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From 1939 to 1945 the Imperial Japanese Navy made heavy use of a series of
additive cipher systems generically named JN-25 by the cryptanalytical unit of
the United States Navy. Each of these consisted of a code-book assigning a five-
digit ‘group’, always a multiple of three, to each word or phrase in a very long list
and encrypting these by ‘false’ (non-carrying) addition of a five-digit group (‘the
additive’) taken from a long table of essentially random such. The author’s earlier
paper explains how this use of multiples of three provided a route for relatively
rapid recovery of the additive and thus the decryption of intercepts. Another
quite different and rather surprising source of insecurity inherent in this use of
multiples of three was noted only in 1943 and became the basis of a process code-
named ‘Mamba’ needed in 1944. This note sets out a further consequence of the
statistics underlying Mamba: the use of multiples of three in JN-25 codebooks
betrays itself very quickly.
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This paper deals with codebooks assigning to each word or phrase in a (long) list a
5-digit ‘group’ which is a multiple of three or scannable in the jargon of WW2. Here the
groups are allowed to have initial 0s: thus 12345 and 00078 are groups. Being a multiple of
three (equivalently, being divisible by three) means that the corresponding number, 12345
or 78 in these examples, is a multiple by three or, equivalently, the sum of the five digits,
15 in both examples, is a multiple of three. The characteristic χ of such a group is defined
to be the reduction modulo 10 of the sum of the five digits: thus χ(12345) = 5.

One might well guess that of the 33334 scannable groups from 00000 to 99999 about
3333 have characteristic 0, about another 3333 have characteristic 1, etc. This is far from
being the case. A simple electronic calculation checks that for 0 ≤ i ≤ 9 the number m(i)
of scannable groups with characteristic i is as set out below:

m(0) = 3247 m(1) = 5875 m(2) = 1780 m(3) = 1780 m(4) = 5875

m(5) = 3247 m(6) = 925 m(7) = 4840 m(8) = 4840 m(9) = 925.

These Mamba numbers, were known to the American naval cryptanalysis unit Op-
20-G in 1943 but the calculation must have been quite tedious. Working out that it was
worth calculating at all was a major achievement in cryptanalysis.

There is a ‘false’ or ‘non-carrying’ addition process defined for 5-digit groups: one
just adds the pairs of corresponding digits and reduces these modulo 10. Thus 12345 +
00078 = 12313. This example shows that the sum of two scannable groups may well not be
scannable. There is a corresponding false subtraction: for example 12345−00078 = 12377.
The useful identities χ(a+ b) = χ(a)+χ(b) and χ(a− b) = χ(a)−χ(b) are valid for 5-digit
groups a and b provided the addition and subtraction involved are ‘false’ in this sense.
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When a depth of two with both GATs identical (a hit) is detected no information is
obtained about whether the groups in the codebook are all scannable. Such occurrences
have to be disregarded for present purposes.

There are 33, 334× 33, 333 pairs a, b of scannable 5-digit groups with a 6= b. For each
γ with 0 ≤ γ ≤ 9 one may may use the values of the above Mamba function m to calculate
the number of these pairs of scannable groups with χ(a) − χ(b) = γ. If q(γ) denotes the
proportion of the 33, 334 × 33, 333 pairs a, b with χ(a) − χ(b) = γ, one works out that:
q(0) = 13.5%, q(1) = 9.1%, q(2) = 7.5%, q(3) = 12.5%, q(4) = 10.9%, q(5) = 7.0%,
q(6) = 10.9%, q(7) = 12.5%, q(8) = 7.5%, q(9) = 9.1%.

Thus 59.9% of the 33, 334 × 33, 333 ordered pairs of different scannable groups have
the characteristic of their difference 0, 3, 4, 6 or 7 and 40.1% of these pairs have the
characteristic of their difference 1, 2, 5, 8 or 9.

Now suppose that some secretive agency is generating randomly 5-digit groups a, b
and x and transmitting by radio the pairs of false sums a+x and b+x. One would expect
that calculation of χ(a + x)−χ(b + x) = χ(a)−χ(b) would yield 0, 3, 4, 6 or 7 about 50%
of the time. If instead that agency is generating randomly scannable 5-digit groups a and
b and arbitrary groups x and then transmitting the pairs a + x and b + x, one would now
expect that such a calculation would yield 0, 3, 4, 6 or 7 about 60% of the time.

Let us return to the decryption of JN-25 ciphers. The codebook was supplemented
by a long ‘table of additives’, that is a table of randomly generated 5-digit groups. The
transmitting clerk would choose a starting place in this table, and encode and/or encrypt
information about which starting point had been chosen. This would be transmitted as
part of the message and would be called the indicator(s). The message would be written
out using every fourth line on a form with both horizontal and vertical lines. The codebook
would then be used to write the appropriate code groups directly below the corresponding
words. Below these would be written consecutive groups taken from the table of additives.
Each entry in the fourth line would consist of the false sum of the code group and the
additive group directly above. The groups in this fourth line would be transmitted by radio
and so were called GATs (groups as transmitted). The intended recipient was supposed
to interpret the indicators and then reverse this process.

The codebooks would be changed after some months with the additive table usually
being changed more often. In 1942 Op-20-G found it necessary to introduce a standard
reference system for these additive ciphers. For example JN-25B8 was the JN-25 system
with code book B and additive table 8 and was in use in the leadup to the Battle of
Midway.

When a change was made to a new code book and a new table of additives there
would be no total guarantee that the new code groups would all be scannable. There
was always the risk that the Japanese communications security people might have worked
out that this practice was insecure. But suppose that Op-20-G had broken the indicator
system and could thus put intercepted messages ‘in depth’, that is written out horizontally
on paper divided into rectangles so that GATs obtained from the same additive were in
columns. This was generally the case in 1942 and much of 1943. After about 200 depths

of two, that is pairs of GATs y, z calculated from the same additive, had been detected,
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χ(y) − χ(z) could be calculated for each pair. If the values 0, 3, 4, 6 or 7 had occurred as
this difference for about 60% of cases one could infer that the new JN-25 codebook was
using only scannable groups and so the special decrypting techniques could be used. If
these values had occurred for about 50% of the pairs one would know that decryption was
likely to be much harder. And if these values had occurred for about 40% of the pairs a
radically new cipher system would have been detected.

More realistically, the first 100 depths of two might include 65 that yielded 0, 3, 4, 6
or 7. This would confirm that only scannable groups were in use. If the first 100 depths
included only 55 it would be necessary to obtain and examine more data.

It is not particularly obvious how this method should be modified to handle, for
example, 25 depths of eight in the new system rather than 200 depths of two. Yet such
could arise if eight operators encrypted their first messages in the new system using the
top left entry of the middle page in the table of additives as starting point.

The following ABC method is in all probability a minor piece of WW2 cryptanalysis
that was overlooked at the time. The method for depth two is more likely to have been im-
plemented: this author does not know. However he can certify that hunting for decryption
methods is a very long process.

The mathematical theory underlying it is somewhat technical and does not need to be
explained here. Instead simple computer calculations of the relevant means and standard
deviations justify it retrospectively. The cryptanalyst working with WW2 technology
would not have been able to run vast numbers of experimental calculations and instead
would have had to work out the mathematical theory of this situation directly.

Suppose given a depth of eight 5-digit groups with characteristics χ1, χ2, χ3, χ4, χ5,
χ6, χ7, χ8 respectively. One can evaluate successively:

A = cos 3πχ1/5 + cos 3πχ2/5 + . . . + cos 3πχ7/5 + cos 3πχ8/5;

B = sin 3πχ1/5 + sin 3πχ2/5 + . . . + sin 3πχ7/5 + sin 3πχ8/5;

C =
√

A2 + B2.

From the viewpoint of WW2 technology, this needs a table of square and square root
functions and the numerical values of sin 0◦ = 0, cos 0◦ = 1, cos 36◦, sin 36◦, cos 72◦, etc.

From a mathematical viewpoint it is more appropriate to work with the complex
numbers A + iB which are sums of tenth roots of unity in the complex plane. Such
sums are obtained in the theory of random walks and are of significance in the theory of
polymers.

As we are considering not a single depth of eight but a batch of 25 depths the average,
C̄, of the 25 values of this C should be taken.

From the modern perspective it is easiest to program a computer to work out the
mean of C̄ when 10,000 batches of 25 depths of eight 5-digit groups are randomly chosen
and their characteristics calculated. This is effectively the same as choosing the 1-digit
numbers χ1, χ2, . . ., χ8 randomly. One discovers that the mean (or expected) value of C̄
is about 2.53. The standard deviation is about 0.26.

Next the calculations are repeated for 10,000 batches of 25 depths of eight scannable
5-digit groups g1, g2, . . ., g8 and one randomly selected group x, not necessarily scannable.
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Here one sets χ1 = χ(g1 + x) = χ(g1) + χ(x), etc. Elementary formulae may be used
to show that C does not depend upon x. As before, C̄ denotes the average of C taken
over the 25 depths in a batch. It turns out that C̄ has a mean value of about 3.84 with a
standard deviation of about 0.30.

The averaging of C over a sample of 25 batches should ensure that the distribution of
C̄ is near enough to normal.

We return now to the task of examining 25 depths of eight intercepted GATs. For
each depth A, B and C are calculated as above and the mean C̄ of the 25 values of C
determined.

A fairly reliable rule is that C̄ < 3.15 when the book groups being used are randomly
selected and C̄ > 3.15 when the book groups are all scannable but otherwise randomly
chosen. A realistic strategy is to note that usually but not always either C̄ > 3.4 or
C̄ < 2.9. In the former circumstance one may (almost) deduce that the book groups are
all scannable and in the latter the book groups are randomly allocated.

If it turns out that 2.9 ≤ C̄ ≤ 3.4 it would be wise to obtain further data before
making any conclusion. If instead of considering 25 batches of depths of eight one works
with 50 such batches, the standard deviations of .218 and .296 are divided by

√

50/25 and
so the calculations usually give correct information about the use or otherwise of scannable
groups only in the new code-book.

The method used for handling depths of eight can be modified easily enough to handle
other depths from about six upwards. Thus a batch of 15 depths of ten is usually enough
to determine whether a new codebook uses only multiples of three. A mixture of various
different depths is more complicated.

Regardless of whether this method was known at the time, the point is quite clear:
the use of only scannable groups in a codebook betrays itself very quickly indeed.
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The Maple program used to check assertions made in this paper is attached. Note that
the seed for the random number generator was taken to be 2468: you may wish to change
this. Note that it is set up for P = 40 batches of Q = 25 depths of 8: these numbers may
be changed painlessly if required.
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