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Abstract. If steepest descent directions are used with exact line
search step lengths it is well known that zigzag behavior may occur
near a minimum point. We show that if the step lengths are chosen
to be equal to the reciprocals of the eigenvalues of the matrix of a
positive de�nite quadratic function of n variables then it is possible
to have n-step convergence. This is similar to the well known prop-
erty of conjugate directions when it is applied to a positive de�nite
quadratic function. We shall show that such new step lengths are
equal or less than those given by exact line searches. It is known that
the Barzilai-Borwein step lengths can be equal approximately to the
reciprocals of the eigenvalues. However a direct use of the BB-step
lengths lead to function increases during the iterative process. We
propose very simple way to ensure monotonic decreases of the func-
tion as the iteration progresses. This leads to very stable steepest
descent algorithms may not have zigzag behavior even for very "sti¤"
problems. With these modi�cations to ensure monotonic function
decreases, the BB-step lengths and exact line search step lengths in
combination can then be used more e¤ectively for nonlinear prob-
lems which are not quadratic.

Keywords. Unconstrained optimization. Steepest Descent Direc-
tions. Convergence. Barzilai-Borwein Steplengths.

1 Introduction

Goh (Ref.1) had used control theory concepts to analyze algorithms for un-
constrained optimization problems. The control theory approach focusses on
the properties of the whole trajectory generated by an algorithm in an uncon-
strained optimization problem. The whole trajectory is from an guessed initial
point to the minimum point.
The steepest descent algorithm is the simplest algorithm for the numerical

solution of an unconstrained optimization problem. If the exact line search step
length is used in each iteration for a quadratic function then the trajectory can
zigzag very badly near the minimum point, see Nocedal and Wright (Ref.2).
We shall show in this paper that the steepest descent algorithm can have

n-step convergence property when it is applied to a positive de�nite quadratic
function of n variables. The step lengths should be chosen to be equal to the
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reciprocals of the eigenvalues. Thus it has a property that is similar to the n-step
convergence of conjugate directions for a quadratic function. If the eigenvalues
are ordered from the largest to the smallest then the function decreases as
the iteration progresses. If not the n-step convergence is still possible but the
function can increase in some iterations.
Barzilai-Borwein(Ref.3) introduced a way to compute step lengths which are

sometimes exactly equal or approximately equal to the reciprocals of the eigen-
values. However these computed BB-step lengths are not ordered in magnitude.
This leads to function increases during the iterative process. Here we shall pro-
pose very simple ways to ensure that the function decreases monotonically as
the iteration progresses if the BB-step lengths are used in combination with
exact line search step lengths.

2 Convergence Properties of Steepest Descent
for a Quadratic Function

In an unconstrained optimization problem we seek a vector x 2 Rn which min-
imizes a smooth function f(x):
Consider the iteration

xk+1 = xk + �kpk (1)

where pk is the search direction and �k is the step length in the kth iteration.
In a steepest descent algorithm the direction vector is

pk = �rf(xk) = �gk (2)

With a given direction vector pk the step length �k can be chosen so that it
minimizes

f(xk + �pk) (3)

If the norm of the direction vector pk is equal to one then �k is precisely
the step length. Otherwise �k is just a measure of the step length. But for
convenience and following common practice, �k is called the step length.
By de�nition, a step length chosen in this way is called an "exact line search

step length" if it minimizes the function in (3). We avoid saying that such a step
length is an optimal step length. This is because, in the long run, this choice of
step length is in fact not the best choice of the step length when the steepest
descent directions are used. Furthermore, this choice of step lengths may cause
the trajectory to zigzag when the current point is near the minimum point of a
quadratic function with widely di¤erent eigenvalues. However in practice �k is
chosen by a numerical procedure which calculates it so that the function in (3)
is minimized approximately. Such a choice of �k is called an inexact line search
step length.
In this paper we focus our attention on the special case when
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f(x) = (1=2)xTAx (4)

where A is an n� n positive de�nite matrix.
Let E1; E2; :::; En be the eigenvectors of the matrix A and �1; �2; :::; �n be the

eigenvectors of A. We shall initially assume that all the eigenvectors are distinct.
Without loss of generality we assume that they are ordered in decreasing sizes
as follows:

�1 > �2 > ::: > �n > 0 (5)

Theorem 2.1. Assume the eigenvalues of A satisfy (5) and the steepest
descent directions (2.2) are used. If we choose the step lengths so that �k =
(1=�k) for k = 1; 2; :::; n; then the trajectory generated will converge to the
minimum point of the quadratic function in (4) in no more than n steps.
Proof. At the kth iteration let

xk =
X

ckjEj (6)

where ckj are constants.
We have

gk = Axk: (7)

With the search direction set equal to the steepest descent vectors we get

pk = �gk = �Axk = �
X

ckjAEj = �
X

ckj�jEj : (8)

Substitute (6) and (8) into the iterative equation (1) we get

xk+1 =
X

cjk(1� �k�j)Ej ; (9)

gk+1 = Axk+1 =
X

ckj(1� �k�k)�jEj (10)

with the choice of

�k = 1=�k for k = 1; 2; :::; n (11)

we eliminate E1 as a basis of the vectors x2 and g2. We continue in this manner
and eliminate one eigenvector as a basis vector of the position and gradient
vectors in one iteration in a successive manner. Finally En is the only basis
vector of xn. Then in the �nal iteration the choice

�n = 1=�n (12)

generates the minimum point xn+1 = 0 and gk+1 = 0. Furthermore the �nal
step length in (12) minimizes the function in (3) along the �nal steepest descent
direction.
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Corollary 2.1.1. When the matrix has multiple eigenvalues it is possible
to use the above choice of step lengths so that the steepest descent directions
generate a trajectory which can reach the minimum point in less than n steps.
This follows immediately as we can eliminate the eigenvectors as basis vectors
more rapidly.
Corollary 2.1.2. With a simple change of variables the above analysis can

be applied to a more general quadratic function of the form

f(x) = (1=2)xTAx+ bTx+ c (13)

Corollary 2.1.3. If an initial point is on an eigenvector it can be driven to
the minimum point in one iteration with the exact line search step length..
It follows that it is desirable to use steepest descent directions and drive a

point to an eigenvector. This property of one step convergence from these special
initial points is similar to the one iteration property of the Newton algorithm
when it is applied to a positive de�nite quadratic function.
This single step convergence property of the steepest descent directions in a

quadratic function can provide guidelines on how to develop new and e¤ective
algorithms for unconstrained optimization. This is being investigated. Some
results have been obtained and they will be reported later. It should be noted
again that if an initial point is on an eigenvector then the required step length
in (12) does in fact minimizes the function (3).
Example. 2.1 Let f(x) = (1=2)(4x21 + 4x1x2 + 2x

2
2).

We have

�1 = (3 +
p
5) and �2 = (3�

p
5); (14)

and

E1 = (2;�1 +
p
5) and E2 = (2;�1�

p
5): (15)

With the use of these eigenvalues and eigenvectors all points can be driven
to the minimum point in no more than two iterations with step lengths equal to
the reciprocals of the eigenvalues and steepest descent direction vectors. Points
which lie on an eigenvector can be driven to the minimum point in one iteration.
Trajectories which converge in two iterations to the minimum point are shown
in Fig.1.
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Fig.1. Two iterations convergence from di¤erent points with steepest descent
directions and new step lengths.

Theorem 2.2. For the quadratic function (4) the exact line search step
length in the �rst iteration is greater than or equal to the reciprocal of the
largest eigenvalue of the matrix A.
Proof. Substitute (2) into (1) we get

x2 = x1 + �1p1 = x1 � �1g1 (16)

Substitute this into (4) and minimize the function with respect to �1. Let
�ES1 denote the exact line search step length. We get

�ES1 = (xT1 Ag
T
1 )=(g

T
1 Ag1) = (g

T
1 g1)=(g

T
1 Ag1) � (1=�1) (17)

The inequality in (17) follows from the Rayleigh-Ritz ratio property for a sym-
metric A matrix, see Horn and Johnson (Ref.4).
Corollary 2.2.1. If the eigenvalues are ordered as in (5) and the step

lengths are chosen according to (11) then the exact line search step length for
the current position,

�ESk = (xTkAg
T
k )=(g

T
k Agk) = (g

T
k gk)=(g

T
k Agk) � (1=�k) = �k (18)

Proof. Assume that the eigenvalues satisfy the order in (5). One eigenvector
is eliminated as a member of the basis of vectors for the current point vector
and the current gradient vector in each iteration. Apply an analysis similar to
that in (17) to the subspace spanned by the remaining eigenvectors, we deduce
that at each iteration the new step length, �k = (1=�k), satis�es a condition
similar to that in (17) in the reduced subspace. It is then the largest eigenvalue
in the reduced subspace. Condition (18) implies that the new step length in
each iteration is equal to or less than the exact line search step length for the
current point. This analysis and condition (18) require that the eigenvalues
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satisfy the ordering of the eigenvalues in decreasing values as in (5). If not the
function may increase in an iteration.
Comments.
Consider a nonlinear unconstrained optimization problem for a non-quadratic

function. Suppose (13) is a quadratic approximation. Then the �rst step to min-
imize the quadratic approximation is the most important step in the nonlinear
problem. This is because the Hessian matrix of the quadratic approximation
varies as the current point moves. Thus the largest eigenvalue of the quadratic
approximation is the most relevant to calculate a good step length in a nonlinear
problem which is non-quadratic.
Example 2.2. Consider the function f(x) = (1=2)(x21 + 4x

2
1): The eigen-

values are �1 = 1 and �2 = 4: Let the initial point A=(2,1) and ABC be the
line in the steepest descent direction through A. This line intersects the x1-axis
at B=(1.5,0) and the x2-axis at C=(0,-3). There are two ways to move in two
iterations to the minimum point P=(0,0). We can move by ABP or ACP. The
lines BP and CP are also in the steepest descent directions at B and C, respec-
tively. To move from A to B we can use the steepest descent direction at A
and the step length equal to 1/4. To move from A to C we use the steepest
descent direction at A and the step length equal to 1/1. In each case we use a
step length equal to the reciprocal of an eigenvalue. We note that the function
is monotonic decreasing along ABP. But it increases along AC. Thus the order
that the eigenvalues is used to calculate the step lengths is important, see Fig.2.
This is to ensure that the function is monotonic decreasing along a trajectory.
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Fig.2. Two step convergence with function decrease along ABP and function
increase along AC.
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3 New step lengths for steepest descent

Barzilai and Borwein (Ref.3) had proposed step lengths which can compute ap-
proximately the reciprocals of the eigenvalues of the matrix of a quadratic func-
tion. A di¢ culty of the Barzilai and Borwein step lengths when they are applied
to a non-quadratic problem is that the function may not decrease monotonically
as the iteration progresses. This is because the sizes of the step lengths are not
ordered as in (5). Dai et.al,(Ref.5) and others have used the Barzilai and Bor-
wein step lengths in combinations with other step lengths and their algorithms
have good convergence properties.
We shall use the properties described in Theorem 2.2 and corollary 2.2. We

shall propose several simple ways to use the Barzilai and Borwein step lengths
and the exact line search step lengths so that we have monotonic decreases in
function values as the iteration progresses. In this paper we focus our attention
on quadratic functions of the form (4) in order to gain insight into some of the
properties of these algorithms.
Algorithm 3.1. Barzilai-Borwein Algorithm.
1. Chose the initial point x0 and step length �0 for the iterative process

xk+1 = xk + �kpk.
2. Set the search direction pk = �gk:
3. Let sk�1 = xk � xk�1 and yk�1 = gk � gk�1. Compute the BB- step

length �BBk = (sTk�1sk�1)=(s
T
k�1yk�1):

4. Compute xk+1 = xk � �BBk gk:
5. End if k gk+1 k< �. Otherwise set k = k + 1:
There is no restriction on the choice the initial step length. There is a

second Barzilai-Borwein formula for the step length. To distinguish it from the
above formula we can replace �BBk in Algorithm. 3.1. by

�BBk = (yTk�1sk�1)=(y
T
k�1yk�1) (19)

Example 3.1. Let f(x) = (1=2)xTAx where (i) A = diag(10000; 10; 2);
(ii) A = diag(2:2; 2:1; 2): From the initial point (1,2,3) we �nd convergence
occurs in 17 iterations in (i) and in 5 iterations in (ii). If f�BBk g of (19) is
used, convergence occurs in 12 iterations in (i) and in 5 iterations in (ii). Some
but not all the step lengths are approximate values of the reciprocals of the
eigenvalues of the matrix A. These are impressive results as the function in
(i) is a sti¤ problem. We note in (i) the function had a very large increase in
value in the seventh iteration. Similar results on these fast convergence of the
BB-step lengths are obtained in many other examples with quadratic functions.
Furthermore there is no zigzag behavior even with very sti¤ problems where the
some eigenvalues are very large compared with others.
We now propose a new algorithm which uses the BB-step lengths. This algo-

rithm is designed so that the function decreases monotonically as the iteration
progresses.
Algorithm 3.2. BB-step lengths and monotonic decreases in func-

tion values.
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1. Chose the initial point x0, an initial step length �0 and a de�ation factor
d where 0 < d < 1.
2. Set the search direction pk = �gk.
3. Let sk�1 = xk�xk�1 and yk�1 = gk�gk�1. Compute the BB-step length

�BBk = (sTk�1sk�1)=(s
T
k�1yk�1):

4. For k � 1, if �f = f(xk��BBk gk)�f(xk) � 0 , set �k = �BBk . Otherwise,
replace �k with �k = d�BBk and repeat this until �f < 0:
5. End if k gk+1 k< �. Otherwise let k = k + 1.
Comments 3.2. This algorithm is designed for a convex quadratic function.

Then the function would decrease in an iteration if the step is su¢ ciently small.
This can be achieved with the repeated use of the de�ation factor d:
Here attention is focussed on how to design algorithms for a convex quadratic

function. Step 4 in Algorithm 3.2 can be replaced by another condition to
enforce monotonic decrease of the function. We have
Algorithm 3.3. BB-step lengths and monotonic decreases in func-

tion values.
1. Chose the initial point x0, initial step length and c where 0 < c < 2:
2. Set the search direction pk = �gk.
3. Compute the exact line search step lengths �ESk = (gTk gk)=(g

T
k Agk).

4. Set the initial step length �0 = �ES0 .
5. Let sk�1 = xk�xk�1 and yk�1 = gk�gk�1. Compute the BB-step length

�BBk = (sTk�1sk�1)=(s
T
k�1yk�1):

6. For k � 1 set �k = min(c�ESk ; �BBk ):
7. End if k gk+1 k< �. Otherwise let k = k + 1.
We shall describe a simpler version of the above algorithm for a positive

de�nite quadratic function. This new version is expected to be more robust
when we have a nonlinear function which is not a non-quadratic function. For
a non-quadratic function the function may increase if the step length satis�es
the condition 0 < �k < 2�ESk . For this reason we impose a stronger condition
to ensure monotonic decrease in the function value in an iteration.
Algorithm 3.4.
1. Chose the initial point x0 for the iterative process xk+1 = xk + �kpk.
2. Set the search direction pk = �gk:
3. Compute the exact line search step lengths �ESk = (gTk gk)=(g

T
k Agk).

4. Set the initial step length �0 = �ES0 .
5. Let sk�1 = xk�xk�1 and yk�1 = gk�gk�1. Compute the BB step length

�BBk = (sTk�1sk�1)=(s
T
k�1yk�1):

6. For k � 1, set �k = min(�ESk ; �BBk ).
7. End if k gk+1 k< �. Otherwise set k = k + 1.
Comments 3.4. In this algorithm step 5 ensures that the function decreases

monotonically for a convex quadratic function. Its convergence property is not
as good as algorithms 3.2 and 3.3. However it is better designed for nonlin-
ear functions which are not quadratic. For nonlinear functions which are not
quadratic the Hessian matrix of the quadratic approximations will vary as the
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current point moves when it is not near the minimum point. Step 5 of algo-
rithm 3.4 is a very simple way to ensure that the quadratic function decreases
monotonically as the iteration progresses.
We shall outline a proof that Algorithm 3.4 is convergent for a convex

quadratic function. Let �max be the largest eigenvalue of the matrix of the
quadratic function. We have

�BBk = (gTk�1gk�1)=(g
T
k�1Agk�1) (20)

�ESk = (gTk gk)=(g
T
k Agk) (21)

By the Rayleigh-Ritz ratio property for matrix A we have

� = (1=�max) � min(�BBk ; �ESk ) for all k (22)

Hence for all points xk not equal to the minimum point we have

�f(xk) = f(xk+1)� f(xk) � f(xk � �gk)� f(xk) < 0 (23)

By the inverse Lyapunov function Theorem conditions, see Goh(Ref.1), we
can show that the trajectory will converge to the minimum point. In condition
(23) the constant � is independent of k: Thus f(xk � �gk) � f(xk) is only a
function of xk and it is negative de�nite as a function of x. It is not a function
of k explicitly. Here we can use the standard condition in the Lyapunov function
Theorem that �f(x) must be negative de�nite for all points xk in the admissible
region. Thus we have global convergence.
There are well known examples, see Gould and Ley¤er (Ref.6 ), that under

the weaker condition that �f(xk) is negative along a trajectory we may not
get convergence. In the Gould and Ley¤er counterexample f(x) = x2 and
(�k; pk) = (2+3=2

k+1; (�1)k+1). In this case (�k; pk) and �f(xk) are functions
of k rather than xk: For this reason the inverse Lyapunov function Theorem
cannot be used in this counterexample to establish convergence.
Example 3.2. Use f(x) = (1=2)xTAx where A = diag(10000; 10; 2) and

initial point x0 = (1; 2; 3):We use Algorithms 3.1, 3.2 and 3.4 to study this
problem. Here convergence to the minimum point occurs after 17 iterations with
Algorithm 3.1. It converges after 18 iterations in Algorithm 3.2 with d = 0:99,
see Fig.3:It is surprising that such a small change in the de�ation factor a¤ects
the behavior of the solution so dramatically. With this de�ation factor the
function decreases monotonically. With Algorithm 3.4 the trajectory slows down
near the minimum point due to zigzag behavior. Methods to accelerate the rate
of convergence when zigzag behavior occurs will be addressed in a separate
paper. Here the function decreases monotonically. In our computation we also
modify slightly Algorithm 3.4 with the condition �k � 0:1�ESk for all k.
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Fig.3. Function value changes with Algorithm 3.1 and 3.2

Example 3.3. ChooseA = diag(10000 : �500 : 900 : �100 : 100; 50; 10; 8; 6; 2)
in Matlab notations. This is a 33th order diagonal matrix. The initial point is
(330 : �10 : 10) in Matlab notations.
With the �BBk BB-step length Algorithm 3.1. converges in 561 iterations.

With �BBk BB-step lengths it converges in 616 iterations. There are many func-
tion increases during the iterations. But the speed of convergence is impressive.
With a de�ation factor of d = 0:99 we apply Algorithm 3.2 with �BBk to

the same problem. Convergence occurs after 705 iterations. But the function
decreases monotonically. Fig.4 shows the dramatic di¤erence in the changes in
function values between Algorithm 3.1 and 3.2. When �BBk is used in Algorithm
3.2 the convergence is slower.
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Fig.4. Function value changes with Algorithm 3.1 and 3.2
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4 Conclusions

We have looked at the total trajectory in algorithms for unconstrained opti-
mization problems when steepest descent directions are used. For a positive
de�nite quadratic function in n variables we showed that we can have n-step
convergence which is similar the well known property of conjugate directions.
This is achieved when the step lengths is set equal to the reciprocals of the
eigenvalues of the matrix of the quadratic function. We establish that in this
n-step trajectory the step lengths must be ordered in an increasing order to get
monotonic decrease in function values. Furthermore the new step lengths must
be less than or equal those given by exact line search at the current point.
Barzilai and Borwein(Ref.3) have a method to compute step lengths which

can be approximately equal to the reciprocals of the eigenvalues. The di¢ culty
with these BB-step lengths is that the function may increase as the iteration
progresses. This is because the computed BB-step lengths are not ordered in
sizes.
Here we propose simple ways which make use of the BB-step lengths. We

modify the algorithm to ensure that the function decreases monotonically as the
iteration progresses. But with these modi�cations it appears the step lengths are
less likely to be equal to the reciprocals of the eigenvalues. Thus convergence is
slower but the modi�ed algorithm would be better positioned for use with non-
quadratic and nonlinear functions. We have many examples with non-quadratic
functions where our modi�ed algorithms converge but where the use of the BB-
steps lengths alone would fail to converge. However we shall not discuss in
details these non-quadratic function examples here as there are other issues to
be addressed and more extensive testing are needed.
It appears that the algorithms we described here are able to eliminate the

zigzag behavior of some very sti¤ quadratic function problems to some extent.
In these problems the zigzag behavior would appear seriously if the steepest
descent directions and exact line search step lengths are used.
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