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Abstract. The discovery of the fast Fourier transform (FFT) algorithm and 
the subsequent development of algorithmic and numerical methods based 
on it have had an enormous impact on the ability of computers to process 
digital representations of signals, or functions. At first, the FFT was 
regarded as entirely new. However, attention and wide publicity led to an 
unfolding of its pre-electronic computer history going back to Gauss. The 
present paper describes the author's own involvement and experience with 
the FFT algorithm. 
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In 1952, a professor specializing in numerical analysis was asked why, with 
the advent of large high speed electronic computers, one should work on 
developing faster algorithms. The speed and size of these new machines 
should permit known algorithms to yield solutions with more than suffi- 
cient speed and economy. Recent studies of the history of the fast Fourier 
transform (FFT) algorithm, going back to Gauss [1], provide an example of 
exactly the opposite situation. After having been published and used over a 
period of 150 years without being regarded as having any particular impor- 
tance, the FFT was re-discovered, developed extensively, and applied on 
electronic computers in 1965, creating a revolutionary change in the scale 
and types of problems amenable to digital processes. Thus, as in several 
other areas of numerical analysis, the advent of the electronic computer has 
stimulated the development of new algorithms which increase computing 
power by many orders of magnitude. 

The 1965 publication of the paper [2] which has been credited with the 
"discovery" of the FFT algorithm produced three almost immediate 
responses: 

(1) The algorithm was new and revolutionary and it opened up a new 
world of digital processing, increasing the power of Fourier methods by 
many orders of magnitude. No problem would be too large. 

* The author is grateful for permission from the Association for Computing Machinery to 
allow the present paper to bear some similarity with the paper, How the FFT Gained 
Acceptance, ref. [28] 



34 J.W. Cooley 

(2) The algorithm was not new; it had been known and used before. 
(3) One of the first really good applications brought to me was too 

large. It was a calculation being planned by Janine Connes who was 
programming the calculation of Fourier transforms of interferometry data. 

It was rather flattering to have my name associated with Tukey's and 
attached to an important algorithm. One reason for the use of our names 
was that our paper was where most people saw it first. Another, I suspect, 
was the interesting variety of permutations of the sounds in the names, 
resulting in names like the "Cool-Turkey algorithm" and the "Cookie- 
Toolie" algorithm. 

I would like to describe here the events surrounding the publication of 
the FFT paper in 1965 and then discuss its history and applications. Before 
doing so, I will point out that high-speed electronic computers were in use 
for only about 12 years in 1965. There was a famous quotation made in the 
early 1950's when only a few electronic computers were in use which said 
that these could satisfy the computing needs of the whole world. In 1965, 
however, the existing computers were saturated with work and computers 
were sold and put into use as fast as they could be built. There was, at the 
time, another important technological development which increased the 
demand for high speed computation by many orders of magnitude. This 
was the development of analog-to-digital converters. These devices could 
produce digitized samples of a time-varying voltage several hundred 
thousand times per second. This meant that signals could be processed 
digitally instead of with analog devices. Digital signal processing (DSP) 
gave much better accuracy, it removed the constraint that the input-output 
relation was limited to what could be built with physical devices, and it 
permitted one to alter and optimize the input-output relation during 
processing. Then, with digital signal processing, came the need for 
numerical algorithms the most important of which were algorithms for 
Fourier transform and convolutions. 

I have been told that this is a very mixed audience which includes 
specialists in many different fields and varying degrees of acquaintance 
with numerical processes. For those for whom the signal processing is done 
inside black boxes, I will simply define the Fourier transform which is at 
the focus of our attention. In one form, it is the expression of a "signal" or 
function in terms of sines and cosines, or in other words, its frequency 
components, 

x(j) = Y~ a(k) cos(jk27c/N) + b(K) sin(jk27c/N). (1) 
J 

I am leaving out many details, but will say that this is the discrete Fourier 
transform in terms of what we may regard as sample values. Fourier theory 
includes cases where the sums are replaced by integrals and the functions 
may be piecewise continuous. Another form, which makes the notation and 
algebra simpler, is in complex notation, 

x(j)  = Z WJ (2) 
J 
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where 
W= e x p ( -  2:rci/N). (3) 

The first marvelous property of these transforms is that their inverses, or 
solutions, a(k), b(k), or c(k) are given by almost the same formulas and can 
therefore be computed by the same algorithms. Even with this nice 
inversion property, when the number of terms in the series and the number 
of x's is N, the number of operations is N 2. The FFT algorithms which I am 
talking about here reduce this to Nlog (N), a speed-up of a factor of 
N/log (N). Modest sized sample records start at around N = 1000 meaning a 
speed-up factor of 100. The spectrometry calculation I will mention later 
had N =  512000 meaning that if one even considered the ,calculation by a 
direct method, the speed-up factor would be about 12 800. 

Of the many important theorems concerning Fourier transforms, the 
most important is probably the convolution theorem. The convolution is 
defined by 

y(j)  = Y~ h(n)x(j  - n) (4) 
n 

and is also, in various forms, called a correlation or covariance function or 
just a moving average. This is expensive to compute. If the number of 
inputs and outputs are proportional to N, the number of operations will be 
proportional to N 2. The convolution theorem states that the Fourier trans- 
forms ~, h, and 2 of y, h, and x, respectively, are related by 

r = h(k)2(k), (5) 

which requires only N multiplications. Therefore, i f  one computes the 
Fourier transforms in a number of operations proportional to Nlog (N), 
then the number of operations for the convolution will be proportional to 
Nlog (N) instead of N 2. 

Richard Garwin's Role in the FFF 

Such was the state of affairs in late 1963 when I was recently hired at the 
new IBM Thomas J. Watson Research Center in Yorktown Heights, 
NewYork. I was working on a research project of my own when Richard 
Garwin 1 came to the computing center of the laboratory with some notes he 
made while with John Tukey at a meeting of President Kennedy's Scientific 
Advisory Committee, of which they were both members. John Tukey 
showed that if N, is a composite, N =  ab, then the Fourier series can be 
expressed as an a-term series of subseries of b terms each. If one were 
computing all values of the series, this would reduce the number of opera- 
tions from N 2 to N(a+ b). Tukey also said that if this were iterated, the 
number of operations would be proportional to Nlog (N) instead of NL 
Garwin knew that this was a very important calculation and he wanted to 
have this idea developed and applied. 

i At that time, a staff member of the Watson Scientific Laboratory at Columbia University. 
Presently at IBM Watson Research Center, Yorktown Heights, NY 
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Garwin described his problem of determining the periodicities of the 
spin orientations in a 3-D crystal of He 3. Later, I found out that he was far 
more interested in improving the ability to do remote seismic monitoring of 
nuclear explosions since the Russians would not agree to inspections within 
their borders thereby hindering efforts at obtaining a nuclear test ban treaty. 
He also saw a need for the capability of long range acoustical detection of 
submarines. Like many others, I did not see the significance in this 
improvement and gave the job a little less priority than my own research. 
However, I was told of Garwin's reputation and, prodded by his occasional 
telephone calls (some of them to my manager), I produced a 3-dimensional 
FFT program. I put some effort into designing the algorithm so as to save 
storage and addressing by over-writing data and I spent some time working 
out a 3-dimensional indexing scheme that was combined with the indexing 
within the algorithm. 

The Decision to Publish the FFT Algorithm 

Garwin publicized the program at first through his many personal contacts, 
producing a small but increasing stream of requests for copies of it. I did a 
write-up and a version for a program library, but did not plan publishing 
right away. I gave a talk on the algorithm at a seminar series in our 
Department of Mathematical Sciences. Ken Iverson and Adin Falkoff, the 
developers of APL, participated and Howard Smith, a member of the APL 
group, put the algorithm in APL when it was only a language for defining 
processes and before it was implemented on any machine. This gave the 
algorithm a thorough working over at the other seminars. 

Another participant in the Mathematics seminars was Frank Thomas, a 
mathematically-inclined patent attorney. I should clarify this by saying it 
was, and still is, not a common practice to have lawyers at Mathematics 
seminars. In any case, he was there and he suggested that there may be 
patent possibilities. He asked if the idea was new, so I called John Tukey 
and asked about it. John suggested that I look at some papers by F. Yates, 
G. E. P. Box, and I. J. Good. The last-mentioned had a full development of 
a very similar idea which differed in that the mapping from a series to sub- 
series required that the factors of N be mutually prime. Good's algorithms 
[3] had advantages and disadvantages, the chief among the latter being that 
when the factors are mutually prime, they cannot all be small, meaning that 
the resulting algorithms will not be as fast. The best present-day subroutines 
contain program modules for the various factors of N which include both 
FFT and prime factor algorithms. A good example of this is the set of 
programs by Burrus and Eschenbacher [4]. 

With this news, a meeting was held to decide what to do with the FFT. 
It was suggested that the algorithm be put in the public domain and that 
this should be done by having Schmuel Winograd and Ray Miller design a 
device that could carry out the computation. My part of the strategy was to 
publish a paper with a footnote mentioning Winograd and Miller and their 
device. I did so and sent my draft copy to John Tukey, inviting him to be 
co-author. He made some changes and emendations, and added some refer- 
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ences. Next came the task of getting it published as quickly as possible. I 
offered it to Mathematics o f  Computation by sending it to Eugene Isaccson 
at the New York University Courant Institute of Mathematical Sciences, 
where I had worked before coming to IBM. The paper was published 
8 months after submission in the April 1965 issue. 

Thus, the paper made only one round trip between me and Tukey and 
our only collaboration was in a few telephone conversations. However, we 
had a previous collaboration in 1953 when Tukey was a consultant at John 
Von Neuman's computer project at the Institute for Advanced Study in 
Princeton, New Jersey, where I was a programmer. I programmed for him 
what later became the very popular Blackman-Tukey method of spectral 
analysis [5]. The important feature of this method was that it gave good 
smoothed statistical estimates of power spectra without requiring large 
Fourier transforms. Thus, our two collaborations were first on a method for 
avoiding large Fourier transforms since they were so costly and then a 
method for reducing the cost of the Fourier transforms. 

The Radix 2 Algorithm 

To give some insight into the FFT algorithms without too many details, one 
may describe the radix 2 algorithm as logz(N) iterations, each of which 
sweeps through the data doing 2-point Fourier transforms. The radix 2 
version of the algorithm as published by myself and Tukey is described by 

X1 (k) = Xo (k) + Xo (k + d) W e , (6) 

2(1 (k + d) = Xo (k) - Xo (k  + d) W e, (7) 

where the exponent e is a simple function of the index k. The displacement 
d either starts at 2 and doubles on each iteration or starts at N/2  and is 
halved on each iteration. This can be described as a doubling algorithm. On 
the first iteration, one obtains a set of 2-point Fourier transforms. On the 
second, one adjusts half the points with a phase factor and produces a set of 
4-point Fourier transforms. This is repeated, giving 8-point transforms and 
SO o n .  

I wrote my program to overwrite data, thereby using no scratch storage, 
and saving 2 address formations. A consequence of this is that one has to do 
a "bit-reversal" permutation at the beginning or at the end. The above 
computation is commonly referred to as a "butterfly" due to its appearance 
when described by a signal flow graph, as in Fig. 1. 

xo(k) 

Xo(k') 

w ~ 

x,(k) 

.~ X,(k') 
Fig. 1. Signal flow graph for the deci- 
mation-in-time radix2 FFT algo- 
rithm. The appearance of this graph 
gave the name "butterfly" to the 
computation described by it 
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Fig. 2. Signal flow graph for the deci- 
mation-in-frequency (Sande-Tukey) 
radix 2 FFT algorithm 

A statistics student of Tukey's, Gordon Sande, who was exposed to the 
factorization idea in one of Tukey's courses, derived a slightly different 
form of the algorithm which is described as follows: 

X~ (Ic) = X0 (k) + X0 (k + d), (8) 

X~ (k + d) = [X0 (k) - X0 (k + d)] W e. (9) 

This is known as the Sande-Tukey form of the FFT and is described by the 
signal flow graph in Fig. 2. The complex phase function W e has been given 
the popular name "twiddle factor" by Sande. Both forms of the FFT algo- 
rithm are useful since one permits putting the bit-reversal at the beginning 
and the other permits doing it at the end. The total number of arithmetic 
operations is the same but one or the other may be preferred due to the 
particular architecture of the machine. 

Public Relations and Merchandising of the FFF 

Another member of our department, Lee Alsop, who was a geophysicist and 
adjunct professor at the Lamont Geophysical Laboratory of Columbia 
University decided to try the new algorithm on a record of 2048 samples of 
a strain seismograph of the Rat Island earthquake. He found that he not 
only got the promised speed-up ratio, but further testing with numerically 
generated data showed that the accuracy was much greater than that 
obtained by conventional methods. IBM made efforts to publicize the algo- 
rithm to the extent that it ran full page advertisements in Scientific 
American and a few other publication, describing Lee Alsop's results with 
the algorithm. 

Then I was shown an excellent paper by Gordon Sande, in which he 
carried the subject further, showing how the fast Fourier transform (FFT) 
could be used to reduce computation in covariance calculations. After 
hearing about our paper going out to Mathematics of Computation, he did 
not publish his in its original form. However, he distributed many good 
subroutines and published an excellent paper with Morven Gentleman [6] 
on the algorithm and a Wilkinson type error analysis. Their results showed 
that on an average, the FFT error was lower by a factor which is the same as 
the speed-up factor, N/log (N), thereby substantiating what Lee Alsop 
found in his calculations. Thus, the new algorithm was not only faster but 
more accurate. 
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Almost simultaneously, Lloyd Welch, a mathematician at the Jet 
Propulsion Laboratory, Pasadena, California, designed an FFT algorithm 
by algebraic methods at the request of someone who needed it, independent 
of any previous ideas or suggestions. His work was only published in 
reports [7]. I have heard of several other discoveries of the FFT algorithm 
and I am sure that there were even more that I did not hear of. 

Another result of Garwin's efforts was a seminar run at the IBM 
Watson Research Center to publicize the algorithm and familiarize IBMers 
with it. I say that I was lucky when I happened to be sitting where I was 
when Dick Garwin came along and I was lucky again when Hirsh Cohen, 
then department director, asked two excellent statisticians, Peter D. Welch 
and Peter A. W. Lewis, to join me in running the seminar. In a fairly short 
time we prepared notes which later became a thick research report 
describing the algorithm and developing some important theory and appli- 
cations. This proved to be a very fertile field for research. The work for the 
seminar was extended and rewritten in a series of papers on the FFT and its 
applications. These papers elaborated on the theory of the discrete Fourier 
transform and showed how standard numerical methods should be revised 
as a result of the economy in the use of the FFT. These included a paper on 
the neglected theory of the finite Fourier transform [8], new methods for 
digital filtering [9] and spectral analysis [10] and [11]. The work on spectral 
analysis was essentially to make the revisions brought about by the reduced 
cost of the Fourier transforms, i.e., to re-write the Blackman-Tukey 
methods. This was a period of great productivity for many who had early 
contact with the FFT and were able to develop its applications. For me, it 
was also a very great education since it brought me in contact with many 
people with important applications. Furthermore, these people all thought I 
knew much more than I did, so I had to do a lot of studying to come closer 
to expectations. 

Since the idea of solving the Poisson equation was of interest to me 
since the days of programming numerical weather forecasting, a paper on 
using Fourier methods for its solution, by Roger Hockney [12], caught my 
attention. He used the very clever cyclic reduction method combined with a 
form of the FFT algorithm, before seeing any of the FFT papers, and got 
very good results. I contacted him and eventually got IBM to hire him as a 
member of our Mathematics department where he did very good work in 
solving plasma problems, doing galaxy simulations and solving particle 
models for transistors using FFT subroutines [13]. 

The IEEE ASSP Digital Signal Processing Committee 

The next level of activity came through contact with the speech and signal 
processing people at Massachusetts Institute of Technology. Tom Stockham 
telephoned me and excitedly told how important the algorithm was to them 
and what they were doing with it. Through him, I came into long-lasting 
and fruitful contacts with Charlie Rader, Ben Gold, Alan Oppenheim, 
Charles Rabiner, Ron Crochiere, Cliff Weinstein, to name just a few, all of 
whom are now important names in digital signal processing. They had 
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developed digital methods for processing speech, music, and images and 
the very great obstacle to making their methods feasible was the amount of 
computing required. This was the first really impressive evidence to me of 
the importance of the FFT. We invited the MIT people to the IBM 
Research Center where Stockham gave lectures and demonstrations 
showing how he "corrected" old Enrico Caruso records and did such things 
as removing violins from the background. Later, Stockham became founder 
of Soundstream, one of the two large digital recording companies in the 
United States. 

I was invited to join them, some very inspiring Bell Laboratories people 
such as James Kaiser, Howard Helms, and others on the Digital Signal 
Processing Committee of the IEEE Society for Audio and Electroacoustics. 
This committee was undertaking the task of publicizing and developing the 
FFT algorithms. To reflect the shift in emphasis, the name was later 
changed to the IEEE Acoustics Speech and Signal Processing Society. 

Fourier Spectrometry 

One of the contacts which proved to have great mutual benefit was with 
Janine Connes, a member of the advisory committee of this conference. She 
first wrote to say that she had to compute Fourier transforms of very long 
data sequences. These were interferometer measurements made by a new 
and more powerful device built by her husband the astronomer, Pierre 
Connes. One extraordinary thing about this was that a single record of data 
was about 512 000 points and all values of the spectrum were needed. This 
was beyond the capacity of the high speed memory of existing machines. 
Another novel aspect was that the data was a real even sequence, while the 
FFT algorithm, as written, was for complex sequences. Thus, there was a 
four-fold redundancy in the complex transform which had to be exploited 
due to the amount of data. At that time, people were doing transforms of 
real data by just running the algorithm with zeroes in the imaginary parts. It 
was somewhat wasteful, but the FFT brought such an improvement, it 
seemed insignificant with smaller problems. Janine Connes visited the IBM 
Research Center to discuss the FFT and its application to her problem. I 
told her that the IEEE DSP committee was planning a workshop for people 
like herself and suggested that she come. 

The Arden House Workshops 

Bill Lang, manager of the acoustics laboratory at IBM and then chairman of 
the DSP committee suggested that we run a workshop on the FFT in Arden 
House, the Harriman mansion on top of a mountain in Harriman Park, in 
NewYork. The first was in 1967 [14] and another was held in 1968 [15]. 
These were unique in several respects. One was that they included people 
from many different disciplines: There were heart surgeons, statisticians, 
geologists, university professors, and oceanographers, just to name a few. 
The common interest was in the use of the FFT algorithms and every one of 
the approximately 100 attending had something useful to say in his pre- 
sentation. Another thing that was unique was that work was really done. 
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People got together to formulate and work out solutions to problems. Here, 
we got to work on Connes' problem. I and others had worked out algo- 
rithms which permitted one to do such tricks as doing two real FFT's with 
one complex FFT and for doing an N-point real transform via an N/2-point 
complex transform. At the workshop, I devised an algorithm for computing 
a real cosine transform, i.e. a transform of real even data. Norman Brenner, 
then a graduate student at MIT, working with Charles Rader, was a prolific 
programmer of all kinds of FFT's. He worked with Connes and designed a 
program that computed the FFT of a large sequence by scheduling the algo- 
rithm so it could use auxiliary storage with very little overhead. Since then, 
this has been done in many environments, including the use of magnetic 
drums, tapes, disks, and lately, hierarchical cache storage systems and 
parallel processors. These ideas and a monumental effort by Janine Connes 
resulted in her calculation of the infrared spectra of the planets which has 
become a standard reference book [16]. 

The History of the FFT 

Meanwhile, I started learning the history of the FFT. Garwin questioned his 
colleague, Professor L.H.  Thomas of the IBM Watson Scientific Labo- 
ratory of Columbia University, who had been my thesis advisor when I was 
a graduate student there. Thomas gave Garwin a paper he published in 1963 
[17] which described a large Fourier series calculation he did in 1948 on 
IBM punched card machines: a tabulator and a multiplying punch. He said 
that he simply went to the library and looked up a method. He found a 
book by Karl Stumpff [18] that was a cook-book of methods for Fourier 
transforms of various sizes. Most of these used the symmetries of the 
trigonometric functions to reduce the number of computations by a 
constant factor. In a very few places Stumpff showed how to obtain larger 
transforms from smaller ones, and then left it to the reader to generalize. 
Thomas made a generalization that used mutually prime factors and got the 
same type of algorithm as I.J. Good. His computing scheme was for a 
special value of N for which this was a very efficient procedure but his 
paper describes the prime factor in very general terms. 

Shortly after the publication of the Mathematics of Computation paper, a 
letter from Philip Rudnick of the Scripps Institution of Oceanography in 
San Diego, California, said that he had programmed the radix 2 algorithm 
using a method published by Danielson and Lanczos in 1942 [19] in the 
Journal of the Franklin Institute, a journal of great repute which publishes 
articles in all areas of science, but which did not enjoy a wide circulation 
among numerical analysts. Rudnick published improvements in the algo- 
rithm [20] in 1966. It was interesting to meet him and ask why he did not 
publish. He said that he was only interested in having a computer program 
to do his data analysis. This was another failure in the communication of 
good and useful ideas, the primary point of Garwin's 1969 Arden house 
keynote address [21]. 

I would like to mention two important concepts in numerical algorithms 
which, it is said, appeared first in the FFT algorithm. 
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-- The first is the divide-and-conquer approach. If a large N-size problem 
requires effort that increases like some power of N, then one can, in 
general, reduce computation by dividing the problem into parts having 
the same structure. 

-- The second concept is the asymptotic behavior of the number of opera- 
tions. This was not significant for small N so the importance of early 
forms of the FFT algorithms was not noticed even where they would 
have been very useful. 

I can illustrate this point by going back to the Danielson and Lanczos 
paper [19]. They consider the problem of computing Fourier coefficients 
from a set of equally-spaced samples of a continuous function. It is not only 
a long laborious calculation, but one also has the problem of verifying 
accuracy. Errors could arise from mistakes in computing, which were 
frequent on desk calculators, or from undersampling the data. Lanczos 
pointed out that although the use of the symmetries of the trigonometric 
functions, as described by Runge, reduced computation, one still had an N 2 
algorithm. In a previous reading of this paper, I obtained and published [22] 
the mistaken notion that Lanczos got the doubling idea from Runge. He 
really only attributes the use of symmetries to Runge, citing papers 
published in 1903 and 1905 which I could not find. The Stumpff paper [18] 
gave a reference to Runge and K6nig [23] which contains the doubling algo- 
rithm but does not give it much prominence. Thus, it appears that Lanczos 
independently discovered the clever doubling algorithm, embodied in the 
butterflies above, and used it to solve the problems of both computational 
economy and error control. He writes, in the introduction to [19] on 
page 366, "We shall show that, by a certain transformation process, it is 
possible to double the number of ordinates with only slightly more than 
double the labor". He goes on to say: 

"In the technique of numerical analysis the following improvements 
suggested by Lanczos were used: (1) a simple matrix scheme for any 
even number of ordinates can be used in place of available standard 
forms; (2) a transposition of odd ordinates into even ordinates reduces 
an analysis for 2n coefficients to two analyses for n coefficients; (3) by 
using intermediate ordinates it is possible to estimate, before calculating 
any coefficients, the probable accuracy of the analysis; (4) any interme- 
diate value of the Fourier integral can be determined from the calcu- 
lated coefficients by interpolation. The first two improvements reduce 
the time spent in calculation and the probability of making errors, the 
third tests the accuracy of the analysis, and the fourth improvement 
allows the transform curve to be constructed with arbitrary exactness. 
Adopting these improvements the approximation times for Fourier 
analyses are: 10 rain for 8 coefficients, 25 rain for 16 coefficients, 60 min 
for 32 coefficients, and 140 min for 64 coefficients, z" 

2 Reprinted from the Journal of  the Franklin Institute, Vol. 233, pp. 365--380 and 
pp. 435--452, with permission from Pergamon Journals Ltd, Elmsford, NY 10573, USA 
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Lanczos' matrix scheme in (1) reduces the data to even and odd compo- 
nents of the function so that real cosine and sine transforms may be 
computed. The rest of the process makes use of the symmetries of the sines 
and cosines, similar to the methods of Runge. After this, he uses the 
doubling algorithm. Step (2) is what we have been calling the twiddle factor 
multiplication and in Step (3) he does the butterfly calculation but observes 
accuracy by comparing the two inputs: the Fourier coefficients of the sub- 
series. If they are the same, the high frequency half of the new transform is 
zero and, assuming that there are no frequency components beyond that, 
the sampling rate is sufficient and no errors have occurred. Thus, it appears 
that Lanczos had the FFT algorithm and if he had an electronic computer, 
he would have been ready to write a program permitting him to go to arbi- 
trarily high power of 2. It seems strange, for us, to see his remark on p. 376, 
"If  desired, this reduction process can be applied twice or three times." 

This is an outstanding example of the difference in point of view 
between different generations of numerical analysts. They had the doubling 
algorithm, which was capable of doing Fourier transforms in Nlog(N)  
operations but its potential power did not seem to be appreciated. It was 
considered as much a method for checking accuracy as for reducing 
computing and many did not foresee the possibility of automating the 
procedure. Then, publishing it in the Journal of the Franklin Institute caused 
this important paper to go unnoticed until Philip Rudnick, who was not a 
numerical analyst, revived it. Rudnick also ignored the opportunity to 
expose it to the world. Lanczos later published his Applied Analysis in 1956 
[24] with only a few words and a footnote (p. 239) referring to the Danielson 
and Lanczos paper and I find no references at all in his later books 
including his 1966 book, Discourse on Fourier Series [25]. 

Gauss and the FFT 

After reading the above early papers, I wrote what I thought to be the 
history of the FFT algorithm [22] believing that I did not have to back 
earlier than to Runge. Some years later, while working on his book, Herman 
Goldstine [26] gave me a reference to a section of a book by Gauss [27] that 
contained the essentials of the FFT algorithm. I got a copy of the paper, 
which was in a neo-classic Latin that I could not read. The formulas and a 
slight recognition of a few words indicated he was doing a kind of 
Lagrangian interpolation that presumably would lead to the basic FFT algo- 
rithm. I put this aside as a very interesting post-retirement activity. 

Several years later, some old signal processing friends, Don Johnson 
and Sidney Burrus at Rice University, told me that they and a very energetic 
graduate student, Michael Heideman, were studying Gauss and the FFT. 
Heideman not only got the paper translated but found and described many 
others who wrote of FFT methods, between Gauss and my early references. 

Conclusion 

This story of the FFT can be used to give one incentive to investigate not 
only new and novel approaches, but to occasionally look over old papers 
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and see the variety of  tricks and clever ideas which were used when 
computing was, by itself, a laborious chore which gave clever people great 
incentive to develop efficient methods. Perhaps among the ideas discarded 
before the days of  electronic computers, we may find more seeds of  new 
algorithms. 
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A paper similar to this was given at the ACM Conference [28]. Although the audience 
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