implementable) methods for analyzing and producing representations
of geometric objects that are close—usually in some Whitney-like (piecewise) C2

sense—a primary focus of computational topology is to algorithmically guarantee
that a computer generated representation of an object is equivalent to the actual
object in an appropriate topological sense. In essence, computational geometry
is concerned with insuring the (differential geometric) closeness of the representa-
tion of an object to the original, while computational topology takes care of the
topological consistency of the rendering.

The importance of computational topology cannot be overestimated in certain
contexts and applications—many of which have achieved significant prominence
in the last few years. For example, suppose one wants to produce a computer gen-
erated representation of a water glass to be used in an automated manufacturing
process. The glass can be viewed in ideal form as a smooth surface in space with a
circular boundary, thus rendering it an object in a standard differential geometry
or topology category. An algorithm can readily be found that produces a repre-
sentation that is as close as desired (in some suitable Whitney-type topology) to
the designed glass, but still have in it a very small hole. This may be considered
satisfactory from the perspective of computational geometry, but certainly not
from the computational topology viewpoint, and the result obviously would lead
to shortcomings in the manufactured article.

In this section we shall identify several outstanding problems in computational
(differential) topology—all of which are of a rather fundamental nature—and we
also shall provide the necessary context and background for an appreciation of
these problems, along with some insights that should prove helpful in their res-
olution. As computational topology is still an emerging discipline and is largely
unknown to many in the computer aided geometric design, computer science, and
mathematics communities, we shall present a brief outline of the elements of com-
putational differential topology in Subsection 5.2, a description of the problem
of identifying and classifying those objects in a category associated with com-
putational differential topology in Subsection 5.3 and algebraic duals of previous
problems now expressed as issues in isomorphism type in Subsection 5.4. In par-
ticular, we treat in Subsection 5.4 those that possess a complete set of effectively
(algorithmically) computable topological invariants, i.e., those geometric objects
that have sufficiently many algorithmically computable invariants to completely
determine their isomorphism classes in an appropriate topological category.

5.2. Elements of computational differential topology. One unmistak-
able sign of a mature mathematical or scientific subdiscipline is the establishment
and general acceptance of well defined mathematical categories that characterize
and circumscribe the field. Such categories have yet to be universally embraced
in the computational topology community, so we shall first describe the categories
in which we shall work in order to frame the problems to be posed in this paper.
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This Subsection has its own Subsections 5.2.1 discussing the categorical struc-
tures needed; 5.2.2 raising the issue of shape equivalence within these categories
and 5.2.3 emphasizing the interplay between topology and algorithms.

5.2.1. Categories. The sets of interest in computational topology are geomet-
ric objects in an Euclidean space, usually having certain differentiability proper-
ties, but they need not and should not be restricted to manifolds. Examples such
as the locus of x2 +y2− z2 = 0 in R3 and geometric objects with self-intersections
show that we need to include varieties. One approach to describing the objects
in an appropriate category is to introduce special varieties (s-varieties) having the
property that there are at most finitely many local regular (topological manifold)
branches at each of the singular points [68, 67]. However, a more efficient way to
describe the objects in the computational topology categories is to employ Whit-
ney regular stratifications [60, 68, 11, 74, 105, 133, 172, 182]. First we fix an
Euclidean space RN to serve as the ambient space for the geometric objects and
an order of differentiability k (0 ≤ k ≤∞).

Definition 5.1. For a given Euclidean space RN and order of differentiability
0 ≤ k ≤ ∞, a computational differential topology object, denoted as cdtk

N , is a
subset V of RN that can be represented in the form

(5.1) V = M1 ∪M2 ∪ · · · ∪Ms,

where the collection S := {Mi : 1 ≤ i ≤ s} is a Whitney regular stratification of V .
This stratification is comprised of a finite disjoint set of strata Mi, which are open
or closed Ck submanifolds of RN , called the strata of the stratification, and the
strata have dimensions that can range from 0 (points) to N (open solid regions).

The dimension of V in cdtk
N is defined as dimV := max{dimMi : Mi ∈ S}.

Note that a cone is in cdt∞3 , as is a closed cube. Since we shall be concentrating
in this paper mainly on geometric objects that have some differential structure,
most of our attention shall be directed to cases where k ≥ 1.

We now have suitable objects for our categories, so it naturally remains to
define the appropriate morphisms. It is clear that the more usual choice lead-
ing to homeomorphic or diffeomorphic equivalence will simply not do. For ex-
ample, a circle S1 and a smooth trefoil T knot embedded in R3 are obviously
C∞-diffeomorphic, 1-dimensional submanifolds, but can certainly not be viewed
as equivalent in any reasonable computational topology sense since they are not
equivalent as embeddings in the ambient space R3. In particular, the knot group
for the circle is π

(
R3 \ S1

)
= Z, while the knot group for the trefoil knot π

(
R3 \ T

)

is the group with two generators α and β and one relation, αβα = βαβ, where
π(X) denotes the fundamental group of a topological space X . Therefore, mor-
phisms must be equivalent in some sense as embeddings in the ambient space, as
well has having certain differentiability properties. The next definition attends to
these requirements.

Definition 5.2. A morphism between two objects V and W in cdtk
N is an embed-

ding (in the topological sense) Φ: RN → RN satisfying the following properties:
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(i) Φ (V ) ⊆W .
(ii) The restriction Φ|V of Φ to V is of class Ck.

With this we have the last piece necessary for the definition of our computa-
tional topology categories for objects embedded in an Euclidean space RN :

Definition. For a given Euclidean space RN and order of differentiability 0 ≤
k ≤ ∞, the computational differential topology category, denoted as CDTk

N , is

comprised of all the objects in cdtk
N as in Definition 5.1, and the morphisms as in

Definition 5.2, with the usual composition of morphisms.

Observe that according to this definition, two objects V and W in CDTk
N are

isomorphic, denoted as V ≈k
N W , iff there is a homeomorphism Φ: RN → RN

such that Φ (V ) = W , and the restrictions of Φ to V and its inverse Φ−1 to W
are both of class Ck. We remark that in most cases when the ambient space and
differentiability class are fixed, we simplify the above notation by omitting the
subscript and superscript in the isomorphism notation, so that we shall simply
write V ≈ W . In the sequel we shall, for convenience, indulge in the harmless
abuse of notation of referring to both objects and morphisms as being members
of the category CDTk

N rather than distinguishing between the set of objects and
set of morphisms comprising this category.

Isomorphism in the categories CDTk
N (which is sometimes referred to as em-

bedding equivalence [157]) is obviously more restrictive than homeomorphic equiv-
alence in the standard topological category TOP. More specifically, in addition to
the usual homeomorphism type invariants such as homotopy, cohomotopy, homol-
ogy, and cohomology that one needs to consider for equivalence in TOP, one needs
also to verify the invariance of additional quantities such as linking numbers to
verify equivalence in the computational differential topology categories. For future
reference, we denote isomorphism in the TOP category as

(5.2) V
h≈W.

Topological equivalence by isotopy [55, 56, 58, 64, 151, 159] is stronger than
the isomorphic equivalence given in Equation 5.2, as already been introduced in
Definition 4.1. We remark here that for the case of smooth knotted and unknotted
circles in R3, standard knot equivalence, ambient isotopy, and isomorphism in
CDT0

3 are all equivalent to one another [111, 112, 132].
One of the basic goals in computational topology is to create computer gener-

ated procedures for obtaining representations of objects having the same shape—at
least in some acceptable approximate sense—as a given geometric object. This
obviously begs the question of what is meant by shape, a question that we address
in the next subsection.

5.2.2. Shape of geometric objects. What does it mean to say that two objects,
V and W in CDTk

N have the same shape? Naturally, to have the same shape, V
and W ought to at least be isomorphic in the computational topology category,
but intuition certainly requires more. A suitable definition is the following:
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Definition. The objects V and W in CDTk
N have the same shape if there exists an

isomorphism ϕ : V →W that is a scaled Ck-isometry in the following sense: There
exists a constant c > 0 such that c−1ϕ is an isometry. More particularly, recall that
for ϕ to be an isomorphism in CDTk

N it must be extendable to a homeomorphism
Φ: RN → RN . Accordingly the definition requires that the restriction of Φ to
V (which is ϕ) must be a Ck map such there exist a c > 0 and an isometric
Ck-embedding ψ : V → RN (in the metric induced on V by the Euclidean metric
on RN ) with Φ(x) = cψ(x) for all x ∈ V . We denote this property of having the
same shape by V ≡k

N W , and omit the subscript and superscript for simplicity
whenever the context is clear.

Computational representations of geometric objects—no matter what type of
format is used to describe the rendered object—usually involve some approxima-
tion error, which necessitates the use of the following definition, or something of
the same sort, for computational topology applications.

Definition. Given ε > 0, we say that V and W in CDTk
N have the same shape

(mod ε) if they are isomorphic in this category via ϕ : V → W , and there are a
positive number c and an isometric Ck-embedding ψ : V → RN such that ϕ is ε-
close to cψ in the Whitney Ck-topology, which essentially means that derivatives
of all orders less than or equal to k of ϕ and cψ differ by less than ε (in the
appropriate operator norm) over all of V [60, 105, 142]. Having the same shape
(mod ε) is denoted as V ≡k

N W (mod ε), where as usual we shall suppress the
subscript and superscript when the context is clear.

We now are in possession of all the notation that we need to formulate the
efficient approximation problem of computational differential topology, which we
attend to in the succeeding subsection.

5.2.3. The efficient approximation problem. With the notation, it is simple
to explain—at least in general terms—the nature of the essential problem con-
fronting computational topologists. It begins with a given prototype object V0 in
CDTk

N , which must be represented by computer generated means that are based
upon an algorithm A. The word ‘given’ here is somewhat of a misnomer that
requires very broad interpretation: The prototype object may be defined exactly
in terms of equations, or it may be a completely developed model of a geometric
object, or represented by data sampled from an existing physical object such as
a statue or building, or—in the worst case scenario—may be only partially and
imprecisely known simply in terms of representative data, such as point-clouds,
sampled according to some scheme [12].

An algorithm for representing and analyzing a geometric object with computa-
tional topology constraints should include an algorithmic subroutine for verifying
that the computed object has the same isomorphism type as the given object—
assuming that this much is known about the object to be represented. If we
have only incomplete topological knowledge of the prototype object, an algorithm
designed to produce computer generated representations, say at various levels of
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accuracy, should at least be capable of verifying that the isomorphism type re-
mains constant as the accuracy is refined. When such an algorithm is available,
such a constant ‘limit’ may serve as a good educated guess of the actual isomor-
phism type of the partially known prototype object. The following notion is useful
in the investigation of such questions.

Definition. Let V0 be a given object in CDTk
N and let V be another such ob-

ject. Then the isomorphism type of V is said to be V0-decidable if there exist an
algorithm A to determine if V ≈ V0. Such an algorithm is called a (V0, V )-decider.

This brings us to the overarching focal point of any complete investigation
of a problem in computational differential topology, which addresses both the
mathematical and computer science aspects involved.

Efficient Approximation for Computational Differential Topology. Given
a prototype object V0 in the category CDTk

N , construct an algorithm A to be used

for obtaining a computer generated representation V (in CDTk
N) of V0, which

has the following properties: (a) For each sufficiently small positive ε, the algo-
rithm generates a representation V (ε) of V0 and includes a subalgorithm that is a
(V0, V (ε))-decider; (b) V (ε) ≡ V0 (mod ε) for all such ε; and (c) the algorithm is
optimally efficient to the degree that the computational complexity of A, denoted
as CC (A), is minimal in some reasonable sense.

It should be noted that, although not specifically included in the above defi-
nition of the efficient approximation problem, ease of implementation with regard
to producing user-friendly software based on the algorithm is also an important
consideration, especially when it comes to applications.

In general, a complete solution of the efficient approximation problem as stated
may be extremely difficult—or even impossible—to achieve, so simplified versions
of this problem, such as those we describe in the sequel, are highly desirable and
often vigorously pursued. We note that if this efficient approximation problem
is viewed from a computational geometry rather than a computational topology
viewpoint, one should choose the differentiability class k to be greater or equal to
two, so that the representations produced are acceptable in terms of differential
geometry where second derivatives manifested in curvature tensors (or differential
forms) are essential elements in determining good approximations.

5.3. The identification and classification problem. The reader is sure
to have observed that the efficient approximation problem as presented in the pre-
ceding sections is somewhat lacking in rigor. Moreover, as Edelsbrunner pointed
out when the version above was unveiled recently, it also is deficient in scope—
especially as regards the wide range of possibilities in knowledge of the prototype
object, means of obtaining data from the object for the algorithm, and meth-
ods available for rendering the computational representations. These observations
constitute the core of the first few open problems that we pose here.
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5.3.1. Formulation of the identification and classification problem. In order to
pose this identification and classification problem with more precision, and to in-
troduce sufficient rigor into supporting definitions and concepts so as to articulate
which problems remain open, we shall first present a more detailed version than
outlined in the preceding section. To begin, we develop more precise notation
concerning the computational procedures embodied in the algorithm A devised
to produce an approximate representation V (ε) of the prototype geometric object

V0 in CDTk
N for a given error bound ε. We emphasize here that the error bound

is on the geometry, not the topology, as invariance of the isomorphism type is
an essential requirement for the algorithm. The input data from V0, which we
denote as D (V0), may assume any one of several possible forms such as the vertex
points and connection relations for the elements of a triangulation of the prototype
object, a global functional representation or a set of local functional expressions
arising from exact mathematical models, or an approximate nonuniform rational
B-spline (NURBS) decomposition of V0, or points forming a point-cloud sampled
in a manner designed to provide a good approximation of the given object, which
is often the case when V0 is not completely known or specified.

One can already see here that there is a problem in formulating an adequate
characterization of the space D in which the data obtained from the prototype
object resides. A good definition of this data space is required so that we can
consider D as a function from (the object set of) CDTk

N to D, which can be

expressed as D : CDTk
N → D. Of course, the tolerance (geometric accuracy) ε must

also be counted as an argument of the algorithm. With the notation developed,
we may now view the algorithm as a recursive map of the form

A : D(CDTk
N )× R+ → CDTk

N (D(V0), ε) 7−→ V (ε)

where R+ is the set of positive real numbers, and V (ε) is a graphical rendering of a
(geometric) approximation of V0, or more precisely, an algorithm for producing a
computer generated approximate representation of the prototype object. We now
have a more rigorous foundation for describing the identification and classification
problem.

The Identification and Classification Problem in CDTk
N . Devise an algo-

rithm A = A (D(V0), ε) that

(i) is defined for all sufficiently small positive ε,

(ii) is defined for a suitably ample domain of prototype objects V0 in CDTk
N ,

(iii) produces an output V (ε) ≡k
N V0 (mod ε) for all ε for which it is defined,

(iv) has minimal computational complexity CC (A) in some sense.

The above description of the identification and classification problem, al-
though more precise than that which was presented in preceding section, is clearly
still beset with deficiencies in several respects, two of which are embodied in the
following posed problems.

Question 5.1. Modify the description of the Identification and Classification
Problem in CDTk

N so that it more rigorously and completely encompasses the wide
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range of methods that can be used, and is better able to express the degree to which
the prototype object is known.

Question 5.2. Find a way of better expressing the type of representation approach
that is used to produce the output object V (ε) in the statement of the identification

and classification problem in CDTk
N .

Note that in a case where the isomorphism class of the prototype object V0 in
CDTk

N is mostly or partially unknown, it will be necessary to revise the requirement
(iii) to something like

(iii)′ The outputs V (ε1) and V (ε2) with 0 < ε1, ε2 < ε satisfy V (ε1) ≡k
N V (ε2)

(mod ε) for all sufficiently small ε.

This suggests a possible notion of persistence of isomorphism type analogous to
the basic ideas used to formulate persistent homology [91, 94, 188, 189].

Question 5.3. Reformulate and expand (iii) in the Identification and Classi-

fication Problem in CDTk
N to include those cases where one only has incomplete

knowledge of the isomorphism type of the prototype object—perhaps along the lines
of persistence of isomorphism type for sufficiently small tolerances.

Another inadequacy of our exposition of the identification and classification
problem is manifested in the imprecision of the minimality statement for compu-
tational efficiency, which naturally leads to the following question.

Question 5.4. Revise the definition of the Identification and Classification Prob-
lem in CDTk

N so that it includes a more precise description of the computational
cost that is consistent with the most important computational concerns arising in
a broad spectrum of applications of computational topology.

Resolving this minimality definition problem is bound to be quite challenging,
partly owing to the extensive array of minimality criteria available for applications,
but more likely to stem from the difficulty of actually proving minimality for an
algorithm in most reasonable, nontrivial senses. As algorithms developed to render
approximations of geometric objects possessing only a fair degree of complexity
tend to be decidedly nontrivial, verifying minimality of computational complexity
tends to be rather daunting.

In addition to the properties of the algorithmA delineated in the identification
and classification problem, it is desirable for it to continue to generate represen-
tations satisfying property (iii) or (iii)′ when the data D(V0) and tolerance ε vary
slightly in an appropriate sense. When the algorithm has this additional feature,
it is natural to say that it is stable, and this leads to another problem.

Question 5.5. Devise a rigorous definition of stability of computational topology
algorithms, and develop methods for determining whether or not such an algorithm
is stable.

It should be clear to anyone with experience in solving problems in compu-
tational topology that it might help to ameliorate the inherent ambiguity of the
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identification and classification problem if some of the techniques for determin-
ing isomorphism type (at least approximately) were included in the above de-
scription. Most of the methods currently employed to analyze isomorphism type
involve the algorithmic computation, where feasible, of isomorphism invariants
such as characteristic classes, homology groups, and cohomology rings, along with
approaches based upon tubular type neighborhoods, Morse theory, Morse-Floer
theory, singularity/stratification theory, and obstruction theory [47, 45, 117,
131, 136, 141, 149, 13, 159, 165, 188, 189]. However, there also is a fairly
recent spate of articles employing innovative methods from general topology, such
as [95, 102, 103, 113, 122, 14, 15, 16], that appear to be applicable to the
(complete or partial) computation of isomorphism type as well.

5.3.2. Simplification of the identification and classification problem. Owing to
the impressive advances in the realm of computational geometry over the last sev-
eral decades leading to the creation of several algorithms for generating very (ge-
ometrically) accurate representations of geometric objects, and the development
of new tubular neighborhood based theorems, it now appears possible to recast
the identification and classification problem in the following far more tractable
simplified form.

Simplified Identification and Classification Problem. Devise an algorithm
A = A (D(V0), ε) that

(i) is defined for all sufficiently small positive ε,

(ii) is defined for a suitably ample domain of prototype objects V0 in CDTk
N ,

(iii) produces an output V (ε) that is ε-close to and has the same homeomor-
phism type as V0 for all ε for which it is defined,

(iv) has minimal computational complexity CC (A) in some sense.

The basis for the above simplification is what has been called the self-intersection
precedes knotting principle (SIPKP), which can be explained in the following way

for compact objects V in CDTk
N . Owing to the compactness, all of the strata in

the regular stratification (Equation 5.1) of V0 have compact closure. Each closed
stratum has an arbitrarily thin, relatively compact tubular neighborhood, and
the open strata also can be shown to have arbitrarily thin, relatively compact
tubular-like neighborhoods. A tubular-like neighborhood for an open stratum
has the form of a standard tubular neighborhood joined to open neighborhoods
of the ends of the manifold, very much like the construction for manifolds-with-
boundary employing boundary collars in [49, 48]. Taking the union of these
tubular and tubular-like neighborhoods for all the strata, we have an arbitrarily
thin tubular-like neighborhood U . Then we can use an existing computational
geometry algorithm to generate an approximation V (ε) contained in U . When
the distance between images of a homeomorphism differ by no more than ε, some
sufficient conditions are known to extend these homeomorphisms to ambient iso-
topies [120]. This known proof avoids the self-intersections mentioned, leading to
the following open problem as to how far this technique can be extended.

Question 5.6. Prove the SIPKP, or provide a counterexample. 1092?
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It goes almost with out saying that there are obvious versions of Problems 5.1–
5.6 for the simplified identification and classification problem, and these too are
open problems of fundamental importance in computational topology.

5.4. Decidability of isomorphism type. The discussion of the identifi-
cation and classification problem and a simplified version of it in the previous
section raises the question of just what types of objects in CDTk

N are amenable
to algorithmic determination of their isomorphism types. We shall focus on this
question in this section (assuming some familiarity with the basics of differential
topology and such related fields as singularity and stratification theory as can be
found in [60, 68, 82, 87, 105, 110, 114, 132, 133, 135, 142, 157, 169, 172,
178, 182]), and will find it convenient to employ the following definition.

Definition. Let C be an arbitrary category, and suppose that X is an object in
this category. If there is an algorithm for determining the isomorphism class of
X , we say that X is C-decidable.

Bearing this in mind, we shall concentrate on identifying the properties that
render a geometric object (embedded in an Euclidean space) decidable in the rel-
evant categories for computational differential topology. To establish the overall
theme of this section, we shall first summarize everything in one overarching prob-
lem, and then proceed to break this up into more manageable pieces. This unifying
problem may be phrased in the following manner.

Unifying Topological Decidability Problem. Determine all compact objects
in CDTk

N that are

(a) TOP-decidable,

(b) CDTk
N -decidable,

and determine the algorithm of minimum computational complexity capable of de-
ciding the isomorphism type in each case.

We shall begin with compact submanifolds and submanifolds-with-boundary
in CDTk

N , with 1 ≤ k, as they are typically easier to classify in terms of the

categories of interest here, namely CDTk
N and TOP.

5.4.1. Decidability of compact submanifolds. In our discussion, we shall pro-
ceed in the order of increasing dimension N of the ambient Euclidean space. If
N = 1, any compact submanifold, denoted as M , is closed (because by definition
it has an empty boundary, i.e., ∂M = ∅). Hence, M is particularly simple, a finite
set of points in the zero-dimensional case. There are no closed compact subman-
ifolds of R1 of dimension one (or equivalently, of codimension zero, which is the
dimension of the ambient space minus the dimension of submanifold). Even if we
drop the compactness assumption, decidability is a simple matter owing to the fact
that every connected, open, C1 submanifold of R1 of codimension zero is an open
interval. The compact submanifolds-with-boundary of R1 are also easy to clas-
sify algorithmically in CDTk

N , for they must be one-dimensional and comprised of
finitely many disjoint closed intervals. We note from these simple examples that
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we may assume that the submanifolds are connected, for if not, we can simply
analyze the components one-by-one.

In R2, the situation is also essentially trivial, with the decidability of the
homeomorphism type or isomorphism type in CDTk

N being a simple matter indeed.
For example, it follows from the Jordan curve theorem and other basic principles,
that every connected, closed submanifold M of codimension-1 must be equivalent
to the circle S1 in either the category TOP or CDTk

N . Moreover this can be
determined by a single effectively computable invariant, which is the condition
H1(M,Z) = Z for the first integral homology group, or equivalently described in
terms of the Euler–Poincaré characteristic as

χ (M) = σ0 − σ1 = rankH0 (M,Z)− rankH1 (M,Z) = 0,

where σj stands for the number of j-dimensional simplices in a triangulation,
and the rank is defined in the usual way [132, 143, 169, 188]. Note also that
if we choose an algorithm A based on computation of χ, we readily find that
CC (A) = O (ns), where ns is the number of top (=1)-dimensional simplices in
a triangulation of M , and one cannot do much better than this with respect to
computational efficiency. As a matter of fact, it follows readily that both the
complete and simplified identification and classification problems are completely
solved for compact submanifolds of R2, including the establishment of computa-
tional minimality for the algorithm assuming that the prototype submanifold is
completely simplicially defined in terms of triangulations.

These simple results already provide an indication of the usefulness of algebraic
topology in dealing with the decidability problem. In this vein, we include the
following result for future reference. It can be proved using the stratification
(Equation 5.1), the C1 triangulation theorems of Munkres [142], and some basic
results on the effective (algorithmic) computability of homology and cohomology
for finite simplicial complexes (see [117, 143, 188]).

Theorem 5.1. Let V be a compact object in CDTk
N (k ≥ 1). Then V has a finite

C1 triangulation, and the homology H∗ (V, F ), cohomology H∗ (V, F ), and all of
the applicable characteristic classes such as the Chern, Euler, Stiefel–Whitney, and
Pontryagin classes (possibly just for the strata) for V are effectively computable,
where the coefficient ring F is the integers Z or the integers mod 2, denoted as Z2.

It is in R3 that both the isomorphism classification and the decidability prob-
lem first assume nontrivial proportions.

Compact manifolds in Euclidean 3-space: Let M be a compact, connected
submanifold (possibly with boundary) in CDTk

N with k ≥ 1. When dimM = 0,

both the classification and decidability problem are trivial in both TOP and CDTk
N .

For dimM = 1, things begin to get very interesting and rather difficult. If M is
closed, it must be diffeomorphic to a circle, but it can be embedded in R3 as a
very complicated knot. Decidability in TOP is easy, in fact it is just as in (6) and
(7) above, so there exists an algorithm for deciding homeomorphism type that

takes linear time. In CDTk
N , the isomorphism classes correspond to knot types.
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It follows from [111, 112] that M is CDTk
N -decidable, but may be NP-complete.

This contrast is a very effective demonstration of how much more difficult it can be
to solve the complete identification and classification problem than the simplified
identification and classification problem.

An embedded closed surface M , must be orientable, and an easy solution
of the decidability problem follows directly from the simple and elegant classical
result [132, 169] that the homeomorphism and diffeomorphism types of such a
submanifold are completely determined by the Euler–Poincaré characteristic

χ (M) = σ0 − σ1 + σ2 = rankH0 (M,Z)− rankH1 (M,Z) + rankH2 (M,Z) .

Accordingly the problem for TOP-decidability is solvable in linear time. Again,
there is a huge difference in the degree of difficulty of the TOP- and CDTk

N -
decidability problems, as one can see by considering the thin toral surface of a
smoothly thickened knotted curve. Once again, M is CDTk

N -decidable—although
there seems to be no proof of this in the literature—but the computational com-
plexity of any associated algorithm appears to be very high, and may be NP-
complete.

The homeomorphism or diffeomorphism types of a compact submanifold-with-
boundary M of codimension-2 in R3—which may be nonorientable as in the case
of a Möbius strip—is completely determined by χ (M), the orientability, and the
number of boundary components [132]. Therefore, M is TOP-decidable in lin-

ear time. On the other hand, if M is CDTk
3-decidable, then the computational

complexity of the problem is bound to be of the order of knot decidability, but
otherwise appears to be unknown.

Question 5.7. Prove6 that every compact, connected, C1-submanifold of R3 of1093?

dimension less than or equal to 2 is CDTk
3-decidable and obtain estimates for the

computational complexity of any relevant algorithms that can be used to determine
isomorphism type.

A compact, connected, 3-dimensional, C1-submanifold M of R3 must have a
nonempty boundary ∂M . It is easy to see that if ∂M is connected, it completely
determines M ; hence, M is decidable in both TOP and CDTk

3 . An analog of this
ought to be true in the case when ∂M is not connected, but this still appears to
be an open problem.

Question 5.8. Prove that every compact, connected, C1-submanifold of R3 of1094?

dimension 3 is both TOP- and CDTk
3-decidable (or provide a counterexample),

and obtain estimates for the computational complexity of any relevant algorithms
that can be used to determine isomorphism type in these categories.

Compact manifolds in Euclidean 4-space: Of course there is a far more diverse
and interesting range of compact submanifolds of R4 than R3, but we shall confine
our attention to just a select few of the possible types of C1-submanifolds of
dimension two or higher. Moreover, in this and the higher dimensional cases in

6All problems of providing a proof implicitly include the option of finding a counterexample.
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the sequel, we shall concentrate mainly on TOP-decidability, which is associated
with the simplified identification and classification problem. We observe that all
closed surfaces, or compact surfaces-with-boundary, including the nonorientable
ones such the Klein bottle and the projective plane, can be embedded in R4.

We showed above how the decidability problem for oriented compact surfaces
can be easily and very efficiently solved. This is also true for the nonorientable
surfaces, all of which can be realized as two-dimensional, closed submanifolds and
compact submanifolds-with-boundary of R4. For these cases the TOP and CDTk

4

isomorphism types also are completely determined by the orientability, or lack
thereof, the Euler–Poincaré characteristic, and the number of boundary compo-
nents. Moreover, the isomorphism type can be computed in linear time.

To summarize compact surfaces with regard to the decidability problem: they
represent the lowest dimensional nontrivial submanifolds for which the problem
becomes interesting, yet is easily solvable by simple classical means expressed,
modulo orientability and possible boundary components, in terms of a single in-
variant that is computable in linear time. As such, they are excellent illustrative
examples of some of the simplest solutions that provide direction for more general
cases.

The 3-sphere S3 is the simplest closed, connected, three-dimensional, sub-
manifold of R4. It has been much in the mathematical news of late owing to the
excitement created by the work of Perelman [145, 146, 148, 147] on the famous
and long-standing Poincaré Conjecture, which states that a connected, simply-
connected (i.e., π(M) = 0) three-dimensional manifold M having the homology
of a 3-sphere must, in fact, be homeomorphic with S3 [140]. Perelman’s work,
which relies heavily upon Hamilton’s Ricci flow methods, is still being studied by
the experts, and at last look, the jury was still out. However, the opinions ex-
pressed so far are quite positive, and it looks very much like Perelman has finally
affirmatively settled this amazingly difficult and influential conjecture. In the con-
text of decidability questions, Perelman’s work promises to have many important
applications.

If Perelman is correct, this leads naturally to a very straightforward effec-
tive procedure for determining if a closed, three-dimensional, C1-manifold M is
a 3-sphere: First show that the fundamental group is trivial, which can be ac-
complished algorithmically by computing the edge-path group of a triangulation
of M [169]. Using the same triangulation, it follows from Theorem 5.1 that the
integral homology of M is effectively computable. Then if one computes that
H0 (M,Z) = H3 (M,Z) = Z, and H1 (M,Z) = H2 (M,Z) = 0, it follows that M is
diffeomorphic, and a fortiori homeomorphic with S3.

However, there already is an effective procedure, the Rubinstein–Thompson al-
gorithm [173], for deciding within exponential time if a manifold is homeomorphic
with S3. This, of course, begs the question embodied in our next problem.

Question 5.9. Develop an efficient algorithm based on the computation of the 1095?

edge-path group and the integral homology as described above for deciding whether
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a closed manifold is homeomorphic with S3. Then compare the computational
complexity of this new algorithm with that of the Rubinstein–Thompson algorithm.

Actually, Perelman’s results claim to prove Thurston’s Elliptization Conjec-
ture for 3-manifolds (from which the Poincaré Conjecture follows immediately),
which implies that all closed, connected, simply-connected, three-dimensional man-
ifolds can be classified up to homeomorphism type. It appears that the elements of
this classification theorem can be computed algorithmically, although this promises
to be a daunting task owing to the techniques employed, not least of which are
those generated by Hamilton’s Ricci flow approach.

Question 5.10. Within R4, prove that every closed, connected, simply-connected,1096?

three-dimensional C1-submanifold is TOP-decidable and find estimates for the
computational complexity of any relevant algorithms for deciding the homeomor-
phism types.

Compact submanifolds of higher dimensional Euclidean spaces: It follows from
the Whitney Embedding Theorem [157] that every closed, four-dimensional C1-
manifold M can be embedded in RN with N ≥ 9. Four-manifolds provide some
of the most intriguing and elegant TOP-decidable examples available, and they
also yield important insights into the limitations of topological decidability. It
follows from the work of Freedman, Donaldson, and others (as in [84, 101]) that
all closed, simply-connected, orientable, four-dimensional, C1-manifolds M can be
classified up to homeomorphism type. As a corollary, one obtains a proof of the
Generalized Poincaré Conjecture for 4-spheres; namely, every simply-connected,
homology 4-sphere is homeomorphic with the 4-sphere S4.

One of the most beautiful aspects of this classification theory is the particularly
simple criteria for determining the homeomorphism type, which comes out of the
following observations. Elementary algebraic topology, Poincaré duality and the
universal coefficient theorem for homology imply that H0 (M,Z) = H4 (M,Z) =
Z, H1 (M,Z) = H3 (M,Z) = 0, and H2 (M,Z) is a free abelian group. This
leads one to at least predict the important role in classification of 4-manifolds
played by the bilinear, unimodular intersection form ω : H2 (M,Z)×H2 (M,Z)→
Z. The classification theorem essentially states that the closed, oriented, simply-
connected, differentiable four-dimensional manifolds are completely classified by
their intersection forms. Consequently, we readily infer from Theorem 5.1 that
these manifolds are also TOP-decidable. However, this result has, as far as we
know, not appeared in the literature.

Question 5.11. Within Euclidean space RN , prove that all closed, orientable,1097?

simply-connected, four-dimensional C1-submanifolds are TOP-decidable and esti-
mate the computational complexity of the classifying algorithms.

So 4-manifolds can lead to what may be considered to be among the best of
times when it comes to topological decidability, but they also show us the worst of
times—undecidability. It can be shown using simple manifold surgery techniques
that every finitely presented group G (possibly very far removed from the trivial
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group) can be realized as the fundamental group of a closed, four-dimensional C∞-
manifold. Using this fact, and certain undecidability results for the isomorphism
problem for groups, Markov proved that there exist certain 4-manifolds that are
not TOP-decidable [132, 169]. There are limits to the topological decidability
of manifolds after all, and one need not look higher than four dimensions to find
them. Naturally, this leads to several open problems that we leave to the reader
to pose.

As higher dimensions provide more room for the techniques of differential
topology to perform their mathematical magic, it is not surprising that the Gen-
eralized Poincaré Conjecture and the classification of closed, simply-connected, dif-
ferentiable manifolds were proven by Smale [168], Stallings [170], Zeeman [186],
and others more than a decade before Freedman’s remarkable work. The earlier
breakthroughs of Smale, Stallings and Zeeman employed a variety of differential
topological techniques such as Morse Theory, cobordism theory, and obstruction
theory, all of which appear to be accessible to algorithmic formulations for mani-
folds in CDTk

N and so we leave this subsection by posing the following (formidable)
open problem.

Question 5.12. Prove that every closed, simply-connected, n-dimensional mani- 1098?

fold in CDTk
N , where k ≥ 1 and n ≥ 5, is TOP-decidable and estimate the compu-

tational complexity of any relevant classifying algorithms. In particular, consider
the case of simply-connected, homology n-spheres.

5.4.2. Decidability of compact nonmanifolds. Each of the decidability prob-
lems delineated for compact submanifolds in CDTk

N have analogs—which are even
more challenging—for compact varieties V that are not submanifolds. Taking our
cue from the triviality of the decidability problems for manifolds embedded in
Euclidean spaces of dimensions less than or equal to three, and expecting Thom-
Mather theory (see [60, 68, 67, 105, 133, 172, 182] to reduce much of the work
to submanifold strata in Equation 5.1 for which our previous observations provide
much insight into decidability, we pose the following.

Question 5.13. Prove that every connected, compact subvariety V in CDTk
N with 1099?

k ≥ 1 is TOP-decidable. Find tight upper bounds for the computational complexity
of the resulting algorithms.

It may be possible to show that the result in this theorem can be obtained in all
higher dimensions as well, but clearly this would require some further restrictions
on the homotopy type. Simple-connectedness might work, but this would severely
restrict the types of nonmanifolds and many of the excluded ones would be apt
to arise in a variety of applications. For, example, consider a thickened figure
eight curve embedded in an Euclidean space of dimension four or higher. Another
direction that one can pursue is to consider nonmanifolds obtained in a simple
fashion from a compact manifold that is TOP-decidable. It is precisely this tack
that we briefly follow in the remainder of this section, focusing upon compact sets
that can be defined in terms of sweep-like operations.
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Figure 11. Manifold and Projected Sweep-like Variety

Based upon extensive research on swept volumes [10, 47, 45, 65, 66, 11,
68, 179], we are motivated make the following definition of a class of varieties
that may yield to algorithmic classification.

Definition. A compact subvariety V of RN is a sweep-like subvariety if there
exists a compact submanifold M of RN+1 = RN ×R such that Π (M) = V , where
Π is the standard projection of RN × R onto RN = RN × 0, in which case V is
said to be the projection of M .

A sweep-like variety is illustrated in Figure 5.4.2. Referring to this figure,
we see that the self-intersection cell in the projection of the manifold has the
appearance of an obstruction to lifting the variety to its regular preimage manifold
of which it is the projection. This suggests that we can use a triangulation of the
variety to identify this cell, in the manner of obstruction theory [178], in an
algorithmic way. Thus, if the projecting manifold itself is topologically decidable,
it appears that the same should be true of its image, which suggests that the
following problem is solvable.

Question 5.14. Prove that every connected, compact, sweep-like subvariety V of1100?

RN that is the projection of a compact, TOP-decidable, C1-submanifold M of RN+1

is also TOP-decidable Find tight upper bounds for the computational complexity of
any resulting algorithms.
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6. Computational topology resolution

A common issue seen in many practical applications is to be able to develop
algorithms that can produce appropriate topological representations upon models
whose boundaries are formed by geometric intersections [166]. This is often known
as ‘topology resolution’ and it affords many opportunities for additional research.

One recent approach to managing the ill-formation of regular sets in compu-
tation [17, 155] utilizes tubular neighborhoods [114], but presents a very broad
definition of a family of sets, each based upon an initial set. An overview is that
each incomplete boundary is used to develop a new family of candidate sets by
building offsets of each boundary element. New Boolean operations are then de-
fined upon this family of sets. One of the authors conjectures that there is a
relationship to the Čech topology.

This work provides a point-set topological characterization for a family of sets
such that each member closely approximates the original set according to a pre-
cise criterion, where it is clear that the family has some similarities to sets defined
via interval arithmetic. The methods presented are appealing and will work for
simple cases. However, as the geometry becomes more complex it remains of inter-
est to understand a general approach to formulate these tubular neighborhoods,
along with guarantees upon the properties of the family of sets generated and
operators used within that family. In order to obtain such a family from a specific
instantiated boundary model, it becomes essential to understand which conditions
must be satisfied by the approximants, where an argument is given for homotopy
equivalence [164].

Question 6.1. Is there a characterization of those tubular neighborhoods which 1101?

can be used to define useful families of regular closed sets as alternatives to ill-
formed computational representations?

Question 6.2. Does the construction provide some meaningful relation to the 1102?

Čech topology?

6.1. Integration with numerical analysis. Another approach relies upon
more classical techniques from numerical analysis, specifically the Whitney Ex-
tension Theorem [181], as captured in a recent doctoral thesis [187] and several
related pre-prints [18, 59, 19].

The strategy presented is to take the ill-formed geometry and use the Whitney
Extension Theorem to extrapolate the imperfectly fitting boundary elements until
a satisfactory manifold boundary is created. The emphasis is to build a theoretical
model, not necessarily one that would be instantiated in any specific computational
representation. The intent would be to use this idealized model as a basis for
developing rigorous error bounds as to how far any specific instantiation differed
from this ideal. Some metrics are proposed for those measurements. For any
surface patch in the boundary, the rest of the surface patches are partitioned into
those that are adjacent (meaning they meet in a common boundary) and non-
adjacent. The extrapolation of adjacent patches is done to ensure that they meet
in a well-formed shared boundary.
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The thesis makes the explicit assumption that “ . . . non-adjacent perturbed
patches are disjoint . . . .” While this is necessary, its use within computation
raises the more subtle issue of the magnitude of the separation between these
non-adjacent patches and the separation between adjacent patches.

Consider the following bounded surface patches p1, p2, . . . , pm, where the trim-
ming boundaries have been created via the Grandine–Klein intersector [107] with
an error pre-processor [141], so that the ‘gaps’ between adjacent surfaces were
guaranteed to be no greater than λ in model space. One would hope to choose
λ judiciously. In particular, let δ denote the minimum distance between any two
non-adjacent pi and pj . Ideally, one would hope to choose λ � δ. But, suppose,
to the contrary, that λ� δ.

To create a well-formed model from the pis, it would be appropriate to use
the proposed Whitney extensions that would have perturbations on the order of λ
and that perturbations of those magnitudes could introduce intersections between
p∗i and p∗j , denoting the perturbations of some non-adjacent patches pi and pj .

Consider Figure 6, which is illustrative of the situation described, specialized
so that only curves are shown. The figure uses curves for simplicity of exposition,
but it should be clear the example could easily be generalized to represent surfaces.
For instance, each of the curves could serve as the spine of a swept surface having
a generating curve of a circle of fixed radius.

The salient aspects of Figure 6 are summarized, as follows:

• The curves are labeled in bold-face letters a, b, c, d, e.
• Vertices are denoted by p 0, p 1, . . . , p 9, with only some explicated.
• Each curve is assumed to be clockwise oriented.
• The connectivity is given by the ordering a, b, c, d, e, a.
• All of the curves, except c lie in the plane z = 0.
• Even though the projection shown of c is linear, the curve c is not linear.
• The ‘gap’ between a and e is maximal, d(p 9, p 0) = λ.
• The z coordinate of p 4 is 0.
• The z coordinate of p 5 is chosen so that d(p 0, c) = δ.

If these gaps were the result of a construction process, such as a Boolean
operation relying upon a numerical surface intersector, then a reasonable response
might be to re-execute the procedures that generated the model, with tighter
tolerances upon the numerical intersector so that one would have λ� δ.

Question 6.3. Is it possible to provide practical criteria for the choice of λ, the1103?

separation distance between non-adjacent patches relative to δ, and the separation
distance between adjacent patches?

Question 6.4. If the errors resulting in these models being ill-formed as regular1104?

closed sets arose from some geometric construction process, such as a Boolean
operation relying upon a numerical surface intersector, is a reasonable response
to re-execute the procedures that generated the model, with tighter tolerances upon
the numerical intersector so that one would have λ� δ?
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Figure 12. Gap analysis for Whitney extensions

Question 6.5. Are there implications that geometry should move from represen- 1105?

tation by specific instantiations into models that are more descriptive?

Question 6.6. Might appropriate topological abstractions be more helpful than 1106?

specific geometric coordinate based information?

A very recent manuscript [164] argues that interpreting the inconsistencies
between the geometric data and its connective information should rely upon a
homotopy equivalence between the represented geometry and the intended exact
set. The homotopy equivalent geometric sets are described as lying within the same
tolerance zone. Additionally, graph theoretic and cell complex techniques are used
to express and understand additional constraints that should be imposed upon
these homotopies. In particular, it is proposed that these tolerance zones must be
contractible for all cells that are homeomorphic to finite-dimensional Euclidean
balls. Some further relationships are proposed to describe these homotopies in
terms of the nerve of a collection of closed sets.

Question 6.7. If homotopy equivalence is considered as a necessary condition for
tolerant representations of geometry, what further conditions result in sufficiency?

Question 6.8. Are there further extensions of existing nerve theorems that would
be relevant for practical algorithms to generate these tolerance zones?

6.2. The role of exact arithmetic. The study of ‘exact arithmetic’ arose
from the computational geometry community [185] in recognition that many geo-
metric predicates were critical to evaluation along boundaries. The question of
being ‘on’ a boundary was equated to resolving whether numeric expressions were
exactly equal to zero. In some cases, this can be done quite nicely. Assuming that
all the input geometry coordinates are expressed exactly as rational numbers,
then it is well known that roots for polynomials can be found within the field
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of algebraic numbers. So, one of the important aspects of exact arithmetic is to
augment the typical floating point representation with additional data structures
for radicals over the rationals.

Current language implementations for exact arithmetic have specific predi-
cates for algebraic numbers [20]. So, solutions to x2−2 can be represented exactly
by these predicates. Then, these expression can be approximated to any number
of bits specified by the user. Furthermore, algebraic operations are represented
as directed acyclic graphics (DAG), with floating point values at the leaf nodes
and algebraic operations at other nodes. In this sense, they are similar to CSG
trees of Section 3.2.1. Since this DAG is the primary data structure, solutions
can be adapted to user specified precision by just putting better approximations
into the leaf nodes and being careful about error accumulation at the other nodes.
There is a performance penalty for exact arithmetic. Efficient implementations
are available for low-degree polynomial representations.

Question 6.9. Can exact arithmetic be augmented to include non-algebraic nu-1107?

meric representations?

Question 6.10. What happens when the assumption of exact rational input is not1108?

met?

The use of exact arithmetic can be contrasted with more classical techniques
from numerical analysis. Specifically, the recent publication [21] presents a role
for backward error analysis, with a reply included from proponents of exact arith-
metic. This leads naturally to the next question.

Question 6.11. What is the role of methods from numerical analysis, specifically1109?

backward error analysis, when there is uncertainty in the input data?

Question 6.12. Can exact arithmetic have competitive performance with approx-
imate floating point geometric algorithms over high degree polynomial representa-
tions?

7. Computational topology and surface reconstruction

A significant catalyst for computational topology has been the problem of
constructing an approximating surface mesh given only a sample of points from the
surface. This problem was formalized and brought to the attention of the computer
graphics community in a seminal 1992 paper [22]. Amenta and Bern [52, 6]
described the crust algorithm for which they could show, under some conditions
on the surface and the sample, that the output approximates, geometrically, the
surface from which the samples were drawn. A later simplification [53] of this
algorithm was shown to produce a PL (triangulated) manifold homeomorphic to
the surface from which the samples were taken, using a somewhat complicated
argument involving covering spaces. These results have been extended to prove
isotopy equivalence, with the following being a representative theorem [55].

Theorem 7.1. Let F be a compact, C2 2-manifold without boundary. Let S be
a set of sample points of F such that for each x ∈ F , there exists a point s ∈ S
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such that d(x, s) < k LFS(x), where, k = 0.085 and LFS(x) is the minimum
distance between x and the medial axis of F , denoted as MA(F ). Then, there is
an algorithm that will take S as input and produce a PL approximation of F that
is ambient isotopic to F .

Question 7.1. What are necessary and sufficient conditions on a low-dimensional 1110?

manifold to permit an ambient isotopic approximant as the manifold reconstruc-
tion?

Question 7.2. What criteria are necessary and sufficient on the density of the 1111?

sampling set on a low-dimensional manifold to permit an ambient isotopic approx-
imant as the manifold reconstruction?

Question 7.3. What is the appropriate topological equivalence relation to consider 1112?

for manifold reconstruction?

Question 7.4. Specifically, for manifolds without boundary, what are necessary 1113?

and sufficient conditions on the normal field on the boundary to permit an ambient
isotopic approximant as the manifold reconstruction?

Recent work that may be helpful references in considering these questions
include [49, 23, 24, 81, 80, 25, 100, 26, 1], with recent theorems appearing for
the cases with boundary [49].

8. Computational topology and low-dimensional manifolds

Many of the 1-manifolds and 2-manifolds for geometric computing are de-
scribed as spline functions [27, 152]. These splines are typically defined over very
simple domains, such as [0, 1] and [0, 1]2. While low-dimensional manifolds have
their own sub-discipline within topology, it is consistent here to consider these
manifolds in relation to generalized spline functions.

8.1. Background. The basic approach we outline here uses two steps to
construct a function. In the first step, we model the domain of the function as
an abstract manifold (this manifold need not have geometry associated with it).
In the second step we define an embedding or immersion of the domain to, e.g.,
produce a surface. This second step is done piecemeal by defining local embedding
or immersion functions on subsets of the domain, then blending the results using
a partition of unity.

More formally, given a manifold M , a method for defining charts αc(M) →
c ⊂ Rn on M , immersion Ec : c → Rm and blend Bc : c → R functions for each
chart, we can define a function on the entire manifold as follows:

E(p) =

∑
cBc(αc)Ec(αc(p))∑

cBc(αc)
(8.1)

To ensure this equation is valid, we place some constraints on the chart αc and
blend Bc functions. First, the charts must cover the manifold, i.e., they are a
finite atlas. Second, the blend functions are non-zero over c. This ensures that
the denominator is not zero. (Note: There’s nothing that prevents the support of
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Bc being smaller than c, but it makes it harder to prove that the denominator is
non-zero.) The Ec functions can be any function of continuity Ck over the region
c (the continuity outside of c does not matter).

The continuity of the above equation is the continuity of its constituent parts.
Therefore, to have a Ck function the αc, Ec, and Bc functions must be at least
Ck. The blend functions must also have their value and first k derivatives go to
zero near the boundary of c. This ensures continuity at the boundaries of each
chart.

For surfaces, the manifolds that make sense are planes, spheres, and hyperbolic
disks tiled with 4n− sided polygons (with edge pairs identified). The latter is one
possible domain for n-holed (genus n) surfaces. This domain simplifies to the tiled
plane for a standard (1-holed) torus. The Ec functions are typically polynomials
or spline functions.

For reinforcement learning, the manifold is a combination of all possible ac-
tions and sensor readings, and the Ec function is a number that says how good it
is to take that action with those sensor readings (essentially, a height field).

In animation, the manifold depends on the movement. Suppose a character
is throwing a ball. A manifold that describes this motion (in a simplistic way)
consists of a periodic value (where in the throw they are) and a release point
(x, y, z). The function on the manifold is a set of joint angles for every joint in
the body.

8.2. Problem statement. The problem can be loosely stated as follows.
There exist some number of samples di of what the surface or function should
look like; those samples may contain noise. Additionally, the parameter values pi

for the samples (i.e., where they are on the manifold) may also be known. The
goal is to minimize

∑
i ‖di−E(pi)‖ where the pi are given or they give the closest

point to di on E, minpi
‖di −E(pi)‖.

If the goal is interpolation of the points di then the sum should be zero.
In addition to the above approximation constraints, there is usually some form

of “smoothness” constraint to guide what happens between the sample points.
This can take several forms. One option is to minimize some combination of the
second derivatives, such as the bending energy. A second option is to bound how
much the surface varies from, e.g., a linear approximation to the data points.

A related set of constraints concerns “features” in the data, such as sharp
edges and corners. In this case, it may be desirable for the function E to correctly
model the edge or corner, i.e., to exhibit a discontinuity in differentiability.

8.3. Solving the problem. There are two stages to solving the problem.
The first is to decide the chart placement (the αc), the second is to fit the individual
functions Ec. Ideally, the Ec functions agree where they overlap, i.e., for all charts
ci overlapping a point p, Eci

(αci
(p)) evaluates to the same thing. In this case, the

shape of the blend function doesn’t matter. In practice, the shape of the blend
function has little effect on the final shape, so we can simply define the same blend
function shape for all charts.
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There are two options for solving for the free parameters in the Ec functions.
The first is to fit each Ec locally to an appropriate subset of the data. The second is
to fit all of the Ec simultaneously. The latter is, in general, more computationally
expensive, but has the potential to produce better results.

Some observations:

• The more the charts overlap, i.e., the more non-zero terms in Equa-
tion 8.1, the smoother the result tends to be, but this increases the com-
putational expense. “Smoother” is not a well-defined term here; clearly,
the surface has the same continuity regardless of the overlap. However,
there is an averaging effect that reduces the effect of local variation in
the individual Ec.

• The size of the chart and the corresponding required complexity of the Ec

function are inversely related. As the chart size decreases, the variation
in E that Ec is responsible for decreases. In the limit, with an infinite
number of charts we could use piecewise constant functions for the Ec.

• Given a fixed number of degrees of freedom for Ec the desired local
variation in E also determines the size of the chart. In large, flat areas,
we can use a single chart, but in regions with more variation we need
more charts.

• Features such as sharp edges, can be modeled using a function Ec that
is capable of representing a discontinuity. In this case, all of the other
Ec functions need to be “masked out” or they may unduly influence that
area. However, it may be difficult to use a single chart for a feature that
spans most of the manifold.

The following are important open questions:

Question 8.1. What are the optimum size, shape, and amount of overlap for the 1114?

charts? The answer to this question depends both on the data and on the choice
of Ec. Optimum is a measure both of the fit (including a definition of smoothness)
and computational tractability.

Question 8.2. Beyond questions of charts for a known manifold, there is also 1115?

the question of figuring out what the underlying manifold is for a given set of
data points. The assumption is that the data points di arise from samples of
a low-dimensional manifold embedded in a high-dimensional space. This is the
field of manifold learning in computer vision; most of the techniques (Principal
components analysis, isomap, simple linear embedding) currently work only for
planar manifolds, or largely convex (geometrically) spherical or cylindrical data
sets. What unifying theory is possible for determining the appropriate underlying
manifold for a given set of data points?

9. Skeletal structures

Many of the previously discussed approaches to surface reconstruction in Sec-
tion 7 use the medial axis, which, under specific hypotheses, can be shown to
be a deformation retract [183]. This is an important concept, but its reliable
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and efficient computation poses many theoretical [78, 79, 77] and practical [76]
challenges.

Between any two points, x, y ∈ R3, let d(x, y) denote the usual Euclidean
distance and for any two sets X,Y ⊂ R3, let d(X,Y ) = inf{d(x, y)|x ∈ X, y ∈ Y }.
Definition 9.1. Let x ∈ Rn and S ⊂ Rn. A point s ∈ S is a nearest point on S
to x if d(x, s) = inf{d(x, t) : t ∈ S}. The medial axis of S, denoted MA(S), is the
closure of the set of all points that have at least two distinct nearest points on S.

This concept was originally defined for object recognition in the life sci-
ences [28, 29]. One investigation of the mathematical properties of the medial
axis and its associated transform function [75] is restricted to geometry within
the plane. More generally, there has been broad attention to the medial axis in
Rn within the computer science literature, where the topological and differentiable
investigations [167, 183, 184] are directly relevant to surface reconstruction work.

Both classical and contemporary research have emphasized the principle that
many analytic attributes of surfaces can be determined using singularity theory
and stratification theory [46, 10, 47, 68, 11, 74, 78, 79, 77, 30, 31, 165, 172,
182]. In particular, singularities can be shown to correspond to possible self-
intersections or non-manifold points and can be organized in Thom–Boardman
form [60, 105, 133]. However, computational solutions for the associated non-
linear equations can be prohibitively expensive using many variants of Newton’s
method. Furthermore, other relevant exponential algorithmic bounds [74] appear
to pose daunting computational difficulties. Recent singularity publications do
offer promising techniques that could lead to efficient algorithmic preservation of
ambient isotopy type [154, 157, 169, 178], particularly in conjunction with re-
cent findings by Blackmore [68, 11] of approximate methods. The “skin surfaces”
introduced in the context of biological modeling [86] have been shown to have
isotopic approximating meshes [129]. The authors of this last paper note that
their algorithms presume that the geometric input set is fixed, but this raises a
question about about whether a given output would be appropriate for other the
input sets.

Question 9.1. Once a mesh is created, does it remain valid for some deformations1116?

of the input set, if those deformations are suitably constrained?

The cut locus is similar to the medial axis and has been used in computational
explorations of shape [184]. In particular, Wolter proves, for a rich class of sur-
faces, that C2 continuity is not required to establish a positive distance between
the surface and its cut locus, with a related corollary showing desirable smoothness
properties of offsets of these surfaces.

Recognizing both the difficulties of approximating the medial axis and the
sensitivity of the medial axis to small (though possibly inconsequential) changes
in form, there has been recent mathematical work in proposing alternatives to
the medial axis [78, 79, 77]. This work seeks the determination of relations
between the skeletal structure proposed and the boundary of the original object,
so that small changes in one will result in small changes in the other, where
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these alternative skeletal structures are often more topologically complex than the
medial axis. The first of these publications [78] defines various geometric tools
in support of these skeletal structures, and some of these tools hold promise for
computational topology research, even as we note the distinction that the primary
application of these skeletal generalizations has been to computer vision [153], as
opposed to various simulation contexts.

The expected theory is likely to have some similarities to the use of the nerve
simplicial complex technique previously invoked by Edelsbrunner and Shah [92].
There also appear to be similarities to the skeletal structures defined in the al-
ready cited papers by Damon and his co-authors [78, 79, 77, 153], for their
consideration of robust variants of the medial axis and applications in computer
vision. The envelope may also be regarded as one of the level sets generated by the
normal flow, so there may be opportunities to leverage the extensive classical and
contemporary literature on level sets. Similarly, the extensive existing literature
on the Minkowski sum, deserves careful study for a variety of applications.

Question 9.2. What are the appropriate skeletal structures and algorithms to 1117?

extract critical topological information while reducing the representation?

10. Computational topology and Biology on simplicial complexes

Topology studies global properties of geometric objects, like the number of
connected components, tunnels, or cavities. The work on computational topology
led by Edelsbrunner has had many interesting applications to biology [32]. His
more theoretically fundamental work on Delaunay triangulations [87, 85] is inte-
gral to these biological applications. This discussion presents those topics together.
The Delaunay triangulations are typically classified as computational geometry,
but the definition of their basic cells has a strong topological element. The tri-
angulation is formed as a dual of a Voronoi diagram, which lies within a metric
space, Z, having a metric d : Z → R. The Voronoi diagram presumes the existence
of a finite set of points Q = {q0, q1, . . . , qn} from Z. The Voronoi diagram is a col-
lection of closed neighbhorhoods of the qi, each containing one of the qi. For each
qi its neighborhood is defined as the set of all p ∈ Z such that d(p, qi) < d(p, qj)
for all j 6= i. Another related construct is that of α-shapes [7, 158].

An overview article has appeared [32]. The techniques are based largely on
simplicial complexes, computing invariants such as Euler characteristics, Betti-
numbers and writhing numbers [51]. Additionally, Morse Theory is invoked [33]
to develop novel data representations for visualization algorithms. These ideas
were the subject of a New Directions short course at the Institute for Mathematics
and Applications [88]. One outcome was to relate computational Morse theory to
Forman’s discrete Morse theory. Some of the contributions to the literature along
these themes appear in various venues [34, 61, 35, 82, 83, 86, 33, 36, 37, 89,
38, 90, 91, 7, 93, 94]. However, even this list is only partially representative
of the broad and deep impact this research has had within the computational
topology community.
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Some of the techniques evolve more from algebraic topology methods, which
has become an independently rich area in computational topology under the lead-
ership of Edelsbrunner, as well as that of Carlsson [70]. The latter endeavors have
are also integrated with statistics, forming a very rich subject area, which can only
be mentioned here for the benefit of the interested reader. Two conferences on
Algebraic Topological Methods in Computer Science have been held.

A summarizing question becomes

Question 10.1. What role can discrete Morse theory play for the theoretical basis1118?

for algorithms in computational topology?

Additional work on simplicial complexes emphasizes recovering topological
invariants of a space from a finite set of noisy samples, parameterized within a high
dimensional Euclidean space. In order to have robustness versus undersampling
and noise, a multi-scale view of the space is created that contains information at
all granularities. A space is constructed incrementally using a geometric criterion,
obtaining a family of spaces. The spaces are not independent, but are related by
inclusion maps that induce maps between the topological attributes in the spaces.
The theory of persistent homology, captures these relationships as lifetimes for the
evolving attributes [91]. These lifetimes translate into a measure of importance
for topology. So, persistence is a robust mechanism for recovering topology as it
separates topological noise from features.

The traditional approach is to approximate the space by placing small balls
around the samples and characterizing the combinatorics of the ball set. The
resulting complex is simple but very expensive to compute. Unfortunately, no
effective techniques are known for computing small complexes for points in high-
dimensional spaces.

Question 10.2. Can local methods be used to take advantage of the geometry to1119?

yield small complexes that would be computationally tractable?

Often, one can generate a multiple-parameter family of spaces that describes
a point set. For example, one might wish to track the topology of isosurfaces
of both pressure and temperature of a jet flow across time. Recent progress in
persistent homology indicates that a simple description is not possible for multiple
parameters [189]. There is need for an approximation theory that allows access
to the topological information contained in such a family.

Question 10.3. Can robust invariants be computed for these multi-parameter1120?

spaces?

This summary represents recent issues posed largely from the joint work
of Zomorodian and Carlsson and earlier work of Zomordian with Edelsbrunner.
There is much emphasis upon homological invariants, which lies beyond the artic-
ulated scope of this article. Nonetheless these aspects are included here because
of their nascent state, portending that there may remain unresolved issues about
the underlying topological spaces as this work matures further.
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11. Finite approximation and (non-Hausdorff) topology

It has been known for almost 80 years that every compact Hausdorff space is
the subspace of closed points of an inverse limit of finite T0-spaces, and that finite
T0-spaces are essentially finite posets. For many years this seemed an oddity; why
would anyone approximate the best known and best understood topological spaces
by spaces that were simultaneously trivial and nonintuitive?

11.1. Adapted inverse limit approximation by T0-spaces. The devel-
opment of computing and its need for information in bits, and more particularly
the work on digital topology from a purely topological viewpoint led to much more
intuition on these finite T0-spaces. As a result, Kopperman and Wilson proved
that these inverse systems can be assumed to have very special maps, which they
called calming maps. If this is done, the following traditional knowledge can be
recast, as stated, below.

11.2. Topological invariants. The association between an abstract sim-
plicial complex, which can be seen as a finite T0-space, and its polytope in a
finite-dimensional Euclidean space can be used as follows: The topological spaces
that most often occur in science and engineering are the metric continua. These
are often viewed as inverse limits of polyhedra and simplicial maps. The work
by Kopperman and Wilson [39] has shown that these inverse systems of polyhe-
dra and simplicial maps can be replaced by inverse systems of abstract simplicial
complexes and calming maps in such a way that the inverse limit of the former
is exactly the subspace of closed points of the inverse limit of the latter. Rather
than the Euclidean polytopes and simplicial maps, which are determined by ver-
tices and subject to round-off error, one can use precisely given finite posets and
special order-preserving maps, also precisely given. Here are some issues that
arise before these methods can be applied: While it has been known for about
three years that the above approximation can be done, no algorithm for finding
these finite posets and calming maps has been described and this method has not
been used to approximate spaces. But the digital topology needed to understand
the finite spaces was learned over a dozen years ago, in part by Kopperman and
co-workers [119, 118, 123, 124, 40, 41].

11.3. Topological consistency. Much of the relationship between this method
of approximation and basic general topology has been resolved. For example, if
the finite T0-spaces are connected, then so is their limit [127, 42], and so is this
subspace of closed points. Also, the relationship between the separation axioms
(particularly complete regularity, normality and hereditary normality) and prop-
erties of the finite spaces and maps has been determined [128, 42]. The authors
are now preparing for publication results on replacing maps between the original
spaces with maps between inverse systems of finite approximants of these origi-
nal spaces. These results yield characterizations of the Stone–Čech and Wallman
compactification in terms of such finite approximations (some of this was noted
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earlier [99]). But much more knowledge is needed about such replacement and its
use in computation and the preservation of invariants of algebraic topology.

A primary view from domain theory is that many important computational
topology properties correspond to open sets and not to specific Euclidean points
or scalar values [50, 104, 103]. More specifically, Kopperman and his collab-
orators have characterized those topological spaces that are computable in the
sense of domain theory [125]. A special case involves those that are inverse lim-
its of polyhedra, creating an opportunity to include domain theoretic results into
computational topology investigations.

A summarizing research question becomes:

Question 11.1. What are the essential topological relations for visualization and1121?

how can reliance upon domain theory and these approximating systems improve
upon the state-of-the-art to preserve key embedding (homotopy and homology) in-
variants of the models and spaces as they become visualized, both statically and
dynamically?

12. Algorithmic topology and computational topology

The work of creating KnotPlot [161, 162] has been described as “topological
drawing”. By programs based upon Gaussian energy functionals, KnotPlot ani-
mates the process of unknotting and knot simplification on specific examples of
knots. A key criterion is that the class of the knot is known a priori. This is an
important aspect, as it is known [111] that the elementary problem of recognition
of the piecewise linear unknot is in NP . Practical algorithms for knot recognition
have proven elusive, but the problem remains an important stimulus for theoretical
research [109].

This theoretical result provided valuable guidance to the work mentioned in
Section 4 on isotopic approximations. Namely, it directed attention to just pre-
serving the isotopy class of the original object even when that classification was not
known. This is an example of the “. . . beneficial symbiosis . . . ” anticipated [88]
with algorithmic topology [134]. It leads to whether similar benefit can be gained
by consideration of other algorithmic topology recognition problems, such as these
summarized here.

The 3-sphere recognition problem starts with a given triangulation T and
attempts to answer whether the underlying space |T | is homeomorphic to the
3-sphere. It is shown that this problem lies in NP [163].

Question 12.1. Is the 3-sphere recognition problem NP-hard?1122?

13. Computational topology workshop of 1999

To the best of our knowledge, the first broad workshop on Computational
Topology was held in June, 1999. Its purpose was direction finding and its majority
attendance was by scientists who are primarily recognized as computer scientists,
though some pure mathematicians did attend and many of the particicants are
interdisciplinary in their work.
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The report of this workshop is highly recommended for its broad coverage. Its
impetus from computational geometers is reflected in the very applied nature of
many of the topics and problems described. The report was not merely a descrip-
tion of technical problems, but also an attempt to identify areas, build community
and develop an agenda for future research. As such, its purposes were some-
what different from the present article. Furthermore, because of the large number
(22) of contributing co-authors, the report covers many subjects that are not in-
timately related to point-set topology. However, many of its findings are relevant
for setting context. Some are quoted here. Furthermore, some specific problems
do relate directly to this topology community, broadly considered. For instance,
the definition of neighborhoods for differing topologies is a common problem of
interest to many in the point-set topology community. Some problems, quoted,
below, mention the definition and representation of neighborhoods. Within the
mathematics community, the specialty of low-dimensional topology is often viewed
as being quite separate from that of point-set topology. However, problems from
low-dimensional computational topology are presented here, because they depend
upon such fundamental topological notions that it is hard to separate the fields. It
is hoped that this blending of the subjects within computational topology might
lead to more interaction among these communities within more established math-
ematical communities, hopefully to the benefit of mathematics at large. Those
have been abstracted and updates provided, where relevant. Noticeably, several of
these topics and problems are well-integrated with problems already posed within
this article and that integration has been previously mentioned and is also noted,
below.

The report begins with an emphasis upon the role of geometric computing
to support the simulation of phsyical objects—“. . . on scales that vary from the
atomic to the astronomical.”—emphasizing the role of topology in “Modeling the
shapes of these objects and the space surrounding them . . . ”. The role of informa-
tion visualization is expressed as relying upon “. . . shapes and motions . . . ” with
obvious topological implications. The emphasis is upon support for geometric
computing in that,

“Some of the most difficult and least understood issues in geo-
metric computing involve topology. Up until now, work on
topological issues has been scattered among a number of fields,
and its level of mathematical sophistication has been rather
uneven. This report argues that a conscious focus on compu-
tational topology will accelerate progress in geometric comput-
ing.”

While this specific focus on the benefits to geometric computing are under-
standable, this present article presents the point of view that topologists can make
significant contributions to many aspects of computing. The “scattered” distribu-
tion throughout the literature is evident in the bibliography for this article, with
cited publications appearing in mathematical and computer science venues, as well
as within many different fields of engineering.
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That the use of classical topology can “accelerate progress” has already been
quite well documented in the literature. One notable success story has been the
theorems generated by digital topologists. The wide-spread application, within
the image processing community, of the Jordan curve and surface theorems to
identify boundaries in images and partition viewed objects into parts lying inside
and outside of those boundaries led to a contemporary study of these classical
theorem, providing new proofs to apply to spaces that did not have T2 separa-
tion properties [126]. These configurations of pixels on a computer screen were
named digital spaces. While this seemed like an obvious use of a classical theorem,
various unexpected subtleties occurred in algorithms in which this theory was ap-
plied. While it was unlikely that these difficulties would provide counterexamples
that would invalidate such well-established theorems, it took the perspective of
topologists to realize that

• the proofs of the classical Jordan separation theorems relied upon an
assumption that the underlying topology was T2,

• the digital spaces were discrete when modeled as T2 topologies, and
• that weaker topologies were more descriptive of digital spaces.

These topologists then proved that the classical T2 assumption was not needed
and developed non-T2 topologies for digital spaces. The rigorous consideration of
these applied image problems led to extensions of classical theory and improved
algorithms.

Some summarizing perspectives from this report state that “Topology sepa-
rates global shape properties from local geometric attributes and provides a precise
language for discussing these properties.” and that “Mathematical abstraction
can also unify similar concepts from different fields.” These notions are, of course,
well known to topologists, but it is of interest to understand that these aspects are
now seen to be attractive in furthering the development of algorithms in robotics,
molecular docking and geometric computing in general.

Some broad questions resulting from this report are summarized below, fol-
lowed by more detailed sections with specific questions under each broader item.
Again, the emphasis is upon topological issues that are most closely related to
point-set topology, ignoring others that may have more of an algebraic topology
or combinatorial topology emphasis.

13.1. Summary of broad questions.

Question 13.1. How should shape be represented?

Question 13.2. How can topology preservation be ensured in converting from one
shape representation to another?

Question 13.3. How can physical measurements, with sampling error and noise,
be algorithmically converted into topologically valid shape representations, partic-
ularly for physical simulations that rely upon meshed geometry?
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Question 13.4. How can “. . . the development of algorithmic tools implementing
topological concepts . . . ” [88] and “. . . algorithmic questions in topology . . . ” be
integrated for the benefit of both fields?’

Because of preceding material, the key questions for each are tersely summa-
rized.

13.2. Shape representation. This is consistent with the earlier remarks
(Sections 2, 3 and 6) about the role of regular closed sets in solid modeling. Since
this has already been discussed at some length, the relevant problems will be
tersely stated, below.

Question 13.5. Current shape representations include unstructed collections of
polygons (with no specific connectivity information among geometric entities—
often dubbed as ‘polygon soup’), “. . . polyhedral models, subdivision surfaces, spline
surfaces, implicit surfaces, skin surfaces, alpha shapes . . . ”, solid models, proce-
dural models, digital and voxel models. What are the unifying topological constructs
and how should they be expressed and implemented for efficient and robust algo-
rithms?

13.3. Topologically correct shape conversion. These issues have been
discussed in some depth in Section 4 on approximation.

Question 13.6. While there exist some methods for converting from one type of
shape representation to another, these are mostly for polyhedral models and they
are not totally rigorous or robust. How can topological principals be included in
these shape conversions to both provide broad theory and improved algorithms?
(We note that Section 4 has already discussed the inclusion of isotopy equivalence
as a criterion for approximations (often PL ones) of smooth shapes in conjuction
with traditional criteria of error bounds on the distance between one shape and its
approximant.)

Question 13.7. While classical topology has relied upon homeomorphisms for 1123?

its primary equivalence relation, the geometric models in computing appear to
need a stronger equivalence relation that includes correctness of the embedding
within some low-dimensional topological (usually Euclidean) space. Is isotopy the
preferred equivalence or is there need for even stronger equivalences such as dif-
feotopy?

13.4. Shape acquisition algorithms and measurement error. Some
of the dominant approaches here have avoided the issues of measurement error
and noise. Recent abstractions [1] have proven theorems that leave open the
opportunity to consider sample points with bounded measurement errors on a par
with those that are exact samples. Several questions have already been articulated
in previous sections.

Question 13.8. How can these differing mathematical perspectives, across point-
set and differentiable topology be best integrated for optimal shape-acquisition al-
gorithms?
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13.5. Shape smoothness criteria. These issues range from unexpected ap-
pearance of non-smoothness in engineering design models to the need to represent
non-smoothness in animation figures.

Question 13.9. In some cases singularities arise because of numerical approxi-1124?

mations made, which are inherent to a finite word length for numeric representa-
tions. In other cases, particularly for the motion picture industry, there are needs
to model sharp changes in differentiability [43]. Some promising techniques have
been presented that allow flexibility in moving gracefully between these needs [44].
Is there an appropriate topological abstraction that can be mapped easily to abstract
data types that will permit appropriate representations of smoothness for differing
applications?

14. Conclusion

The bibliography is indicative of the breadth of interest in this subject, even
though many references do not necessarily include the terminology “computational
topology”. As with any article presenting open problems, this one necessarily is
reflective of the tastes and interests of the co-authors, where Sections 10, 12 and
13 are terse. This is not reflective of their scientific importance or impact, but
rather an attempt to appeal to the expected point-set topology readership of this
volume. In particular, the material presented here in those sections was directed
towards emphasizing their general topology content, while showing their broader
connections to other branches of topology for readers who might be interested in
further consideration of these related subjects.
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[131] M. Mäntyalä, Computational topology: a study on topological manipulations and inter-

rogations in computer graphics and geometric modeling, Acta Polytechnica Scandinavica,
Mathematics and Computer Science Series, vol. 37, Finnish Academy of Technical Sciences,
Helsinki, 1983.

[132] W. S. Massey, Algebraic topology: An introduction, Harcourt, Brace & World, Inc., New
York, 1967.

[133] J. N. Mather, Stratifications and mappings, Dynamical systems (Bahia, 1971), Academic
Press, New York, 1973, pp. 195–232.

[134] S. Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms and Com-
putation in Mathematics, vol. 9, Springer, Berlin, 2003.

[135] J. Milnor, Lectures on the h-cobordism theorem, Notes by L. Siebenmann and J. Sondow,
Princeton University Press, Princeton, NJ, 1965.

[136] J. Mitchell, Topological obstructions to blending algorithms, Comput. Aided Geom. Design
17 (2000), no. 7, 673–694.

[137] G. Monge, Application de l’analys à la geometrie, Bachelier, Paris, 1850.
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Part 7

Functional Analysis





Non-smooth Analysis, Optimisation theory and
Banach space theory

Jonathan M. Borwein and Warren B. Moors

1. Weak Asplund spaces

Let X be a Banach space. We say that a function ϕ : X → R is Gâteaux
differentiable at x ∈ X if there exists a continuous linear functional x∗ ∈ X∗ such
that

x∗(y) = lim
λ→0

ϕ(x + λy)− ϕ(x)

λ
for all y ∈ X .

In this case, the linear functional x∗ is called the Gâteaux derivative of ϕ at
x ∈ X . If the limit above is approached uniformly with respect to all y ∈ BX , the
closed unit ball in X , then ϕ is said to be Fréchet differentiable at x ∈ X and x∗

is called the Fréchet derivative of ϕ at x.
A Banach space X is called a weak Asplund space [Gâteaux differentiability

space] if each continuous convex function defined on it is Gâteaux differentiable
at the points of a residual subset (i.e., a subset that contains the intersection of
countably many dense open subsets of X) [dense subset] of its domain.

Since 1933, when S. Mazur [55] showed that every separable Banach space is
weak Asplund, there has been continued interest in the study of weak Asplund
spaces. For an introduction to this area, see [61] and [32]. Also see the seminal
paper [1] by E. Asplund.

The main problem in this area is given next.

Question 1.1. Provide a geometrical characterisation for the class of weak As- 1125?

plund spaces.

Note that there is a geometrical dual characterisation for the class of Gâteaux
differentiability spaces, see [67, §6]. However, it has recently been shown that
there are Gâteaux differentiability spaces that are not weak Asplund [58]. Hence
the dual characterisation for Gâteaux differentiability spaces cannot serve as a
dual characterisation for the class of weak Asplund spaces.

The description of the next two related problems requires some additional
definitions.

Let A ⊆ (0, 1) and let KA := [(0, 1]×{0}]∪ [({0}∪A)×{1}]. If we equip this
set with the order topology generated by the lexicographical (dictionary) ordering
(i.e., (s1, s2) ≤ (t1, t2) if, and only if, either s1 < t1 or s1 = t1 and s2 ≤ t2) then
with this topology KA is a compact Hausdorff space [46]. In the special case of
A = (0, 1), KA reduces to the well-known “double arrow” space.

The first named author was supported by NSERC and by the Canada Research Chair
Program. The second named author was supported by a Marsden Fund research grant,
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Question 1.2. Is (C(KA), ‖·‖∞) weak Asplund whenever A is perfectly meagre?1126?

Recall that a subset A ⊆ R is called perfectly meagre if for every perfect
subset P of R the intersection A ∩ P is meagre (i.e., first category) in P . An
affirmative answer to this question will provide an example (in ZFC) of a weak
Asplund space whose dual space is not weak∗ fragmentable, see [58] for more
information on this problem. For example, it is shown in [58] that if A is perfectly
meagre then (C(KA), ‖·‖∞) is almost weak Asplund i.e., every continuous convex
function defined on (C(KA), ‖·‖∞) is Gâteaux differentiable at the points of an
everywhere second category subset of (C(KA), ‖·‖∞). Moreover, it is also shown
in [58] that if (C(KA), ‖·‖∞) is weak Asplund then A is obliged to be perfectly
meagre.

Our last question on this topic is the following well-known problem.

Question 1.3. Is (C(K(0,1)), ‖·‖∞) a Gâteaux differentiability space?1127?

The significance of this problem emanates from the fact that (C(K(0,1)), ‖·‖∞)
is not a weak Asplund space as the norm ‖·‖∞ is only Gâteaux differentiable at
the points of a first category subset of (C(K(0,1)), ‖·‖∞), [32]. Hence a positive
solution to this problem will provide another, perhaps more natural, example of a
Gâteaux differentiability space that is not weak Asplund.

2. The Bishop–Phelps Problem

For a Banach space (X, ‖·‖), with closed unit ball BX , the Bishop–Phelps
set is the set of all linear functionals in the dual X∗ that attain their maximum
value over BX ; that is, the set {x∗ ∈ X∗ : x∗(x) = ‖x∗‖ for some x ∈ BX}. The
Bishop–Phelps Theorem [4] says that the Bishop–Phelps set is always dense in
X∗.

Question 2.1. Suppose that (X, ‖·‖) is a Banach space. If the Bishop–Phelps set1128?

is a residual subset of X∗ (i.e., contains, as a subset, the intersection of countably
many dense open subsets of X∗) is the dual norm necessarily Fréchet differentiable
on a dense subset of X∗?

The answer to this problem is known to be positive in the following cases:

(i) if X∗ is weak Asplund, [36, Corollary 1.6(i)];
(ii) if X admits an equivalent weakly mid-point locally uniformly rotund

norm and the weak topology on X is σ-fragmented by the norm, [59,
Theorem 3.3 and Theorem 4.4];

(iii) if the weak topology on X is Lindelöf, [49].

The assumptions in (ii) can be slightly weakened, see [37, Theorem 2]. It
is also known that each equivalent dual norm on X∗ is Fréchet differentiable on
a dense subset on X∗ whenever the Bishop–Phelps set of each equivalent norm
on X is residual in X∗, [57, Theorem 4.4]. Note that in this case X has the
Radon–Nikodým property.

For an historical introduction to this problem and its relationship to local
uniformly rotund renorming theory, see [48].
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Next, we give an important special case of the previous question.

Question 2.2. If the Bishop–Phelps set of an equivalent norm ‖·‖ defined on 1129?

(`∞(N), ‖·‖∞) is residual, is the corresponding closed unit ball dentable?

Recall that a nonempty bounded subset A of a normed linear space X is
dentable if for every ε > 0 there exists a x∗ ∈ X∗ \ {0} and a δ > 0 such that

‖·‖ − diam{a ∈ A : x∗(a) > sup
x∈A

x∗(x) − δ} < ε.

It is well-known that if the dual norm has a point of Fréchet differentiability
then BX is dentable [75].

3. The Complex Bishop–Phelps Property

For S a subset of a (real or complex) Banach space X , we may recast the
notion of support functional as follows: a nonzero functional ϕ ∈ X∗ is a support
functional for S and a point x ∈ S is a support point of S if |ϕ(x)| = supy∈S |ϕ(y)|.

Let us say a set is supportless if there is no such ϕ.
As Phelps observed in [66] while the Bishop–Phelps construction resolved

Klee’s question [51] of the existence of support points in real Banach space, it
remained open in the complex case. Lomonosov, in [52], gives the first example of
a closed convex bounded convex set in a complex Banach space with no support
functionals.

Question 3.1. Characterise (necessarily complex) Banach spaces which admit 1130?

supportless sets.

It is known that they must fail to have the Radon–Nikodým property [52, 53].
A Banach space X has the attainable approximation property (AAP) if the set

of support functionals for any closed bounded convex subset W ⊆ X is norm dense
in X∗. In [53] Lomonosov shows that if a uniform dual algebra R of operators on
a Hilbert space has the (AAP) then R is self-adjoint.

Question 3.2. Characterise complex Banach spaces with the AAP. In particular 1131?

do they include L1[0, 1]?

4. Biorthogonal Sequences and Support Points

Uncountable biorthogonal systems provide the easiest way to produce sets
with prescribed support properties.

4.1. Constructible Convex Sets and Biorthogonal Families. A closed
convex set is constructible [10] if it is expressible as the countable intersection
of closed half-spaces. Clearly every closed convex subset of a separable space is
constructible. More generally:

Theorem 4.1 ([10]). Let X be a Banach space, then the following are equivalent.

(i) There is an uncountable family {xα} ⊆ X such that xα 6∈ conv({xβ : β 6=
α}) for all α.
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(ii) There is a closed convex subset in X that is not constructible.
(iii) There is an equivalent norm on X whose unit ball is not constructible.
(iv) There is a bounded uncountable system {xα, φα} ⊆ X × X∗ such that

φα(xα) = 1 and |φα(xβ)| ≤ a for some a < 1 and all α 6= β.

Example ([10]). The sequence space c0 considered as a subspace of `∞ is not
constructible. Consequently, no bounded set with nonempty interior relative to
c0 is constructible as a subset of `∞. In particular the unit ball of c0 is not
constructible when viewed as a subset of `∞.

In particular, if X admits an uncountable biorthogonal system then it admits
an non-constructible convex set. Under additional set-theoretic axioms, there
are nonseparable Banach spaces in which all closed convex sets are constructible.
These are known to include: (i) the C(K) space of Kunen constructed under the
Continuum Hypothesis (CH) [64], and (ii) the space of Shelah constructed under
the diamond principle [73]. In consequence, these non-separable spaces of Kunen
and Shelah have the property that for each equivalent norm, the dual unit ball is
weak∗-separable, [10].

Question 4.1. Can one construct an example of a nonseparable space whose dual1132?

ball is weak∗ separable for each equivalent norm using only ZFC?

In contrast, it is shown in [10] that there are general conditions under which
nonseparable spaces are known to have uncountable biorthogonal systems. Sup-
pose X is a nonseparable Banach space such that

(i) X is a dual space, or
(ii) X = C(K), for K compact Hausdorff, and one assumes Martin’s Axiom

along with the negation of the Continuum Hypothesis (MA + ¬CH).

Then X admits an uncountable biorthogonal system. Part (ii) is a deep recent
result of S. Todorcevic, see for example [41, p. 5].

Question 4.2. When, axiomatically, does a continuous function space always1133?

admit an uncountable biorthogonal system?

4.2. Support Sets. In a related light, consider the question:

Question 4.3. Does every nonseparable C(K) contain a closed convex set entirely1134?

composed of support points (the tangent cone is never linear)?

In [9] it is shown that this is equivalent to C(K) admitting an uncountable
semi-biorthogonal system, i.e., a system {xα, fα}1≤α<ω1

⊆ X × X∗ such that
fα(xβ) = 0 if β < α, fα(xα) = 1 and fα(xβ) ≥ 0 if β > α. Moreover, [9] observes
that Kunen’s space is an example where this happens without there being an
uncountable biorthogonal system assuming CH. Thus, the answer is ‘yes’ except
perhaps when MA fails (along with CH).

4.3. Supportless Sets. For a set C in a normed space X , x ∈ C is a weakly
supported point of C if there is a linear functional f such that the restriction of f
to C is continuous and nonzero. Fonf [35], extending work of Klee [50] (see also
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Borwein–Tingley[8]) proves the following result which is in striking contrast to
the Bishop–Phelps theorem in Banach spaces: Every incomplete separable normed
space X contains a closed bounded convex set C such that the closed linear span
of C is all of X and C contains no weakly supported points.

Let us call such a closed bounded convex set supportless . It is known that
there are Fréchet spaces (complete metrizable locally convex spaces) which admit
supportless sets. In [65] Peck shows that for any sequence of nonreflexive Banach
spaces {Xi}, in the product space E =

∏∞
i=1 Xi, there is a closed bounded convex

set that has no E∗-support points. Peck also provides some positive results.

Question 4.4. Characterise when a Fréchet space contains a closed convex sup- 1135?

portless convex set?

5. Best Approximation

Even in Hilbert spaces and reflexive Banach spaces some surprising questions
remain open.

Question 5.1. Is there a non-convex subset A of a Hilbert space H with the 1136?

property that every point in H \A has a unique nearest point?

Such a set is called a Chebyshev set and must be closed and bounded. For
a good up-to-date general discussion of best approximation in Hilbert space we
refer to [27]. Asplund [2] shows that if non-convex Chebysev sets exist then
among them are so called Asplund caverns—complements of open convex bodies.
In finite dimensions, the Motzkin–Klee theorem establishes that all Chebyshev
sets are convex. Four distinct proofs are given in [7, §9.2] which highlight the
various obstacles in infinite dimensions.

Question 5.2. Is there a closed nonempty subset A of a reflexive Banach space 1137?

X with the property that no point outside A admits a best approximation in A? Is
this possible in an equivalent renorm of a Hilbert space?

The Lau–Konjagin Theorem (see [5]) states that in a reflexive space, for every
closed set A there is a dense (or generic) set in X \A which admits best approxi-
mations if and only if the norm has the Kadec–Klee property. Thus, any counter
example must have a non-Kadec–Klee norm and must be unbounded—via the
Radon–Nikodým property. In [5], a class of reflexive non-Kadec–Klee norms is
exhibited for which some nearest points always exist.

By contrast, in every non-reflexive space, James’ Theorem [34] provides a
closed hyperplane H with no best approximation: equivalently H + BX is open.
More exactingly, two closed bounded convex sets with nonempty interior are called
companion bodies and anti-proximinal if their sum is open. Such research initiates
with Edelstein and Thompson [31].

Question 5.3. Characterise Banach spaces (over R) that admit companion bodies. 1138?

Such spaces include c0 [31, 22, 6] and again do not include any space with
the Radon–Nikodým property [5].
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6. Metrizability of compact convex sets

One facet of the study of compact convex subsets of locally convex spaces
is the determination of their metrizability in terms of topological properties of
their extreme points. For example, a compact convex subset K of a Hausdorff
locally convex space X is metrizable if, and only if, the extreme points of K
(denoted Ext(K)) are Polish (i.e., homeomorphic to a complete separable metric
space), [23].

Since 1970 there have been many papers on this topic (e.g., [23, 24, 45, 54,
69] to name but a few).

Question 6.1. Let K be a nonempty compact convex subset of a Hausdorff locally1139?

convex space (over R). Is K metrizable if, and only if, A(K), the continuous real-
valued affine mappings defined on K, is separable with respect to the topology of
pointwise convergence on Ext(K)?

The answer to this problem is known to be positive in the following cases:

(i) if Ext(K) is Lindelöf, [60];

(ii) if Ext(K) \ Ext(K) is countable, [60].

Question 6.1 may be thought of as a generalisation of the fact that a compact
Hausdorff space K is metrizable if, and only if, Cp(K) is separable. Here Cp(K)
denotes the space of continuous real-valued functions defined on K endowed with
the topology of pointwise convergence on K.

7. The Boundary Problem

Let (X, ‖·‖) be a Banach space. A subset B of the dual unit ball BX∗ is called
a boundary if for any x ∈ X , there is x∗ ∈ B such that x∗(x) = ‖x‖. A simple
example of boundary is provided by the set Ext(BX∗) of extreme points of BX∗ .
This notion came into light after James’ characterisation of weak compactness [44],
and has been studied in several papers (e.g., [74, 70, 76, 38, 39, 19, 17, 16, 40,
18]). In spite of significant efforts, the following question is still open (see [38,
Question V.2] and [30, Problem I.2]):

Question 7.1. Let A be a norm bounded and τp(B) compact subset of X. Is A1140?

weakly compact?

The answer to the boundary problem is known to be positive in the follow-
ing cases:

(i) if A is convex, [74];
(ii) if B = Ext(BX∗), [12];

(iii) if X does not contain an isomorphic copy of l1(Γ) with |Γ| = c, [17, 18];
(iv) if X = C(K) equipped with their natural norm ‖·‖∞, where K is an

arbitrary compact space, [16].

Case (i) can be also obtained from James’ characterisation of weak compact-
ness, see [39]. The original proof for (ii) given in [12] uses, among other things,
deep results established in [11]. Case (iii) is reduced to case (i): if l1(Γ) 6⊂ X ,
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|Γ| = c, and C ⊂ BX∗ is 1-norming (i.e., ‖x‖ = sup{|x∗(x)| : x∗ ∈ C}), it is
proved in [17, 18] that for any norm bounded and τp(C)-compact subset A of

X , the closed convex hull coτp(C)(A) is again τp(C)-compact; the class of Banach
spaces fulfilling the requirements in (iii) is a wide class of Banach spaces that
includes: weakly compactly generated Banach spaces or more generally weakly
Lindelöf Banach spaces and spaces with dual unit ball without a copy of βN.
The techniques used in case (iv) are somewhat different, and naturally extend
the classical ideas of Grothendieck, [42], that led to the fact that norm bounded
τp(K)-compact subsets of spaces C(K) are weakly compact. It should be noted
that it is easy to prove that for any set Γ, the boundary problem has also positive
answer for the space `1(Γ) endowed with its canonical norm, see [16, 18].

We observe that the solution in full generality to the boundary problem with-
out the concourse of James’ theorem of weak compactness would imply an alter-
native proof of the following version of James’ theorem itself: a Banach space X
is reflexive if, and only if, each element x∗ ∈ X∗ attains its maximum in BX .

Finally, we point out that in the papers [71, 79], it has been claimed that the
boundary problem was solved in full generality. Unfortunately, to the best of our
knowledge both proofs appear to be flawed.

8. Separate and Joint Continuity

If X , Y and Z are topological spaces and f : X×Y → Z is a function then we
say that f is jointly continuous at (x0, y0) ∈ X × Y if for each neighbourhood W
of f(x0, y0) there exists a product of open sets U ×V ⊆ X ×Y containing (x0, y0)
such that f(U × V ) ⊆W and we say that f is separately continuous on X × Y if
for each x0 ∈ X and y0 ∈ Y the functions y 7→ f(x0, y) and x 7→ f(x, y0) are both
continuous on Y and X respectively.

Since the paper [3] of Baire first appeared there has been continued interest
in the question of when a separately continuous function defined on a product of
“nice” spaces admit a point (or many points) of joint continuity and over the years
there have been many contributions to this area (e.g., [15, 20, 21, 26, 25, 49,
63, 56, 68, 72, 77] etc.). Most of these results can be classified into one of two
types. (I) The existence problem, i.e., if f : X × Y → R is separately continuous
find conditions on either X or Y (or both) such that f has at least one point
of joint continuity. (II) The fibre problem, i.e., if f : X × Y → R is separately
continuous find conditions on either X or Y (or both) such that there exists a
nonempty subset R of X such that f is jointly continuous at the points of R× Y .

The main existence problem is, [78]:

Question 8.1. Let X be a Baire space and let Y be a compact Hausdorff space. 1141?

If f : X × Y → R is separately continuous does f have at least one point of joint
continuity?

We will say that a topological space X has the Namioka Property of has prop-
erty N if for every compact Hausdorff space Y and every separately continuous
function f : X × Y → R there exists a dense Gδ-subset G of X such that f is
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jointly continuous at each point of G × Y . Similarly, we will say that a compact
Hausdorff space Y has the co-Namioka Property or has property N ∗ if for every
Baire space X and every separately continuous function f : X × Y → R there
exists a dense Gδ-subset G of X such that f is jointly continuous at each point of
G× Y .

The main fibre problems are:

Question 8.2. Characterise the class of Namioka spaces.1142?

There are many partial results.

(i) Every Namioka space is Baire, [72];
(ii) Every separable Baire space and every Baire p-space is a Namioka space, [72];

(iii) Not every Baire space is a Namioka space, [78];
(iv) Every Lindelöf weakly α-favourable space is a Namioka space, [49]
(v) Every space expressible as a product of hereditarily Baire metric spaces

is a Namioka space, [20].

Question 8.3. Characterise the class of co-Namioka spaces.1143?

There are many partial results.

(i) βN is not a co-Namioka space, [28];
(ii) Every Valdivia compact is a co-Namioka space, [13, 29];

(iii) The co-Namioka spaces are stable under products, [15];
(iv) All scattered compacts K with K(ω1) = ∅ are co-Namioka, where K(α)

denotes the αth derived set of K, [28];
(v) There exists a non co-Namioka compact space K such that K (ω1) is a

singleton, [43].

A partial characterisation, in terms of a topological game on Cp(K), is given
in [47] for the class of compact spaces K such that: for every weakly α-favourable
space X and every separately continuous mapping f : X ×K → R there exists a
dense Gδ subset G of X such that f is jointly continuous at each point of G×K.

For an introduction to this topic, see [56, 68]. Also see the seminal paper [62]
by I. Namioka, as well as, the paper [63].

Acknowledgements

The material on the Boundary problem (§ 7) was provided by B. Cascales.

References
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(1979), no. 1, 239–251.
[78] M. Talagrand, Espaces de Baire et espaces de Namioka, Math. Ann. 270 (1985), no. 2,

159–164.
[79] X. Wang and L. Cheng, A note on weakly compact sets in Banach space, Northeast. Math.

J. 12 (1996), no. 4, 466–468.





Topological structures of ordinary differential
equations

V.V. Filippov

Basic elements of the topological structures in questions look as follows.
Let U be a subset of the product R × Rn. When considering differential

equations y′ = f(t, y) or inclusions y′ ∈ f(t, y) having a right-hand side defined
on the set U , we call a function z a solution to the equation if the graph of the
function z lies in U , and (letting π(z) denote the domain of the function z)

(a) π(z) is a segment, z is generalized absolutely continuous and z ′(t) =
f(t, z(t)) (respectively, z′(t) ∈ f(t, z(t))) for almost all t ∈ π(z), or

(b) π(z) a singleton.

For equations with a continuous right-hand side our definition gives only con-
tinuously derivable solutions. For equations with a right-hand side satisfying the
Caratheodory conditions this definition gives Caratheodory solutions.

In this definition we do not fix domains of functions. We consider functions
with various domains together. We take as a distance between two solutions the
Hausdorff distance between their graphs.

Let us emphasize some basic properties of the set Z of so defined solutions.

(1) If z ∈ Z and a segment I lies in π(z) then z
∣∣
I
∈ Z.

(2) If z1, z2 ∈ Z, I = π(z1) ∩ π(z) 6= ∅ and z1
∣∣
I

= z2
∣∣
I

then the function

z(t) =

{
z1(t) if t ∈ π(z1)

z2(t) if t ∈ π(z2)

(defined on the segment π(z1) ∪ π(z2)) belongs to the set Z.
(c) The set ZK = {z ∈ Z : the graph of z is a subset of K} is compact for

every compact K subset of U .
(e) For each point (t, y) of the set U there exists a function z ∈ Z such that

t is in the interior of π(z) and z(t) = y.
(u) If z1, z2 ∈ Z, π(z1) = π(z2) and z1(t) = z2(t) for some t ∈ π(z1) then

z1 = z2.

It is easy to see that the properties (1) and (2) follow directly from our def-
initions. Conditions (e) and (u) correspond to the existence theorem and the
uniqueness theorem. Condition (c) corresponds to (upper semi-)continuity of the
dependence of solutions to Cauchy problems on initial values.

The property of solution sets which corresponds to the continuity of the de-
pendence of solutions on parameters looks as follows. R(U) denotes the set of all
sets of functions which are defined on segments and singletons and whose graphs
lie in U , satisfying conditions (1) and (2). We say that a sequence {Zi : i =

559
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1, 2, . . . } ⊆ R(U) converges (in U) to a space Z ∈ R(U) if for any compact K sub-
set of U and for any sequence zi ∈ (Zji

)K (j1 < j2 < · · · ) there is a subsequence
{zim

: m = 1, 2, . . . } converging to a function z ∈ Z.
The symbol R∗(U) denotes the set of all elements of R(U) satisfying all con-

ditions from the listed in the subscript (∗ may include c, e or u as above). The
sets R∗(U) are called classes of solution spaces or spaces of solution spaces.

On the class Rc(U) the introduced convergence corresponds to a non-T1 first
countable topology.

It is surprising that these simple conditions suffice to account for a considerable
part of the theory of ordinary differential equations, replacing the usual conditions
of the continuity of the right-hand side. See [2] for details.

The first topological ideas arose in Analysis and Geometry. They passed
to general topological notions and constructions when mathematicians felt that
topological relations appeared more often in Mathematics that was previously
understood. This implied many important consequences. It may be that the
most brilliant consequence between those subjects was the creation of Functional
Analysis.

But when (General) Topology was created it had many internal reasons for
its development. The initial motivation, related to the necessity to serve other
domains of Mathematics, was largely forgotten. The feeling of this omission en-
couraged me to try to compare the contents of General Topology itself and the
contents of other domains of Mathematics.

Perhaps the most interesting observation in this direction was made when I
saw that the analysis of the continuity of the dependence of solutions of ordi-
nary differential equations on initial values and parameters leads to a topological
structure of S. Nedev’s type[4]. It was the space of solution spaces Rce(U). This
first interest was related to the observation that Nedev’s results give real informa-
tion about the structure of this space. In particular, Nedev’s theorems imply the
metrizability of some subspaces of Rce(U). Later I understood that this topologi-
cal structure gives a powerful tool for the theory of ordinary differential equations
itself. Notions such as first approximation, asymptotically autonomous spaces re-
ceive here their natural importance without loss of possibility of their application.
See below.

The new topological structure allows us to develop efficiently a theory which
deals easily with equations having singularities and with equations with multival-
ued right-hand sides (differential inclusions). It extends the majority of assertions
of the central part of the theory of ordinary differential equations in the existing
framework to equations with complicated discontinuities of right-hand sides. The
simplest example on this direction looks as follows.

Example. Let the functions f, g : R→ [1, 2] be measurable. The equation

y′ = f(t) + g(y)

is far from the classical theory because it may have discontinuities both in time
and in space variable but it is covered well by our approach.
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Our approach reinforces the theory in the case of equations with continuous
right-hand sides too.

Here are some other consequences. The notion of a dynamical system and that
of an autonomous solution space, in which a solution for every Cauchy problem
exists, is unique and is defined on the whole real line, give a different axiomatic de-
scription of the same object. So our results may be applied to studies of dynamical
systems too.

So this research of a non-traditional topological description of relations in a
domain of Mathematics was successful. A general problem arises.

Problem 1. Find other as yet undiscovered topological relations in Mathematics
and to try to use them to reinforce existing mathematical theories.

This invitation contains nothing new. Such a rôle of topological structures (so,
of General Topology) in Mathematics was highly praised in the famous N. Bour-
baki’s article “The Architecture of Mathematics” [1]. So the problem is to show
that Bourbaki’s appreciation is not exhausted by known cases of applications of
topological structures.

In particular, some parts of the theory of partial differential equations and of
equations in Banach spaces are close to the theory of ordinary differential equa-
tions. So, I ask:

Problem 2. For which problems of the theory of partial differential equations and
of equations in Banach spaces can this method be applied?

One of first consequences of the usage of new structures for ordinary differ-
ential equations was a method of investigation of singularities. In the domain U
under consideration we find open subsets V , V ∈ γ, which do not contains singu-
larities. Then we try to find estimates of the remainder R = U \ ⋃ γ which show
that singularities lying in R do not influence the properties of solutions. The level
of new topological structures is very suitable for this consideration. The simplest
example on this direction looks as follows.

Example. Let f(t, y) be a polynomial. Then solutions to the equation

y′ = f(t, y) +
α

t2 + y2 + α2

depend continuously on the parameter α, although for t = y = 0 the second term
tends to infinity when α→ 0.

Problem 3. For which other problems of the theory of ordinary differential equa-
tions (and outside it) can this method of study of singularities (using partial map-
pings) be applied?

When we investigate a particular equation with singularities we need to prove
the fulfillment of listed above basic conditions. We get this purpose in whole
measure if we prove that the solution space Z in question belongs to the closure of
the class Rceu(U): Z ∈ [Rceu(U)]Rc(U). ([M ]X denotes the closure of the set M in
the space X). Really, the condition Z ∈ [Rceu(U)]Rc(U) assures that the equation
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under consideration is covered by the theory completely. The following question
remains unanswered:

Problem 4. Suppose that the domain U is covered by a family γ of open subsets1144?

and ZV ∈ [Rceu(V )]Rc(V ) for every V ∈ γ. Is necessarily Z ∈ [Rceu(U)]Rc(U)?

Now many chapters of the theory of ordinary differential equations are covered
by the axiomatic approach. But the theory is very large and the problem to cover
the entire theory will remain current for a long time. I do not think that all
the topological effects of the theory of ordinary differential equations have been
discovered yet.

In this investigation the main problems are not technical. The main problems
are to understand topological contents of corresponding notions, constructions,
and theorems.

Example (First approximation). Usually they consider a vector equation

y′ = Ay + g(y),

where A is a matrix and g(y) is small with respect to ‖y‖: ‖g(y)‖ = o(‖y‖). In-
stead, we consider the family of changes of variables, corresponding to homotheties
y → λy, where λ > 0. This change of variables transforms our equation to the
equation

y′ = f(y) + λg
(

1
λy
)
,

Denote its solution space by Zλ. In our approach we replace the usual condition of
first approximation by the convergence of Zλ to the solution space of the equation

y′ = Ay

as λ→∞ in the topological space Rce(U). We return to the classical version of this
notion when we prove this convergence using the classical theorem on continuous
dependence of solution on parameter λ.

Example (Asymptotically autonomous space). Usually they consider a vector
equation

y′ = f(y) + g(t, y),

where the term g(t, y) has an estimate ‖g(t, y)‖ ≤ φ(t) where the function ϕ is
small at infinity. This means that ϕ(t)→ 0 when t→∞ or that the function ϕ is
integrable on (a,∞). Instead, we consider the family of changes of variables, cor-
responding to translation along time axis. Such translation transform our equation
to equation

y′ = f(y) + g(t+ τ, y),

Denote its solution space by Zτ . In our approach we require the convergence of Zτ

to the solution space of the equation

y′ = f(y),

as τ →∞ in the topological space Rce(U).
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Because methods of proof of convergence in the space Rc(U) are largely devel-
oped, there is a larger volume of new versions of notions of first approximation and
of asymptotically autonomous spaces. Each theorem of the classical theory where
those notions are used obtains a broader scope (and a possibility of application to
equations and inclusions with discontinuous right-hand sides).

One of the consequences of this study was the creation of a new version of
the translation method in the theory of boundary value problems in which the
continuation principle works. Before, in the corresponding situation they used the
Leray–Schauder theory. But the Leray–Schauder theory in general does not work
with equations with a discontinuous right-hand side. Our new approach works;
see [3] and my other articles. The new version of the translation method is based
on studies of Čech homology of solution spaces. Perhaps something similar may
be made by investigating shape properties of solution spaces. So, I ask:

Problem 5. Is it possible to create an approach to the theory of boundary value 1145?

problems based on shape properties of solution spaces and on essential mappings?
(Of course, without assuming the uniqueness of solutions of the Cauchy problem.)

It may be simpler than the application of Čech homology.
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The interplay between compact spaces and the
Banach spaces of their continuous functions

Piotr Koszmider

Introduction

We will consider compact (always Hausdorff and infinite) spaces K and the
set C(K) of all continuous functions from K into the reals. If C(K) is equipped
with the supremum norm, it is a Banach space1. An isomorphism between Banach
spaces is a linear isomorphism which is continuous (necessarily both ways, by the
open mapping theorem). A C(K) will mean a Banach space of the form C(K)
for some compact K. As general references that might be useful while reading
this article we suggest [49], [16], [9] on functional analysis [33], [22] on set-theory
and [15] on topology.

If T : C(K)→ C(L) is an isometry (i.e., a linear isomorphism which preserves
the norm), T induces a homeomorphism between K and L (Banach–Stone, see
[49, 7.8.4]), but many non-homeomorphic Ks have isomorphic C(K)s. The sim-
pliest examples are of two disjoint convergent sequences K, i.e., (y2m)→∞1 and
(y2m−1) → ∞2 for m > 0 with their respective distinct limit points ∞1 and ∞2

and one convergent sequence L, i.e., (xn)→∞ with its limit point ∞ (see e.g. [2]
for more). One can explicitly define an isomorphism T :

T (f)(x0) = f(∞1)− f(∞2),

T (f)(x2m) = f(y2m)− 1
2 (f(∞1)− f(∞2)),

T (f)(x2m−1) = f(y2m−1) + 1
2 (f(∞1)− f(∞2)),

T (f)(∞) = 1
2 (f(∞1) + f(∞2)).

for m > 0. This is clearly also an example of a C(K) which is both a quotient
(image under an onto linear and continuous mapping between Banach spaces) and
a subspace (for us always meaning a closed linear subspace) of a C(L) such that
K is neither a subspace nor a continuous image of L.

Working with C(K)s seems then, is working in poorer environment than with
compact spaces, after all, we identify compact spaces with the same C(K) (in the
isomorphic sense). It is just one side of the coin, on the other hand we get more

1Other structures include: Banach algebra, C∗-algebra, lattice, ring, topological vector
space with various topologies.

The author was partially supported by a research fellowship Produtividade em Pesquisa

from National Research Council of Brazil (Conselho Nacional de Pesquisa, Processo
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article.
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“continuous” mappings from K to K, i.e., not all operators on C(K) come from a
“usual” continuous mapping on K. The problems of this article could be summed
up as: What can we say about C(K) if we know some topological properties of K?
(to impose properties of C(K) by manipulating Ks); or: If C(K) and C(L) are
related in the isomorphic sense, how K and L are related in the topological sense?
(to get different C(K)s knowing that Ks are very different). This is certainly a
very special and topological point of view since most of the theory of C(K) spaces
is developed having in mind only Banach space theory (for example, asking similar
questions about the dual ball with the weak∗-topology instead of K). However as
history shows, a K with sufficiently strong topological properties can produce a
striking example of a Banach space. Another bias of the article is focusing on the
isomorphic structure of subspaces, quotients and complemented subspaces on the
C(K)s.

The ideal results here would be describing which Ks have isomorphic C(K)s.
There are only few such results. For example, C(K) is isomorphic to C([0, 1]) if
and only if K is an uncountable metrizable compact space ([38]). Similarly one
could characterize C(K)s for countable Ks ([6]) or C(K)s isomorphic to C(L)
where L is the one point compactification of a discrete space, i.e., is isomorphic
to a c0(κ) for some cardinal κ ([36]).

Another natural type of an interesting result is to prove that if C(K) and C(L)
are isomorphic and K has some topological property, then L has it as well. This
holds for properties such as being dispersed, being Eberlein, being c.c.c., being
metrizable and many others. Probably most well-known (see [23] for definitions
and related theory) open problem here is the following:

Question 1. If K is a Corson compact and C(L) is isomorphic to C(K), must1146?

L be a Corson compact?

This is true if we assume MA + ¬CH, (see [4]).
As noted above, the Banach–Stone theorem gives a special place to isometries

between C(K)s, hence even though we are interested in the isomorphic theory,
the isometries will be mentioned. We have isometries between `∞ and C(βN), c
and C([0, ω]), C(ω∗) and `∞/c0 (see [35]). Also c0 and c are isomorphic (but not
isometric).

The main tools of functional analysis include the use of the dual and the bidual
of the Banach space. In the case of C(K)s we are in a very privileged situation,
(like in the case of `p or Lp(µ) spaces), i.e., we can see the functionals and even the
elements of the bidual with an unarmed eye. The Riesz representation theorem
(see [49, 18]) says that any continuous functional φ on a C(K) can be isometrically
associated with a unique Radon2 measure µ on K by the formula φ(f) =

∫
fdµ

for all f ∈ C(K) where the integration is like in the Lebesgue theory. Even the
norm of φ is nicely describable by µ; it is the variation of µ, i.e., the supremum

2A Radon measure here is a Borel, countably additive, signed, regular measure. The regu-
larity for a signed measure means that for any Borel A ⊆ K the value of |µ|(U −F ) is arbitrarily
small for some open U and compact F such that F ⊆ A ⊆ U .
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of the expressions of the form |µ(A1)|+ · · ·+ |µ(An)| for Ais pairwise disjoint and
Borel. The addition of measures and multiplication by a scalar is setwise. Thus,
we will use letters µ, ν, λ for elements of the dual of K (as a Banach space) which
will be identified with the Banach space M(K) of the Radon measures on K with
the variation norm. As usual, one can decompose the Radon measure µ into its
positive and negative parts µ+, µ− and define µ+ − µ− = |µ| which is a positive
Radon measure (see [49, 17.2.5, 18.2.5]). M(K) has a natural topology where K
with its original topology is a subspace, i.e., the weak∗ topology defined by the
subbasis of the sets of the form {µ ∈M(K) : µ(f) ∈ I} where f ∈ C(K) and I is
an open interval of the reals. Here {δx : x ∈ K} is a copy of K where δx(A) = 1
if x ∈ A and is 0 otherwise. This copy of K is quite big; its span is weak∗ dense
in M(K).

With the help of the dual one can see how the C(K) partially loses the in-
formation about K. If T : C(K) → C(L) is an operator (i.e., a linear continous
function), define T ∗ : M(L) → M(K) by T ∗(ν) = ν ◦ T . Deciphering it in terms
of the integration we get

∫
fd(T ∗(ν)) =

∫
T (f)dν. For example, if ν is the sim-

plest Radon measure, i.e., the Dirac measure δx concentrated on a point x ∈ K
we have

∫
T (f)dδx = T (f)(x). That is, T (f)(x) is the value of the functional

T ∗(δx) on f . If T is given by T (f) = f ◦ F where F : K → K is continuous,
then T (f)(x) = f(F (x)), i.e., T ∗(δx) = δF (x) In other words T ∗ essentially is F .
However, in general T ∗(δx) may be some more complicated measure, and this way
it loses the information about K. E.g. in the example from the begining of this
section we have T ∗(δx0

) = δ∞1
− δ∞2

. No continuous function from L into K
sends a point onto a linear combination of two points. Thus, one way of prov-
ing negative properties of C(K)s is to strengthen the topological properties of K,
taking care not only of point-to-point continuous functions but also taking care of
point-to-measure weak∗ continuous functions. Note that knowing that the span
of the pointwise measures δx for x ∈ K is dense in the weak∗ topology in M(K)
and that T ∗ is always continuous in the weak∗-topologies, we may really restrict
our attention to T ∗(δx)s, to obtain complete information about T ∗.

If points of K can be considered as functionals on C(K), then functions of
K should be functionals on functionals, i.e., elements of the bidual. Indeed, the
C(K) as any Banach space canonically emdeds in its bidual, but also any bounded
Borel function g : K → R defines a functional Ψg on M(K) by3 Ψg(µ) =

∫
gdµ. As

points “span” a weak∗ dense set in M(K), the Borel sets (i.e., their characteristic
functions) span a weak∗ dense set in the bidual of C(K). If X ⊆ M(K) is a
separable subspace, then by the Radon–Nikodym theorem there is an isometry of
X and a subspace of L1(µ) for some µ ∈ M(K) (just take µ =

∑ |µn|/2n||µn||
where {µn : n ∈ N} is dense in X) and so L∞(µ) is the bidual of a superspace of
this separable piece of M(K) ([49, 27.1.3]). More on the entire biduals of C(K)s
can be found in [25, 26] and [49, 27.2].

3This observation may serve to note that a C(K) is reflexive as a Banach space iff the
characteristic function of any Borel set is continuous, i.e., if and only if K is finite if and only if
C(K) is finite-dimensional. So, for example, `2 is not isomorphic to any C(K).
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This world of dualities can be even more tangible and combinatorial if we
are allowed to think about K as a dual of something more primitive, namely
the Boolean algebra of clopen sets, such as when K is totally disconnected and
Stone duality (see [28]) may enter the game. Then, by the Weierstrass–Stone
theorem (see [49, 7.3]) the finite linear combinations of characteristic functions
of clopen sets form a norm-dense subset of the C(K), i.e., the “span” of the
Boolean algebra is dense in C(K). (Then the Hanh–Banach theorem and the
Tarski ultrafilter theorem become one). Radon measures on totally disconnected
K are completely determined by their restrictions to clopen sets and the dual space
may be interpreted as the space of finitely additive bounded signed measures of
the Boolean algebra ([49, 18.7]).

If K is metrizable, then C(K) is isomorphic to a C(L) for L totally discon-
nected. Indeed, we have a classification of separable C(K)s, i.e., those whose Ks
are metrizable (see [49, 7.6.5]): such C(K)s are isomorphic to C(2ω), C([0, ω]) or
C([0, α] for α < ω1 such that βn < α for all β < α and n ∈ ω (due to Milutin [38],
Bessaga, Pe lczyński [6]). Here we need to admit another bias of this article: we
are mainly interested in nonseparable C(K)s. The issues related to separable
C(K)s are more analytic and are presented in details in [47]. One wonders if any
C(K) is isomorphic to a C(L) for L totally disconnected; the later type of a C(K)
will be called Boolean in the sequel. Only recently it turned out that it is not
the case ([30, 43]), and the reason is quite ad hoc, i.e., that the C(K) of [30] is
indecomposable. So the question remains when and why a C(K) is Boolean, e.g.,

Question 2. If K is small compact space, that is, (a) first countable, (b) of1147–1149?

weight smaller than 2ω under MA +¬CH, or (c) Eberlein, is C(K) isomorphic to
a Boolean C(L)?

For more on these kind of questions and the methods that are being used
to answer them, see the section on complemented subspaces. Regardless of the
results of [30] one may still hope for some theorem which would explain the special
role of Boolean C(K)s not just in heuristic terms. For example, one could hope
for some transfer principle which would imply general statements about C(K)s
from those proved about Boolean C(K)s. Consider the following:

Question 3. Does every nonseparable C(K) have a subspace which has a quotient1150?

isomorphic to a nonseparable Boolean C(L)?

If the answer were positive, one could obtain some uncountable objects (those
which are preserved when going to superspaces and preimages of operators) in any
nonseparable C(K) just by knowing that they exist in those with K nonmetrizable
and totally disconnected4. Note that there is a dual result ([11]): every C(K) is
complemented (and hence both a quotient and a subspace, see the section on
complemented subspaces for definitions) in a Boolean C(K) of the same density.
See [5] for more research on these issues.

4For example, we knew since [52] that it is consistent that every nonseparable Boolean C(K)
has an uncountable biorthogonal system. However, only recently ([53]) we have a separate proof
that it is consistent for any C(K).
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The above question however shouldn’t be about complemented subspaces of
C(K)s since the indecomposable C(K) of [30] would be a counterexample. There
is a topological version of the previous question:

Question 4. Is it consistent that every nonmetrizable compact K has a continuous 1151?

image with a nonmetrizable compact subspace which is totally disconnected?

We mention here only the consistency since we have a counterexample un-
der CH.

Subspaces

If F : K → L is a continuous onto mapping, then TF (f) = f ◦F is an isometry
of C(L) and a subspace of C(K). I.e., continuous images of topological spaces
produce isometric subspaces of C(K)s.

The Banach–Mazur theorem ([49, 8.7]) says that any separable Banach space
is isometric to a subspace of a C([0, 1]). In particular, it is easy for a subspace
of a C(K) not to be isomorphic to any space of the form C(L). In general, by
simple duality any Banach space is a subspace of a C(K) where K is its dual ball
with the weak∗-topology. Just send x to x∗∗ in the bidual and restrict it to the
dual ball. The weight of this K in the weak∗-topology is the density of X . Thus
every Banach space embeds isometrically in a C(K) of the same density. Under
CH, every compact K of weight ≤ 2ω is a continuous image of ω∗. Thus, we
have that under CH any Banach space of density not bigger than 2ω is a subspace
of C(ω∗) ≡ `∞/c0. It is well known that without CHspaces like [0, ω2] are not
continuous images of ω∗. What about the C(K) analog?

Question 5. (a) Is it consistent that C(ω∗) ≡ `∞/c0 does not contain an 1152–1153?

isomorphic copy of some Banach space of density not bigger than 2ω? (b) Can
this space be C([0, ω2])?

Of course one may state the above question for other spaces instead of ω∗, for
example, spaces which consistently are 2ω-Parovichenko (see [12]), or in general:

Question 6. Is it provable in ZFC that there is a compact K of weight ≤ 2ω such 1154?

that every Banach space of density ≤ 2ω is isomorphic to a subspace of C(K)?

This is related to many very deep and influential on Banach space theory
successful attempts of characterizing the existence of copies of some Banach space
inside a C(K) space in terms of topological properties of K. For example, for
many infinite cardinals κ it is consistent that C(K) has a subspace isomorphic to
`1(κ) if and only if K maps onto [0, 1]κ. An excellent survey of this gigantic project
developed over a few decades by Argyros, Fremlin, Haydon, Pe lczyński, Plebanek
and others is [42]. There one can find many related references and open questions.
Another simple example of this kind of inquiry could be that an isomorphic copy
of c0(ω1) is a subspace of C(K) if and only if K is not c.c.c.: c0(ω1) has a weakly
compact subset which is not separable, thus by a result of [46], which says that
K is c.c.c. if and only if weakly compact subsets of C(K) are separable, K is not
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c.c.c. However one can easily check that there is no compact L for which it is true
that for every compact K the space L is a continuous image of K if and only if K
is not c.c.c.

Quotients

If K is a subspace of L then TK : C(L) → C(K) given by T (f) = f � K is
an onto operator, i.e., topological subspaces produce quotients in function spaces,
C(L)/Ker(T ) is isometric to C(K). Our example of one and two convergent
sequences shows that there may be more quotients of a C(K) than subspaces of
K. Also spaces like `2, i.e., not isomorphic to C(K)s may be quotients of C(K)s
(see [34]). One should remember that the image of a linear operator defined on a
Banach space does not have to be a quotient, as the image of a linear continuous
bijection does not have to be an isomorphism. Simply, the images may not be
Banach spaces, they may not be complete.

Two basic examples of compact spaces are a convergent sequence [0, ω] and
βN, the Čech–Stone compactification of the integers. Since for a compact space
having a copy of βN as a subspace is equivalent to having [0, 1]2

ω

as a continuous
image, and for a Banach space having `∞ as a quotient is equivalent to having
`1(2ω) as a subspace, the question of `∞ as a quotient is more related to the
fragment of the previous section where we refered the reader to [42]. Thus we will
concentrate on c0 as a quotient.

For a C(K) not having c0 as a quotient is equivalent to a well-known Banach
space theoretic property of Grothendieck (see [48, 5.1. ii) and 5.3]). A Banach
space X is said to have the Grothendieck property if weak∗ convergent sequences
in the dual X∗ are weakly convergent. This is what we get in the Banach space
language about X = C(K) if we want to guarantee that K has no convergent
sequences. Indeed, this roughly says that if a bounded sequence of measures,
like for example (δxn

)n∈N, is separated into two parts in the weak topology on
M(K), e.g., by a Borel subset, then it is separated by a continuous function
on K. In particular if a C(K) has the Grothendieck property then K has no
nontrivial convergent sequences. The Grothendieck property is stronger. However
no perfect solution exists, i.e., having a convergent sequence is not a Banach space
theory property. Consider K, the Stone space of the subalgebra of P(N) of all
subsets a of N such that 2n ∈ a if and only if 2n + 1 ∈ a for all but finitely
many n ∈ N. It is easy to see that it has no convergent sequences like βN, but
P (f) = (f(2n)−f(2n−1))n∈N defines an operator from C(K) onto c0 ([48, 4.10]).
Also C(K) ∼ `∞ ⊕ c0 ∼ C(L) where L is a disjoint union of βN and [0, ω], i.e.,
C(K)s can be isomorphic even though one K has convergent sequences and the
other does not. One should also realize that a C(K) without the Grothendieck
property may verify it for all atomic measures; there are even C(K)s without the
Grothendieck property such that for every separable L ⊆ K, the space C(L) has
the Grothendieck property ([44]). Since [48] the following question attributed to
Lindenstrauss is left open:
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Question 7. Can we characterize topologically compact Ks such that C(K) has 1155?

the Grothendieck property?

There is another Banach space theoretic non-equivalent way of guaranteeing
that a totally disconnected K has no convergent sequences: require that C(K) has
the Nikodym property, i.e., whenever elements µn of M(K) have their values µn(a)
bounded for each clopen a ⊆ K, then µn are all norm-bounded ([48, 4.6]). If K is
the Stone space of the Boolean algebra of Jordan measurable subsets of [0, 1], then
K has the Nikodym property but does not have the Grothendieck property ([48,
3.2., 3.3]). Assuming CH Talagrand constructed a Boolean algebra whose Stone
space has the Grothendieck property but lacks the Nikodym property ([51]). Here
the main remaining question is the following:

Question 8. Is it consistent that every Boolean C(K) which has the Grothendieck 1156?

property has the Nikodym property?

In Talagrand’s construction the algebra A of clopen subsets of K has the
following property (∗): there is a countable subalgebra A0 ⊆ A such that for
any a ∈ A there are an ∈ A0 such that λ(an M a) → 0 (i.e., λ has countable
Maharam type) and the measures witnessing the failure of the Nikodym property
are absolutely continuous with respect to λ. We do not know if this must be true
for all algebras like in [51]. Thus an easier version of Question 7 would be:

Question 9. Is it consistent that every C(K) for K totally disconnected with 1157?

property (∗) does not have the Grothendieck property?

Requiring that a totally disconnected K has both Nikodym and Grothendieck
properties is thus even a stronger way of imposing that K has no convergent
sequences. It turns out that it is equivalent to the known Vitali–Hahn–Saks prop-
erty. For a Boolean algebraic and measure-theoretic treatment of these properties
see [48].

One can multiply questions about C(K)s with the Grothendieck, Nikodym,
or Vitali–Hahn–Saks property like questions on convergent sequences of compact
spaces. For example, what about the weights of compact spaces without conver-
gent sequences? We have many interesting topological results on it (see [13]) and
just one C(K) result of Brech ([7]) showing that it is consistent that there are
C(K)s with the Grothendieck property of density less than the continuum. One
could define cardinal invariants gr, ni, vhs as minimal infinite densities of C(K)s
(K totally disconnected in the second and third case) which have Grothendieck,
Nikodym, Vitali–Hahn–Saks properties respectively and ncs could stand for the
minimal infinite weight of a compact space without a converging sequence. We
have p ≤ ncs ≤ gr, ni ≤ vhs ≤ 2ω in ZFC and the result of Brech shows that
gr < 2ω is consistent.

Question 10. (a) What is the value of gr, ni, vhs among known cardinal invari- 1158–1160?

ants of the continuum. In particular do we have in ZFC (b) ncs = gr?, (c) gr = p?

Another cardinal invariant of Boolean algebras which enters the game is the
cofinality of a Boolean algebra. In [48, 4.6] it is shown that cf(A) = ω implies



57252. COMPACT SPACES AND THEIR BANACH SPACES OF CONTINUOUS FUNCTIONS

that C(K) does not have the Nikodym nor the Grothendieck property where K
is the Stone space of A.

Not all quotients of C(K) spaces are C(L) for some L. For example, a nondis-
persed K always has `2 as a quotient ([34]). In some cases, like for Grothendieck
C(K)s, the only separable quotients are reflexive, thus the result saying that if
K has no convergent sequences then it has no infinite metric subspaces has its
corresponding version that Grothendieck C(K)s do not have infinite-dimensional
separable quotients of the form C(K).

The still open Efimov problem for compact spaces is whether any infinite
compact space contains a copy of a convergent sequence or a copy of βN. It
has negative answer (first obtained by Fedorchuk [17]) only under a special set-
theoretic assumptions, but we do not know if a counterexample can be obtained
in ZFC. However a C(K) version of the problem is independent and actually may
be suggesting the way of solving the topological version: Talagrand shows in [50]
that under CH there is a Grothendieck C(K) which doesn’t have `∞ as a quotient.
On the other hand Haydon, Levy and Odell show in [21] that under p = 2ω > ω1

every C(K) which is Grothendieck (i.e., doesn’t have c0 as a quotient) has `∞ as
a quotient.

One can even get in ZFC a Grothendieck C(K) which has no subspace iso-
morphic to `∞ (see [20]). In this paper a lemma due to Argyros is proved which
says that if a Boolean algebra has the subsequential completeness property (this
implies the Grothendieck property and means that for any antichain (an) in the
algebra there is an infinite M such that

∨
n∈M an exists in the algebra), then it

has an uncountable independent family.

Question 11. Is it consistent that there is a Boolean algebra with the subsequential1161?

completeness property without an independent family of cardinality 2ω?

Complemented subspaces

“Combining” quotients and subspaces we obtain complemented subspaces. A
subspace Y of a Banach space X is said to be complemented in X if and only
if there is a bounded operator P : X → Y , called a projection, onto Y such that
P � Y = IdY . It is equivalent to the fact that P 2 = P and to the existence of
a decomposition of X as Y ⊕ Z. If P is a projection, Z = Ker(P ) ([49, 12]). A
topological operation corresponding to a complemented subspace is a retraction. If
F : K → L is a retraction onto L ⊆ K (i.e., F � L = IdL), then P : C(K)→ C(K)
is a norm-one projection where P (f) = f ◦ F . The image of this projection is
isometric to the C(L), namely the restriction to L is the isometry from P [C(K)]
onto C(L). Projections play a more important role in Banach space theory than
retractions in topology because they define decompositions of Banach spaces.

There are other canonical topological ways of defining complemented sub-
spaces of C(K)s through the theory of averaging and extension operators whose
classical period is depicted in Pe lczyński’s monograph [41]. The work of Ditor,
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Haydon, Koppelberg, Sčepin and others contributed to resolving the main ques-
tions left after [41]. See the introductions of [19], [29] or [5] for references and
glimpses of this story.

We saw in the previous sections that trivially not all quotients nor subspaces
of C(K) spaces are again of this form. The analogous fact about complemented
subspaces of the C(K)s is unknown (cf. [47]).

Question 12. Is every complemented subspace of any C(K) of the form C(L)? 1162?

It is even not known in the case of C(2ω) or C([0, α]) for α ≥ ωωω

. For
partial results in this metric case of K see [47]. The deepest result describing the
complemented subspaces of the C(K)s in general remains Pe lczynski’s theorem
saying that such subspaces have isomorphic copies of c0 ([39, Cor. 2]).

Now let us talk about the structure of complemented subspaces of a C(K).
A suprising result of [30] is that there are C(K)s which are indecomposable, i.e.,
whose only complemented subspaces are finite-dimensional or co-finite-dimensional
(such subspaces are always complemented in any Banach space). This result is
obtained by constructing K which admits few functions like T ∗, i.e., we are able
to control all operators on the C(K). Such T ∗ are of the form gI + S where gI
is a multiplication of measures by a Borel function g and S is a weakly compact
operator. Assuming CH we can get K such that every operator T on C(K) is
of the form gI + S where g ∈ C(K) (i.e., gI is the multiplication of functions
by a continuous function g) and S is a weakly compact operator. In [43], Ple-
banek removed the need of CH from the last statement at the price of losing the
separability of K and his C(K) is not a subspace of `∞.

Question 13. Is it true in ZFC that there is a C(K) which is a subspace of 1163?

`∞ where every operator is of the form gI + S where S is weakly compact and
g ∈ C(K)?

The results of [30] show that Banach spaces of the type obtained by Gowers
and Maurey may be of the form C(K). One construction however, the Schröder–
Bernstein problem, is left:

Question 14. Are there compact K and L such that C(K) and C(L) are noniso- 1164?

morphic but each is isomorphic to a complemented subspace of the other?

As the reader must have noted, in this section we entered the realm of oper-
ators on Banach spaces since being complemented is equivalent to the existence
of some operator. Weakly compact operators which are not of finite-dimensional
range are Banach spaces theory strangers in the land of Ks. However in any
C(K) there is room for perturbating operators by a weakly compact operator,
i.e., an operator which sends bounded sets to relatively weakly compact sets. As
by Gantmacher’s theorem T is weakly compact if an only if T ∗ is, so the mea-
sures µn = T ∗(δxn

) for such T must form a weakly compact set in M(K) for any
sequence of points xn ∈ K. By the Dieudonne–Grothendieck characterization of
such sets in M(K) the supn∈N µn(Uk) always goes to 0 when k →∞ for a pairwise
disjoint sequence (Un) of open subsets of K. So, indeed if T is weakly compact,
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then one cannot recover even from T ∗ any part reasonable in terms of mappings
of K. A researcher of topological origin should feel more secure facing the weakly
compact perturbations in C(K)s after seeing the list in [10] of properties of oper-
ators in C(K) equivalent to weak compactness from which we mention just one: T
on C(K) is weakly compact if and only if it is not an isomorphism while restricted
to any infinite-dimensional subspace, i.e., T is strictly singular ([40]).

In [32] we pushed the construction of a Boolean C(K) with few operators to
densities above 2ω. This strongly answered in the negative the question whether
any Banach space can have complemented subspaces of density ≤ 2ω above any
separable subspace. The issues of the densities of complemented subspaces are
excellently surveyed in [45] where several open problems are stated. However our
K of [32] exists only consistently. Immediate questions which appear are:

Question 15. Is it consistent that any Banach space has a complemented subspace1165?

of density ≤ 2ω?

S. Argyros suggested the following:

Question 16. Does there exist any bound for the density of indecomposable Ba-1166?

nach spaces?

This is quite natural if one remembers that hereditarily indecomposable Ba-
nach spaces may have density at most 2ω ([45]). Related topological questions
also seem unanswered:

Question 17. Is there in ZFC a compact space without infinite retracts of weights1167?

≤ 2ω?

The methods of [32] suggest that if its results are not true in ZFC, then large
cardinals (cf. [24]) may provide tools necessary for obtaining the other consistency.
As far as now we only know how to get decomposable subspaces of large Banach
spaces ([27]), but no methods on decomposing entire large spaces seem available.

In [31] assuming CH, we proved that there is a scattered space K with a
minimal space of operators, i.e., where every operator is of the form cI +S where
c is a real and S has its range included in a copy of c0. This has deep implications
with respect to the complemented subspaces.

Question 18. Is there in ZFC a compact nonmetrizable scattered K such that all1168?

operators on C(K) are of the form cI + S where c is a real and S has its range
included in a copy of c0?

Argyros ([3]) constructed a separable nonisomorphic to c0 (thus not a C(K))
Banach space X whose only decompositions are c0 ⊕X .

Besides asking about complemented subspaces we may inquire about being
complemented in superspaces. A Banach space is said to be injective if it is
complemented in any superspace. All finite-dimensional spaces are injective by
the Hahn–Banach theorem. Similarly `∞ ≡ C(βN) is injective; just extend the
coordinate functionals by the Hahn-Banach theorem. For equivalent definitions,
see [37]. One of them is that X is injective if and only if whenever Z ⊇ Y are
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Banach spaces, T : Y → X is a bounded operator, then there is an extension
T ′ : Z → X of T .

Another way to prove (see [37]) that a C(K) is injective is to construct a
projection from `∞(K) (the space of all bounded not necessarily continuous func-
tions on K) onto C(K). If K is extremally disconnected (i.e., the Stone space
of a complete Boolean algebra), one constructs such a projection by the Boolean
algebraic Sikorski extension criterion ([28]). The stakes are high in the following
question, namely knowing the injective objects in the category of Banach spaces
with their isomorphisms:

Question 19. If a Banach space C(K) is injective is it isomorphic to a C(L) 1169?

where L is extremally disconnected?

Much effort was done to settle this question in the seventies but the results are
very partial. Grothendieck ([18]) proved that injective C(K)s are Grothendieck;
in particular, Ks have no convergent sequences, Amir ([1]) proved that such K
contains a dense open extremally disconnected subset. Rosenthal’s results together
with Pe lczyński decomposition method imply that a c.c.c. K such that C(K) is
injective and not isomorphic to `∞ cannot be separable and Wolfe ([54, 55])
proved that such Ks must be totally disconnected and a union of finitely many
extremally disconnected (not necessarily compact) spaces.

One of the problems is how to prove that a C(K) is not isomorphic to any
C(L) for L extremally disconnected. We do not have strong isomorphic properties
of such C(L)s other than the Grothendieck property which can be shared by
very different spaces ([20, 50, 7]). One shouldn’t be also discouraged to try a
positive result. If a Banach space is 1-complemented in any Banach space (i.e.,
the projection is of norm one), then Goodner, Kelley and Nachbin managed to
prove that it is isomorphic to a C(K) for K extremally disconnected (see [37]).

We have to mention at the end the following:

Question 20. Is it consistent that `∞/c0 ≡ C(ω∗) is isomorphic to A ⊕ B and 1170?

none of the spaces A nor B is isomorphic to `∞/c0?

This is related to a result of Drewnowski and Rogers [14] which says that it is
impossible under CH. Again, an information on complemented subspaces of C(ω∗)
is obtained by conquering some partial knowledge about all operators on C(ω∗).
S. Todorcevic suggested that one could develop a theory of operators on C(ω∗)
corresponding to the theory of autohomeomorphisms of ω∗.

If the answer to the above question were positive, it would mean that `∞/c0
may fail to have the Schroder–Bernstein property as suggested in [8], as `∞/c0
must be complemented in one of the spaces A or B by the results of [14].

For p ∈ K define C0(K, p) to be the set of all functions in C(K) which are
zero in p. A natural decomposition for answering Question 20 would be of the
form (R ⊕ C0(X, p)) ⊕ C0(Y , p) where p ∈ ω∗ and X,Y are open subsets of ω∗

that would satisfy the conditions of the following:

Question 21. Is it consistent that there are p ∈ ω∗ and open X,Y ⊆ ω∗ such 1171?

that X ∩ Y = ∅, {p} = X ∩ Y and none of the X nor Y is homeomorphic to ω∗?
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To answer question 20 it would be sufficient to prove that C(X) and C(Y )
are not isomorphic to l∞/c0 insetad of X and Y not being homeomorphic to ω∗.
This follows from the fact that

C(Z) ∼ R⊕ C0(Z, p) ∼ C0(Z, p)

for any open Z ⊆ ω∗, since Z must contain a copy of βN, C(βN) ∼ `∞ ∼ `∞ ⊕R
and `∞ is complemented in any superspace as an injective Banach space.

Most of the issues, even these set-theoretic topological, in the isomorphic
theory of the C(K) were not mentioned in this article. For example the ques-
tions of unconditional, transfinite and Markushevich’s bases, biorthogonal and
semibiorthogonal sequences, irredundant sets in Boolean algebras, or the topol-
ogy of the dual ball involving such questions as countable tightness or hereditary
separability or hereditary Lindelöf degree. Analogously the weak topology of the
C(K), its relation to the pointwise convergence topology with its vast literature
and open problems has been untouched.

References

[1] D. Amir, Projections onto continuous function spaces, Proc. Amer. Math. Soc. 15 (1964),
396–402.

[2] D. Amir, On isomorphisms of continuous function spaces, Israel J. Math. 3 (1965), 205–210.
[3] S. Argyros, On a Koszmider’s problem, 2005, Note.
[4] S. Argyros, S. Mercourakis, and S. Negrepontis, Functional-analytic properties of Corson-

compact spaces, Studia Math. 89 (1988), no. 3, 197–229.
[5] S. A. Argyros and A. D. Arvanitakis, A characterization of regular averaging operators and

its consequences, Studia Math. 151 (2002), no. 3, 207–226.
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C(K), Canad. J. Math. 5 (1953), 129–173.
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[40] A. Pe lczyński, On strictly singular and strictly cosingular operators. I. Strictly singular

and strictly cosingular operators in C(S)-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math.
Astronom. Phys. 13 (1965), 31–36.
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Tightness and t-equivalence

Oleg Okunev

All spaces below are assumed to be Tychonoff (that is, completely regular
Hausdorff). We use terminology and notation as in [5], with the exception that
the tightness of a space X is denoted as t(X).

Two spaces X and Y are called M-equivalent if their free topological groups
F (X) and F (Y ) in the sense of Markov [7] are topologically isomorphic. The
spaces X and Y are l-equivalent if the spaces Cp(X) and Cp(Y ) of real-valued
continuous functions equipped with the topology of pointwise convergence are
linearly homeomorphic, and t-equivalent if Cp(X) and Cp(Y ) are homeomorphic
(see [3]); Arhangel’skii showed in [2] that M-equivalence of two spaces implies
their l-equivalence; clearly, l-equivalent spaces are t-equivalent. We say that a
topological property is preserved by an equivalence relation if whenever two spaces
are in the relation, one of them has the property if and only if the other one does.
Similarly, we say that a cardinal invariant is preserved by a relation if its values
on two spaces are the same whenever the spaces are in the relation.

The article [9] contains an example that shows that the sequentiality and
tightness are not preserved by the relation of M-equivalence. Tkachuk proved
in [15] that the tightness is preserved by l-equivalence in the class of compact
spaces, that is, if X and Y are l-equivalent compact spaces; this was later extended
in [12] by showing that the tightness is preserved by t-equivalence in the class of
compact spaces, and the same holds for sequentiality if 2t > c (in fact it easily
follows from the main theorem in [12] that if X and Y are t-equivalent spaces and
X is a countable union of its compact sequential subspaces, then so is Y ).

As for the Fréchet property, it is not preserved by the relation of M-equivalence
even in the class of compact spaces [13].

The example in [9] that shows the non-preservation of the tightness by M-
equivalence depends heavily on the fact that one of the two spaces is not normal.
Indeed, the construction of the example uses the fact that if K is a retract of
a space X , then the spaces X+ obtained by adding an isolated point to X and
the direct sum of the spaces K and X/K are M-equivalent [9]; here X/K is
the partition of X whose elements are K and singletons equipped with the R-
quotient topology (that is, the strongest completely regular topology that makes
the natural mapping p : X → X/K continuous). It is easy to see that if X is
normal, then the natural mapping p : X → X/K is in fact quotient, and therefore,
closed; by Theorem 4.5 in [1], in this case the tightness of the space X is equal to
the supremum of the tightnesses of the image space X/K and of the fibers of p;
the only nontrivial fiber of p is K, so t(X+) = t(X) = t(X/K ⊕K).

Hence, the following question:

Problem 1 (M). Let X and Y be normal M-equivalent spaces. Is it true that 1172–1174?

t(X) = t(Y )?

579
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Since t-equivalent compact spaces have the same tightness, it is natural to ask
whether this fact may be generalized to a wider class of spaces.

Problem 2 (M). Let X and Y be M-equivalent σ-compact spaces. Is it true that1175–1177?

t(X) = t(Y )?

Similar questions remain open for the relations of l-equivalence and t-equivalence;
for future references call these obvious modifications of Problems 1(M) and 2(M)
as Problem 1(l), Problem 1(t), Problem 2(l), and Problem 2(t).

It is known that compactness is preserved by l-equivalence (and hence by M-
equivalence) [17], but not by t-equivalence [6]. Thus, the following question is
specific for the relation of t-equivalence:

Problem 3. Let X and Y be t-equivalent spaces such that X is compact. Is it1178?

true that t(X) = t(Y )?

Note that every space t-equivalent to a compact space is σ-compact [8]. It
can easily be deduced from the main theorem in [12] that if X is compact (in
fact, the Lindelöf property is sufficient) and Y is t-equivalent to X , then every
free sequence in Y is of length at most t(X); unfortunately, for a σ-compact space
Y this is not sufficient to conclude that the tightness of Y is at most t(X) [14].

Of course, the following versions of Problems 1 and 2 quite naturally arise:

Problem 4 (M). Let X and Y be M-equivalent Lindelöf spaces. Is it true that1179–1181?

t(X) = t(Y )?

Problem 5 (M). Let X and Y be M-equivalent paracompact spaces. Is it true1182–1184?

that t(X) = t(Y )?

as well as their versions for the relations of l-equivalence and of t-equivalence
(Problems 4(l), 4(t), 5(l), 5(t)).

Unlike the compact case, the tightness of σ-compact spaces is not productive
(see, e.g., [16], [11]). There may be more hope for positive answers (or more
challenge for finding examples) for the versions of the above problems where the
equality t(X) = t(Y ) is replaced by t(Y ) ≤ t∗(X) = sup{t(Xn) : n ∈ ω} (Prob-
lems 1–4(M∗, l∗, t∗)). The example in Section 2 in [10] shows that there are M-1185–1196?

equivalent spaces X and Y where X is metrizable and Y has one nonisolated point
such that the tightness of Y 2 is uncountable, so we cannot expect t∗(X) = t∗(Y )
for paracompact spaces.

While [12] contains the proof that there is a topological property of Cp(X)
that, assuming that X is compact, is equivalent to the countability of the tight-
ness of X , there is no internal description of this property. Hence, the following
(somewhat fuzzy) request:

Problem 6 (t). Find an internally defined cardinal function φ such that whenever1197?

X is a compact space, t(X) = φ(Cp(X)).

The inequality t(Y ) ≤ t(X) for compact X and Y is proved in [12] under
the assumption that Cp(Y ) is an image under an open mapping of a subspace
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of Cp(X), so we might expect that the function φ in Problem 6(t) should be
hereditary and not raise in continuous open images. The following modification
of Problem 6(t) for the relation of l-equivalence also appears interesting:

Problem 7 (l). Find a cardinal function φ internally defined for locally convex lin- 1198?

ear topological spaces such that whenever X is a compact space, t(X) = φ(Cp(X)).

or even

Problem 8 (w). Find a cardinal function φ internally defined for weak linear 1199?

topological spaces such that whenever X is a compact space, t(X) = φ(Cp(X)).

(We call a linear topological space weak if its topology is generated by con-
tinuous real-valued linear functions.)

A similar problem arises for the sequentiality:

Problem 9 (t). Find an internally defined topological property P such that when- 1200–1202?

ever X is a compact space, X is a countable union of closed sequential subspaces
iff Cp(X) has P.

and similarly, Problem 7(l) and 7(w). Tkachuk essentially proved in [15] that
a compact space X is a countable union of closed sequential subspaces iff so is
Lp(X), and a compact X has countable tightness iff Lp(X) is a countable union
of its subspaces of countable tightness; here Lp(X) is the weak dual space of
Cp(X).

An interesting hypothesis related to Problem 6(t) was communicated by E. Reznichenko:

Problem 10. Let X be a compact space of countable tightness. Is it true that 1203?

every compact subspace of Cp(Cp(X)) has countable tightness?

The negative answer to the next question would give a consistently positive
answer to Problem 8 (for example, in the model of ZFC described in [4]).

Problem 11. Is there a compact space of countable tightness X such that ω1 + 1 1204?

(with the order topology) is homeomorphic to a subspace of Cp(Cp(X))?
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Topological problems in nonlinear and functional
analysis

Biagio Ricceri

In this note, I intend to collect some problems, conjectures and perspectives,
of topological nature, arising from the research work I made in the last years.

I start recalling the following definition.
Let (E, ‖·‖) be a real normed space. A non-empty set A ⊂ E is said to be

antiproximinal with respect to ‖·‖ if, for every x ∈ E \A and every y ∈ A, one has
‖x− y‖ > infz∈A ‖x− z‖.

I then propose the following

Conjecture 1. There exists a non-complete real normed space E with the follow- 1205?

ing property: for every non-empty convex set A ⊂ E which is antiproximinal with
respect to each norm on E, the interior of the closure of A is non-empty.

The main reason for the study of Conjecture 1 is to give a contribution to
open mapping theory in the setting of non-complete normed spaces. Recall that
in any vector space there exists the strongest vector topology of the space [6,
p. 42]. Actually, making use of Theorem 4 of [14], one can prove the following
result.

Theorem 1. Let X,E be two real vector spaces, C a non-empty convex subset of
X, F a multifunction from C onto E, with non-empty values and convex graph.
Then, for every non-empty convex set A ⊆ C which is open with respect to the
relativization to C of the strongest vector topology on X, the set F (A) is antiprox-
iminal with respect to each norm on E.

Now, I am going to present a problem about an unusual way of finding global
minima of functionals in Banach spaces. A closed hyperplane in a real normed
space X is any set of the type T−1(r), where T is a non-zero continuous linear
functional on X and r ∈ R. First, I recall the following result from [21] (see
also [16, 19, 22, 23]):

Theorem 2 ([21, Theorem 2.1]). Let (T,F , µ) be non-atomic measure space,
with µ(T ) < +∞, E a real Banach space, and f : E → R bounded below Borel
functional such that, for some γ ∈ ]0, 1[,

sup
x∈E

f(x)

‖x‖γ + 1
< +∞.

Then, for every p ≥ 1 and every closed hyperplane V of Lp(T,E), one has

inf
u∈V

∫

T

f(u(t))dµ = inf
u∈Lp(T,E)

∫

T

f(u(t))dµ.

I then propose the following

583
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Problem 1. Let X be an infinite-dimensional real Banach space, and let J : X →1206?

R be a bounded below functional satisfying, for some γ ∈ ]0, 1[,

(0.1) sup
u∈X

J(u)

‖u‖γ + 1
< +∞.

Find conditions under which there exists a closed hyperplane V of X such that the
restriction of J to V has a local minimum.

The motivation for the study of Problem 1 is as follows. Assume that we
wish to minimize a bounded below Borel functional f on a real Banach space E
satisfying the condition, for some γ ∈ ]0, 1[,

sup
x∈E

f(x)

‖x‖γ + 1
< +∞.

For each u ∈ L1([0, 1], E),

J(u) =

∫ 1

0

f(u(t))dt.

So, J is bounded below and satisfies (0.1) with X = L1([0, 1], E). Assume that
there is some closed hyperplane V of L1([0, 1], E) such that the restriction of J to
V has a local minimum, say u0. By a result of Giner ([4]), u0 is actually a global
minimum of the restriction of J to V . On the other hand, by Theorem 2, we have

inf
u∈V

J(u) = inf
u∈L1([0,1],E)

J(u)

and so u0 is a global minimum of J in L1([0, 1], E). This easily implies that f has
a global minimum in E.

Now, I list a series of possible new proofs of the Brouwer fixed point theorem
recalling the results from which they originate. 〈·, ·〉 will denote the usual inner
product in Rn.

Problem 2. Let X ⊂ Rn (n ≥ 2) be a compact convex set and f : X → X a1207?

continuous function. Without using any result based on the Brouwer fixed point
theorem, is it possible to find a continuous function α : X → R in such a way that
the set {(x, y) ∈ X × Rn : 〈f(x) − x, y〉 = α(x)}. is disconnected?

A positive answer to Problem 2 would provide a new proof of the Brouwer
theorem via the following results ([18]; see also [9]):

Theorem 3 ([18, Theorem 2]). Let X be a topological space, let E be a real
topological vector space (with topological dual E∗), and let A : X → E∗ be such
that the set {y ∈ E : x 7→ 〈A(x), y〉 is continuous} is dense in E. Then, the
following assertions are equivalent: (i) The set {(x, y) ∈ X ×E : A(x)(y) = 1} is
disconnected. (ii) The set X \A−1(0) is disconnected.

Proposition 1 ([18, Proposition 1]). Let X be a topological space, let E be a real
topological vector space (with algebraic dual E ′) and let A : X → E′. Assume that,
for some continuous function α : X → R, the set {(x, y) ∈ X×E : A(x)(y) = α(x)}
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is disconnected. Then, either A−1(0) 6= ∅ or the set {(x, y) ∈ X×E : A(x)(y) = 1}
is disconnected.

Assume that Problem 2 admits a positive answer. Apply Proposition 1 taking
E = Rn and A(x) = f(x) − x for all x ∈ X (of course, E ′ is identified with Rn).
Since X is connected, Proposition 1 (on the basis of Theorem 3) ensures that A
has a zero, that is f has a fixed point.

A possible positive answer to Problem 2 could be rather difficult due to the fact
that the function α does not depend on y. I then propose a variant of Problem 2
without such a restriction.

Problem 3. Let X ⊂ Rn (n ≥ 2) be a compact convex set and f : X → X a 1208?

continuous function. Without using any result based on the Brouwer fixed point
theorem, is it possible, for each ε > 0, to find a continuous function αε : X×Rn →
R, with αε(x, ·) Lipschitzian in Rn with Lipschitz constant less than or equal to
ε, in such a way that the set {(x, y) ∈ X × Rn : 〈f(x) − x, y〉 = αε(x, y)}. is
disconnected?

Problem 3 originates from the following

Theorem 4 ([20, Theorem 19]). Let X be a connected topological space, E a
real Banach space, A an operator from X into E∗, α a real function on X × E
such that, for each x ∈ X, α(x, ·) is Lipschitzian in E, with Lipschitz constant
L(x) ≥ 0. Further, assume that the set {y ∈ E : A(·)(y)− α(·, y) is continuous} is
dense in E and that the set {(x, y) ∈ X ×E : A(x)(y) = α(x, y)} is disconnected.
Then, there exists some x0 ∈ X such that ‖A(x0)‖E∗ ≤ L(x0).

Arguing as before, a positive answer to Problem 3 would produce a new proof
of the Brouwer theorem via Theorem 4 and an approximation argument.

I also wish to propose the following

Conjecture 2. Let X ⊂ Rn (n ≥ 2) be a compact convex set and f : X → X a 1209?

continuous function. Let ε > 0 small enough. Denote by Λε the set of all contin-
uous function α : X × Rn → R such that, for each x ∈ X, α(x, ·) is Lipschitzian
in Rn, with Lipschitz constant less than or equal to ε. Consider Λε equipped with
the relativization of the strongest vector topology on the space RX×Rn

. Then, the
set {(ϕ, x, y) ∈ Λε ×X × Rn : 〈f(x)− x, y〉 = α(x, y)} is disconnected.

On the basis of Theorem 5 below, it would be of interest to prove Conjecture 2
without using the Brouwer theorem.

Theorem 5 ([20, Theorem 21]). Let X be a connected and locally connected
topological space, E a real Banach space, A : X → E∗ a continuous operator with
closed range. For each ε > 0, denote by Λε the set of all continuous functions
α : X × E → R such that, for each x ∈ X, α(x, ·) is Lipschitzian in E, with
Lipschitz constant less than or equal to ε. Consider Λε equipped with the rela-
tivization of the strongest vector topology on the space RX×E, and assume that
the set {(α, x, y) ∈ Λε × X × E : A(x)(y) = α(x, y)} is disconnected. Then,
A−1(0) 6= ∅.
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To introduce the last problem related to the Brouwer theorem, let me recall
a further result. The spaces C0(X,E) and C0(X) that will appear are considered
with the sup-norm. Recall that a subset D of a topological space S is a retract of
S if there exists a continuous function h : S → D such that h(s) = s for all s ∈ D.

Theorem 6 ([28, Theorem 6]). Let X be a compact Hausdorff topological space,
E a real Banach space, with dim(E) ≥ 2, and A : X → E∗ a continuous operator.
Then, at least one of the following assertions holds: (a) A−1(0) 6= ∅. (b) There
exists ε > 0 such that, for every Lipschitzian operator J : C0(X,E) → C0(X),
with Lipschitz constant less than ε, the set {ψ ∈ C0(X,E) : A(x)(ψ(x)) =
J(ψ)(x) for all x ∈ X} is an unbounded retract of C0(X,E).

Theorem 6 gives the motivation for the following

Problem 4. Let X ⊂ Rn (n ≥ 2) be a compact convex set and f : X → X a1210?

continuous function. Without using any result based on the Brouwer fixed point
theorem, is it possible to prove that, for each ε > 0, there exists a Lipschitzian
operator J : C0(X,Rn) → C0(X), with Lipschitz constant less than ε, in such a
way that the set {ψ ∈ C0(X,Rn) : 〈f(x) − x, ψ(x)〉 = J(ψ)(x) for all x ∈ X} is
either bounded or disconnected?

Before formulating the next conjecture, I recall two more results:

Theorem 7 ([15, Theorem 2.2]). Let X be a topological space and let S ⊆ X ×
[0, 1] be a connected set whose projection on [0, 1] is the whole of [0, 1]. Then, S
intersects the graph of any continuous function from X into [0, 1].

Theorem 8 ([23, Proposition 2.1]). Let X be a normed space, let T ∈ X∗ and
let J : X → R be a Lipschitzian functional with Lipschitz constant L < ‖T‖X∗.
Then, the functional T + J is onto R.

I now state

Conjecture 3. Let (X, 〈·, ·〉) be an infinite-dimensional real Hilbert space and let1211?

A : [0, 1]→ X be a continuous function such that, for some λ ∈ ]0, 1[, one has

sup
x∈X

inf
t∈[0,1]

(〈A(t), x〉 − λ‖A(t)‖‖x‖) < +∞.

Then, there exist µ ∈ ]0, 1[ and a continuous function g : X → [0, 1] such that

sup
x∈X

(〈A(g(x)), x〉 − µ‖A(g(x))‖‖x‖) < +∞.

The motivation for the study of Conjecture 3 is as follows. Assume that it is
true. I then claim that A−1(0) 6= ∅. Indeed, put

M := sup
x∈X

(〈A(g(x)), x〉 − µ‖A(g(x))‖‖x‖) .

Consider the set

S := {(t, x) ∈ [0, 1]×X : 〈A(t), x〉 = µ‖A(t)‖‖x‖+M + 1}.
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If t ∈ [0, 1] does not belong to the projection of S on [0, 1], then, in view of
Theorem 8, we clearly have A(t) = 0, and we are done. Therefore, assume that
such a projection is the whole of [0, 1]. In this case, we observe that S does not
meet the graph of the continuous function g, and so, by Theorem 7, S must be
disconnected. At this point, we can apply Theorem 4 which ensures the existence
of t0 ∈ [0, 1] such that ‖A(t0)‖ ≤ µ‖A(t0)‖. Since µ < 1, one then has A(t0) = 0,
and the claim is proved.

Let me now recall the notion of Gâteaux differentiability. Let X be a real
normed space. A functional J : X → R is said to be Gâteaux differentiable at a
point x if there is T ∈ X∗ such that

lim
λ→0+

J(x+ λy)− J(x)

λ
= T (y)

for all y ∈ X . The functional T is the Gâteaux derivative of J at x and is denoted
by J ′(x). The functional J is said to be of class C1 if it is Gâteaux differentiable
at any point of X and the operator J ′ : X → X∗ is continuous. The critical points
of J are the zeros of J ′. Of course, if, for some vector topology on X , the point x
is a local minimum of J and J is Gâteaux differentiable at x, then J ′(x) = 0.

The following problem seems to be fascinating.

Problem 5. Let X be a real Banach space and let J : X → R be a functional of 1212?

class C1. Is there a topology τ on X such that the critical points of J are exactly
the τ -local minima of J?

Clearly, a possible positive answer to Problem 5 would be of great theoretical
interest. At this point, I would like to point that in [25, 24, 26, 29, 13] one can
find various results on local minima that have been widely applied to nonlinear
differential equations (see, for instance, [1]–[2], [5], [7]–[8], [11], [10], [27], [31],
[32]).

In [30], I got the following general result (see also [3]):

Theorem 9 ([30, Theorem 2]). Let X be a real Hilbert space and let J : X →
R be a nonconstant functional of class C1, with compact derivative, such that

lim sup‖x‖→+∞
J(x)
‖x‖2 ≤ 0. Then, for each r ∈ ]infX J, supX J [ for which the set

J−1([r,+∞[) is not convex and for each convex set S ⊆ X dense in X, there exist
x0 ∈ S ∩ J−1(]−∞, r[) and λ > 0 such that the equation x = λJ ′(x) + x0 has at
least three solutions.

On the basis of Theorem 9, I now propose

Problem 6. Let X,Y be two topological spaces and let f : X → Y be a continuous 1213?

function. Assume that there is an open cover F of X such that card(f−1(y)∩A) ≤
2 for all y ∈ Y , A ∈ F . Find sufficient conditions in order that card(f−1(y)) ≤ 2
for all y ∈ Y .

Here is the meaning of Problem 6. Let (P ) be such a sufficient condition
(concerning f). Let J satisfy the assumptions of Theorem 9 and let J−1([r,+∞[)
be non-convex for some r ∈ ]infX J, supX J [. Moreover, assume that, for each
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λ > 0, there is some open cover F of X such that, for every y ∈ X and every
A ∈ F , the equation x = λJ ′(x) + y has at most two solutions in A. Then, for
some λ > 0, the operator x 7→ x − λJ ′(x) does not satisfy condition (P ). The
conclusion, of course, is a direct consequence Theorem 9. Clearly, the interest of
results of this kind fully depends on the quality of the answers given to Problem 6.

In the final part of this note, I wish to propose some specific topological
problems on the energy functional associated to the Dirichlet problem

(Pf ) −∆u = f(x, u) in Ω, u|∂Ω = 0.

So, let Ω ⊂ Rn (n ≥ 3) be an open bounded set. Let X = W 1,2
0 (Ω), with the

usual norm ‖u‖ = (
∫
Ω
|∇u(x)|2dx)

1
2 . For q > 0, denote by Aq the class of all

Carathéodory functions f : Ω× R→ R such that

sup
(x,ξ)∈Ω×R

|f(x, ξ)|
1 + |ξ|q < +∞.

For 0 < q ≤ n+2
n−2 and f ∈ Aq , put

Jf (u) =
1

2

∫

Ω

|∇u(x)|2dx−
∫

Ω

(∫ u(x)

0

f(x, ξ)dξ

)
dx

for all u ∈ X .
So, the functional Jf is of Class C1 on X and one has

J ′f (u)(v) =

∫

Ω

∇u(x)∇v(x)dx −
∫

Ω

f(x, u(x))v(x)dx

for all u, v ∈ X . Hence, the critical points of Jf in X are exactly the weak solutions
of problem (Pf ).

To formulate the next problem, denote by τs the topology on X whose mem-
bers are the sequentially weakly open subsets of X . That is, a set A ⊆ X belongs
to τs if and only if for each u ∈ A and each sequence {un} in X weakly convergent
to u, one has un ∈ A for all n large enough.

Problem 7. Is there some f ∈ Aq, with q < n+2
n−2 , such that, for each λ > 0 and1214?

r ∈ R, the functional Jλf is unbounded below and the set J−1
λf (r) has no isolated

points with respect to the topology τs?

The interest for the study of Problem 7 comes essentially from the following
result:

Theorem 10 ([26, Theorem 3]). Let f ∈ Aq with q < n+2
n−2 . Then, there exists

some λ∗ > 0 such that the functional Jλ∗f has local minimum with respect to the
topology τs.

In the light of Theorem 10, the relevance of Problem 7 is clear. Actually, if f
was answering Problem 7 in the affirmative, then, by Theorem 10, for some λ∗ > 0,
the functional Jλ∗f would have infinitely many local minima in the topology τs.
Consequently, problem (Pλ∗f ) would have infinitely many weak solutions.
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It is also worth noticing that if f ∈ Aq with q < n+2
n−2 and lim‖u‖→+∞ Jf (u) =

+∞, then the local minima of Jf in the strong and in the weak topology of
X do coincide ([12, Theorem 1]). On the other hand, if f(x, ξ) = |ξ|q−1ξ with
1 < q < n+2

n−2 , then, for some constant λ > 0, it turns out that 0 is a local minimum

of Jλf in the strong topology but not in the weak one ([12, Example 2]). However,
I do not know any example of f for which Jf has a local minimum in the strong
topology but not in τs.

I conclude presenting what I consider the most important of the problems of
this note.

Problem 8. Denote by τ the strongest vector topology of X. Is there some f ∈ 1215?

An+2

n−2
such that the set {(u, v) ∈ X×X : J ′f (u)(v) = 1} is disconnected in (X, τ)×

(X, τ)?

Assume that f ∈ A n+2
n−2

have the property required in Problem 8. Since Jf is

of class C1, clearly the operator J ′f : X → X∗ is τ -weakly-star continuous. Hence,

by Theorem 3, the set X \ (J ′f )−1(0) is τ -disconnected. Then, this implies, in par-

ticular, that the set (J ′f )−1(0) is not τ -relatively compact ([17, Proposition 3]),

and hence is infinite. So, for such an f , problem (Pf ) would have infinitely many
weak solutions. Hence, a possible positive answer to Problem 8 would open a com-
pletely new chapter in the theory of the multiplicity of solutions for problem (Pf ).
Finally, T.-C. Tang ([33]) has remarked that if f ∈ Aq for some q < n+2

n−2 , then
f cannot satisfy the property required in Problem 8. In other words, Problem 8
concerns genuine nonlinearities with critical growth.
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Twenty questions on metacompactness in
function spaces

V.V. Tkachuk

1. Introduction

A space Z is called metacompact (or weakly paracompact) if any open cover of
Z has a point-finite refinement. This notion is well-known and thoroughly studied.
It is preserved by closed maps and closed subspaces and coincides with paracom-
pactness in the class of collectionwise normal spaces; besides, any pseudocompact
metacompact space is compact (see the survey of Burke [4] for proofs and detailed
treatment). Unfortunately, the list of important results on metacompactness is
too long to be presented here.

However, the importance of metacompactness in general topology is not re-
flected in Cp-theory at all; the results are scarce and almost nothing can be said
even if we ask the most näıve questions about metacompactness in Cp(X). The
purpose of this paper is to draw attention to a significant amount of interesting
open problems as well as to numerous possibilities of a breakthrough in this area.

The material of this paper is presented in Section 3 and Section 4 which
cover the general case and the compact case respectively. In fact, every problem,
formulated in Section 3, is open for compact spaces as well. However, its clone is
formulated in Section 4 (this occurs four times) only if it is of special importance
for the compact case.

2. Notation and terminology

The symbol R stands for the real line with it natural topology. All spaces
are assumed to be Tychonoff. Given spaces X and Y the set C(X,Y ) consists
of continuous maps from X to Y ; we write C(X) instead of C(X,R). The ex-
pression Cp(X,Y ) denotes the set C(X,Y ) endowed with the pointwise conver-
gence topology, i.e., Cp(X,Y ) (or Cp(X) respectively) is C(X,Y ) (or C(X) re-
spectively) with the topology inherited from Y X (RX). We also let Cp,0(X) = X
and Cp,n+1(X) = Cp(Cp,n(X)) for any n ∈ ω. A space Z is said to have countable

tightness (this is denoted by t(Z) = ω) if, for any A ⊂ Z and z ∈ A we have z ∈ B
for some countable B ⊂ A.

3. Metacompactness in Cp(X) for general spaces X

The most ambitious purpose would be to characterize metacompactness of
Cp(X) in terms of the space X . We do not formulate this as a question because

Research supported by Consejo Nacional de Ciencia y Tecnoloǵıa (CONACYT) de
México, Grant 400200-5-38164-E
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even for the Lindelöf property, its characterization in Cp(X) seems to be a hopeless
thing. The Souslin property of the spaces Cp(X) implies that Cp(X) is paracom-
pact if and only if it is Lindelöf (see Chapter 0, Section 1 of Arhangel’skii [2]) so
the following problem seems to be the most important one.

Problem 1. Does metacompactness of Cp(X) imply that Cp(X) is Lindelöf?1216?

This question has long been a part of the folklore. The general theory of
covering properties shows that if any closed discrete subspace of a metacompact
Cp(X) is countable then it is Lindelöf. It is a brilliant theorem of Reznichenko
(see Theorem I.5.12 of Arhangel’skii [2]) that any normal Cp(X) is collectionwise
normal so metacompactness of Cp(X) together with its normality implies that
Cp(X) is Lindelöf.

Problem 2. Suppose that Cp,n(X) is metacompact for all n ≥ 1. Must Cp(X) be1217?

Lindelöf?

Maybe, the Lindelöf property is too much to ask from a metacompact Cp(X).
The following two problems present more humble expectations.

Problem 3. Suppose that Cp(X) is metacompact. Must it be realcompact?1218?

Problem 4. Let X be a space such that Cp(X) is metacompact. Is it true that1219?

the tightness of X has to be countable?

If Problem 4 is answered positively then the answer to Problem 3 is also
positive (see Chapter II, Section 4 of Arahangel’skii [2]). Besides, if Cp(X) is
Lindelöf then t(X) = ω (see Asanov [3]) so Problem 4 asks whether it is possible
to strengthen Asanov’s result.

Problem 5. Suppose that Cp(X) is metacompact. Must Cp(X) × Cp(X) be1220?

metacompact?

This question is obligatory apart from reminding us the famous Arhangel’skii
problem (unanswered for several decades and published in many places, see e.g.,
Group of Problems C in Section 1 of Chapter 0 of Arhangel’skii [2]) on whether
the square of any Lindelöf Cp(X) is Lindelöf. Maybe some weaker property of
Cp(X)×Cp(X) can be derived from the Lindelöf property of Cp(X) so it is worth
to check for metacompactness.

Problem 6. Suppose that Cp(X) is Lindelöf. Must Cp(X)×Cp(X) be metacom-1221?

pact?

The following two problems are related to the results of Tkachuk [6] on count-
able additivity of pseudocharacter, tightness, Čech-completeness and some other
properties in Cp(X). Outside of Cp-theory, it is easy to give examples of non-
metacompact spaces which are countable unions of their closed metacompact sub-
spaces.

Problem 7. Suppose that Cp(X) =
⋃

n∈ω Yn and every Yn is metacompact. Must1222?

Cp(X) be metacompact?
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Problem 8. Suppose that Cp(X) =
⋃

n∈ω Yn and every Yn is closed in Cp(X) 1223?

and metacompact. Must Cp(X) be metacompact?

Since it is difficult to obtain any consequences of metacompactness in Cp(X),
we can suspect that it has some kind of universal presence in every function space.
The following two problems formalize these suspicions.

Problem 9. Is it true that every Cp(X) has a dense metacompact subspace? 1224?

Problem 10. Is it true that every space X can be embedded in a space Y such 1225?

that Cp(Y ) is metacompact?

4. Metacompactness in Cp(X) when X is compact

If X is compact then, to prove that Cp(X) is Lindelöf, it suffices to establish
some weaker properties of Cp(X). For example, if Cp(X) is normal then it is
Lindelöf (see Theorem III.6.3 of Arhangel’skii [2]). Therefore it is mandatory to
formulate the following clone of Problem 1.

Problem 11. Suppose that X is compact and Cp(X) is metacompact. Must 1226?

Cp(X) be Lindelöf?

The Lindelöf property of Cp(X) has very strong consequences when X is com-
pact so we could expect that metacompactness of Cp(X) implies some restrictions
on X . The following question is the clone of Problem 4.

Problem 12. Let X be a compact space such that Cp(X) is metacompact. Is it 1227?

true that t(X) = ω?

The next two problems have positive answer if we replace metacompactness
with the Lindelöf property. No counterexample exists for general spaces as well.

Problem 13. Let X be a compact space such that Cp(X) is metacompact. Is it 1228?

true that Cp(Y ) is metacompact for any closed subspace Y ⊂ X?

Problem 14. Suppose that X is compact and Cp(X, [0, 1]) is metacompact. Must 1229?

Cp(X) be metacompact?

Since preservation of topological properties in finite powers is often a key
matter, we also have to present the clones of Problem 5 and Problem 6.

Problem 15. Suppose that X is compact and the space Cp(X) is metacompact. 1230?

Must Cp(X)× Cp(X) be metacompact?

Problem 16. Suppose that X is compact and Cp(X) is Lindelöf. Must the space 1231?

Cp(X)× Cp(X) be metacompact?

Every dyadic compact space of countable tightness is metrizable according
to Theorem 3.1.1 of Arhangel’skii [1] so the Lindelöf property of Cp(X) implies
metrizability of any dyadic compact space X . The following question is again
about what is left in X if Cp(X) is metacompact.
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Problem 17. Suppose that X is a dyadic compact space such that Cp(X) is1232?

metacompact. Must X be metrizable?

The space ω1 + 1 is a model for many matters concerned with countable
tightness in compact spaces. It is known that Cp(ω1 + 1) is very far from being
Lindelöf; it does not even have a Lindelöf dense subspace (see Proposition IV.11.7
in Arhangel’skii [2]); this easily implies that ω1 + 1 cannot be embedded in any
X such that Cp(X) has a Lindelöf dense subspace.

On the other hand, Dow, Junnila and Pelant proved in [5] that for any compact
X of weight at most ω1, the space Cp(X) is hereditarily metaLindelöf. Therefore
we can expect some kind of metacompactness in Cp(ω1 + 1). Our last three
questions are intended to express these expectations.

Problem 18. Is the space Cp(ω1 + 1) metacompact?1233?

Problem 19. Is it true that Cp(ω1 + 1) has a dense metacompact subspace?1234?

Problem 20. Can the space ω1 + 1 be embedded in a space Y such that Cp(Y ) is1235?

metacompact?
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Open problems in infinite-dimensional topology

Taras Banakh, Robert Cauty and Michael Zarichnyi

Introduction

The development of Infinite-Dimensional Topology was greatly stimulated
by three famous open problem lists: that of Geoghegan [58], West [74] and
Dobrowolski, Mogilski [55]. We hope that the present list of problems will play a
similar role for further development of Infinite-Dimensional Topology.

We expect that the future progress will happen on the intersection of Infinite-
Dimensional Topology with neighbor areas of mathematics: Dimension Theory,
Descriptive Set Theory, Analysis, Theory of Retracts. According to this philos-
ophy we formed the current list of problems. We tried to select problems whose
solution would require creating new methods.

We shall restrict ourselves by separable and metrizable spaces. A pair is a
pair (X,Y ) consisting of a space X and a subspace Y ⊂ X . By ω we denote the
set of non-negative integers.

1. Higher-dimensional descriptive set theory

Many results and objects of infinite-dimensional topology have zero-dimension-
al counterparts usually considered in the Descriptive Set Theory. As a rule, “zero-
dimensional” results have simpler proofs comparing to their higher-dimensional
counterparts. Some zero-dimensional results are proved by essentially zero-dimen-
sional methods (like those of infinite game theory) and it is an open question
to which extent their higher-dimensional analogues are true. We start with two
problems of this sort.

For a class C of spaces and a number n ∈ ω ∪ {∞} consider the subclasses
C[n] = {C ∈ C : dimC ≤ n} and C[ω] =

⋃
n∈ω C[n]. Following the tradition of

Logic and Descriptive Set Theory, by Σ1
1 we denote the class of analytic spaces,

i.e., metrizable spaces which are continuous images of Nω. Also Π0
α and Σ0

α stand
for the multiplicative and additive classes of absolute Borel spaces corresponding
to a countable ordinal α. In particular, Π0

1, Π0
2, and Σ0

2 are the classes of compact,
Polish, and σ-compact spaces, respectively. In topology those classes usually are
denoted by M0,M1, and A1, respectively.

Following the infinite-dimensional tradition, we define a space X to be C-
universal for a class C of spaces, if X contains a closed topological copy of each
space C ∈ C. According to a classical result of the Descriptive Set Theory [62,
26.12], an analytic space X is Π0

ξ [0]-universal for a countable ordinal ξ ≥ 3 if and

only if X /∈ Σ0
ξ . This observation implies that a space X is Π0

ξ [0]-universal if and

only if the product X × Y is Π0
ξ [0]-universal for some/any space Y ∈ Σξ . The

philosophy of this result is that a space X is C-universal if X × Y is C-universal
for a relatively simple space Y .
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The following theorem proved in [24, 3.2.12] shows that in some cases this
philosophy is realized also on the higher-dimensional level.

Theorem. Let C = Π0
ξ [n] where n ∈ ω∪{∞} and ξ ≥ 3 is a countable ordinal. A

space X is C-universal if and only if X×Y is C-universal for some space Y ∈ Σ0
2.

However we do not know if the condition Y ∈ Σ0
2 can be replaced with a

weaker condition Y ∈ Σ0
3 (which means that Y is an absolute Gδσ-space).

Question 1.1. Let C = Π0
ξ [n] where n ∈ ω ∪ {∞} and ξ ≥ 3 be a countable1236?

ordinal. Is a space X is C-universal if X×Y is C-universal for some space Y ∈ Σ0
3?

Y ∈ Σ0
ξ?

As we already know the answer to this problem is affirmative for n = 0.
In fact, the affirmative answer to Question 1.1 would follow from the validity of

the higher-dimensional version of the Separation Theorem of Louveau and Saint-
Raymond [62, 28.18]. Its standard formulation says that two disjoint analytic sets
A,B in a Polish space X cannot be separated by a Σ0

ξ-set with ξ ≥ 3 iff the pair

(A ∪ B,A) is (Π0
1[0],Πξ)-universal.

A pair (X,Y ) of spaces is defined to be ~C-universal for a class of pairs ~C if for

every pair (A,B) ∈ ~C there is a closed embedding f : A → X with f−1(Y ) = B.
For classes A, B of spaces by (A,B) we denote the class of pairs (A,B) with A ∈ A
and B ∈ B. We recall that Π0

1 stands for the class of compacta.
The Separation Theorem of Louveau and Saint-Raymond implies that for

every Π0
ξ [0]-universal subspace X of a space Y ∈ Σ0

ξ the pair (Y,X) is (Π0
1[0],Π0

ξ)-
universal. The philosophy of this result is clear: if a C-universal space X for a
complex class C embeds into a “relatively simple” space Y , then the pair (Y,X) is
(Π0

1[0], C)-universal. If the “relatively simple” means “σ-compact”, then the above
zero-dimensional result has a higher-dimensional counterpart proved in [24, 3.1.2]
(see also [17] and [50]).

Theorem. Let n ∈ ω ∪ [∞] and C ∈ {Π0
ξ ,Σ

0
ξ : ξ ≥ 3}. For every C[n]-universal

subspace X of a space Y ∈ Σ0
2 the pair (Y,X) is (Π0

1[n], C)-universal.

We do not know if Y ∈ Σ0
2 in this theorem can be replaced with Y ∈ Σ0

3.

Question 1.2. Let n ∈ ω ∪ [∞] and C = Π0
ξ for a countable ordinal ξ ≥ 3. Is it1237?

true that for each C[n]-universal subspace X of a space Y ∈ Σ0
3 the pair (Y,X) is

(Π0
1[n], C)-universal?

As we already know the answer to this question is affirmative for n = 0. Using
Theorem 3.2.12 of [24] on preservation of the C-universality by perfect maps one
can show that the affirmative answer to Question 1.2 implies that to Question 1.1.

Our third problem with a higher-dimensional descriptive flavor asks if the
higher-dimensional Borel complexity can be concentrated on sets of a smaller
dimension. First let us make two simple observations: the Hilbert cube [0, 1]ω

is Π0
1-universal while its pseudointerior (0, 1)ω is Π0

2-universal. In light of these
observations one could suggest that for each ξ ≥ 1 there is a one-dimensional space
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X whose countable power Xω is Π0
ξ-universal. But this is not true: no finite-

dimensional space X has Σ0
2-universal countable power Xω (see [18, 42, 25]). On

the other hand, for every meager locally path connected space X the (2n + 1)-
st power X2n+1 is Σ0

2[n]-universal (which means that X2n+1 contains a closed
topological copy of each n-dimensional σ-compact space), see [19].

Question 1.3. Let B ∈ {Π0
ξ ,Σ

0
ξ : ξ ≥ 1} is a Borel class. Is there a one- 1238?

dimensional space X (in B) with B[ω]-universal power Xω?

The answer to this problem is affirmative for the initial Borel classes B ∈
{Π0

1,Π
0
2,Σ

0
2}, see [36, 21, 19]. Moreover, for such a class B a space X with B[n]-

universal power Xn+1 can be chosen as a suitable subspace of a dendrite with
dense set of end-points.

A related question concerns the universality in classes of compact spaces. It
is well-known that the n-dimensional cube [0, 1]n is not Π0

1[n]-universal. On the
other hand, for any dendrite D with dense set of end-points the power Dn+1 is
Π0

1[n]-universal [36], and the product Dn+1× [0, 1]2n is Π0
1[2n]-universal, see [28].

Question 1.4. Is X× [0, 1]2n Π0
1[2n]-universal for any Π0

1[n]-universal space X? 1239?

Equivalently, is µn×[0, 1]2n Π0
1[2n]-universal (where µn denotes the n-dimensional

Menger cube)?

For n ≤ 1 the answer to this problem is negative. We expect that this is so
for all n.

2. Zn-sets and related questions

In this section we consider some problems related to Zn-sets, where n ∈ ω ∪
{∞}. By definition, a subset A of a space X is a Zn-set in X if A is closed and
the complement X \A is n-dense in X in the sense that each map f : [0, 1]n → X
can be uniformly approximated by maps into X \ A. In particular, the 0-density
is equivalent to the usual density and a subset A ⊂ X is a Z0-set in X if and only
if it is closed and nowhere dense in X .

A set A ⊂ X is a σZn-set if A is the countable union of Zn-sets in X . A
subset A ⊂ X is called n-meager if A ⊂ B for some σZn-set B in X . A space X is
a σZn-space (or else n-meager) if X is a σZn-set (equivalently n-meager) in itself.
In particular, a space is 0-meager if and only if it is of the first Baire category.

According to a classical result of S. Banach [6], an analytic topological group
either is complete or else is 0-meager. It is natural to ask about the infinite version
of this result. Namely, Question 4.4 in [55] asks if any incomplete Borel pre-Hilbert
space is ∞-meager. The answer to this question turned out to be negative: the
linear span(E) of the Erdös set E ⊂ {(xi) ∈ `2 : ∀i xi ∈ Q} is meager but not
∞-meager, see [24, 5.5.19]. Moreover, span(E) cannot be written as the countable
union

⋃
n∈ω Zn where each set Zn is a Zn-set in span(E). On the other hand, for

every n ∈ ω, span(E) can be written as the countable union of Zn-sets, see [11].

Question 2.1. Is an (analytic) linear metric space X a σZ∞-space if X can be 1240?

written as the countable union X =
⋃

n∈ω Xn where each set Xn is a Zn-set in X.



600 56. OPEN PROBLEMS IN INFINITE-DIMENSIONAL TOPOLOGY

By its spirit this problem is related to Selection Principles, a branch of Com-
binatorial Set Theory considered in the papers [68, 71].

Another feature of span(E) leads to the following problem, first posed in [8].

Question 2.2. Is every analytic non-complete linear metric space X a σZn-space1241?

for every n ∈ ω? Is this true if X is a linear subspace of `2 or Rω?

With help of the Multiplication Formula for σZn-spaces [27] or [20], the (sec-
ond part of the) above problem can be reduced to the following one.

Question 2.3. Let X be a non-closed analytic linear subspace of the space L = `21242?

or L = Rω. Can L be written as the direct sum L = L1⊕L2 of two closed subspaces
L1, L2 ⊂ L so that for every i ∈ {1, 2} the projection Xi of X onto Li is a proper
subspace of Li?

Let us note that the zero-dimensional counterpart of this question has an
affirmative solution: for each meager subset H ⊂ {0, 1}ω there is a partition
ω = A ∪ B of ω into two disjoint sets A,B such that the projections of H onto
{0, 1}A and {0, 1}B are not surjective. This partition can be easily constructed by
induction.

The following weaker problem related to Question 2.3 also is open.

Question 2.4. Let X be a non-closed analytic linear subspace in `2. Is there a1243?

closed infinite-dimensional linear subspace L ⊂ `2 such that X + L 6= `2?

We recall that a space X is (strongly) countable-dimensional if X can be writ-
ten as the countable union X =

⋃∞
n=1Xn of (closed) finite-dimensional subspaces

of X . The space span(E) is countable-dimensional but not strongly countable-
dimensional, see [11].

Question 2.5. Is each (analytic) strongly countable-dimensional linear subspace1244?

of `2 ∞-meager? equivalently, 2-meager?

In light of this question it should be mentioned that each closed finite-dimen-
sional subspace of the Hilbert space `2 is a Z1-set. On the other hand, `2 contains
a closed zero-dimensional subsets failing to be a Z2-set in `2. Yet, each finite-
dimensional Z2-set in `2 is a Z∞-set in `2, see [64].

Let Mn be the σ-ideal consisting of n-meager subsets of the Hilbert cube Q.
In particular,M0 coincides with the idealM of meager subsets of Q well studied
in Set Theory. For each non-trivial ideal I of subsets of a set X we can study four
cardinal characteristics:

• add(I) = min{|J | : J ⊂ I,⋃J /∈ I};
• cov(I) = min{|J | : J ⊂ I,⋃J = X};
• non(I) = min{|A| : A ⊂ X,A /∈ I};
• cof(I) = min{|C| : C ⊂ I, (∀A ∈ I)(∃C ∈ C)A ⊂ C}.

The cardinal characteristics of the idealM0 =M are calculated in various models
of ZFC and can vary between ℵ1 and the continuum c, see [73]. In [29] it is shown
that cov(Mn) = cov(M) and non(Mn) = non(M) for every n ∈ ω ∪ {∞}.
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Question 2.6. Is add(Mn) = add(M) and cof(Mn) = cof(M) for every n ∈ 1245?

ω ∪ {∞}?
It is well-known that Z∞-sets in ANR-spaces can be characterized as closed

sets with homotopy dense complement. A subsetD of a spaceX is called homotopy
dense if there is a homotopy h : X× [0, 1]→ X such that h(x, 0) = x and h(x, t) ∈
D for all (x, t) ∈ X × (0, 1].

One of the problems from [74] and [55] asked about finding an inner character-
ization of homotopy dense subspaces of s-manifold. In [24, 1.3.2] (see also [9] and
[52]) it was shown that such subspaces can be characterized with help of SDAP,
the Toruńczyk’s Strong Discrete Approximation Property. This characterization
allowed to apply powerful tools of the theory of Hilbert manifolds to studying
spaces with SDAP.

Question 2.7. Find an inner characterization of homotopy dense subspaces of 1246?

Q-manifolds.

The problem of characterization of locally compact spaces homeomorphic to
homotopy dense subsets of compact ANRs (or compact Q-manifolds) was consid-
ered in [46] and [51].

It is known that each homotopy dense subspace X of a locally compact ANR-
space has LCAP, the Locally Compact Approximation Property. The latter means
that for every open cover U of X the identity map of X can be uniformly approx-
imated by maps f : X → X whose range f(X) has locally compact closure in X .

Question 2.8. Is each space X with LCAP homeomorphic to a homotopy dense 1247?

subspace of a locally compact ANR.

Let us note that LCAP appears as an important ingredient in many results
of infinite-dimensional topology, see [24], [10].

Question 2.9. Let X be a convex set in a linear metric space. Has X LCAP? 1248?

Has X LCAP if X is an absolute retract?

The answer to the latter question is affirmative if the completion of X is an
absolute retract, see [24, 5.2.5].

3. The topology of convex sets and topological groups

One of classical applications of infinite-dimensional topology is detecting the
topological structure of convex sets in linear metric spaces. As a rule, convex sets
are absolute retracts and have many other nice features facilitating applications
of powerful methods of infinite-dimensional topology. Among such methods let us
recall the theory of Q- and `2-manifolds and the theory of absorbing and coabsorb-
ing spaces. The principal notion unifying these theories is the notion of a strongly
universal space.

A topological space X is defined to be strongly C-universal for a class C of
spaces if for every cover U , every space C ∈ C and a map f : C → X whose
restriction f |B : B → X onto a closed subset B ⊂ C is a Z-embedding there is a
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Z-embedding f̃ : C → X which is U-near to f and coincides with f on B. A map
f : C → X is called a Z-embedding if it is a topological embedding and f(C) is a
Z∞-set in X . A topological space X is strongly universal if it is strongly Z(X)-
universal for the class Z(X) of spaces homeomorphic to Z∞-sets of X . Many
natural spaces are strongly universal.

In [24, 9, 14, 16, 38, 37, 41, 45, 48, 54] many results on the strong
universality of convex sets in linear metric space were obtained. Nonetheless the
following problem still is open.

Question 3.1. Let X be an infinite-dimensional closed convex set in a locally1249?

convex linear metric space L. Is X strongly universal?

The answer is not known even for the case when X is a pre-Hilbert space. A
bit weaker question also is open.

Question 3.2. Let X be an infinite-dimensional closed convex set in a locally1250?

convex linear metric space L. Is X strongly Ztb(X)-universal for the class of
spaces homeomorphic to totally bounded Z∞-subsets of X?

The answer to this problem is affirmative if X has an almost internal point
x0 ∈ X (the latter means that the set {x ∈ X : (∃z ∈ X)(∃t ∈ (0, 1)) x0 =
tx+ (1− t)z} is dense in X), see [14].

The strong universality enters as one of important ingredients into the defi-
nition of a (co)absorbing space. A topological space X is called absorbing (resp.
coabsorbing) if X is an ∞-meager (resp. ∞-comeager) strongly universal ANR
with SDAP. We recall that a space is n-meager where n ∈ ω ∪ {∞} if it is a
σZn-set in itself. A space X is defined to be n-comeager if X contains an absolute
Gδ-subset G with n-meager complement X \ G in X . In particular an analytic
space is 0-comeager if and only if it is Baire.

Question 3.3. Let X be a closed convex subset of a locally convex linear metric1251?

space. Assume that X is 0-comeager. Is it ∞-comeager? Is X n-comeager for all
n ∈ ω?

Question 3.4. Assume that X ∈ AR is an ∞-(co)meager closed convex set in a1252?

linear metric space. Is X a (co)absorbing space?

The principal result of the theory of (co)absorbing spaces is the Uniqueness
Theorem [24, §1.6] asserting that two (co)absorbing spacesX ,Y are homeomorphic
if and only ifX,Y are homotopically equivalent and Z(X) = Z(Y ). This fact helps
to establish the topological structure of many infinite-dimensional (co)absorbing
spaces appearing in nature, see [24, 41, 72].

In particular, in [24] it was shown that a closed convex subset X of a locally
convex linear metric space is Π0

ξ-(co)absorbing for ξ ≥ 2 if and only if X is a Π0
ξ-

universal ∞-(co)meager space and X ∈ Π0
ξ . The same result is true for additive

Borel classes Σ0
ξ with ξ ≥ 3. Surprisingly, but for the class Π0

1 of compacta we
still have an open question.
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Question 3.5. Let X be a Π0
1-universal convex (closed σ-compact) subset of `2. 1253?

Is X strongly Π0
1-universal?

This question has an affirmative answer if X contains an almost internal point.
A similar situation holds for metrizable topological groups. It is shown in [24,

4.2.3] that a topological group G is a Π0
ξ-absorbing space for ξ ≥ 2 if and only if

G ∈ Π0
ξ is a Π0

ξ-universal ANR.

Question 3.6. Let G ∈ ANR be a Π0
1-universal σ-compact metrizable group. Is

G an Π0
1-absorbing space?

A similar question for the class Π0
1[ω] of finite-dimensional compacta is also

open, see [55, 5.7].

Question 3.7. Let G be an infinite-dimensional σ-compact strongly countable-
dimensional locally contractible group (containing a topological copy of each finite-
dimensional compactum). Is G a Π0

1[ω]-absorbing space? Equivalently, is G an
`2f -manifold?

In fact, the method of absorbing sets works not only for spaces and pairs
but also for order-preserving systems (Xγ)γ∈Γ of topological spaces, indexed by a
partially ordered set Γ with largest element max Γ. The order-preserving property
of (Xγ) means that Xγ ⊂ Xγ′ for any elements γ ≤ γ ′ in Γ. So each Xγ is a
subspace of XmaxΓ. Such systems (Xγ) are called Γ-systems. For a Γ-system X =
(Xγ)γ∈Γ, a subset F ⊂ XmaxΓ, and a map f : Y → X we let F ∩X = (F ∩Xγ)γ∈Γ

and f−1(X ) = (f−1(Xγ))γ∈Γ.
The notion of the strong universality extends to Γ-systems as follows: A Γ-

system X = (Xγ)γ∈Γ is called strongly ~C-universal for a class ~C of Γ-systems if

given: an open cover U of XmaxΓ, a Γ-system A = (Aγ)γ∈Γ ∈ ~C, a closed subset
F ⊂ AmaxΓ and a map f : AmaxΓ → XmaxΓ such that f |F is a Z-embedding with

F ∩ f−1(X ) = F ∩ A, there is a Z-embedding f̃ : AmaxΓ → XmaxΓ such that f̃ is

U-near to f , f̃ |F = f and f̃−1(X ) = A.

A system X is called ~C-absorbing in E if X is strongly ~C-universal andXmaxΓ =⋃
n∈ω Zn where each Zi is a Z∞-set in XmaxΓ and Zn ∩ X ∈ ~C. For more infor-

mation on absorbing systems, see [5].

Given a class ~C of Γ-systems and a non-negative integer number n consider
the subclass

~C[n] = {X ∈ ~C : dim(XmaxΓ) ≤ n}.
The following question is related to the results on existence of absorbing sets

for n-dimensional Borel classes [76].

Question 3.8. For which classes ~C of Γ-systems the existence of a ~C-absorbing 1254?

Γ-system implies the existence of a ~C[n]-absorbing Γ-system for every n ∈ ω?

One can formulate this question also for another types of dimensions, in par-
ticular, for extension dimension introduced by Dranishnikov [57].
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4. Topological characterization of particular infinite-dimensional
spaces

The theory of (co)absorbing spaces is applicable for spaces which are either
∞-meager or∞-comeager. However some natural strongly universal spaces do not
fall into either of these two categories. One of such spaces is span(E), the linear
hull of the Erdös set in `2 which is a meager strongly universal AR with SDAP
that fails to be ∞-meager, see [11, 53].

Question 4.1. Give a topological characterization of span(E). Is span(E) homeo-1255?

morphic to the linear hull span(Qω) of Qω in Rω? to the linear hull span(Ep) of
the Erdös set Ep = {(xi) ∈ `p : (xi) ∈ Qω and limi→∞ xi = 0} in the Banach
space `p, 1 ≤ p ≤ ∞?

Another problem of this sort concerns the countable products Xω of finite-
dimensional meager absolute retracts X . Using [24, 4.1.2] one can show that the
countable product of such a space X is a strongly universal AR with SDAP. The
space Xω is a n-meager for all n ∈ ω but unfortunately is not ∞-meager.

Question 4.2. Let X,Y be finite-dimensional σ-compact absolute retracts of the1256?

first Baire category. Are Xω and Y ω homeomorphic? (Applying [19] one can
show that each of the spaces Xω, Y ω admits a closed embedding into the other
space.)

Our third pathologic (though natural) example is the hyperspace expH(QI)
of closed subsets of the space of rationals QI = [0, 1]∩Q on the interval, endowed
with the Hausdorff metric. This space has many interesting features similar to
those of spanE: expH(QI) is n-meager for all n ∈ ω but fails to be ∞-meager;
expH(QI) is homeomorphic to its square and belongs to the Borel class Π0

3 of
absolute Fσδ-subsets; expH(QI) is Π0

3[ω]-universal but fails to be Π0
3-universal,

see [23].

Question 4.3. Give a topological characterization of the space expH(QI). In1257?

particular, are the spaces expH(QI) and expH(QI ×QI) homeomorphic?

The three preceding examples were meager but not ∞-meager. Because of
that they cannot be treated by the theory of absorbing spaces. The other two
our problems concern spaces that are 0-comeager but not ∞-comeager and hence
cannot be treated by the theory of coabsorbing spaces. These spaces are defined
with help of the operation of weak product

W (X,Y ) = {(xi) ∈ Xω : (∃n ∈ ω)(∀i ≥ n) xi ∈ Y }
where Y is a subspace of X . The classical space of the form W (X,Y ) is the Nagata
space N = W (R,P) well-known in Dimension Theory as a universal space in the
class of countable-dimensional (absolute Gδσ-)spaces. Here P = R \Q stands for
the space of irrationals. The countable product Pω is a dense absolute Gδ-set
in W (R,P). Nonetheless, W (R,P) contains no ∞-dense absolute Gδ-set (because
W (R,P) is countable-dimensional) and thus W (R,P) is not a coabsorbing space
(but is strongly universal and has SDAP).
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Question 4.4. Give a topological characterization of the Nagata space N = 1258?

W (R,P).

To pose a (possibly) more tractable question, let us note that N is homeo-
morphic to W (N,Pω) (by a coordinate-permutating homeomorphism).

Question 4.5. Is N = W (R,P) homeomorphic to W (N, (P \ {
√

2)ω)? 1259?

Next, we shall ask about the characterization of the pair (Iω,Pω
I ) where PI =

I ∩ P is the set of irrational numbers on the interval I = [0, 1]. Topological
characterizations of the Hilbert cube Iω and irrational numbers Pω

I are well-known.

Question 4.6. Give a topological characterization of the pair (Iω ,Pω
I ). In partic- 1260?

ular, is (Iω ,Pω
I ) homeomorphic to (Iω , G) for every dense zero-dimensional Gδ-

subset G ⊂ Iω with homotopy dense complement in Iω?

A similar question concerns also the pair (Iω ,Qω
I ) where QI = I ∩ Q. Since

Qω
I is not∞-meager in Iω, this pair can not be treated by the theory of absorbing

pairs, see [24].

Question 4.7. Give a topological characterization of the pair (Iω,Qω
I ). 1261?

5. Problems on ANRs

One of the principal problems on ANRs from the preceding two lists [58, 74],
the classical Borsuk’s Problem on the AR-property of linear metric spaces, has
been resolved in negative by R. Cauty in [40] who constructed a σ-compact linear
metric space that fails to be an absolute retract. However, the “compact’ version
of Borsuk’s problem still is open.

Question 5.1. Let C be a compact convex set in a linear metric space. Is C an 1262?

absolute retract?

There are also many other natural spaces whose ANR-property is not estab-
lished. Some of them are known to be divisible by the Hilbert space `2 in the sense
that they are homeomorphic to the product with `2 (and hence are `2-manifolds if
and only if they are ANRs). A classical example of this sort is the homeomorphism
group of an n-manifolds for n ≥ 2, see [74, HS4].

Another example is the space HB of Brouwer homeomorphisms of the plane,
endowed with the compact-open topology. A homeomorphism h : R2 → R2 is a
Brouwer homeomorphism if h preserves the orientation and has no fixed point.

Question 5.2. Is the space HB an ANR? 1263?

It is known that HB is locally contractible [34], is homotopically equivalent
to the circle S1 and is divisible by `2 [67]. So, HB is homeomorphic to S1 × `2 if
and only if HB is an ANR.

In spite of the existence of a linear metric space failing to be an AR, R. Cauty
proved that each convex subset of a linear metric space is an algebraic ANR (al-
gebraic ANRs are defined with help of a homological counterpart of the Lefschetz
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condition, see [44]). This follows from even more general fact asserting that each
metrizable locally equiconnected space is an algebraic ANR, see [44].

We recall that a topological space X is locally equiconnected if there are an
open neighborhood U ⊂ X ×X of the diagonal and a continuous function λ : U ×
[0, 1] → X such that λ(x, y, 0) = x, λ(x, y, 1) = y and λ(x, x, t) = x for every
(x, y, t) ∈ U × [0, 1]. If U = X ×X , then X is called equiconnected . It is easy to
see that each (locally) contractible topological group G is (locally) equiconnected
and so is any retract of G. We do not know if the converse is true.

Question 5.3. Let X be a (locally) equiconnected metrizable space. Is X a1264?

(neighborhood) retract of a contractible metrizable topological group?

It should be mentioned that this question has an affirmative answer for com-
pact X , see [39]. The proof of this particular case exploits the fact that each
metrizable equiconnected space X admits a Mal’tsev operation (which is a con-
tinuous map µ : X3 → X such that µ(x, x, y) = µ(y, x, x) = y for all x, y ∈ X).
Due to Sipacheva [70] we know that each compact space X admitting a Mal’tsev
operation is a retract of the free topological group F (X) over X . Therefore, each
equiconnected compact metrizable space X has a Mal’tsev operation and hence
is a retract of the free topological group F (X). Moreover, it can be shown that
the connected component of F (X) containing X is contractible. Now it is easy to
select a metrizable group topology τ on F (X) inducing the original topology on
X and such that X still is a retract of (F (X), τ) and the component of (F (X), τ)
containing X is contractible. This resolves the “compact” version of Question 5.3.
The non-compact version of this problem is related to the following question (dis-
cussed also in [63]):

Question 5.4. Is a metrizable space admitting a Mal’tsev operation a retract of1265?

a metrizable topological group?

By definition, an n-mean on a topological space X is a continuous map
m : Xn → X such that m(x, . . . , x) = x for all x ∈ X and m(xσ(1), . . . , xσ(n)) =
m(x1, . . . , xn) for any vector (x1, . . . , xn) ∈ Xn and any permutation σ of {1, . . . , n}.
Let us note that each convex subset C of a linear topological space admits an n-
means and so does any retract of C.

Question 5.5. Let n ≥ 2. Is there a metrizable equiconnected compact space X1266?

admitting no n-mean?

If such a compact space X exists then it is a retract of a contractible group
but fails to be a retract of a convex subset of a linear topological space.

For a compact space X let L(X) be the free topological linear space over X
and P (X) be the convex hull of X in L(X) (it can be shown that P (X) is a free
convex set overX). Let (U(X), λX) be the free equiconnected space overX (where
λ : U(X)×U(X)× [0, 1]→ U(X) is the equiconnected map of U(X)), see [43]. Let
Tv(X) be the family of metrizable linear topologies on L(X) inducing the original
topology on X . (The family Tv(X) was essentially used in [40] for constructing the
example of a linear metric space failing to be an AR). Let Tc(X) = {τ |P (X) : τ ∈
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Tv(X)} be the family consisting of the restrictions of the topologies τ ∈ Tv(X)
onto P (X), and Tu(X) be the family of metrizable topologies on U(X) which
induce the initial topology on X and preserve the continuity of the equiconnected
map λX : U(X)× U(X)× [0, 1]→ U(X).

It is interesting to study the classes Av (Ac, Au) of metric compacta X
such that the spaces (L(X), τ) ((P (X), τ), (U(X), τ)) are absolute retracts for
all topologies τ in Tv(X) (Tc(X), Tu(X)). It is known that Au ⊂ Ac ⊂ Av ,
see [43].

Question 5.6. Is it true that Au = Ac = Av? 1267?

The class Au contains all metrizable compact ANRs and all metrizable com-
pact C-spaces, see [43].

Question 5.7. Is it true that each weakly infinite-dimensional compact metrizable 1268?

space belongs to Av? to Au?

In light of this question let us mention that there is a strongly infinite-
dimensional compact space D of finite cohomological dimension with D /∈ Av ,
see [40]. In fact, the free linear space L(D) over D, endowed with a suitable
metrizable topology, gives the mentioned example of a linear metric space which
is not an AR.

According to [43] the class Ac is closed with respect to countable products.
We do not know if the same is true for the class Au.

Question 5.8. Is the class Au closed with respect to countable products? 1269?

6. Infinite-dimensional problems from Banach space theory

In this section we survey some open problems lying in the intersection of
infinite-dimensional topology and the theory of Banach spaces. Our principal
object is the unit ball BX = {x ∈ X : ‖x‖ ≤ 1} of a Banach space X , endowed
with the weak topology. It is well-known that the weak ball BX is metrizable (and
separable) if and only if the Banach space X has separable dual. So, till the end
of this section by a “Banach space” we understand an infinite-dimensional Banach
space with separable dual. In [13] the following general problem was addressed:

Question 6.1. Investigate the interplay between geometric properties of a Banach 1270?

space X and topological properties of its weak unit ball BX . Find conditions under
which two Banach spaces have homeomorphic weak unit balls.

It turns out that answers to these questions depend on (1) the class W(X) of
topological spaces homeomorphic to closed bounded subsets of a Banach space X
endowed with the weak topology, and (2) [in case of complexW(X)] on properties
of the norm of X . Let us remark that W(X) coincides with the class F0(BX) of
topological spaces homeomorphic to closed subsets of the weak unit ball BX of X .

In [13] it was observed that the class W(X) is not too large: it lies in the
class Π0

3 of absolute Fσδ-sets. For reflexive infinite-dimensional Banach spaces X
the class W(X) coincides with the class Π0

1 of compacta. On the other hand, for
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the Banach space X = c0 the class W(X) is the largest possible and coincides
with the Borel class Π0

3. An intermediate case W(X) = Π0
2 happens if and only

if X is a non-reflexive Banach space with PCP, the Point Continuity Property
(which means that for each bounded weakly closed subset B ⊂ X the identity
map (B,weak)→ B has a continuity point).

For Banach spaces with PCP the weak unit ball BX is homeomorphic either
to the Hilbert cube Q (if X is reflexive) or to the pseudointerior s = (0, 1)ω of Q
(if X is not reflexive). In two latter cases, the topology of BX does not depend
on the particular choice of an equivalent norm on X . In this case we say that the
Banach space X has BIP, the Ball Invariance Property. More precisely, X has BIP
if the weak unit ball BX of X is homeomorphic to the weak unit ball BY of any
Banach space Y , isomorphic to X . It is known [13] that PCP implies BIP and
BIP implies CPCP, the Convex Point Continuity Property, which means that each
closed convex bounded subset of the Banach space has a point at which the norm
topology coincides with the weak topology. It is known that the properties PCP
and CPCP are different: the Banach space B∞ constructed in [59] has CPCP but
not PCP.

Question 6.2. Is BIP equivalent to PCP? To CPCP? Has the Banach space B∞1271?

BIP?

In fact, the geometric properties PCP, BIP, and CPCP of a Banach space X
can be characterized via topological properties of the weak unit ball BX : X has
PCP (resp. CPCP, BIP) if and only if BX is Polish (0-comeager, ∞-comeager).

The norm of a Banach space X will be called n-(co)meager if the respective
weak unit ball BX is n-(co)meager. Let us remark that each Kadec norm is
∞-comeager (since the unit sphere is an ∞-dense absolute Gδ-subset in the weak
unit ball). It is well-known that each separable Banach space admits an equivalent
Kadec (and hence ∞-comeager) norm.

Question 6.3. Give a geometric characterization of Banach spaces admitting an1272?

equivalent ∞-meager norm.

For n-meager norms with n ∈ ω the answer is known: a Banach space X
admits an equivalent n-meager norm if and only if X fails to have the CPCP.
On the other hand, a Banach space X has an equivalent ∞-meager norm if X
fails to be strongly regular, see [13]. We recall that a Banach space X is called
strongly regular if for every ε > 0 and every non-empty convex bounded subset
C ⊂ X there exist non-empty relatively weak-open subsets U1, . . . , Un ⊂ C such
that the norm diameter of 1

n

∑n
i=1 Ui is less than ε. An example of a strongly

regular Banach space S∗T∞ failing to have CPCP was constructed in [60]. This
space has an equivalent norm which is n-meager for every n ∈ ω, see [13].

Question 6.4. Is there a strongly regular Banach space admitting an equivalent1273?

∞-meager norm? Has the space S∗T∞ an equivalent ∞-meager norm?

If a Banach space admits a 0-meager norm (equivalently, X fails CPCP), then
the class W(X) contains all finite-dimensional absolute Fσδ-spaces. If, moreover,
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the norm of a Banach space X is ∞-meager, then W(X) = Π0
3 and the weak unit

ball BX is homeomorphic to the weak unit ball of the Banach space c0 endowed
with the standard sup-norm. We do not know if the Banach space S∗T∞ has an
equivalent ∞-meager norm, but we know that W(S∗T∞) = Π0

3 and the weak unit
ball of S∗T∞ endowed with a Kadec norm is homeomorphic to the weak unit ball
of c0 endowed with a Kadec norm. The space S∗T∞ is an example of a strongly
regular space with W(S∗T∞) = Π0

3. However, S∗T∞ fails to have CPCP.

Question 6.5. Is there a Banach space X with W(X) = Π0
3 admitting no ∞- 1274?

meager norm? having CPCP?

In light of this question it should be mentioned that each Banach space with
PCP has W(X) = Π0

i for i ∈ {1, 2}. Also a Banach space with CPCP admits
no 0-meager norm. It is known that the Banach space c0 contains no conjugate
subspaces and has W(c0) = Π0

3.

Question 6.6. Suppose X is a Banach space with separable dual, containing no 1275?

subspace isomorphic to a dual space. Is W(X) = Π0
3?

For a Banach space X with an ∞-meager norm the weak unit ball is an
absorbing space (in fact, a Π0

3-absorbing space).
Similarly, for a Banach spaces with∞-comeager norm the weak unit ball BX is

a coabsorbing space and its topology is completely determined by the classW(X).
The same concerns the topology of the pair (B∗∗X , BX), where B∗∗X is the unit ball
in the second dual Banach space X∗∗, endowed with the ∗-weak topology. The
topology of this pair is completely determined by the class W(X∗∗, X) of pairs
(K,C) homeomorphic to pairs of the form (B,B∩X) where B ⊂ X∗∗ is w∗-closed
bounded subset of the second dual space (X∗∗, weak∗).

More precisely, we have the following classification theorem of Cantor–Bernstein
type proved in [13].

Theorem (Classification Theorem). Let X,Y be Banach spaces with separable
dual and ∞-comeager norms.

(1) The weak unit balls BX and BY are homeomorphic if and only ifW(X) =
W(Y ).

(2) The pairs (B∗∗X , BX) and (B∗∗Y , BY ) are homeomorphic if and only if
W(X∗∗, X) =W(Y ∗∗, Y ).

It is clear that the topological equivalence of the pairs (B∗∗X , BX) and (B∗∗Y , BY )
implies the topological equivalence of the weak unit balls BX and BY . We do not
know if the converse is also true.

Question 6.7. Assume that X,Y are Banach spaces with homeomorphic weak 1276?

unit balls BX and BY . Are the pairs (B∗∗X , BX) and (B∗∗Y , BY ) homeomorphic?

The answer to this question is affirmative provided W(X) = W(Y ) = Π0
ξ for

some ξ ∈ {1, 2, 3}.
The classification Theorem suggests introducing the partially ordered set

Ws
∞ = {W(X) : X is an infinite-dimensional Banach space with separable dual}
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inducing the following preorder of the family of Banach spaces: X ≤W Y if
W(X) ⊂ W(Y ) (equivalently, if the weak unit ball of X admits a closed embedding
into the weak unit ball of Y ).

Since each separable Banach space is isomorphic to a subspace of C[0, 1], the
set Ws

∞ contains at most continuum elements. Note that the set Ws
∞ is partially

ordered by the natural inclusion relation.
It is easy to see that the poset Ws

∞ has the smallest and largest elements:
Π0

1 =W(`2) and Π0
3 =W(c0) corresponding to classes W(X) of the Hilbert space

`2 and the Banach space c0. Also it is known that the class Π0
2 = W(J) where

J is the James quasireflexive space is a unique immediate successor of Π0
1. For

some time there was a conjecture that Ws
∞ consists just of these three elements:

Π0
1, Π0

2, and Π0
3. However it was discovered in [13] that for the Banach space B∞

(distinguishing the properties PCP and CPCP) the class W(B∞) is intermediate
betweenW(J) andW(c0). So the poset Ws

∞ appeared to be richer than expected.

Question 6.8. Investigate the ordered set Ws
∞. In particular, is it infinite? Is it1277?

linearly ordered?

The pathological classW(B∞) contains the class Π0
3[0] of all zero-dimensional

absolute Fσδ-spaces but not the class Π0
3[1], see [13]. This suggests the following

(probably difficult)

Question 6.9. Let n ∈ ω. Is there a Banach space X such that Π0
3[n] ⊂ W(X)1278?

but Π0
3[n+ 1] 6⊂ W(X)? (Such a space X if exists has CPCP but not PCP.)

Question 6.10. Is there a Banach space X such that Π0
3[ω] ⊂ W(X) but Π0

3 6⊂1279?

W(X)? (Such a space X if exists is strongly regular but fails to have PCP.)

In fact, the pathological space B∞ is one of the spaces J∗T∞,n, n ≥ 0, con-
structed in [60].

Question 6.11. Is W(J∗T∞,n) 6=W(J∗T∞,m) for n 6= m?1280?

Another two questions concern the influence of operations over Banach spaces
on the classes W(X).

Question 6.12. Is W(X ⊕ Y ) = max{W(X),W(Y )} for infinite-dimensional1281?

Banach spaces X and Y with separable duals?

Question 6.13. Let X be an infinite-dimensional Banach space. Is W(X⊕X) =1282?

W(X)? Is W(X ⊕ R) =W(X)?

Note that an infinite-dimensional Banach space X with separable dual need
not be isomorphic to X ⊕X or X ⊕ R, see [61].

In Figure 1 we collect all known information on the relationship between geo-
metric properties of a Banach space X with separable dual, topological properties
of the weak unit ball BX and properties of the classW(X). In the first line of the
diagram FD means “finite-dimensional”, R “reflexive”, and SR “strongly regular”.
The second line of the diagram means that every equivalent weak unit ball B of X
has the corresponding property; the third line means that the classW(X) does not
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X has: FD +3
KS

��

R +3
KS

��

PCP +3
KS

��

BIP +3
KS

��

CPCP +3
KS

��

SR +3
KS

−S∗T∞

vv

co 6⊂ X

BX is: f.d. +3
KS

��

compact +3
KS

��

Polish +3
KS

��

∞-comeager

?

+3 Baire +3
KS not ∞-meagerKS

W(X) 6⊃ : Π0
1

+3 Π0
2

+3 Π0
3[0] +3 Π0

3[1]
/

B∞

gg
+3 Π0

3[ω] +3 Π0
3

Figure 1. Relationship between geometric properties of a Ba-
nach space X with separable dual, topological properties of the
weak unit ball BX and properties of the class W(X)

contain the corresponding class of absolute Fσδ-spaces. The slashed and curved
arrows indicate that the corresponding implication is false (with a counterexample
written near the slashed arrow).

Finally we ask some questions on the topological structure of operator images.
By an operator image we understand an infinite-dimensional normed space of the
form TX for a suitable linear continuous operator T : X → Y between separable
Banach spaces. In [22] it was shown that each operator image belongs to a Borel
class Π0

α+2 \Σ0
α+2, Σ0

α+1 \Π0
α+1 or D2(Π0

α+1) \ (Π0
α ∪Σ0

α) for a suitable ordinal α
(here D2(Π0

α+1) is the class consisting of differences X \Y with X,Y ∈ Π0
α+1) and

each such a Borel class contains an operator image. Moreover, up to a homeo-
morphism each class Π0

2, Σ0
2, D2(Π0

2) contains exactly one operator image. On the
other hand, the class Π0

3 \Σ0
3 contains at least two topologically distinct operator

images, see [22] and [12].

Question 6.14. Does the class Σ0
3 \Π0

3 contain two topologically distinct operator 1283?

images? The same question for other Borel classes.

The image T : X → Y of a Banach space under a compact operator T always
is an absorbing space, see [22]. Moreover, for every countable ordinal α ≥ 1
the multiplicative Borel class Π0

α+2 contains an operator image which is a Π0
α+2-

absorbing space. We do not know if the same is true for the additive Borel classes.

Question 6.15. Is there an operator image which is a Σ0
3-absorbing space? a 1284?

Σ0
ξ+1-absorbing space with ξ ≥ 1?

For ξ = 1 the answer is affirmative: the image T : X → Y of any reflexive
Banach space under a compact bijective operator T : T → Y is Σ0

2-absorbing.

7. Some problems in dimension theory

In this section we address some problems related to distinguishing between cer-
tain classes of infinite-dimensional compacta intermediate between the class cd of
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countable-dimensional compacta and the class wid of weakly-infinite-dimensional
compacta:

fd ⊂ cd ⊂ σhd ⊂ trt ⊂ C ⊂ wid

In this diagram, by fd and C we denote the classes of finite-dimensional compacta
and compact with the property C. The classes σhd and trt are less known and
consist of σ-hereditarily disconnected and trt-dimensional compacta, respectively.
A topological space X is called σ-hereditarily disconnected if X can be written as
the countable union of hereditarily disconnected subspaces.

The definition of trt-dimensional compacta is a bit longer and relies on the
transfinite dimension trt introduced by Arenas, Chatyrko, and Puertas in [4]. For
a space X they put

(1) trt(X) = −1 iff X = ∅;
(2) trt(X) ≤ α for an ordinal α iff each closed subset A ⊂ X with |A| ≥ 2

can be separated by a closed subset B ⊂ A with trt(B) < α.
(3) trt(X) = α if trt(A) ≤ α and trt(A) 6≤ β for any β < α.

A space X is called trt-dimensional if trt(X) = α for some ordinal α.
In [4] it was proved that each trt-dimensional compactum is a C-space, which

gives the inclusion trt ⊂ C. The inclusion σhd ⊂ trt was proved in [31] with help
of a game characterization of trt-dimensional spaces.

The classes cd and σhd of countable-dimensional and σ-hereditarily discon-
nected compacta are distinguished by the famous Pol’s compactum. We do not
know if the other considered classes also are different.

Question 7.1. Is each trt-dimensional compactum σ-hereditarily disconnected?1285?

Is each C-compactum trt-dimensional?

Recently, P. Borst [35] announced an example of a weakly infinite-dimensional
compact metric space which fails to be a C-space, thus distinguishing the classes
wid and C.

Some immediate questions still are open for the transfinite dimension trt.

Question 7.2. Is the ordinal trt(X) countable for each trt-dimensional metrizable1286?

compactum X?

8. Homological methods in dimension theory

In this section we discuss some problems lying in the intersection of Infinite-
Dimensional Topology, Dimension Theory, and Algebraic Topology. With help of
(co)homologies we shall define two new dimension classes AZ∞ and hsp of com-
pacta including all trt-dimensional compacta.

The starting point is the homological characterization of Zn-sets in ANRs due
to Daverman and Walsh [49]: a closed subset A of an ANR-space X is a Zn-set
in X for n ≥ 2 if and only if A is a Z2-set in X and Hk(U,U \A) = 0 for all k ≤ n
and all open subsets U ⊂ X .

Having this characterization in mind we define a closed subset A ⊂ X to
be a G-homological Zn-set in X for a coefficient group G if the singular relative
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homology groups Hk(U,U \ A;G) are trivial for all k ≤ n and all open subsets
U ⊂ X . If G = Z, we shall omit the notation of the coefficient group and will
speak about homological Zn-sets. Thus a subset A of an ANR-space X is a Zn-set
for n ≥ 2 if and only if it is a Z2-set and a homological Zn-set in X . Another
characterization of Zn-sets from [20] asserts that a closed subset A of an ANR-
space is a homological Zn-set in X if and only if A×{0} is a Zn+1-set in X×[−1, 1].

It is more convenient to work with homological Zn-sets than with usual Zn-
sets because of the absence of many wild counterexample like wild Cantor sets
in Q (these are topological copies of the Cantor set in Q that fail to be Z2-sets,
see [75]). According to an old result of Kroonenberg [64] any finite-dimensional
closed subset A ⊂ Q is a homological Z∞-set in Q. A more general result was
proved in [20]: each closed trt-dimensional subset A ⊂ Q is a homological Z∞-set.
We do not know if the same is true for other classes of infinite-dimensional spaces
like C or wid.

Question 8.1. Is a closed subset A ⊂ Q a homological Z∞-set in Q if A is weakly 1287?

infinite-dimensional? A is a C-space?

This question is equivalent to the following one.

Question 8.2. Let W ⊂ Q be a closed weakly-infinite dimensional subset (with 1288?

the property C). Is the complement Q \W homologically trivial?

The preceding discussion suggests introducing new dimension classes AZn con-
sisting of so-called absolute Zn-compacta. Namely, we define a compact space K
to be an absolute Zn-compactum if for every embedding e : K → Q of K into the
Hilbert cube Q the image e(K) is a homological Zn-set in Q. Among the classes
AZn the most interesting are the extremal classes AZ0 and AZ∞. Both of them
are hereditary with respect to taking closed subspaces.

In fact, the class AZ0 coincides with the class of all compact spaces containing
no copy of the Hilbert cube and thus AZ0 is the largest possible non-trivial hered-
itary class of compact spaces. The class AZ0 is strictly larger than the class AZ1:
the difference AZ0 \AZ1 contains all hederitarily indecomposable continua K ⊂ Q
separating the Hilbert cube Q (such continua exist according to [33]). Observe
also that AZ∞ =

⋂
n∈ω AZn.

Question 8.3. What can be said about the classes AZn for n ∈ N. Are they 1289?

hereditary with respect to taking closed subspaces? Are they pairwise distinct?

The class AZ∞ is quite rich and contains all trt-dimensional compacta. Besides
being absolute Z∞-compacta, trt-dimensional compacta have another interesting
property: they contain many (co)homologically stable points. A point x of a
space X will be called homologically (resp. cohomologically) stable if for some
k ≥ 0 the singular homology group Hk(X,X \{x}) (resp. Čech cohomology group
Ȟk(X,X \ {x})) is not trivial. For locally contractible spaces both notions are
equivalent due to the duality between singular homologies and Čech cohomologies
in such spaces. But it seems that Čech cohomologies work better beyond the class
of locally contractible spaces.
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fdZ
//

&&LLLLLL afd // AZ∞ // AZn
// AZ1

// AZ0
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fd //

BB����������
cd // σhd // trt //

OO
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C // wid
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Figure 2. Inclusion relations among classes of compacta

According to [31], each trt-dimensional space contains a (co)homologically
stable point and by [15] or [20] the same is true for every locally contractible C-
compactum. The local contractibility is essential for the proof of the latter result
and we do not known if it can be removed.

Question 8.4. Has each weakly infinite-dimensional (C-)compactum a cohomo-1290?

logically stable point?

According to a classical result of Aleksandrov, each compact space X of finite
cohomological dimension dimZ(X) contains a cohomologically stable point. This
implies that the class fdZ of compacta with finite cohomological dimension lies
in the class hsp of compacta whose any closed subspace has a cohomologically
stable point. The class fdZ is also contained in the class afd of all almost finite-
dimensional compacta, where a space X is called almost finite-dimensional if there
is n ∈ ω such that each closed finite-dimensional subspace F ⊂ X has dimension
dim(F ) ≤ n. By [7], each almost finite-dimensional compactum is an absolute
Z∞-space. Figure 2 describes the (inclusion) relations between the considered
classes of compacta (the arrow x→ y means that x ⊂ y.

It follows from [2] (see also [56]) that the classes fdZ and C are orthogonal in
the sense that fdZ ∩ C = fd. Is the same true for the intersection fdZ ∩ wid?

Question 8.5 (Dranishnikov). Is a weakly infinite-dimensional compact space1291?

finite-dimensional if it has finite cohomological dimension?

A similar question concerns the class afd of almost finite-dimensional com-
pacta. It is known [7] (and can be easily shown by transfinite induction) that
afd ∩ trt = fd. Is the same true for the intersection afd ∩ C? More precisely:

Question 8.6. Is a compact metrizable C-space finite-dimensional if it is almost1292?

finite dimensional?

Another interesting class from the diagram is the class hsp of compacta all
whose closed nonempty subspaces have cohomologically stable points.

Question 8.7. What is the relation between the class hsp and other dimension1293?

classes from the diagram? In particular, has a (locally contractible) compact space
X a cohomologically stable point if X is almost finite-dimensional? weakly infinite-
dimensional? an absolute Z∞-space?
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Question 8.8. Is a compact space X an absolute Z∞-space if 1294?

• all closed subspaces of X have a cohomologically stable point?
• all almost finite-dimensional closed subspaces of X are finite-dimensional?

We have defined absolute Z∞-compacta with help of their embedding into the
Hilbert cube. What about embeddings into other spaces resembling the Hilbert
cube?

Question 8.9. Let A be a compact subset of an absolute retract X whose all points 1295?

are homological Z∞-points. Is A a homological Z∞-set in X if A is an absolute
Z∞-space?

Compact absolute retracts whose all points are homological Z∞-points seem
to be very close to being Hilbert cubes. By [20] all such spaces fail to be C-spaces
and have infinite cohomological dimension with respect to any coefficient group.

Question 8.10. Let X be a compact absolute retract whose all points are homolog- 1296?

ical Z∞-points. Is X strongly infinite-dimensional? Is X × [0, 1]2 homeomorphic
to the Hilbert cube? Is X homeomorphic to Q if X has DDP, the Disjoint Disks
Property?

In light of this question we should mention an example of a fake Hilbert cube
constructed by Singh [69]. He constructed a compact absolute retract X such
that (i) all points of X are homological Z∞-points, (ii) X × [0, 1]2 and X × X
are homeomorphic to Q but (iii) X contains no proper closed ANR-subspace of
dimension greater than one.

A bit weaker question of the same spirit asks if the Square Root Theorem
holds for the Hilbert cube.

Question 8.11. Is a space X homeomorphic to the Hilbert cube if X has DDP 1297?

and X2 is homeomorphic to Q.

Let us note that for the Cantor and Tychonov cubes the Square Root Theorem
is true, see [26].

The Singh’s example shows that the class AZ0 of absolute Z0-compacta is not
multiplicative. An analogous question for the class AZ∞ is open.

Question 8.12. Is the class AZ∞ closed with respect to taking finite products? 1298?

It should be noted that the product X × Y of a compact absolute Z∞-space
X and a trt-dimensional compact space Y is an absolute Z∞-space, see [7].

9. Infinite-dimensional spaces in nature

The Gromov–Hausdorff distance between compact metric spaces (X1, d1) and
(X2, d2) is the infimum of the Hausdorff distance between the images of isometric
embeddings of these spaces into a metric space. Let GH denote the set of all
compact metric spaces (up to isometry) endowed with the Gromov–Hausdorff
metric. We call GH the Gromov–Hausdorff hyperspace. It is well-known that
GH is a complete separable space.
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Question 9.1. Is the Gromov–Hausdorff hyperspace homeomorphic to `2?1299?

Question 9.2. Is the subspace of the Gromov–Hausdorff hyperspace consisting of1300?

all finite metric spaces homeomorphic to σ?

Question 9.3. What is the Borel type of the subspace of the Gromov–Hausdorff1301?

hyperspace consisting of all compact metric spaces of dimension ≤ n?
A convex metric compactum is a convex compact subspace of a normed space.

Question 9.4. Is the subspace of the Gromov–Hausdorff hyperspace consisting of1302?

all convex metric compacta homeomorphic to `2?

Question 9.5. Is the subspace of the Gromov–Hausdorff hyperspace consisting of1303?

all convex finite polyhedra homeomorphic to σ?

A tree is a connected acyclic graph endowed with the path metric.

Question 9.6. Is the subspace of the Gromov–Hausdorff hyperspace consisting of1304?

all finite trees homeomorphic to σ?

For any metric spaceX , one can consider the Gromov–Hausdorff spaceGH(X),
the subspace of GH consisting of the (isometric copies of the) nonempty compact
subsets of X . Note that the properties of GH(X) can considerably differ from
those of the Hausdorff hyperspace expX : as L. Bazylevych remarked, the space
GH(X) need not be zero-dimensional for zero-dimensional X .

Question 9.7. Is the Gromov–Hausdorff hyperspace GH([0, 1]) homeomorphic to1305?

the Hilbert cube?

Recall that the Banach–Mazur compactum Q(n) is the space of isometry
classes of n-dimensional Banach-spaces. The space Q(n) is endowed with the
distance d(E,F ) = Log inf{‖T‖ · ‖T−1‖ : T : E → F is an isomorphism}. Let
{Eucl} ∈ Q(n) denote the Euclidean point to which corresponds the isometry
class of standard n-dimensional Euclidean space. It is proved in [1] (see also [3])
that the space QE(n) = Q(n) \ {Eucl} is a Q-manifold.

Question 9.8. Are the Q-manifolds QE(n) and QE(m) homeomorphic for n 6=1306?

m?

Question 9.9. Is the subspace of the Banach–Mazur compactum Qpol(n) consist-1307?

ing of classes of equivalence of polyhedral norms a σ-manifold? If so, is the pair
(QE(n), Qpol(n)) a (Q, σ)-manifold?

Question 9.10. Is the subspace of QE(n) = Q(n) \ {Eucl} consisting of classes1308?

of equivalence of (smooth) strictly convex norms an `2-manifold?

Question 9.11. Is there a topological field homeomorphic to the Hilbert space `2?1309?

Let (X, d) be a complete metric space. By CLW (X) we denote the set of all
nonempty closed subsets in X endowed with the Wijsman topology τW generated
by the weak topology {d(x, ·) : x ∈ X}.
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Question 9.12. Let X be a Polish space. What is the Borel type of the subspace 1310?

{A ∈ CLW (X) : dimA ≥ n}?
Question 9.13. Characterize metric spaces X whose hyperspace CLW (X) is an 1311?

ANR.

Some partial results concerning the latter question can be found in [65].
For a metric spaceX by BddH(X) we denote the hyperspace of closed bounded

subsets of X endowed with the Hausdorff distance.
A metric space (X, d) is called almost convex if for any points x, y ∈ X with

d(x, y) < s + t for some positive reals s, t there is a point z ∈ X with d(x, z) < s
and d(z, y) < t. In particular, each subspace of the real line is almost convex.

By [47] or [66] for each almost convex metric spaceX the hyperspace BddH(X)
is an ANR. We do not know if the converse is true.

Question 9.14. Let X be a metric space whose hyperspace BddH(X) is an ANR. 1312?

Is the topology (the uniformity) of X generated by an almost convex metric?

Metric spaces X whose hyperspaces BddH(X) are ANRs were characterized
in [30]. This characterization implies that the hyperspace BddH(X#) of the one-
dimensional subspace

X# = {(xn) ∈ c0 : (∃n ∈ ω)(∀i 6= n) xi ∈ 1
i Z}

of the Banach space c0 is an ANR.

Question 9.15. Is the topology (the uniformity) of the space X# generated by an 1313?

almost convex metric?

A metric space X is defined to be an absolute neighborhood uniform retract
(briefly ANUR) if for any metric space Y ⊃ X there is a uniformly continuous
retraction r : Oε(X) → X defined on an ε-neighborhood of X in Y . It is known
that each uniformly convex Banach space X is ANUR. In particular, the Hilbert
space `2 is ANUR.

Question 9.16. Is BddH(`2) an absolute neighborhood uniform retract? 1314?

It is known that BddH(`2) is an ANR [47] and the closed subspace of BddH(`2)
consisting of closed bounded convex subsets of `2 is an ANUR, see [32].
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[16] T. Banakh and R. Cauty, Universalité forte pour les sous-ensembles totalement bornés.

Applications aux espaces Cp(X), Colloq. Math. 73 (1997), no. 1, 25–33.
[17] T. Banakh and R. Cauty, Interplay between strongly universal spaces and pairs, Disserta-

tiones Math. 386 (2000), 38.

[18] T. Banakh and R. Cauty, On universality of countable and weak products of sigma heredi-
tarily disconnected spaces, Fund. Math. 167 (2001), no. 2, 97–109.

[19] T. Banakh and R. Cauty, On universality of finite powers of locally path-connected meager
spaces, Colloq. Math. 102 (2005), no. 1, 87–95.

[20] T. Banakh, R. Cauty, and A. Karasev, On homotopical and homological Zn-sets, Preprint.
[21] T. Banakh, R. Cauty, K. Trushchak, and L. Zdomskyy, On universality of finite products

of Polish spaces, Tsukuba J. Math. 28 (2004), no. 2, 455–471.
[22] T. Banakh, T. Dobrowolski, and A. Plichko, The topological and Borel classification of

operator images, Dissertationes Math. 387 (2000), 37–52.
[23] T. Banakh, W. Kubís, K. Sakai, and R. Voytsitsyy, On the hyperspace of closed subsets of

the space of rational numbers, Preprint.
[24] T. Banakh, T. Radul, and M. Zarichnyi, Absorbing sets in infinite-dimensional manifolds,

Mathematical Studies Monograph Series, vol. 1, VNTL Publishers, Lviv, 1996.
[25] T. Banakh and T. Radyl, On universality of countable powers of absolute retracts, Ukräın.
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[26] T. Banakh and D. Repovš, Division and k-th root theorems for Q-manifolds, Preprint.
[27] T. Banakh and Kh. R. Trushchak, Zn-sets and the disjoint n-cells property in products of

ANRs, Mat. Stud. 13 (2000), no. 1, 74–78.
[28] T. Banakh and V. Valov, Parametric general position properties and embedding of n-

dimensional maps into trivial bundles, Preprint.
[29] T. Banakh and R. Voytsitskyy, The cardinal characteristics of the ideal of n-meager sets

in the Hilbert cube, Preprint.
[30] T. Banakh and R. Voytsitskyy, Characterizing metric spaces whose hyperpsaces are absolute

neighborhood retracts, Topology Appl., To appear.
[31] T. Banakh and M. Zarichnyi, On separation dimension of topological spaces, Preprint.
[32] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, Amer.

Math. Soc. Colloq. Publ., vol. 48, American Mathematical Society, Providence, RI, 2000.
[33] R H Bing, Higher-dimensional hereditarily indecomposable continua, Trans. Amer. Math.

Soc. 71 (1951), 267–273.
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Classical dimension theory

Vitalij A. Chatyrko

Introduction

Dimension theory has a long history which is very well described in different
books and surveys (some of those published after 1990 are [1, 19, 2, 58, 52,
28, 20, 54, 21, 48]). This appeared about 100 years ago as a theory of an
integer-valued topological invariant whose values on each simple geometric figure
coincided with the number assigned in geometry to this figure as a dimension. The
invariant was called dimension and at first was considered on compact metrizable
spaces, in brief CMS. At the beginning there were three approaches to define
the dimension notated by dim, Ind and ind. They were based on very natural
geometric observations and could be later easily extended outside the class of CMS.
It was observed almost from the beginning that dim, Ind and ind could disagree
for general spaces. Mathematicians started to talk about dimension functions or
merely dimensions. But the main challenge for the dimension theory at this time
was to study the dimension in the class of CMS. It was difficult to evaluate the
dimension there. So topologists continued to look for more effective approaches
which could involve the use of algebra. This led in particular to cohomological
dimensions dimG. But would dimG be the same dimension as defined by dim, Ind
and ind for CMS? The answer was “no” and came from A. Dranishnikov [12].
After that one realized that there was not just one dimension in the class of CMS.
In fact, there were many dimension functions which could be objects of study,
and to restrict the dimension theory only to the class of CMS no longer made
sense. Nowadays the dimension theory is huge and consists of different parts which
have influence on each other. One can name as examples “classical dimension
theory” (the references above), “algebraic dimension theory” ([13, 56, 16, 17]),
“asymptotic dimension theory” ([14]). This division is motivated by subjects of
studies, different methods and applications outside the dimension theory. This
survey is devoted to the classical dimension theory, strictly speaking, to some
of its parts. We will recall results obtained after 1990 and consider problems
(sometimes well known) which could probably be solved without the use of deep
methods of algebra or geometry (one can find many other interesting problems in
the references mentioned above).

Our terminology mostly follows [18] and [19] and most of our our uncited
remarks can be found in [19]. All spaces considered are assumed to be regular T1.
We define here the covering dimension of a completely regular space X , dimX ,
as follows. dimX ≤ n if each finite cover of X by functionally open sets has a
finite refinement by functionally open sets such that each point belongs to at most
n + 1 of them. The large inductive dimension of a space X , IndX , is defined
inductively by the following way. IndX = −1 if and only if X = ∅. IndX ≤ n
if every closed subset A of X has arbitrarily tight open neighborhoods U with

621
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Ind BdU ≤ n− 1, where BdC denotes the boundary of a set C. (If X is normal
then, equivalently, the set A can be separated from the complement of U by a
partition C with IndC ≤ n− 1.) One can get the definition of the small inductive
dimension of a space X, indX , from the definition of IndX by replacing the set A
by a point. It is clear that indX ≤ IndX ; IndX = 0 implies the normality of X
and dimX = 0; dimX = 0 implies indX = 0 and, if X is normal, even IndX = 0.

Coincidence of dimensions

Recall that for a space X we have the Urysohn identity

(UID) dimX = IndX = indX

if X is separable metrizable (in brief, SM), and dimX ≤ IndX = indX if X is
Lindelöf and perfectly normal. A space X is called cosmic if X is a continuous
image of a SM space. Any cosmic space X is evidently Lindelöf and perfectly
normal. In [5] Charalambous, following the way developed by Delistathis and
Watson [10], constructed in ZFC a cosmic space C that despite being the union
of countably many of subspaces of the square I2, has dimC = 1 and indC =
2. (Independently, A. Dow and K.P. Hart ([11]) using the strategy from [10],
presented under the assumption of Martin’s Axiom for σ-centered partial orders
a cosmic space with dim = 1 and ind ≥ 2.)

Question 1. How large can the gap between ind and dim be for cosmic spaces?1315?

Recall (cf. [10] (resp. [20])) that by a theorem of Nagami (resp. Leibo) for
a paracompact space X we have dimX = IndX if X is the union of countably
many closed metrizable subspaces (resp. the closed image of a metrizable space).
So UID is valid for any space which is either the union of countably many closed
SM subspaces or the closed image of a SM space. Recall (cf. [43]) that every
perfectly normal union of finitely many metrizable (resp. SM) subspaces is the
union of countably many closed metrizable (resp. SM) subspaces.

Question 2. Does UID hold for quotient images of SM spaces?1316?

Due to Roy we know that there exist metrizable spaces with ind = 0 and
Ind = 1. Later Mrowka, Ostaszewski and Kulesza simplified his construction.
Thus Kulesza in [33] presented in ZFC a complete N -compact metric space K
having weight K = ω1 such that IndKn = 1 for any n. Recall (cf. [40]) that
by a result of Katetov–Morita if every completion X∗ of a metric space X has
indX∗ ≥ k for some integer k then IndX ≥ k. In [40] Mrowka presented in ZFC

a non-complete metric space νµ0 such that ind νµ0 = 0, and showed that if we
additionally assume his special set-theoretic axiom S(ℵ0) then for n = 1, 2 every
completion of (νµ0)n contains an n-dimensional cube In, and we have Ind(νµ0)n =
n (the case n ≥ 3 was proved by Kulesza [34]). On the contrary if we assume CH

then Ind(νµ0)n = 1 for all n ([41]).

Question 3. Does there exist a complete (N -compact) metric space X (having1317?

weight X = ω1) such that IndX > 1 and indX = 0?
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Observe that it is still an open question if there exists in ZFC a (complete)
(N -compact) metric space X (having weight X = ω1) such that dimX > 1 and
indX = 0. Many interesting problems on this subject one can find in [41].

Recall that for a compact space X we have dimX ≤ indX ; dimX = indX =
IndX if dimX = 0; indX = IndX if indX = 1, and (cf. [20], [21]) there
is a lot of examples of compact spaces with noncoinciding dimensions dim, ind
and Ind, especially with dim 6= ind. Recently Pasynkov in [47] presented for
each n ≥ 2 a Dugundji (resp. homogeneous) compact space Dn (resp. Hn) with
dim = 1 and ind = n. A compact space X is Dugundji if for any compact space
Y with dimY = 0 every continuous mapping from any its closed subset to X has
a continuous extension to the whole Y . A space X is homogeneous if for each pair
of points x, y in X there is a homeomorphism h : X → X such that h(x) = y.
Recall (cf. [47]) that by a theorem of Fedorchuk for any Dugundji compact space
we have ind = Ind, but for a homogeneous compact space this is unknown. A
compact space X is algebraically homogeneous if there exists a topological group
G and its closed subgroup H such that X = G/H . By a theorem of Pasynkov
(cf. [48]) if G is locally compact then UID holds in X .

Question 4. Does UID hold for any algebraically homogeneous compact space? 1318?

It is unknown if Hn is algebraically homogeneous.
Since late sixties of 20th century (cf. [20]) we know due to Filippov, Lifanov

and Pasynkov that there are compact spaces with ind 6= Ind. In particular, there
exists a sequence of compact spaces {Xi}∞i=2 ([26]) (resp. {Yi}∞i=2 ([49])) such that
for each i, indXi = i, IndXi = 2i− 1 and dimXi = 1 (resp. indYi = dimYi = i,
IndYi = i+ 1).

Question 5. Does there exist for each n ≥ 5 a compact space Zn such that 1319?

dimZn = 1, indZn = 2 and IndZn = n?

Such Z4 was constructed by Kotkin ([31]). The positive answer to this ques-
tion would show that for any integers n,m, p such that 1 ≤ n ≤ m ≤ p there exists
a compact spaceXn,m,p with dimXn,m,p = n ≤ indXn,m,p = m ≤ IndXn,m,p = p.

The definition of Dimensionsgrad , Dg, can be obtained from the definition
of Ind for normal spaces via partitions by replacing the word “partition” with
the word “cut”. In [25] Fedorchuk, Levin, Scepin proved that for any metrizable
compact space X we have DgX = dimX , but surprisely for complete SM spaces
the dimensions can differ as was showed by Fedorchuk and van Mill (cf. [58]). It is
known (cf. [21]) that dimX ≤ DgX ≤ IndX for any compact space. A compact
space X is snake-like if for any open cover α of X there exists an open refinement
β = {Ui}ni=1 such that Ui ∩ Uj 6= ∅ if and only if |i− j| ≤ 1.

Question 6. Does the equality DgX = 1 hold for any snake-like compact space 1320?

X?

In [6] Charalambous presented for each n > 1 a snake-like compact space
Cn such that 1 ≤ DgCn < indCn = IndCn = n but the value DgCn remained
unknown. There are few examples of compact spaces where dim,Dg and ind
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disagree. Thus Chatyrko and Fedorchuk ([23]) constructed a compact space X
with dimX = 1 < DgX = 2 < indX = IndX = 3. But we do not still know if
there exists a compact space where ind < Dg or all dim, Dg, ind and Ind disagree.

Recall that if a space X is normal then dimX ≤ IndX . For a normal n-
manifold M we have additionally n = indM ≤ dimM . It is known (cf. [20]) that if
a manifold M is weakly paracompact then it is SM. The first example of a manifold
with non-coinciding dimensions was presented by Fedorchuk and Filippov in [24].
Namely, they constructed in CH for each n ≥ 3 a normal countably compact
n-manifold Mn such that n = dimMn < IndMn = 2n − 2. Later Fedorchuk
(cf. [20]) constructed also in CH for any m,n such that 4 ≤ n < m, a perfectly
normal separable n-manifold Mn,m with m− 1 ≤ dimMn,m ≤ m < m+ n− 3 ≤
IndMn,m ≤ m+ n− 1.

Question 7. Do there exist in ZFC (separable) (countably compact) n-manifolds1321?

M where UID does not hold (dimM 6= n)?

It is unknown if there exist a 2-manifold M with IndM > 2, a 3-manifold
N with dimN > 3 and an n-manifold Mn such that dimMn = IndMn > n for
each n.

Addition theorems for dimensions dim, Ind, ind

Recall that if a normal space X is the union of two closed subsets A,B then
IndX ≤ IndA + IndB, and there exists a compact space L =

⋃2
i=1 Li such that

IndL = 2 and for each i the set Li is closed in L and IndLi = 1. In [31] Kotkin

constructed a compact space K =
⋃3

i=1Ki such that indK = 3 and for each i the
set Ki is closed in K and IndKi = 1.

Question 8. Does there exist for each n = 4, 5, . . . a compact space Xn =1322? ⋃n
i=1 Yi,n such that IndXn = n and for each i the set Yi,n is closed in Xn and

IndYi,n = 1?

In [7] Chatyrko proved that if a space X is the union of two closed subsets
A,B then indX ≤ max{indA, indB} + 1. Recall that for any normal space X
being the union of countably many closed subsets Xi, we have

(∗) dimX = max{dimXi}.
So if n ≥ 4, we would have 1 = dimXn < 2 ≤ indXn ≤ p + 1 < IndXn = n for
the smallest p such that n ≤ 2p.

Let d will be either ind or Ind. We will say that the finite sum theorem
for d holds in a space X (in dimension k ≥ 0), in brief, FST(d) (respectively,
FST(d, k)), if d(A ∪ B) = max{dA, dB} for any closed in X sets A and B (such
that dA, dB ≤ k). For any space X define FST(d, X) = ∞, if FST(d) holds in
X ; min{k ≥ 0 such that FST(d, k) does not hold in X} otherwise.

Question 9. Does there exist for each integer m > 1 a space X such that1323?

FST(d, X) = m?
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Let now d be either dim, ind or Ind, and X = A ∪ B. Recall that if X is
hereditarily normal then we have the Urysohn inequality ,

(UIN) dX ≤ dA+ dB + 1.

UIN could be useful when we want to evaluate d: if for a space Z =
⋃n

i=0 Zi, where
for each i, dZi ≤ 0, we have dZ = n ≥ 1, and for any subsets U, V of Z, d(U∪V ) ≤
dU + dV + 1, then for any k such that 1 ≤ k ≤ n, d(

⋃k
i=0 Zi) = k. In [39]

Mrowka showed that for any function f : {1, 2, 3} → {0, 1, 2, . . . ,∞} there exists a
completely regular space X such that dimA = f(1), dimB = f(2), dimX = f(3),
and the sets A,B are countable intersections of clopen sets (moreover, X is of
type N ∪ R, that is X is also the union of two discrete subspaces X1, X2, one
of which is open, dense and countable, X is first countable, separable, locally
compact, pseudocompact and all compact subspaces of X have dim = 0). This
statement witnesses some known facts by E. Pol, R. Pol and Terasawa about
dim in completely regular spaces, concerning the failures of (∗), UIN and the
monotonicity with respect to closed subsets (the last one was also demonstrated
by the earlier mentioned example of Kulesza). However, if F ⊂ Z ⊂ Y , where Y
is normal and F is closed in Y , then dimF ≤ dimZ. This implies by a standard
method with help of (∗) that UIN holds for dim for any normal space X . In [59]
Zambahidze proved that UIN is valid for Ind for any normal space X , where
FST(Ind) holds. Let IndA = n, IndB = m and n,m ≥ 0. One can prove
that IndX ≤ mn + 2(m + n + 1) if X is normal; indX ≤ 2 · (n + m + 1); and
indX ≤ n+m+ 1 if FST(ind) holds in X .

Question 10. Does there exist a (normal) space X = A∪B such that indX = 2 1324?

(resp., IndX = 2) and IndA = IndB = 0?

In [57] Tsereteli constructed completely regular space T = T1 ∪ T2 such that
IndT ≥ 2, T1 is discrete, T2 is dense and IndTi = 0 for each i. Note that if
X =

⋃n
i=0Xi, where for each i the subspace Xi is either discrete or dense and

has ind = 0 then indX ≤ n. We know due to Katetov (cf. [21], see also Oka [43]
about different generalizations) that for a metrizable space X we have dimX = n
if and only if X =

⋃n
i=0 Xi where dimXi = 0 for each i.

Question 11. Does there exist a metrizable space X such that 0 < indX < ∞ 1325?

which is not the union of indX + 1 many subspaces having ind = 0?

Observe (cf. [21]) that for each n ≥ 1 (resp. ∞) there exists a first countable
separable snake-like compact space Sn such that indSn = n and each open subset
of Sn+1 contains a copy of Sn (resp. each closed connected subset of S∞ has
ind =∞). So we can prove that for each n ≥ 2 (resp. ∞), Sn is not the union of
n (resp. countably many) subspaces having ind = 0. In CH by a resulf of Odincov
one can assume that all Sn are perfectly normal (cf. [21]).

Let d be either dim or Ind.

Question 12. Does there exist (for dim in ZFC) a hereditarily normal space X 1326?

such that dX <∞ which is not the union of countably many (even dX+1) many
subspaces having ind = 0 (even d = 0)?
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In [59] Zambakhidze presented a homogeneous paracompact space Z with
IndZ = 2 which is not the union of three subspaces of Ind = 0.

Product theorems for dimensions dim, ind, Ind

One can show that for any regular spaces X,Y and any k ≥ 0 such that
indX = n, indY = m and FST(ind, X), FST(ind, Y ) ≥ k we have ind(X × Y ) ≤
n+m, if either n = 0, or m = 0, or n,m ≤ k; 2(n+m)− k − 1, otherwise. This
is a combination of known facts by Pasynkov, Basmanov (k =∞) and Chatyrko,
Kozlov (k = 0, 1). Observe that for any compact space Z we have FST(ind, Z) ≥ 1,
and there exist due to Filippov two compact spaces X and Y such that IndX = 2,
IndY = 1 and ind(X × Y ) = 4.

Question 13. Does there exist two (compact) spaces X,Y such that indX =1327–1328?

ind Y = 1 (resp., 2) and ind(X × Y ) = 3 (resp., 6)?

Recall that for any completely regular spaceX we have ind(X×I) ≤ indX+1.
In [38] D. Malykhin constructed a regular space M with indM = 2 such that
ind(M × I) = 4.

Let Π = X × Y be the product of two completely regular spaces X,Y . Π is
piecewise rectangular if for any finite functionally open cover of Π there exists a σ-
locally finite refinement consisting of clopen subsets of functionally open rectangles
(= the products of functionally open subsets of X and Y ). Let d be either dim
or Ind and dX = n, dY = m. It is known (cf. [48]) that d Π ≤ n + m if Π is
piecewise rectangular and either d = dim or d = Ind, Π is normal and FST(Ind)
holds in X and Y . Recall (cf. [48]) that Π is piecewise rectangular if for example
Π is normal and X is metrizable or the projection of Π onto X is closed or X is
locally compact paracompact or Π is completely paracompact etc.

Question 14. Does the inequality dim Π ≤ dimX+dimY hold for a paracompact1329?

product Π?

In [46] Pasynkov showed that Ind Π <∞ if Π is normal and X is either locally
compact paracompact or metrizable.

Question 15. Is Ind Π <∞ if Π is normal and piecewise rectangular?1330?

Recall (cf. [48]) that dim Π = 0 if and only if Π is piecewise rectangular and
dimX = dimY = 0, and there are due to Wage, Przymusinski, Tsuda, E. Pol,
Engelking, Kozlov different examples of normal products Π with zero-dimensional
in the sense of dim factors such that dim Π > 0. Thus Kozlov in [32] applying
Przymusinski’s technique showed that for any positive integers k,m, n such that
k < m there exists a first countable space K satisfying: (i) Ks is Lindelöf if and
only if s < k; (ii) Ks is collectionwise normal and countably paracompact if s ≤ m;
(iii) dimKs = 0 for s < m; (iv) dimKm = IndKm = n; moreover for k = 1 we
can assume that K is locally compact and locally countable.

Question 16. Does there exist a normal product Π with dimX = dimY = 01331?

where dim and Ind disagree?
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In [27] Hattori refined some earlier result of Kulesza: for each pair n ≤ d
there is a non-complete subgroup Gn,d of Rn+1 satisfying: dimGn,d = n and
dim(Gn,d)ω = d. It is unknown if there are SM complete groups with such dimen-
sional properties.

In [15] Dranishnikov improved UIN for compact metrizable spaces X such
that dimX2 = 2 dimX . Namely, if such X is the union X1 ∪ X2, then dimX ≤
dim(X1 ×X2) + 1. He also showed that the weaker inequality with 1 replaced by
2 holds without the mentioned restriction.

Question 17. Does there exist a (separable) metrizable space X = X1 ∪X2 such 1332?

that dimX > dim(X1 ×X2) + 1?

In [15] Dranishnikov presented a metrizable compact space X = X1∪X2 such
that dimX > dim(Y1×Y2)+1 for any compacta Y1 ⊂ X1 and Y2 ⊂ X2. Evidently,
there exists a completely regular space X (the earlier mentioned space N ∪ R of
Mrowka) such that X = X1∪X2 and dimX =∞ > dim(X1×X2)+1 = 0+1 = 1.

Compactifications

It is known that dimβX = dimX if X is completely regular, and IndβX =
IndX if X is normal. Moreover, there exists a preserving weight compactification
bX (resp. cX) of X such that dim bX = dimX (resp. Ind cX ≤ IndX) if X is
completely regular (resp. normal). Recall that there exists a perfectly normal first
countable space P with indP = 1 each Lindelöf extension of which has ind =∞.
Now it is natural to look for two classes A and B of spaces, where B is better than
A, and properties such that for each element from A there exists its extension
from B preserving the properties. Thus Kimura and Morishita in [30] showed
that every metrizable space has a compactification that is Eberlein compact and
preserves both dim and weight (in [4] Charalambous proved that this compactifi-
cation preserves also Ind). A compact space E is said to be Eberlein compact if E
is homeomorphic to a subset of a Banach space with its weak topology. A space
U is universal for a class of spaces if each element of this class can be embedded
in U . Recall (cf. [48]) that for a class M (resp. D or I) of all metrizable (resp.
completely regular or normal) spaces with weight ≤ τ and dim ≤ n (resp. dim ≤ n
or Ind ≤ n), where n ≥ 0, there exists an element from this class that is universal
for M (resp. D or I , and the element is compact). So the Kimura–Morishita re-
sult (and the result of Charalambous as well) implies the existence of an Eberlein
compact space En,τ which is universal for all metrizable spaces with dim ≤ n and
weight ≤ τ and which has the same weight and dimensions dim and Ind.

Infinite-dimensional theory

All spaces considered here are SM. The inductive dimensions ind, Ind have
natural transfinite extensions trind, trInd for which trind ≤ trInd. An infinite-
dimensional space is countable dimensional , shortly c.d., if X is the union of
countably many finite-dimensional subspaces. It is known that every space having
trind < ω1 is c.d. and any c.d. compact space has trind < ω1. Recall ([37])
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that there exist two functions φ, ψ : {α < ω1} → {α < ω1} such that trIndXα =
φ(trindXα = α) and trindYα = ψ(trIndYα = α) for any compact space X .
Moreover, for each α < ω1 there exist compact spaces Xα and Yα such that
trIndXα = φ(trindXα) and trindYα = ψ(trIndYα). Smirnov’s compacta Sα,
α < ω1, are defined as follows. For each integer n ≥ 0 the space Sn is the
Euclidean n−cube In, Sα+1 = Sα × I and, for any limit α, Sα is the one-point
compactification of the free union of Sβ with β < α. It is known that for each
α, trIndSα = α. In [7] Chatyrko improved an earlier result of Luxemburg to the

following effect: for each m ≥ 0 and any limit λ < ω1, trindSλ+2m−1 ≤ λ + m.
Recall ([37]) that for each λ such that φ(λ) = λ we have trindSλ+k = λ + k for
k = 0, 1, 2.

Question 18. What is trindSα for each α?1333?

One can decompose Sλ+n = Y0 ∪ · · · ∪ Yn, where n ≥ 1, into closed subsets
Yi such that for each i, trIndYi = λ. Using the following sum theorems: if
X = X1 ∪X2, where X1, X2 are closed in X , then trindX ≤ max{trindXi}+ 1,
trIndX ≤ max{λi} + n1 + n2 + 1, where trIndXi = λi + ni for each i, and
the unions Y0 ∪ · · · ∪ Yk, where k ≥ 3, we get a variety of compact spaces with
trind 6= trInd.

Question 19. Does there exist for each α < ω1 a compact space Xα such that1334?

trindXα = trIndXα = α?

Observe that if FST(trind) or FST(trInd) holds in a c.d. compact space X
then trindX = trIndX .

Recall that by Luxemburg’s results each space X having trIndX < ω1 has a
compactification preserving trInd, and there exists a complete space with trind =
ω0 having no compactification preserving trind.

Question 20. Evaluate for each space X, min{trindY : Y is a compactification1335?

of X}.
We know due to R. Pol that for each α < ω1, there exists a universal space

in the class of spaces with trind ≤ α. In [45] Olszewski proved that for any
limit α there is no universal space neither in the class of spaces (resp. compacta)
with trInd ≤ α nor in the class of compacta with trind ≤ α. The existence
of universal spaces for non-limit α for the mentioned cases is an open question.
Let d be a transfinite dimension. A compact space C is an (α+ 1)-dimensional d-
Cantor manifold (resp. infinite-dimensional Cantor manifold) if dC = α+1 (resp.
dimC =∞) and no closed subspace F of C satisfying dF < α (resp. dimF <∞)
separates C. In [44] Olszewski presented for each α < ω1 an (α+ 1)-dimensional
d-Cantor manifold for d = trind or trInd (in [55] Renska constructed simpler
examples of trInd-manifolds which are disjoint unions of countably many closed
cells and irrationals). A continuum X is hereditarily indecomposible, shortly h.i.,
if for any subcontinua A,B in X with nonempty intersection, either A ⊂ B, or
B ⊂ A. We know due to Bing (cf. [58]) that for each n = 1, 2, . . . ,∞ there exist
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h.i. continua with dim = n, and in each such continuum X with dimX = n the
set Bn(X) = X \ { the union of all non-trivial subcontinuum with dim < n}
is not empty if n < ∞. In [53] R. Pol and Renska showed that if X is a h.i.
continuum with 2 ≤ dimX = n < ∞ and Br(X) is the set of all points of X
belonging to some continuum with dim = r but avoid any non-trivial continuum
with dim < r, where 1 ≤ r ≤ n, then dimBr(X) = n − (r − 1), moreover Bn(X)
is not of type Gδσ (always Gδσδ-set). A space E is weakly infinite-dimensional ,
shortly w.i.d., if for each sequence of pairs (Ai, Bi), i = 1, 2, . . . of disjoint closed
sets in E there are partitions Li in E between Ai and Bi such that

⋂∞
i=1 Li = ∅,

otherwise E is strongly infinite dimensional , shortly s.i.d. In [51] E. Pol and
Renska constructed for each infinite α < ω1 h.i. continua with trind or trInd equal
to α and demonstrated the diversity among types of the sets B∞(X) for infinite-
dimensional h.i. continua X (B∞(X) can be any subset of the Cantor set, the set
of irrational numbers, a 1-dimensional Gδ-subset of X), for s.i.d., h.i. continua X ,
B∞(X) is always strongly infinte-dimensional that is a corollary of a theorem of
Henderson (cf. [58]) or a more recent result of Levin [35].

Question 21. Is there for each integer n ≥ 2 an infinte-dimensional h.i. contin- 1336?

uum X with B∞(X) = n?

A space X is hereditarily strongly infinite-dimensional, shortly h.s.i.d., if every
subspace of X is either 0-dimensional or s.i.d. We know due to Rubin (cf. [58])
that there are h.s.i.d. continua. Recall that such spaces have to contain infinite-
dimensional h.s.i.d. Cantor manifolds. In [50] E. Pol constructed a family {Ys :
s ∈ S}, where |S| = 2ℵ0 , of h.i., h.s.i.d. Cantor manifolds such that (a) no open
subset of Ys embeds in Yp for every s 6= p, s, p ∈ S; (b) every embedding of Ys

into Ys is the identity, for each s ∈ S. A space X is C-space if for every sequence
{αi}∞i=1 of open covers X there exist disjoint open collections β1, β2, . . . such that
βi refines αi for each i and

⋃∞
i=1 βi = X . Recall that every C-compact space is

w.i.d. We know due to Hattori and Yamada that the product of two C-compact
spaces is a C-space and the product of w.i.d. compact space and a C-compact
space is w.i.d.

Question 22. Is the product of two w.i.d. compact spaces w.i.d.? 1337?

The dimension dim can be extended to transfinites by different ways. Usually
one uses a characterization of dim which is possible to extend to transfinites and
considers the extension as an extension of dim. In particular, we know due to
Borst two extensions of dim, dimw and dimC , such that for each compact space
X , dimw X < ω1 (resp. dimC X < ω1) if and only if X is w.i.d. (resp. a C-space).
Recently Borst [3] constructed for each α < ω1 a compact space Xα such that
dimC Xα = α and dimw Xα = ω0, then he inputed all Xα in a compact space Y
which is w.i.d. This Y can not be a C-space.

Compactness degrees

All spaces considered here are SM. The compactness deficiency of a space X ,
def X is the least integer n for which X has a metrizable compactification Y with
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dim(Y \X) ≤ n. It is known due to de Groot (cf. [1]) that def X = 0 if and only
if X is rim-compact , i.e., if every point of X has arbitrarily small neighborhoods
with compact boundary. In spirit of definitions of ind and Ind one defined two
extensions of the rim-compactness: a small inductive compactness degree of X ,
cmpX , (replace the empty set in the definition of ind by a compact space) and
a large inductive compactness degree of X , CmpX , (assume for n = −1, 0 that
CmpX = n if and only if cmpX = n). Recall (cf. [1]) that cmpX ≤ CmpX ≤
def X ≤ dimX for any space X . We knew due to R. Pol, Kimura, Hart (cf. [1])
that there were examples of SM spaces with cmp 6= Cmp but these examples were
rather complicated. Spaces Zn, where n ≥ 1, are geometric cubes In+1 without
one open n-dimensional face. It was known almost from the beginning (cf. [1])
that CmpZn = def Zn = n for each n ≥ 1 and for n = 1, 2, cmpZn = n. Recently
Chatyrko and Hattori ([9], n ≥ 5), Nishiura ([42], n = 4), Fedorchuk ([22], n = 3)
showed that for n ≥ 3, 2 ≤ cmpZn ≤ m, where m is any integer satisfying
n+ 1 ≤ 2m.

Question 23. What is cmpZn equal to for n ≥ 4?1338?

There are only two examples of spaces with Cmp 6= def. Namely, Kimura
in [29] constructed a subspace K of R4 such that CmpK = 1 and 2 ≤ def K ≤ 3.
In [36] Levin and Segal found a subspace E of R3 such that cmpE = CmpE = 1
and def E = 2. We do not have any example of a space where all cmp,Cmp and
def disagree.

Question 24. Does there exist for each n a SM space Xn such that cmpXn =1339?

CmpXn = 1 and def Xn = n?

In [8] Chatyrko, following a way developed by Hart and Kimura (cf. [1]),
showed the existence for each n,m such that n ≤ m a SM space Cn,m with
cmpCn,m = n and CmpCn,m = def Cn,m = m. So the positive answer to this
question would show that for any integers n,m, p such that 1 ≤ n ≤ m ≤ p
there exists a SM space Xn,m,p with cmpXn,m,p = n ≤ CmpXn,m,p = m ≤
def Xn,m,p = p.
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Questions on weakly infinite-dimensional spaces

Vitalii V. Fedorchuk

Introduction

Weak infinite dimensionality was introduced by Alexandroff in 1948 [2]. The
first results in this area were obtained by Sklyarenko [20] and Levshenko [13] in
1959. A great contribution to the theory of weakly infinite-dimensional spaces was
made in 1981 by R. Pol [15], who constructed an example of a compact metrizable
weakly infinite-dimensional space which is not countable-dimensional.

In 1974, Haver [11] introduced the C property for metric spaces and proved
that every locally contractible metric space which is a union of countably many
compact sets with property C is an ANR space. In 1978, Addis and Gresham [1]
gave a topological definition of C-spaces.

The C-spaces proved to play an important role in topology. In particular,
Ancel [3] showed that any cell-like map from a compact metrizable space onto a C-
space is a hereditary shape equivalence. Consequently, every infinite-dimensional
compact C-space has infinite cohomological dimension c-dimZ.

One of the most important problems concerning infinite-dimensional spaces
was whether any weakly infinite-dimensional compact space is a C-space. Recently,
this problem was solved in the negative by Borst [6].

The questions considered here are related to new classes of spaces, which
are intermediate between the classes of weakly infinite-dimensional spaces and
C-spaces.

1. Definitions

For a topological space X , by cov(X) we denote the set of all open covers of
X . A family U = {uα : α ∈ A} ⊂ cov(X) in said to be essential (in X) if, for any
disjoint open families vα, where α ∈ A, such that vα refines uα for each α, the
family

⋃{vα : α ∈ A} does not cover X .
Let P be a class of open covers of topological spaces; for a space X , we set

P(X) = P ∩ cov(X). A normal space X is called a P-C-space (X ∈ P-C) if every
countable family U ⊂ P(X) is inessential.

This approach yields the following classes of spaces:

(1) m-C-spaces , where m is an integer ≥ 2 and P consists of all covers u
with |u| ≤ m;

(2) ∞-C-spaces , where P consists of all finite covers;
(3) lf-C-spaces , where P consists of all locally finite covers;
(4) C-spaces , where P consists of all covers;

This work was financially supported by the Russian Foundation for Basic Research
(project no. 06-01-00761).

633



634 58. QUESTIONS ON WEAKLY INFINITE-DIMENSIONAL SPACES

and so on.
If P1 ⊂ P2, then P2-C ⊂ P1-C. Consequently,

(1.1) C ⊂ lf-C ⊂∞-C ⊂ · · · ⊂ m-C ⊂ · · · ⊂ 2-C.

The largest member of this sequence coincides with the class wid of all weakly
infinite-dimensional spaces. The space ω1 of all countable ordinals is an lf-C-space
but not a C-space.

Question 1. Does there exist an X ∈ ∞-C \ lf-C?1340?

For compact spaces, the first three members of sequence (1.1) coincide.

Question 2. Does the equality (m+1)-C = m-C hold in the class of compact1341?

metrizable spaces for all m?

Let ω-C =
⋂{m-C : m ∈ N}.

Question 3. Does the equality C = ω-C hold in the class of compact metrizable1342?

spaces?

Because of Borst’s example of a compact metrizable space X ∈ 2-C \ C, the
answer to one of Questions 2 and 3 must be negative.

Yet another generalization of C-spaces is as follows. Let Φ = {Fα : α ∈ A} be
a discrete family of closed subsets of a space X . A neighborhood OΦ of the family
Φ is a disjoint collection {OFα : α ∈ A} of neighborhoods OFα of the sets Fα.
A set ϕ = {Φβ : β ∈ B} of discrete families of closed subsets of X is said to be
essential (in X) if, for any neighborhoods OΦβ , the family

⋃{OΦβ : β ∈ B} does
not cover X . A collectionwise normal space X is called a weak C-space (X ∈ w-C)
if every countable family of discrete collections of closed subsets of X is inessential.
Any collectionwise normal C-space is a w-C-space.

On the other hand, any finite-dimensional countably compact noncompact
space is a w-C-space but not a C-space.

Question 4. Is it true that any paracompact w-C-space is a C-space?1343?

The answer to this question is unknown even for compact metrizable spaces.
If a disjoint family Φ of closed subsets of a space X consists of ≤ m members,

where m ∈ N, then we say that Φ is an m-system in X . An ∞-system in X is
any finite disjoint family of closed subsets of X . A normal space X is called a
w-m-C-space (X ∈ w-m-C), where m ∈ N or m = ∞, if any countable family of
m-systems in X is inessential. Every m-C-space is a w-m-C-space. By definition,
we have w-2-C = wid.

Question 5. Is it true that any compact metrizable w-m-C-space is an m-C-1344?

space?

We have the following sequence of inclusions similar to (1.1):

w-C ⊂ w-∞-C ⊂ · · · ⊂ w-m-C ⊂ · · · ⊂ w-2-C.

Question 6. Does the equality w-(m+1)-C = w-m-C hold in the class of compact1345?

metrizable spaces for all m?
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Let w-ω-C =
⋂{w-m-C : m ∈ N}.

Question 7. Does the equality ω-C = w-ω-C hold in the class of compact metriz- 1346?

able spaces?

Question 8. Is it true that any closed subspace of an lf-C-space is an lf-C-space? 1347?

In the class of all countably paracompact collectionwise normal spaces, the
answer to Question 8 is positive.

If every Gδ-subset of a hereditarily normal space X is an m-C-space, then
every subset of X is an m-C-space.

Question 9. Is it true that every subset of a w-m-C-space X is a w-m-C-space 1348?

provided that every Gδ-subset of X is a w-m-C-space?

Any paracompact finite-dimensional space is a C-space [1].

Question 10. Is it true that any weakly paracompact finite-dimensional space is 1349?

a C-space?

Recall that a normal space X is said to be 0-countable-dimensional if X =⋃{Xi : i ∈ ω}, where dimXi ≤ 0.

Proposition ([8]). Any 0-countable-dimensional collectionwise normal hereditar-
ily normal space is a w-C-space.

Corollary ([8]). Any subset of a linearly ordered continuum is a w-C-space.

Question 11. Is it true that any collectionwise normal finite-dimensional space 1350?

is a w-C-space?

Theorem 1 ([8]). Any strongly paracompact space X for which indX is defined
is a C-space.

Levshenko [14] proved that if X satisfies the assumptions of Theorem 1, then
X ∈ wid.

Question 12. Is it true that if X is a paracompact space for which indX is 1351–1352?

defined, then X ∈ wid? X ∈ C?

This question can be strengthened as follows.

Question 13. Is it true that if X is a metric space with indX = 0, then X ∈ wid? 1353?

Question 12 can also be strengthened in a different direction.

Question 14. Is it true that if X is a completely paracompact space for which 1354?

indX is defined, then X ∈ wid?

It is known that if X is a completely paracompact metrizable space for which
indX is defined, then X is countable-dimensional and, consequently, X ∈ C (this
was proved by Smirnov in [21]).
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2. Maps, products, and subsets

If P is class of a spaces and f : X → Y is a map, then f ∈ P means that
f−1(y) ∈ P for every y ∈ Y .

Theorem 2 ([7]). Let f : X → Y be a closed map from a countably paracompact
(or hereditarily normal) space X onto a C-space Y . Then the following assertions
are valid :

(1) if f ∈ m-C, then X ∈ m-C;
(2) if f ∈ w-m-C, then X ∈ w-m-C.

Assertion (1) was proved for m = 2 by Hattori and Yamada [10].

Question 15. Let X be a countably paracompact or hereditarily normal space1355–1356?

admitting a closed m-C-map (w-m-C-map) onto a w-C-space. Is it true that
X ∈ m-C? Respectively, X ∈ w-m-C?

Question 16. Given compact metrizable spaces X and Y , is it true that1357?

(1) if X ∈ m-C and Y ∈ m-C, then X × Y ∈ m-C;
(2) if X ∈ w-m-C and Y ∈ w-m-C, then X × Y ∈ w-m-C;
(3) if X ∈ w-C and Y ∈ w-C, then X × Y ∈ w-C?

Question 17. Let f : X → Y be a light map of compact metrizable spaces. Is it1358?

true that

(1) if Y ∈ m-C, then X ∈ m-C;
(2) if Y ∈ w-m-C, then X ∈ w-m-C;
(3) if Y ∈ w-C, then X ∈ w-C?

A positive answer to Question 17 would imply a positive answer to Question 16
thanks to the following theorem.

Theorem 3 ([8]). Suppose that P is one of the classes m-C, w-m-C, w-C, and
C. Then any compact metrizable space X /∈ P contains a compact space Y /∈ P
such that, for any Z ⊂ Y , either dimZ ≤ 0 or Z /∈ P.

This theorem was proved by Rubin [19] for P = 2-C, by R. Pol [18] for P = C
and closed Z, and by Levin [12] for P = C.

Definition. Let P be a topological property. A space X is said to be hereditarily
non-P if X /∈ P and, for every closed set Y ⊂ X ,

either dimY ≤ 0 or Y /∈ P .

If this alternative holds for all subsets Y ⊂ X , then we say that X is a strongly
hereditarily non-P space.

Let h-non-P (sh-non-P) denote the class of all (strongly) hereditarily non-P
spaces.

Question 18. Let P be one of the classes m-C, w-m-C, w-C, and C, and let X1359?

and Y be compact metrizable spaces. Is it true that
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(1) X,Y ∈ h-non-P =⇒ X × Y ∈ h-non-P ;
(2) X,Y ∈ sh-non-P =⇒ X × Y ∈ sh-non-P ;
(3) X ∈ h-non-P =⇒ X2 ∈ h-non-P ;
(4) X ∈ sh-non-P =⇒ X2 ∈ sh-non-P?

Question 19. Let P be one of the classes m-C, w-m-C, w-C, and C. Is it true 1360?

that Comp∩(h-non-P) ⊂ sh-non-P?

Definition. A space X is said to be strongly hereditarily (hereditarily) non-1 dim-
space, X ∈ sh-non-1 dim (X ∈ h-non-1 dim), if dimX ≥ 2 and, for every (closed)
set Y ⊂ X , either dimY ≤ 0 or dimY ≥ 2.

Question 20. Let X and Y be compact metrizable spaces. Is it true that 1361?

(1) X,Y ∈ h-non-1 dim =⇒ X × Y ∈ h-non-1 dim;
(2) X,Y ∈ sh-non-1 dim =⇒ X × Y ∈ sh-non-1 dim;
(3) X ∈ h-non-1 dim =⇒ X2 ∈ h-non-1 dim;
(4) X ∈ sh-non-1 dim =⇒ X2 ∈ sh-non-1 dim?

A positive answer to Question 20(4) would give a positive answer to van Mill’s
problem [17, Question 414], which can be formulated as follows.

Question 21. Does there exist an infinite-dimensional compact space X such that 1362?

Xn ∈ sh-non-1 dim for all positive n?

Note that there exists no example of infinite-dimensional compact metrizable
spaces X and Y such that X × Y contains no one-dimensional compact sets. At
the same time, under the continuum hypothesis, there exists an infinite compact
space X such that, for any positive integer n, all infinite closed subspaces of Xn

are strongly infinite-dimensional [9].

Question 22. Is it true that any compact metrizable space containing one-dimen- 1363?

sional subsets contains a compact one-dimensional subset?

3. Transfinite dimensions

3.1. The ordinal number Ord. In this section, we recall Borst’s definition
from [5]. Let L be an arbitrary set. By FinL we denote the collection of all finite
nonempty subsets of L.

Let M be a subset of FinL. For σ ∈ {∅} ∪ FinL, we set Mσ = {τ ∈ FinL :
σ ∪ τ ∈M, σ ∩ τ = ∅}. For a ∈ L, we denote the set M {a} by Ma.

Definition. The ordinal number OrdM is defined by induction as follows.

• OrdM = 0 if and only if M = ∅;
• OrdM ≤ α if and only if OrdMa < α for every a ∈ L;
• OrdM = α if and only if OrdM ≤ α and it is not true that OrdM < α;
• OrdM =∞ if and only if OrdM > α for every ordinal α.

For an integer m ≥ 2, we set covm(X) = {u ∈ cov(X) : |u| ≤ m} and
cov∞(X) =

⋃
m covm(X).
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For an integer m ≥ 2 and for m =∞, we set Mm(X) = {σ ∈ Fin covm(X) : σ
is essential}.

For any normal space X , we have

(3.1) dimX ≤ n if and only if OrdMm(X) ≤ n.

This is a generalization of Borst’s theorems [5, 4] for m = 2 and m =∞.

3.2. Transfinite dimension dimm. For a normal space X , we set

(3.2) dimmX = OrdMm(X).

If dimmX = ∞, then we say that the dimension dimmX is not defined. Com-
paring (3.1) and (3.2), we see that each of the functions dimm is a transfinite
extension of Lebesgue covering dimension.

Theorem 4 ([8]). For a compact space X, the dimension dimmX is defined if
and only if X is an m-C-space.

For m = 2 and m =∞, Theorem 4 was proved by Borst in [5, 4]. Clearly, if
m1 ≤ m2 then dimm1

X ≤ dimm2
X .

Question 23. Does the equality dimm = dimm+1 hold in the class of compact1364?

metrizable spaces for all m?

In view of Theorem 4, a positive answer to Question 23 would give a positive
answer to Question 2. For the compact space Eω0

constructed by Borst in [6], we
have dim2Eω0

= ω0 <∞ = dim∞Eω0
.

Using the ideas of R. Pol from [16], it is easy to prove the following theorem.

Theorem 5 ([8]). Let E be a family of m-C-compact spaces. Then there exists
an m-C-compact space into which all compact spaces from E can be embedded if
and only if sup{dimmX : X ∈ E} < ω1.

Thus, to give a negative answer to Question 2, it is sufficient to construct a
family of (m+1)-C-compact spaces Xα, where α ∈ ω1, such that sup{dimmXα :
α ∈ ω1} < ω1 but sup{dimm+1Xα : α ∈ ω1} = ω1.

Question 24. Does there exist a compact metrizable space X such that dimmX <1365?

dim∞X for all integer m?

A negative answer to Question 3 would imply a positive answer to Question 24.

Question 25. Does there exist an infinite-dimensional metrizable C-compactum1366?

X containing no subcompacta Y of dimension 0 < dim∞ Y < dim∞X?

3.3. Transfinite dimension dimwm. For a normal space X , we denote the
set of all m-systems in X by ϕm(X).

We set Lm(X) = {σ ∈ Finϕm(X) : σ is essential}. For a normal space X ,
we have dimX ≤ n if and only if OrdLm(X) ≤ n. Thus, it is natural to define
dimwmX = Ord Lm(X). If dimwm X = ∞, then we say that the dimension
dimwmX is not defined.

The function dimwm, as well as dimm, is a transfinite extension of the covering
dimension.
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Theorem 6 ([8]). For a compact space X, the dimension dimwmX is defined if
and only if X is a w-m-C-space.

Clearly, if m1 ≤ m2 then dimwm1
X ≤ dimwm2

X .

Question 26. Does the equality dimwm = dimw(m+1) hold in the class of compact 1367?

metrizable spaces for all m?

By virtue of Theorem 6, a positive answer to Question 26 gives a positive
answer to Question 6.

Question 27. Does there exist a compact metrizable space X such that dimw2 X < 1368?

dimw∞X?

A negative answer to Question 7 implies a positive answer to Question 27.

Proposition ([8]). If X is a normal space and m ≥ 3 is an integer or m = ∞,
then dimwm X ≤ dimmX. Moreover, dimw2X = dim2X.

Question 28. Does there exist a compact metrizable space X such that dimwmX < 1369?

dimmX for some m ≥ 2 or for m =∞?

The Borst compact space Eω0
gives a positive answer to one of Questions 27

and 28. Borst’s question of whether dim2(X × I) = dim2X + 1 for any compact
metrizable space X can be generalized as follows.

Question 29. Let X be a compact metrizable space. Is it true that 1370?

(1) dimm(X × I) = dimmX + 1;
(2) dimwm(X × I) = dimwmX + 1?

3.4. Inductive dimensions. Borst’s inequality dim2X ≤ IndX [5, Theo-
rem 3.2.4] can be strengthened as dimw∞X ≤ IndX .

Question 30. Does the inequality dim∞ ≤ Ind hold in the class of all compact 1371?

metrizable spaces?

This question has the following weak version.

Question 31. Does the inequality dimm ≤ Ind hold in the class of all compact 1372?

metrizable spaces for some integer m ≥ 3?

A pair (u,Φ), where u = {U1, . . . , Uk} ∈ covm(X) and Φ = {F1, . . . , Fk} ∈
ϕm(X), is called anm-covering pair if Fi ⊂ Ui for each i. If OΦ = {OF1, . . . , OFk}
is a neighborhood of Φ refining u, then the set P = X \⋃OΦ is called a partition
of the covering pair (u,Φ).

Definition. The large transfinite inductive dimension Indm (wherem is an integer
≥ 2 or m =∞) in the class of all normal spaces is defined as follows:

(a) IndmX = −1 if and only if X = ∅;
(b) IndmX ≤ α, where α is an ordinal, if, for every m-covering pair (u,Φ),

there exists a partition P of (u,Φ) such that Indm P < α;
(c) IndmX = α if IndmX ≤ α and IndmX ≤ β for no β < α;
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(d) IndmX =∞ if IndmX ≤ α for no ordinal α.

For every normal space X , we have

IndX = Ind2X ≤ · · · ≤ IndmX ≤ Indm+1X ≤ · · · ≤ Ind∞X.

Theorem 7 ([8]). The dimension Indm is defined for any hereditarily normal
compact space which can be represented as a countable union of subspaces for
which the dimension Indm is defined.

Corollary. For any countable-dimensional compact metrizable space, the dimen-
sions Ind∞ and, therefore, Indm for all m are defined.

Theorem 8 ([8]). If the dimension Indm is defined for a compact space X with
weight w(X) ≤ ωα, then IndmX ≤ ωα+1.

Theorem 9 ([8]). For any normal space X, dimmX ≤ IndmX.

Question 32. Does the equality Indm = Indm+1 hold in the class of all compact1373?

metrizable spaces for all m?

Question 33. Is it true that IndX = Ind∞X for an arbitrary compact metrizable1374?

space X?
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[13] B. T. Levšenko, Strongly infinite-dimensional spaces, Vestnik Moskov. Univ. Ser. Mat.

Mekh. Astr. Fiz. Him. (1959), no. 5, 219–228.
[14] B. T. Levšenko, On infinite-dimensional spaces., Dokl. Akad. Nauk SSSR 139 (1961), 286–

289, Translation: Soviet Math. Dokl. 2 (1961), 915–918.
[15] R. Pol, A weakly infinite-dimensional compactum which is not countable-dimensional, Proc.

Amer. Math. Soc. 82 (1981), no. 4, 634–636.
[16] R. Pol, On classification of weakly infinite-dimensional compacta, Fund. Math. 116 (1983),

no. 3, 169–188.



REFERENCES 641

[17] R. Pol, Questions in dimension theory, Open problems in topology, North-Holland, Ams-
terdam, 1990, pp. 279–291.

[18] R. Pol, On light mappings without perfect fibers on compacta, Tsukuba J. Math. 20 (1996),
no. 1, 11–19.

[19] L. R. Rubin, Hereditarily strongly infinite-dimensional spaces, Michigan Math. J. 27 (1980),
no. 1, 65–73.

[20] E. G. Skljarenko, Dimensionality properties of infinite-dimensional spaces, Izv. Akad. Nauk
SSSR. Ser. Mat. 23 (1959), 197–212.

[21] Ju. M. Smirnov, On transfinite dimension, Mat. Sb. (N.S.) 58 (100) (1962), 415–422.





Some problems in the dimension theory of
compacta

Boris A. Pasynkov

Dedicated to the 70th anniversary of the publication of Alexandroff’s problem on
the dimensions of compacta.

All topological spaces considered in this paper are assumed to be Tychonoff
and called simply spaces; by maps we mean continuous maps of topological spaces.

Almost all problems posed below concern compact spaces. Recall that the
dimension ∆ [22] of a paracompact space X is defined as follows: ∆X ≤ n if
there exists a strongly zero-dimensional paracompact space X0 and a surjective
closed map f : X0 → X such that |f−1x| ≤ n+ 1 for any x ∈ X .

1. On the coincidence of dim, ind, Ind, and ∆ for compact spaces

It is well known that the three basic dimension functions dim, ind, and Ind
coincide for compact metrizable spaces, i.e.,

(∗) dimX = indX = IndX

for any compact metrizable space X . In 1936, Alexandroff [1] asked whether they
coincide for arbitrary compact spaces. In 1941, he proved that dimX ≤ indX
for any compact space X . Recall also that indX ≤ IndX for any normal space
X and (see [22]) IndX ≤ ∆X for any paracompact space X . Moreover, for
any metrizable space X, dimβX = indβX = IndβX = ∆X and there exists
a compactification cX of X such that dim cX = ind cX = Ind cX = ∆ cX and
w(cX) = w(X).

In 1958, Pasynkov proved that dimG = indG = IndG for any compact group
G; in 1962, he obtained the equalities dimG/H = indG/H = IndG/H for any
locally compact group G and any closed subgroup H of G (in particular, they hold
for compact coset spaces G/H). After that, the following definition and problem
naturally arose.

A compact space X is called algebraically homogeneous if there exists a topo-
logical group G and its closed subgroup H such that X is homeomorphic to G/H .

Question 1. Do all or some of the dimensions dim, ind, and Ind coincide for 1375?

algebraically homogeneous compact spaces?

The following problem is related to Question 1.

Question 2. Describe the topological groups G, their closed subgroups H, and 1376?

compact coset spaces G/H for which all or some of the dimensions dimG/H,
indG/H, and IndG/H coincide. Do they coincide for first countable, perfectly
normal, dyadic, hereditarily normal coset spaces?

643
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Note that a zero-dimensional perfectly normal (and, hence, first countable)
compact coset space G/H may not be metrizable or dyadic (for example, Alexan-
droff’s double arrow space is neither metrizable nor dyadic).

Partial answers to Questions 1 and 1 were given by Pasynkov in [15, 17, 18].
He called a topological group G almost metrizable if there exists a compact set
C ⊂ G and its neighborhoods Oi, where i ∈ N, such that any neighborhood of
C is contained in Oi for some i; a space X is almost metrizable if there exists a
compact group G which acts continuously on X so that the orbit space X/G is
metrizable (see [15, 17]). All groups of pointwise countable type (in particular, all
paracompact p, Čech complete, and locally compact groups) are almost metrizable.
It was proved in [17] that dimX = IndX = ∆X for any almost metrizable space
X and that if dimX <∞, then X admits a perfect zero-dimensional (i.e., having
zero-dimensional fibers) map f onto a metrizable space. Thus, for any almost
metrizable compact space X, relations (∗) hold, dimX = ∆X, and if dimX <∞,
then X admits a zero-dimensional map onto a metrizable compact space.

Since any coset space G/H of a closed subgroup H in an almost metrizable
group G is almost metrizable (see [18]), it follows that for any compact coset
space G/H, where G is an arbitrary almost metrizable group (and H is its closed
subgroup), dimG/H = indG/H = IndG/H = ∆G/H and if dimG/H < ∞,
then G/H admits a zero-dimensional map onto a compact metrizable space. On
the other hand, if a compact space X admits a zero-dimensional map onto a
compact metrizable space, then relations (∗) hold and dimX = ∆X (the equality
dimX = IndX was proved in [14] and dimX = ∆X in [17, 6]; as far as I
know, the inequality dimX = indX is due to Katětov). Note that if a compact
space X is a Gδ-subset of a topological group and dimX < ∞, then X admits a
zero-dimensional map onto a compact metrizable space (and hence relations (∗)
hold).

It is not known whether there exist algebraically homogeneous compact spaces
with noncoinciding dimensions. The situation with topologically homogeneous
compacta is clearer.

In 1971, Fedorchuk [8] constructed a topologically homogeneous first countable
compact space F with dimF = 1 < indF = 2. Later, in 1990, Chatyrko [2]
constructed first countable topologically homogeneous compact spaces Cn with
dimCn = 1 and indCn = n for n = 2, 3, . . . .

Question 3. Do the dimensions ind and Ind coincide for any (first countable,1377?

hereditarily normal, hereditarily paracompact, dyadic, (hereditarily) separable) topo-
logically homogeneous compact space?

Question 4 ([20]). Does there exist a topologically homogeneous compact space1378?

Tα with dimTα <∞ and trindXα = α for any ordinal α ≥ ω0?

In this question, the topological homogeneity of Tα can be replaced by the
weaker requirement that trindx Tα = α for all x ∈ Tα (dimensional homogeneity).
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Question 5. Do there exist topologically homogeneous compact spaces that have 1379?

infinite dimension dim and are weakly infinite-dimensional or weakly (≡ strongly
(see [7])) countable-dimensional?

2. Noncoincidence of dim and ind for compact spaces

In 1949, Lunc constructed a compact space L1 with dimL1 = 1 < indL1 =
2. Then (also in 1949), Lokutsievskii constructed a compact space L2 with the
same dimensions dim and ind being the union of two compact subspaces with
dimensions ind and dim equal to 1. In 1958, for any positive integers n and
m > n, Vopěnka constructed compact spaces Xmn and Ymn such that dimXmn =
ind Ymn = m, indXmn = n, and dimYmn = n. These results had completely
clarified the relations between the dimensions dim and ind in the class of all
compact spaces.

The first example of a first countable compactum with noncoinciding dimen-
sions dim and ind was suggested by Fedorchuk in 1968. Then, in 1970, Filippov
constructed first countable compacta Fmn with dimFmn = m and indFmn = n for
any positive integers m and n > m. General approaches to constructing compact
spaces with noncoinciding dimensions dim and ind were suggested in [3, 4].

Recall that a compact space X is Dugundji if X is the limit of an inverse
system {Xα, pβα;α ∈ A} of compacta with the following properties: A is the set
of all ordinals < τ for some τ ; all of the bonding maps pβα are open and surjective;
X1 is metrizable; there exists a metrizable space M and maps qα : Xα+1 →M for
all α, α+ 1 ∈ A such that the diagonal pα+1α ∆ qα is a topological embedding; for
any limit ordinal γ ∈ A, Xγ is the limit of the system {Xα, pβα;α < γ}. Dugundji
compacta are very close to topological products of compact metrizable spaces and
have the following simple characterization: a compact space X is Dugundji if and
only if, for any zero-dimensional compact space Z, any closed subset C of Z, and
any map f : C → X , there exists a map F : X → Z such that F � C = f .

In 1977, Fedorchuk constructed a Dugundji compactum F of weight c with
dimF = 1 and indF = IndF = 2. In 2002, Pasynkov and A.V. Odinokov con-
structed Dugundji compacta POn with dimPOn = 1 and indPOn = n. In [24],
Uspenskii considered strongly homogeneous (≡ with rectifiable diagonal) compact
spaces. They are Dugundji and homogeneous.

Question 6. Do the dimensions dim and ind coincide for homogeneous Dugundji 1380?

compacta and for strongly homogeneous compacta?

A few years ago, the study of the dimensional properties of Eberlein compacta
was initiated. I can construct strong Eberlein compacta (that is, compact subsets
of the σ-products {x = {xα}α∈A ∈

∏
α∈A Iα : |{α ∈ A : xα 6= 0}| < ω} of unit

intervals Iα = [0, 1]) Pn such that dimPn = 1 and indPn = n for n = 2, 3, . . . .

Question 7. Do the dimensions dim and ind coincide for homogeneous (or hered- 1381?

itarily normal, hereditarily paracompact, first countable, perfectly normal) (strong)
Eberlein (Corson, Valdivia) compacta?
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3. On the noncoincidence of ind and Ind for compact spaces

In 1969, Filippov constructed a compactum F with dimF = indF = 2 <
IndF = 3 (the proofs were published in [11]). Then (in 1970 [10]), he explained
(without detailed proofs) how to construct compacta Fi with dimFi = 1, indFi =
i, and IndFi = 2i− 1 for i = 2, 3, . . . . The following problem remains open.

Question 8. Do there exist a positive integer m ≥ 2 and compact spaces Amn for1382?

all integers n > m such that (dimAmn = 1 and) indAmn = m and IndAmn = n?

Of course, the most interesting case is m = 2.
If the answer to Question 8 is “yes”, then the one-point compactification Amω

of the discrete union of all Amn has the properties indAmω = m and trIndAmω =
ω. Thus, the following question makes sense.

Question 9. Do there exist a positive integer m ≥ 2 and compact spaces Amα for1383?

all transfinite numbers α such that indAmα = m and trIndAmα = α?

I can construct a strong Eberlein compactum Ψ with ind Ψ=2 and Ind Ψ=3.
So, Question 8 makes sense for (strong) Eberlein (Corson, Valdivia) compacta.

Question 10. Do the dimensions ind and Ind coincide for a (strong) Eberlein1384?

(Corson, Valdivia) compactum provided that it is first countable (homogeneous,
hereditarily normal, hereditarily paracompact)?

Before Filippov’s results, it was known that indX = IndX for any perfectly
normal compact space X (N. B. Vedenisov, 1939). Recall that a space X is said to
be perfectly κ-normal [23] (quasi-perfectly normal [5]) if the closure of every open
(respectively, Gδ) subset of X is a zero-set. Obviously, any quasi-perfectly normal
space is perfectly κ-normal, and any perfectly normal space is quasi-perfectly
normal. In 1977, Fedorchuk [9] asked the following question.

Question 11. Is it true that indX = IndX holds for any perfectly κ-normal1385?

compact space X?

In 1982, Chigogidze [5] proved indX = IndX for any quasi-perfectly normal
compact space X . This gives a partial answer to Question 11, because any hered-
itarily normal quasi-perfectly normal space is perfectly κ-normal (this was proved
by Chigogidze). Earlier (in 1977), Fedorchuk [9] proved that indX = IndX holds
for any hereditarily perfectly κ-normal space X (hereditarily perfectly κ-normal
means that every closed Gδ-subset of X is perfectly κ-normal). In particular,
indX = IndX holds for all Dugundji compacta and even for all κ-metrizable
compacta. (Recall that a compact space X is κ-metrizable if X is the limit of a
countably directed inverse system {Xα, pβα;α ∈ A} of compact metrizable spaces
with surjective open bonding maps pβα such that, for any increasing sequence
α(i) ∈ A, where i ∈ N, the supremum β = sup{α(i) : i ∈ N} in A is defined and
Xβ is the limit of the inverse sequence {Xα(i), pα(i+1)α(i) : i ∈ N}.)
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4. Dimensional properties of topological products

We start with the following old problem.

Question 12. Is it true that IndX × I ≤ IndX + 1 for any (first countable) 1386?

compact space X?

In 1972 [12], Filippov constructed compact spaces X and Y such that indX =
IndX = 1, indY = IndY = 2, and indX + indY = IndX + IndY = 3 <
indX×Y ≤ IndX×Y . In 1999 (in his Ph.D. thesis), D. V. Malykhin strengthened
this result of Filippov. He constructed compact spaces X and Y such that they
have the same dimensional properties as those constructed by Filippov and X
has the additional property of being linearly ordered. Malykhin conjectured that,
instead of his compact space X , the lexicographically ordered square can be taken.

Question 13. How large can the gap between indX × Y and IndX × Y be for 1387–1388?

compact spaces X and Y with (given) indX = IndX and ind Y = IndY ? What
if X and Y are first countable?

Question 13 is interesting for many special classes of compact spaces, including
the classes of (strong) Eberlein, Corson, and Valdivia compacta.

In [21], an integer-valued function f(k, l) for k, l = 0, 1, 2, . . . with the fol-
lowing property was defined: for any compact spaces X and Y with finite IndX
and IndY , we have IndX × Y ≤ f(IndX, IndY ) (this implies, in particular, that
X × Y always has finite dimension Ind provided that both X and Y have finite
dimension Ind).

Question 14. Is it possible to improve the estimate IndX×Y ≤ f(IndX, IndY )? 1389?

Note that IndX × Y ≤ IndX + IndY for any compact spaces X and Y
satisfying the conditions of the finite-sum theorem for Ind [16].

Question 15. Do there exist perfectly normal (Dugundji, κ-metrizable, perfectly 1390?

κ-normal) compact spaces X and Y such that dimX = indX, dimY = ind Y ,
and dimX×Y < indX×Y ? Can these relations hold if Y is metrizable or X×Y
is perfectly normal?

The next problem is about the dimensional properties of products of noncom-
pact spaces; I believe, this is one of the most interesting problems concerning the
dimensional properties of topological products.

Question 16 (see [19, 13]). Is it true that dimX×Y ≤ dimX+ dimY if X×Y 1391?

is paracompact (and X and Y are strongly paracompact)?

5. A problem concerning the subset theorem

Question 17. Is it true that dimA ≤ dimX for any metrizable subset A of a 1392?

(strong) Eberlein (or Corson) compactum X?

Obviously, it can be assumed without loss of generality that A is dense in X .
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Problems from the Lviv topological seminar

Taras Banakh, Bohdan Bokalo, Igor Guran, Taras Radul, Michael
Zarichnyi

Introduction

This collection of problems is formulated by participants and guests of the Lviv
topological seminar held at the Ivan Franko Lviv National University (Ukraine).

1. Asymptotic dimension

We recall that a metric space X is proper if the distance d(·, x0) to a fixed
point is a proper map for any x0 ∈ X . A map f : X → Y between metric spaces
is called coarse if it satisfies the following two conditions [34]:

Coarse Uniformity: There is a monotone function λ : [0,∞) → [0,∞)
such that dY (f(x), f(x′)) ≤ λ(dX (x, x′));

Metric Properness: The preimage f−1(B) is bounded for every bounded
set B ⊂ Y .

Two maps f, g into a metric space Y are close if there exists a constant C > 0
such that dY (f(x), g(x)) < C, for every C > 0. Two metric spaces X,Y are said
to be coarse equivalent if there exist coarse maps f : X → Y and g : Y → X such
that the maps gf and 1X are close and also fg and 1Y are close.

For a proper metric space X the Higson compactification X̄ is defined by
means of the following proximity: A δ B if and only if limr→∞ d(A \ Br(x0), B \
Br(x0)) < ∞ if diamA = diamB = ∞ and d(A,B) = 0 otherwise. Here x0 ∈ X
is a base point, Br(x0) is the r-ball centered at x0 and d(A,B) = inf{d(a, b) : a ∈
A, b ∈ B}.

The remainder νX = X̄\X of the Higson compactification is called the Higson
corona [34].

The asymptotic dimension asdim of a metric space was defined by Gromov
for studying asymptotic invariants of discrete groups [25]. This dimension can be
considered as an asymptotic analogue of the Lebesgue covering dimension dim.
Dranishnikov has introduced the dimension asInd which is analogous to the large
inductive dimension Ind (see [19]). It is known that asdimX = asIndX for each
proper metric space with asdimX <∞. The problem of coincidence of asdim and
asInd is still open in the general case [19].

The addition theorem for asdim is proved in [13]: suppose that a metric
space X is presented as a union A ∪ B of its subspaces. Then asdimX ≤
max{asdimA, asdimB}.

We have also a weaker result for the dimension asInd: let X be a proper
metric space and X = Y ∪Z where Y and Z are unbounded sets. Then asIndX ≤
asIndY + asIndZ (see [32]).

We do not know whether this estimate is the best possible.

651
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Question 1.1. Let X be a proper metric space and X = Y ∪ Z. Is it true that1393?

asIndX ≤ max{asIndY, asIndZ}?
Let us note that the negative answer to this question gives us a negative answer

to the problem of coincidence of asymptotic dimensions.
Extending codomain of Ind to ordinal numbers we obtain the transfinite ex-

tension trInd of the dimension Ind. It is known that there exists a space Sα such
that trIndSα = α for each countable ordinal number α [22]. This method does not
work for asInd: the extension trasInd appears to be trivial: if trasIndX <∞, then
asIndX < ∞ (see [32]). However there exists a nontrivial transfinite extension
trasdim of asdim (see [33]): there is a metric space X with trasdimX = ω.

Question 1.2. Find for each countable ordinal number ξ a metric space Xξ with1394?

trasdim, Xξ = ξ.

In the classical dimension theory of infinite dimensional spaces there is a spe-
cial class of spaces that have property C. Properties of such spaces are close to
those of finite-dimensional spaces. Dranishnikov defined an asymptotic analogue
of property C [18].

Question 1.3. Let X and Y be two metric spaces with the asymptotic property C.1395?

Does X × Y have the asymptotic property C?

It is known that the dimension trasdim classifies the class of metric spaces with
the asymptotic property C. Hence a positive answer to the following question gives
us the positive answer to the Question 1.3.

Question 1.4. Is there a function α : ω1 → ω1 such that trasdimX×Y ≤ α(ξ) for1396?

each countable ordinal number ξ and two metric spaces X, Y with trasdimX ≤ ξ
and trasdimY ≤ ξ?

Arkhangelskii introduced the dimension Dind (see [21]). This dimension has
an asymptotic counterpart.

For a proper metric space (X, d) we let asDindX = −1 if and only if X is
bounded. Suppose that we have already defined the class of proper metric spaces
for which asDindX ≤ n− 1. We say that asDindX ≤ n if for every finite family
U of open in the Higson compactification X̄ sets there exists a finite family V of
open subsets in X̄ with the following property: the family {V ∩ νX : V ∈ V} is a
discrete in νX family which refines U and asDindX \⋃V ≤ n− 1.

Question 1.5. Find relations between the dimension Dind and the other asymp-1397?

totic dimension functions.

It is proved in [20] that every proper metric space of asymptotic dimension
0 is coarsely equivalent to an ultrametric space. Recall that a metric d on a set
X is called an ultrametric if d(x, y) ≤ max{d(x, z), d(z, y)} for every x, y, z ∈
X . The mentioned results from [20] is an asymptotic version of the classical
de Groot’s result characterizing zero-dimensional metric spaces as those admitting
a compatible ultrametric.
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Nagata [30] introduced a counterpart of the notion of ultrametric: a metric d
on a set X is said to satisfy property (∗)n if, for every x, y1, . . . , yn+2 ∈ X , there
exist i, j, i 6= j, such that d(yi, yj) ≤ d(x, yi).

Question 1.6. Is every proper metric space (X, d) with asdimX ≤ n coarsely 1398?

equivalent to a proper metric space whose metric satisfies (as)n?

There are another classes of metrics that characterize covering dimension (see,
e.g., [27]).

Question 1.7. Are there metrics that characterize as above the asymptotic di- 1399?

mension n ≥ 1?

2. Extension of metrics

The problem of existence of linear regular operators (i.e., operators of norm 1
that preserve linear combination with nonnegative coefficients), extending (pseudo)-
metrics was formulated by C. Bessaga [14] and solved by T. Banakh [2].

Question 2.1. Is there a linear operator that extends metrics from a compact 1400?

metrizable space X to left invariant metrics on a free topological group of X?

A similar question can be formulated for extension of metrics from a compact
metrizable space X to norms on the free linear space over X .

Let (X, d) be a compact metric space. Given a subset A of X , we say that a
pseudometric % on A is Lipschitz if there is C > 0 such that d(x, y) ≤ C%(x, y), for
any x, y ∈ A. Also, a function f : A → R is Lipschitz if there is C > 0 such that
|f(x)− f(y)| ≤ Cd(x, y), for every x, y ∈ A. Denote by lpm(A) (resp. lpf(A)) the
set of all Lipschitz pseudometrics (resp. functions) on A. The set lpm(A) (resp.
lpf(A)) is a cone (resp. linear space) with respect to the operations of pointwise
addition and multiplication by scalar. We endow lpm(A) with the norm ‖·‖lpm(A),

‖%‖lpm(A) = sup

{
%(x, y)

d(x, y)
: x 6= y

}

and lpf(A) with the seminorm ‖·‖lpf(A),

‖f‖lpf(A) = sup

{ |f(x)− f(y)|
d(x, y)

: x 6= y

}
.

We say that a map u : lpm(A)→ lpm(X) is an extension operator for Lipschitz
pseudometrics if the following holds:

(1) u is linear (i.e., u(%1 + %2) = u(%1) + u(%2), u(λ%) = λu(%) for every
%, %1, %2 ∈ lpm(A), λ ∈ R+);

(2) u(%)|(A×A) = %, for every % ∈ lpm(A);
(3) u is continuous in the sense that ‖u‖ = sup{‖u(%)‖lpm(X) : ‖%‖lpm(A) ≤

1} is finite.

This definition is a natural counterpart of those introduced in [15] for the
extensions of Lipschitz functions. The following notation is introduced in [15]:

λ(A,X) = inf{‖u‖ : u is a linear extension operator from lpf(A) to lpf(X)}.
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Similarly, we put

Λ(A,X) = inf{‖u‖ : u is a linear extension operator from lpm(A) to lpm(X)}.
In [15] the problem of existence of extension operators of Lipschitz functions

is considered. It is natural to formulate the corresponding problem for pseudo-
metrics.

Question 2.2. Let A be a closed subspace of a compact metric space X. Is there1401?

an extension operator for Lipschitz pseudometrics u : lpm(A)→ lpm(X)?

Question 2.3. Compare Λ(S,X) and λ(S,X).1402?

3. Questions in General Topology

All topological spaces in this section are assumed to be Hausdorff, see [5] and
[6] for undefined notions used below.

Question 3.1. Is there an interplay between topological properties of a compact1403–1406?

topological inverse semigroup S and those of the maximal Clifford semigroup C ⊂ S
and the maximal sublattice E? In particular:

(a) Is S countably cellular (or separable) if so is the space C?
(b) Is S countably cellular if the maximal semilattice E is second countable?
(c) Is S (hereditary) separable if all maximal groups of S are (hereditary)

separable and the maximal semilattice is Lawson and (hereditary) sepa-
rable?

(d) Is S fragmentable (resp. Corson, Eberlein, Gul’ko, Radon–Nikodym, or
Rosenthal) compact if so is the Clifford semigroup C?

By a mean on a space X we understand any commutative idempotent oper-
ation m : X × X → X . Associative means are also called semilattice operations .
Each scattered metrizable compact space, being homeomorphic to an ordinal in-
terval [0, α], admits a continuous associative mean (just take the operations min
or max on [0, α]).

Question 3.2. Does any scattered compact Hausdorff space X admit a (sepa-1407?

rately) continuous mean?

It should be noted that there exist scattered compact Hausdorff spaces admit-
ting no separately continuous associative mean, see [7].

The other our question is due to V. Maslyuchenko, V. Mykhaylyuk and
O. Sobchuk and relates to the classical theorem of Baire on functions of the first
Baire class. We recall that a function f : X → Y between topological spaces is
called

• of the first Baire class if f is the pointwise limit of a sequence of contin-
uous functions;

• Fσ-measurable if the preimage f−1(U) of any open set U ⊂ Y is of type
Fσ in X .
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It is well-known that each function f : X → Y of the first Baire class with
values in a perfectly normal space is Fσ-measurable. The converse is true if X is
metrizable and the space Y is metrizable, separable, connected and locally path-
connected, see [24, 37].

Question 3.3. Is each Fσ-measurable function f : [0, 1] → Cp[0, 1] a function of 1408?

the first Baire class?

This question is equivalent to the original question of V. Maslyuchenko, V. My-
khaylyuk, and O. Sobchuk [29]:

Question 3.4. Let f : [0, 1]× [0, 1]→ R be a function continuous with respect to 1409?

the first variable and of the first Baire class with respect to the second variable. Is
f the pointwise limit of separately continuous functions?

Let P be a property of a subset in a topological space. A topological space is
called an AP-space (resp. WAP-space) if for every subset B ⊂ X and every (resp.
some) point x ∈ B̄ \B there exists a subset C ⊂ B with the property P in X such
that x ∈ C̄.

For example, a space X has countable tightness iff it is an AP-space for the
property P of being a countable subset. A space X is Fréchet–Urysohn (resp.
sequential) if and only if X is an AP-space (resp. WAP-space) where P is the
property of a subset A ⊂ X to have compact metrizable closure. A space X is a
k′-space in the sense of Arkhangelski [1] if and only if X is an AC-space where C
is the property of a subset A ⊂ X to have compact closure in X .

Question 3.5. Find an example of a countably compact WAC-space which is not 1410?

an AC-space.
Let D (resp. M) denote the properties of a subspace to be discrete (resp.

metrizable).

Question 3.6. Is every topological group of countable tightness an AM-space? 1411?

AD-space?

Question 3.7. Let X be an AM-space. Is the free topological group of X an 1412?

AM-space?

Question 3.8. Characterize the class of monothetic AM-groups (AM-paratop- 1413?

ological groups)?

Question 3.9. Is every countable regular space an AM-space? 1414?

4. Some problems in Ramsey Theory

In this section we ask some problems on symmetric subsets in colorings of
groups. By an r-coloring of a set X we understand any map χ : X → {1, . . . , r},
which can be identified with a partition X =

⋃
r Xi of X into r disjoint pieces

Xi = χ−1(i). As a motivation for subsequent questions let us mention the following
result of T. Banakh [3].
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Theorem C. For any n-coloring of the group Zn there is an infinite monochro-
matic subset S ⊂ Zn symmetric with respect to some point c ∈ {0, 1}n.

A subset S of a group G is called symmetric with respect to a point c ∈ G if
S = cS−1c.

This theorem suggests to introduce the cardinal function ν(G) assigning to
each group G the smallest cardinal number r of colors for which there is an r-
coloring of G without infinite monochromatic symmetric subsets.

In [9] the value ν(G) was calculated for any abelian group G:

ν(G) =





r0(G) + 1 if G is finitely generated

r0(G) + 2 if G is infinitely generated and |G[2]| < ℵ0

max{|G2|, log |G|} if |G[2]| ≥ ℵ0

where r0(G) is the free rank of G and G[2] = {x ∈ G : 2x = 0} is the Boolean
subgroup of G.

Much less is known for non-commutative groups.

Question 4.1. Investigate the cardinal ν(G) for non-commutative groups G. In1415?

particular, is ν(F2) finite for the free group F2 with two generators?

The only information on ν(F2) is that ν(F2) > 2, see [26].

Question 4.2. Has each finite coloring of an infinite group G a monochromatic1416?

symmetric subset S ⊂ G of arbitrarily large finite size? (The answer is affirmative
if G is Abelian.)

For every uncountable abelian group G with |G[2]| < |G| there is a 2-coloring
of G without symmetric monochromatic subsets of size |G|, see [31].

Question 4.3. Is it true that for every 2-coloring of an uncountable abelian group1417?

G with |G[2]| < |G| and for every cardinal κ < |G| there is a monochromatic
symmetric subset S ⊂ G of size |S| ≥ κ? (The answer is affirmative under GCH,
see [26].)

There is another interesting concept suggested by Theorem C on colorings of
the group Zn. Let us define a subset C ⊂ Zn to be central if for any n-coloring
of Zn there is an infinite monochromatic subset S ⊂ Zn symmetric with respect
to a point c ∈ C. A central set C ⊂ Zn is called minimal if it does not lie in any
smaller central set.

Question 4.4. Describe the geometric structure of (minimal) central subsets of1418?

Zn. Is each minimal central subset of Zn finite? What is the smallest size c(Zn)
of a central set in Zn?

It was proved in [4] that n(n+1)
2 ≤ c(Zn) < 2n and c(Zn) = n(n+1)

2 for n ≤ 3.

Question 4.5. Calculate the number c(Z4). (It is known that 12 ≤ c(Z4) ≤ 14,1419?

see [4].)
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Concerning the first (geometric) part of Question 4.4 the following information
is available for small n, see [4]:

(1) a subset C ⊂ Z is central if and only if C contains a point;
(2) a subset C ⊂ Z2 is central if and only if it contains a triangle {a, b, c} ⊂ C

(by which we understand a three-element affinely independent subset of
Z2);

(3) each central subset C ⊂ Z3 of size |C| = c(Z3) = 6 is an octahedron
{c ± ei : i ∈ {1, 2, 3}} where c ∈ Zn and e1, e2, e3 ∈ Zn are linearly
independent vectors;

(4) there is a minimal central subset C ⊂ Z3 of size |C| > 6 containing no
octahedron.

There is another numerical invariant ms(X,S, r) related to colorings and de-
fined for any space X endowed with a probability measure µ and a family S
of measurable sets called symmetric subsets of X . By definition, ms(X,S, r) =
inf{ε > 0 : for every measurable r-coloring of X there is a monochromatic subset
S ∈ S of measure µ(S) ≥ ε}. The notation “ms” reads as the maximal measure
of a monochromatic symmetric subset and was suggested by Ya. Vorobets. If the
family S is clear from the context (as it is in case of groups), then we shall write
ms(X, r) instead of ms(X,S, r).

The numerical invariant ms(X, r) is defined for many natural algebraic and
geometric objects: compact topological groups, spheres, balls etc. For such ob-
jects, typically, ms(X, r) is equal to 1

r2 , see [8, 11]. For example, in the case of
the ball Bn of the unit volume in the Euclidean space Rn of dimension n ≥ 2 we
get ms(Bn,S, r) = 1

r2 for any family S with S0 ⊂ S ⊂ S+ where S+ is the family
of measurable subsets of Bn that are symmetric with respect to some non-trivial
isometry of Rn and S0 is the family of measurable subsets of Bn, symmetric with
respect to some hyperplane passing through the center of the ball.

Moreover, for any measurable r-coloring of the ball Bn of dimension n ≥ 3
there is a monochromatic subset S ∈ S0 of measure > 1

r2 . This phenomenon
does not hold in dimension 2: there is a 2-coloring of the two-dimensional disk
B2 such that all monochromatic symmetric subsets S ∈ S0 of B2 have measure
≤ 1

4 (such an extremal coloring of the disk resembles the Chinese philosophical
symbol “in-jan”, see [11]). The situation with the 1-dimensional ball [0, 1] is even
worse: we known that 1

r2+r
√

r2−r
≤ ms([0, 1],S+, r) <

1
r2 for r > 1 but the exact

value of ms([0, 1],S+, r) is not known even for r = 2. However, we have some
lower and upper bounds: 1

4+
√

6
≤ ms([0, 1],S+, 2) < 5

24 , see [11] and [28] for more

information. Observe that for n = 1 the family S+ coincides with the family of
subsets of [0, 1], symmetric with respect to some point of [0, 1]. So, we shall write
ms([0, 1], r) instead of ms([0, 1],S+, r).

Question 4.6. Calculate the value ms([0, 1], r), at least for r = 2. Can ms([0, 1], 2) 1420?

be expressed via some known mathematic constants?

It was proved in [11] that the limit limr→∞ r2 ·ms([0, 1], r) exists and lies in
the interval [ 12 ,

5
6 ].
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Question 4.7. Calculate the constant c = limr→∞ r2 ·ms([0, 1], r).1421?

More detail information on these problems can be found in the surveys [8, 10].

5. Questions on functors in the category of compact Hausdorff spaces

We denote by Comp the category of compact Hausdorff spaces and continuous
maps. In the sequel, all the functors are assumed to be covariant endofunctors in
Comp.

First, we mention few examples of functors. The hyperspace functor exp as-
signs to every compact Hausdorff spaceX the set expX of nonempty closed subsets
in X endowed with the Vietoris topology. A base of this topology consists of the
sets of the form 〈U1, . . . , Un〉 = {A ∈ expX : A ⊂ ⋃n Ui, (∀i)A ∩ Ui 6= ∅}, where
U1, . . . , Un are open subsets in X . Given a map f : X → Y in Comp, the map
exp f : expX → expY is defined by exp f(A) = f(A).

The probability measure functor P assigns to every compact Hausdorff space
X the set P (X) of probability measures endowed with the weak* topology.

Let G be a subgroup of the permutation group Sn. The G-symmetric power
of X , SPn

G(X), is the quotient space of Xn with respect to the natural action of
G on Xn by permutation of coordinates. One can easily see that this construction
determines a functor.

Some properties of the mentioned functors and other known functors were
used by E.V. Shchepin [35] in order to introduce the notion of a normal functor.
It turned out that normal functors, and some close to normal functors, found
important applications in the topology of nonmetrizable compact Hausdorff spaces
and other areas of topology (see, e.g., [36, 23, 35]).

If a functor F preserves embeddings, then, for a compact Hausdorff space X
and a closed subspace A of X , we always identify the space F (A) with a subspace
in F (X) along the embedding F (i), where i : A→ X is the inclusion map.

Let a functor F preserve embeddings. We say that F preserves preimages
if F

(
f−1(A)

)
= F (f)−1 (F (A)) for every map f : X → Y and every closed sub-

set A of Y . We say that F preserves intersections whenever F
(⋂

α∈ΓAα

)
=⋂

α∈Γ F (Aα) for every family of closed subsets {Aα : α ∈ Γ} in X .
An endofunctor F in Comp is called normal (Shchepin [35]) if F preserves

embeddings, surjections, weight of infinite compacta, intersections, preimages, sin-
gletons, the empty set, and the limits of inverse systems S = {Xα, pαβ ;A} over
directed sets A. More precisely, the latter condition means that the map h =
(F (pα))α∈A is a homeomorphism of F (lim←−S) onto lim←−F (S), where pα : lim←−S →
Xα is the limit projection.

A functor F is said to be weakly normal (almost normal) if it satisfies all
the properties from the previous definition except perhaps the property of being
epimorphic (respectively, the preimage preserving property).

The hyperspace functor exp, the probability measure functor P , and the G-
symmetric power functor SP n

G are examples of normal functors.
For a functor F and a compact Hausdorff space X denote by Fn(X) the

subspace
⋃ {F (f) (F (n)) : f ∈ C(n,X)} of F (X) (here C(n,X) denotes the set of
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all maps from the discrete space n to X). Clearly, such a construction determines
a subfunctor Fn of F . A functor F is of finite degree if there exists n ∈ N such
that F = Fn.

If ϕ = (ϕX) : F → F ′ is a natural transformation of functors then we say that
F is a subfunctor of F ′ if all the components of ϕ are inclusion maps and we say
that F ′ is a quotient functor of F if all the components of ϕ are onto maps.

The characteristic map of a commutative diagram

X
f−−−−→ Y

g

y
yh

Z
u−−−−→ T

in the category Comp is the map χ : X → Y ×TZ = {(y, z) ∈ Y ×Z : h(y) = u(z)}
defined by the formula χ(x) = (f(x), g(x)). A diagram is bicommutative if its
characteristic map is onto. A diagram is open-bicommutative if its characteristic
map is open and onto.

A functor F : Comp → Comp is said to be bicommutative (resp. open-
bicommutative) if F preserves the class of bicommutative (resp. open-bicommutative)
diagrams.

A functor is open if it preserves the class of open surjective maps. E.V. Shchepin
proved that every open functor is bicommutative.

Question 5.1 (Shchepin). Is every normal bicommutative functor open? 1422?

This problem was formulated more then 25 years ago. The notions of open
and bicommutative functors were introduced by E.V. Shchepin [35]. The problem
was solved in [40] for normal functors of finite degree.

Question 5.2. Is every normal bicommutative (open) functor open-bicommutative? 1423?

It is proved in [36] that natural transformations of (weakly, almost) normal
functors form a set and therefore one can introduce the category of normal functors
and their natural transformations.

A (weakly, almost) normal functor F is called universal if every (weakly,
almost) normal functor is isomorphic to a subfunctor of F .

Question 5.3. Is there a universal (weakly, almost) normal functor? 1424?

A normal functor F is called couniversal if every normal functor F ′ is a quo-
tient functor of F .

Question 5.4. Is there a couniversal (weakly, almost) normal functor? 1425?

A normal functor F is called zero-dimensional if dimF (X) = 0 for every
compact Hausdorff space X with dimX = 0.

Question 5.5. Is every normal functor a quotient functor of a zero-dimensional 1426?

normal functor?
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Let τ > ω be a cardinal number. A functor F is called τ -normal if F satisfies
all the properties from the definition of normality except the preserving of weight
and, in addition, the weight of F (X) is ≤ τ , for every compact metrizable X (the
minimal τ for which a functor F is τ -normal is called the weight of F .

Actually, one can find the prototype of the notion of τ -normal functor in
Shchepin’s paper [35] as he considered the so-called normal functor-powers, i.e.,
the spaces of the form F (Xτ ).

We say that a map f : X → Y satisfies the homeomorphism-lifting property if,
for every homeomorphism h : Y → Y there exists a homeomorphism h′ : X → X
such that fh′ = hf .

Question 5.6 (Shchepin). Let X be a metric compact space and F a normal func-1427?

tor. Does the map F ((pr)τ ) : F ((X ×X)τ )→ F (Xτ ) satisfy the homeomorphism-
lifting property?

Question 5.7. Is every multiplicative τ -normal functor isomorphic to the power1428?

functor (·)τ?

For normal functors, this problem was posed by Shchepin and solved in [38].
Shchepin proved the so-called spectral theorem, which states that, under some

reasonable conditions, if a nonmetrizable compact Hausdorff space is represented
as the inverse limit of two systems consisting of spaces of smaller weight then
these systems contain isomorphic cofinal subsystems (see [35] for details). One
can consider representations of τ -normal functors as the limits of inverse systems
consisting of functors of smaller weight and their natural transformations.

Question 5.8. Is there a counterpart of Shchepin’s spectral theorem in the cate-1429?

gory of τ -normal functors?

Of special interest are functors of finite degree that preserve the class of com-
pact metric ANR spaces (i.e., absolute neighborhood retracts). Basmanov [12]
established such a property for a wide enough class of functors. Such functors
are known to preserve other classes of spaces too: Q-manifolds (i.e., manifolds
modeled on the Hilbert cube Q = [0, 1]ω) [23], n-movable spaces [39], compact
metric absolute neighborhood extensors in dimension n [16].

We are going to formulate a few questions on the preservation of some geo-
metric properties by functors of finite degree.

Let P be a CW-complex. For any compact metric space X the Kuratowski
notation X τ P means the following: for every continuous map f : A→ P defined
on a closed subset A of X there is a continuous extension of f onto X .

Denote by L the class of all countable CW-complexes. Following [17], we
define a preorder relation ≤ on L. For L1, L2 ∈ L, we have L1 ≤ L2 if and only
if X τ L1 implies X τ L2 for all compact metric spaces X . This preorder relation
determines the following equivalence relation ∼ on L: L1 ∼ L2 if and only if
L1 ≤ L2 and L2 ≤ L1. We denote by [L] the equivalence class containing L ∈ L.

For a compact metric space X , we say that its extension dimension does not
exceed [L] (briefly ext-dimX ≤ [L]) whenever X τ L.
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A compact metric spaceX is said to be an absolute (neighborhood) extensor in
extension dimension [L] if for any compact metric pair (A,B) with ext-dimA ≤ [L]
and any continuous map f : B → X there exists a continuous extension f̄ : A→ X
(respectively f̄ : U → X , where U is a neighborhood of B in A) of f .

In the sequel, we suppose that F is a normal functor of finite degree that
preserves the class of compact metrizable ANR-spaces.

Question 5.9. Does F preserve the class of absolute (neighborhood) extensors in 1430?

extension dimension [L]?

Two maps f0, f1 : X → Y are said to be [L]-homotopic if there exists a space
Z with ext-dimZ ≤ [L], a map α : Z → X × [0, 1] which is [L]-invertible (i.e.,
satisfies the property of lifting of maps from spaces of extension dimension ≤ [L]),
and a map H : Z → Y such that fiα(z) = H(z), for every z ∈ α−1 (X × {i}),
i = {0, 1}.

Question 5.10. Does F preserve the relation of [L]-homotopy of maps? 1431?

We finish with the following question.

Question 5.11. Does F preserve the class of essential Q-M -factors, i.e., the class 1432?

of spaces X such that X ×A is a Q-manifold for some A with dimA <∞?

References
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Problems from the Bizerte–Sfax–Tunis Seminar

Othman Echi, Habib Marzougui and Ezeddine Salhi

Introduction

The Bizerte–Sfax–Tunis seminar [BST Seminar “Algebra, Dynamical Systems
and Topology”] is organized by two Tunisian research groups “Algebra and Topol-
ogy 03/UR/03-15” and “Dynamical Systems and Combinatorics 99/UR/15-15”.
Three meetings are held each academic year in one of the Faculties of Sciences of
Bizerte, Sfax or Tunis. The Seminar has been founded, firstly, by Professor Ezzed-
dine Salhi since 1996 and has been called Bizerte–Sfax Meeting. In March 2001,
Othman Echi has got the position of Professor at Faculty of Sciences of Tunis;
and so the seminar is shared by Bizerte, Sfax and Tunis. The goal of this seminar
is to shed light on the latest results obtained by the members of the two groups
(in the areas of algebra, algebraic topology, combinatorics, complex analysis, dy-
namical systems, foliation theory, topology). It is worth noting that an interesting
link between foliation theory and spectral topology has been discovered by three
members of the above two research groups (see [4]).

This note deals with eight problems in Topology which are proposed by our
seminar. These problems concern spectral spaces and some related topics; the
space of leaves of a foliation; dynamics of groups of homeomorphisms and vector
fields on surfaces.

Spectral spaces and related topics

This section is devoted to some problems related to the prime spectrum of
a unitary commutative ring (equipped with the Zariski topology). However, no
background of Algebra is needed: each concept used, here, has a translation into a
general topological property. But, to motivate the reader, we will explain a little
the origins of concepts.

Let Spec(R) denote the set of prime ideals of a commutative ring R with
identity. Recall that, the Zariski topology or the hull-kernel topology for Spec(R)
is defined by letting C ⊆ Spec(R) be closed if and only if there exists an ideal
A of R such that C = {P ∈ Spec(R) : P ⊇ A}. The topological question of
characterizing spectral spaces (that is, topological spaces homeomorphic to the
prime spectrum of a ring equipped with the Zariski topology) was completely
answered by Hochster in [13] (they are, precisely, compact sober spaces that have
a basis of compact open sets closed under finite intersections).

We would like to thank the DGRST for its partial support of our research groups
“Algebra and Topology: 03/UR/03-15” and “Dynamical Systems and Combinatorics:
99/UR/15-15”.
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Following Hochster [13], a continuous map of spectral spaces is said to be
spectral if inverse images of compact open sets are compact. Hochster has extended
the notion of spectral map to a larger class of spaces. Call a space semispectral if
the intersection of any two compact open subsets is compact. Call an open subset
U of a topological space X intersection compact open, or ICO, if for every compact
open set Q of X , U ∩ Q is compact. Thus, X is semispectral if and only if the
compact open sets are ICO. Then a continuous map f of semispectral spaces will
be called spectral if f−1 carries ICO sets to ICO sets.

Recall that a topological space X is said to be a Jacobson space if the set
C(X) of all closed points of X is strongly dense in X [10] (a subset of X is
said to be strongly dense if it meets every nonempty locally closed subset of X).

Obviously, when X is a topological space, Jac(X) = {x ∈ X : {x} = {x} ∩ C(X)}
is a Jacobson space; we call it the Jacobson subspace of X . It is easily seen that
Jac(X) is the largest subset of X in which C(X) is strongly dense.

Let R be a ring, we denote by Jac(R) the Jacobson subspace of Spec(R). A
prime ideal P of R is in Jac(R) if and only if it is the intersection of all maximal
idealsM of R such that P ⊆M. Jacobson spaces are linked with Hilbert rings; a
ring in which every prime ideal is an intersection of some maximal ideals is called
a Hilbert ring (or, also, a Jacobson ring). Clearly, a ring R is a Hilbert ring if and
only if Spec(R) endowed with the hull-kernel topology is a Jacobson space.

According to [2], a jacspectral space is defined to be a topological space homeo-
morphic to the Jacobson space of Spec(R) for some ring R. The authors of [2]
have given a topological characterization of jacspectral spaces(they are, precisely,
compact Jacobson sober spaces).

Goldman ideals are important objects of investigation in algebra mostly be-
cause their role in the study of graded rings and some applications to algebraic
geometry. Thus it is important to pay attention to the Goldman prime spectrum
Gold(R) of a ring R.

Topologically speaking, G-ideals of a ring are the locally closed points for the
hull-kernel topology.

It is worth noting that G-ideals have been used separately by Goldman [9]
and Krull [14] for a short inductive proof of the Nullstellensatz.

Following [7], a topological space X is said to be goldspectral if there exists
a ring R such that X is homeomorphic to Gold(R) (equipped with the topology
inherited by that of Zariski on Spec(R)). The main result of [7], provides an
intrinsic topological characterization of goldspectral spaces:

A topological space X is goldspectral if and only if it is a compact
TD−space and has a basis of compact open sets which is closed
under finite intersections.

In [13], Hochster has introduced the notion of spectralifiable space: A spectral-
ification of a semispectral space X is a spectral embedding g of X into a spectral
space X ′ such that for every spectral space Y and spectral map f from X to Y
there is a unique spectral map f ′ from X ′ to Y such that f = f ′ ◦ g. The space X
is said to be spectralifiable if it has a spectralification [13]. When a semispectral
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space has a spectralification (in the sense of Hochster), we will say that it is H-
spectralifiable. A complete characterization of H-spectralifiable spaces has been
given in [13]: A semispectral space is H-spectralifiable if and only if it can be
spectrally embedded in some spectral space; or equivalently, it is a T0-space and
the ICO sets are an open basis.

In [1], Ayache and Echi have introduced the notion of D-ifiable objects of a
category: Let C be a category, D a subcategory of C and X an object of C. A
D-ification of X , is a morphism p : X → X ′ where X ′ is an object of D such that
for each morphism f : X → Z (with Z ∈ ob(D) there exists a unique morphism

f̃ : X ′ → Z satisfying f̃ ◦ p = f . The object X is said to be D-ifiable if it has a
D-ification. Hence the full subcategory of C whose objects are the D-ifiable objects
of C is the largest subcategory in which D is reflective.

The previous new concept allows us to state the following problems.
Let S be the subcategory of TOP consisting of spectral spaces and spectral

maps. The semispectral spaces and spectral maps form a full subcategory U of S.

Problem BST 1. It is clear that every H-spectralifiable space of U is S-ifiable. 1433?

When is a semispectral space S-ifiable?

Let J S be the full subcategory of TOP whose objects are jacspectral spaces.

Problem BST 2. When is a topological space J S-ifiable? 1434?

Let GS be the full subcategory of U whose objects are goldspectral spaces
with spectral maps as morphisms.

Problem BST 3. When is a semispectral space GS-ifiable? 1435?

The space of leaves and the space of leaves classes

Let M be a closed connected manifold, F a 1-codimensional transversally
oriented foliation on M , of class Cr (r ≥ 0). Let F be a leaf; we define Cl(F ),
the class of F , as the union of all leaves G of F such that F = G. Let ∼ be
the equivalence relation defined on M by x ∼ y if and only if, Fx = Gy, where
Fx and Fy are the leaves of F containing respectively x and y. The quotient

space, denoted by X = M/F := {Cl(F ) : F is a leaf}, is called the space of leaves
classes , it is a T0-space, however the space of leaves Z = M/F is not in general a
T0-space. More precisely, the space X is the T0-identification of Z [4].

In [3], the authors have proved that, if F has a height and X0 denotes the
union of open sets of X which are homeomorphic either to R or to the unit circle
S1, then X \X0 is a spectral space.

We set the following problem:

Problem BST 4. Give an intrinsic topological characterization of the spaces 1436–1437?

X = M/F and Z = M/F in purely topological terms.

This is, in fact, a very hard problem. However, in [3] and [4], some topological
properties of the quotient spaces X = M/F and Z = M/F are given. Note also
that the authors of [12] have investigate weaker version of the above problem.
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Dynamics of groups of homeomorphisms

Firstly, let us note that for more details concerning the material of this section,
one may see [18].

A homeomorphism f : Rp → Rp defined on the Euclidean space Rp is said to be
regular if the group {fn : n ∈ Z} generated by {f} is equicontinuous at any point
of Rp; it is the case if f is periodic or an isometry. The subset {fn(x) : n ∈ Z} is
the orbit of f at the point x ∈ Rp.

If p = 2 and if all orbits of f are bounded, then f is topologically equivalent
to an isometry [5].

Problem BST 5. When is a regular homeomorphism f : Rp → Rp topologically1438?

equivalent to an isometry on the Euclidean space Rp?

We define on Rp a metric by: d∗(x, y) = sup{d(fn(x), fn(y)) : n ∈ Z}. One
may check that this metric d∗ is equivalent to the Euclidean metric d and that f
is an isometry when Rp is equipped with this new metric.

Problem BST 6. Let f : Rp → Rp be a regular homeomorphism such that f is1439?

equal to the identity map on a nonempty open subset. Is f equal to the identity
map on the whole space?

The answer is positive in the following cases: f is an isometry; f is periodic (by
Newman’s theorem [6]); p = 2 (in this case, from [5], f is topologically equivalent
to an isometry).

A homeomorphism f : E → E on a metric space is pointwise periodic if it is
periodic at any point of E.

We can construct a pointwise periodic, nonperiodic, regular homeomorphism
f : E → E defined on a compact, arcwise connected and locally arcwise connected
metric subspace E of R3 [8].

Problem BST 7. Can one construct a pointwise periodic nonregular homeomor-1440?

phism f : E → E such that E is a compact, arcwise connected and locally arcwise
connected metric subspace E of R2?

Note that, from Montgomery–Zippin [16], any pointwise periodic homeomor-
phism on a connected manifold is periodic and so it is regular.

Vector fields on surfaces

The problem stated in this section concerns the qualitative behavior of orbits
of vector fields on surfaces. Let X be a vector field without singularities on an
open orientable surface M . We call a quasi-minimal set the closure of a nontrivial
recurrent orbit of X . A nontrivial recurrent orbit which is nowhere dense is called
exceptional .

If M is of finite genus, we proved in [15] that every nonclosed orbit which
is contained in a quasi-minimal set is dense in it, moreover, we gave a dynamic
characterization of the limit set of any orbit by the following theorem:
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Theorem H ([15]). Let X be a vector field without singularities on an open
orientable surface M of finite genus. The ω-limit (resp. α-limit) set of an orbit of
X (if it is nonempty), is a compact orbit or the union of closed and noncompact
orbits or a quasi-minimal set.

If M is of infinite genus, the behaviour of orbits is more complex; for instance,
the above results are false in general:

Nikolaev–Zhuzhoma constructed in [17] an example of vector field X with a
dense orbit on a surface of infinite genus such that X has a an exceptional orbit
which is not dense in M . Also, Gutierrez, Hector and Lopez constructed in [11] a
vector field X without singularities on a surface of infinite genus having each one
of the following nontrivial dynamics:

(1) nontrivial recurrent orbits are exceptional and the union of them is a
dense set;

(2) X has dense orbits and exceptional orbits;
(3) existence of dense sequence of exceptional orbits (Ok)k≥1 such that O1 ⊂

O2 ⊂ · · ·Ok ⊂ · · · (the inclusions are all strict).

Problem BST 8. Find an analogue to Theorem H for surfaces of infinite genus. 1441?

References

[1] A. Ayache and O. Echi, The envelope of a subcategory in topology and group theory, Int. J.
Math. Math. Sci. (2005), no. 21, 3387–3404.

[2] E. Bouacida, O. Echi, G. Picavet, and E. Salhi, An extension theorem for sober spaces and
the Goldman topology, Int. J. Math. Math. Sci. (2003), no. 51, 3217–3239.

[3] E. Bouacida, O. Echi, and E. Salhi, Foliations, spectral topology, and special morphisms,
Advances in commutative ring theory (Fez, 1997), Lecture Notes in Pure and Appl. Math.,
vol. 205, Dekker, New York, 1999, pp. 111–132.

[4] E. Bouacida, O. Echi, and E. Salhi, Feuilletages et topologie spectrale, J. Math. Soc. Japan
52 (2000), no. 2, 447–464.

[5] B. L. Brechner and R. D. Mauldin, Homeomorphisms of the plane, Pacific J. Math. 59
(1975), no. 2, 375–381.

[6] A. Dress, Newman’s theorems on transformation groups, Topology 8 (1969), 203–207.
[7] O. Echi, A topological characterization of the Goldman prime spectrum of a commutative

ring, Comm. Algebra 28 (2000), no. 5, 2329–2337.
[8] A. El Kacimi Alaoui, H. Hattab, and E. Salhi, Remarques sur certains groupes d’homéo-
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Cantor set problems

Dennis J. Garity and Dušan Repovš

Introduction

A Cantor set is characterized as a topological space that is totally discon-
nected, perfect, compact and metric. Any two such spaces C1 and C2 are homeo-
morphic, but if C1 and C2 are subspaces of Rn, n ≥ 3, there may not be a
homeomorphism of Rn to itself taking C1 to C2. In this case, C1 and C2 are said
to be inequivalent embeddings of the Cantor set. There has been recent renewed
attention to properties of embeddings of Cantor sets since these sets arise in the
settings of dynamical systems, ergodic theory and group actions. The bibliogra-
phy, while not complete, gives a sampling of the various mathematical areas where
Cantor sets naturally arise.

A Cantor set C in Rn is tame if it is equivalent to the standard middle thirds
Cantor set. If it is not tame, it is wild . A Cantor set C is strongly homogeneously
embedded in Rn if every self homeomorphism of C extends to a self homeomor-
phism of Rn. At the opposite extreme, a Cantor set C in Rn is rigidly embedded
if the identity homeomorphism is the only self homeomorphism of C that extends
to a homeomorphism of Rn. A Cantor set C in Rn is slippery if for each Cantor
set D in Rn and for each ε > 0, there is a homeomorphism h : Rn → Rn, within ε
of the identity, with h(C) ∩D = ∅.

Željko [28] defines the genus of a Cantor set X in R3 and the local genus of
points in X . A defining sequence for a Cantor set X ⊂ Rn is a sequence (Mi) of
compact n-manifolds with boundary such that Mi+1 ⊂ intMi and X =

⋂
iMi.

Let D(X) be the set of all defining sequences for X . For a disjoint union of
handlebodies M =

⊔
λ∈ΛMλ, we define g(M) = sup{genus(Mλ) : λ ∈ Λ}.

For any subset A ⊂ X , and for (Mi) ∈ D(X) we denote by MA
i the union

of those components of Mi which intersect A. The genus of the Cantor set X
with respect to the subset A, gA(X) = inf{gA(X ; (Mi)) : (Mi) ∈ D(X)}, where
gA(X ; (Mi)) = sup{g(MA

i ) : i ≥ 0}. For A = {x} we call the number g{x}(X) the
local genus of the Cantor set X at the point x and denote it by gx(X). For A = X
we call the number gX(X) the genus of the Cantor set X and denote it by g(X).

The problems

Antoine [2] produced the first example of a wild Cantor set in R3, the well-
known Antoine’s necklace. Blankinship [6] extended Antoine’s construction to

The first author was supported in part by NSF grants DMS 0139678, DMS 0104325
and DMS 0453304. The second author was supported in part by Slovenian Research
Agency program P1-0292-0101-04. Both authors were supported in part by Slovenian
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higher dimensions, producing wild Cantor sets in Euclidean spaces of dimensions
≥ 4. Daverman [8] produced an example of a strongly homogenously embedded
Cantor set if Rn for n ≥ 5. His example relied on decomposition theory results
that only applied in high dimensions and on the existence of non simply connected
homology spheres in dimensions ≥ 3.

Question 1. Is there a strongly homogeneously embedded wild Cantor set in R3
1442?

or R4, or are such sets necessarily tame?

The Antoine construction can be carefully done with sufficiently many tori at
each stage so as to produce wild Cantor sets that are geometrically self similar
and are Lipschitz homogenously embedded in R3. See [12, 15, 29] for definitions
and details. It is not clear that the Blankinship construction in higher dimensions
can be done so as to produce geometrically self similar Cantor sets.

Question 2. Is there a geometrically self similar wild Cantor set in R4 or in1443?

higher dimensions?

Question 3. Are there Lipschitz homogenously embedded wild Cantor sets in R4
1444?

or in higher dimensions?

Rushing [18] produced examples in R3 of wild Cantor sets of each possible
Hausdorff dimension. At the end of his paper, he stated that a modification of
the Blankinship construction would allow similar results in higher dimensions.
Because of the difficulty in producing a self similar Blankinship construction, it is
not clear how the generalization to higher dimensions would work.

Question 4. Are there wild Cantor sets in Rn, n ≥ 4 of arbitrary possible Haus-1445?

dorff dimension?

DeGryse and Osborne [11] produced an example of a wild Cantor set in R3

with simply connected complement. Later, Skora [20] produced such Cantor sets
using a different construction. Rigid wild Cantor sets in R3 and in higher dimen-
sions were produced by Wright [24] using variations on the Antoine and Blankin-
ship constructions. Garity, Repovš, and Željko [13] recently produced examples of
rigid wild Cantor sets in R3 that also had simply connected complement. However
the latter examples necessarily used tori of arbitrarily high genus in the construc-
tion.

Question 5. Is there a rigid Cantor set in R3 with simply connected complement1446?

that has local genus n or less at every point, for some fixed n?

Bing–Whitehead Cantor sets are a generalization of the Cantor sets produced
by DeGryse and Osborne. Ancel and Starbird [1] and later Wright [26] charac-
terized which Bing–Whitehead constructions actually yield Cantor sets.

Question 6. Is there a modification of the Bing–Whitehead Cantor set construc-1447?

tion that yields rigid Cantor sets with simply connected complements?

Question 7. Are Bing–Whitehead Cantor sets with infinite differences in the1448?

number of Whitehead constructions inequivalently embedded?
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Sher in [19] showed that two equivalent Antoine Cantor sets necessarily had
the same number of components in each stage of their defining sequences. In [12],
the authors and Željko show that Antoine Cantor sets with the same number of
components at each stage can be inequivalent. Knot theory techniques are used
in the proof. This leads to the following question.

Question 8. Is it possible to completely classify Antoine Cantor sets using knot 1449?

theory invariants?

The following questions deal with the possibility of classifying wild Cantor
sets in R3 using various properties.

Question 9. Is there a way of classifying wild Cantor sets in R3 using local genus 1450?

and other geometric properties?

Question 10. Can one use the volume of the hyperbolic 3-manifolds M 3 = S3\X 1451?

where X is a wild Cantor set to distinguish between classes of wild Cantor sets?

The following questions are about the relationship of Hausdorff dimension to
various types of Cantor sets.

Question 11. Can two rigid Cantor sets have different Hausdorff dimensions? 1452–1453?

How does Hausdorff dimension detect rigidity of Cantor sets?

Question 12. Is there a rigid Cantor set of minimal Hausdorff dimension? 1454?

Question 13. Can two Cantor sets of different genus have the same Hausdorff 1455–1456?

dimension? How are Hausdorff dimension and genus of Cantor sets related?

The final few questions deal with homotopy groups of the complement of wild
Cantor sets.

Question 14. Can two different (rigid) Cantor sets have the same fundamental 1457?

groups of the complement?

Question 15. Which groups can occur as the fundamental groups of (rigid) wild 1458?

Cantor set complements?
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Problems from the Galway Topology Colloquium

Chris Good, Andrew Marsh, Aisling McCluskey and Brian McMaster

This article presents an overview of several groups of open problems that are
currently of interest to researchers associated with the Galway Topology Collo-
quium. Topics include set and function universals, countable paracompactness,
abstract dynamical systems, and the embedding ordering within families of topo-
logical spaces.

1. Universals: an introduction

Universals were introduced at the beginning of the last century in the study
of classical descriptive set theory. They were used, for example, to show for an
uncountable Polish space that the class of analytic sets is strictly greater than
the class of Borel sets [27]. This work focused on universals for Polish spaces. In
recent years a number of researchers, in particular Paul Gartside, have begun an
investigation of universals in the more general setting of topological spaces. This
research has a similar flavour to Cp-Theory, attempting to relate the topological
properties of a space to those of some higher-order object.

The study of universals provides a suitable setting for other previous work. For
example, the definition of a continuous function universal generalises the definition
of an admissible topology on the ring of continuous functions on a space. A further
example is continuous perfect normality, (see [24, 47]) which can be defined in
terms of zero-set universals.

A universal is a space that in some sense parametrises a collection of objects
associated with a given topological space, such as the open subsets or the continu-
ous real-valued functions. More precisely, we can define set or function universals
as follows.

Given a space X we say that a space Y parametrises a continuous function
universal for X via the function F if F : X × Y → R is continuous and for any
continuous f : X → R there exists some y ∈ Y such that F (x, y) = f(x) for all
x ∈ X .

Let T be a function that assigns to each space X the set T (X) ⊂ P(X). For
example, T could take each space X to its topology.

Given a space X we say that a space Y parametrises a T -universal for X
if there exists U ∈ T (X × Y ) such that for all A ∈ T (X) there exists y ∈ Y
such that Uy = {x ∈ X : (x, y) ∈ U} = A. Typically we are interested in open
universals, Borel universals, zero-set universals or any other T -universals when T
has a natural definition as in these three examples.

The second author would like to acknowledge the support of the Irish Research Council
for Science, Engineering and Technology.
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For convenience we refer to X as the underlying space and we refer to Y as the
parametrising space. If no separation axioms are specified we assume throughout,
when dealing with continuous function universals or zero-set universals, that both
the underlying space and the parametrising space are Tychonoff. For the other
types of universals we assume that these spaces are regular and Hausdorff. Any
property that is not defined in this section can be found in [6].

Most of the questions that we are interested in can usually be expressed as
specific instances of the following metaquestion.

Question 1.1. For a fixed T and topological property P can we characterise those1459?

spaces that have a T -universal parametrised by a space with property P?

Problems regarding the construction of universals. Before looking at
those questions that are instances of Question 1.1 we will discuss the problem of
constructing continuous function universals. Of course a discrete space of sufficient
cardinality can always be used to parametrise a continuous function universal,
however, in general we wish to find spaces with given global properties (e.g. spaces
with a given weight or density) and so this construction is rarely of any use.

It is well known that if X is locally compact then Ck(X) has an admissible
topology and hence parametrises a continuous function universal for X via the
evaluation map [1]. It is readily seen that, given any other continuous function
universal for X , say Y , the obvious map from Y onto Ck(X) is continuous. The
result of this is that most of the problems regarding continuous function universals
for locally compact spaces reduce down to the study of Ck(X). In general, however,
given a broader class of spaces there will not be a canonical continuous function
universal.

Let τ, σ be two topologies on a set X with τ ⊂ σ. We say that τ is a
K-coarser topology if (X, σ) has a neighbourhood basis consisting of τ -compact
neighbourhoods. In [7] it is shown that in this case we can refine the topology on
Ck(X, σ) to create a continuous function universal for (X, σ) without adding too
many open sets.

There are many classes of spaces for which we might be able to find a similar
type of construction. As an example, we pose the following (necessarily vague)
question.

Question 1.2. Find a general method of constructing continuous function univer-1460?

sals for k-spaces such that the parametrising space does not have too many more
open sets than Ck(X).

Another way of expressing this is that the cardinal invariants of the parametris-
ing space should be as close to the cardinal invariants of Ck(X) as possible. For
example, if Ck(X) is separable and Lindelöf then the continuous function universal
should also have these properties.

Problems regarding the cardinal invariants of universals. Via Ques-
tion 1.1 we could construct a question for every known topological property. Here
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we mention those problems that have already been investigated with partial suc-
cess. They relate to compactness type properties (compactness, Lindelöf property,
Lindelöf-Σ spaces) and also hereditary cellularity, hereditarily Lindelöf spaces and
hereditarily separable spaces. The interested reader should also see [4] an excellent
survey of open problems in this area that focuses on those problems arising from [9]
and [10]. There is some overlap between the questions mentioned here and those
discussed in [4], specifically Question 1.10, Question 1.11 and Question 1.12.

It is worth noting that, in general, the following question remains unsolved.

Question 1.3. Characterise those spaces that have a continuous function univer- 1461?

sal parametrised by a separable space.

In [7] it is shown that if a space has a K-coarser separable metric topology
then it has a continuous function universal parametrised by a separable space.
This includes, for example, the Sorgenfrey line.

In [11] it is shown that one can characterise the metric spaces within the class
of all Tychonoff spaces as those spaces with a zero-set universal parametrised by a
compact (or even σ-compact) space. The same is true if we look at open regular Fσ

universals. However, for open Fσ universals the results are inconclusive, leading
to the following problem.

Question 1.4. Characterise those spaces that have an open Fσ universal param- 1462?

etrised by a compact space.

It is true that any Tychonoff space with an open Fσ universal parametrised
by a compact space must be developable. Conversely, we know that every Ty-
chonoff metacompact developable space has an open Fσ universal parametrised
by a compact space. Is metacompactness necessary? Or can one find a devel-
opable, non-metacompact space X with an open Fσ universal parametrised by a
compact space?

In [11] is also shown that every space with a zero-set universal parametrised
by a second countable space must be second countable and hence metrisable. Re-
call that the class of Lindelöf-Σ spaces is the smallest class of spaces that contains
all compacta, all second countable spaces and that is closed under countable prod-
ucts, continuous images and closed subspaces. Since every space with a zero-set
universal parametrised by either a second countable space or a compact space must
be metrisable, we might guess that this would hold true if the parametrising space
were Lindelöf-Σ. This is not the case. However, the following question remains
open.

Question 1.5. If a space X has a zero-set universal parametrised by a space that 1463?

is the the product of a compact space and a second countable space, then is X
metrisable?

We say a space X is strongly quasidevelopable if there exists a collection {Gn :
n ∈ ω} where each Gn is a collection of open subsets of X such that for all open U
and x ∈ U there exists open V = V (x, U) with x ∈ V ⊂ U and n = n(x, V ) ∈ ω
such that x ∈ ⋃Gn and x ∈ St(V,Gn) ⊂ U . It is known that if a space X
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has a zero-set universal parametrised by a Lindelöf-Σ space, then X is strongly
quasidevelopable. Yet this cannot be a sufficient condition. In [11] an example is
given of a strongly quasidevelopable space with no zero-set universal parametrised
by a Lindelöf-Σ space.

Question 1.6. Characterise the spaces with a zero-set universal parametrised by1464?

a Lindelöf-Σ space.

There is a possibility that metrisable spaces are precisely those spaces with
a continuous function universal parametrised by a Lindelöf-Σ space. A solution
to the following question would go a long way towards proving this appealing
conjecture.

Question 1.7. If a Tychonoff space has a continuous function universal param-1465?

etrised by a Lindelöf-Σ space, then must it be metrisable?

Restricting the class of spaces to the compacta gives us stronger results, as
we would expect. For example, it is shown in [10] that if X is compact and has
an open universal parametrised by a space whose square is hereditarily Lindelöf
or hereditarily separable, then X must be metrisable. It is also shown that it is
consistent that there is a zero-dimensional compact non-metrisable space with an
open universal parametrised by a hereditarily separable space. But no example is
known where the parametrising space is hereditarily Lindelöf.

Question 1.8. Is there a consistent example of a space X, such that X is compact1466?

and non-metrisable and has an open set universal parametrised by a space that is
hereditarily separable?

As regards hereditary ccc, in [10] it is shown that it is consistent that every
compact zero-dimensional space with an open universal parametrised by a hered-
itarily ccc space is metrisable. It would be desirable to drop the restriction to
zero-dimensional compacta and get a consistent result for all compacta, leading
to the following question.

Question 1.9. Is it consistent that if X is compact and has an open set universal1467?

parametrised by a space that is hereditarily ccc, then X must be second countable?

In the papers [10, 7] it is shown that for open universals and zero-set univer-
sals, hL(X) ≤ hd(Y ) and hd(X) ≤ hL(Y ). In fact, for zero-set universals we get
the stronger result that hL(Xn) ≤ hd(Y ) for all n ∈ ω. In both cases, however,
we can construct consistent examples to show that hL(Y ) cannot bound hL(X).
Can we find a ZFC example?

Question 1.10. Is there a space X with either an open universal or a zero-set1468?

universal parametrised by Y such that hL(X) > hL(Y )?

Our last two questions deal with Borel universals. Following the notation
used in [27] we let Σ0

1(X) denote the open subsets of a space X . For every
ordinal α, let Π0

α(X) denote the complements of all sets in Σ0
α(X). Finally we can

define Σ0
α(X) = {⋃n∈ω An : An ∈ Π0

β(X) for β < α}. In [9] it is shown that every
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compact space with a Σ0
n universal parametrised by a second countable space must

be metrisable. This holds true for all finite n. But the situation for Σ0
ω universals

has not been resolved.

Question 1.11. Is it consistent that every compact space with a Σ0
ω universal 1469?

parametrised by a second countable space is metrisable?

In [9] a consistent example is given of a compact, non-metrisable space with
a Σ0

ω universal parametrised by the Cantor set. In addition it is shown that
Question 1.11 has a positive answer if we assume that the underlying space is first
countable and compact. If the space in question is compact and perfect with a
Σ0

ω universal parametrised by a second countable space, then it is a ZFC theorem
that it must be metrisable.

One approach to solving Question 1.11 is suggested in [9, Section 3.2] and
this is also discussed in [4, Section 4]. A positive answer to the following question
implies a positive answer to Question 1.11. The reasons for this are discussed in
detail in both papers and so we will not repeat them here.

Question 1.12. Is it consistent with 2ℵ0 < 2ℵ1 that every compact space X which 1470?

is the disjoint union of two sets, A and B, where every point in A has countable
character in X and B is hereditarily separable and hereditarily Lindelöf, must be
hereditarily Lindelöf?

Regarding Question 1.12 it is worth mentioning a result of Eisworth, Nyikos
and Shelah from [5]. They show that it is consistent with 2ℵ0 < 2ℵ1 that every
compact, first countable, hereditarily ccc space must be hereditarily Lindelöf.

2. Embedding ordering among topological spaces: an introduction

The ordering by embeddability of topological spaces, although a fundamental
notion in topology, has been remarkably little understood for some years. This
ordering is that introduced into a family of topological spaces by writing X ↪→
Y whenever X is homeomorphic to a subspace of Y . Its subtlety and relative
intractability are well illustrated by the problem of recognizing which order-types
are those of collections of subspaces of the real line R (see [31, 32, 33, 34, 35]).
A partially-ordered set (poset) P is realized (or realizable) within a family F of
topological spaces whenever there is an injection θ : P → F for which p ≤ q if
and only if θ(p) ↪→ θ(q). Discussion of realizability in the powerset P(R) can be
traced back to Banach, Kuratowski and Sierpiński ([29, 30, 42]), whose work on
the extensibility of continuous maps over Gδ subsets (of Polish spaces) revealed
inter alia that for a given Polish space X , it is possible to realize, within P(X),
(i) the antichain of cardinality 2c [29, p. 205] and (ii) the ordinal c+ [30, p. 199].
Renewed interest in the problem was initiated in [31] for the special case of R in
which it was shown that every poset of cardinality c or less can be realized within
P(R), and by the direct construction in [34] of a realization (by subspaces of some
topological space) of an arbitrary quasiordered set. The question of precisely
which posets of cardinalities exceeding c can be realized within P(R) had been
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open until recently and exposed the question to be ultimately set-theoretic in
nature. Article [36] establishes that it is consistent that all posets of cardinality
2c can be realized within P(R) while [28] establishes—by exhibiting a consistent
counterexample—that this statement is, in fact, independent of ZFC.

Problems involving the embedding ordering. In [28], forcing is used to
construct a poset of cardinality 2c which cannot be realized within P(R). In this
model, the cardinal arithmetic is such that c = ℵ1 and 2ℵ1 = ℵ3, leaving open the
following question:

Question 2.1. Is it true (in ZFC) that every poset of cardinality c+ can be realized1471?

within P(R)?

Further, due to the nature of the construction in [28], it seems that for any
space of cardinality c, such a consistent counterexample can be found. Of course,
one does not need to take this trouble in the case of any discrete space as discrete
spaces can only support linear orders. Another obvious question concerns R it-
self: just what aspect of its topological nature has influenced the order-theoretic
structure of P(R)? The following questions arise naturally:

Question 2.2. For which spaces X of cardinality c is it consistent that every poset1472?

of cardinality 2c can be realized by P(X)?

Question 2.3. For which spaces X of cardinality c is it possible to find (in ZFC)1473?

a 2c-element poset which cannot be realized by P(X)?

Question 2.4. What can be said about the order-theoretic structure of P(X) where1474?

X is a Polish space of cardinality c?

Question 2.5. What about spaces of higher cardinality? That is, given any car-1475?

dinal κ where κ > c, if X is a (non-trivial) space of cardinality κ, which posets of
cardinality 2κ can be realized in P(X)?

Concerning representations within P(R), in the literature no particular de-
mands have been made on the representative subsets of R. In most cases they
turn out to be Bernstein sets but, otherwise, existence of any representation has
been key, rather than existence of a particularly ‘nice’ representation, such as by
Borel sets or some such family. Thus, natural variations on the theme provide
another question:

Question 2.6. For those posets which can be realized within P(R), is it possible1476?

to restrict the representative subspaces to some nice family of subsets of R?

Also in connection with the embedding ordering there is the bottleneck prob-
lem [23]. It is well known [13] that, in the family of all infinite topological spaces,
every space contains a homeomorph of one or more of the five minimal infinite
spaces created by imposing upon N the discrete, the trivial, the cofinite, the initial-
segment and the final-segment topologies. Thus, these constitute a five-element
cross section of the infinite spaces—a (very) small selection of spaces such that
every space is comparable (via the embeddability ordering, that is, either as a
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subspace or as a superspace) with something in the selection. Is five the smallest
possible cardinality of such a cross section?

Question 2.7. Can there be four or fewer infinite spaces, with at least one of which 1477?

every infinite topological space is embeddingwise comparable? Given an infinite
cardinal κ, what can be determined about the least cardinality of a selection of
spaces on κ-many points, with at least one of which every topological space on
κ-many points is embeddingwise comparable?

3. Questions Relating to Countable Paracompactness

A space X is monotonically countably paracompact, or MCP [19, 46] if and
only if there is an operator U assigning to each n ∈ ω and each closed set D an
open set U(n,D) containing D such that

(1) if (Di)i∈ω is a decreasing sequence of closed sets with
⋂

n∈ω Dn = ∅, then⋂
n∈ω U(n,Dn) = ∅;

(2) if E ⊆ D, then U(n,E) ⊆ U(n,D).

Without condition (2), this is a characterization of countable paracompact-
ness. Weakening the conclusion of condition (1) to

⋂
n∈ω U(n,Dn) = ∅ gives a

characterization of β-spaces; strengthening (1) to
⋂

n∈ω U(n,Dn) =
⋂
Dn, when-

ever (Di)i∈ω is a decreasing sequence of closed sets, characterizes stratifiability.
We have a reasonably complete picture of MCP as a generalized metric prop-

erty closely related to stratifiability: for example, MCP Moore spaces are metriz-
able and there are monotonically normal spaces which fail to be MCP. In [20],
however, we show that if an MCP space fails to be collectionwise Hausdorff, then
there is a measurable cardinal and that, if there are two measurable cardinals,
then there is an MCP space that fails to be collectionwise Hausdorff. We have
been unable to decide:

Question 3.1. Does the existence of a single measurable cardinal imply the exis- 1478?

tence of an MCP space that is not collectionwise Hausdorff?

In her thesis, Lylah Haynes [26] (see also [18, 17]) makes a study of monotone
versions of various characterizations of countable paracompactness. One possible
monotone version of MCP, nMCP, arises from restricting condition (1) above to
nowhere dense closed sets. Although it seems that most of the known results about
MCP spaces hold for nMCP spaces as well, the following is not clear.

Question 3.2. Is every nMCP space MCP? 1479?

Haynes did not consider monotonizations of countable paracompactness as a
covering property. There are monotone versions of paracompactness about which
one can say interesting things [12, 43], so it is possible that the following is
interesting.

Question 3.3. Is there a sensible monotone version of the statement ‘every count- 1480?

able open cover has a locally finite open refinement’ or, indeed, any other charac-
terization of countable paracompactness as a covering property?
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A set D is a regular Gδ if and only if D =
⋂
Un =

⋂
Un, where each Un is

open. A space is δ-normal if and only if every pair of disjoint closed sets, one of
which is a regular Gδ , can be separated. Mack (see [22]) showed that a space is
countably paracompact if and only if X × [0, 1] is δ-normal.

Motivated by the Reed–Zenor theorem [38] that every locally connected, lo-
cally compact, normal Moore space is metrizable, and by Balogh and Bennett [2]
who ask the same question for Moore manifolds, we ask:

Question 3.4. Is every locally connected, locally compact, countably paracompact1481?

Moore space metrizable?

Question 3.5. Is every locally connected, locally compact, δ-normal Moore space1482?

metrizable?

Haynes defines a space to be monotonically δ-normal, or mδn, if to each pair
of disjoint closed sets C and D, one of which is a regular Gδ , one can assign an
open set H(C,D) such that

(1) C ⊆ H(C,D) ⊆ H(C,D) ⊆ X −D and
(2) H(C,D) ⊆ H(C ′, D′), whenever C ⊆ C ′ and D′ ⊆ D.

Neither MCP nor mδn imply one another but X is MCP whenever X × [0, 1]
is mδn. Every first countable, Tychonoff mδn space is monotonically normal.

Question 3.6. Is there an mδn space that is not monotonically normal?1483?

Of a similar flavour to the Reed–Zenor Theorem is Rudin’s result that under
MA + ¬CH every perfectly normal manifold is metrizable [40]. On the other
hand, assuming ♦, Bešlagić [3] constructs a perfectly normal space with Dowker
square and in [14] we construct a manifold with Dowker square, again using ♦. A
number of related questions about countable paracompactness in product spaces
seem natural here.

For a detailed survey of the Dowker space problem, see Paul Szeptycki’s article
in this volume.

Question 3.7. Is it consistent that there is a perfectly normal manifold M such1484?

that M2 is a Dowker space?

Question 3.8. Is there (in ZFC) a normal space with Dowker square?1485?

Rudin’s ZFC Dowker space [39] is a subspace of a product and has been
modified by Hart, Junnila and van Mill [25] to provide a Dowker group.

Question 3.9. Is there a topological group with Dowker square?1486?

Every monotonically normal space is countably paracompact (see [41]).

Question 3.10. Is there a monotonically normal space with Dowker square?1487?

Question 3.11. Is there a Dowker space with Dowker square?1488?
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A base B for a space X is said to be uniform if, whenever x ∈ X and (Bn)n∈ω

is a sequence of pairwise distinct elements of B each containing x, then (Bn)n∈ω is
a base at the point x. Then X has a uniform base if and only if it is metacompact
and developable. Alleche, Arhangel’skĭı and Calbrix introduced the notions of
sharp base and weak development: B is said to be a sharp base if, whenever x ∈ X
and (Bn)n∈ω is a sequence of pairwise distinct elements of B each containing x,
the collection {⋂j≤n Bj : n ∈ ω} is a base at the point x. See [21] for more
details. Since a space with a uniform base is both developable and has a sharp
base, and since both of these notions imply that the space is weakly developable,
it is natural to ask:

Question 3.12. Is every collectionwise normal space with a sharp base metriz- 1489?

able?

Question 3.13. Does every Moore space with a sharp base have a uniform base? 1490?

Presumably the answer to the next question is ‘no.’

Question 3.14. Is there a Dowker space with a sharp base? 1491?

4. Abstract Dynamical Systems

Given a map T : X → X on a set X , there is a natural and obvious question
one can ask.

Question 4.1. When is there a nice topology on X with respect to which T is
continuous?

Substitute your own favourite definition of ‘nice’ in here.
With only the algebraic structure of T to work with, one has to consider the

orbits of T . The equivalence relation x ≡ y if and only if there are n,m ∈ N
such that Tn(x) = Tm(y) partitions X into the orbits of T . Let O be an orbit.
Then O is an n-cycle if it contains points xi, 0 ≤ i < n such that T (xi) = xi+1,
where i+ 1 is taken modulo n. O is a Z-orbit if it contains points xi, i ∈ Z such
that T (xi) = xi+1. An orbit that is neither an n-cycle nor a Z-orbit is called an
N-orbit .

In [16], we prove that there is a compact, Hausdorff topology on X with re-
spect to which T is continuous if and only if T

(⋂
m∈N T

m(X)
)

=
⋂

m∈N T
m(X) 6=

∅ and either:

(1) T has, in total, at least continuum many Z-orbits or cycles; or
(2) T has both a Z-orbit and a cycle; or
(3) T has an ni-cycle, for each i ≤ k, with the property that whenever T has

an n-cycle, then n is divisible by ni for some i ≤ k; or
(4) the restriction of T to

⋂
m∈N T

m(X) is not one-to-one.

We also prove that, if T is a bijection, then there is a compact metrizable
topology on X with respect to which T is a homeomorphism if and only if one of
the following holds.

(1) X is finite.



682 63. PROBLEMS FROM THE GALWAY TOPOLOGY COLLOQUIUM

(2) X is countably infinite and either:
(a) T has both a Z-orbit and a cycle; or
(b) T has an ni-cycle, for each i ≤ k, with the property that whenever

T has an n-cycle, then n is divisible by ni for some i ≤ k.
(3) X has the cardinality of the continuum and the number of Z-orbits and

the number of n-cycles, for each n ∈ N, is finite, countably infinite, or
has the cardinality of the continuum.

One can obviously ask any number of questions here. For example, in [15] we
show that there is a hereditarily Lindelöf, Tychonoff topology on X with respect
to which T is continuous if and only if |X | ≤ c.

Question 4.2. Characterize continuity on compact metric spaces, on R, or on1492–1494?

Rn for some n.

These are hard questions.

Question 4.3. Given a group G acting on a set X, under what circumstances is1495?

there a nice topology on X with respect to which each element of G is continuous?

Aside from their intrinsic interest, such questions might provide useful exam-
ples in the study of permutation groups. For example, Mekler [37] characterizes
the countable subgroups of the autohomeomorphism group of Q (see also [45]).

In the case of compact Hausdorff topologies on X , Rolf Suabedissen, in his im-
pressive thesis [44], has made significant progress on the question of what happens
with two or more commuting bijections on X . He also has a very neat characteri-
zation of continuous actions of compact Abelian Lie groups on compact Hausdorff
spaces.
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The lattice of quasi-uniformities

Eliza P. de Jager and Hans-Peter A. Künzi

Introduction

Let X be a (nonempty) set. Recall that a filter U on X ×X is called a quasi-
uniformity onX if each member U of U contains the diagonal ∆ = {(x, x) : x ∈ X}
of X and for each U ∈ U there is V ∈ U such that V ◦ V ⊆ U . Here ◦ denotes the
usual composition of relations so that V ◦ V = {(x, z) ∈ X ×X : ∃y ∈ X (x, y) ∈
V, (y, z) ∈ V }. If U is a quasi-uniformity on X , then U−1 = {U−1 : U ∈ U} is the
so-called conjugate quasi-uniformity of U , where U−1 = {(x, y) ∈ X×X : (y, x) ∈
U} whenever U ∈ U . A quasi-uniformity U will be called symmetric provided that
U = U−1, that is, if it is a uniformity . Otherwise it will be called nonsymmetric.

The topology τ(U) induced by a quasi-uniformity U on X is determined by
the neighbourhood filters U(x) = {U(x) : U ∈ U} of the points x ∈ X , where
U(x) = {y ∈ X : (x, y) ∈ U} whenever x ∈ X and U ∈ U .

As usual, a reflexive and transitive binary relation is called a preorder . For
each preorder T on a set X we can consider the quasi-uniformity U(T ) generated
by the base {T} on X ×X . (In the following U(T ) is called the quasi-uniformity
generated by the preorder T .) Note that in this sense, on a finite set X , any
quasi-uniformity U is generated by the preorder

⋂U . If U1 and U2 are two quasi-
uniformities on a set X and U1 ⊆ U2, then we say that U2 is finer than U1

respectively that U1 is coarser than U2.
We consider the set q(X) of all quasi-uniformities on the set X , partially

ordered under set-theoretic inclusion ⊆. It is well known that (q(X),⊆) is a
complete lattice [5, p. 2]. We shall denote the smallest element of the lattice
(q(X),⊆), namely the indiscrete uniformity {X × X}, by I, or IX for clarity.
Similarly we shall denote the largest element of the lattice (q(X),⊆), namely the
discrete uniformity U(∆) by D, or DX for clarity. Of course, as usual, we put∨ ∅ = I and similarly

∧ ∅ = D in the lattice (q(X),⊆).
Observe that for any set X the quasi-uniformities on X generated by preorders

form a sublattice of (q(X),⊆) (compare [2]).
A quasi-uniformity is called transitive if it has a base consisting of transitive

relations. A quasi-uniformity U on a set X is totally bounded if its associated
supremum uniformity Us = U ∨ U−1 is precompact, that is, for each U ∈ U the
cover {(U ∩U−1)(x) : x ∈ X} has a finite subcover. Each quasi-uniformity U on a
set X contains a finest totally bounded quasi-uniformity Uω coarser than U . For
any quasi-uniformity U on a set X , the collection π(U) := {V is a quasi-uniformity

Both authors acknowledge partial support under the bilateral collaboration between
South Africa and Flanders (period of 2005/6; project 2068799).
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on X : Vω = Uω} is called the quasi-proximity class of U .1 In general π(U) does not
possess a finest member, but Uω is always the coarsest and only totally bounded
member of π(U). The quasi-uniformity Uω can be explicitly described as the
filter on X × X generated by the subbase consisting of all relations of the form
[(X \ A) ×X ] ∪ [X × (X \ B)], where A δU B. A quasi-uniformity U on a set X
such that Uω = Dω is called proximally discrete; otherwise it is called proximally
nondiscrete.

For any subset A of a set X we define the preorder SA = [(X\A)×X ]∪[A×A].
We recall that if (X, τ) is a topological space, then the compatible2 Pervin quasi-
uniformity P(τ) ofX is generated by the subbase {SG : G is an open subset of X}.
It is always totally bounded and transitive. Note that for any set X , the uniformity
(DX )ω is equal to the Pervin quasi-uniformity of the discrete topology on X .

Interesting studies about the complete sublattice u(X) of q(X) consisting of
all uniformities on X were conducted in [6, 7, 8, 9]. Recently we completed
related investigations about q(X) [2, 3, 4], which led to the questions discussed
below.

Solutions to our problems are likely to shed further light on two of the major
topics studied in the theory of quasi-uniformities, namely the intriguing relation-
ship between symmetry and asymmetry on the one hand, and the delicate connec-
tion between transitivity and non-transitivity on the other hand. Our questions,
mainly dealing with anti-atoms and complements, are motivated by correspond-
ing results that are known to hold in the lattice of preorders, or the lattice of
uniformities (see in particular [8, 9, 10]). Often it remains unclear whether and
how these results can be generalized to the (larger) lattice of quasi-uniformities.
In our context the study of the concept of an anti-atom is closely related to deep
set-theoretic investigations which try to clarify the fine structure (for instance
selectivity properties) of ultrafilters on sets. This subject is discussed in some
detail in [8, 9].

Adjacent quasi-uniformities

Two comparable distinct quasi-uniformities on a set X for which there does
not exist another quasi-uniformity strictly in between will be called adjacent or
neighbours . The concepts of “upper neighbour” and “lower neighbour” of a quasi-
uniformity should now be self-explanatory. For an infinite set X , not much is
known about the distribution of adjacent pairs in (q(X),⊆).

Using the terminology from lattice theory, we call a quasi-uniformity on a set
X an atom of (q(X),⊆) if it is an upper neighbour of I. We call it an anti-atom
of (q(X),⊆) if it is a lower neighbour of D.

1In order to understand this terminology recall that any quasi-uniformity U on a set X
induces a quasi-proximity δU on X, which is defined as follows: For any subsets A,B of X,
AδUB provided that (A × B) ∩ U 6= ∅ whenever U ∈ U . We shall use the symbol δU to denote
the negation of the relation δU . The quasi-proximity class of a quasi-uniformity U on X contains
as members exactly those quasi-uniformities on X that induce δU .

2A quasi-uniformity U on a topological space (X, τ) is said to be compatible if τ(U) = τ .
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Atoms of (q(X),⊆) are readily characterized (compare [2]): A quasi-uniformity
U on a set X is an atom of (q(X),⊆) if and only if U is generated by some pre-
order SA where A is a proper nonempty subset of X . In particular, each atom
of (q(X),⊆) is transitive and totally bounded. It follows that a quasi-uniformity
on a set X is the supremum of a family of atoms in (q(X),⊆) if and only if it is
totally bounded and transitive [3]. An atom of (q(X),⊆) cannot be a uniformity
and there does not exist any atom of (q(R),⊆) that is coarser than the usual
uniformity R on the set R of the reals.

The anti-atoms of (q(X),⊆) are more difficult to describe (compare [2]). Let
X be a set with at least two distinct elements x and y. Then the quasi-uniformity
on X generated by the preorder ∆ ∪ {(x, y)} is a (proximally nondiscrete) anti-
atom of (q(X),⊆). For finite X , no other anti-atoms of (q(X),⊆) exist.

On the other hand by Zorn’s lemma each quasi-uniformity on a set X that
does not contain a binary reflexive relation R on X is coarser than a maximal
quasi-uniformityMR on X not containing R. If R = ∆, thenMR obviously is an
anti-atom of (q(X),⊆). Hence any quasi-uniformity on X that is distinct from D
is contained in an anti-atom of (q(X),⊆). One readily verifies that no anti-atom
of (q(X),⊆) is a uniformity (see [2]).

Let F and G be (ultra)filters on a set X and let UF ,G be the quasi-uniformity
on X having the base {∆ ∪ (F × G) : F ∈ F , G ∈ G}. It is known [2] that for
each anti-atom U of (q(X),⊆) there exist uniquely determined ultrafilters F and
G on X such that

⋂F ∩ ⋂G = ∅ and UF ,G ⊆ U . An anti-atom of (q(X),⊆)
is proximally nondiscrete if and only if its associated ultrafilters F and G are
distinct. Proximally nondiscrete anti-atoms of (q(X),⊆) can be characterized as
follows [2]: A quasi-uniformity U on a set X is a proximally nondiscrete anti-atom
of (q(X),⊆) if and only if there exists an ultrafilter H on X ×X such that pr1H
and pr2H are distinct and U = {∆ ∪H : H ∈ H}. Here pri (i = 1, 2) denote the
projections from X ×X to the first (resp. second) factor space X . It follows that
each proximally nondiscrete anti-atom of (q(X),⊆) is transitive. No comparable
characterization of proximally discrete anti-atoms of (q(X),⊆) is known.

It is natural to study anti-atoms of (q(X),⊆) via properties of their associated
pair of ultrafilters. For instance (see [2]) a proximally nondiscrete anti-atom U
of (q(X),⊆) is the finest quasi-uniformity of its quasi-proximity class if and only
if for its associated ultrafilters F and G on X the filter generated by the base
{F ×G : F ∈ F , G ∈ G} on X ×X is an ultrafilter.

Little is known about proximally discrete anti-atoms of (q(X),⊆). Some par-
tial results related to the following two questions have been obtained for the sub-
lattice u(ω) of q(ω) in [8, 9] under CH, where ω denotes the first infinite ordinal.
In particular it is known that under CH the lattice u(ω) possesses anti-atoms of
u(ω) which are not transitive. (Since in [8, 9] the authors use the dual order, they
speak about atoms.)

Question 1. Let F be a free ultrafilter (i.e.,
⋂F = ∅) on a set X. Determine 1496?

the number of anti-atoms U of (q(X),⊆) such that UF ,F ⊆ U .
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Question 2. Given a set X, is there a (necessarily proximally discrete) anti-atom1497?

of (q(X),⊆) that is not transitive?

Since each filter on a set can be represented as the intersection of a family of
ultrafilters, the following question is very natural.

Question 3. Which quasi-uniformities on a set X are equal to the infimum of a1498?

family of anti-atoms of (q(X),⊆)?

It is known that in general in the lattice u(X) there are uniformities which are
not the infimum of a family of anti-atoms of u(X). Indeed according to [8, p. 7]
for any separated uniformity U on an infinite set X with at least one nonisolated
point x0 the equivalence relation ∆∪ [(X \ {x0})× (X \ {x0})] is contained in any
(uniform) anti-atom finer than U although it does not belong to U . For the lattice
(q(X),⊆) no corresponding example is known. On the other hand a few positive
partial answers have been found in [3], which we mention next:

Call a quasi-uniformity U on a set X quasi-proximally maximal if it a max-
imal element in its quasi-proximity class. Each quasi-proximally maximal quasi-
uniformity on X is the infimum of a family of anti-atoms of (q(X),⊆) (see [3,
Corollary 7], where that result is proved, although a weaker result is stated). For
instance the finest compatible quasi-uniformity of any topological space X is the
infimum of a family of anti-atoms of (q(X),⊆).

It has also been shown that each quasi-uniformity on a set X which has a
linearly ordered base or is totally bounded is the infimum of a family of anti-
atoms of (q(X),⊆). Moreover each quasi-uniformity U on a set X such that τ(U s)
is resolvable3, is the infimum of a family of anti-atoms of (q(X),⊆).

Question 4. Given any preorder T on a set X, is each quasi-uniformity MT (as1499?

defined above) necessarily an anti-atom of (q(X),⊆)?

Note that a counterexampleMT to the preceding question would yield a quasi-
uniformity on X that is not the infimum of a family of anti-atoms of (q(X),⊆).

Question 5. Given two distinct uniformities U and V on a set X such that U ⊆ V,1500?

does there exist a nonsymmetric quasi-uniformity Q on X such that U ⊆ Q ⊆ V?

It has been shown [3, Corollary 10] that if there exists a uniformity U on a
set X that is not the infimum of a family of anti-atoms of (q(X),⊆), then the
preceding question has a negative answer.

According to [2], the answer to the preceding question is positive if U and V
belong to different quasi-proximity classes. Furthermore it is also positive if there
is a V-discrete subset of X that is not U-discrete, where a subset of a quasi-uniform
space is called discrete if its subspace quasi-uniformity is the discrete uniformity.
Finally, it is also positive if V = U ∨ U(P ) where P is an equivalence relation on
X not belonging to U .

3Recall that E. Hewitt called a topological space resolvable if it has two disjoint dense
subsets.
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Let us note that, in a certain sense, uniformities in (q(X),⊆) are relatively
rare. Indeed a quasi-proximity class does not contain any uniformities if its coars-
est (unique totally bounded) member is not a uniformity.

There are quasi-uniformities that do not have any upper neighbour, as well
as quasi-uniformities that do not have any lower neighbour [2]. For instance on
any infinite set X , the quasi-uniformity (DX)ω does not have an upper neighbour.
On the other hand each doubly point-symmetric quasi-uniformity , that is, each
quasi-uniformity U satisfying τ(U) = τ(U−1), which is not indiscrete has a lower
neighbour. Note that by Zorn’s Lemma, for any preorder T on a set X , there
is a maximal quasi-uniformity NT on X not containing T and coarser than the
quasi-uniformity U(T ). Clearly NT is a lower neighbour of U(T ).

It is easy to see that if U and V are two quasi-uniformities on a set X and U is
a lower neighbour of V , then there exists a quasi-uniformity W with a countable
base on X such that V = U ∨W . In the light of the examples NT just discussed
it is natural to wonder whether in this statement we can even assume that W
is generated by some preorder. However the answer to this question is negative:
According to the result on double point-symmetry cited above the usual uniformity
R on R possesses a lower neighbour U in (q(R),⊆). Observe that R2 is the only
preorder that belongs to the uniformity R, because the topology induced by R is
connected. Hence R \ U does not contain any preorder and the claim is verified.

Complements

In this section we make use of another concept from lattice theory. A quasi-
uniformity V on a setX is called a complement of a quasi-uniformity U of (q(X),⊆)
provided that V ∨ U = D and V ∧ U = I. For instance, for each linear order ≤
on X the conjugate of U(≤) is a complement of U(≤). It is not always easy to
decide whether a given quasi-uniformity on a set X has complements in (q(X),⊆).
However it is readily seen that each quasi-uniformity that has a complement,
possesses a complement having a countable base [2]. Furthermore it is known
that each quasi-uniformity U of (q(X),⊆) that is generated by a preorder has a
complement that is generated by a preorder (compare [2]).

Question 6. Does each quasi-uniformity on a set X which possesses a complement 1501?

in (q(X),⊆) have a complement in (q(X),⊆) that is generated by a preorder?

Observe that the answer to the preceding question is positive for quasi-uniformi-
ties that have a transitive complement. Indeed the aforementioned question is
equivalent to the following problem: Does each quasi-uniformity on a set X that
possesses a complement in (q(X),⊆) have a transitive complement in (q(X),⊆)?

It is known [2] that a nondiscrete quasi-uniformity on a set X which is proxi-
mally discrete does not have a complement in (q(X),⊆). Thus for instance on an
infinite set X , (DX )ω does not have a complement in (q(X),⊆). It follows that for
a given set X , the lattice (q(X),⊆) is complemented if and only if X is finite [2].

It can be shown [4] that the convergent sequence S := { 1
n+1 : n ∈ ω} ∪ {0}

equipped with its usual totally bounded complete metrizable uniformity does not
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have a complement in (q(S),⊆). Also the unique compatible quasi-uniformity on
an uncountable set X which carries the cofinite topology does not possess a com-
plement in (q(X),⊆) [4]. Recall that on the other hand the lattice of all topologies
on any set X (with set-theoretic inclusion as partial order) is complemented (see
for instance [11]).

The following positive results were established in [4, 2]: The finest compati-
ble quasi-uniformity of each countable T1-space X has a complement in (q(X),⊆).
Every atom (resp. proximally nondiscrete anti-atom) of (q(X),⊆) has a comple-
ment in (q(X),⊆). Each compatible uniformity on a resolvable completely regular
space X is complemented in (q(X),⊆) (see [2, Proposition 8]).

Furthermore, in [4] the following results concerning the involved lattices of
quasi-uniformities were obtained: If U and V are two complemented quasi-uniformi-
ties on sets X and Y respectively, then both their sum U ⊕ V and product U × V
are complemented. If (X,U) is a quasi-uniform space that has a complemented
doubly dense subspace Y (that is, Y is dense in X with respect to the topologies
τ(U) and τ(U−1)), then U has a complement.

Given a set X , in general complements in (q(X),⊆) are highly non-unique.
This fact motivates our last question (compare for instance with the studies [1,
10, 11]).

Question 7. On a given set X, determine the possible numbers of complements1502?

for an arbitrary element U of (q(X),⊆).
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1. Introduction

This article reports on some of the research activities in Topology at Nipissing
University. Although our research areas encompass geometric topology, dimen-
sion theory, general topology, topological algebras, functional analysis, continuum
theory and topological dynamics,in this article we only concentrate on some prob-
lems in dimension theory, selections and continuum theory. Section 2 is devoted
to the problems on extension dimension. In the third section, problems concern-
ing selections and C-spaces are discussed. The fourth section discusses questions
concerning the parametric version of disjoint disks property. The last section is
devoted to locally connected Hausdorff continua and rim-metrizablity.

Historically, since 1994, there have been regular Topology workshops in the
month of May. Initially these workshops were organized by Tuncali. In 2000,
Vesko Valov joined Nipissing University, and in 2003, Alexandre Karasev joined
this group. The group has been organizing ongoing seminars and workshops at
Nipissing. Since 1994, many topologists have visited Nipissing and participated in
workshops and seminars. Among them, Nikolay Brodskiy, Dale Daniel, John C.
Mayer, Jacek Nikiel and E.D. Tymchatyn have been visiting Nipissing regularly.
During the last three years, Jacek Nikiel (2003–04), Taras Banakh (2004–2005) and
Andriy Zahorodnyuk (2005–06) have visited Nipissing for entire academic years.
Thus, this article is about some of the research interests of the topology group at
Nipissing as well as some of the ongoing research programs of seminar/workshop
participants.

2. Problems in Dimension Theory

All spaces in this section are assumed to be metrizable and separable, if
not stated otherwise. Let G be an Abelian group. As usual, K(G,n) is the
Eilenberg–Mac Lane complex , i.e., a CW complex such that πn(K(G,n)) ≈ G and
πi(K(G,n)) ≈ 0 for all i 6= n. The cohomological dimension of a space X with
respect to the coefficient group G is denoted by dimGX . Recall that a space Y is
an absolute (neighborhood) extensor for X [notation: Y ∈ A(N)E(X)] if any map

The authors are partially supported by their NSERC Grants 257231-04, 141066-04 and
261914-03, respectively.
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to Y , defined on an arbitrary closed subspace A of X , can be extended to a map
of the whole X to Y (resp., to a map of some open neighborhood of A to Y ).

Following Dranishnikov [27] we say that extension dimension of a space X
does not exceed a complex L, notation e-dimX ≤ L, if L ∈ AE(X). Note that
dimX ≤ n ⇔ e-dimX ≤ Sn and dimGX ≤ n ⇔ e-dimX ≤ K(G,n). Further,
we say [27] that L ≤ K if for each space X the condition L ∈ AE(X) implies
the condition K ∈ AE(X). The relation L ≤ K leads to a preorder relation
on complexes and generates an equivalence relation. Obviously, this equivalence
relation can be described in terms of extension of maps: a complex L is equivalent
to a complex K if L ∈ AE(X)⇔ K ∈ AE(X) for any space X . The equivalence
class of complex L is called the extension type of L and is denoted by [L]. Due to
the homotopy extension property of ANR-spaces, if L is homotopy equivalent to
K, then [L] = [K]. The converse is not the case. For example, [Sn] = [Sn ∨ Sm],
if n ≤ m. It should be emphasized that there are many incomparable complexes.
For instance, results of [29] imply that RP 2 is not comparable with any sphere
Sn, n ≥ 2. It can be shown that for complexes L and K the minimum of their
extension types is given by the extension type [L∨K]. We refer the reader to the
papers [12, 28, 34] for more information about extension dimension and extension
types.

Extension and cohomological dimensions are related as follows.

Theorem 2.1 (Dranishnikov [26]). Let X be a metrizable compactum and L be a
complex. If e-dimX ≤ L then dimHn(L) ≤ n for all positive integers n. If dimX <
∞ and L is a simply connected complex then the following three conditions are
equivalent: (1) e-dimX ≤ L; (2) dimHn(L)X ≤ n for all n > 0; (3) dimπn(L)X ≤
n for all n > 0.

Dydak generalized the above theorem on the case of metrizable non-compact
spaces [31, 33]. The condition dimX <∞ cannot be removed due to the existence
of infinite-dimensional compacta of finite integral cohomological dimension [24,
38]. Nevertheless, Dydak proved in [31] that condition (3) implies condition (1) if
X is a metrizable space which is an absolute neighborhood extensor for metrizable
spaces. There is a hope that Theorem 2.1 remains valid in the class of C-spaces
(see next section for the definition of C-spaces).

Problem 2.1. Does Theorem 2.1 hold if the compactum X is a C-space?1503?

Another generalization of Theorem 2.1 belongs to Cencelj and Dranishnikov [9,
10, 8] and weakens the requirement of simply connectedness. Namely, Theo-
rem 2.1 remains true for nilpotent complexes. The condition on the fundamental
group of L cannot be dropped completely. Indeed, if X is a two-dimensional disk

and L is a complex such that π1(L) is non-trivial and H̃∗(L) = 0 then the impli-
cation (2) ⇒ (1) of the above theorem does not hold [35]. An example of such L
can be found, for instance, in [47, Example 2.38, p. 142].

Finally, consider the equivalence (1)⇔ (3) and take RP 2 as a simplest example
of a complex which is not nilpotent. Note that H1(RP 2) ≈ π1(RP 2) ≈ Z2 and
hence, for any metrizable compactum X , e-dimX ≤ RP 2 implies dimZ2

X ≤ 1
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due to Theorem 2.1. What can be said about the converse implication? The
results of Levin [51] imply the existence of a metrizable compactum X such that
dimZ2

X = 1 and e-dimX � RP 2. Nevertheless, this compactum is infinite-
dimensional and the following well-known problem is still open.

Problem 2.2. Does dimZ2
X ≤ 1 imply e-dimX ≤ RP 2 for a finite dimensional 1504?

compactum X?

Since the infinite projective space RP∞ is the space of typeK(Z2, 1), the above
problem can be restated as follows: does RP∞ ∈ AE(X) imply RP 2 ∈ AE(X)
for a finite dimensional compactum X? Dydak and Levin proved in [35] that the
answer is positive if dimX ≤ 3.

The study of universal spaces of a given dimension occupies one of the central
places in dimension theory. Recall that a space U is called a universal space for a
class of topological spaces C if U ∈ C and any space X from C admits an embedding
in U . Here are several classical papers devoted to the topic of universal spaces of
a given dimension: [5, 55, 57, 63, 65, 68, 78]. In connection with the universal
spaces theme one should mention the following unsolved problem.

Problem 2.3 (West [77]). Does there exist a universal metric compactum of a 1505?

given integral cohomological dimension?

Employing the concept of extension dimension, the above problem can be
generalized as follows.

Problem 2.4 (Chigogidze [12]). Let CL denote the class of all metrizable com- 1506?

pacta X such that e-dimX ≤ [L], where L is a countable and locally finite complex.
Characterize all such complexes L for which CL contains a universal space.

Problem 2.3 is obtained from Problem 2.4 by letting L = K(Z, n). Everywhere
below, by [L]-universal compactum we mean a universal object for the class CL.

Problem 2.4 has partial solutions. Results of Chigogidze [12, Theorem 2.5]
and Dydak [33] imply that a universal compactum exists in the case when L is
finite or, more generally, finitely dominated. A standard way of obtaining such a
universal compactum consists in construction of [L]-invertible map f : XL → Iω ,
where XL is a metric compactum with e-dimXL = [L].

Definition ([12]). A map f : X → Y is called [L]-invertible if for each space Z
with e-dimZ ≤ [L] and for any map g : Z → Y there exists a map h : Z → X
satisfying the conditions f ◦ h = g.

Note that [L]-invertibility of L and universality of Iω for all metrizable com-
pacta guarantees [L]-universality of XL.

A universal object exists for any (countable and locally finite) complex L
if we enlarge the class of spaces. Dydak and Mogilski [36] proved that for a
given n there exists a Polish space X of integral cohomological dimension n which
contains a topological copy of any separable metric space Y with dimZ Y ≤ n. This
result was generalized by Olszewski [64], who proved the existence of a universal
separable metric space of given extension dimension [L] (where L is a countable and
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locally finite CW complex). As a corollary, this implies the existence of universal
separable metrizable space of a given cohomological dimension with respect to any
countable Abelian coefficient group.

There is an important connection between the existence of an [L]-universal
compactum, [L]-invertible mappings, and the following question [11]: for a given
complex L, does e-dimX ≤ L imply e-dimβX ≤ L for any space X? The study
of this connection led to the introduction of a new class of CW complexes.

Definition ([48, 49]). We say that a complex L is quasi-finite if for every finite
subcomplex P of L there exists a finite subcomplex eP of L containing P such that
the pair P ⊂ eP is [L]-connected for Polish spaces. The latter means that any map
f : A → P , defined on a closed subset A of a Polish space X with e-dimX ≤ L
can be extended to a map of X into eP .

The following theorem [11, 48] reveals the relation between [L]-universality
and quasi-finite complexes. Equivalences (ii)–(vi) of this theorem are due to Chi-
gogidze [11].

Theorem 2.2. Let L be a countable and locally finite CW complex. Then the
following conditions are equivalent:

(i) L is quasi-finite;
(ii) e-dimβX ≤ [L] whenever X is a (Tychonoff) space with e-dimX ≤ [L];
(iii) e-dimβX ≤ [L] whenever X is normal and e-dimX ≤ [L];
(iv) e-dimβ(

⊕{Xt : t ∈ T}) ≤ [L] whenever T is arbitrary and each Xt,
t ∈ T , is a separable metrizable space with e-dimXt ≤ [L];

(v) e-dimβ(
⊕{Xt : t ∈ T}) ≤ [L] whenever T is arbitrary and each Xt,

t ∈ T , is a Polish space with e-dimXt ≤ [L];
(vi) There exists an [L]-invertible map f : X → Iω, where X is a metrizable

compactum with e-dimX ≤ [L].

From the results of Dranishnikov [23], Dydak [32], Dydak and Walsh [37],
and Levin [52], we know that for each n ≥ 2 there exists a (metrizable separable)
space X with integral cohomological dimension dimZ X ≤ n and dimZ βX > n.
Therefore the Eilenberg–Mac Lane complex K(Z, n) is not quasi-finite for all n ≥
2. In fact, the results of Levin [52] imply that K(G, 2) is not quasi-finite any
non-trivial Abelian group G.

Quasi-finite complexes provide a negative answer to the following question by
Chigogidze [13] and Dydak [33]: suppose that [L]-universal compactum exists;
is it true that the extension type of L contains a finitely dominated complex?
There exists a quasi-finite complex which is not equivalent to a finitely dominated
complex [48].

In the light of the preceding discussion, a natural question to ask is the fol-
lowing.

Problem 2.5. Let L be a complex such that [L]-universal compactum exists. Is1507?

it true that L is quasi-finite?
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Further, the example of a quasi-finite complex in [48] is a bouquet of finite
complexes. What are other possible examples?

Problem 2.6. Is there a quasi-finite complex which is not equivalent to a bouquet 1508?

of finite complexes?

Recalling main results about universal spaces in classical dimension n, one
may vary Problem 2.4 as follows.

Problem 2.7. Characterize all complexes L for which CL contains a universal ob- 1509?

ject which is an absolute extensor in dimension [L] for Polish spaces (or metrizable
compacta).

As usual, a space Y is called an absolute (neighborhood) extensor in dimension
[L], shortly Y ∈ A(N)E([L]), for a given class of spaces C if Y ∈ A(N)E(X) for
all X from C such that e-dimX ≤ [L].

If a complex L is finite, then [L]-universal compact absolute extensors in
dimension L exist [12]. On the other hand, Zarichnyi [79] proved that there
is no universal compactum of a given integral cohomological dimension which is
an absolute extensor with respect to metrizable compacta of given cohomological
dimension. Thus, in the Problem 2.7 the complex L cannot be the Eilenberg–Mac
Lane complex K(Z, n), n ≥ 2.

There is some hope that quasi-finite complexes may be candidates to provide
a solution to Problem 2.7. Namely, it is shown in [50] that if there exists an
[L]-universal compactum which is an absolute extensor in dimension [L] for Polish
spaces then L must be quasi-finite.

3. Selections and C-property

All spaces in this section are supposed to be paracompact and all maps con-
tinuous. By a perfect space we mean a space without isolated points.

Recall that a space X has C-spaces if for any sequence {νn}∞n=1 of open covers
of X there exists a sequence {γn}∞n=1 of disjoint open families in X such that each
γn refines νn and

⋃∞
n=1 νn is a cover of X . Every countable-dimensional (a count-

able union of 0-dimensional subsets) metric space is a C-space [40]. R. Pol con-
structed a metrizable compact C-space which is not countable-dimensional [67].

Problem 3.1 (V. Gutev). Let f : X → Y be an open surjective map between 1510?

the metrizable spaces X and Y such that Y is a C-space and each fiber f−1(y),
y ∈ Y is (zero-dimensional) compact and perfect. Does there exist a surjective
map g : X → Y × I such that f = πY ◦ g, where πY : Y × I→ Y is the projection?

According to a result of Bula [7, Theorem 1], Problem 3.1 has an affirmative
answer in case X and Y are metrizable and Y is finite-dimensional. Gutev [44,
Theorem 1.1] extended the Bula theorem for arbitrary metrizableX and countable-
dimensional Y .

Observe that Problem 3.1 is equivalent to the following one:
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Problem 3.2 (V. Gutev). Is it true that under the hypotheses of Question 2.11511?

there exists a map h : X → I with h(f−1(y)) = I for every y ∈ Y , equivalently,
f(h−1(t)) = Y for all t ∈ I ?

Levin and Rogers [53, Theorem 1.3] proved that Problem 3.2 has a positive
solution in the class of compact space. Therefore, the answer to Problem 3.1 is
also “yes” for compact X and Y . In fact, one can try to solve a simplified version
of Problem 3.1 and Problem 3.2. It is easily seen that a positive answer to one of
this questions implies a positive answer to next question.

Problem 3.3 (V. Gutev). Let X, Y and f be as in Problem 3.1. Are there closed1512?

sets F,H ⊂ X such that F ∩H = ∅ and f(F ) = f(H) = Y ?

Note that Dranishnikov [25] constructed an open surjection f : X → Y of
metrizable compacta having all fibers homeomorphic to the Cantor set and such
that there are no disjoint closed sets F,H ⊂ X with f(F ) = f(H) = Y . Hence,
Problems 3.1 and 3.2 have a negative answer if there is no dimensional restrictions
on Y .

There exists an equivalent version of Problem 3.3 in terms of semi-continuous
selections. Recall that a set-valued map ϕ : Y → S(X), where S(X) denotes the
family of all non-empty subsets of X , is called lower (resp., upper) semi-continuous
if for every open set U ⊂ X the set {y ∈ Y : ϕ(y) ∩ U 6= ∅} (respectively,
{y ∈ Y : ϕ(y) ⊂ U}) is open in Y . By C(X) we denote the family of compact
non-empty subsets of X .

Problem 3.4 (V. Gutev). Let Y be a metrizable C-space, X be metrizable and1513?

ϕ : Y → C(X) be an l.s.c. map such that each ϕ(y), y ∈ Y , is perfect. Does there
exist a u.s.c. map θ : Y → C(X) with θ(y) ⊂ ϕ(y) and ϕ(y) \ θ(y) 6= ∅ for every
y ∈ Y ?

The existence of a u.s.c. map θ : Y → C(X) satisfying the conditions from
Problem 3.4 is equivalent to the existence of two u.s.c. maps θi : Y → C(X), i =
1, 2, such that θ1(y)∩θ2(y) = ∅ and θi(y) ⊂ ϕ(y) for all y ∈ Y and i = 1, 2 (in such
a case we say that ϕ admits disjoint u.s.c. selections). Actually, Dranishnikov’s
example mentioned above is based on this observation, he constructed an open
surjection f : X → Y such that the map ϕ(y) = f−1(y) does not admit any
disjoint u.s.c. selections.

On the other hand, there exist a few characterizations of paracompact C-
spaces in terms of selections for set-valued maps. One of them was established
by Uspenskij [76, Theorem 1.3] and another one by Gutev–Valov [45]. So, it is
interesting whether the selection condition from Problem 3.4 also characterizes
C-spaces.

Problem 3.5. Is it true that a metrizable space Y is a C-space if and only if any1514?

l.s.c. map ϕ : Y → C(X) with perfect point-images ϕ(y), y ∈ Y , and metrizable X
admits disjoint u.s.c. selections?



4. PARAMETRIZATION OF THE DISJOINT n-DISKS PROPERTY 697

4. Parametrization of the disjoint n-disks property

In this section, unless stated otherwise, all spaces are Tychonoff.
The following property was introduced in [4] as a parametrization of the well

know disjoint n-disks property . We say that a space X has the m-DD{n,k}-
property , where m,n, k are positive integers or infinity, if for if for any open
cover U of X and two maps f : Im × In → X , g : Im × Ik → X there exist
maps f ′ : Im × In → X , g′ : Im × Ik → X such that f ′ ∼U f , g′ ∼U g, and
f ′({z} × In) × g′({z} × Ik} = ∅ for all z ∈ Im. Here f ′ ∼U f means that f ′ is
U-homotopic to f .

The importance of the m-DD{n,k}-property is justified by the following results
established in [4]:

(1) Let X ∈ m-DD{n,n} be a locally contractible and completely metrizable
space and p : K → M be a perfect map between metrizable C-spaces
with dimM ≤ m and dim f ≤ n. Then the function space C(K,X)
equipped with the source limitation topology contains a dense Gδ-subset
consisting of maps that are injective on each fiber of p.

(2) Let m,n, k, d, l be non-negative integers, L be a metrizable space with the
0-DD{0,0}-property and D be a metrizable space with the 0-DD{0,d+l}-
property. If m + n + k < 2d + l, then the product Dd × Ll has the
m-DD{n,k}-property.

It follows from the above two results that Dd × Rl ∈ m-DD{n,k} for any
m,n, k, d, l with m+n+k < 2d+ l, where D is a dendrite with a dense set of end-
points and R is the real line. The last statement with m = d = 0 and l = 2n+ 1 is
actually the Lefschetz–Menger–Pontrjagin embedding theorem; the casem = l = 0
and d = n + 1 is the embedding theorem of Bowers [6]; the case m = 0, d = n
and l = 1 is the embedding theorem of Sternfeld [71]; the case m = 0 and d = 0
is close to the embedding theorem from Banakh–Trushchak [3], while for l = 0
and m = 0 it is close to that one from Banakh–Cauty–Trushchak–Zdomskyy [1];
finally, letting d = 0 we obtain the Pasynkov theorem [66] asserting that for a map
p : X → Y between compacta the function space C(X,Rdim Y +2 dim(p)+1) contains
a dense Gδ-set of maps that are injective on each fiber of the map p.

However, another generalization of the Pasynkov’s result due to H. Toruńczyk [72]
is not covered by the statements (1) and (2):

If p : X → Y is a map between compacta, then C(X,RdimX+dim(p)+1)
contains a dense Gδ-set of maps that are injective on each fiber
of the map p.

Since the Euclidean space Rd has the m-DD{n,k}-properties for all m,n, k with
m+ n+ k < d, we may ask whether the mentioned theorem of H. Toruńczyk [72]
is true in the following more general form.

Problem 4.1 ([4]). Does any map p : K →M between finite-dimensional compact 1515?

metric spaces embed into the projection pr: M ×X →M along a Polish AR-space
X possessing the m-DD{n,k}-property for all m,n, k with m+ n+ k ≤ dim(K) +
dim(p)?
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Let us also note that the above result of H. Toruńczyk would follow from [4,
Theorem 1] if the following problem had an affirmative answer.

Problem 4.2 ([4]). Let f : X → Y be a k-dimensional map between finite-
dimensional metrizable compacta. Is it true that there is a map g : Y → Z to
a compact space Z with dimZ ≤ dimX − k such that the map g ◦ f is still k-
dimensional?

Next two questions concern the minimal dimension of spaces with m-DD{n,n}.
It is known [4] that the smallest possible dimension of compact metrizable AR with
X ∈ m-DD{n,n} is either n+bm+1

2 c or n+dm+1
2 e, where brc = max{k ∈ Z : k ≤ r}

and dre = min{k ∈ Z : k ≥ r}.
Problem 4.3. What is the smallest possible dimension of Polish spaces with1516?

m-DD{n,n} ? Is it n+ dm+1
2 e ?

Problem 4.4. What is the smallest possible dimension of metrizable compacta X1517?

such that X × In contains a copy of the n-dimensional Menger cube? Is it dm
2 e ?

The last question in this section is a reformulation of the well known problem
of finding a characterization of codimension one manifold factors, see [22] and [46].

Problem 4.5. Let X×R is an n-manifold with n ≥ 5. Does X have the 1-DD{1,1}-1518?

property?

5. Locally Connected Continua

By a continuum, we mean a compact connected Hausdorff space. A compact
ordered space is a compact space with topology induced by a linear order. An arc
is a compact ordered space which is connected. Equivalently, an arc is a continuum
with exactly two non cut-points. Let P be a topological property. A topological
space X is said to be rim-P if it has a basis of open sets with boundaries having
the property P . Some of the spaces with natural rim-properties are rim-finite
spaces, rim-countable spaces, rim-metrizable spaces, rim-scattered spaces and
rim-compact spaces.

The Hahn–Mazurkiewicz Theorem (1914) characterizes the continuous images
of the closed unit interval as locally connected metric continua. A theorem of
Alexandroff characterizes the continuous images of the Cantor set as the class of
compact metric spaces. In the non-metric case, continuous images of arcs and more
generally, of compact ordered spaces are quite restricted and interesting. Mardešić
(1960) gave an example of a locally connected continuum which is not a continuous
image of an arc. Treybig (1964) showed that continuous images of compact ordered
spaces do not contain a non-metric product of (infinite) compact spaces. In 1967,
Mardešić [54] proved an important result: every continuous image of a compact
ordered space is rim-metrizable. Heath, Lutzer and Zenor (1973) proved that
continuous images of ordered compacta are monotonically normal. Nikiel (1988)
characterized the continuous images of arcs in the non-metric case. He also proved
that each hereditarily locally connected continuum is a continuous image of an arc
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and rim-countable. Nikiel, Tymchatyn and Tuncali (1991) gave an example of a
rim-countable locally connected continuum which is not a continuous image of an
arc.

Following these results, the study of images of arcs/compact ordered spaces
developed in several directions. One study focused on the behavior of images of
arcs under inverse limits. Nikiel, Tymchatyn and Tuncali [62](1993) proved that
the inverse limit of an inverse sequence of images of arcs with monotone bonding
maps is a continuous image of an arc. They also proved that each one-dimensional
continuous image of an arc can be obtained as an inverse limit of inverse sequence of
rim-finite continua with monotone bonding maps. This result extends the similar
theorem of Nikiel (1989) in the metric case, and indicates that in the 1-dimensional
case, images of arcs behave like metric locally connected continua.

Tuncali [75] proved that continuous images of rim-metrizable continua do
not contain a non-metric product of nondegenerate continua. These results sug-
gest that some properties of images of compact ordered space/arcs depend on the
boundary structure of basic open sets. Nikiel, Treybig and Tuncali [60] (1995)
showed that continuous images of rim-metrizable locally connected continua are
not necessarily rim-metrizable, hence Mardešić’s 1967 result cannot be general-
ized. This result shows that the class of rim-metrizable continua is large. In 1989,
Nikiel asked if every monotonically normal compactum is a continuous image of
a compact ordered space. M.E. Rudin [70] (2001) answered that question affir-
matively. Note that Ostaszewski (1978) proved that a separable, monotonically
normal space is hereditarily Lindelöf. Therefore, each separable, monotonically
normal, compact space is perfectly normal. On the other hand, under the contin-
uum hypothesis, Filippov [41] (1969) constructed a perfectly normal and locally
connected continuum which is nonmetrizable and has a basis of open sets with
0-dimensional metrizable boundaries. Gruenhage [42] (1990) also constructed an
example of a perfectly normal locally connected continuum which is nonmetriz-
able, rim-metrizable, and not arcwise connected. Note that a product of [0, 1]
with a Souslin line is a perfectly normal, localy connected continuum which is not
rim-metrizable. Following these results, an interesting problem to consider is the
following:

Problem 5.1. Characterize locally connected, rim-metrizable, perfectly normal 1519?

continua.

Recently, Daniel, Nikiel, Treybig, Tymchatyn and Tuncali in a sequence of
papers have been investigating various properties of continuous images of arcs,
Suslinian continua, rim-metrizable continua, and perfectly normal compact spaces,
[14, 21, 15, 16, 17, 20, 18, 19]. They proved that each Suslinian continuum is
perfectly normal and rim-metrizable, [16]. A continuum is said to be Suslinian if
it does not contain an uncountable collection of mutually disjoint continua. Lelek
introduced Suslinian continua in 1971. Using inverse limit techniques, Daniel,
Nikiel, Treybig, Tymchatyn and Tuncali showed that locally connected Suslinian
continua must have weight ω1 and under the Souslin Hypothesis such continua
are metrizable. In [2], these results are improved. It is proved that all Suslinian
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continua must have weight ω1, and under the Souslin Hypothesis, all Suslinian
continua are metrizable. In [18], it is also proved that each homogenous Suslinian
continuum X must be locally connected, and moreover, if X is seperable, then it
must be metrizable. Another interesting result is that under Souslin Hypothesis
each perfectly normal compact space of weight ω1 contains an uncountable, upper
semi-continuous, almost null family of non-degenerate, pairwise disjoint, closed
subsets, [17]. Moreover, if X is locally connected continuum, the members of this
family can be chosen to be continua.

Recently, Todd Eisworth [39] announced that each separable monotonically
normal compact space admits two-to-one map onto a metric space. These results
are related to the following well-known questions. First one is due to M.E. Rudin
and the second one is due to D.H. Fremlin.

Problem 5.2. Is it consistent that each perfectly normal, locally connected con-1520?

tinua is metrizable?

Problem 5.3. Is it consistent that every pefectly normal compact space admits a1521?

two-to-one continuous map onto a metric space?

It is not difficult to see that a locally connected, perfectly normal continuum
X with small inductive dimension ind(X) = 1 is rim-metrizable. Filippov’s 1969
example is such a continuum. Moreover, the product X × [0, 1] of a locally con-
nected perfectly normal continuum X and [0, 1] is locally connected and perfectly
normal again. However, X × [0, 1] is rim-metrizable if and only if X is metrizable.
This follows from the fact that rim-metrizable continua do not contain a nonmetric
product of nondegenerate continua, [75]. These show why the first problem stated
above is natural to consider. Concerning Problem 5.2 and 5.3, readers are also
referred to the article by Gary Gruenhage and Justin Moore titled “Perfect com-
pacta and basis problems in topology” in this volume [43].

Daniel and Treybig, [21] showed that if there is an example of a locally con-
nected Suslinian continuum which is not a continuous image of an arc, there is
such a continuum X which is separable. Therefore, it will be interesting to know
the answer to the following question.

Problem 5.4. Is a locally connected, rim-metrizable continuum X with no non-1522?

degenerate metric continuum rim-finite?

In [20], it was shown that such a continuum X is rim-finite with the additional
assumption that X contains no separable subcontinuum. It is known that each
rim-finite continuum is a continous image of an arc. Also, Suslinian non-separable
continua are rim-finite on some open set, [16].

In addition, in [16] and [21] various interesting properties of Suslinian con-
tinua were investigated. There are some interesting problems concerning Suslinian
continua remain to be answered.

Problem 5.5. Is a separable Suslinian continuum hereditarily separable?1523?

Problem 5.6. If X is a locally connected Suslinian continuum, is X connected1524?

by arcs (ordered continua)?
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Recently, in [2] a new cardinal invariant is introduced. Namely,

Sln(X) = sup{|C| : C is a disjoint family of non-degenerate subcontinua of X}

defined for any continuum X and is called the Suslinian number of X . Thus a
continuumX is Suslinian if and only Sln(X) ≤ ℵ0. It is clear that Sln(X) ≤ Sln(Y )
for any pair X ⊂ Y of continua. It is convenient to extend the definition of Sln(X)
to all Tychonov spaces by letting

Sln(X) = min{Sln(Y ) : Y is a continuum containing X}

for a Tychonov spaceX . Like many other cardinal invariants the Suslinian number
is monotone.

For any Tychonov space X , the hereditary Lindelöf number of any space X
is bounded from above by the Suslinian number of X . This generalizes the result
of Daniel, Nikiel, Treybig, Tuncali and Tymchatyn that each Suslinian continua
is perfectly normal, [16]. Since each Suslinian continua is rim-metrizable, it is
natural to ask the following question.

Problem 5.7. Is rim-w(X) ≤ Sln(X) for any compact Hausdorff space? 1525?

Note that for a given a topological space X rim-w(X) = min{supU∈B w(∂U) :
B is a base of the topology of X} is the rim-weight of X .

In addition to problems stated above, there are number of questions concerning
rim-properties of locally connected continua. We list them below. For further
reading, we refer readers to [15] and [61]. Note that some of these problems were
listed before in various papers cited in this section.

Problem 5.8. Is each rim-scattered locally connected continuum rim-metrizable? 1526?

Note that Drozdovskĭıand Filippov,[30], gave an example of a rim-scattered,
rim-metrizable locally connected continuum which is not rim-countable.

Problem 5.9. Let X be a rim-metrizable locally connected continuum. Does X 1527?

admit a basis of open Fσ-sets with metrizable boundaries?

Problem 5.10. Is a continous image of a rim-countable continuum rim-metrizable? 1528?

Recall that, the continous images of rim-metrizable compact spaces are not
necessarily rim-metrizable, [60].

In [61], it was proved that if X is a continous image of an arc, then the three
classical dimension numbers ind(X), Ind(X) and dim(X) are equal. Moreover,

ind(X) = max{1, sup{ind(M) : M ⊂ X and M is closed and metrizable}}.

Problem 5.11. If X is a locally connected rim-metrizable continuum, What is 1529?

the relation among ind(X), Ind(X), dim(X) and max{1, sup{ind(M) : M ⊂ X
and M is closed and metrizable}}?
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Moscow questions on topological algebra

Konstantin L. Kozlov, Evgenii A. Reznichenko and Ol’ga V. Sipacheva

1. Topological groups

1.1. Unconditionally closed and algebraic sets. Markov [24] called a
subset A of a group G unconditionally closed in G if it is closed in any Hausdorff
group topology on G. Clearly, all solution sets of equations in G, as well as their
finite unions and arbitrary intersections, are unconditionally closed.

Definition (Markov [24]). A subset A of a group G with identity element 1 is said
to be elementary algebraic in G if there exists a word w = w(x) in the alphabet
G ∪ {x±1} (x is a variable) such that A = {x ∈ G : w(x) = 1}. Finite unions of
elementary algebraic sets are additively algebraic sets. An arbitrary intersection
of additively algebraic sets is called algebraic. Thus, the algebraic sets in G are
the solution sets of arbitrary conjunctions of finite disjunctions of equations.

In his 1945 paper [24], A. A. Markov showed that any algebraic set is uncon-
ditionally closed and posed the problem of whether the converse is true. In [23]
(see also [22]), he solved this problem for countable groups by proving that any
unconditionally closed set in a countable group is algebraic. Recently, Sipacheva
showed that the answer is also positive for subgroups of direct products of count-
able groups [54] and proved the following theorem [52].

Theorem 1.1. Under CH, there exists a group containing a nonalgebraic uncon-
ditionally closed set.

Such a group is the nontopologizable group M constructed by Shelah [46],
which is an increasing union of topologizable (i.e., admitting nondiscrete Hausdorff
group topologies) subgroups. The following general observation shows that this is
sufficient for M to have a nonalgebraic unconditionally closed subset.

Lemma 1.2. If G is a nontopologizable group and any finite subset of G is con-
tained in a topologizable subgroup of G, then G \ {1} is a nonalgebraic uncondi-
tionally closed subset of G.

Indeed, since G admits no nondiscrete Hausdorff group topology, the set A =
G \ {1} is unconditionally closed in G. Suppose that it is algebraic. Then A =⋂

γ∈ΓAγ , where Γ is an arbitrary index set and each Aγ is an additively algebraic

set inG. Clearly, A = Aγ for some γ. Thus, A =
⋃

i≤k Ai, where k ∈ ω and eachAi

is an elementary algebraic set. This means that there exist words w1(x), . . . , wk(x)
in the alphabet G ∪ {x±1} such that Ai = {x ∈ G : wi(x) = 1} for i ≤ k. Since
the number of letters in each word is finite, we can find a topologizable subgroup

E.A. Reznichenko and O.V. Sipacheva acknowledge the support of the Russian
Foundation for Basic Research (project no. 06-01-00761).

705



706 66. MOSCOW QUESTIONS ON TOPOLOGICAL ALGEBRA

H ⊂ G such that the wi(x) are words in the alphabet H∪{x±1}. Thus, the Ai∩H
are elementary algebraic sets in H , and A∩H = H \{1} is an algebraic (and hence
unconditionally closed) set in H , which contradicts the topologizability of H .

Question 1.3 (see also [24]). Does there exist a group containing a nonalgebraic1530?

unconditionally closed set in ZFC?

Question 1.4. Describe the groups in which all unconditionally closed sets are1531?

algebraic.

1.2. Dimensions of metrizable groups. Many problems and results of the
dimension theory of topological groups are given in [44, 43, 45]. In this section,
we largely consider the dimensional properties of metrizable topological groups.
The celebrated theorem of Katětov says that dimX = IndX for any metric space
X ; however, there exist examples of metrizable spaces with noncoinciding dimen-
sions ind and dim. The first (very complicated) example of such a space was
constructed by Roy in 1962 [41]. Since then, much simpler examples with vari-
ous additional properties have been constructed (see, e.g., [20, 29, 31]), but the
question about the coincidence of dimensions for metrizable topological groups
had remained open; apparently, for the first time, it was asked by Mishchenko in
1964 [26].

The spaces embeddable in zero-dimensional topological groups occupy an in-
termediate position between zero-dimensional and strongly zero-dimensional metriz-
able spaces (any strongly zero-dimensional metrizable space X can be metrized
by a non-Archimedean metric, and this metric can be assumed to take only ra-
tional values (see [10]). The Graev extension [14] of such a metric to the free
group F (X) takes only rational values as well; therefore, the group F (X) with the
Graev metric has dimension ind zero, and it contains X as a subspace). Recently,
Sipacheva [53] constructed a space which can be embedded as a closed subspace
in a zero-dimensional metrizable group but is not strongly zero-dimensional (this
is a special case of Mrowka’s space [29], namely, νµ0(A), where A is the set σ2ω of
binary sequences with only finitely many elements different from 0); thereby, she
obtained an example of a metrizable group with noncoinciding dimensions ind and
dim. She proved also that Kulesza’s zero-dimensional metrizable space from [19]
cannot be embedded in a metrizable zero-dimensional group [53].

The natural question arises: What properties of Kulesza’s space obstruct its
embedding in a zero-dimensional metrizable group? The most manifest differ-
ence between Mrowka’s and Kulesza’s spaces is that the latter is metrizable by a
complete metric. This suggests the conjecture that a space metrizable by a com-
plete metric can be embedded in a zero-dimensional metrizable group only if it
is strongly zero-dimensional. This conjecture is based not only on purely formal
grounds but also on some intuitive reasons; it seems rather likely to us. Even
more likely is the following auxiliary conjecture: If (X, ρ) is a metric space with
complete metric ρ, Aρ(X) is the free (Abelian) group of X metrized by the Graev
extension of ρ, and indAρ(X) = 0, then dimX = 0.
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It is also unclear how the dimension of metrizable groups behaves under com-
pletion (this question is difficult even for general topological spaces). It is only
clear that the free groups with Graev metrics (as well as the metrizable groups
obtained by applying Sipacheva’s construction) are never complete; we can always
construct a fundamental sequence consisting of words with unboundedly increasing
lengths which converges to no word of finite length.

Question 1.5. Does there exist a complete metric group with noncoinciding di- 1532?

mensions ind and dim? In particular, can the completion of a free (Abelian) group
with Graev metric be zero-dimensional?

Question 1.6. Is it true that any complete metric space which can be embedded 1533?

into a zero-dimensional metrizable group is strongly zero-dimensional?

These two questions are closely related to the following old problem of Mish-
chenko.

Question 1.7 ([26]). Is it true that any complete metric space can be embedded 1534?

into a complete metric group of the same dimension?

Question 1.8. How large can the gap between the dimensions ind and dim of a 1535?

metrizable group be? What values can the dimension dim of a metrizable topolog-
ical group G with indG = 0 take?

Certainly, it makes sense to try to calculate the covering dimension of the zero-
dimensional group G in which Mrowka’s space νµ0(A) embeds and the covering
and inductive dimensions of the metric completions of G.

To conclude this section, we recall of the following old question of Arhangelskii,
which is closely related to the problems considered above.

Question 1.9 ([4]). Does there exist a topological group G with countable network 1536?

weight for which indG 6= dimG?

Arhangelskii asked this question for general regular spaces with countable
network in 1970 [1]. Delistathis and Watson suggested an approach to solving
it, which enabled Charalambous to construct a counterexample [6, 7]. Another
counterexample was constructed by Dow and Hart [9] under MA for σ-centered
partial orders. Apparently, the only progress towards answering Question 1.9
is due to Shakhmatov [42], who constructed a Lindelöf Σ-group G for which
indG 6= dimG. The following more general question may be easier to answer.

Question 1.10. Does there exist an (algebraically) homogeneous space X with 1537?

countable network for which indG 6= dimG? (A space X is algebraically homoge-
neous if there exists a topological group G and its closed subgroup H such that
X is homeomorphic to G/H .)

1.3. The inequality dimX × Y > dimX + dim Y . The reverse (nonstrict)
inequality holds in large classes of spaces, such as metrizable, compact, completely
paracompact, paracompact p, and even paracompact Σ-spaces (see, e.g., [18]).
However, spaces satisfying the inequality dimX × Y > dimX + dim Y (they are
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known as Wage-type examples) are rather hard to construct; moreover, there is
no Wage-type example of topological groups.

Question 1.11 ([44]). Do there exist topological groups G and H such that1538?

dimG×H > dimG + dimH? (The answer is not known even for Lindelöf topo-
logical groups.)

The next two questions refer to general topological spaces, but they can be
formulated for groups. The first Wage-type example of separable locally com-
pact spaces X and Y with perfectly normal X × Y was constructed under CH

by Wage [66]. Przymusiński constructed the first ZFC Wage-type example of a
separable first countable locally compact (or Lindelöf) strongly zero-dimensional
space X with normal square [35]. Other Wage-type examples were constructed
by Tsuda, E. Pol, Engelking, and Kozlov (a survey of related results is contained
in [62, 18]).

Question 1.12. Is it true that, for any nondecreasing finite sequence l1 ≤ l2 ≤1539?

· · · ≤ lm of nonnegative integers, there exists a space X such that dimX j = lj for
j = 1, . . . ,m and Xm is (perfectly) normal?

Wage [66] constructed a Wage-type example of a zero-dimensional separable
metric space M (a subset of the irrationals) and a zero-dimensional first countable
Lindelöf space Y . Tsuda [62] showed that dimM×Y = 1 and asked whether there
exists a Wage-type example with a complete metric factor (in particular, the space
of irrationals). He posed also the following problem.

Question 1.13. How large can the gap between dimM × Y and dimM + dimY1540?

be for metrizable M?

For any space X and compact space K, we have dimX × K ≤ dimX +
dimK (this is a result of Morita [28]). Tsuda [63] constructed a Wage-type
example of a zero-dimensional Lindelöf separable space X and a strongly zero-
dimensional pseudocompact space Y (Mrówka’s space). The following problem is
due to Pasynkov.

Question 1.14. Does the inequality dimX × Y ≤ dimX + dimY hold for pseu-1541?

docompact (countably compact) factors? What if the factors are equal?

The classical theorem of Comfort and Ross (that any product of pseudo-
compact groups is pseudocompact) and Morita’s theorem imply dimG × H ≤
dimG+dimH for pseudocompact groups G and H . Indeed, dimβG = dimG and
dim βH = dimH ; on the other hand, by the Glicksberg theorem, β(G × H) =
βG× βH .

Question 1.15. Does the inequality dimG × X ≤ dimG + dimX hold for a1542?

pseudocompact group G and a pseudocompact space X?

Let p : Y → X be a locally trivial bundle with fiber F . In many cases (for
example, if the base X is paracompact), dimY = dimX × F . However, as was
shown in [16], Smirnov’s n-dimensional modification [56] of Dowker’s example of
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a zero-dimensional not strongly zero-dimensional space is a locally trivial bundle
with base ω1 and fiber Q under CH. No ZFC example of this kind is known.

Question 1.16. Does the inequality dimY ≤ dimX + dimF hold for a locally 1543?

trivial bundle with compact fiber F ?

1.4. Values of metrics. A metric space X can very conveniently be em-
bedded in a zero-dimensional metric group if the values of the metric belong to
a zero-dimensional set of reals closed with respect to addition. Indeed, the set
of values of the Graev extension of any metric is the semigroup (under addition)
closure of the set of values of the metric; on the other hand, clearly, if the topol-
ogy of a space is generated by a metric with zero-dimensional set of values, then
this space is itself zero-dimensional. Thus, the free group F (X) endowed with the
Graev extension of a suitable metric on X is zero-dimensional.

Question 1.17. Is it true that any zero-dimensional metrizable space admits a 1544?

metric with zero-dimensional set of values? with rational values?

It is easy to show that sets of values of complete metrics may be arbitrary
(they must not be, say, closed). However, this is not so clear for metrics on
groups generated by group norms; at least, it is likely that the sets of values
of the completions of Graev extensions must have certain closedness properties.
This might help in proving that the metric completions of free groups with Graev
metrics are never zero-dimensional.

Question 1.18. Describe the possible sets of values of the completions of Graev 1545?

metrics on free groups of metric spaces.

1.5. Free groups. The first question is closely related to the considerations
of Sections 1.2 and 1.4.

Question 1.19. Give a constructive description of the completion of the free 1546?

(Abelian) group of a metric space endowed with the Graev extension metric.

Markov invented free topological groups when trying to construct an exam-
ple of a nonnormal group [24]. The converse problem of describing the spaces
for which free topological groups are normal is still open. Clearly, the normal-
ity of a free topological group F (X) implies the normality of all finite powers of
X . There was the conjecture that this condition was also sufficient. However,
Pavlov constructed a GCH example of a countably compact space X such that
Xω is normal (and even strictly collectionwise normal) but X2 is not pseudocom-
pact [32]. Okunev noticed that F (X) cannot be normal for such X . Indeed,
since X is countably compact, it must be functionally bounded in F (X), and, by
Tkachenko’s theorem [60], the group product X ·X in F (X) must be bounded as
well. On the other hand, X ·X is homeomorphic to X ×X ; hence there exists an
unbounded continuous function f : X ·X → R. Since X ·X is closed in F (X), it
follows that if F (X) were normal, we could extend this function to a continuous
function on F (X), in contradiction to the boundedness of X ·X .
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Question 1.20. Describe the spaces X for which the free (Abelian) topological1547?

group F (X) (A(X)) is normal. Does there exist a ZFC example of X such that
Xn is strictly collectionwise normal for all n but F (X) (A(X)) is not normal?

For any set X and any positive integer n, the natural multiplication map
in : (X ⊕ {e} ⊕ X−1)n → Fn(X) taking (xε1

1 , . . . , x
εn
n ) to xε1

1 . . . xεn
n is defined

(here X−1 is a disjoint copy of X , e is the identity element of F (X) (the empty
word), and Fn(X) is the set of words of length at most n). Let i∞ :

⊕
n∈ω(X ⊕

{e} ⊕ X−1)n → F (X) be the map defined by the condition i∞ � (X ⊕ {e} ⊕
X−1)n = in for n ∈ ω; it implements the natural factorization of the discrete
union

⊕
n∈ω(X ⊕{e}⊕X−1)n which yields the group F (X) (as a set). This map

is continuous, because multiplication in the free topological group is continuous.
It would be very convenient if it were also quotient, i.e., if the free topological
group F (X) were the topological quotient of the space

⊕
n∈ω(X ⊕ {e} ⊕X−1)n.

Unfortunately, this is not always so; i∞ is quotient if and only if all in are quotient
and F (X) is the inductive limit of {Fn(X)}, which happens fairly rarely.

Very little is known about conditions under which the maps in are quotient.
Mal’tsev noticed that i∞ is quotient for any compact space [21]. Pestov char-
acterized the spaces for which i2 is quotient (these are precisely strictly collec-
tionwise normal spaces [33]), and Fay, Ordman, and Thomas showed that i3 is
not quotient even for the space of rational numbers [11]. Tkachenko [59] proved
that the map i∞ (and, hence, all maps in) is quotient for all Lindelöf P -spaces
and all Cω-spaces (inductive limits of increasing sequences of subspaces Xn such
that the Xk

n are countably compact and strictly collectionwise normal for any
n and k). Arhangelskii proved that if X is Dieudonné complete and Fn(X)
is a k-space (for example, if X is paracompact and locally compact), then all
maps in are quotient [3, §5]; in fact, if X is Dieudonné complete and F (X) is
a k-space, then i∞ is quotient. Finally, in the joint paper [38] of Reznichenko
with Sipacheva, the spaces for which i3 or i4 is quotient were described. Possibly,
the question about i4 being quotient plays a key role in solving the problem about
all maps in being quotient. For the free Abelian groups of metric spaces, this is
precisely the case: Yamada proved that, for a metric space X , all natural addition
maps i+n : (X ⊕ {e} ⊕ −X)n → An(X) are quotient if and only if the map i+4 is
quotient [67]. A detailed survey of results related to the maps in and i∞ being
quotient is contained in [51].

Question 1.21. Characterize the topological spaces X for which the natural mul-1548?

tiplication maps in (and i∞) are quotient.

This question is interesting, in particular, for countable spaces with only one
nonisolated point; it is related to retral Mal’tsev spaces (see the next section).

Apparently, for the first time, Question 1.21 was asked by Pestov and Tka-
chenko in [64]. They posed also the following closely related problem.

Question 1.22 ([64]). Characterize the topological spaces X for which the free1549?

topological group F (X) is the inductive limit of its subspaces Fn(X).
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(As mentioned, the F (X) being the inductive limit of {Fn(X)} is the second
ingredient of the natural multiplication map i∞ being quotient.) This question
is studied better than Question 1.21. Apparently, the strongest result is due to
Tkachenko [59], who proved that if X is a P -space or a Cω-space, then F (X) is
the inductive limit of its subspaces Fn(X). Moreover, Tkachenko characterized
pseudocompact spaces X with the same property, namely, he proved that the
free topological group F (X) of a pseudocompact space X is the inductive limit of
Fn(X) if and only if all finite powers of X are normal and countably compact [61].
Pestov and Yamada [34] gave a complete description of metrizable spaces X for
which F (X) (A(X)) is the inductive limit of Fn(X) (An(X)). Sipacheva char-
acterized countable spaces X with only one nonisolated point for which F (X)
(A(X)) is the inductive limit of Fn(X) (A(X)) [48]. A more detailed survey of
related results is contained in [51]. Questions 1.21 and 1.22 are interesting for
both free and free Abelian groups.

The following question is attributed to A. A. Markov (see [64]).

Question 1.23 (A. A. Markov). What subgroups of a Markov free topological 1550?

group are free topological groups?

The subspaces Y of X for which the topological subgroup of F (X) generated
by Y is the free topological group of Y were described in [49].

1.6. An old problem. The following old problem seems very interesting
to us.

Question 1.24 (V. I. Malykhin, [64]). Does there exist a countable nonmetrizable 1551?

Fréchet–Urysohn group in ZFC?

Such a group exists, e.g., under Martin’s axiom. Many interesting consistency
results in this direction were obtained by Nyikos and Shibakov. Related ZFC

results and problems can be found in [39, 50, 15].

2. Mal’tsev spaces and retracts of groups

Let X be a set. A map m : X3 → X is called a Mal’tsev operation if
m(x, y, y) = m(y, y, x) = x for any x, y ∈ X . A topological space X is Mal’tsev if
there exists a continuous Mal’tsev operation on X .

When we consider a Mal’tsev spaceX with Mal’tsev operationm as a universal
topological algebra, we denote it by (X,m) and refer to it as a Mal’tsev algebra.

A subset Y of a Mal’tsev algebra (X,m) is said to be M -closed if Y is closed
with respect to the operation m, i.e., m(x, y, z) ∈ Y for all x, y, z ∈ Y . On such a
set Y , we can consider the Mal’tsev operation mY = m � Y 3, under which (Y,mY )
is a Mal’tsev algebra. In what follows, we omit the subscript Y . A map f : X → Y
of Mal’tsev algebras (X,mX) and (Y,mY ) is called a homomorphism if f respects
the Mal’tsev operation, i.e., f(mX(x, y, z)) = mY (f(x), f(y), f(z)). We refer to
homomorphisms of Mal’tsev algebras as M -homomorphisms . Mal’tsev showed
that any quotient M -homomorphism is open [21] (see also [65, 40]). Using this
fact, Uspenskii proved that any compact Mal’tsev space is Dugundji [65].
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On an arbitrary group, there is the natural group Mal’tsev operation defined
by mg(x, y, z) = xy−1z. In what follows, we regard groups as Mal’tsev algebras
under the group Mal’tsev operation.

A space X is said to be retral if X is a retract of a topological group. Any
retract r(X) of a Mal’tsev space (X,m) is a Mal’tsev space under the Mal’tsev
operation (x, y, z) 7→ r(m(x, y, z)). Thus, any retral space is Mal’tsev. For the
class of compact spaces, Sipacheva succeeded in proving the converse: any compact
Mal’tsev space is retral [47].

As above, we denote the free topological group (in the sense of Markov) of
a Tikhonov space X by F (X), the set of words of length at most n in F (X)
by Fn(X), and the set of words of odd length by Fodd(X) (thus, Fodd(X) =⋃

n F2n+1(X)). We also put

M2n+1(X) = {x1x
−1
2 x3 . . . x

−1
2n x2n+1 : xi ∈ X} ⊂ F2n+1(X)

and M(X) =
⋃

nM2n+1(X). By jn we denote the map Xn → Fn(X) defined by

jn(x1, x2, · · · , xn) = x1x
−1
2 · · ·x−1n+1

n . Clearly, j2n+1(X2n+1) = M2n+1(X), and
it is easy to show that the map jn is quotient if and only if so is the natural
multiplication map in defined in the preceding section.

It is easy to prove that a space X is retral if and only if X is a retract of
F (X) [2, 13].

For a topological group G, there is a natural retraction rg : F (G) → G; it
is defined by rg(xε1

1 x
ε2

2 · · ·xεn
n ) = xε1

1 x
ε2

2 · · ·xεn
n , where xε1

1 x
ε2

2 · · ·xεn
n on the left-

hand side denotes a word in F (G) and the same expression on the right-hand side
denotes a product in G.

We say that a spaceX isM2n+1-retral (M -retral) ifX is a retract ofM2n+1(X)
(of M(X)).

If m : X3 → X is a Mal’tsev operation, then the map rm
3 : M3(X) → X that

takes xy−1z to m(x, y, z) is well defined, and it is a retraction. The continuity of
m does not generally imply that of rm

3 . Moreover, the only known example of a
nonretral Mal’tsev space [13] is not a retract of M3(X). The map rm

3 is continuous
if j3 (i.e., i3) is quotient. In this case, X is M3-retral.

Sipacheva’s construction of a retraction F (X) → X for a compact Mal’tsev
space X with Mal’tsev operation m is as follows. First, retractions rm

2n+1 :
M2n+1 → X such that rm

2n+1 � M2n−1(X) = rm
2n−1 are defined recursively by

rm
2n+1(x1x

−1
2 . . . x−1

2n x2n+1) = rm
2n−1

(
m
(
rm
1 (x1), x2, r

m
2n−1(x3x

−1
4 . . . x2n+1)

)

m
(
rm
3 (x1x

−1
2 x3), x3, r

m
2n−1(x3x

−1
4 . . . x2n+1)

)−1

· · · m
(
rm
2k−1(x1x

−1
2 . . . x2k−1), x2k, r

m
2n−2k+1(x2k+1x

−1
2k+2 . . . x2n+1)

)

m
(
rm
2k+1(x1x

−1
2 . . . x2k+1), x2k+1, r

m
2n−2k+1(x2k+1x

−1
2k+2 . . . x2n+1)

)−1

· · · m
(
rm
2n−1(x1x

−1
2 . . . x2n−1), x2n, r

m
1 (x2n+1)

))
,



2. MAL’TSEV SPACES AND RETRACTS OF GROUPS 713

where rm
1 is the identity self-map of X . Then, a retraction rm : M(X) → X is

defined by rm � M2n+1(X) = rm
2n+1. Finally, a retraction s∞ : Fodd(X) → M(X)

is defined by the condition s∞ � F2n+1(X) = s2n+1, where s2n+1 : F2n+1(X) →
M2n+1(X) is the map xε1

1 x
ε1

2 · · ·x
ε2n+1

2n+1 7→ x1x
−1
2 · · ·x−1

2n x2n+1. Note that each map
s2n+1 is continuous; thus, s∞ is continuous provided that F (X) is the inductive
limit of the sequence of Fn(X). The map Rm = rm ◦ s∞ : Fodd(X)→ X is then a
retraction; to obtain the required retraction F (X)→ X , it is sufficient to extend
Rm by sending F (X) \ Fodd(X) to any point of X .

The set M(X) is M -closed in F (X); hence it has the natural Mal’tsev struc-
ture. We denote the restriction of the group Mal’tsev operation to M(X) by
mM .

The definitions of the maps rm, Rm, and s∞ do not depend on the topology
of X and have nice categorical properties.

Theorem 2.1. Let (X,mX) and (Y,mY ) be Mal’tsev algebras.

(1) If f : X → Y is an M -homomorphism, then the diagram

Fodd(X)
s∞−−−−→ M(X)

rmX−−−−→ X
yFodd(f)

yM(f)

yf

Fodd(Y )
s∞−−−−→ M(Y )

rmY−−−−→ Y

is commutative; here Fodd(f) = F (f) � Fodd(X) and M(f) = F (f) �

M(X), where F (f) : F (X)→ F (Y ) is the homomorphism extending f ;
(2) If Y ⊂ X is M -closed and mY = mX � Y 3, then rmY = rmX � M(Y )

and RmY = RmX � Fodd(Y );
(3) If f : X → Y and rmX are M -homomorphisms, then rmY is an M -

homomorphism;
(4) If X is M -closed in a topological group G and mX = mg � X3, then

rmX = rg � M(X) and rmX is an M -homomorphism;
(5) rmM : M(M(X))→M(X) is an M -homomorphism.

Question 2.2. Let (X,m) be Mal’tsev algebra, and suppose that rm is an M - 1552?

homomorphism. Is it true that X can be embedded into a group so that m is the
restriction of the group Mal’tsev operation to X3?

Definition. We say that X is r2n+1-retral (r-retral) if there exists a Mal’tsev
operation m on X for which the map rm

2n+1 (respectively, rm) is continuous.

The maps rm
2n+1 may not be continuous, but the maps rm

2n+1◦j2n+1 : X2n+1 →
X are always continuous. Thus, if (X,m) is a Mal’tsev space, k ∈ {3, 5, 7, . . . ,∞},
and jk is quotient, then X is rk-retral and, therefore, Mk-retral.

Question 2.3. What classes of spaces in the following diagram are different? 1553?

Mal’tsev ) M3-retral ⊃ M5-retral ⊃ . . .⊃ M∞-retral ⊃ retral
∪ ∪

r3-retral ⊃ r5-retral ⊃ . . .⊃ r∞-retral
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Question 2.4. Suppose that X is a Mal’tsev space, n and m are positive integers,1554?

n < m, and the map j2n+1 is quotient. Is it true that X is M2m+1-retral? r2m+1-
retral? r∞-retral? M∞-retral? retral?

Theorem 2.5 ([47]). If X is a Mal’tsev space with Mal’tsev operation m and the
map i∞ is quotient, then X is retral. Moreover, the retractions rm and Rm and
the map s∞ are continuous.

As mentioned in the preceding section, the map i∞ is quotient, in particu-
lar, for kω spaces, Lindelöf P -spaces, and paracompact locally compact spaces.
Therefore, the Mal’tsev spaces from these classes are retral.

A key role in the proof of Theorem 2.5 is played by the continuity of s∞.

Question 2.6. Is it true that the map s∞ is continuous for any space X?1555?

If the answer to this question is positive, then the answer to the following
question is also positive.

Question 2.7. Suppose that a space X satisfies one of the following conditions:1556?

(i) X is M -retral; (ii) X is M -closed in some topological group; (iii) X = M(Y )
for some space Y . Is X retral?

Recall that a base B for the topology of a spaceX is said to be non-Archimedean
if, for any U, V ∈ B, either U ∩ V = ∅, U ⊂ V , or V ⊂ U . Spaces with
non-Archimedean bases are called non-Archimedean spaces . All strongly zero-
dimensional metrizable spaces and Lindelöf P -spaces of weight ω1 are non-Archi-
medean; the non-Archimedean spaces are precisely subspaces of branch spaces of
trees with the standard topology. It is known that any non-Archimedean space
X is a retract of its free Boolean group B(X) and, therefore, retral [13]. We de-
note the retraction B(X) → X by rnA

B ; it induces the retraction rnA = φ ◦ rnA
B :

F (X)→ X , where φ : F (X)→ B(X) is the natural homomorphism. Let mnA be
the corresponding Mal’tsev operation (defined by mnA(x, y, z) = rnA(xy−1z)).

Question 2.8. Is it true that any non-Archimedean space is r∞-retral?1557?

Question 2.9. For which n does the relation rmnA

2n+1 = rnA � M2n+1(X) hold? Is1558?

it true that rmnA

= rnA? (It can be shown that rmnA

5 = rnA � M5(X).)

Any spaceX with a topology τ admitting a coarser non-Archimedean topology
σ is Mal’tsev, and if τ has a base B consisting of sets closed in σ, then X is a
retract of B(X) and the retraction rnA

B is continuous (with respect to τ) [13]. In
particular, any countable space is Mal’tsev, and any countable space with only
one nonisolated point is retral.

Question 2.10. Suppose that X is a countable space (a separable metrizable1559?

Mal’tsev space, a metrizable Mal’tsev space, a Lindelöf Mal’tsev Σ-space) and
n ∈ {3, 5, 7, · · · ,∞}. Is it true that X is retral? Mn-retral? rn-retral? Is X
rn-retral if it has only one nonisolated point? (See also Question 1.21.)

Reznichenko and Uspenskii proved the following theorem.
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Theorem 2.11 ([40]). Let X be a pseudocompact space with a Mal’tsev operation
m. Then m can be extended to a continuous Mal’tsev operation m̂ : (βX)3 → βX.
Therefore, the maps rm, Rm, and s∞ are continuous, and X is a retral space.

The proof of Theorem 2.11 consists of two parts. First, m is extended to a
separately continuous Mal’tsev operation m̂ : (βX)3 → βX ; then, it is proved that
m̂ is continuous. An important role is played by the following two assertions: (i) If
(X,mX) and (Y,mY ) are Mal’tsev algebras with separately continuous Mal’tsev
operations, then any quotient M -homomorphism f : X → Y is open [40]; (ii) Any
compact space with a separately continuous Mal’tsev operation is Dugundji [40].

Question 2.12. Is it true that any compact space X with a separately continuous 1560?

Mal’tsev operation is Mal’tsev? What if X is a metrizable space? a manifold?

If X is a countably compact space with a separately continuous Mal’tsev op-
eration m, then m can be extended to a separately continuous Mal’tsev operation
m̂ : (βX)3 → βX . Therefore, βX is a Dugundji compact space [40].

There exists a pseudocompact space X with a separately continuous Mal’tsev
operation such that X is not Mal’tsev and βX is not Dugundji [40].

Interesting questions arise in considering retracts of groups satisfying certain
topological and algebraic conditions. In [13], it was asked whether any Mal’tsev
compact space is a retract of a compact group. This question was answered by
Cauty, who proved that there exist finite CW-complexes that are Mal’tsev spaces
but are not retracts of compact groups [5]. The following question remains open.

Question 2.13. Let X be a Mal’tsev compact space. Is X a retract of a completely 1561?

bounded group? Is the retraction R∞ (r∞) continuous with respect to (the topology
induced by) the precompact free group topology on F (X) (M(X))?

Question 2.14. Characterize the (compact) retracts of Abelian (Boolean) topo- 1562?

logical groups.

3. Convex compact spaces and affine functions

Let K be a convex compact subset of a locally convex space; by E(K) we
denote the set of extreme points of K. In [36], Reznichenko studied the relation
between the weights of K and E(K). He proved, in particular, that if K is a sim-
plex, or E(K) is Lindelöf, or hl(K) ≤ w(E(K)), then w(K) = w(E(K)). However,
the following main problem remains open.

Question 3.1 ([36]). Is it true that, for any convex compact subset K of a locally 1563?

convex space, w(K) = w(E(K))? w(K) = hl(K)?

Suppose that E(K) ⊂ X ⊂ K. In [27], Moors and Reznichenko considered
separable subspaces of the space AX

p (K) of continuous real-valued affine functions
on K with the topology of pointwise convergence on X . The main question was:
Is it true that such subspaces must have countable network weight? Moors and
Reznichenko gave a negative answer to this question by constructing K and X
such that E(K) and X is separable, the unit ball of AX

p (K) is separable but has
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uncountable network weight, X \ E(K) is second countable, and Xω is Lindelöf.
They also proved that (i) the one-point compactification of any Ψ-like (Mrowka–

Isbell) space can be embedded in A
E(K)
p (K) for some K; (ii) if E(K) is Lindelöf,

then A
E(K)
p (K) is ℵ0-monolithic (i.e., any separable subspace of A

E(K)
p (K) has

a countable network); and (iii) if X is a Lindelöf Σ-space, then AX
p (K) is ℵ0-

monolithic and any compact subset of AX
p (K) is an Eberlein compactum. The

existence of separable nonmetrizable compact subspaces of AX
p (K) for Lindelöf X

is independent of ZFC.

Question 3.2. Suppose that Xω (or X × ωω) is Lindelöf. Is it true in ZFC that1564?

any compact separable subspace of AX
p (K) is metrizable?

Question 3.3. Suppose that Z is a compact ℵ0-monolithic subspace of A
E(K)
p (K).1565?

Is it true that Z is an Eberlein compactum? What if E(K) is Lindelöf ?

It is known that any norm-bounded compact subspace of AX
p (K) is Eberlein

and any compact subspace of AX
p (K) is σ-Eberlein and hence sequential (see [27]).

4. Stratifiable function spaces

In this section, all spaces are assumed to be separable and metrizable.
In [12], Gartside and Reznichencko proved that if X is a Polish (complete sep-

arable metric) space, then the space Ck(X) of all real-valued continuous functions
on X with the compact-open topology is stratifiable and asked whether the con-
verse is true. We say that a space X is Ck-stratifiable if Ck(X) is stratifiable. Re-
cently, Nyikos [30] showed that Ck(Q) is not stratifiable; hence any Ck-stratifiable
space is hereditarily Baire. Reznichencko [37] proved that if a Baire space X is a
continuous image of a Ck-stratifiable space, then X has a dense Polish subspace.
Since Ck-stratifiability is closed- and open-hereditary and survives multiplication
by compact spaces [12], it follows that every closed subset of a Ck-stratifiable
space X contains a dense Polish subspace. The complements to λ-spaces (these
are spaces in which all countable subsets are of type Gδ) in compact spaces have
the same property. Note that if |X | < b, then X is a λ-space (b is the minimum
cardinality of an unbounded subset of ωω).

Question 4.1. Suppose that K is a metrizable compact space, X ⊂ K, and X is1566?

a λ-space (or |X | < b). Is it true that Ck(K \X) is stratifiable?

Question 4.2. Is Ck-stratifiability finitely (countably) productive? Is the product1567?

of a Ck-stratifiable space and a Polish space Ck-stratifiable?

More questions and results on stratifiable Ck-spaces (in the context of the
M1 = M3 problem) are mentioned by Gruenhage in his chapter of this book.

5. Semilattices of compact G-extensions

A semilattice (lattice) is a partially ordered set in which any subset has least
upper bound (and greatest lower bound); an introduction to G-spaces is contained
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in [8]. It is almost obvious that the semilattice KG(X) of compact G-extensions
of a G-Tikhonov space X (with βGX being the maximal element) is a sublattice
of the semilattice K(X) of compactifications of X . Smirnov and Stoyanov [55]
noticed that the semilattice KG(X) may have elements which are minimal but
not least. It follows from their results that, for a compact group G, the following
conditions are equivalent: KG(X) is a lattice; KG(X) has a least element; KG(X)
has a minimal element; and X is locally compact. They conjectured that if G is
a locally compact group, X is a Tikhonov G-space, and KG(X) is a lattice, then
X is locally compact. Kozlov and Chatyrko [17] gave sufficient conditions for
the semilattice KG(X) to be a lattice (or, equivalently, to have a least element);
Sokolovskaya [58] constructed examples of G-Tikhonov spaces whose semilattices
KG(X) have minimal elements but are not lattices. She showed that any semilat-
tice KG(X) for a G-Tikhonov space can be realized as the semilattice KH(Y ) for
a pseudocompact H-Tikhonov space Y and a discrete group H .

Question 5.1. When does the semilattice KG(X) for a G-Tikhonov space X have 1568?

minimal elements? When is it a lattice?

In [17], it was shown that any element of the semilattice KG(X) for a G-
Tikhonov space X contains, in addition to X , the “completions” of all orbits (the
action of any group on a compact space can be extended to an action of its Raikov
completion [25]) and the orbits consisting of points at which the action is d-open

(an action α is d-open at a point x if x ∈ int(α(O, x)) for any neighborhood O of
the identity element, or, equivalently, if the map α(·, x) : G→ X is d-open in the
sense of Uspenskii [65]).

Question 5.2. Describe dense invariant subsets X and Y of a compact G-space 1569?

for which the semilattices KG(X) and KG(Y ) are isomorphic.

Smirnov [57] studied compactifications of X that are not maximal compact
G-extensions of X under any actions. In particular, he proved that RPn 6= βGRn

for any action of any group G.

Question 5.3. Let X be a Tikhonov space. What elements of K(X) can be 1570?

maximal (minimal, least) compact G-extensions of X under some actions?
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Bull. Polish Acad. Sci. Math. 46 (1998), no. 1, 67–70.

[6] M. G. Charalambous, Resolving a question of Arhangel’skii, 2005, Preprint.



718 66. MOSCOW QUESTIONS ON TOPOLOGICAL ALGEBRA

[7] M. G. Charalambous, A note on the dimension of cosmic spaces, 2006 International Con-
ference on Topology and its Applications (Aegion, Greece). Abstracts, Municipal Library of
Aegion, Aegion, 2006, p. 49.

[8] J. de Vries, Topological transformation groups. 1, Mathematisch Centrum, Amsterdam,
1975.

[9] A. Dow and K. P. Hart, Cosmic dimensions, 2005, Preprint. arXiv:math.GN/0509099
[10] R. Engelking, General topology, Heldermann Verlag, Berlin, 1989.
[11] T. H. Fay, E. T. Ordman, and B. V. Smith Thomas, The free topological group over the

rationals, General Topology Appl. 10 (1979), no. 1, 33–47.
[12] P. Gartside and E. A. Reznichenko, Near metric properties of function spaces, Fund. Math.

164 (2000), no. 2, 97–114.
[13] P. Gartside, E. A. Reznichenko, and O. V. Sipacheva, Mal’tsev and retral spaces, Topology

Appl. 80 (1997), no. 1-2, 115–129.
[14] M. I. Graev, Theory of topological groups. I. Norms and metrics on groups. Complete

groups. Free topological groups, Uspehi Matem. Nauk (N.S.) 5 (1950), no. 2(36), 3–56.
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Some problems from George Mason University

John Kulesza, Ronnie Levy and Mikhail Matveev

Introduction

This is a collection of our favorite problems. Unless otherwise stated, all spaces
are assumed to be Tychonoff.

Kulesza’s problems

These questions all come from the dimension theory of metric spaces. How-
ever, the study of dimension in non-separable spaces versus the study in separable
ones is considerably different.

Problems in dimension theory of non-separable metric spaces. The
behavior of dimension for non-separable metric spaces is not well understood,
despite having been studied for well over half a century; there are no analogues for
several important theorems regarding dimension in separable spaces and generally
the results and examples are quite complicated.

Almost any new theorem or example relating to the covering dimension dim
would be interesting; there are several problems in the papers mentioned below
which are of interest. Here, we focus on two fundamental problems which remain
largely unsolved. The relatively recent remarkable example νµ0 of Mrowka [16]
gives a consistent solution to one of the great problems in dimension theory. Its
finite powers give examples of metric spaces for which dim-ind, the discrepancy
between covering and the small inductive dimension, can be any positive integer
(see [16, 7]). However, a large cardinal assumption is necessary for this to happen;
in fact, assuming CH (see [16]), all powers of νµ0 have all dimensions equal to zero.
So, other than the examples with dim− ind = 1, as first demonstrated by Roy’s
example ∆ [17], there are no other known gaps without the strong set theoretic
assumption of Mrowka.

Demonstrating that Mrowka’s example νµ0 has positive dim amounts to show-
ing that, while ind νµ0 = 0, every completion of it must contain an interval. Then,
since there is a completion theorem for dim among all metric spaces (every metric
space has a completion preserving dim), dim νµ0 > 0 is immediate. Thus we have:

Question 1. Are there real metric spaces for which the dimension gap dim− ind 1571?

is greater than 1? Even partial solutions, with less severe set theoretic assumptions
would be interesting.

This problem remains unsolved almost 50 years after Roy’s ground breaking
result was first announced.

Question 2. Is there a real metric space which has no completion preserving 1572?

its ind?
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Problems in dimension theory of separable metric spaces. The di-
mension of products of separable metric spaces has been extensively studied, par-
ticularly for compact spaces and especially for a product of two spaces. What can
happen with noncompact spaces or in infinite products is less well understood.
In this direction, Anderson and Keisler (in [1]) gave examples of n-dimensional
spaces for which all powers are also n-dimensional and in [7], it is shown that
spaces with these properties can also be made complete. An obvious restric-
tion on the dimension in a product is given by the product theorem result that
dimX × Y ≤ dimX + dimY , but it is not clear what other restrictions there
might be. One very interesting problem, believed due originally due to Engelking,
is this: If dimX is finite, and dimXω is infinite, can Xω be countable dimensional?
There are lots of other questions related to large products, whose solutions will
likely require a deep understanding of the structure of these spaces. Here are two
of them.

Question 3. Is there a finite dimensional space X which satisfies: for infinitely1573?

many positive integers n, dimXn = dimXn+1 while for infinitely many other
integers m, dimXm < dimXm+1?

Question 4. Given an n ∈ N is there an Xn with dimX = dimXn = 1, but1574?

dimXn+1 = 2?

Levy’s problems

A question about weak P-points. For a Tychonoff space X , let X∗ denote
the Stone–Čech remainder βX \ X of X . If X is a space, an element x of X is
a weak P-point if x is not a limit point of any countable subset of X , and X is
a weak P-space if each of its elements is a weak P-point. If the topology of R is
strengthened by declaring every countable subset to be closed, the resulting space
will be a (non-regular) connected weak P-space. It seems difficult to determine
the connectedness of some specific weak P-spaces. Kunen [7] proved that ω∗ has
weak P-points, and van Mill [18] observed that if N is a countably infinite closed
discrete subset of Rn, then for any positive integer n, clRn N\N is a P-set in (Rn)∗,
that is, every Gδ subset of (Rn)∗ which contains clRn N \ N is a neighborhood of
clRn N \ N. In particular, (Rn)∗ has weak P-points.

Question 5. Is the set of weak P-points of [0,∞)∗ connected? If n is an integer1575?

larger than 1, is the set of weak P-points of (Rn)∗ connected?

A question about closed subsets of products. Call a Tychonoff space X
image-realcompact if every continuous image of X is realcompact. It is clear that
every Lindelöf space is image-realcompact. An old question asked independently
by Arhangel’skii and Okunev [2] and Mrowka [15] asks whether or not a non-
Lindelöf space can be image-realcompact. It is known that if certain additional
conditions are put on the space X , then if X is image-realcompact, it is Lindelöf.
In particular, it is shown in [4] that if X has weight at most c, then X is image-
realcompact if and only if it is Lindelöf. Therefore, every image-realcompact subset
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of a product of c copies of R is Lindelöf. Now suppose that X is an arbitrary image-
realcompact space. Then X is realcompact, so it embeds as a closed subset of Rκ

for some cardinal κ. Since every continuous image of an image-realcompact space
is image-realcompact, the earlier result shows that every projection of X to a
subproduct of at most c factors of Rκ is Lindelöf. This observation leads to the
following question.

Question 6. Suppose that X is a closed subset of a product Rκ of copies of R 1576?

and suppose that every projection of X onto a subproduct of at most c factors is
Lindelöf. Is X necessarily Lindelöf?

We note that by the remarks before the question, an affirmative answer would
give an affirmative answer to the Arhangel’skii–Okunev–Mrowka problem. We
also note that we cannot omit the assumption that X is closed in the product,
because an ordinal of large cofinality can be embedded in a product of copies of
R in such a way that the projection onto any subproduct of at most c factors is
compact.

Matveev’s problems

Inverse compactness. A space is called inversely compact [12] if every inde-
pendent family of closed sets has non empty intersection (recall that compactness
is equivalent to the condition that every centered family of closed sets has non
empty intersection, so inverse compactness is a generalization of compactness).
The word “inversely” is motivated by the following: let C and A be families of
subsets of a set X . Say that A is a partial inversement of C if there is an injection
f : A → C such that for every A ∈ A either f(A) = A or f(A) = X \ A [12]. A
space X is inversely compact iff every open cover has a finite partial inversement
that covers X [12].

Question 7 ([12]). Is every Hausdorff (regular, Tychonoff, normal) inversely 1577?

compact space compact?

A T1 counterexample is given in [12].
The difficulty of constructing a Hausdorff example is shown in [11] and [12].

A space is inversely countably compact (definition of inverse compactness reduced
to countable families C) iff it is countably compact. Many known examples of
good countably compact spaces are shown not to be inversely compact. If X is
not compact, then some power of X (very often X2) is not inversely compact; and
neither is the Alexandroff duplicate of X .

A Tychonoff inversely Lindelöf space (in the definition, one requires that the
partial inversement is countable rather than finite) need not be Lindelöf [10]. The
examples are all spaces of cardinality less than c, the ordinal space ω1 (under CH),
Ostaszewski space, ω∗ \ {p} for some p.

Monotone compactness. A space is monotonically Lindelöf if there is an
operator r that assigns to every cover U a countable open refinement r(U) in such
a way that r(U) refines r(V) whenever U refines V . Replacing “countable” by



724 67. SOME PROBLEMS FROM GEORGE MASON UNIVERSITY

“finite” we get the definition of monotone compactness . Various examples of non
metrizable monotonically Lindelöf spaces are given in [3, 8, 9].

Question 8. Is every monotonically compact space metrizable?1578?

In particular: is the Alexandroff Double Arrow space monotonically compact?
Every monotonically compact space is Fréchet [19], the Alexandroff duplicate

of X is monotonically Lindelöf only if the space is countable [19].

Basic homogeneity. A space X is basically homogeneous if it has a base
every element of which can be mapped onto any other by an autohomeomorphysm
of X [13, 14].

Question 9. Is every topological vector space basically homogeneous?1579?

For locally convex spaces the answer is affirmative [14].
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in ordered spaces, Topology Appl. 151 (2005), no. 1-3, 180–186.

[4] F. Eckertson, W. Fleissner, A. Korovin, and R. Levy, Not realcompact images of not Lindelöf
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Some problems on generalized metrizable spaces

Shou Lin

Generalized metrizable spaces are studied on the one hand to better under-
stand the topology of metrizable spaces, and on the other to provide classes of
non-metrizable spaces with some the desirable features of metrizable spaces. In
the past years a number of excellent survey papers on generalized metrizable spaces
have appeared. The paper [12] by Gruenhage was especially useful.

The theory of generalized metrizable spaces is closely related some questions
about metrization theorems, mutual classifications of spaces and maps, countable
product properties. Problems on generalized metrizable spaces are rich. In this
chapter I shall pose only some problems about the images of metrizable spaces and
connected spaces, and the spaces related hereditarily closure-preserving families.
Some other problems about generalized metrizable spaces can be found, for exam-
ples, in G. Gruenhage’s survey paper [13], and in G. Gruenhage’s chapter, “Are
stratifiable spaces M1?” and C. Liu, Y. Tanaka’s chapter, “Spaces and mappings,
special networks” in this book.

All spaces are Hansdorff, and maps are continuous and onto. Readers may
refer to [9] for unstated definitions and terminologies.

Sequence-covering maps

There are quite a few theorems about representing topological spaces as con-
tinuous images of spaces with additional properties. For examples, it is well-known
that a space has a point-countable base if and only if it is an open and s-image
of a metrizable space [33]. But, sometimes it is far from trivial to represent a
space as an image of a metrizable space with some properties. Let f : X → Y
be a map. f is called sequence-covering in the sense of Gruenhage, Michael and
Tanaka [14] if in case S is a convergent sequence containing its limit point in Y
then there is a compact subset K in X such that f(K) = S. Another definition
about sequence-covering maps in the sense of Siwiec [34] is that f : X → Y is
called sequence-covering if in case S is a convergent sequence in Y then there is a
convergent sequence L in X such that f(L) = S, which is not used in this chap-
ter. It was shown that every quotient and compact map of a metrizable space is
sequence-covering [24], and every quotient and s-image of a metrizable space is
a sequence-covering, quotient and s-image of a metrizable space [14]. Are those
the best results? Let f : (X, d) → Y be a map with d a metric on X . f is a
π-map with respect to d if for each y ∈ Y and a neighborhood U of y in Y ,
d(f−1(y), X − f−1(U)) > 0 [33]. Every compact map of a metric space is a π-
map. There is a quotient and π-map f from a metric space onto a compact metric
space in which f is not sequence-covering [24].

This project was supported by NNSF of China (No. 10571151)
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Question 1. Is every quotient and π-image of a metric space also a sequence-1580?

covering and π-image of a metric space?

A map f : X → Y is compact-covering [25] if in case C is a compact subset in
Y then there is a compact subset K in X such that f(K) = C. Every compact-
covering map is sequence-covering. There is a sequence-covering, quotient and
compact map f : X → Y from a separable metric space X onto a compact metric
space Y in which f is not compact-covering [26]. The following classic problem
posed by Michael and Nagami in [27] has been answered negatively: Is every
quotient s-image of a metric space a compact-covering, quotient s-image of a
metrizable space. Chen in [6] gave a (sequence-covering,) quotient and compact
image of a locally separable metrizable space which is not any quotient, compact-
covering s-image of a metric space. And in [7] Chen constructed a regular example
of a (sequence-covering,) quotient s-image of a metric space which is not any
quotient, compact-covering s-image of a metric space under the assumption that
there exists a σ′-set.

Question 2. Let X be a regular space which is a (sequence-covering,) quotient1581–1582?

and compact image of a metric space. Is X a compact-covering compact (resp.
s-)image of a metrizable space?

A map f : X → Y is called bi-quotient [34] if f−1(y) is covered by a family
U consisting open subsets of X then there is a finite subset U ′ of U with y ∈
int(f(

⋃U ′)). Siwiec and Mancuso in [35] proved that a space Y is locally compact
if and only if every compact-covering map onto Y is bi-quotient.

Question 3. Characterize the spaces Y such that every sequence-covering map1583?

onto Y is bi-quotient.

A family B of subsets of a space X is called point-regular [1] if for every x ∈ U
with U open in X the set {B ∈ B : x ∈ B 6⊂ U} is finite. It is a nice result that a
space X is an open and compact image of a metrizable space if and only if X is a
metacompact developable space [15], if and only if X has a point-regular base [2].
Let P be a family of subsets of a space X . P is called a cs∗-network [11] for X if a
sequence {xn} converges to a point x ∈ U with U open in X , there exist P ∈ P and
a subsequence {xni

} of {xn} such that {x}∪{xni
: i ∈ N} ⊂ P ⊂ U . The following

question was posed by Ikeda, Liu and Tanaka in [16]: For a sequential space X
with a point-regular cs∗-network, characterized X by means of a nice image of
a metrizable space. It is easy to see that every sequence-covering and compact
image of a metrizable space has a point-regular cs∗-network. It was proved in [41]
that a space X is a sequence-covering and compact image of a metrizable space if
and only if X has a sequence {Un} of point-finite covers satisfying that for each
n ∈ N if S is a sequence converging to a point x in X then there are a Un ∈ Un

for some n ∈ N and a subsequence L of S such that {x} ∪ L ⊂ Un.

Question 4. Is every space with a point-regular cs∗-network a sequence-covering1584?

and compact image of a metrizable space?
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Connectedness is less closely related the properties of generalized metrizable
spaces. A space is called sequentially connected if it cannot be expressed as the
union of two non-empty disjoint sequentially open subsets [10]. Every connected
and sequential space is sequentially connected, and every sequentially connected
space is connected. Recently, it was shown in [23] that a space is sequentially
connected if and only if it is a sequence-covering image of a connected metrizable
space. Thus every connected and sequential (resp. Fréchet–Urysohn) space is a
quotient (resp. pseudo-open) image of a connected metrizable space [10, 23]. It
is known that a space is a k-space (resp. a first-countable space) if and only if
it is a quotient (resp. an open) image of a paracompact locally compact (resp. a
metrizable) space.

Question 5. Are k-and connected spaces the quotient images of connected para- 1585?

compact locally compact spaces?

Question 6. Are first-countable connected spaces the open images of connected 1586?

metrizable spaces?

σ-spaces and Σ-spaces

Let us recall some related generalized metrizable spaces. Let X be a topo-
logical space and P a cover of X . P is called a quasi-(modk)-network (resp.
(modk)-network) [32] for X if there is a closed coverK by countably compact(resp.
compact) subsets of X such that, whenever K ∈ K and K ⊂ U with U open in
X , then K ⊂ P ⊂ U for some P ∈ P . P is called a network for X if P is a
(modk)-network with K = {{x} : x ∈ X}.

According to the Bing–Nagata–Smirnov metrization theorem, some general-
ized metrizable spaces were introduced. A space X is called a σ-space [31] if it is
a regular space with a σ-locally finite network. A space X is called a Σ-space [32]
(resp. a strong Σ-space [30]) if it has a σ-locally finite quasi-(modk)-network (resp.
(modk)-network) by closed subsets. A space X is called semi-stratifiable [8] if, for
each open set U of X , one can assign a sequence {F (n,U)}n∈N of closed subsets
of X such that

(1) U =
⋃

n∈N F (n,U);
(2) F (n,U) ⊂ F (n, V ) whenever U ⊂ V .

Lašnev [18] proved that if X is metrizable and f : X → Y is a closed map,
then f−1(y) is compact for all y ∈ Y outside of some σ-closed discrete subset of Y .
Some extensions of Lašnev’s theorem to, e.g., σ-spaces [5], normal semi-stratifiable
spaces [36], perfect pre-images of normal σ-spaces, are known to hold.

Question 7. Is f−1(y) compact for all y ∈ Y outside of some σ-closed discrete 1587?

subset of Y if X is a perfect pre-image of a normal semi-stratifiable space and
f : X → Y is a closed map?

A family P of subsets of a space X is called hereditarily closure-preserving [19]
if the family {H(P ) : P ∈ P} is closure-preserving for each H(P ) ⊂ P ∈ P , i.e.,⋃{H(P ) : P ∈ P ′} =

⋃{H(P ) : P ∈ P ′} for each P ′ ⊂ P . A space X is called a
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Σ∗-space (resp. a strong Σ∗-space) [32] if it has a σ-hereditarily closure-preserving
quasi-(modk)-network (resp. (modk)-network) by closed subsets. A regular space
is a σ-space if and only if it is a semi-stratifiable and Σ∗-space [17]. Tanaka and
Yajima in [39] proved the following a theorem for Σ-spaces. If X is a Σ-space and
f : X → Y is a closed map, then f−1(y) is ℵ1-compact for all y ∈ Y outside of
some σ-closed discrete subset of Y . In [21] the author tried to obtain a similar
result as mentioned above for Σ∗-spaces, but its proof has a gap.

Question 8. Is f−1(y) ℵ1-compact for all y ∈ Y outside of some σ-closed discrete1588?

subset of Y if X is a Σ∗-space and f : X → Y is a closed map?

It is a classic and important result that a regular space is a σ-space if and
only if it has a σ-discrete network. Buhagiar and Lin in [3] showed that a space
X is a strong Σ-space if and only if it has a σ-discrete (modk)-network by closed
subsets.

Question 9. Does every Σ-space have a σ-discrete quasi-(modk)-network by closed1589?

subsets?

As for the product property of Σ-spaces, Okuyama in [32] proved that a space
X is a Σ-space if and only if X× [0, 1] is a Σ∗-space for a paracompact space X . It
is known that a space X is a strong Σ-space if and only if it is a subparacompact
Σ-space [3].

Question 10. Is X a strong Σ-space if X × [0, 1] is a strong Σ∗-space?1590?

ℵ0-spaces

A family P of subsets of a space X is called a pseudo-base if P is a (modk)-
network with K = {K : K is compact in X}. A space X is called an ℵ0-space [25]
if it is a regular space with a countable pseudo-base. It is easy to check that ℵ0-
spaces are preserved by closed maps. However, the regular image of an ℵ0-space
under an open map cannot be an ℵ0-space [25].

Question 11. Is the regular image of an ℵ0-space under an open and compact1591?

map an ℵ0-space?

Spaces related to pseudo-bases are special. For example, Lin in [20] obtained
that a regular space is an ℵ0-space if and only if it has a point-countable pseudo-
base, and a regular space has a σ-hereditarily closure-preserving pseudo-base if and
only if either it is an ℵ0-spaces or it is a σ-closed discrete space in which all compact
subsets are finite. On the other hand, some generalizations of the families about
compact-finite families or hereditarily closure-preserving families were introduced
by T. Mizokami in [28] as follows. A family P of subsets of a space X is called
CF in X if P|K = {P ∩K : P ∈ P} is finite for each compact subset K of X , and
called CF ∗ in X if additionally the family {P ∈ P : P ∩K = P ′} is finite for each
infinite subset P ′ ∈ P|K . It is easy to check that

Hereditarily closure-preserving family⇒ CF ∗ family⇒ CF family.
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It was shown in [29] that a regular space X has a σ-CF ∗ pseudo-base consisting
of perfect subsets of X if and only if X is either an ℵ0-space or a space in which
all compact subsets are finite.

Question 12. Let X be a regular space with a σ-CF ∗ pseudo-base. Is X either 1592?

an ℵ0-space or a space in which all compact subsets are finite?

A family P of subsets of a space X is called a quasi-base [4] if, whenever
x ∈ X and U is a neighborhood of x in X , then there exists a P ∈ P such that
x ∈ int(P ) ⊂ P ⊂ U . A regular space is metrizable if and only if it has a σ-
compact finite base [22], if and only if it is a k-space with a σ-CF base [28], if and
only if it is a k-space with a σ-CF ∗ quasi-base [42], if and only if it is a k′-space
with a σ-CF quasi-base [40].

Question 13. Let X be a regular space. Is X metrizable if it is a k-space with a 1593?

σ-CF quasi-base?
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Problems from the Madrid Department of
Geometry and Topology

José M. R. Sanjurjo

We present in this article several open problems which reflect the interests and
the activity of some of the members of the Department of Geometry and Topology
at the Universidad Complutense in Madrid. These interests and activities are
shared, in many cases, with outside collaborators but we note that in each problem
proposed at least one member of the department is present. The only exception
is Problem 7, whose author does not belong to the department but which was
nevertheless prompted by the work of one of its members. The author is grateful
to all the colleagues who provided the necessary information for the writing of this
paper.

We start with some problems belonging to the area of topological dynamics.
Several authors have in recent years studied relations between the topological and
the dynamical structure of attractors. An important property, establishing that
every (asymptotically stable) attractor of a flow on a locally compact ANR has the
shape of a finite polyhedron has been formulated in the papers [2], [10], [8] and
[19] at various levels of generality using topological ideas connected with Borsuk’s
theory of shape. Moreover, in [10] it is proved that all finite-dimensional compacta
with polyhedral shape can be represented in that way. There are, however, classes
of isolated invariant compacta more general than attractors which have polyhedral
shape, for example the class of non-saddle invariant compacta [7]. The following
problem inquires about the existence of other classes of compacta with such a
property.

Problem 1 (J.M.R. Sanjurjo). Consider an isolated invariant compactum K for 1594?

a flow on an ANR. Find dynamical properties (other than being an attractor)
ensuring that K has polyhedral shape.

The following problem asks about the role of movability (a shape invariant)
in the context of topological dynamics.

Problem 2 (J.M.R. Sanjurjo). Is there a dynamical condition C such that a finite- 1595?

dimensional metric compactum K is movable if and only if K can be embedded
as an invariant subset of a flow on a manifold in such a way that K satisfies
condition C?

The intrinsic topology of the unstable manifold of an isolated invariant set of
a flow was introduced by Robbin and Salamon in [16]. They have proved that
the shape of the Conley index of an isolated invariant set agrees with that of
the one-point compactification of its unstable manifold endowed with the intrinsic
topology. One of the drawbacks of the notion of Conley index is that a lot of
information is lost when the exit set of an index pair is collapsed to a point (a dis-
advantageous feature which is transmitted to the one-point compactification just
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mentioned). In the following problem we conjecture that the use of the Freuden-
thal compactification could lead to more sophisticated topological and algebraic
invariants.

Problem 3 (M.A. Morón, J.J. Sánchez-Gabites and J.M.R. Sanjurjo). To what1596?

extent does the shape of the Freudenthal compactification of the unstable manifold
of an isolated invariant set K endowed with its intrinsic topology carry more infor-
mation than the Conley shape index of K? Is there a satisfactory theory relating
the dynamical properties of K to the topological properties of such a compactifica-
tion?

The following problems are concerned with discrete dynamical systems in-
stead of flows. The computation of the sequence of fixed point indices of a local
homeomorphism in a neighborhood of an isolated fixed point is an important and
non-trivial problem. In the plane, when the fixed point is an isolated invariant
set, this problem was solved by Le Calvez and Yoccoz for orientation preserving
planar homeomorphisms, and by Ruiz del Portal and Salazar in the orientation
reversing case. The general problem was solved more recently in the orientation
preserving case by Le Calvez and by Ruiz del Portal and Salazar for orientation
reversing planar homeomorphisms.

We present here two related open problems. See [17] and [18] for more infor-
mation about the notions involved.

Problem 4 (F.R. Ruiz del Portal and J.M. Salazar). Let f : U ⊂ R2 → R2 be1597?

a continuous map and p a fixed point that is an isolated invariant set. Is the
sequence iR2(fk, p) of fixed point indices periodic? Which sequences of integers
satisfying Dold’s congruences are reached?

Problem 5 (F.R. Ruiz del Portal and J.M. Salazar). Consider the sequence1598?

iR2(fk, p) for homeomorphisms f : R3 → R3 for which a fixed point p is an isolated
invariant set. Is it periodic? What can be said for arbitrary R3-homeomorphisms?
And for arbitrary Rn-homeomorphisms?

Another direction of research in the department focuses on low-dimensional
topology. A closed set F in a 3 -manifold-with-boundary M is tame if there is
a homeomorphism of M in itself sending F onto a subcomplex of some locally
finite simplicial complex triangulating M . If there is no such homeomorphism, we
say that F is wild . The set X is locally tame at a point x of X if there exist a
neighbourhood U of x in M and a homeomorphism of U into M that takes U ∩X
onto a tame set. Otherwise we say that X is locally wild at x. A closed set is tame
in S3 if is locally tame at each of its points. The set of points of X at which it is
locally wild is closed, and is called the wild subset of X .

A knot in X = S3 (resp. string in X = R3) is a pair (X,N), where N is a
subspace of X homeomorphic (resp. properly homeomorphic) to the 1-sphere S1

(resp. real line R1). A wild knot (or wild string) has a non-empty wild subset.
Otherwise it is a tame knot (or tame string). A knot (S3, N) is the unknot if N
bounds a tamely embedded disk in S3. A string is the unstring if it bounds a
tamely embedded half-plane in R3.
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The following celebrated theorem was proved in [15]:

Smith Conjecture. A tame knot K in the 3-sphere S3 has a cyclic branched
covering that is also S3 only if K is the unknot.

Problem 6 (J.M. Montesinos: Smith Conjecture for R3). A tame string S in 1599?

the real 3-space R3 has a cyclic branched covering that is also R3 only if S is the
unstring.

In [14] a nontrivial, wild knot whose n-fold cyclic branched cover is S3, for all
n, is constructed. Moreover, there are uncountably many inequivalent knots with
this property, and the knots can be chosen to bound an embedded disk ∆ whose
wild subset is a tame Cantor subset of ∂∆. Allan Edmonds [6] in his review to [14]
has conjectured that

Problem 7 (Conjecture (A. Edmonds)). Any wild knot in S3 whose nontrivial 1600?

n-fold cyclic branched cover is S3 bounds an embedded disk ∆ that is tame in its
interior.

Problem 6 follows from a positive answer to this conjecture.
The following problem refers to topological aspects of real algebraic geometry.

It is concerned with finiteness of topological operations. This is a basic problem for
the understanding of the topology and the function theory of real analytic spaces,
in particular real analytic manifolds (see [1] for information about these subjects).
LetX be a real analytic space, and S ⊂ X a subset that can be described by finitely
many conjunctions and/or disjunctions of strict and/or relaxed equalities and/or
inequalities of global analytic functions on X (we say in short, finitely many global
analytic inequalities). Then:

Problem 8 (J.M. Ruiz). Can the topological interior (resp. closure) of S in X be 1601?

described using solely strict (resp. relaxed) global analytic inequalities? Can each
union of connected components of S in X also be described by finitely many global
analytic inequalities?

Problem 8 is solved in the case in which the topological boundary of S in X
is relatively compact. Without any compactness assumption, it is solved only for
dim(X) ≤ 2. All known solutions are in the affirmative.

The following problems are motivated by the famous Borsuk’s problem on in-
tersection of ANRs ([3] p. 244 Problem 8.2) and by Kolodziejczyk’s work on related
subjects. In a series of interesting papers (see [11] for instance), Kolodziejczyk
solves some other Borsuk’s problems on homotopy dominations of finite polyhe-
dra. She uses algebraic techniques depending on deep results developed mainly by
J.H.C. Whitehead, C.T.C. Wall and Hilton–Mislin–Roitberg. Concretely in [11]
she proves:

There are finite polyhedra which homotopy dominate infinitely
many polyhedra with different homotopy types.
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Problem 9 (M.A. Morón). Is there a finite polyhedron P dominating a sequence1602?

of finite polyhedra {Pn}n∈N, where Pn homotopy dominates Pn+1 but Pn and Pn+1

have different homotopy types for every n ∈ N?

Problem 10 (M.A. Morón). Let P be a finite polyhedron which dominates infin-1603?

itely many finite polyhedra {Pn}n∈N of different homotopy types. Using a result of
Borsuk–Oledzki, we can consider all of them as retracts of the Q-manifold P ×Q.

Let us consider the hyperspace 2P×Q
H (with the Hausdorff metric). We can sup-

pose, by compactness, that there exists limn→∞ Pn. What can be said about the
movability of K = limn→∞ Pn?

Related to this, note that K is not the limit of {Pn}n∈N in the shape metric
ds as defined in [12]. In fact there is ε > 0 such that ds(Pn, Pk) ≥ ε for k 6= n.

Another direction of research is connected with asymptotic topology. In [9],
Gromov introduced the notions of coarse equivalence and asymptotic dimension
for the study of group theory. The idea was to think of finitely generated groups
as geometric objects in order to get algebraic properties.
Generalizing those ideas, Smith (see [20]) proved that a countable group is of
asymptotic dimension zero if and only if it is locally finite. In [4] it was shown
that every locally finite group is coarsely equivalent to one of the form

⊕∞
i=1 Zpi

and those groups are universal for proper metric spaces of bounded geometry and
asymptotic dimension zero. The problem proposed asks about a classification of
those universal groups.

Problem 11 (N. Brodskiy, J. Dydak, J. Higes and A. Mitra [4]). Classify count-1604?

able abelian torsion groups up to coarse equivalence.

We give now a problem in the framework of topological abelian groups. In [5]
an analog to Mackey–Arens theorem is intended for topological abelian groups.
The lack of the notion of convexity in groups makes the question delicate. In fact,
in the paper mentioned only some sufficient conditions are given in a topological
abelian groupGτ in order that it admits a finest among all the locally quasi-convex
topologies in G with the same set of continuous characters as the original topology
τ . It is also an open problem whether such a topology always exists.

Problem 12 (E. Mart́ın-Peinador and V. Tarieladze). Let Gτ := (G, τ) be an1605?

infinite abelian topological group, and let T be the multiplicative unit complex circle,
with the euclidean topology. Assume that for any group topology ν on G such that
τ < ν, the group of all continuous characters CHom(Gτ ,T) is properly contained
in CHom(Gν ,T), i.e., there is not a finer group topology ν in G with the condition
CHom(Gτ ,T) = CHom(Gν ,T). Is τ then the discrete topology?.

Finally, another area of research is devoted to set theoretical topology. A
topological space is said to be totally paracompact if every open basis contains a
locally finite covering (R.M. Ford). It is known (D.W. Curtis) that every totally
paracompact complete metric space is C-scattered and every σ−locally compact
paracompact space is totally paracompact. Then every Banach space is totally
paracompact if and only if it is finite dimensional. Thus, every infinite-dimensional
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Banach space necessarily has an open basis which contains no locally finite covering
(i.e., a “coarse open basis”). A theorem by Corson shows that for any covering U of
a reflexive, infinite dimensional Banach space B, where U is formed by bounded,
convex sets, there is a point x in B such that each neighborhood of x meets
infinitely many members of U . On the other hand, it is proved in [13] that c0 does
not satisfy such property. The following problem is connected with this situation.

Problem 13 (F.G. Lupiáñez). Give an intrinsic description of those infinite- 1606?

dimensional Banach spaces such that the open basis formed by all open balls is
coarse.
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Cardinal sequences and universal spaces

Lajos Soukup

In his contribution to this volume Joan Bagaria, [1], investigated the question
whether certain sequences of cardinals can be obtained as cardinal sequences asso-
ciated with locally compact scattered T2 (in short: LCS) spaces in certain models
of ZFC.

In this paper we try to characterize certain classes of cardinal sequences of
scattered spaces and to formulate related problems. We also introduce the concept
of “universal spaces” as a useful tool of such characterizations.

To start with we recall some definitions and introduce some notations.
Given a scattered T2 space X the αth Cantor–Bendixson level will be denoted

by Iα(X). The height of X , ht(X), is the least ordinal α ht−(X) is the smallest
ordinal α such that Iα(X) is finite. Clearly, one has ht−(X) ≤ ht(X) ≤ ht−(X)+1.
The cardinal sequence of X , denoted by SEQ(X), is the sequence of cardinalities
of the infinite Cantor–Bendixson levels of X , i.e., SEQ(X) =

〈
|Iα(X)| : α <

ht(X)−
〉
.

For an ordinal α we let C(α) denote the class of all cardinal sequences of length
α of LCS spaces. We also put, for any fixed infinite cardinal λ,

Cλ(α) = {s ∈ C(α) : s(0) = λ, ∀β < α[s(β) ≥ λ]}.
Because of the following theorem the characterization of Cλ(α) for all λ yields

a characterization of C(α).

Theorem ([4, Theorem 2.1]). For any ordinal α we have f ∈ C(α) iff for some
natural number n there is a decreasing sequence λ0 > λ1 > · · · > λn−1 of infinite
cardinals and there are ordinals α0, . . . αn−1 such that α = α0 + · · · + αn−1 and
f = f0

_f1
_ · · · _fn−1 with fi ∈ Cλi

(αi) for each i < n.

In [4, Theorem 4.1] for any ordinal α < ω2 and any infinite cardinal λ the
authors gave the full description of Cα(λ) under GCH. Using that theorem one can
characterize even Cλ(ω2) under GCH provided λ 6= ω1.

To formulate that result we should introduce the following notions. If α is any
ordinal, a subset L ⊂ α is called κ-closed in α, where κ is an infinite cardinal, iff
sup 〈αi : i < κ〉 ∈ L ∪ {α} for each increasing sequence 〈αi : i < κ〉 ∈ κL. The set
L is <λ-closed in α provided it is κ-closed in α for each cardinal κ < λ. We say
that L is successor closed in α if β + 1 ∈ L ∪ {α} for all β ∈ L.

The constant λ-valued sequence of length α will be denoted by 〈λ〉α.

Theorem ([4, Theorem 4.1]). Assume GCH and fix an ordinal α ≤ ω2.

(1) Cω(α) = {s ∈ α{ω, ω1} : s(0) = ω} if α < ω2 and Cω(ω2) = ∅.
(2) If λ > cf(λ) = ω, then Cλ(α) = {s ∈ α{λ, λ+}: s(0) = λ and s−1{λ} is

ω1-closed in α}.
(3) If cf(λ) = ω1 and either λ > ω1 or α < ω2 then Cλ(α) = {s ∈ α{λ, λ+}:

s(0) = λ and s−1{λ} is both ω-closed and successor-closed in α}.
737
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(4) If cf(λ) > ω1, then Cλ(α) = {〈λ〉α}.
The theorem above left open the characterization of Cω1

(ω2) under GCH.
For a cardinal λ and and ordinal δ put

Dκ(δ) = {s ∈ δ{λ, λ+} : s(0) = λ, s−1{λ} is <λ-closed and successor-closed in δ}.
In [4, Theorem 4.1] it was proved that if GCH holds then

(0.1) Cω1
(δ) ⊆ Dω1

(δ),

for each ordinal δ < ω3 and by [4, Theorem 4.1] above we have equality for δ < ω2.
By [8] not only for δ = ω2 but even for each ordinal δ < ω3 it is consistent with
GCH that we have equality in (0.1).

To formulate our result we need to introduce some more notation.
An LCS space X is called Cλ(α)-universal if and only if SEQ(X) ∈ Cλ(α) and

for each sequence s ∈ Cλ(α) there is an open subspace Y of X with SEQ(Y ) = s.
The constructions of [4] imply that if GCH holds then for each ordinal δ < ω2

and infinite cardinal λ ≥ ω1 there is a Cλ(δ)-universal LCS space X .
For λ = ω and δ < ω2 we do not know if GCH implies the existence of a Cω(δ)-

universal space but [8, Theorem 1.3] below implies that the existence of such a
space is consistent with GCH.

Theorem ([8, Theorem 1.3]). If λ is a regular cardinal with λ<λ = λ then for
each δ < λ++ there is a λ-complete λ+-c.c. poset P of cardinality λ+ such that in
V P there is a Cλ(δ)-universal LCS space and

(0.2) Cλ(δ) = Dλ(δ).

How do the universal spaces come into the picture? The first idea to prove
the consistency of Cλ(α) = Dλ(α) is to try to carry out an iterated forcing. For
each f ∈ Dλ(α) we can try to find a poset Pf such that

1Pf
 There is an LCS space Xf with cardinal sequence f .

Since typically |Xf | = λ+ if we want to preserve the cardinals and CGH the
natural idea is to find a λ-closed, λ+-c.c. poset Pf . In this case forcing with Pf

introduces λ+ new subsets of λ because Pf has cardinality λ+. However |Dλ(α)| =
λ++ for λ+ ≤ α < λ++! So the length of the iteration should be at least λ++,
hence in the final model λ will have λ+ · λ++ = λ++ many new subsets, i.e., GCH

fails.
On the other hand, a Cλ(δ)-universal space has cardinality λ+ so we may hope

that there is a λ-closed, λ+-c.c. poset P of cardinality λ+ such that V P contains

a Cλ(δ)-universal space. In this case (2λ)V P ≤ ((|P |<λ)λ)V = λ+. So in the the
generic extension we might have GCH.

Unfortunately, for a fixed regular cardinal κ [8, Theorem 1.3] gives different
posets for different ordinals δ < κ++. This raises the following questions:

Problem 1. Assume that κ is a regular cardinal. Is it consistent with GCH that1607?

we have equality in (0.2) for each for each ordinal δ < κ++?
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We can formulate another version of the problem above:

Problem 2. Is it true under GCH that we have equality in (0.2) for each cardinal 1608?

κ and ordinal δ < κ++?

Juhász and Weiss proved in [5] that 〈ω〉δ ∈ C(δ) for each δ < ω2. In [6]
Martinez showed that for each δ < ω3 it is consistent with GCH that 〈ω1〉δ ∈ C(δ).
However, the following question remained open.

Problem 3. Is it consistent with GCH that we have 〈ω1〉δ ∈ C(δ) for each δ < ω3? 1609?

If λ is singular and δ ≥ λ+ then we do not know anything about Cλ(δ).

Problem 4. Characterize Cλ(α) for singular cardinals λ and α ≥ λ+ under GCH! 1610?

So far we assumed GCH. What can we say if 2ω > ω1?
By [3] it is consistent that 〈ω〉ω2

∈ Cω(ω2). By [2] it is consistent that 2ω = ω3

and
Cω(ω2) ⊃ {s ∈ ω2{ω, ω1} : s(0) = ω}.

However, if 2ω0 = ωα then a natural upper bound of Cω(ω2) is a much larger family
of sequences:

(0.3) Cω(ω2) ⊆ {s ∈ ω2{ων : ν ≤ α} : s(0) = ω}.
In [8] the following result is proved.

Theorem. It is consistent that 2ω = ω2 and there is an Cω(ω2)-universal LCS
space witnessing that Cω(ω2) is large as possible, i.e., Cω(ω2) = {s ∈ ω2{ω, ω1, ω2} :
s(0) = ω}.
Problem 5. Assume that 〈ω〉ω2

∈ Cω(ω2) and 2ω = ω2. Is it true that we have 1611?

equality in (0.3)?

So far we have seen that for different cardinals λ and different ordinals δ there
may exist Cλ(δ)-universal LCS spaces in different models. However, we do not have
a model, a cardinal λ and an ordinal δ such that Cλ(δ) is non-empty but there
is no Cλ(δ)-universal LCS space in that model. This fact yields to the following
question.

Problem 6. Is it true for each cardinal λ and ordinal δ that either Cλ(δ) = ∅ or 1612?

there is an Cλ(δ)-universal LCS space?

Finally let us mention a stepping-up problem. In [3] Baumgartner and Shelah
established the consistency of 〈ω〉ω2

∈ C(ω2). Martinez, [7], proved that a gener-

alization of some ideas from [3] can give the consistency of 〈ω〉δ ∈ C(δ) for each
δ < ω3. Later it was proved in [9] that if there is a natural c.c.c. poset P such
that Cω(ω2) ∈ C(ω2) in V P then there is a natural c.c.c. poset Q as well such that
〈ω〉δ ∈ C(δ) holds for each δ < ω3 in V Q. These theorems raise the the following
question:

Problem 7. Does 〈ω〉ω2
∈ Cω(ω2) imply that 〈ω〉δ ∈ Cω(δ) for each δ < ω3? 1613?
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0-countable-dimensional, 635
2-homogeneous, 348
2-indecomposable, 311
A-space, 29
AP-space, 655
C-embedded, 35
C-space, 612
C-spaces, 633, 695
C∗-embedded, 405
C∗-embedded, 35
Ck-stratifiable, 716
D-space, 129
Fσ-measurable, 654
Fσ-metrizable, 146
G-compactification, 421
G-homological Zn-set, 612
G-normal, 424
G-symmetric power of X, 658
H-spectralifiable, 665
K-components, 351
K-connected, 351
KLΣ(<ω)-space, 49
LΣ(< κ)-space, 47
LΣ(κ)-space, 47
LΣ(≤κ)-space, 47
M-closed, 711
M-homomorphisms, 711
M-retral, 712
Mγ -embedded, 39
M0-spaces, 146
M1-space, 143
M2-space, 143
M3-space, 25, 144
M2n+1-retral, 712
N-close, 132
P -embedded, 40
P γ -embedded, 38
P γ(locally finite)-embedded, 39
P γ(point-finite)-embedded, 39

Q-like, 311

Ri-continuum, 327

T is continuous for X, 263

Tκ-set, 250

Uω-embedded, 37

WAP-space, 655

X-interpolation set, 412

Z-concordant, 18

Z-consonant, 18

Z-embedding, 602

Z-harmonic, 19

Zn-set, 599

[L]-homotopic, 661

[L]-invertible, 693

[κ, λ]-linearly Lindelöf, 228

∆-function, 122

m-DD{n,k}-property, 697

Ψ-like space, 211

Σ-space, 727

Σ∗-space, 728

ℵ-space, 23

ℵ0-bounded, 366

ℵ0-space, 23, 728

ℵ0-weak base, 24

ℵ0-weakly first-countable, 25

α-Cantor–Bendixson derivative, 115

α-surjective, 373

δ-connected, 269

ε-Kronecker, 418

ε-premap, 308
1
2

-homogeneous, 337
1
n

-homogeneous, 337

∞-C-spaces, 633

∞-system, 634

κ-closed, 737

κ-oval, 210

λ-connected, 270

λ-dendroid, 328

741
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λ-space, 372

λ-spaces, 716
~C-absorbing, 603
~C-universal, 598
N-orbit, 681

Z-orbit, 681

A-admissible, 15
A-splitting, 15

C-universal, 597
Cλ(α)-universal, 738

D-ifiable, 665
D-ification, 665

K-representable, 428

K-trivial, 428
P-C-space, 633

Q-covering, 19
c-set, 181

trt-dimensional, 612
ω-bounded, 217, 249, 379

ω-collectionwise Hausdorff, 253
ω-limit set, 301

ω1-Lindelöf, 229

ω1-compact, 27
d-Cantor manifold, 628

π-base, 167
π-character, 173

π-disjoint, 424
π-embedded, 39

π-map, 725

πZ -embedded, 39
σ-closure-preserving, 143

σ-hereditarily disconnected, 612
σ-space, 23, 727

σZn-set, 599
σZn-space, 599

τ -normal, 660
τ -resolvable, 51

[FSIN]-group, 361

[SIN]-group, 361
κ-metrizable, 646

κ-point, 171
c-compact, 397

eG-Cauchy, 415
g-first countable, 25

h-complete, 398
k-network, 23

k-semistratifiable, 25

k-space, 23
k′-space, 655

kω-space, 391, 438
kω-space, 30

m-C-spaces, 633
m-covering pair, 639

m-od, 286

m-system, 634

n-(co)meager, 608

n-comeager, 602

n-cycle, 681

n-dense, 599

n-determined Whitney map, 281

n-homogeneous, 338

n-homogeneous at a point, 338

n-meager, 599

n-mean, 606

n-sr-paracompact, 10

n-starcompact, 9

n + 1
2

-sr-paracompact, 10

n 1
2

-starcompact, 9

o-radial, 366

p-compact, 385

r-compact, 249

r-limit, 249

r-retral, 713

r2n+1-retral, 713

<λ-closed, 737

EM3, 147

CF ∗, 728

cs∗-network, 726

(a)-Dowker, 11

(equivariantly) universal, 425

(functionally) Katětov, 42

(modk)-network, 727

(proper) representation, 431

(strongly) collectionwise Hausdorff, 31

(strongly) countable-dimensional, 600

(unitarily) equivalent, 406

étale map, 371

strategy, 62

F -play, 62

G-play, 62

G1(A,B), 63

S1(A,B), 63

determined game, 62

dual games, 63

equivalent games, 63

perfect information strategy for ONE, 62

perfect information strategy for TWO, 62

play of the game, 62

undetermined game, 62

winning strategy for ONE, 62

winning strategy for TWO, 62

Čech–Stone remainder, 209

RH-like transfer, 212

rim-scattered, 698
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a universal space, 693

absolute Zn-compactum, 613

absolute (neighborhood) extensor, 691

absolute neighborhood uniform retract, 617
absolute star Lindelöfness, 11

absolute suspension, 263

absolutely countably compact, 11

absolutely resolvable, 54

absorbing, 602
additively algebraic, 705

adjacent, 686

admissible, 15

Alexandroff space, 18

algebraic, 705

algebraically compact, 394
algebraically countably compact, 394

algebraically homogeneous, 623, 643, 707

algebraically isomorphic, 379

algebraically pseudocompact, 394

almost balanced, 365

almost continuous, 269
almost convex, 617

almost disjoint refinement, 180

almost filament, 351

almost finite-dimensional, 614

almost has invariant vectors, 445

almost isomorphic, 400
almost metrizable, 644

almost periodic, 412, 451

almost resolvable, 53

almost weak Asplund, 548

amenable, 221, 411, 440
ample, 351

Anosov flow, 454, 478

anti-atom, 686

anti-proximinal, 551

antiproximinal with respect to ΓB30D·ΓB30D,
583

approach space, 377
arc, 698

arc-component preserving map, 272

arc-like, 311

Arens’ space, 24

Aronszajn line, 6

Asplund space, 428
associative, 329, 330, 654

atom, 686

atomic, 314

atriodic, 291

attainable approximation property (AAP),
549

balanced, 361

basic sets, 477

basically homogeneous, 724

basin of attraction, 301
bi-quotient, 726

bicommutative, 659

bidual, 406

Bishop–Phelps set, 548

Bohr topology, 405, 407
Bohr-homeomorphic, 398

boundary, 552

bounded, 18

bouquet of continua, 338

Brouwer homeomorphism, 605

C-space, 629

cardinal sequence, 115, 737
categorically compact, 397

center-stable, 454

center-unstable, 454

central, 656

CF, 728
chain recurrent set, 477

chainable, 291, 311

chaotic (strongly chaotic), 322

character, 408

characters, 408

Chebyshev set, 551
Chu, 407

Chu dual, 406

Chu quasi-dual group, 406

Chu reflexive, 407

CL-spaces, 18
cleavable over R, 4

cleavable over M, 3

cleavable over S, 3

close, 651

closure-preserving, 23, 143
co-filament, 351

co-filament continuum, 353

co-Namioka Property, 554

coabsorbing, 602

coarse, 651
coarse equivalent, 651

coarser, 685

cofinal, 222

cohomological dimension, 691

cohomologically, 613
cometrizable, 152

common model, 332

compact map, 24

compact open topology, 17

compact ordered space, 698
compact-countable, 23



744 INDEX

compact-covering, 726

compact-covering map, 24

compact-finite, 23
compact-valued, 47

compactly generated, 19

compactness deficiency, 629

compactum, 338

companion bodies, 551

compatible, 686
complement, 689

complete accumulation point, 225

complete invariance property, 309

completely separable, 179

composant Cx of X corresponding to the
point x, 314

concordant, 18

confluent, 306, 350

confluently graph-like, 350

confluently graph-representable, 350

conjoining, 15

conjugate quasi-uniformity, 685
consonant space, 18

constructible, 549

continuous flow, 451

continuum, 265, 305, 321, 338, 698

converges continuously, 15
convex metric compactum, 616

core, 296

corecompact, 18

cosmic, 622

cosmic space, 23

couniversal, 659
countable dimensional, 627

countable tightness, 31, 125, 591

countably 1-paracompact in X, 226

countably (functionally) Katětov, 42

countably compact, 249
covering dimension, 167, 621

covering tree, 245

cs*-network, 23

cs-network, 23

curves, 348
cut disk, 268

cut point, 338

decomposable, 291

defining sequence, 669
deformation, 327, 463

dendrite, 321

dendroid, 321

dentable, 549

descent map, 369
determined, 385

determined by a cover, 23

determining cover, 27

dimension ∆, 643
Dimensionsgrad, 623

discrete, 688

discrete fibration, 372

discrete flow, 451

discrete uniformity, 685

discretely Lindelöf, 228
discretely star-Lindelöf, 10

disjoint n-disks property, 697

dispersion character, 51

distal, 458

distortion, 443
divisible, 394

divisible by cozero sets, 4

divisible part of G, 394

dominated, 27

dominating cover, 27

doubly dense, 690
doubly point-symmetric quasi-uniformity, 689

Dowker space, 233

dual action, 431

dual group, 408

Dugundji, 623, 645
dyadic system, 172

Eberlein compact, 627

Eberlein compacta, 431
Eberlein compactification, 415

effective étale-descent, 374

Eilenberg–Mac Lane complex, 691

elementary algebraic, 705

end of the compactification, 338

equiconnected, 606
equicontinuous, 458

equinormal, 424

equivalent, 15

equivalent with respect to M, 325

essential, 633, 634
essential density, 387

essential order, 399

essentially dense, 387

essentially irreducible, 482

evaluation map, 15
eventually periodic, 324

eventually periodic of period n, 324

exceptional, 666

exotic group, 441

extension dimension, 692

extension dimension does not exceed [L],
660

extension operator, 653
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extent of X, 130
extraresolvable, 56

extremally disconnected, 112
extremely amenable, 437

filament, 351
filament local product structure, 356
fine, 221

finer, 685
finite (countable) in the class A, 332
finite degree, 659
finite graph, 338

finite local complexity, 464
finite sum theorem, 624
finitely-additive, 440
first countable, 125

fixed, 323
fixed point on compacta property, 437
fixed point on metric compacta property,

439
fixed-point property, 265

flow, 477
flow equivalent, 480
Fréchet, 24
Fréchet derivative of ϕ at x, 547
Fréchet differentiable at x ∈ X, 547

Fréchet spaces, 551
Fréchet–Urysohn, 24, 125
free rank, 393
free topological G-group, 427

functionally balanced, 361
functionally countable, 154

g-metrizable, 25
g-second countable, 25

Gâteaux derivative of ϕ at x ∈ X, 547
Gâteaux differentiability space, 547
Gâteaux differentiable at x ∈ X, 547
gap, 202

generalized ordered, 162
generalized ordered space, 3
generic monothetic subgroups, 439
genus of the Cantor set X, 669
genus of the Cantor set X with respect to

the subset A, 669
geometrized Markov partition, 484
goldspectral, 664
good, 185, 218, 252
Gromov–Hausdorff distance, 615

group Mal’tsev operation, 712

hairy point, 343
harmonic, 19
Hawaiian earring, 338

height, 115, 737

hemicompact, 409, 438

hereditarily h-complete, 398

hereditarily closure-preserving, 23, 727
hereditarily decomposable, 291

hereditarily equivalent, 305

hereditarily indecomposable, 305

hereditarily indecomposible, 628

hereditarily irresolvable, 51
hereditarily non-P , 636

hereditarily perfectly κ-normal, 646

hereditarily strongly infinite-dimensional, shortly
h.s.i.d.,, 629

hereditarily unicoherent, 291

Higson compactification, 651

Higson corona, 651
Hilbert ring, 664

homeomorphic, 379

homeomorphism-lifting property, 660

homogeneous, 337, 347, 623

homogeneous continuum, 347

homogeneous with respect to M, 325
homogeneous with respect to the class M

of maps, 307

homologically, 613

homotopically fixed, 327

homotopically steady, 327

homotopy dense, 601

Hušek number, 229
hull-kernel topology, 663

hyperbolic structure, 477

hyperlinear, 445

hyperspace, 344

hyperspace 2X , 328

hyperspace functor, 658
hyperspaces, 281

image-realcompact, 722

indecomposable, 305

indecomposble, 291

indestructibility, 444
indiscrete uniformity, 685

induced mapping, 288

inequivalent embeddings, 669

infinite-dimensional Cantor manifold, 628

inner-closed A-space, 29
internal, 329

interpolation subset, 405

intersection compact open, 664

invariant, 301

inverse limit, 291

inversely compact, 723
invertible, 262
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irrational flow on the torus, 451

irresolvable, 51

Isbell topology, 17

isodyne, 55

isolated with respect to, 325

iterations, 373

Jacobson ring, 664

Jacobson space, 664

Jacobson subspace, 664

jacspectral space, 664

Jakovlev, 187

jointly continuous, 15, 553

Jones function, 328

Kazhdan’s property (T ), 445

kernel of steadiness, 327

Kirchberg’s property, 446

knot, 732

Kuratowski notation, 660

Kurepa family, 222

l-equivalent, 579

Lévy family., 440

Lévy group, 440

Lašnev spaces, 25

lamplighter group, 414

large inductive compactness degree, 630

large inductive dimension, 621

large transfinite inductive dimension, 639

left uniformly discrete, 363

level, 115

lf-C-spaces, 633

Lindelöf, 225
Lindelöf number of X, 130

Lindelöf, 24

linearly equivalent, 461

linearly Lindelöf, 225

linearly orderable, 162

linearly ordered topological space, 3

Lipschitz, 653

local genus of the Cantor set X at the point
x, 669

local homeomorphism, 371

locally closed subsets, 370

locally equiconnected, 606

locally tame, 732

locally uniform, 163

locally wild, 732

Lorenz-like template, 480

lower uniformly discrete, 363
Lyapunov function, 483

Lyapunov graph, 483

M-equivalent, 579

mad, 126

Mal’tsev, 711
Mal’tsev algebra, 711

Mal’tsev operation, 711

Markov, 296

maximal, 51

maximal G-compactification, 422

maximal almost disjoint (MAD), 179
maximally resolvable, 51

mean, 283, 330, 654

meta-Lindelöf, 27

metacompact, 591

metric attractor, 301
MI-space, 51

micro-local connectedness, 356

micro-locally connected at, 356

minimal, 382, 395, 656

minimal set, 451

minimally almost periodic, 437
monotone, 296

monotone compactness, 724

monotonically compact, 4

monotonically Lindelöf, 723

monotonically Lindelöf, 4
Moore groups, 414

Morse–Smale flow, 478

multi-map, 161

multifunction, 161

multivalued mapping, 47

Namioka Property, 553

near homeomorphism, 325

neat, 325

neighbours, 686
net, 23

network, 23, 727

Nil manifolds, 454

Non-Archimedean, 424

non-Archimedean, 714
non-Archimedean spaces, 714

non-expansive, 377

non-metric continuum, 305

non-wandering, 324

non-wandering-eventually periodic property,
324

non-wandering-periodic property, 324
nonsingular flow, 478

nonsymmetric, 685

normal, 658

nowhere dense, 301

nowhere density number, 56
null comb, 343
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of the first Baire class, 654

open, 659

open (G), 132
open selection, 332

open-bicommutative, 659

open-hereditarily irresolvable, 51

operator image, 611

orbit, 337

order of the space X at p, 338
orderable, 162

ordinal number Ord M , 637

Orsatti group, 386

oscillation stable, 443

outer base, 145
oval, 210

P-ideal, 227

parametrises a T -universal for X, 673

parametrises a continuous function univer-
sal for X via the function F , 673

partial inversement, 723

partially hyperbolic, 456

partition, 639

perfect, 371

perfectly κ-normal, 646
perfectly meagre, 548

periodic (of period n), 323

periodic-recurrent property, 324

permutation map, 297

Pervin quasi-uniformity, 686
piecewise rectangular, 626

point-countable, 23

Point-finite, 23

point-regular, 726

pointwise periodic, 666

pointwise smooth, 326
Polish, 552, 716

Polish space, 168

Pontryagin sphere, 349

Pontryagin–van Kampen duality, 408

positive, 480
positively asymptotic, 457

pre-compact, 379

premetric of order 2, 151

premetric space, 376

preorder, 685

preserves intersections, 658
preserves preimages, 658

pretopology, 375

probability measure functor, 658

proper, 651

proper., 15
property D, 251

Property of Kelley, 298
property of Kelley at a point, 328
property (a), 11
proximal, 458, 463
proximally discrete, 686
proximally nondiscrete, 686
pseudo-base, 728
pseudo-contractible, 309
pseudotopology, 375

Q-point, 328
quasi-(modk)-network, 727
quasi-base, 143, 729
quasi-finite, 694
quasi-locally compact spaces, 18
quasi-minimal set, 666
quasi-perfectly normal, 646

quasi-proximally maximal, 688
quasi-proximity, 686
quasi-proximity class of, 686
quasi-representations, 406
quasi-uniformity, 685
quasi-uniformity generated by the preorder,

685
quotient functor, 659

Radon–Nikodým, 431
Radon–Nikodým compact, 431
realized, 483
recurrent, 324
reduced, 394
reduced part of G, 394
refines, 180
regionally proximal, 458
regular, 666
relatively o-radial in, 366
relatively compact, 18
relatively dense, 438
remainder of a compactification, 338
residual, 301
residual subset, 547
resolvable, 51, 688
respects, 350
retral, 712
RH transfer, 210
ribbon equivalent, 481
right thin, 363
right uniform structure, 421, 440
right uniformly continuous, 421
rigid (strongly rigid), 322
rigidly embedded, 669
rim-P , 698
rim-compact, 630
rim-countable, 698
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rim-finite, 698

rim-metrizable, 698

rim-weight, 701
Rothberger, 202

s-map, 24
satisfy Chu duality, 407

scattered, 115

screenable, 130

selectible, 331

selection, 161
self-bohrifying, 415

semi-biorthogonal system, 550

semi-locally bounded spaces, 18

semi-smooth, 326

semi-stratifiable, 25, 727
semilattice operations, 654

semispectral, 664

separately continuous, 553

sequence-covering, 725

sequential, 23, 125
sequential decreasing Whitney property, 288

sequential fan, 24

sequential order, 125

sequentially closed, 125

sequentially compact, 249

sequentially complete, 396
sequentially connected, 727

sequentially linearly Lindelöf, 227

set-valued mapping, 161

sharp, 681

shift, 461
shore set, 334

SI-space, 51

Sidon, 415

Sierpiński’s carpet, 349

Sierpiǹski space, 18
simply connected, 273

SIN group, 397

slippery, 669

Smale flow, 478

small diagonal, 112
small inductive compactness degree, 630

small inductive dimension, 167, 622

Smirnov’s compacta, 628

Smith normal form, 482

smooth, 326
snake-like, 623

Sorgenfrey well-orderable, 165

space of leaves classes, 665

space of subuniform ultrafilters, 209

spaces with property C, 18
span, 292

spectral, 664

spectral spaces, 663
spectralifiable, 664

spectralification, 664

spectrum, 412
splendid, 185, 218

splitting, 15
splitting family, 173

splitting number, 173

sr-paracompact, 10
SS-family, 250

stable and unstable manifolds, 477

stable foliation, 454
star-countable, 23

star-Lindelöf, 10
star-Lindelöf number, 10

starcompact, 9

stationarily θ-collectionwise Hausdorff, 243
stick, 214

stratifiable, 25, 144
string, 732

strong Σ-space, 727

strong Σ∗-space, 728
strong partially hyperbolic, 456

strong Q-sequence, 210

strongly ~C-universal, 603

strongly C-universal, 601
strongly ω-bounded, 217

strongly dense, 664

strongly extraresolvable, 56
strongly functionally balanced, 361

strongly hereditarily (hereditarily) non-1 dim-
space, 637

strongly hereditarily non-P , 636
strongly homogeneously embedded, 669

strongly infinite dimensional, 629
strongly irresolvable, 51

strongly left increasing, 362

strongly partially hyperbolic, 456
strongly regular, 608

strongly resolvable, 54

strongly universal, 602
strongly zero-dimensional, 167

structurally stable, 477
structure matrix, 482

subfunctor, 659

submaximal, 51
suborderable, 162

subparacompact, 130

subshift, 461
successor closed, 737

superatomic, 122
support functional, 549
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support point, 549

supportless, 549, 551

Suslinian, 699
Suslinian number, 701

symmetric, 25, 656, 685

symmetrizable, 25

t-equivalent, 579
T-point, 250

T-set, 250

Takahashi quasi dual, 409

Takahashi quasi-dual group, 409

tame, 669, 732
tame knot, 732

tame string, 732

Tanaka condition, 29

Tanaka space, 30

tendril class, 264

tent core, 297
Tent maps, 296

thin, 264

thin-tall, 115

tile, 461

tiling, 461
tiling space, 461

topological attractor, 301

topological convergence class, 15

topological dynamical system, 451

topological homogeneity, 347
topological modification of the continuous

convergence, 16

topologically conjugate, 299, 452, 480

topologically equivalent, 477, 480

topologically isomorphic, 379

topologically mixing, 463

topologically well-ordered, 165
torsion, 394

torsion-free, 394

total density, 387

totally bounded, 379, 685

totally dense, 387
totally disconnected, 167

totally MAD, 182

totally minimal, 397

tower, 250

tranches, 270

transitive, 685
translation-finite, 417

transversal, 401

transversality condition, 477

tree, 616

tree-like, 291
triod, 291

Triquotient maps, 369
trivial matrices, 481

twist matrices, 481
twist-wise flow equivalence, 481
twist-wise flow equivalent, 481
type λ, 269

ultrahomogeneous, 439

ultrametric, 652
unconditionally closed, 705
unicoherent, 291
uniform, 681

uniform topology, 439
uniformity, 685
uniformly functionally complete, 365
uniformly locally finite, 38
unimodal, 296

unique hyperspace, 287
uniquely arcwise connected, 272
unitary mapping, 409
universal, 439, 480, 627, 659

universal element, 333
universal minimal flow, 442
unknot, 732
unstable foliation, 454

unstring, 732
upper semi-continuous, 298
upper semicontinuous, 47
Urysohn identity, 622
Urysohn inequality, 625

Urysohn space, 253
Urysohn universal metric space, 439

V-group, 422
van der Waerden, 415

Vietoris hyperspace, 161
Vietoris topology, 161

w-m-C-space, 634
wD, 218
weak, 581

weak C-space, 634
weak approximation by points (WAP), 145
weak Asplund space, 547
weak base, 25

weak extent, 10
weak P-point, 722
weak P-space, 722
weak selection, 162
weak Sidon, 415

weak topology, 23
weakly G-normal, 424
weakly almost periodic, 417
weakly Bohr-homeomorphic, 399
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weakly Cauchy, 413
weakly chainable, 306
weakly chainably connected, 270
weakly collectionwise Hausdorff, 243
weakly first-countable, 25
weakly infinite-dimensional, 629
weakly isomorphic, 399
weakly normal (almost normal), 658
weakly orderable, 162
weakly paracompact, 591
weakly perfect, 5
weakly quasi-first-countable, 25
weakly separated, 155
weakly smooth, 326
weakly supported point, 550
weight, 660
Whitney map, 281
widely connected, 262
width, 115
wild, 669, 732
wild knot, 732

wild string, 732
wild subset, 732
with property U, 365

Zariski topology, 663
Zeeman number, 483
zero-dimensional, 167, 659
zero-dimensional closed set aposyndetic, 288
zigzags, 374
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