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Abstract

We investigate the moments of 3-step and 4-step uniform random walk in
the plane. In particular, we further analyse a formula conjectured in [BNSW09]
expressing 4-step moments in terms of 3-step moments. Diverse related results
including hypergeometric and elliptic closed forms for W4(±1) are given and
two new conjectures are recorded.

1 Introduction and Preliminaries

Continuing research commenced in [BNSW09], for complex s, we consider the n-
dimensional integral

Wn(s) :=

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx (1)

which occurs in the theory of uniform random walk integrals in the plane, where at
each step a unit-step is taken in a random direction. As such, the integral (1) ex-
presses the s-th moment of the distance to the origin after n steps. The study of such
walks largely originated with Pearson more than a century ago [Pea1905, Pea1905b].
In his honor we call such integrals ramble integrals, as he posed such questions for a
walker or rambler. As discussed in [BNSW09], and illustrated further herein, such
ramble integrals are approachable by a mixture of analytic, combinatoric, algebraic
and probabilistic methods. They provide interesting numeric and symbolic compu-
tation challenges. Indeed, nearly all of our results were discovered experimentally.
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For n > 3, the integral (1) is well-defined and analytic for Re s > −2, and
admits an interesting analytic continuation to the complex plane with poles at certain
negative integers, see [BNSW09]. We shall also write Wn for these continuations. In
Figure 1 we show the continuations of W3 and W4 on the negative real axis. Observe
the poles of W3 at negative even integers (but note that neither function has zeroes
at negative odd integers even though the graphs shown in Figure 1 may suggest
otherwise).

-6 -4 -2 2

-3

-2

-1

1

2

3

4

(a) W3

-6 -4 -2 2

-3

-2

-1

1

2

3

4
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Figure 1: W3, W4 analytically continued to the real line.

It is easy to determine that W1(s) = 1, and W2(s) =
(
s
s/2

)
. Furthermore, it is

proven in [BNSW09] that, for k a nonnegative integer, in terms of the generalized
hypergeometric function, we have

W3(k) = Re 3F2

(
1
2
,−k

2
,−k

2

1, 1

∣∣∣∣4) . (2)

From here, the following expressions for W3(1) can be established:

W3(1) =
4
√

3

3

(
3F2

(
−1

2
,−1

2
,−1

2

1, 1

∣∣∣∣14
)
− 1

π

)
+

√
3

24
3F2

(
1
2
, 1
2
, 1
2

2, 2

∣∣∣∣14
)

(3)

= 2
√

3
K2 (k3)

π2
+
√

3
1

K2 (k3)
(4)

=
3

16

21/3

π4
Γ6

(
1

3

)
+

27

4

22/3

π4
Γ6

(
2

3

)
(5)

=
1

π2

(
21/3

4
β2

(
1

3

)
+ 22/3β2

(
2

3

))
, (6)
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where K is the complete elliptic integral of the first kind, k3 :=
√
3−1
2
√
2

is the third

singular value as in [BB87], and β(x) := B(x, x) is a central Beta-function value.
More simply but similarly,

W3(−1) = 2
√

3
K2 (k3)

π2
=

3

16

21/3

π4
Γ6

(
1

3

)
=

2
1
3

4π2
β2

(
1

3

)
, (7)

and, using the two-term recurrence for W3(n) given in [BNSW09], it follows that
similar expressions can be given for W3 evaluated at odd integers. It is one of the
goals of this paper to give similar evaluations for a 4-step walk.

For s an even positive integer, the moments Wn(s) take explicit integer values.
In fact, for integers k > 0,

Wn(2k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

. (8)

Based on the combinatorial properties of this evaluation, the following conjecture
was made in [BNSW09]. Note that the case n = 1 is easily resolved.

Conjecture 1. For positive integers n and complex s,

W2n(s)
?[1]
=
∑
j>0

(
s/2

j

)2

W2n−1(s− 2j). (9)

We investigate this conjecture in some detail in Section 4 below. For n = 2,
in conjunction with (3) this leads to a very efficient computation of W4 at integers
yielding roughly a digit per term.

2 Bessel integral representations

We start with the result of Kluyver [Klu1906], amplified in [Watson1932, §31.48] and
exploited in [BNSW09], to the effect that the probability that an n-step walk ends
up within a disc of radius α is

Pn(α) = α

∫ ∞
0

J1(αx)Jn0 (x) dx. (10)

From this, David Broadhurst [Bro09] obtains

Wn(s) = 2s+1−k Γ(1 + s
2
)

Γ(k − s
2
)

∫ ∞
0

x2k−s−1
(
−1

x

d

dx

)k
Jn0 (x) dx (11)
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valid as long as 2k > s > −n
2
. Here and below Jν(z) denotes the Bessel function of

the first kind.

Example 1 (Wn(±1)). In particular, from (11), for n > 2, we can write:

Wn(−1) =

∫ ∞
0

Jn0 (x) dx, Wn(1) = n

∫ ∞
0

J1(x)J0(x)n−1
dx

x
. (12)

♦

Equation (11) enabled Broadhurst to verify Conjecture 1 for n = 2, 3, 4, 5 and
odd positive s < 50 to a precision of 50 digits. A different proof of (11) is outlined
in Remark 1 below. In particular, for 0 < s < n/2, we have

Wn(−s) = 21−sΓ(1− s/2)

Γ(s/2)

∫ ∞
0

xs−1Jn0 (x) dx, (13)

so that Wn(−s) essentially is the Mellin transform of (the analytic continuation of)
the nth power of the Bessel function J0.

Example 2. Using (13), the evaluations W1(s) = 1 and W2(s) =
(
s
s/2

)
translate into∫ ∞

0

xs−1J0(x) dx = 2s−1
Γ(s/2)

Γ(1− s/2)
,∫ ∞

0

xs−1J2
0 (x) dx =

1

2Γ(1/2)

Γ(s/2)Γ(1/2− s/2)

Γ(1− s/2)2

in the region where the left-hand side converges.
The Mellin transforms of J3

0 and J4
0 in terms of Meijer G-functions appear in the

proofs of Theorems 2 and 3. ♦

Remark 1 (Ramanujan’s master theorem). Here, we demonstrate how Ramanujan’s
“master theorem” may be applied to find the Bessel integral representation (11) in a
natural way; this and more applications of Ramanujan’s master theorem will appear
in [RMT10]. For an alternative proof see [Bro09].

Ramanujan’s master theorem [Har78] states that, under certain conditions on the
analytic function ϕ,∫ ∞

0

xν−1

(
∞∑
k=0

(−1)k

k!
ϕ(k)xk

)
= Γ(ν)ϕ(−ν). (14)
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Based on the evaluation (8), we have, as noted (but not used) in [BNSW09], the
generating function

∑
k>0

Wn(2k)
(−x)k

(k!)2
=

(∑
k>0

(−x)k

(k!)2

)n

= J0(2
√
x)n (15)

for the even moments. Applying Ramanujan’s master theorem (14) to ϕ(k) :=
Wn(2k)/k!, we find

Γ(ν)ϕ(−ν) =

∫ ∞
0

xν−1Jn0 (2
√
x) dx. (16)

Upon a change of variables and setting s = 2ν,

Wn(−s) = 21−sΓ(1− s/2)

Γ(s/2)

∫ ∞
0

xs−1Jn0 (x) dx. (17)

This is the case k = 0 of (11). The general case follows from the general fact that if
F (s) is the Mellin transform of f(x) then (s− 2)(s− 4) · · · (s− 2k)F (s− 2k) is the

Mellin transform of
(
− 1
x

d
dx

)k
f(x). ♦

2.1 Pole structure

A very useful consequence of equation (13) is the following proposition.

Proposition 1 (Poles). The structure of the poles of Wn is as follows:

(a) (Reflection) For n = 3, we have explicitly for k = 0, 1, 2, . . . that

Res(−2k−2)(W3) =
2

π
√

3

W3(2k)

32k
> 0,

and the corresponding poles are simple.

(b) For each integer n > 5, the function Wn(s) has a simple pole at −2k − 2 for
integers 0 6 k < (n− 1)/4 with residue given by

Res(−2k−2)(Wn) =
(−1)k

22k(k!)2

∫ ∞
0

x2k+1Jn0 (x) dx. (18)

(c) Moreover, for odd n > 5, all poles of Wn(s) are simple as soon as the first
(n− 1)/2 are.
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In fact, we believe that for odd n, all poles of Wn(s) are simple as stated in
Conjecture 2. For individual n this may be verified as in Example 3.

Proof. (a) For n = 3 it was shown in [BNSW09] that Res−2(W3) = 2/(
√

3π). This
also follows from (30) of Corollary 1. We remark that from [Watson1932, (4)
p. 412] this is also the value of the conditional integral

∫∞
0
xJ3

0 (x) dx in accor-
dance with (18). Letting r3(k) := Res(−2k)(Wn), the explicit residue equation
is

r3 (k) =
(10 k2 − 30 k + 23) r3(k − 1)− (k − 2)2r3(k − 2)

9 (k − 1)2
,

which has the asserted solution, when compared to the recursion for W3(s):

(s+ 4)2W3(s+ 4)− 2(5s2 + 30s+ 46)W3(s+ 2) + 9(s+ 2)2W3(s) = 0. (19)

We give another derivation in Example 8 in Section 3.

(b) For n > 5 we note that the integral in (18) is absolutely convergent since |J0(x)| 6
1 on the real axis and J0(x) ≈

√
2/(πx) cos(x−π/4) (see [AS72, (9.2.1)]). Since

lim
s→2k

(s− 2k)Γ(1− s/2) = 2
(−1)k

(k − 1)!

the residue is as claimed.

(c) As shown in [BNSW09] Wn, for odd n, satisfies a recursion of the form

(−1)λ (n!!)2
λ−1∏
j=1

(s+ 2j)2 Wn(s)+c1(s)Wn(s+2)+· · ·+(s+ 2λ)n−1Wn(s+2λ) = 0,

with polynomial coefficients of degree n− 1 where λ := (n+ 1)/2. From this, on
multiplying by (s+2k)(s+2k−2) · · · (s−2k+2λ) one may derive a corresponding
recursion for Res(−2k)(Wn) for k = 1, 2, . . .. Inductively, this lets us establish that
the poles are simple. The argument breaks down if one of the initial values is
infinite as it is when 4|n.

Example 3 (Poles of W5). We illustrate Proposition 1 in the case n = 5. In
particular, we demonstrate how to show that all poles are indeed simple. To this
end, we start with the recursion:

(s+ 6)4W5(s+ 6)− (35(s+ 5)4 + 42(s+ 5)2 + 3)W5(s+ 4)

+ (s+ 4)2(259(s+ 4)2 + 104)W5(s+ 2) = 225(s+ 4)2(s+ 2)2W5(s).
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From here,

lim
s→−2

(s+ 2)2W5(s) =
4

225
(285W5(0)− 201W5(2) + 16W5(4)) = 0

which shows that the first pole is indeed simple as is also guaranteed by Proposition
1b. Similarly,

lim
s→−4

(s+ 4)2W5(s) = − 4

225
(5W5(0)−W5(2)) = 0

showing that the second pole is simple as well. It follows from Proposition 1c that
all poles of W5 are simple. More specifically, let r5(k) := Res(−2k)(W5). With initial
values r5(0) = 0, r5(1) and r5(2), we derive that

r5(k + 3) =
k4r5(k)− (5 + 28 k + 63 k2 + 70 k3 + 35 k4) r5(k + 1)

225(k + 1)2(k + 2)2

+
(285 + 518 k + 259 k2) r5(k + 2)

225(k + 2)2
.

Moreover, in light of Example 5 the approximations r5(1) ≈ 0.329933801060064059
as well as r5(2) ≈ 0.00661673 may be obtained. ♦

Example 4 (Poles of W4). Let r4(k) := lims→−2k(s+ 2k)2W4(s), then the recursion
for W4(s)

(s+ 4)3W4(s+ 4)− 4(s+ 3)(5s2 + 30s+ 48)W4(s+ 2) + 64(s+ 2)3W4(s) = 0

gives us

r4(k + 2) =
1

32

(2k + 1)(5k2 + 5k + 2)

(k + 1)3
r4(k + 1)− 1

64

k3

(k + 1)3
r4(k).

We also compute that

3

2π2
= r4(1) = lim

s→−2
(s+ 2)2W4(s) =

3 + 4W ′
4(0)−W ′

4(2)

8
.

The first equality was recorded in [BNSW09], and is obtainable from (31). Further,
L’Hôpital’s rule shows that the residue of the double pole of W4 at s = −2 is

lim
s→−2

d

ds
((s+ 2)2W4(s)) =

9 + 18W ′
4(0)− 3W ′

4(2) + 4W ′′
4 (0)−W ′′

4 (2)

16
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with a numerical value of 0.316037 . . . which we were able to identify as 9
2π2 log(2).

Similarly, the second residue is found to be 9
128π2 (4 log(2)− 1) with similar formulas

for the other residues.
We finally record a remarkable identity related to the pole of W4 at −2 that was

established in [Watson1932, (10) p. 415]. It is∫ ∞
0

J4
ν (x)x1−2ν dx =

1

2π

Γ(2ν)Γ(ν)

Γ(3ν)Γ(ν + 1/2)
(20)

for Re ν > 0. Hence
∫∞
0
J4
ν (x)x1−2ν dx ≈ 3/ν

4π3/2 as ν → 0. ♦

Example 5 (Derivatives of Wn). We may reverse the process of obtaining the
residues to determine auxiliary derivative information.
n = 3. Using (19) and L’Hôpital’s rule, we obtain

Res−2(W3) =
8 + 12W ′

3(0)− 4W ′
3(2)

9
. (21)

Differentiating the double integral for W3(s) under the integral sign, we have

W ′
3(0) =

1

2

∫ 1

0

∫ 1

0

log(4 sin(πy) cos(2πx) + 3− 2 cos(2πy)) dx dy.

Then, using
∫ 1

0
log(a+b cos(2πx)) dx = log(1

2
(a+
√
a2 − b2)) for a > b > 0 we deduce

W ′
3(0) =

∫ 5/6

1/6

log(2 sin(πy)) dy =
1

π
Cl
(π

3

)
, (22)

where Cl denotes the Clausen function. Knowing as we do that the residue is 2√
3π

,

we may obtain W ′
3(2) = 2 + 3

π
Cl(π

3
)− 3

√
3

2π
from (21).

n = 4. In like fashion,

W ′
4(0) =

3

8π2

∫ π

0

∫ π

0

log (3 + 2 cosx+ 2 cos y + 2 cos(x− y)) dx dy

=
7

2

ζ(3)

π2
. (23)

We give a complete alternative derivation of (22) and (23) in Example 6. Note that
we may also write

W ′
3(0) =

1

8π2

∫ 2π

0

∫ 2π

0

log(3 + 2 cos x+ 2 cos y + 2 cos(x− y)) dx dy.
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The similarity between W ′
3(0) and W ′

4(0) is not coincidental, but comes from applying∫ 1

0
log((a+ cos 2πx)2 + (b+ sin 2πx)2) dx = log(a2 + b2) if a2 + b2 > 1 and 0 otherwise

to the triple integral of W ′
4(0). As this reduction breaks the symmetry, we cannot

apply it to W ′
5(0) to get a similar one-dimensional integral.

n = 5. As in the n = 3 case, we obtain

Res−2(W5) =
16 + 1140W ′

5(0)− 804W ′
5(2) + 64W ′

5(4)

225
≈ 0.329933801060064059,

and

Res−4(W5) =
26 Res−2(W5)− 16− 20W ′

5(0) + 4W ′
5(2)

225
≈ 0.00661673.

In this case the three derivatives of W5 can be computed from (11) with k 6 3.
Thence,

W
′

5(0) = 5

∫ ∞
0

(
log

(
2

t

)
− γ
)
J4
0 (t)J1(t) dt ≈ 0.54441256

with similar but more elaborate formulae for W
′
5(2), and W

′
5(4). Note that the above

can also be written as

W ′
5(0) = log(2)− γ −

∫ 1

0

(
J5
0 (x)− 1

) dx

x
−
∫ ∞
1

J5
0 (x)

dx

x
.

n > 3. In general, differentiating equation (11) under the integral sign gives

W ′
n(0) = n

∫ ∞
0

(
log

(
2

x

)
− γ
)
Jn−10 (x)J1(x) dx

= log(2)− γ − n
∫ ∞
0

log(x)Jn−10 (x)J1(x) dx, (24)

(where γ is the Euler-Mascheroni constant) and

W ′′
n (0) = n

∫ ∞
0

(
log

(
2

x

)
− γ
)2

Jn−10 (x)J1(x) dx.

Likewise

W ′
n(−1) = (log 2− γ)Wn(−1)−

∫ ∞
0

log(x)Jn0 (x) dx,

and

W ′
n(1) =

∫ ∞
0

n

x
Jn−10 (x)J1(x) (1− γ − log(2x)) dx.
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We may therefore obtain many identities by comparing the above equations to
known values. For instance,

3

∫ ∞
0

log(x)J2
0 (x)J1(x) dx = log(2)− γ − 1

π
Cl
(π

3

)
,

and so on. ♦

2.2 Meijer G-function representations

We recall that the Meijer G-function—introduced in 1936 by the Dutch mathemati-
cian Cornelis Simon Meijer (1904-1974)—is defined, for parameter vectors a and b
[AAR99], by

Gm,n
p,q

(
a

b

∣∣∣∣x) = Gm,n
p,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣x) (25)

=
1

2πi

∫
L

∏m
k=1 Γ(bk − t)

∏n
k=1 Γ(1− ak + t)∏q

k=m+1 Γ(1− bk + t)
∏p

k=n+1 Γ(ak − t)
xt dt. (26)

In the case |x| < 1 and p = q the contour L is a loop that starts at infinity on a
line parallel to the positive real axis, encircles the poles of the Γ(bk − t) once in the
negative sense and returns to infinity on another line parallel to the positive real axis;
with a similar contour when |x| > 1. Moreover Gp,q

m,n is analytic in each parameter;
in consequence so are the compositions arising below.

Our main tool below is the following special case of Parseval’s formula giving the
Mellin transform of a product.

Theorem 1 (Mellin transform). Let G(s) and H(s) be the Mellin transforms of g(x)
and h(x) respectively. Then∫ ∞

0

xs−1g(x)h(x) dx =
1

2πi

∫ δ+i∞

δ−i∞
G(z)H(s− z) dz (27)

for any real number δ in the common region of analyticity.

This leads to:

Theorem 2 (Meijer form for W3). For all complex s

W3(s) =
Γ(1 + s/2)

Γ(1/2)Γ(−s/2)
G2,1

3,3

(
1, 1, 1

1/2,−s/2,−s/2

∣∣∣∣14
)
. (28)
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Proof. We apply Theorem 1 to J3
0 = J2

0 ·J0 for s in a vertical strip. Using Example 2
we then obtain∫ ∞

0

xs−1J3
0 (x) dx =

1

2πi

∫ δ+i∞

δ−i∞

2s−z−2

Γ(1/2)

Γ(z/2)Γ(1/2− z/2)

Γ(1− z/2)2
Γ(s/2− z/2)

Γ(1− s/2 + z/2)
dz

=
2s

2Γ(1/2)

1

2πi

∫ δ/2+i∞

δ/2−i∞
4−t

Γ(t)Γ(1/2− t)Γ(s/2− t)
Γ(1− t)2Γ(1− s/2 + t)

dt

=
2s

2Γ(1/2)
G2,1

3,3

(
1, 1, 1

1/2, s/2, s/2

∣∣∣∣14
)

where 0 < δ < 1. The claim follows from (17) by analytic continuation.

Similarly we obtain:

Theorem 3 (Meijer form for W4). For all complex s with Re s > −2

W4(s) =
2s

π

Γ(1 + s/2)

Γ(−s/2)
G2,2

4,4

(
1, (1− s)/2, 1, 1

1/2,−s/2,−s/2,−s/2

∣∣∣∣1) . (29)

Proof. We now apply Theorem 1 to J4
0 = J2

0 ·J2
0 , again for s in a vertical strip. Using

once more Example 2 we then obtain∫ ∞
0

xs−1J4
0 (x) dx =

1

2πi

∫ δ+i∞

δ−i∞

1

4π

Γ(z/2)Γ(1/2− z/2)

Γ(1− z/2)2
Γ(s/2− z/2)Γ(1/2− s/2 + z/2)

Γ(1− s/2 + z/2)2
dz

=
1

2π
G2,2

4,4

(
1, (1 + s)/2, 1, 1

1/2, s/2, s/2, s/2

∣∣∣∣1)
where 0 < δ < 1. The claim again follows from (17).

We illustrate with graphs of W3,W4 in the complex plane in Figure 2. Note
the poles and removable singularities. These graphs were produced employing the
Meijer forms in their hypergeometric form as presented in the next section. In the
case n = 4, the functional equation is employed for s with Re s 6 −2.

2.3 Hypergeometric representations

By Slater’s theorem [Mar83, p. 57], the Meijer G-function representations for W3(s)
and W4(s) given in Theorems 2 and 3 can be expanded in terms of generalized
hypergeometric functions.

For n = 3, 4 we obtain the following:

11



(a) W3 (b) W4

Figure 2: W3 via (28) and W4 via (29) in the complex plane.

Corollary 1 (Hypergeometric forms). For s not an odd integer, we have

W3(s) =
1

22s+1
tan
(πs

2

)( s
s−1
2

)2

3F2

( 1
2
, 1
2
, 1
2

s+3
2
, s+3

2

∣∣∣∣14
)

+

(
s
s
2

)
3F2

(
− s

2
,− s

2
,− s

2

1,− s−1
2

∣∣∣∣14
)
,

(30)

and, if also Re s > −2, we have

W4(s) =
1

22s
tan
(πs

2

)( s
s−1
2

)3

4F3

( 1
2
, 1
2
, 1
2
, s
2

+ 1
s+3
2
, s+3

2
, s+3

2

∣∣∣∣1)+

(
s
s
2

)
4F3

( 1
2
,− s

2
,− s

2
,− s

2

1, 1,− s−1
2

∣∣∣∣1) .
(31)

These lovely analytic continuations of W3 and W4, first found in [Cra09] using
Mathematica, can also be obtained by symbolic integration of (11) in Mathematica.

Example 6 (Derivatives revisited). If we write (30) or (31) as Wn(s) = f1(s)F1(s)+
f2(s)F2(s), where F1, F2 are the corresponding hypergeometric functions, then it can
be readily verified that f1(0) = f ′2(0) = F ′2(0) = 0. Thus, differentiating (30) by
appealing to the product rule we get:

W ′
3(0) =

1

π
3F2

( 1
2
, 1
2
, 1
2

3
2
, 3
2

∣∣∣∣14
)

=
1

π
Cl
(π

3

)
.

The last equality follows from setting θ = π/6 in the identity

2 sin(θ)3F2

( 1
2
, 1
2
, 1
2

3
2
, 3
2

∣∣∣∣sin2 θ

)
= Cl (2 θ) + 2 θ log (2 sin θ) .

12



Likewise, differentiating (31) gives

W ′
4(0) =

4

π2 4
F3

( 1
2
, 1
2
, 1
2
, 1

3
2
, 3
2
, 3
2

∣∣∣∣1) =
7ζ(3)

2π2
,

again confirming our previous result. In this case the hypergeometric evaluation

4F3

( 1
2
, 1
2
, 1
2
, 1

3
2
, 3
2
, 3
2

∣∣∣∣1) =
∞∑
n=0

1

(2n+ 1)3
=

7

8
ζ(3),

is elementary.
Differentiating (30) at s = 2 leads to the evaluation

3F2

( 1
2
, 1
2
, 1
2

5
2
, 5
2

∣∣∣∣14
)

=
27

4

(
Cl
(π

3

)
−
√

3

2

)
,

while from (31) at s = 2 we obtain

W ′
4(2) = 3 +

14ζ(3)− 12

π2
.

Note that with two starting values, all derivatives of W3(s) or W4(s) at even s may
be computed recursively.

We also note here that the same technique yields

W ′′
3 (0) =

π2

12
− 2

π

∞∑
n=0

(
2n
n

)
42n

Hn+ 1
2

(2n+ 1)2
(32)

=
π2

12
+

4 log 2

π
Cl
(π

3

)
− 4

π

∞∑
n=0

(
2n
n

)
42n

∑n
k=0

1
2k+1

(2n+ 1)2
,

and, quite remarkably,

W ′′
4 (0) =

π2

12
+

7ζ(3) log 2

π2
+

4

π2

∞∑
n=0

Hn − 3Hn+ 1
2

(2n+ 1)3
(33)

=
24Li4

(
1
2

)
− 18ζ(4) + 21ζ(3) log 2− 6ζ(2) log2 2 + log4 2

π2
,

where the very final evaluation is obtained from results in [BZB08, §5]. Here Li4(1/2)
is the polylogarithm of order 4, while Hn := γ + Ψ(n+ 1) denotes the n-th harmonic
number, where Ψ is the digamma function; so that H0 = 0 and for positive integers
n, we have explicitly Hn =

∑n
k=1 1/k and Hn+1/2 = 2

∑n+1
k=1 1/(2k − 1)− 2 log 2. ♦

13



We note that while Corollary 1 makes it easy to analyse the poles, the provably
removable singularities at odd integers are much harder to resolve explicitly [Cra09].
For W4(−1) we proceed as follows:

Theorem 4 (Hypergeometric form for W4(−1)).

W4(−1) =
π

4
7F6

( 5
4
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

1
4
, 1, 1, 1, 1, 1

∣∣∣∣1) (34)

=
π

4
6F5

(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

1, 1, 1, 1, 1

∣∣∣∣1)+
π

64
6F5

(
3
2
, 3
2
, 3
2
, 3
2
, 3
2
, 3
2

2, 2, 2, 2, 2

∣∣∣∣1) .
Proof. Using Theorem 3 we write

W4(−1) =
1

2π
G2,2

4,4

(
1, 1, 1, 1
1
2
, 1
2
, 1
2
, 1
2

∣∣∣∣1) .
Using the definition (25) of the Meijer G-function as a contour-integral, we see that
the corresponding integrand is

Γ(1
2
− t)2Γ(t)2

Γ(1
2

+ t)2Γ(1− t)2
xt =

Γ(1
2
− t)2Γ(t)4

Γ(1
2

+ t)2
· sin2(πt)

π2
xt, (35)

where we have used Γ(t)Γ(1 − t) = π
sin(πt)

. We choose the contour of integration

to enclose the poles of Γ(1
2
− t). Note then that the presence of sin2(πt) does not

interfere with the contour or the residues (for sin2(πt) = 1 at half integers). Hence
we may ignore sin2(πt) in the integrand altogether. Then the right-hand side of (35)
is the integrand of another Meijer G-function; thus we have shown that

G2,2
4,4

(
1, 1, 1, 1
1
2
, 1
2
, 1
2
, 1
2

∣∣∣∣1) =
1

π2
G2,4

4,4

(
1, 1, 1, 1
1
2
, 1
2
, 1
2
, 1
2

∣∣∣∣1) . (36)

The same argument shows that the factor of 1
π2 applies to all W4(s) when we change

from G2,2
4,4 to G2,4

4,4.
Now, using the transformation

xαGm,n
p,q

(
a

b

∣∣∣∣x) = Gm,n
p,q

(
a + α

b + α

∣∣∣∣x) (37)

we deduce that

W4(−1) =
1

2π3
G2,4

4,4

(
1
2
, 1
2
, 1
2
, 1
2

0, 0, 0, 0

∣∣∣∣1) .
14



Finally, we appeal to Bailey’s identity [Bai32, Formula (3.4)] that when the series on
the left-hand side converges,

7F6

(
a, 1 + a

2 , b, c, d, e, f
a
2 , 1 + a− b, 1 + a− c, 1 + a− d, 1 + a− e, 1 + a− f

∣∣∣∣1)
=

Γ(1 + a− b)Γ(1 + a− c)Γ(1 + a− d)Γ(1 + a− e)Γ(1 + a− f)

Γ(1 + a)Γ(b)Γ(c)Γ(d)Γ(1 + a− b− c)Γ(1 + a− b− d)Γ(1 + a− c− d)Γ(1 + a− e− f)

×G2,4
4,4

(
e + f − a, 1− b, 1− c, 1− d

0, 1 + a− b− c− d, e− a, f − a

∣∣∣∣1) . (38)

The claim follows upon setting all parameters to 1/2.

An attempt to analogously apply Bailey’s identity for W4(1) fails, since its Meijer
G representation as obtained from Theorem 3 does not meet the precise form required
in the formula. Nevertheless, a combination of Nesterenko’s theorem ([Nest]) and
Zudilin’s theorem ([Zudilin02]) gives the following result:

Theorem 5 (Hypergeometric form for W4(1)).

W4(1) =
3π

4
7F6

( 7
4
, 3
2
, 3
2
, 3
2
, 1
2
, 1
2
, 1
2

3
4
, 2, 2, 2, 1, 1

∣∣∣∣1)− 3π

8
7F6

( 7
4
, 3
2
, 3
2
, 1
2
, 1
2
, 1
2
, 1
2

3
4
, 2, 2, 2, 2, 1

∣∣∣∣1) . (39)

Proof. We first prove a result that will allow us to use Nesterenko’s theorem. It
converts the Meijer G form of W4(1) to a triple integral. We need the following
identities which can be readily verified:

d

dz

(
z−b1G2,2

4,4

(
a1, a2, a3, a4
b1, b2, b3, b4

∣∣∣∣z)) = −z−1−b1G2,2
4,4

(
a1, a2, a3, a4

b1 + 1, b2, b3, b4

∣∣∣∣z) (40)

d

dz

(
z1−a1G2,2

4,4

(
a1, a2, a3, a4
b1, b2, b3, b4

∣∣∣∣z)) = z−a1G2,2
4,4

(
a1 − 1, a2, a3, a4
b1, b2, b3, b4

∣∣∣∣z) (41)

Let a(z) := G2,2
4,4

(
0,1,1,1

− 1
2
, 1
2
,− 1

2
,− 1

2

∣∣z) = G2,2
4,4

(
− 1

2
, 1
2
, 1
2
, 1
2

−1,0,−1,−1

∣∣z) where the final equality

holds because of (37). Note that a(1) = −2πW4(1) by Theorem 3. Applying identity
(40) to the first form of a(z) and using the product rule, we get 1

2
a(1) + a′(1) = c1,

where c1 := −G2,2
4,4

(
0,1,1,1

1
2
, 1
2
,− 1

2
,− 1

2

∣∣1). Applying identity (41) to the second form of a(z),

we obtain a′(1) = b1 where b1 := G2,2
4,4

(
− 1

2
,− 1

2
, 1
2
, 1
2

0,−1,−1,−1

∣∣1). Appealing to equation (77),

we see that b1 = −c1. Hence a(1) = 4c1. Converting c1 to a G2,4
4,4 as in (36), which

finally satisfies the conditions of Nesterenko’s theorem, we obtain:

W4(1) =
4

π3

∫ 1

0

∫ 1

0

∫ 1

0

√
x(1− y)(1− z)

(1− x)yz(1− x(1− yz))
dx dy dz.
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We now make a change of variable z′ = 1− z. Writing

(z′)
1
2 = (z′)−

1
2 (1− (1− z′)) = (z′)−

1
2 − (z′)−

1
2 (1− z′)

splits the previous triple integral into two terms. Each term satisfies Zudilin’s theo-
rem and so can be written as a 7F6. We thence obtain the result as claimed.

Indeed, the following alternative relation, which led us to Theorem 5, was first
predicted by the integer relation algorithm PSLQ in a computational hunt for results
similar to that in Theorem 4:

Theorem 6 (Alternative hypergeometric form for W4(1)).

W4(1) =
9π

4
7F6

( 7
4
, 3
2
, 3
2
, 3
2
, 1
2
, 1
2
, 1
2

3
4
, 2, 2, 2, 1, 1

∣∣∣∣1)− 2π7F6

( 5
4
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

1
4
, 1, 1, 1, 1, 1

∣∣∣∣1) . (42)

Proof. For notational convenience, let

A :=
3π4

128
7F6

( 7
4
, 3
2
, 3
2
, 3
2
, 1
2
, 1
2
, 1
2

3
4
, 2, 2, 2, 1, 1

∣∣∣∣1) ,
B :=

3π4

256
7F6

( 7
4
, 3
2
, 3
2
, 1
2
, 1
2
, 1
2
, 1
2

3
4
, 2, 2, 2, 2, 1

∣∣∣∣1) ,
C :=

π4

16
7F6

( 5
4
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

1
4
, 1, 1, 1, 1, 1

∣∣∣∣1) .
By (39), W4(1) = (32/π3)(A−B), and the truth of (42) is equivalent to the evaluation
W4(1) = (32/π3)(3A− C). Thus, we only need to show 2A+B − C = 0.

The triple integral for A encountered in the application of Zudilin’s theorem is

A =
1

8

∫ 1

0

∫ 1

0

∫ 1

0

√
x(1− y)

(1− x)yz(1− z)(1− x(1− yz))
dx dy dz,

and can be reduced to a one dimensional integral:

A = A1 :=

∫ 1

0

(K ′(k)− E ′(k))2

1− k2
dk,

Here, as usual, K ′(k) := K
(√

1− k2
)

and E ′(k) := E(
√

1− k2).
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Happily, we may apply a non-trivial action on the exponents of x, y, z and leave
the value of the integral unchanged (see [Zudilin04], remark after lemma 8). We
obtain:

A =
1

8

∫ 1

0

∫ 1

0

∫ 1

0

√
1− x(1− yz)

xyz(1− x)(1− y)(1− z)
dx dy dz

= A2 :=

∫ 1

0

K ′(k)E ′(k) dk.

The like integral for B can also be reduced to a one dimensional integral,

B = B2 :=

∫ 1

0

k2K ′(k)2 dk.

But B also satisfies the conditions of Bailey’s identity and Nesterenko’s theorem,
from which we are able to produce an alternative triple integral, and reduce it to:

B = B1 :=

∫ 1

0

(K ′(k)− E ′(k))
(
E ′(k)− k2K ′(k)

) dk

1− k2
.

This more complicated looking form will be useful.
As for C, equation (69) details its evaluation, which we also record here:

C =

∫ 1

0

K ′(k)2 dk.

Now 2A + B − C = A1 + A2 + B1 − C = 0, because the integrand of the later
expression is zero.

Note that the theorem gives the identity

2

∫ 1

0

K ′(k)E ′(k) dk =

∫ 1

0

(1− k2)K ′(k)2 dk, (43)

among others.

Remark 2. Note that each of the 7F6’s involved in Theorems 5 and 6 can also be
easily written as a sum of two 6F5’s.

Also note that the first 7F6 term in either theorem satisfies the conditions of
Bailey’s identity (38) (with a = e = f = 3

2
, b = c = d = 1

2
):

7F6

( 7
4
, 3
2
, 3
2
, 3
2
, 1
2
, 1
2
, 1
2

3
4
, 2, 2, 2, 1, 1

∣∣∣∣1) = − 16

3π4
G2,4

4,4

(
3
2
, 1
2
, 1
2
, 1
2

1, 0, 0, 0

∣∣∣∣1) . (44)
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We can thence convert the right-hand side to the Meijer G form. On the other hand,

W4(1) = − 1

2π3
G2,4

4,4

(
0, 1, 1, 1

1
2
,−1

2
,−1

2
,−1

2

∣∣∣∣1) .
We thus have the non-trivial identity:

G2,4
4,4

(
1
2
, 3
2
, 3
2
, 3
2

1, 0, 0, 0

∣∣∣∣1) = 24G2,4
4,4

(
3
2
, 1
2
, 1
2
, 1
2

1, 0, 0, 0

∣∣∣∣1)+ 8G2,4
4,4

(
1
2
, 1
2
, 1
2
, 1
2

0, 0, 0, 0

∣∣∣∣1) . (45)

♦

Corollary 2 (Elliptic integral representation for W4(1)). We have

W4(1) =
16

π3

∫ 1

0

(1− 3k2)K ′(k)2 dk. (46)

Proof. The conclusion of Theorem 6 implies (π3/16)W4(1) = C−3B = C−3B2.

3 Probabilistically inspired representations

In this section, we build on the probabilistic approach taken in Section 6 of [BNSW09].
We may profitably view a (m+n)-step walk as a composition of an m-step and n-step
walk for m,n > 1. Different decompositions make different structures apparent.

We express the distance z of an (n+m)-step walk conditioned on a given distance
x of the first n steps as well as the distance y of the remaining m steps. Then, by
the cosine rule,

z2 = x2 + y2 + 2xy cos(θ),

where θ is the outside angle of the triangle with sides of lengths x, y, and z:

\θx

zjjjjjjjjjjjjj

jjjjjjjjjjjjj y
�����

�����

It follows that for s > 0, the s-th moment of an (n + m)-step walk conditioned on
the distance x of the first n steps and the distance y of the remaining m steps is

gs(x, y) :=
1

π

∫ π

0

zs dθ = |x− y|s 2F1

(
1
2
,− s

2

1

∣∣∣∣− 4xy

(x− y)2

)
. (47)
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Here we appealed to symmetry to restrict the angle to θ ∈ [0, π). We then evaluated
the integral in hypergeometric form which, for instance, can be done with the help
of Mathematica or Maple.

Remark 3 (Alternate forms for gs). Using Kummer’s quadratic transformation
[AAR99], we obtain

gs(x, y) = ys 2F1

(
− s

2
,− s

2

1

∣∣∣∣x2y2
)

(48)

for 0 < x < y. In fact,

gs(x, y) = Re ys 2F1

(
− s

2
,− s

2

1

∣∣∣∣x2y2
)

(49)

for general positive x, y. This provides an analytic continuation of s 7→ gs(x, y). In
particular, we have

g−1(x, y) =
2

π
Re

1

y
K

(
x

y

)
(50)

and, with E the complete elliptic integral of the second kind, we have

g1(x, y) =
2

π
Re y

{
2E

(
x

y

)
−
(

1− x2

y2

)
K

(
x

y

)}
. (51)

This later form has various re-expressions. ♦

Denote by pn(x) the density of the distance x for an n-step walk. Since Wn+m(s)
is the s-th moment of the distance of an (n+m)-step walk, we obtain

Wn+m(s) =

∫ n

0

∫ m

0

gs(x, y) pn(x)pm(y) dy dx, (52)

for s > 0. Since for the 1-step walk we have p1(x) = δ1(x), this generalizes the
corresponding formula given for Wn+1(s) in [BNSW09].

In (52), if n = 0, then we may take p0(x) = δ0(x), and regard the limits of
integration as from −ε and +ε, ε→ 0. Then gs = ys as the hypergeometric collapses
to 1, and we recover the basic form

Wm(s) =

∫ m

0

yspm(y) dy. (53)

It is also easily shown that the probability density for a 2-step walk is given by

p2(x) =
2

π
√

4− x2
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for 0 6 x 6 2 and 0 otherwise.
The density p3(x) for 0 6 x 6 3 can be expressed by

p3(x) = Re

(√
x

π2
K

(√
(x+ 1)3(3− x)

16x

))
, (54)

see, e.g., [Pea1906]. To make (54) more accessible we need the following cubic iden-
tity.

Proposition 2. For all 0 6 x 6 1 we have

K

(√
16x3

(3− x)3(1 + x)

)
=

3− x
3 + 3x

K

(√
16x

(3− x)(1 + x)3

)
.

Proof. We take the second-order differential equation satisfied by K(x), and use
substitution and the chain rule to derive the differential equation

4x2(x+3)2f(x)+(x−3)(x+1)2((x3−9x2−9x+9)f ′(x)+x(x3−x2−9x+9)f ′′(x)) = 0,

which is satisfied by both functions above, as is readily verified by CAS. Moreover,
both function values and derivative values agree at the origin.

We note here that for 0 6 x < 3 we can use Proposition 2 to deduce the more
symmetrical formula

p3(x) =
2

π
Re

 x

AGM
(√

(3 + x)(1− x)3,
√

(3− x)(1 + x)3
)
 (55)

since AGM(1,
√

1− k2) = π
2K(k)

. Here AGM denotes the Gaussian arithmetic-
geometric mean.

To use Proposition 2, we first apply Jacobi’s imaginary transform (see [BB87])

ReK(x) =
1

x
K

(
1

x

)
for x > 1

to express p3(x) as a real function over the intervals [0, 1] and [1, 3]. This leads to

W3(−1) =

∫ 3

0

p3(x)

x
dx

=
4

π2

∫ 1

0

K
(√

16x
(3−x)(1+x)3

)
√

(3− x)(1 + x)3
dx+

1

π2

∫ 3

1

K

(√
(3−x)(1+x)3

16x

)
√
x

dx.
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Now in the second integral, we make the change of variable x → 3−t
1+t

, and after
some algebra it transforms exactly into the first integral. Therefore,

W3(−1) = 2

∫ 1

0

p3(x)

x
dx, (56)

where now we need integrate only from 0 to 1.
To make sense of what has happened more abstractly, let

σ(x) :=
3− x
1 + x

, λ(x) :=
(1 + x)3(3− x)

16x
. (57)

Then for 0 < x < 3 we have σ2(x) = x and λ(x)λ(σ(x)) = 1. In consequence σ is an
involution that sends [0, 1] to [1, 3] and

p3(x) =
4x

(3− x)(x+ 1)
p3(σ(x)) (58)

for 0 < x < 3, because
√
σ(x)λ(x)/x = (3− x)(x+ 1)/(4x). Equation (54) now lets

us deduce that 3
4
p′3(0) = p3(3) =

√
3

2π
.

Example 7 (Series for p3 and W3(−1)). We know that

W3(2k) =
k∑
j=0

(
k

j

)2(
2j

j

)
is the sum of squares of trinomials (see (8) and [BNSW09]). Using Proposition 2, we
may now apply equation (184) in [BBBG08, Section 5.10] to obtain

p3(x) =
2x

π
√

3

∞∑
k=0

W3(2k)
(x

3

)2k
, (59)

with radius of convergence one. For 1 < x < 3, on using (58) we obtain

p3(x) =
8x

π
√

3(x+ 1)2

∞∑
k=0

W3(2k)

(
3− x
3 + 3x

)2k

. (60)

From (59) and (56) we deduce that

W3(−1) =
4

π
√

3

∞∑
k=0

W3(2k)

9k(2k + 1)

as a type of reflection formula. ♦

21



For p4 we know of no corresponding entirely closed form but we can use (10) to
deduce for all n > 4 that

pn(α) = α

∫ ∞
0

J0(t)
nJ0(αt)t dt. (61)

Alternatively, [Hug95] provides: setting φn(r) := pn(r)/(2πr), we have that for
integers n > 2

φn(r) =
1

2π

∫ 2π

0

φn−1

(√
r2 + 1− 2r cos t

)
dt. (62)

The densities p3 and p4 are shown in Figure 3. Note that p3 has a singularity at 1
as follows from (54). We remark that the derivative of p4 has singularities at 0 and
4. Also, p4(2) ≈ 0.4942337 is slightly less than 0.5.

Further, computed from (61), the densities p5, p6, p7, and p8 are shown in Figure
4 to illustrate that the case of small n is very different from the case of large n. In
particular, it should be noted that, for n > 7, the density pn is already quite well
approximated by the limiting 2x

n
e−x

2/n. Also notice that, as the pictures suggest,
pn is continuously differentiable for n > 6 while p5 is not. This, as well as simi-
lar statements about higher-order differentiability, may be proven using dominated
convergence and equation (61).
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Figure 3: The densities p3 (L) and p4 (R).

Example 8 (Poles of W3). From here we may efficiently recover the explicit form for
the residues of W3 given in Proposition 1a. Fix integers N > 2k > 0 and 0 < α < 1.
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Figure 4: Densities pn with the limiting behaviour superimposed.
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Use the series p3(x) =
∑

j>0 ajx
2j+1 in (59) to write

W3(s)−
∫ 3

α

p3(x)xs dx−
∫ α

0

∞∑
j=N

ajx
2j+1+s dx =

∫ α

0

N−1∑
j=0

ajx
2j+1+s dx

=
N∑
j=1

aj−1
α2j+s

2j + s
, (63)

and observe that both sides are holomorphic and so (63) holds in a neighborhood of
s = −2k. Since only the first term on the left has a pole at −2k we may deduce that
Res(−2k)(W3) = ak−1. Equivalently,

Res(−2k−2)(W3) =
2

π
√

3

W3(2k)

32k
,

which exposes an elegant reflection property, a generalization of which we have been
unable to fully recapture when n = 5.

Similarly, the analysis in Example 4 suggests that p4 should have a density of the
form p4(x) = a(x) + b(x) log x where a, b are odd and analytic in a neighbourhood of
of the origin. The log term is sufficient to fit the double poles. Working as above,
we discover that the first two approximations are(

9

2

log 2

π2
− 3

2

log x

π2

)
x

and (
9

2

log 2

π2
− 3

2

log x

π2

)
x+

(
9

128

4 log 2− 1

π2
− 3

32

log x

π2

)
x3

The later is already an excellent approximation on [0, 1] and the approximations
appear to be converging for 0 < x < 2. Indeed the fifth approximation at x = 2
yields 0.488946... We also record that p−4 (2) ≈ .144687 while p+4 (2) = −∞. This can
be proven by using the large-order asymptotic expansion for Jν to estimate p′4(s) for
s near 2 as a combination of Fresnel integrals. ♦

Remark 4 (W5). Using (52) we may express W5(s)—or W6(s)—as double integrals,
for example,

W5(−1) =
4

π4

∫ 3

0

∫ 2

0

√
x

y
√

4− y2
Re

(
K

(
x

y

))
Re

(
K

(√
(x+ 1)3(3− x)

16x

))
dy dx.
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We also have an expression based on taking two two-step walks and a one-step walk,
namely:

W5(−1) =
8

π4

∫ 2

0

∫ 2

0

∫ π

0

ReK(
√
x2 + y2 + 2xy cos z)√

(4− x2)(4− y2)
dz dx dy

=
8

π4

∫ π
2

0

∫ π
2

0

∫ π

0

ReK
(

2
√

sin2 a+ sin2 b+ 2 sin a sin b cos c
)

dc da db.

But we have been unable to make further progress with these forms. ♦

3.1 Elliptic integral representations

From (52), we derive

W4(s) =
2s+2

π2

∫ 1

0

∫ 1

0

gs(x, y)√
(1− x2)(1− y2)

dx dy

=
2s+2

π2

∫ π/2

0

∫ π/2

0

gs(sinu, sin v) du dv.

where s > −2. In particular, for s = −1, again using Jacobi’s imaginary transfor-
mation, we have:

W4(−1) =
4

π3
Re

∫ 1

0

∫ 1

0

K(x/y)

y
√

(1− x2)(1− y2)
dx dy (64)

=
8

π3

∫ 1

0

∫ 1

0

K(t)√
(1− t2y2)(1− y2)

dy dt

=
8

π3

∫ 1

0

K2(k) dk. (65)

Also, the following Fourier series [BBBG08, Eqn (70)] allows one to apply the
Parseval-Bessel formula

K (sin θ) =
∞∑
n=0

Γ(1
2

+ n)2

Γ(n+ 1)2
sin ((4n+ 1)θ) , (66)

from which we may obtain

W4(−1) =
4

π

∑
n,m>0

(
(1
2
)n(1

2
)m

n!m!

)2(
1

1− (4(m− n))2
+

1

1− (4(m+ n) + 2)2

)
, (67)
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in terms of the rising factorial (a)n := a(a+ 1)(a+ 2) · · · (a+ n− 1).
Starting instead with Nesterenko’s theorem [Nest] we have the following:

W4(−1) =
1

2π3

∫
[0,1]3

dxdydz√
xyz(1− x)(1− y)(1− z)(1− x(1− yz))

. (68)

[Such integrals are related to Beukers integrals, which were used in the elementary
derivation of the irrationality of ζ(3).] Upon computing the dx integral, followed by
the change of variable k2 = yz, we have:

W4(−1) =
1

π3

∫ 1

0

∫ 1

0

K(
√

1− yz)√
yz(1− y)(1− z)

dy dz (69)

=
2

π3

∫ 1

0

∫ 1

k2

K(
√

1− k2)√
y(1− y)(y − k2)

dy dk

=
4

π3

∫ 1

0

K ′(k)2 dk. (70)

Compare this with the corresponding (64). In particular, appealing to Theorem
4 we derive the closed forms:

2

∫ 1

0

K(k)2 dk =

∫ 1

0

K ′(k)2 dk =
(π

2

)4
7F6

( 5
4
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

1
4
, 1, 1, 1, 1, 1

∣∣∣∣1) . (71)

Recalling Corollary 2 and equation (43) we also deduce that

W4(1) =
96

π3

∫ 1

0

E ′(k)K ′(k) dk − 8W4(−1). (72)

If we make a trigonometric change of variables in (69), we obtain

W4(−1) =
4

π3

∫ π/2

0

∫ π/2

0

K

(√
1− sin2 x sin2 y

)
dx dy. (73)

We may rewrite the integrand as a sum, and then interchange integration and sum-
mation to arrive at a slowly convergent representation of the same general form as
in Conjecture 1:

W4(−1) =
1

2

∞∑
n=0

(
−1/2

n

)2

3F2

(
1
2
, 1
2
,−n

1, 1

∣∣∣∣1) . (74)
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Remark 5 (Relation to Watson integrals). From the evaluation (7) we note that
W3(−1) equals twice the second of three triple integrals considered by Watson in
[Watson1939]:

W3(−1) =
1

π3

∫ π

0

∫ π

0

∫ π

0

dudvdw

3− cos v cosw − cosw cosu− cosu cos v
. (75)

This is derived in [BBG05] and various related extensions are to be found in [BBBG08].
It is not clear how to generalize this to W4(−1).

Watson’s second integral (75) also gives the alternative representation:

W3(−1) = π−5/2G3,2
3,3

(
1
2
, 1
2
, 1
2

0, 0, 0

∣∣∣∣4) . (76)

The equivalence of this and the Meijer G representation coming from Theorem 2
can be established similarly to the proof of Theorem 4 upon using the Meijer G
transformation

Gm,n
p,q

(
a

b

∣∣∣∣x) = Gn,m
q,p

(
1− b

1− a

∣∣∣∣1x
)
. (77)

♦

Remark 6 (Probability of return to the unit disk). By a simple geometric argument,
there is a 1

3
chance of returning to the unit disk in a 2-step walk. Similarly, for a

3-step walk, if the second step makes an angle θ with the first step, then the third
step can only vary over a range of θ to return to the unit disk (it can be parallel to
the first step, to the second step, or anywhere in between). Thus the probability of
returning to the unit disk in three steps is

1

4π2

∫ π

−π
|θ| dθ =

1

4
=

∫ 1

0

p3(x) dx.

Appealing to (59) we deduce that

∞∑
k=0

W3(2k)

9k(k + 1)
=

√
3π

4
.

In fact, as Kluyver showed [Klu1906], the probability of an n-step walk ending in the
unit disk is 1/(n+1). This is easily obtained by setting α = 1 in (10) and computing
the integral. ♦
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4 Partial resolution of Conjecture 1

We may now investigate Conjecture 1 which is restated below for convenience.

Conjecture. For positive integers n and complex s,

W2n(s)
?[1]
=
∑
j>0

(
s/2

j

)2

W2n−1(s− 2j). (78)

We can resolve this conjecture modulo a conjectured technical estimate given in
Conjecture 3. The proof outline below certainly explains Conjecture 1 by identifying
the terms of the infinite sum as natural residues.

Proof. Using (17) we write W2n as a Bessel integral

W2n(−s) = 21−sΓ(1− s/2)

Γ(s/2)

∫ ∞
0

xs−1J2n
0 (x) dx.

Then we apply Theorem 1 to J2n
0 = J2n−1

0 · J0 for s in a vertical strip. Since, again
by (17), we have ∫ ∞

0

xs−1J2n
0 (x) dx = 2s−1

Γ(s/2)

Γ(1− s/2)
Wn(−s)

we obtain

W2n(−s) = 21−sΓ(1− s/2)

Γ(s/2)

∫ ∞
0

xs−1J2n−1
0 (x) · J0(x) dx

=
Γ(1− s/2)

Γ(s/2)

1

2πi

∫ δ+i∞

δ−i∞

1

2

Γ(z/2)Γ(s/2− z/2)

Γ(1− z/2)Γ(1− s/2 + z/2)
W2n−1(−z) dz

where 0 < δ < 1.
Observe that the integrand has poles at z = s, s + 2, s + 4, . . . coming from

Γ(s/2 − z/2) as well as (irrelevant for current purposes) poles at z = 0,−2,−4, . . .
coming from Γ(z/2). On the other hand, the term W2n−1(−z) has at most simple
poles at z = 2, 4, 6, . . . which are cancelled by the corresponding zeros of Γ(1− z/2).
This asserted pole structure of W2n−1 was shown in Proposition 1 for n = 3, 4 and
that argument can with work be extended to 7, 9, . . ., but this will not resolve the
general case. (See Conjecture 2 below.)
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Next, we determine the residue of the integrand at z = s+2j. Since Γ(s/2−z/2)
has a residue of −2(−1)j/j! at z = s+ 2j, the residue of the integrand is

− (−1)jΓ(s/2 + j)

(j!)2Γ(1− s/2− j)
W2n−1(−(2j + s)) = − Γ(s/2)

Γ(1− s/2)

(
−s/2
j

)2

W2n−1(−s− 2j).

Thus it follows that

W2n(−s) =
∑
j>0

(
−s/2
j

)2

W2n−1(−s− 2j), (79)

which is what we want to prove; provided that we can close the contour in the right
half-plane so as to show that

lim inf
α→∞

∫
γα

Γ(z/2)Γ(s/2− z/2)

Γ(1− z/2)Γ(1− s/2 + z/2)
W2n−1(−z) dz = 0. (80)

Here, γα is a right half-circle of radius rα around δ. This follows from Conjecture 3
below.

To make this proof rigorous we therefore need to show that the next two conjec-
tures hold.

Conjecture 2 (Poles of W2n−1). For each n > 1 all poles of W2n−1 are simple.

Conjecture 3 (Growth of W2n−1). For given s, the maximum modulus of

Γ(z/2)Γ(s/2− z/2)

Γ(1− z/2)Γ(1− s/2 + z/2)
W2n−1(−z)

over the half-circle γαm, is achieved on the real axis at a point am; and the value
W2n−1(am) tends to zero for properly chosen rαm →∞.

Remark 7 (Other approaches to Conjecture 1). We restrict ourself to the core case
with n = 2. One can prove that both sides of the needed identity satisfy the recursion
for W4. Hence, it suffices to show that the conjecture is correct for s = ±1. Working
entirely formally with (11) and ignoring the restriction on s we have:∑

j>0

(
−1/2

j

)2

W3(−1− 2j) =
∞∑
j=0

(
−1/2

j

)2

2−2j
Γ(1

2
− j)

Γ(1
2

+ j)

∫ ∞
0

x2jJ3
0 (x) dx

=

∫ ∞
0

J3
0 (x)

∞∑
j=0

(
−1/2

j

)2 Γ(1
2
− j)

Γ(1
2

+ j)

(x
2

)2j
dx

=

∫ ∞
0

J4
0 (x) dx

= W4(−1),
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on appealing to Example 1, since

∞∑
j=0

(
−1/2

j

)2 Γ(1
2
− j)

Γ(1
2

+ j)
x2j = J0(2x)

for x > 0. There is a corresponding manipulation for s = 1 but we have been unable
to legitimate the steps in either case. ♦

Example 9 (Other residue evaluations). Similar arguments yield evaluations for W3

such as:

W3(−1) =
16

π3
K2

(√
3− 1

2
√

2

)
log 2 +

3

π

∞∑
n=0

(
2n

n

)3 ∑2n
k=1

(−1)k
k

44n
. (81)

In conjunction with (7) we obtain

∞∑
n=0

(
2n

n

)3 ∑2n
k=1

(−1)k
k

44n
=

(
2√
3π
− 16

3π2
log 2

)
K2

(√
3− 1

2
√

2

)
. (82)

For comparison, we record

W4(−1) =
4

π

∞∑
n=0

(
2n
n

)4
44n

∞∑
k=2n+1

(−1)k+1

k
.

which follows from (31) using L’Hôpital’s rule. ♦

Conclusion

In addition to the two new conjectures made explicitly above, it would be fascinating
to obtain closed forms for any of the residues in Proposition 1 with n > 5. It would
likewise be very informative to obtain a closed form for W5(±1), or for the residues
at the poles of W5. It would also be instructive to determine a closed form for other
derivative values such as W ′

3(1).

Acknowledgements We are grateful to Wadim Zudilin for much useful discussion,
as well as pointing out [Bai32], [Nest], and [Zudilin02], which have been crucial in
obtaining the closed forms of W4(±1).
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